Sample records for open system evolution

  1. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    PubMed

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  2. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  3. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  4. Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence.

    PubMed

    Hernández-Orozco, Santiago; Hernández-Quiroz, Francisco; Zenil, Hector

    2018-01-01

    Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.

  5. Designing a Resource Evolution Support System for Open Knowledge Communities

    ERIC Educational Resources Information Center

    Yang, Xianmin; Yu, Shengquan

    2015-01-01

    The continuous generation and evolution of digital learning resources is important for promoting open learning and meeting the personalized needs of learners. In the Web 2.0 era, open and collaborative authoring is becoming a popular method by which to create vast personalized learning resources in open knowledge communities (OKCs). However, the…

  6. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B.

    2018-01-01

    We identify the conditions that guarantee equivalence of the reduced dynamics of an open quantum system (OQS) for two different types of environments—one a continuous bosonic environment leading to a unitary system-environment evolution and the other a discrete-mode bosonic environment resulting in a system-mode (nonunitary) Lindbladian evolution. Assuming initial Gaussian states for the environments, we prove that the two OQS dynamics are equivalent if both the expectation values and two-time correlation functions of the environmental interaction operators are the same at all times for the two configurations. Since the numerical and analytical description of a discrete-mode environment undergoing a Lindbladian evolution is significantly more efficient than that of a continuous bosonic environment in a unitary evolution, our result represents a powerful, nonperturbative tool to describe complex and possibly highly non-Markovian dynamics. As a special application, we recover and generalize the well-known pseudomodes approach to open-system dynamics.

  7. Minimal evolution time and quantum speed limit of non-Markovian open systems

    PubMed Central

    Meng, Xiangyi; Wu, Chengjun; Guo, Hong

    2015-01-01

    We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas. PMID:26565062

  8. Physical realizability of continuous-time quantum stochastic walks

    NASA Astrophysics Data System (ADS)

    Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.

    2018-05-01

    Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.

  9. The Physics of Open Ended Evolution

    NASA Astrophysics Data System (ADS)

    Adams, Alyssa M.

    What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their non-living counterparts, as in a mathematical foundation to explain away our observations of biological evolution, emergence, innovation, and organization. The development of a theory of living systems, if at all possible, demands a mathematical understanding of how data generated by complex biological systems changes over time. In addition, this theory ought to be broad enough as to not be constrained to an Earth-based biochemistry. In this dissertation, the philosophy of studying living systems from the perspective of traditional physics is first explored as a motivating discussion for subsequent research. Traditionally, we have often thought of the physical world from a bottom-up approach: things happening on a smaller scale aggregate into things happening on a larger scale. In addition, the laws of physics are generally considered static over time. Research suggests that biological evolution may follow dynamic laws that (at least in part) change as a function of the state of the system. Of the three featured research projects, cellular automata (CA) are used as a model to study certain aspects of living systems in two of them. These aspects include self-reference, open-ended evolution, local physical universality, subjectivity, and information processing. Open-ended evolution and local physical universality are attributed to the vast amount of innovation observed throughout biological evolution. Biological systems may distinguish themselves in terms of information processing and storage, not outside the theory of computation. The final research project concretely explores real-world phenomenon by means of mapping dominance hierarchies in the evolution of video game strategies. Though the main question of how life differs from non-life remains unanswered, the mechanisms behind open-ended evolution and physical universality are revealed.

  10. Partition-free approach to open quantum systems in harmonic environments: An exact stochastic Liouville equation

    NASA Astrophysics Data System (ADS)

    McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.

    2017-03-01

    We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.

  11. On the physical realizability of quantum stochastic walks

    NASA Astrophysics Data System (ADS)

    Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank

    Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.

  12. Efficient determination of the Markovian time-evolution towards a steady-state of a complex open quantum system

    NASA Astrophysics Data System (ADS)

    Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar

    2017-11-01

    Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.

  13. Open System Architecture design for planet surface systems

    NASA Technical Reports Server (NTRS)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  14. Approaches to Legacy System Evolution.

    DTIC Science & Technology

    1997-12-01

    such as migrating legacy systems, to more distributed open environments. This framework draws out the important global issues early in the planning...ongoing system evolution initiatives, for drawing out important global issues early in the planning cycle using the checklists as a guide, and for

  15. Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2012-09-01

    It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are "locked" inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.

  16. Opening Up "Open Systems": Moving toward True Interoperability among Library Software. DataResearch Automation Guide Series, Number One.

    ERIC Educational Resources Information Center

    Data Research Associates, Inc., St. Louis, MO.

    The topic of open systems as it relates to the needs of libraries to establish interoperability between dissimilar computer systems can be clarified by an understanding of the background and evolution of the issue. The International Standards Organization developed a model to link dissimilar computers, and this model has evolved into consensus…

  17. Mission Systems Open Architecture Science and Technology (MOAST) program

    NASA Astrophysics Data System (ADS)

    Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.

    2017-04-01

    The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.

  18. Holographic control of information and dynamical topology change for composite open quantum systems

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Volovich, I. V.; Inozemcev, O. V.

    2017-12-01

    We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

  19. Quantum speed limits in open system dynamics.

    PubMed

    del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F

    2013-02-01

    Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

  20. Evolution of the Campanian Ignimbrite Magmatic System II: Trace Element and Th Isotopic Evidence for Open-System Processes

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Fowler, S.; Belkin, H.; de Vivo, B.

    2005-12-01

    The Campanian Ignimbrite, a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite was deposited at ~39.3 ka and represents the largest of a number of highly explosive volcanic events in the region near Naples, Italy. Thermodynamic modeling of the major element evolution using the MELTS algorithm (see companion contribution by Fowler et al.) provides detailed information about the identity of and changes in proportions of solids along the liquid line of descent during isobaric fractional crystallization. We have derived trace element mass balance equations that explicitly accommodate changing mineral-melt bulk distribution coefficients during crystallization and also simultaneously satisfy energy and major element mass conservation. Although major element patterns are reasonably modeled assuming closed system fractional crystallization, modeling of trace elements that represent a range of behaviors (e.g. Zr, Nb, Th, U, Rb, Sm, Sr) yields trends for closed system fractionation that are distinct from those observed. These results suggest open-system processes were also important in the evolution of the Campanian magmatic system. Th isotope data yield an apparent isochron that is ~20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open-system at the time of eruption. Because open-system processes can profoundly change isotopic characteristics of a magma body, these results illustrate that it is critical to understand the contribution that open-system processes make to silicic magma bodies prior to assigning relevance to age or timescale information derived from isotope systematics. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggest large-scale fluid-melt interaction at liquidus temperatures is unlikely. In the case of the magma body associated with the Campanian Ignimbrite, the most likely source of open-system signatures is assimilation of partial melts of compositionally heterogeneous basement composed of older cumulates and intrusive equivalents of volcanic activity within the Campanian region. Additional trace element modeling, explicitly evaluating the mass and energy balance effects that fluid, solids, and melt have on trace element evolution, will further elucidate the contributions of open vs. closed system processes within the Campanian magma body.

  1. Unscrambling the lead model ages

    NASA Astrophysics Data System (ADS)

    Albarede, Francis; Martine, Juteau

    1984-01-01

    A linear relation is derived for the secular evolution of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, that permits tests to be made for open system evolution on each system independently. Application of the method to conformable ore bodies of various geological age indicates that the available data do not demand an open system evolution for the last 3.8 b.y. 238U/204Pb and 232Th/204Pb of 9.66 ± 0.15 and 37.65 ± 1.14 respectively fit best the data for this time interval. A single stage evolution since 4.5 b.y. is unlikely, however, and the major events of continent formation postdate the Earth accretion by at least 400 m.y. The larger scatter of 207Pb/204Pb data about the evolution line relative to the other isotopic ratios is also interpreted as resulting from a series of continental differentiation events taking place at 3.85 ± 0.15 b.y.

  2. Long-Period Planets in Open Clusters and the Evolution of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Russel; Latham, David W.; Stefanik, Robert

    2018-01-01

    Recent discoveries of giant planets in open clusters confirm that they do form and migrate in relatively dense stellar groups, though overall occurrence rates are not yet well constrained because the small sample of giant planets discovered thus far predominantly have short periods. Moreover, planet formation rates and the architectures of planetary systems in clusters may vary significantly -- e.g., due to intercluster differences in the chemical properties that regulate the growth of planetary embryos or in the stellar space density and binary populations, which can influence the dynamical evolution of planetary systems. Constraints on the population of long-period Jovian planets -- those representing the reservoir from which many hot Jupiters likely form, and which are most vulnerable to intracluster dynamical interactions -- can help quantify how the birth environment affects formation and evolution, particularly through comparison of populations possessing a range of ages and chemical and dynamical properties. From our ongoing RV survey of open clusters, we present the discovery of several long-period planets and candidate substellar companions in the Praesepe, Coma Berenices, and Hyades open clusters. From these discoveries, we improve estimates of giant planet occurrence rates in clusters, and we note that high eccentricities in several of these systems support the prediction that the birth environment helps shape planetary system architectures.

  3. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    NASA Astrophysics Data System (ADS)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  4. Role of Open and Distance Education in Integrating Education with Development--Emerging Model of Networked Collaborative Learning and Net-working.

    ERIC Educational Resources Information Center

    Takwale, Ram

    1998-01-01

    Discusses the evolution of the educational system in India, developments in new communication technologies, and plans by the open and distance education system to develop educational networks. Policies and programs adopted by the Distance Education Council are outlined. (AEF)

  5. Thermodynamic evolution far from equilibrium

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  6. Energy Levels and Co-evolution of Product Innovation in Supply Chain Clusters

    NASA Astrophysics Data System (ADS)

    Ji, Guojun

    In the last decade supply chain clusters phenomenon has emerged as a new approach in product innovation studies. This article makes three contributions to the approach by addressing some open issues. The first contribution is to explicitly incorporate the energy levels in the analysis. Hence, the unit of analysis is widened from sectoral systems of innovation to socio-technical systems. Hence, the unit of analysis is widened from sectoral systems of innovation to socio-technical systems. The second contribution is to suggest an analytical distinction between different evolution method, actors involved in them, and the institutions which guide actor's perceptions and activities. Thirdly, the article opens up the black box of institutions, making them an integral part of supply chain. The article provides a coherent conceptual multi-level perspective, using insights from sociology, institutional theory and innovation studies. The perspective is particularly useful to analyze long-term dynamics supply chain clusters phenomenon, shifts from one energy level to another and the co-evolution of product innovation.

  7. Research Notes -- Openness and Evolvability -- Legal Assessment

    DTIC Science & Technology

    2016-08-01

    certain they have sufficient legal access to essential IP in order to ensure future independent maintenance and evolution of the system . If the...communications requirements legally enforceable? One of the goals of an open system is to enable individual granules to be developed by different...must remain legally bound to meet all requirements at least until the component has been successfully integrated into the overall system . Determine

  8. Challenges in the Development and Evolution of Secure Open Architecture Command and Control Systems (Briefing Charts)

    DTIC Science & Technology

    2013-06-01

    widgets for an OA system Design-time architecture: Browser, email, widget, DB, OS Go ogle Instance architecture: Chrome, Gmail, Google...provides functionally similar components or applications compatible with an OA system design Firefox Browser, WP, calendar Opera Instance...architecture: Firefox , AbiWord, Evolution, Fedora GPL Ab1Word Google Docs Instance ardlitecture: Fire fox, OR Google cal., Google Docs, Fedora

  9. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems. Volume 2 Understanding Open Architecture Software Systems: Licensing and Security Research and Recommendations

    DTIC Science & Technology

    2016-01-06

    of- breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The... commercially priced closed source software components, to be used in the design, implementation, deployment, and evolution of open architecture (OA... breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The Department

  10. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications

    PubMed Central

    Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas

    2013-01-01

    Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933

  11. Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems

    NASA Astrophysics Data System (ADS)

    Poulet, Thomas; Paesold, Martin; Veveakis, Manolis

    2017-03-01

    Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.

  12. The Open Education System, Anadolu University, Turkey: E-Transformation in a Mega-University

    ERIC Educational Resources Information Center

    Latchem, Colin; Ozkul, Ali Ekrem; Aydin, Cengiz Hakan; Mutlu, Mehmet Emin

    2006-01-01

    Anadolu University in Turkey is one of the world's largest and least known mega-universities. Well over one million students in Turkey, the European Union and Northern Cyprus are enrolled in its Open Education System and yet few accounts of this dual-mode provider appear in the international literature. This article describes the evolution of the…

  13. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  14. Análisis de la evolución química de los cúmulos abiertos de la Galaxia a través de simulaciones dinámicas con procesos de destrucción

    NASA Astrophysics Data System (ADS)

    Bignone, L. A.; Pellizza, L. J.; Piatti, A. E.; Tecce, T. E.

    It is well known that open clusters are excellent tracers (in time and space) of the metallicity of the Galactic disk. We analyze the history of stellar for- mation of the Galactic disk using numerical simulations of the dynamical evolution of the open cluster system. We have included the effects of clus- ter disruption caused by stellar evolution, tidal fields, and the interaction with the spiral arms. We model the present astrophysical properties of open clusters from initial hypothesis regarding their formation history. FULL TEXT IN SPANISH

  15. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  16. Opinion evolution and rare events in an open community

    NASA Astrophysics Data System (ADS)

    Ye, Yusong; Yang, Zhuoqin; Zhang, Zili

    2016-11-01

    There are many multi-stable phenomena in society. To explain these multi-stable phenomena, we have studied opinion evolution in an open community. We focus on probability of transition (or the mean transition time) that the system transfer from one state to another. We suggest a bistable model to provide an interpretation of these phenomena. The quasi-potential method that we used is the most important method to calculate the transition time and it can be used to determine the whole probability density. We study the condition of bistability and then discuss rare events in a multi-stable system. In our model, we find that two parameters, ;temperature; and ;persuading intensity,; influence the behavior of the system; a suitable ;persuading intensity; and low ;temperature; make the system more stable. This means that the transition rarely happens. The asymmetric phenomenon caused by ;public-opinion; is also discussed.

  17. Human Augmentics: augmenting human evolution.

    PubMed

    Kenyon, Robert V; Leigh, Jason

    2011-01-01

    Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans. One can think of Human Augmentics as the driving force in the non-biological evolution of humans. HA devices will provide technology to compensate for human biological limitations either natural or acquired. The strengths of HA lie in its applicability to all humans. Its interoperability enables the formation of ecosystems whereby augmented humans can draw from other realms such as "the Cloud" and other augmented humans for strength. The exponential growth in new technologies portends such a system but must be designed for interaction through the use of open-standards and open-APIs for system development. We discuss the conditions needed for HA to flourish with an emphasis on devices that provide non-biological rehabilitation.

  18. Quantum critical probing and simulation of colored quantum noise

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; de Vega, Inés

    2017-12-01

    We propose a protocol to simulate the evolution of a non-Markovian open quantum system by considering a collisional process with a many-body system, which plays the role of an environment. As a result of our protocol, the environment spatial correlations are mapped into the time correlations of a noise that drives the dynamics of the open system. Considering the weak coupling limit, the open system can also be considered as a probe of the environment properties. In this regard, when preparing the environment in its ground state, a measurement of the dynamics of the open system allows to determine the length of the environment spatial correlations and therefore its critical properties. To illustrate our proposal we simulate the full system dynamics with matrix-product-states and compare this to the reduced dynamics obtained with an approximated variational master equation.

  19. A Universal Definition of Life: Autonomy and Open-Ended Evolution

    NASA Astrophysics Data System (ADS)

    Ruiz-Mirazo, Kepa; Peretó, Juli; Moreno, Alvaro

    2004-06-01

    Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and we claim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records). The latter is required to articulate a `phenotype-genotype' decoupling that leads to a scenario where the global network of autonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generation and reliable transmission cannot be explained but take into account the complete historical network of relationships among those systems. We conclude that a proper definition of life should consider both levels, individual and collective: living systems cannot be fully constituted without being part of the evolutionary process of a whole ecosystem. Finally, we also discuss a few practical implications of the definition for different programs of research.

  20. Experimental investigation of door dynamic opening caused by impinging shock wave

    NASA Astrophysics Data System (ADS)

    Biamino, L.; Jourdan, G.; Mariani, C.; Igra, O.; Massol, A.; Houas, L.

    2011-02-01

    To prevent damage caused by accidental overpressure inside a closed duct (e.g. jet engine) safety valves are introduced. The present study experimentally investigates the dynamic opening of such valves by employing a door at the end of a shock tube driven section. The door is hung on an axis and is free to rotate, thereby opening the tube. The evolved flow and wave pattern due to a collision of an incident shock wave with the door, causing the door opening, is studied by employing a high speed schlieren system and recording pressures at different places inside the tube as well as on the rotating door. Analyzing this data sheds light on the air flow evolution and the behavior of the opening door. In the present work, emphasis is given to understanding the complex, unsteady flow developed behind the transmitted shock wave as it diffracts over the opening door. It is shown that both the door inertia and the shock wave strength influence the opening dynamic evolution, but not in the proportions that might be expected.

  1. Grand Views of Evolution.

    PubMed

    de Vladar, Harold P; Santos, Mauro; Szathmáry, Eörs

    2017-05-01

    Despite major advances in evolutionary theories, some aspects of evolution remain neglected: whether evolution: would come to a halt without abiotic change; is unbounded and open-ended; or is progressive and something beyond fitness is maximized. Here, we discuss some models of ecology and evolution and argue that ecological change, resulting in Red Queen dynamics, facilitates (but does not ensure) innovation. We distinguish three forms of open-endedness. In weak open-endedness, novel phenotypes can occur indefinitely. Strong open-endedness requires the continual appearance of evolutionary novelties and/or innovations. Ultimate open-endedness entails an indefinite increase in complexity, which requires unlimited heredity. Open-ended innovation needs exaptations that generate novel niches. This can result in new traits and new rules as the dynamics unfolds, suggesting that evolution is not fully algorithmic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Applicability of transfer tensor method for open quantum system dynamics.

    PubMed

    Gelzinis, Andrius; Rybakovas, Edvardas; Valkunas, Leonas

    2017-12-21

    Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.

  3. Evolution equation for quantum entanglement

    NASA Astrophysics Data System (ADS)

    Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas

    2008-02-01

    Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.

  4. Autonomous choices among deterministic evolution-laws as source of uncertainty

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Meyroneinc, Arnaud; Campos, Kilver; Rendón, Otto; Sigalotti, Leonardo Di G.

    2018-03-01

    We provide evidence of an extreme form of sensitivity to initial conditions in a family of one-dimensional self-ruling dynamical systems. We prove that some hyperchaotic sequences are closed-form expressions of the orbits of these pseudo-random dynamical systems. Each chaotic system in this family exhibits a sensitivity to initial conditions that encompasses the sequence of choices of the evolution rule in some collection of maps. This opens a possibility to extend current theories of complex behaviors on the basis of intrinsic uncertainty in deterministic chaos.

  5. Random unitary evolution model of quantum Darwinism with pure decoherence

    NASA Astrophysics Data System (ADS)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  6. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.

  7. Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation.

    PubMed

    Zheng, Shi-Biao

    2005-08-19

    We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus, the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system. The idea can also be realized in other systems, opening a new perspective for quantum information processing.

  8. Open-Ended Evolution: Perspectives from the OEE Workshop in York.

    PubMed

    Taylor, Tim; Bedau, Mark; Channon, Alastair; Ackley, David; Banzhaf, Wolfgang; Beslon, Guillaume; Dolson, Emily; Froese, Tom; Hickinbotham, Simon; Ikegami, Takashi; McMullin, Barry; Packard, Norman; Rasmussen, Steen; Virgo, Nathaniel; Agmon, Eran; Clark, Edward; McGregor, Simon; Ofria, Charles; Ropella, Glen; Spector, Lee; Stanley, Kenneth O; Stanton, Adam; Timperley, Christopher; Vostinar, Anya; Wiser, Michael

    2016-01-01

    We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE-it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .

  9. Multistate and multihypothesis discrimination with open quantum systems

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2018-05-01

    We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.

  10. From evolutionary computation to the evolution of things.

    PubMed

    Eiben, Agoston E; Smith, Jim

    2015-05-28

    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.

  11. Empirical tests of Zipf's law mechanism in open source Linux distribution.

    PubMed

    Maillart, T; Sornette, D; Spaeth, S; von Krogh, G

    2008-11-21

    Zipf's power law is a ubiquitous empirical regularity found in many systems, thought to result from proportional growth. Here, we establish empirically the usually assumed ingredients of stochastic growth models that have been previously conjectured to be at the origin of Zipf's law. We use exceptionally detailed data on the evolution of open source software projects in Linux distributions, which offer a remarkable example of a growing complex self-organizing adaptive system, exhibiting Zipf's law over four full decades.

  12. Understanding the Role of Licenses and Evolution in Open Architecture Software Ecosystems

    DTIC Science & Technology

    2010-11-29

    to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 29...OA, since the (possibly empty) set of available license rights for an OA system depends on: (a) how and why OSS and open APIs are located within the...other compo- nents whose licenses may conflict with them or fail to match [2, 15]; the system integrator can decide to insert software shims using

  13. Is there an optimal level of open-endedness in prebiotic evolution?

    PubMed

    Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio

    2012-10-01

    In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study--under a unified and concise prebiotic evolutionary framework--both a variety of initial conditions of the universe and the OEE of species that evolve from them.

  14. Is There an Optimal Level of Open-Endedness in Prebiotic Evolution?

    NASA Astrophysics Data System (ADS)

    Markovitch, Omer; Sorek, Daniel; Lui, Leong Ting; Lancet, Doron; Krasnogor, Natalio

    2012-10-01

    In this paper we explore the question of whether there is an optimal set up for a putative prebiotic system leading to open-ended evolution (OEE) of the events unfolding within this system. We do so by proposing two key innovations. First, we introduce a new index that measures OEE as a function of the likelihood of events unfolding within a universe given its initial conditions. Next, we apply this index to a variant of the graded autocatalysis replication domain (GARD) model, Segre et al. (P Natl Acad Sci USA 97(8):4112-4117, 2000; Markovitch and Lancet Artif Life 18(3), 2012), and use it to study - under a unified and concise prebiotic evolutionary framework - both a variety of initial conditions of the universe and the OEE of species that evolve from them.

  15. Deciphering Late-Pleistocence landscape evolution: linking proxies by combining pedo-stratigraphy and luminescence dating

    NASA Astrophysics Data System (ADS)

    Kreutzer, Sebastian; Meszner, Sascha; Faust, Dominik; Fuchs, Markus

    2014-05-01

    Interpreting former landscape evolution asks for understanding the processes that sculpt such landforms by means of deciphering complex systems. For reconstructing terrestrial Quaternary environments based on loess archives this might be considered, at least, as a three step process: (1) Identifying valuable records in appropriate morphological positions in a previously defined research area, (2) analysing the profiles by field work and laboratory methods and finally (3) linking the previously considered pseudo-isolated systems to set up a comprehensive picture. Especially the first and the last step might bring some pitfalls, as it is tempting to specify single records as pseudo-isolated, closed systems. They might be, with regard to their preservation in their specific morphological position, but in fact they are part of a complex, open system. Between 2008 and 2013, Late-Pleistocene loess archives in Saxony have been intensively investigated by field and laboratory methods. Linking pedo- and luminescence dating based chronostratigraphies, a composite profile for the entire Saxonian Loess Region has been established. With this, at least, two-fold approach we tried to avoid misinterpretations that might appear when focussing on one standard profile in an open morphological system. Our contribution focuses on this multi-proxy approach to decipher the Late-Pleistocene landscape evolution in the Saxonian Loess Region. Highlighting the challenges and advantages of combining different methods, we believe that (1) this multi-proxy approach is without alternative, (2) the combination of different profiles may simplify the more complex reality, but it may be a useful generalisation to understand and reveal the stratigraphical significance of the landscape evolution in this region.

  16. Dynamical emergence of Markovianity in local time scheme.

    PubMed

    Jeknić-Dugić, J; Arsenijević, M; Dugić, M

    2016-06-01

    Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders-von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.

  17. Epidemic Dynamics in Open Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  18. Control relaxation via dephasing: A quantum-state-diffusion study

    NASA Astrophysics Data System (ADS)

    Jing, Jun; Yu, Ting; Lam, Chi-Hang; You, J. Q.; Wu, Lian-Ao

    2018-01-01

    Dynamical decoupling as a quantum control strategy aims at suppressing quantum decoherence adopting the popular philosophy that the disorder in the unitary evolution of the open quantum system caused by environmental noises should be neutralized by a sequence of ordered or well-designed external operations acting on the system. This work studies the solution of quantum-state-diffusion equations by mixing two channels of environmental noises, i.e., relaxation (dissipation) and dephasing. It is interesting to find in two-level and three-level atomic systems that a non-Markovian relaxation or dissipation process can be suppressed by a Markovian dephasing noise. The discovery results in an anomalous control strategy by coordinating relaxation and dephasing processes. Our approach opens an avenue of noise control strategy with no artificial manipulation over the open quantum systems.

  19. Out-of-time-order correlators in finite open systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gorshkov, A. V.; Galitski, V.

    2018-04-01

    We study out-of-time-order correlators (OTOCs) of the form for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially ∝∑aie-t /τi+const to a constant value at t →∞ , in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focusing on the case of a two-level system, we calculate microscopically the decay times τi and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.

  20. Driven-dissipative quantum Monte Carlo method for open quantum systems

    NASA Astrophysics Data System (ADS)

    Nagy, Alexandra; Savona, Vincenzo

    2018-05-01

    We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville-von Neumann time evolution of the density matrix thanks to a massively parallel algorithm, thus providing estimates of observables on the nonequilibrium steady state. We present the underlying theory and introduce an initiator technique and importance sampling to reduce the statistical error. Finally, we demonstrate the efficiency of our approach by applying it to the driven-dissipative two-dimensional X Y Z spin-1/2 model on a lattice.

  1. Geomorphological mapping using drones into the eruptive summit of Turrialba volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Ruiz, P.; Mora, M.; Soto, G. J.; Vega, P.; Barrantes, R.

    2017-12-01

    We produced and compared two detailed topographic datasets of the SW active crater on the summit of Turrialba volcano (03/2016 and 06/2017). These datasets are based on hundreds of orthophotos obtained by low-height flights by drones (Phantom-3, and Inspire-1) to collect the aerial data, and ground control points from RTK-GPS surveys (for ground survey and control points, we used reflective marks and local stations). Photogrammetry software and GIS were used to processes the data for creating DEMs. Using these data, we have been able to document the geomorphological changes generated by eruptions. We have learned the processes involved in the crater evolution during an eruption period passing from a close-system to an open one. Turrialba has been erupting since 2010, when a phreatic explosion opened a small vent on the SW crater. Further minor phreatic eruptions occurred in 2011-2013 with a slow increase of juvenile content in its products, until it clearly evolved to phreatomagmatism in 2014 and an open-system in mid-2016. We recorded significant changes in the morphology of the active crater in the latest period of eruption. These changes are the result of stronger eruptions between 04/2016 and 01/2017, finally clearing the main conduit that opened the system and favored the rise of magma up to the surface. Lava now lies on the bottom of the crater, forming a small lava pool (25m x 15m). We found that in the 15-month period during the opening of the volcanic system, the active crater got 100 m deeper and wider at the bottom (in 06/2017, depth was 230 m, and the empty volume of the crater 2.5x106m3. These observations are consistent with the seismic records through the opening of the system and the eruption style. Aerial dataset from low-height flights by drones are a powerful tool to understand the evolution of volcanoes from close to open systems and for volcano hazard assessments.

  2. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    PubMed Central

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588

  3. Measurement of Emissions from Prescribed Burning of Forests and Grasslands

    EPA Science Inventory

    Aerial sampling methods for open area sources, such as prescribed fires, are described. Evolution from the tethered aerostat and instrument package to the smaller lighter package flown on an unmanned aerial system is described.

  4. Shock wave propagation within a confined multi-chamber system

    NASA Astrophysics Data System (ADS)

    Julien, B.; Sochet, I.; Tadini, P.; Vaillant, T.

    2018-07-01

    The influence of a variation of the opening ratios of rooms and side walls on the propagation of a shock wave within a confined multi-chamber system is analyzed through the evolution of some of the shock parameters (maximum overpressure and positive impulse). The shock wave is generated by the detonation of a hemispherical gaseous charge in one of the rooms. Several small-scale experiments have been carried out using an adjustable model representative of a pyrotechnic workshop. Using the same approach as for a previous article dealing with the impact of the volume of the rooms, we were able to link the evolution of the arrival time of the shock wave within the building with the reference obtained in the free field. Moreover, using a new parameter taking into account the opening ratios of the rooms and side walls, a predictive law was developed to model the maximal overpressure in the rooms.

  5. Pigmentation in Xiphophorus: an emerging system in ecological and evolutionary genetics.

    PubMed

    Culumber, Zachary W

    2014-02-01

    The genus Xiphophorus has great potential to contribute to the study of vertebrate pigmentation and elucidating the relative influence of ecology, physiology, and behavior on evolution at the molecular level. More importantly, the association between pigmentation and a functional oncogene offers the potential to understand the evolution and maintenance of cancer-causing genetic elements. Using criteria laid out recently in the literature, I demonstrate the power of the Xiphophorus system for studying pigment evolution through integrative organismal biology. Using the most recent phylogeny, the phylogenetic distribution of several important pigmentation loci are reevaluated. I then review support for existing hypotheses of the functional importance of pigmentation. Finally, new observations and hypotheses regarding some of the characteristics of pigment patterns in natural populations and open questions and future directions in the study of the evolution of these traits are discussed.

  6. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  7. Overcoming statistical bias to estimate genetic mating systems in open populations: a comparison of Bateman's principles between the sexes in a sex-role-reversed pipefish.

    PubMed

    Mobley, Kenyon B; Jones, Adam G

    2013-03-01

    The genetic mating system is a key component of the sexual selection process, yet methods for the quantification of mating systems remain controversial. One approach involves metrics derived from Bateman's principles, which are based on variances in mating and reproductive success and the relationship between them. However, these measures are extremely difficult to measure for both sexes in open populations, because missing data can result in biased estimates. Here, we develop a novel approach for the estimation of mating system metrics based on Bateman's principles and apply it to a microsatellite-based parentage analysis of a natural population of the dusky pipefish, Syngnathus floridae. Our results show that both male and female dusky pipefish have significantly positive Bateman gradients. However, females exhibit larger values of the opportunity for sexual selection and the opportunity for selection compared to males. These differences translate into a maximum intensity of sexual selection (S'max) for females three times larger than that for males. Overall, this study identifies a critical source of bias that affects studies of mating systems in open populations, presents a novel method for overcoming this bias, and applies this method for the first time in a sex-role-reversed pipefish. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  8. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  9. Lunar exploration: opening a window into the history and evolution of the inner Solar System

    PubMed Central

    Crawford, Ian A.; Joy, Katherine H.

    2014-01-01

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. PMID:25114318

  10. Lunar exploration: opening a window into the history and evolution of the inner Solar System.

    PubMed

    Crawford, Ian A; Joy, Katherine H

    2014-09-13

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Structural Evolutions of STOCK Markets Controlled by Generalized Entropy Principles of Complex Systems

    NASA Astrophysics Data System (ADS)

    Wang, Yi Jiao; Feng, Qing Yi; Chai, Li He

    As one of the most important financial markets and one of the main parts of economic system, the stock market has become the research focus in economics. The stock market is a typical complex open system far from equilibrium. Many available models that make huge contribution to researches on market are strong in describing the market however, ignoring strong nonlinear interactions among active agents and weak in reveal underlying dynamic mechanisms of structural evolutions of market. From econophysical perspectives, this paper analyzes the complex interactions among agents and defines the generalized entropy in stock markets. Nonlinear evolutionary dynamic equation for the stock markets is then derived from Maximum Generalized Entropy Principle. Simulations are accordingly conducted for a typical case with the given data, by which the structural evolution of the stock market system is demonstrated. Some discussions and implications are finally provided.

  12. Opening up closure. Semiotics across scales

    PubMed

    Lemke

    2000-01-01

    The dynamic emergence of new levels of organization in complex systems is related to the semiotic reorganization of discrete/continuous variety at the level below as continuous/discrete meaning for the level above. In this view both the semiotic and the dynamic closure of system levels is reopened to allow the development and evolution of greater complexity.

  13. Evolution and Revolution of Adult Learning: Exposition of Open and Distance Learning in Nigeria

    ERIC Educational Resources Information Center

    Umezulike, Nneka A.

    2015-01-01

    The educational system has witnessed a number of laudable programs since inception in both formal and non-formal systems of education programs that were set up to empower adult educational skills, knowledge, decision-making processes.Correspondence education transformed into distance education which--with the advent of information and…

  14. Collision-model approach to steering of an open driven qubit

    NASA Astrophysics Data System (ADS)

    Beyer, Konstantin; Luoma, Kimmo; Strunz, Walter T.

    2018-03-01

    We investigate quantum steering of an open quantum system by measurements on its environment in the framework of collision models. As an example we consider a coherently driven qubit dissipatively coupled to a bath. We construct local nonadaptive and adaptive as well as nonlocal measurement scenarios specifying explicitly the measured observable on the environment. Our approach shows transparently how the conditional evolution of the open system depends on the type of the measurement scenario and the measured observables. These can then be optimized for steering. The nonlocal measurement scenario leads to maximal violation of the used steering inequality at zero temperature. Further, we investigate the robustness of the constructed scenarios against thermal noise. We find generally that steering becomes harder at higher temperatures. Surprisingly, the system can be steered even when bipartite entanglement between the system and individual subenvironments vanishes.

  15. Planetary migration in protoplanetary discs and outer Solar System architecture.

    NASA Astrophysics Data System (ADS)

    Crida, A.; Morbidelli, A.; Tsiganis, K.

    2007-08-01

    Planets form around stars in gaseous protoplanetary discs. Due to tidal effects, they perturb the gas distribution, which in turn affects their motion. If the planet is massive enough (see for instance Crida et al. 2006 for a criterion), it repels the gas efficiently and opens a gap around its orbit ; then, locked into its gap, the planet follows the disc viscous evolution, which generally consists in accretion onto the central star. This process is called type II migration and leads to the orbital decay of the planet on a timescale shorter than the disc lifetime. After a review of these processes, we will focus on the Solar System giant planets. Strong constraints suggest that they did not migrate significantly. Masset and Snellgrove (2001) have shown that the evolution of 2 giants planets in mean motion resonance in a common gap differs from the evolution of a single planet. For what concerns Jupiter and Saturn, we found that in some conditions on the disc parameter, they can avoid significant migration (Morbidelli and Crida 2007). Adding Uranus and Neptune to the system, six stable fully resonant configurations for the four giants in the gas disc appear. Of course, none of them correspond to the present configuration. However, after the gas disc phase, the system was surrounded by a planetesimal disk. Interactions with this debris disk make the planets slowly evolve, until an instability in reached. This destabilises the planetesimal disc and triggers the Late Heavy Bombardment, while the planets reach their actual position, like in the model by Tsiganis et al (2005) and Gomes et al (2005). Our simulations show a very satisfying case, opening the possibility for a dynamically consistent scenario of the outer Solar System evolution, starting from the gas phase.

  16. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in the UM within the initial 500 Myr, as a result of early formation of CC, which supports other evidence in favor of the presence of Hadean continental crust. Therefore, a chondritic Th/U ratio (4 ± 0.2) in the UM until 2 Gyr appears rather unlikely. We find that the κ conundrum - the observation that measured Th/U ratios and those deduced from 208Pb-206Pb isotope systematics differ - is a natural outcome of an open system evolution in which preferential recycling of U for the past 2 Gyr has played a dominant role. Overall, our simulations strongly favor exponential crustal growth, starting in the early Hadean, the transient preservation of compositionally distinct mantle reservoirs over billion year time periods, and a generally less incompatible element depleted, but non-primitive composition of the lower mantle.

  17. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapliyal, Kishore, E-mail: tkishore36@yahoo.com; Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Pathak, Anirban, E-mail: anirban.pathak@gmail.com

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained frommore » experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.« less

  18. Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.

    PubMed

    Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang

    2018-01-22

    Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.

  19. JavaGenes Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Smith, David; Frank, Jeremy; Globus, Al; Crawford, James

    2007-01-01

    JavaGenes is a general-purpose, evolutionary software system written in Java. It implements several versions of a genetic algorithm, simulated annealing, stochastic hill climbing, and other search techniques. This software has been used to evolve molecules, atomic force field parameters, digital circuits, Earth Observing Satellite schedules, and antennas. This version differs from version 0.7.28 in that it includes the molecule evolution code and other improvements. Except for the antenna code, JaveGenes is available for NASA Open Source distribution.

  20. OpenID Connect as a security service in cloud-based medical imaging systems

    PubMed Central

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-01-01

    Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  1. Obliging Games

    NASA Astrophysics Data System (ADS)

    Chatterjee, Krishnendu; Horn, Florian; Löding, Christof

    Graph games of infinite length provide a natural model for open reactive systems: one player (Eve) represents the controller and the other player (Adam) represents the environment. The evolution of the system depends on the decisions of both players. The specification for the system is usually given as an ω-regular language L over paths and Eve's goal is to ensure that the play belongs to L irrespective of Adam's behaviour.

  2. Understanding Hawking radiation in the framework of open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Hongwei; Zhang Jialin

    2008-01-15

    We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh andmore » Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems.« less

  3. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices.

    PubMed

    Kozlowski, Wojciech; Caballero-Benitez, Santiago F; Mekhov, Igor B

    2017-02-22

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system's own evolution.

  4. Open Listening: Creative Evolution in Early Childhood Settings

    ERIC Educational Resources Information Center

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  5. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    PubMed Central

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  6. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    PubMed

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  7. The Evolution of Discovery Systems in Academic Libraries: A Case Study at the University of Houston Libraries

    ERIC Educational Resources Information Center

    Guajardo, Richard; Brett, Kelsey; Young, Frederick

    2017-01-01

    For the past several years academic libraries have been adopting discovery systems to provide a search experience that reflects user expectations and improves access to electronic resources. University of Houston Libraries has kept pace with this evolving trend by pursuing various discovery options; these include an open-source tool, a federated…

  8. Mobile Inquiry Learning in Sweden: Development Insights on Interoperability, Extensibility and Sustainability of the LETS GO Software System

    ERIC Educational Resources Information Center

    Vogel, Bahtijar; Kurti, Arianit; Milrad, Marcelo; Johansson, Emil; Müller, Maximilian

    2014-01-01

    This paper presents the overall lifecycle and evolution of a software system we have developed in relation to the "Learning Ecology through Science with Global Outcomes" (LETS GO) research project. One of the aims of the project is to support "open inquiry learning" using mobile science collaboratories that provide open…

  9. An open-source and low-cost monitoring system for precision enology.

    PubMed

    Di Gennaro, Salvatore Filippo; Matese, Alessandro; Mancin, Mirko; Primicerio, Jacopo; Palliotti, Alberto

    2014-12-05

    Winemaking is a dynamic process, where microbiological and chemical effects may strongly differentiate products from the same vineyard and even between wine vats. This high variability means an increase in work in terms of control and process management. The winemaking process therefore requires a site-specific approach in order to optimize cellar practices and quality management, suggesting a new concept of winemaking, identified as Precision Enology. The Institute of Biometeorology of the Italian National Research Council has developed a wireless monitoring system, consisting of a series of nodes integrated in barrel bungs with sensors for the measurement of wine physical and chemical parameters in the barrel. This paper describes an open-source evolution of the preliminary prototype, using Arduino-based technology. Results have shown good performance in terms of data transmission and accuracy, minimal size and power consumption. The system has been designed to create a low-cost product, which allows a remote and real-time control of wine evolution in each barrel, minimizing costs and time for sampling and laboratory analysis. The possibility of integrating any kind of sensors makes the system a flexible tool that can satisfy various monitoring needs.

  10. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    PubMed Central

    2011-01-01

    Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971

  11. Open Architecture SDR for Space

    NASA Technical Reports Server (NTRS)

    Smith, Carl; Long, Chris; Liebetreu, John; Reinhart, Richard C.

    2005-01-01

    This paper describes an open-architecture SDR (software defined radio) infrastructure that is suitable for space-based operations (Space-SDR). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and significantly less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, reduced obsolescence, interoperability, and software re-use. Significant progress has been recorded on developments like the Joint Tactical Radio System (JSTRS) Software Communication Architecture (SCA), which is oriented toward reconfigurable radios for defense forces operating in multiple theaters of engagement. The JTRS-SCA presents a consistent software interface for waveform development, and facilitates interoperability, waveform portability, software re-use, and technology evolution.

  12. A History of the Andrew File System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashear, Derrick

    2011-02-22

    Derrick Brashear and Jeffrey Altman will present a technical history of the evolution of Andrew File System starting with the early days of the Andrew Project at Carnegie Mellon through the commercialization by Transarc Corporation and IBM and a decade of OpenAFS. The talk will be technical with a focus on the various decisions and implementation trade-offs that were made over the course of AFS versions 1 through 4, the development of the Distributed Computing Environment Distributed File System (DCE DFS), and the course of the OpenAFS development community. The speakers will also discuss the various AFS branches developed atmore » the University of Michigan, Massachusetts Institute of Technology and Carnegie Mellon University.« less

  13. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  14. Averaging, passage through resonances, and capture into resonance in two-frequency systems

    NASA Astrophysics Data System (ADS)

    Neishtadt, A. I.

    2014-10-01

    Applying small perturbations to an integrable system leads to its slow evolution. For an approximate description of this evolution the classical averaging method prescribes averaging the rate of evolution over all the phases of the unperturbed motion. This simple recipe does not always produce correct results, because of resonances arising in the process of evolution. The phenomenon of capture into resonance consists in the system starting to evolve in such a way as to preserve the resonance property once it has arisen. This paper is concerned with application of the averaging method to a description of evolution in two-frequency systems. It is assumed that the trajectories of the averaged system intersect transversally the level surfaces of the frequency ratio and that certain other conditions of general position are satisfied. The rate of evolution is characterized by a small parameter \\varepsilon. The main content of the paper is a proof of the following result: outside a set of initial data with measure of order \\sqrt \\varepsilon the averaging method describes the evolution to within O(\\sqrt \\varepsilon \\vert\\ln\\varepsilon\\vert) for periods of time of order 1/\\varepsilon. This estimate is sharp. The exceptional set of measure \\sqrt \\varepsilon contains the initial data for phase points captured into resonance. A description of the motion of such phase points is given, along with a survey of related results on averaging. Examples of capture into resonance are presented for some problems in the dynamics of charged particles. Several open problems are stated. Bibliography: 65 titles.

  15. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids. Permeability is allowed to evolve under several constitutive models tailored to both porous media and fractures, considering the influence of both mechanical stress and diagenesis. In this first analysis, a relatively simple mechanical model is used; complexity will be added incrementally to represent specific characteristics of the Salton Sea hydrothermal field.

  16. Observations and analysis of the contact binary H 235 in the open cluster NGC 752

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Stagg, C. R.; Sugars, B. A.; McVean, J. R.; Schiller, S. J.; Kallrath, J.; Bradstreet, D. H.

    1995-01-01

    The short-period variable star Heinemann 235 in the open cluster NGC 752 has been identified as a contact binary with a variable period of about 0 d 4118. BVRI light curves and radial velocity curves have been obtained and analyzed with enhanced versions of the Wilson-Devinney light curve program. We find that the system is best modeled as an A-type W UMa system, with a contact parameter of 0.21 +/- 0.11. The masses of the components are found to be 1.18 +/- 0.17 and 0.24 +/- 0.04 solar mass, with bolometric magnitudes of 3.60 +/- 0.10 and 5.21 +/- 0.13, for the hotter (6500 K, assumed) and cooler (6421 K) components, respectively, with Delta T=79 +/- 25 K. The distance to the binary is established at 381 +/- 17 pc. H235 becomes one of a relatively small number of open-cluster contact systems with detailed light curve analysis for which an age may be estimated. If it is coeval with the cluster, and with the detached eclipsing and double-lined spectroscopic binary H219 (DS And), H235 is approximately 1.8 Gyr old, and may provide a fiducial point for the evolution of contact systems. There is, however, evidence for dynamical evolution of the cluster and the likelihood of weak interactions over the age of the binary precludes the determination of its initial state with certainty.

  17. Opinion evolution in open community

    NASA Astrophysics Data System (ADS)

    Pan, Qiuhui; Qin, Yao; Xu, Yiqun; Tong, Mengfei; He, Mingfeng

    We consider a dynamic group composed with a constant number of people and the people will change periodically. Every member in the community owns a value of confidence — a mechanism that measures the agent’s coherence to his or her own attitude. Based on Cellular Automata, the opinions of all agents are synchronously updated. As long as the updating frequency and updating proportion are appropriate, the open system can reach a democracy-like steady state. The majority of agents in the community will hold the same opinion.

  18. Hydraulic Evolution of Karst Microfracture

    NASA Astrophysics Data System (ADS)

    Windom, L. M.; Dragila, M. I.; Weisbrod, N.

    2017-12-01

    Karst terrain comprises an astounding 25% of our planet's potable water resources, yet the evolution of these systems from micro-fracture to open channel is poorly understood. Focusing on the unsaturated portion of an evolving karst system, we present a conceptual model for the hydraulic evolution of micro-fractures into larger conduits. Tensional micro-fractures (< 1mm thick) under unsaturated conditions may be eroded by water flowing either as seepage films or as capillary rivulets. In addition to general erosion, the narrow width of capillary rivulets may etch the beginning of preferential paths within the tensional micro-fractures that will lead to tubular channels. Both fluid mechanisms, seepage and rivulets, were tested in the laboratory, and data of the resulting geochemical erosion rates are presented in the form of calcium dissolution rates measured by inductively coupled plasma atomic emission spectroscopy (ICP-OES).

  19. Corrections to chance fluctuations: quantum mind in biological evolution?

    PubMed

    Damiani, Giuseppe

    2009-01-01

    According to neo-Darwinian theory, biological evolution is produced by natural selection of random hereditary variations. This assumption stems from the idea of a mechanical and deterministic world based on the laws of classic physics. However, the increased knowledge of relationships between metabolism, epigenetic systems, and editing of nucleic acids suggests the existence of self-organized processes of adaptive evolution in response to environmental stresses. Living organisms are open thermodynamic systems which use entropic decay of external source of electromagnetic energy to increase their internal dynamic order and to generate new genetic and epigenetic information with a high degree of coherency and teleonomic creativity. Sensing, information processing, and decision making of biological systems might be mainly quantum phenomena. Amplification of microscopic quantum events using the long-range correlation of fractal structures, at the borderline between deterministic order and unpredictable chaos, may be used to direct a reproducible transition of the biological systems towards a defined macroscopic state. The discoveries of many natural genetic engineering systems, the ability to choose the most effective solutions, and the emergence of complex forms of consciousness at different levels confirm the importance of mind-action directed processes in biological evolution, as suggested by Alfred Russel Wallace. Although the main Darwinian principles will remain a crucial component of our understanding of evolution, a radical rethinking of the conceptual structure of the neo-Darwinian theory is needed.

  20. Implementation and characterization of a controllable dephasing channel based on coupling polarization and spatial degrees of freedom of light.

    PubMed

    Urrego, Daniel F; Álvarez, Juan-Rafael; Calderón-Losada, Omar; Svozilík, Jiří; Nuñez, Mayerlin; Valencia, Alejandra

    2018-04-30

    We present the experimental implementation and theoretical model of a controllable dephasing quantum channel using photonic systems. The channel is implemented by coupling the polarization and the spatial distribution of light that play, in the perspective of open quantum systems, the role of quantum system and environment, respectively. The capability of controlling our channel allows us to visualize its effects in a quantum system. Different from standard dephasing channels, our channel presents an exotic behavior in the sense that the evolution of a state, from a pure to a mixed state, shows an oscillatory behavior if tracked in the Bloch sphere. Additionally, we report the evolution of the purity and perform a quantum process tomography to obtain the χ matrix associated to our channel.

  1. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  2. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    NASA Technical Reports Server (NTRS)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  3. Studying the laws of software evolution in a long-lived FLOSS project.

    PubMed

    Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe

    2014-07-01

    Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd.

  4. Studying the laws of software evolution in a long-lived FLOSS project

    PubMed Central

    Gonzalez-Barahona, Jesus M; Robles, Gregorio; Herraiz, Israel; Ortega, Felipe

    2014-01-01

    Some free, open-source software projects have been around for quite a long time, the longest living ones dating from the early 1980s. For some of them, detailed information about their evolution is available in source code management systems tracking all their code changes for periods of more than 15 years. This paper examines in detail the evolution of one of such projects, glibc, with the main aim of understanding how it evolved and how it matched Lehman's laws of software evolution. As a result, we have developed a methodology for studying the evolution of such long-lived projects based on the information in their source code management repository, described in detail several aspects of the history of glibc, including some activity and size metrics, and found how some of the laws of software evolution may not hold in this case. © 2013 The Authors. Journal of Software: Evolution and Process published by John Wiley & Sons Ltd. PMID:25893093

  5. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance of the food source characteristics and evolutionary possibilities are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Information Resources Management: Systems Communicating with Systems. A Session Especially Designed by Senior Managers for Senior Management Officials. Viewgraphs and Presentations. Intensive One-Day Symposium (Gaithersburg, Maryland, December 3, 1987).

    ERIC Educational Resources Information Center

    General Services Administration, Washington, DC.

    Summaries of the welcoming and opening remarks for a symposium on the standards issues that will affect the federal government's planning, acquisition, and use of integrated computer and telecommunications systems over the next five years set the stage for the keynote address by Joseph Timko of IBM entitled "Standards--Perspectives and Evolution."…

  7. On One Possible Generalization of the Regression Theorem

    NASA Astrophysics Data System (ADS)

    Bogolubov, N. N.; Soldatov, A. V.

    2018-03-01

    A general approach to derivation of formally exact closed time-local or time-nonlocal evolution equations for non-equilibrium multi-time correlations functions made of observables of an open quantum system interacting simultaneously with external time-dependent classical fields and dissipative environment is discussed. The approach allows for the subsequent treatment of these equations within a perturbative scheme assuming that the system-environment interaction is weak.

  8. The Presence of a Functionally Tripartite Through-Gut in Ctenophora Has Implications for Metazoan Character Trait Evolution.

    PubMed

    Presnell, Jason S; Vandepas, Lauren E; Warren, Kaitlyn J; Swalla, Billie J; Amemiya, Chris T; Browne, William E

    2016-10-24

    The current paradigm of gut evolution assumes that non-bilaterian metazoan lineages either lack a gut (Porifera and Placozoa) or have a sac-like gut (Ctenophora and Cnidaria) and that a through-gut originated within Bilateria [1-8]. An important group for understanding early metazoan evolution is Ctenophora (comb jellies), which diverged very early from the animal stem lineage [9-13]. The perception that ctenophores possess a sac-like blind gut with only one major opening remains a commonly held misconception [4, 5, 7, 14, 15]. Despite descriptions of the ctenophore digestive system dating to Agassiz [16] that identify two openings of the digestive system opposite of the mouth-called "excretory pores" by Chun [17], referred to as an "anus" by Main [18], and coined "anal pores" by Hyman [19]-contradictory reports, particularly prominent in recent literature, posit that waste products are primarily expelled via the mouth [4, 5, 7, 14, 19-23]. Here we demonstrate that ctenophores possess a unidirectional, functionally tripartite through-gut and provide an updated interpretation for the evolution of the metazoan through-gut. Our results resolve lingering questions regarding the functional anatomy of the ctenophore gut and long-standing misconceptions about waste removal in ctenophores. Moreover, our results present an intriguing evolutionary quandary that stands in stark contrast to the current paradigm of gut evolution: either (1) the through-gut has its origins very early in the metazoan stem lineage or (2) the ctenophore lineage has converged on an arrangement of organs functionally similar to the bilaterian through-gut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evolution of Holocene tidal systems along the Dutch coast: effects of rivers, coastal boundary conditions, eco-engineering species, inherited relief and human interference

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Pierik, H. J.; van der Spek, A.; Cohen, K.; van Maanen, B.; Kleinhans, M. G.

    2016-12-01

    Estuaries and tidal basins are partly enclosed coastal bodies of water with a free connection to the open sea at their tidal inlet and with no to marginal riverine input (tidal basins) or substantial riverine input (estuaries). Their tidal inlets can only remain open over Holocene timescales when (1) the formation of accommodation space exceeds infilling or (2) the inlet system is in dynamic equilibrium (sediment input equals output). Physical and numerical modelling suggest that estuaries and tidal basins develop toward a dynamic equilibrium under constant boundary conditions and remain open over long timescales, whereas many natural estuaries and tidal basins have filled up and were closed off or became deltas during the Holocene. This raises the question if and how tidal inlets can remain open over long timescales? And what is the effect of river inflow and sediment supply thereon? Here we compare the Holocene evolution of tidal systems along the Dutch coast to empirically identify the most important factors that control their long-term evolution. Along the coast of the Netherlands estuaries and tidal basins were formed during the middle Holocene driven by rapid relative sea-level rise and during the late Holocene driven by natural and human-induced subsidence in coastal plain peatlands. During the Holocene tidal inlets connected to rivers (estuaries) were able to persist and attain dynamic equilibrium while tidal basins without or with a very marginal riverine inflow were unstable and closed off under abundant sediment supply. There are many examples of long-lived tidal inlets that rapidly closed off after upstream river avulsion leading to a decrease and finally loss of riverine input. Long-term net import of sediment from the sea into Dutch tidal basins is favoured by strong, flood-dominated, tidal asymmetry along the Dutch coast, the shallow sand-rich floor of the North Sea and the abundance of mud in the coastal area supplied by the Rhine and Meuse rivers. While sandy tidal basins may obtain dynamic equilibrium and remain open over long timescales, we hypothesize that an abundance of mud and eco-engineering species often culminates in continuous basin filling with fine sediment and the growth of intertidal and supratidal areas, eventually resulting in closure of the basin.

  10. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua

    2018-04-01

    In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

  11. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices

    PubMed Central

    Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2017-01-01

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system’s own evolution. PMID:28225012

  12. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    PubMed

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  13. Quantum adiabatic computation with a constant gap is not useful in one dimension.

    PubMed

    Hastings, M B

    2009-07-31

    We show that it is possible to use a classical computer to efficiently simulate the adiabatic evolution of a quantum system in one dimension with a constant spectral gap, starting the adiabatic evolution from a known initial product state. The proof relies on a recently proven area law for such systems, implying the existence of a good matrix product representation of the ground state, combined with an appropriate algorithm to update the matrix product state as the Hamiltonian is changed. This implies that adiabatic evolution with such Hamiltonians is not useful for universal quantum computation. Therefore, adiabatic algorithms which are useful for universal quantum computation either require a spectral gap tending to zero or need to be implemented in more than one dimension (we leave open the question of the computational power of adiabatic simulation with a constant gap in more than one dimension).

  14. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The system is described in a reduced two-dimensional phase plane with inversion height and boundary-layer average aerosol concentrations as the state variables. Simulations with a full diurnal cycle show similar evolutions, except that open-cell formation is phase-locked into the early morning hours. The same steadily-forced modeling framework is applied to the development and evolution of a POC and the surrounding overcast boundary layer. An initial aerosol perturbation applied to a portion of the model domain leads that portion to transition into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary-layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.

  15. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  16. Quantum corrections of the truncated Wigner approximation applied to an exciton transport model.

    PubMed

    Ivanov, Anton; Breuer, Heinz-Peter

    2017-04-01

    We modify the path integral representation of exciton transport in open quantum systems such that an exact description of the quantum fluctuations around the classical evolution of the system is possible. As a consequence, the time evolution of the system observables is obtained by calculating the average of a stochastic difference equation which is weighted with a product of pseudoprobability density functions. From the exact equation of motion one can clearly identify the terms that are also present if we apply the truncated Wigner approximation. This description of the problem is used as a basis for the derivation of a new approximation, whose validity goes beyond the truncated Wigner approximation. To demonstrate this we apply the formalism to a donor-acceptor transport model.

  17. Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan

    2018-06-01

    Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.

  18. South Huntington's Evolution to Shared Decision Making.

    ERIC Educational Resources Information Center

    Domenech, Daniel A.

    School administrative decisions must be based on a broad range of input; the power of group thinking is required to ensure that the best decisions are made. The necessary transition from the old, closed autocratic administrative decisionmaking system to a new, open democratic organization requires not a radical leap, but a gradual transition. The…

  19. Time-dependent generalized Gibbs ensembles in open quantum systems

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2018-04-01

    Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.

  20. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.

  1. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less

  2. Dissipative structures, machines, and organisms: A perspective

    NASA Astrophysics Data System (ADS)

    Kondepudi, Dilip; Kay, Bruce; Dixon, James

    2017-10-01

    Self-organization in nonequilibrium systems resulting in the formation of dissipative structures has been studied in a variety of systems, most prominently in chemical systems. We present a study of a voltage-driven dissipative structure consisting of conducting beads immersed in a viscous medium of oil. In this simple system, we observed remarkably complex organism-like behavior. The dissipative structure consists of a tree structure that spontaneously forms and moves like a worm and exhibits many features characteristic of living organisms. The complex motion of the beads driven by the applied field, the dipole-dipole interaction between the beads, and the hydrodynamic flow of the viscous medium result in a time evolution of the tree structure towards states of lower resistance or higher dissipation and thus higher rates of entropy production. The resulting end-directed evolution manifests as the tree moving to locations seeking higher current, the current that sustains its structure and dynamics. The study of end-directed evolution in the dissipative structure gives us a means to distinguish the fundamental difference between machines and organisms and opens a path for the formulation of physics of organisms.

  3. Strong coupling between 0D and 2D modes in optical open microcavities

    NASA Astrophysics Data System (ADS)

    Trichet, A. A. P.; Dolan, P. R.; Smith, J. M.

    2018-02-01

    We present a study of the coupling between confined modes and continuum states in an open microcavity system. The confined states are the optical modes of a plano-concave Fabry-Pérot cavity while the continuum states are the propagating modes in a surrounding planar cavity. The length tunability of the open cavity system allows to study the evolution of localised modes as they are progressively deconfined and coupled to the propagating modes. We observe an anti-crossing between the confined and propagating modes proving that mode-mixing takes place in between these two families of modes, and identify 0D-2D mixed modes which exhibit reduced loss compared with their highly localised counterparts. For practical design, we investigate the details of the microcavity shape that can be used to engineer the degree of mode-mixing. This study discusses for the first time experimentally and theoretically how light confinement arises in planar micromirrors and is of interest for the realisation of chip-based extended microphotonics using open cavities.

  4. New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2

    NASA Astrophysics Data System (ADS)

    Gillen, Edward; Hillenbrand, Lynne A.; David, Trevor J.; Aigrain, Suzanne; Rebull, Luisa; Stauffer, John; Cody, Ann Marie; Queloz, Didier

    2017-11-01

    We present the discovery and characterization of four low-mass (M< 0.6 {M}⊙ ) eclipsing binary (EB) systems in the sub-Gyr old Praesepe open cluster using Kepler/K2 time series photometry and Keck/HIRES spectroscopy. We present a new Gaussian process EB model, GP-EBOP, as well as a method of simultaneously determining effective temperatures and distances for EBs. Three of the reported systems (AD 3814, AD 2615 and AD 1508) are detached and double-lined, and precise solutions are presented for the first two. We determine masses and radii to 1%-3% precision for AD 3814 and to 5%-6% for AD 2615. Together with effective temperatures determined to ˜50 K precision, we test the PARSEC v1.2 and BHAC15 stellar evolution models. Our EB parameters are more consistent with the PARSEC models, primarily because the BHAC15 temperature scale is hotter than our data over the mid-M-dwarf mass range probed. Both ADs 3814 and 2615, which have orbital periods of 6.0 and 11.6 days, are circularized but not synchronized. This suggests that either synchronization proceeds more slowly in fully convective stars than the theory of equilibrium tides predicts, or magnetic braking is currently playing a more important role than tidal forces in the spin evolution of these binaries. The fourth system (AD 3116) comprises a brown dwarf transiting a mid-M-dwarf, which is the first such system discovered in a sub-Gyr open cluster. Finally, these new discoveries increase the number of characterized EBs in sub-Gyr open clusters by 20% (40%) below M< 1.5 M ⊙ (M< 0.6 M ⊙).

  5. Evolution of Nursing Science: Is Open Access the Answer?

    PubMed

    Clarke, Pamela N; Garcia, Jenny

    2015-10-01

    The open access movement where journal content is made freely available over the Internet is purported to increase scientific exchange, yet has pros and cons. There are issues related to quality that need to be examined in relation to evolution of nursing science. © The Author(s) 2015.

  6. Self-Organized Critical Behavior:. the Evolution of Frozen Spin Networks Model in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Zhen; Zhu, Jian-Yang

    In quantum gravity, we study the evolution of a two-dimensional planar open frozen spin network, in which the color (i.e. the twice spin of an edge) labeling edge changes but the underlying graph remains fixed. The mainly considered evolution rule, the random edge model, is depending on choosing an edge randomly and changing the color of it by an even integer. Since the change of color generally violate the gauge invariance conditions imposed on the system, detailed propagation rule is needed and it can be defined in many ways. Here, we provided one new propagation rule, in which the involved even integer is not a constant one as in previous works, but changeable with certain probability. In random edge model, we do find the evolution of the system under the propagation rule exhibits power-law behavior, which is suggestive of the self-organized criticality (SOC), and it is the first time to verify the SOC behavior in such evolution model for the frozen spin network. Furthermore, the increase of the average color of the spin network in time can show the nature of inflation for the universe.

  7. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  8. Evolution of the branchiostegal membrane and restricted gill openings in Actinopterygian fishes.

    PubMed

    Farina, Stacy C; Near, Thomas J; Bemis, William E

    2015-06-01

    A phylogenetic survey is a powerful approach for investigating the evolutionary history of a morphological characteristic that has evolved numerous times without obvious functional implications. Restricted gill openings, an extreme modification of the branchiostegal membrane, are an example of such a characteristic. We examine the evolution of branchiostegal membrane morphology and highlight convergent evolution of restricted gill openings. We surveyed specimens from 433 families of actinopterygians for branchiostegal membrane morphology and measured head and body dimensions. We inferred a relaxed molecular clock phylogeny with branch length estimates based on nine nuclear genes sampled from 285 species that include all major lineages of Actinopterygii. We calculated marginal state reconstructions of four branchiostegal membrane conditions and found that restricted gill openings have evolved independently in at least 11 major actinopterygian clades, and the total number of independent origins of the trait is likely much higher. A principal component analysis revealed that fishes with restricted gill openings occupy a larger morphospace, as defined by our linear measurements, than do fishes with nonrestricted openings. We used a decision tree analysis of ecological data to determine if restricted gill openings are linked to certain environments. We found that fishes with restricted gill openings repeatedly occur under a variety of ecological conditions, although they are rare in open-ocean pelagic environments. We also tested seven ratios for their utility in distinguishing between fishes with and without restricted gill openings, and we propose a simple metric for quantifying restricted gill openings (RGO), defined as a ratio of the distance from the ventral midline to the gill opening relative to half the circumference of the head. Functional explanations for this specialized morphology likely differ within each clade, but its repeated evolution indicates a need for a better understanding of diversity of ventilatory morphology among fishes. J. Morphol. 276:681-694, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Evolution equation for quantum coherence

    PubMed Central

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  10. Dynamical evolution and disintegration of comets

    NASA Astrophysics Data System (ADS)

    Kresak, L.

    Current concepts of the origin and evolution of comets are reviewed. The place of their formation from which they have been delivered into the Oort reservoir is still an open problem, but the region of the outermost planets appears most probable. The interplay of stellar and planetary perturbations can be traced by model computations which reveal both the general trends and the variety of individual evolutionary paths. The present structure of the system of comets is controlled by the dynamical evolution of its individual members, limited by their physical aging by disintegration. Where the lifetimes are short, as in the Jupiter family of short-period comets, an equilibrium between elimination and replenishment is established. The role of different destructive processes and the resulting survival times are discussed.

  11. Thermally promoted evolution of open-volume defects and Cu precipitates in the deformed FeCu alloys

    NASA Astrophysics Data System (ADS)

    Jin, Shuoxue; Cao, Xingzhong; Cheng, Guodong; Lian, Xiangyu; Zhu, Te; Zhang, Peng; Yu, Runsheng; Wang, Baoyi

    2018-04-01

    We have studied the effect of isothermal annealing on the evolution of the open-volume defect and the Cu precipitate in deformed Fe0.15Cu, Fe0.3Cu and Fe0.6Cu alloys. Using the coincidence Doppler broadening, positron annihilation lifetime and the S-W couples, the evolution of local electronic circumstance around the annihilation sites, open-volume defects and interaction between open-volume defects and Cu precipitates were measured as a function of the isothermal annealing temperatures. Cold rolling deformation induced an obvious increment in S parameters due to the formation of open-volume defects. Annealing not only resulted in gradual recovery of open-volume defects and Cu thermal precipitation, but also promoted the combination and interaction between defects and Cu precipitates. The interaction between open-volume defects and Cu precipitates was revealed clearly by the view point of S-W relationship. The S-W interaction for the different CumVn complexes was also calculated theoretically by MIKA-Doppler, which supports our experimental observations qualitatively. The results indicate that open-volume defects were formed first after cold rolling, followed by the Cu precipitation and recovery of open-volume defects, Cu precipitates recovered at the end. It is interesting that the trajectory of (S, W) points with increasing annealing temperature formed a similar closed "Parallelogram" shape. It is benefit for revealing the behavior of Cu thermal precipitation and their evolution in various Cu-bearing steels under thermal treatment. In addition, we also investigated the Cu content effect on the Cu precipitation in FeCu alloys, and the Cu precipitate phenomenon was enhanced in higher Cu content alloys.

  12. The Nett Warrior System: A Case Study for the Acquisition of Soldier Systems

    DTIC Science & Technology

    2011-12-15

    rpfkbpp=C=mr_if`=mlif`v - 10 - k^s^i=mlpqdo^ar^qb=p`elli The evolution of wearable computers continued as an open system– bus wearable design was...established. The success of NW will depend on the program?s ability to incorporate soldier-driven design requirements, commercial technology, and...on the program’s ability to incorporate soldier-driven design requirements, commercial technology, and thorough system testing.   = = ^Åèìáëáíáçå

  13. Tendency towards maximum complexity in a nonequilibrium isolated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calbet, Xavier; Lopez-Ruiz, Ricardo

    2001-06-01

    The time evolution equations of a simplified isolated ideal gas, the {open_quotes}tetrahedral{close_quotes} gas, are derived. The dynamical behavior of the Lopez-Ruiz{endash}Mancini{endash}Calbet complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A >209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated {open_quotes}tetrahedral{close_quotes} gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach themore » maximum complexity path as it evolves toward equilibrium.« less

  14. Self-organization and feedback effects in the shock compressed media

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatyana

    2005-07-01

    New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.

  15. The weak coupling limit as a quantum functional central limit

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Frigerio, A.; Lu, Y. G.

    1990-08-01

    We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

  16. Revealing evolutionary pathways by fitness landscape reconstruction.

    PubMed

    Kogenaru, Manjunatha; de Vos, Marjon G J; Tans, Sander J

    2009-01-01

    The concept of epistasis has since long been used to denote non-additive fitness effects of genetic changes and has played a central role in understanding the evolution of biological systems. Owing to an array of novel experimental methodologies, it has become possible to experimentally determine epistatic interactions as well as more elaborate genotype-fitness maps. These data have opened up the investigation of a host of long-standing questions in evolutionary biology, such as the ruggedness of fitness landscapes and the accessibility of mutational trajectories, the evolution of sex, and the origin of robustness and modularity. Here we review this recent and timely marriage between systems biology and evolutionary biology, which holds the promise to understand evolutionary dynamics in a more mechanistic and predictive manner.

  17. Emissions trading: principles and practice. 2nd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietenberg, T.H.

    2006-02-15

    The author demonstrates how emissions trading became an attractive alternative to command-and-control policies that would have required the EPA to disallow the opening of new plants in the middle of the recession-burdened 1970s. His examination of the evolution of this system includes, among other applications, the largest multinational trading system ever conceived, the European Union's Greenhouse Gas Emission Trading Scheme (EUETG), and the use of emissions trading in the Kyoto Protocol.

  18. Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Moussallam, Y.; Peters, N.; Ramírez, C.; Oppenheimer, C.; Aiuppa, A.; Giudice, G.

    2014-12-01

    The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 gases of 94.16, 4.03, 1.56, 0.23, 0.003 and 0.009% respectively by open-path Fourier transform infrared (FTIR) spectrometry and a multi-species gas-sensing system. Together, these data imply fluxes of 88, 8, 0.44, 5 × 10-3 and 1 × 10-3 kg s-1 for H2O, CO2, HCl, CO and H2 respectively. Although H2S was detected, its concentration could not be resolved. HF was not detected. The chemical signature of the gas from both vents was found to be broadly similar. Following the opening of the 2010 and 2012 vents we found limited to negligible interaction of the magmatic gas with the hydrothermal system has occurred and the gas composition of the volcanic plume is broadly representative of equilibrium with the magma. The time evolution of the gas composition, the continuous emission of large quantities of SO2, and the physical evolution of the summit area with new vent openings and more frequent eruptions all point towards a continuous drying of the hydrothermal system at Turrialba's summit at an apparently increasing rate.

  19. Symmetry-protected coherent relaxation of open quantum systems

    NASA Astrophysics Data System (ADS)

    van Caspel, Moos; Gritsev, Vladimir

    2018-05-01

    We compute the effect of Markovian bulk dephasing noise on the staggered magnetization of the spin-1/2 XXZ Heisenberg chain, as the system evolves after a Néel quench. For sufficiently weak system-bath coupling, the unitary dynamics are found to be preserved up to a single exponential damping factor. This is a consequence of the interplay between PT symmetry and weak symmetries, which strengthens previous predictions for PT -symmetric Liouvillian dynamics. Requirements are a nondegenerate PT -symmetric generator of time evolution L ̂, a weak parity symmetry, and an observable that is antisymmetric under this parity transformation. The spectrum of L ̂ then splits up into symmetry sectors, yielding the same decay rate for all modes that contribute to the observable's time evolution. This phenomenon may be realized in trapped ion experiments and has possible implications for the control of decoherence in out-of-equilibrium many-body systems.

  20. Cultural evolution and individual development of openness and conservatism

    PubMed Central

    Acerbi, Alberto; Enquist, Magnus; Ghirlanda, Stefano

    2009-01-01

    We present a model of cultural evolution in which an individual's propensity to engage in social learning is affected by social learning itself. We assume that individuals observe cultural traits displayed by others and decide whether to copy them based on their overall preference for the displayed traits. Preferences, too, can be transmitted between individuals. Our results show that such cultural dynamics tends to produce conservative individuals, i.e., individuals who are reluctant to copy new traits. Openness to new information, however, can be maintained when individuals need significant time to acquire the cultural traits that make them effective cultural models. We show that a gradual enculturation of young individuals by many models and a larger cultural repertoire to be acquired are favorable circumstances for the long-term maintenance of openness in individuals and groups. Our results agree with data about lifetime personality change, showing that openness to new information decreases with age. Our results show that cultural remodeling of cultural transmission is a powerful force in cultural evolution, i.e., that cultural evolution can change its own dynamics. PMID:19858478

  1. Visualizing the Logistic Map with a Microcontroller

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2012-01-01

    The logistic map is one of the simplest nonlinear dynamical systems that clearly exhibits the route to chaos. In this paper, we explore the evolution of the logistic map using an open-source microcontroller connected to an array of light-emitting diodes (LEDs). We divide the one-dimensional domain interval [0,1] into ten equal parts, an associate…

  2. Raman spectroscopy as a tool for ecology and evolution.

    PubMed

    Germond, Arno; Kumar, Vipin; Ichimura, Taro; Moreau, Jerome; Furusawa, Chikara; Fujita, Hideaki; Watanabe, Tomonobu M

    2017-06-01

    Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution. © 2017 The Authors.

  3. Double-time correlation functions of two quantum operations in open systems

    NASA Astrophysics Data System (ADS)

    Ban, Masashi

    2017-10-01

    A double-time correlation function of arbitrary two quantum operations is studied for a nonstationary open quantum system which is in contact with a thermal reservoir. It includes a usual correlation function, a linear response function, and a weak value of an observable. Time evolution of the correlation function can be derived by means of the time-convolution and time-convolutionless projection operator techniques. For this purpose, a quasidensity operator accompanied by a fictitious field is introduced, which makes it possible to derive explicit formulas for calculating a double-time correlation function in the second-order approximation with respect to a system-reservoir interaction. The derived formula explicitly shows that the quantum regression theorem for calculating the double-time correlation function cannot be used if a thermal reservoir has a finite correlation time. Furthermore, the formula is applied for a pure dephasing process and a linear dissipative process. The quantum regression theorem and the the Leggett-Garg inequality are investigated for an open two-level system. The results are compared with those obtained by exact calculation to examine whether the formula is a good approximation.

  4. Assessment of Biology Majors' Versus Nonmajors' Views on Evolution, Creationism, and Intelligent Design.

    PubMed

    Paz-Y-Miño C, Guillermo; Espinosa, Avelina

    2009-03-01

    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n =237, nonmajors n =239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students' attitudes toward evolution; (3) students' position about the teaching of human evolution; (4) evolution in science exams; and (5) students' willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists.

  5. Assessment of Biology Majors’ Versus Nonmajors’ Views on Evolution, Creationism, and Intelligent Design

    PubMed Central

    Paz-y-Miño C., Guillermo

    2016-01-01

    The controversy around evolution, creationism, and intelligent design resides in a historical struggle between scientific knowledge and popular belief. Four hundred seventy-six students (biology majors n=237, nonmajors n=239) at a secular liberal arts private university in Northeastern United States responded to a five-question survey to assess their views about: (1) evolution, creationism, and intelligent design in the science class; (2) students’ attitudes toward evolution; (3) students’ position about the teaching of human evolution; (4) evolution in science exams; and (5) students’ willingness to discuss evolution openly. There were 60.6% of biology majors and 42% of nonmajors supported the exclusive teaching of evolution in the science class, while 45.3% of nonmajors and 32% of majors were willing to learn equally about evolution, creationism, and intelligent design (question 1); 70.5% of biology majors and 55.6% of nonmajors valued the factual explanations evolution provides about the origin of life and its place in the universe (question 2); 78% of the combined responders (majors plus nonmajors) preferred science courses where evolution is discussed comprehensively and humans are part of it (question 3); 69% of the combined responders (majors plus nonmajors) had no problem answering questions concerning evolution in science exams (question 4); 48.1% of biology majors and 26.8% of nonmajors accepted evolution and expressed it openly, but 18.2% of the former and 14.2% of the latter accepted evolution privately; 46% of nonmajors and 29.1% of biology majors were reluctant to comment on this topic (question 5). Combined open plus private acceptance of evolution within biology majors increased with seniority, from freshman (60.7%) to seniors (81%), presumably due to gradual exposure to upper-division biology courses with evolutionary content. College curricular/pedagogical reform should fortify evolution literacy at all education levels, particularly among nonbiologists. PMID:26973732

  6. Evo-devo and accounting for Darwin's endless forms

    PubMed Central

    Brakefield, Paul M.

    2011-01-01

    Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin's notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll's phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space? PMID:21690125

  7. Evo-devo and accounting for Darwin's endless forms.

    PubMed

    Brakefield, Paul M

    2011-07-27

    Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin's notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll's phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space?

  8. Two possible driving forces supporting the evolution of animal communication. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Moulin-Frier, Clément; Verschure, Paul F. M. J.

    2016-03-01

    In the target paper [1], M.A. Arbib proposes a quite exhaustive review of the (often computational) models developed during the last decades that support his detailed scenario on language evolution (the Mirror System Hypothesis, MSH). The approach considers that language evolved from a mirror system for grasping already present in LCA-m (the last common ancestor of macaques and humans), to a simple imitation system for grasping present in LCA-c (the last common ancestor of chimpanzees and humans), to a complex imitation system for grasping that developed in the hominid line since that ancestor. MSH considers that this complex imitation system is a key evolutionary step for a language-ready brain, providing all the required elements for an open-ended gestural communication system. The transition from the gestural (bracchio-manual and visual) to the vocal (articulatory and auditory) domain is supposed to be a less important evolutionary step.

  9. Ehrenfest dynamics is purity non-preserving: A necessary ingredient for decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, J. L.; Instituto de Biocomputacion y Fisica de Sistemas Complejos; Unidad Asociada IQFR-BIFI, Universidad de Zaragoza, Mariano Esquillor s/n, E-50018 Zaragoza

    2012-08-07

    We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamicsmore » makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.« less

  10. Analysis of the Science and Technology Preservice Teachers' Opinions on Teaching Evolution and Theory of Evolution

    ERIC Educational Resources Information Center

    Töman, Ufuk; Karatas, Faik Özgür; Çimer, Sabiha Odabasi

    2014-01-01

    In this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. The aim of this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. This study is a descriptive study. Open-ended questions were used to…

  11. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit

    NASA Astrophysics Data System (ADS)

    Mendoza, Michel; Ujevic, Sebastian

    2012-06-01

    We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.

  12. Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Naomichi, E-mail: hatano@iis.u-tokyo.ac.jp; Ordonez, Gonzalo, E-mail: gordonez@butler.edu

    2014-12-15

    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the centralmore » scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.« less

  13. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  14. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2002-12-01

    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the magma storage and delivery system; 3) 87Sr/86Sr variations within feldspars from a single ignimbrite exceed the entire rhyolite bulk rock range of 87Sr/86Sr recorded from the Taupo volcanic zone, New Zealand; arguing that the isotopic heterogeneity encountered during differentiation is greater than that erupted; and 4) Gabbros from the Rum intrusion (NW Scotland) exhibit inter and intra-grain isotopic heterogeneity arguing that accumulation involved mixing of crystal populations which evolved in different domains of an open system magma chamber. These studies suggest that isotopic modification of magmas in the crust (according to P-T estimates of plagiocalse stability) is the rule rather than the exception. Although it is conceivable that isotopic signatures are all inherited from mantle-derived melts which interacted before, during and after crystal growth, it is more likely that the isotopic diversity reflects contamination and mixing which obscures the signature of the mantle contributions. Furthermore, it is perhaps unrealistic to think of the evolution of a particular igneous rock. Rather each rock appears to be an aggregate of components with separate evolutionary histories. Because isotopic composition is leveraged by the mass balance of these components (Sr is typically concentrated in plagioclase, Nd in glass and accessories, Hf in zircon, Pb in feldspar and glass), the isotopic systematics of bulk rocks can become decoupled from each other. Thus the isotope characteristics of the rock components give a more faithful record of evolution processes than the bulk rock itself.

  15. Emergent transport in a many-body open system driven by interacting quantum baths

    NASA Astrophysics Data System (ADS)

    Reisons, Juris; Mascarenhas, Eduardo; Savona, Vincenzo

    2017-10-01

    We analyze an open many-body system that is strongly coupled at its boundaries to interacting quantum baths. We show that the two-body interactions inside the baths induce emergent phenomena in the spin transport. The system and baths are modeled as independent spin chains resulting in a global nonhomogeneous X X Z model. The evolution of the system-bath state is simulated using matrix-product-states methods. We present two phase transitions induced by bath interactions. For weak bath interactions we observe ballistic and insulating phases. However, for strong bath interactions a diffusive phase emerges with a distinct power-law decay of the time-dependent spin current Q ∝t-α . Furthermore, we investigate long-lasting current oscillations arising from the non-Markovian dynamics in the homogeneous case and find a sharp change in their frequency scaling coinciding with the triple point of the phase diagram.

  16. Surface-hopping dynamics and decoherence with quantum equilibrium structure.

    PubMed

    Grunwald, Robbie; Kim, Hyojoon; Kapral, Raymond

    2008-04-28

    In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.

  17. Quantum speed limit for arbitrary initial states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Cao, Jun-Peng; Fan, Heng

    2014-01-01

    The minimal time a system needs to evolve from an initial state to its one orthogonal state is defined as the quantum speed limit time, which can be used to characterize the maximal speed of evolution of a quantum system. This is a fundamental question of quantum physics. We investigate the generic bound on the minimal evolution time of the open dynamical quantum system. This quantum speed limit time is applicable to both mixed and pure initial states. We then apply this result to the damped Jaynes-Cummings model and the Ohimc-like dephasing model starting from a general time-evolution state. The bound of this time-dependent state at any point in time can be found. For the damped Jaynes-Cummings model, when the system starts from the excited state, the corresponding bound first decreases and then increases in the Markovian dynamics. While in the non-Markovian regime, the speed limit time shows an interesting periodic oscillatory behavior. For the case of Ohimc-like dephasing model, this bound would be gradually trapped to a fixed value. In addition, the roles of the relativistic effects on the speed limit time for the observer in non-inertial frames are discussed. PMID:24809395

  18. A systemic approach for modeling biological evolution using Parallel DEVS.

    PubMed

    Heredia, Daniel; Sanz, Victorino; Urquia, Alfonso; Sandín, Máximo

    2015-08-01

    A new model for studying the evolution of living organisms is proposed in this manuscript. The proposed model is based on a non-neodarwinian systemic approach. The model is focused on considering several controversies and open discussions about modern evolutionary biology. Additionally, a simplification of the proposed model, named EvoDEVS, has been mathematically described using the Parallel DEVS formalism and implemented as a computer program using the DEVSLib Modelica library. EvoDEVS serves as an experimental platform to study different conditions and scenarios by means of computer simulations. Two preliminary case studies are presented to illustrate the behavior of the model and validate its results. EvoDEVS is freely available at http://www.euclides.dia.uned.es. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. On a model of electromagnetic field propagation in ferroelectric media

    NASA Astrophysics Data System (ADS)

    Picard, Rainer

    2007-04-01

    The Maxwell system in an anisotropic, inhomogeneous medium with non-linear memory effect produced by a Maxwell type system for the polarization is investigated under low regularity assumptions on data and domain. The particular form of memory in the system is motivated by a model for electromagnetic wave propagation in ferromagnetic materials suggested by Greenberg, MacCamy and Coffman [J.M. Greenberg, R.C. MacCamy, C.V. Coffman, On the long-time behavior of ferroelectric systems, Phys. D 134 (1999) 362-383]. To avoid unnecessary regularity requirements the problem is approached as a system of space-time operator equation in the framework of extrapolation spaces (Sobolev lattices), a theoretical framework developed in [R. Picard, Evolution equations as space-time operator equations, Math. Anal. Appl. 173 (2) (1993) 436-458; R. Picard, Evolution equations as operator equations in lattices of Hilbert spaces, Glasnik Mat. 35 (2000) 111-136]. A solution theory for a large class of ferromagnetic materials confined to an arbitrary open set (with suitably generalized boundary conditions) is obtained.

  20. Extended physics as a theoretical framework for systems biology?

    PubMed

    Miquel, Paul-Antoine

    2011-08-01

    In this essay we examine whether a theoretical and conceptual framework for systems biology could be built from the Bailly and Longo (2008, 2009) proposal. These authors aim to understand life as a coherent critical structure, and propose to develop an extended physical approach of evolution, as a diffusion of biomass in a space of complexity. Their attempt leads to a simple mathematical reconstruction of Gould's assumption (1989) concerning the bacterial world as a "left wall of least complexity" that we will examine. Extended physical systems are characterized by their constructive properties. Time is acting and new properties emerge by their history that can open the list of their initial properties. This conceptual and theoretical framework is nothing more than a philosophical assumption, but as such it provides a new and exciting approach concerning the evolution of life, and the transition between physics and biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Natural thermodynamics

    NASA Astrophysics Data System (ADS)

    Annila, Arto

    2016-02-01

    The principle of increasing entropy is derived from statistical physics of open systems assuming that quanta of actions, as undividable basic build blocks, embody everything. According to this tenet, all systems evolve from one state to another either by acquiring quanta from their surroundings or by discarding quanta to the surroundings in order to attain energetic balance in least time. These natural processes result in ubiquitous scale-free patterns: skewed distributions that accumulate in a sigmoid manner and hence span log-log scales mostly as straight lines. Moreover, the equation for least-time motions reveals that evolution is by nature a non-deterministic process. Although the obtained insight in thermodynamics from the notion of quanta in motion yields nothing new, it accentuates that contemporary comprehension is impaired when modeling evolution as a computable process by imposing conservation of energy and thereby ignoring that quantum of actions are the carriers of energy from the system to its surroundings.

  2. Fully Quantum Fluctuation Theorems

    NASA Astrophysics Data System (ADS)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  3. PT -symmetric slowing down of decoherence

    DOE PAGES

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    2016-10-27

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  4. PT -symmetric slowing down of decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  5. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    NASA Astrophysics Data System (ADS)

    Kováč, Michal; Márton, Emő; Oszczypko, Nestor; Vojtko, Rastislav; Hók, Jozef; Králiková, Silvia; Plašienka, Dušan; Klučiar, Tomáš; Hudáčková, Natália; Oszczypko-Clowes, Marta

    2017-08-01

    The data on the Neogene geodynamics, palaeogeography, and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (ALCAPA Mega-unit) are summarized, re-evaluated, supplemented, and newly interpreted. The proposed concept is illustrated by a series of palinspastic and palaeotopographic maps. The Miocene development of the Outer Carpathians reflects the vanishing subduction of the residual oceanic and/or thinned continental crust. A compression perpendicular to the front of the orogenic system led to the closing of residual flysch troughs and to accretionary wedge growth, as well as to the development of a foredeep on the margin of the European Platform. Docking of the Outer Western Carpathians accretionary wedge, together with the Central Western Carpathians and Northern Pannonian domain, was accompanied by stretching of the overriding microplate. An orogen parallel and perpendicular extension was associated with the opening and subsidence of the Early and Middle Miocene hinterland (back-arc) basin system that compensated counter-clockwise rotations of the individual crustal fragments of ALCAPA. The Late Miocene development relates to the opening of the Pannonian Basin System. This process was coupled with common stretching of both ALCAPA and Tisza-Dacia Mega-units due to the pull exerted by subduction rollback in front of the Eastern Carpathians. The filling up of the hinterland basin system was associated with thermal subsidence and was followed by the Pliocene tectonic inversion and consequent erosion of the basin system margins, as well as part of the interior.

  6. G-Consistent Subsets and Reduced Dynamical Quantum Maps

    NASA Astrophysics Data System (ADS)

    Ceballos, Russell R.

    A quantum system which evolves in time while interacting with an external environ- ment is said to be an open quantum system (OQS), and the influence of the environment on the unperturbed unitary evolution of the system generally leads to non-unitary dynamics. This kind of open system dynamical evolution has been typically modeled by a Standard Prescription (SP) which assumes that the state of the OQS is initially uncorrelated with the environment state. It is here shown that when a minimal set of physically motivated assumptions are adopted, not only does there exist constraints on the reduced dynamics of an OQS such that this SP does not always accurately describe the possible initial cor- relations existing between the OQS and environment, but such initial correlations, and even entanglement, can be witnessed when observing a particular class of reduced state transformations termed purity extractions are observed. Furthermore, as part of a more fundamental investigation to better understand the minimal set of assumptions required to formulate well defined reduced dynamical quantum maps, it is demonstrated that there exists a one-to-one correspondence between the set of initial reduced states and the set of admissible initial system-environment composite states when G-consistency is enforced. Given the discussions surrounding the requirement of complete positivity and the reliance on the SP, the results presented here may well be found valuable for determining the ba- sic properties of reduced dynamical maps, and when restrictions on the OQS dynamics naturally emerge.

  7. Scale-invariant cascades in turbulence and evolution

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas Ryan

    In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.

  8. SaLEM (v1.0) - the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Conrad, Olaf; Günther, Andreas; Gehrt, Ernst; Baritz, Rainer; Böhner, Jürgen

    2018-04-01

    We propose the implementation of the Soil and Landscape Evolution Model (SaLEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. Relevant parts of the established Geomorphic/Orogenic Landscape Evolution Model (GOLEM) have been adapted for an operational Geographical Information System (GIS) tool within the open-source software framework System for Automated Geoscientific Analyses (SAGA), thus taking advantage of SAGA's capabilities for geomorphometric analyses. The model is driven by palaeoclimatic data (temperature, precipitation) representative of periglacial areas in northern Germany over the last 50 000 years. The initial conditions have been determined for a test site by a digital terrain model and a geological model. Weathering, erosion and transport functions are calibrated using extrinsic (climatic) and intrinsic (lithologic) parameter data. First results indicate that our differentiated SaLEM approach shows some evidence for the spatiotemporal prediction of important soil parental material properties (particularly its depth). Future research will focus on the validation of the results against field data, and the influence of discrete events (mass movements, floods) on soil parent material formation has to be evaluated.

  9. Sensor Open System Architecture (SOSA) evolution for collaborative standards development

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick; Lipkin, Ilya; Davidson, Steven A.; Baldwin, Rusty; Orlovsky, Michael C.; Ibrahim, Tim

    2017-04-01

    The Sensor Open System Architecture (SOSA) is a C4ISR-focused technical and economic collaborative effort between the Air Force, Navy, Army, the Department of Defense (DoD), Industry, and other Governmental agencies to develop (and incorporate) a technical Open Systems Architecture standard in order to maximize C4ISR sub-system, system, and platform affordability, re-configurability, and hardware/software/firmware re-use. The SOSA effort will effectively create an operational and technical framework for the integration of disparate payloads into C4ISR systems; with a focus on the development of a modular decomposition (defining functions and behaviors) and associated key interfaces (physical and logical) for common multi-purpose architecture for radar, EO/IR, SIGINT, EW, and Communications. SOSA addresses hardware, software, and mechanical/electrical interfaces. The modular decomposition will produce a set of re-useable components, interfaces, and sub-systems that engender reusable capabilities. This, in effect, creates a realistic and affordable ecosystem enabling mission effectiveness through systematic re-use of all available re-composed hardware, software, and electrical/mechanical base components and interfaces. To this end, SOSA will leverage existing standards as much as possible and evolve the SOSA architecture through modification, reuse, and enhancements to achieve C4ISR goals. This paper will present accomplishments over the first year of SOSA initiative.

  10. Nowhere to run: the role of habitat openness and refuge use in defining patterns of morphological and performance evolution in tropical lizards.

    PubMed

    Goodman, Brett A

    2009-07-01

    For species from open habitats with little cover and few refugia, selection should favour morphologies that enhance performance at tasks that enable rapid movement across open areas. Similarly, selection should also favour traits that enable rapid access and movement within suitable refugia. This study examined the relationship between habitat openness, refuge use, morphology and performance of 19 species representing 23 populations of tropical Lygosomine skink. Species from this group occupy a wide array of habitats from open forest and open rocky intertidal zones to high-altitude heaths and dense, closed forests. Species that occupied open habitats were faster at sprinting, climbing and had better cling ability than species from more cluttered, closed habitats. In addition, species from habitats that used rock crevices as refuges had enhanced sprinting ability. This study shows the importance of both habitat openness and refuge type in the evolution of both the morphology and performance in lizards.

  11. Toward the Language-Ready Brain: Biological Evolution and Primate Comparisons.

    PubMed

    Arbib, Michael A

    2017-02-01

    The approach to language evolution suggested here focuses on three questions: How did the human brain evolve so that humans can develop, use, and acquire languages? How can the evolutionary quest be informed by studying brain, behavior, and social interaction in monkeys, apes, and humans? How can computational modeling advance these studies? I hypothesize that the brain is language ready in that the earliest humans had protolanguages but not languages (i.e., communication systems endowed with rich and open-ended lexicons and grammars supporting a compositional semantics), and that it took cultural evolution to yield societies (a cultural constructed niche) in which language-ready brains could become language-using brains. The mirror system hypothesis is a well-developed example of this approach, but I offer it here not as a closed theory but as an evolving framework for the development and analysis of conflicting subhypotheses in the hope of their eventual integration. I also stress that computational modeling helps us understand the evolving role of mirror neurons, not in and of themselves, but only in their interaction with systems "beyond the mirror." Because a theory of evolution needs a clear characterization of what it is that evolved, I also outline ideas for research in neurolinguistics to complement studies of the evolution of the language-ready brain. A clear challenge is to go beyond models of speech comprehension to include sign language and models of production, and to link language to visuomotor interaction with the physical and social world.

  12. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.

  13. Increasing Public Access to University Qualifications: Evolution of The University of the West Indies Open Campus

    ERIC Educational Resources Information Center

    Thomas, Michael L.; Soares, Judith

    2009-01-01

    This paper traces the evolution of The University of the West Indies' Open Campus (UWIOC), which is expected to expand service and increase access to the underserved communities of the Eastern Caribbean. At present, UWI, which caters to the needs of the 16 far flung countries of the Commonwealth Caribbean, has not been able to fully serve these…

  14. Evolution Of The Concept Of Dimension

    NASA Astrophysics Data System (ADS)

    Journeau, Philippe F.

    2007-04-01

    Concepts of time elapsing `in' a space measuring the real emerge over the centuries. But Kant refutes absolute time and defines it, with space, as forms reacting to Newtonian mechanics. Einstein and Minkowski open a 20th century where time is a dimension, a substratum of reality `with' space rather than `in' it. Kaluza-Klein and String theories then develop a trend of additional spatial dimensions while de Broglie and Bohm open the possiblity that form, to begin with wave, be a reality together `with' a space-time particle. Other recent theories, such as spin networks, causal sets and twistor theory, even head to the idea of other "systems of dimensions." On the basis of such progresses and recent experiments the paper then considers a background independent fourfold time-form-action-space system of dimensions.

  15. The hills are alive: Earth surface dynamics in the University of Arizona Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Troch, P. A.; Barron-Gafford, G. A.; Huxman, T. E.; Pelletier, J. D.; Dontsova, K.; Niu, G.; Chorover, J.; Zeng, X.

    2012-12-01

    To meet the challenge of predicting landscape-scale changes in Earth system behavior, the University of Arizona has designed and constructed a new large-scale and community-oriented scientific facility - the Landscape Evolution Observatory (LEO). The primary scientific objectives are to quantify interactions among hydrologic partitioning, geochemical weathering, ecology, microbiology, atmospheric processes, and geomorphic change associated with incipient hillslope development. LEO consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1 meter of basaltic tephra ground to homogenous loamy sand and contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. Each ~1000 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation), to facilitate better quantification of evapotraspiration. Each landscape has an engineered rain system that allows application of precipitation at rates between3 and 45 mm/hr. These landscapes are being studied in replicate as "bare soil" for an initial period of several years. After this initial phase, heat- and drought-tolerant vascular plant communities will be introduced. Introduction of vascular plants is expected to change how water, carbon, and energy cycle through the landscapes, with potentially dramatic effects on co-evolution of the physical and biological systems. LEO also provides a physical comparison to computer models that are designed to predict interactions among hydrological, geochemical, atmospheric, ecological and geomorphic processes in changing climates. These computer models will be improved by comparing their predictions to physical measurements made in LEO. The main focus of our iterative modeling and measurement discovery cycle is to use rapid data assimilation to facilitate validation of newly coupled open-source Earth systems models. LEO will be a community resource for Earth system science research, education, and outreach. The LEO project operational philosophy includes 1) open and real-time availability of sensor network data, 2) a framework for community collaboration and facility access that includes integration of new or comparative measurement capabilities into existing facility cyberinfrastructure, 3) community-guided science planning and 4) development of novel education and outreach programs.Artistic rendering of the University of Arizona Landscape Evolution Observatory

  16. Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems

    NASA Astrophysics Data System (ADS)

    Meyer, Gregory; Machado, Francisco; Yao, Norman

    2017-04-01

    Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.

  17. ...And Kronos Ate His Sons

    NASA Astrophysics Data System (ADS)

    Vitiello, Giuseppe

    In closed systems, energy is conserved. The origin of the time axis is completely arbitrary due to the invariance under continuous time-translations. The flowing of time swallows those fictitious origins one might assign on its axis, as Kronos ate his sons. Dissipation breaks such a scenario. It implies a non-forgettable origin of time. Open systems need their complement (their "double") in order to become, together, a closed system. Time emerges as an observable measured by the evolution of the open system complement, which acts as a clock. The conservation of the energy-momentum tensor in electrodynamics is considered and its relation with dissipative systems and self-similar fractal structures is discussed. The isomorphism with coherent states in quantum field theory (QFT) is established and the generator of transitions among unitarily inequivalent representations of the canonical commutation relations (CCR) is shown to provide sequences in time of phases, which defines the arrow of time. Merging properties of electrodynamics, fractal self-similarity, dissipation and coherent states point to an integrated vision of Nature.

  18. Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Link, Valentin; Strunz, Walter T.

    2017-11-01

    We present a stochastic projection formalism for the description of quantum dynamics in bosonic or spin environments. The Schrödinger equation in the coherent state representation with respect to the environmental degrees of freedom can be reformulated by employing the Feshbach partitioning technique for open quantum systems based on the introduction of suitable non-Hermitian projection operators. In this picture the reduced state of the system can be obtained as a stochastic average over pure state trajectories, for any temperature of the bath. The corresponding non-Markovian stochastic Schrödinger equations include a memory integral over the past states. In the case of harmonic environments and linear coupling the approach gives a new form of the established non-Markovian quantum state diffusion stochastic Schrödinger equation without functional derivatives. Utilizing spin coherent states, the evolution equation for spin environments resembles the bosonic case with, however, a non-Gaussian average for the reduced density operator.

  19. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: the Taiji-Tire Model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M.

    2013-10-01

    This paper presents a historical socio-hydrological analysis of the Tarim Basin, Xinjiang Province, Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human-water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human-water system in the Tarim Basin reached stable states for long periods of time, then punctuated by sudden shifts due to internal or external disturbances. In this study, we discuss three steady periods (i.e. natural, human exploitation, and degradation and recovery) and transitions in between during the past 2000 yr. During the "natural" stage that existed pre-18th century, with small-scale human society and sound environment, evolution of the SHS was mainly driven by natural environmental changes such as river channel migration and climate change. During the human exploitation stage, especially in the 19th and 20th centuries, it experienced rapid population growth, massive land reclamation and fast socio-economic development, and humans became the principal players of system evolution. By the 1970s, the Tarim Basin had evolved into a new regime with a vulnerable eco-hydrological system seemingly populated beyond its carrying capacity, and a human society that began to suffer from serious water shortages, land salinization and desertification. With intensified deterioration of river health and increased recognition of unsustainability of traditional development pattern, human intervention and recovery measures have been adopted. Since then, the basin has shown a reverse regime shift towards some healing of the environmental damage. Spatio-temporal variations of historical socio-hydrological co-evolution are classified into four types: primitive agricultural, traditional agricultural, industrial agricultural and urban SHSs. These co-evolutionary changes have been summarized in terms of the Taiji-Tire Model, a refinement of a special concept in Chinese philosophy, relating to the co-evolution of a system because of interactions among its components.

  20. Reconstruction of DNA sequences using genetic algorithms and cellular automata: towards mutation prediction?

    PubMed

    Mizas, Ch; Sirakoulis, G Ch; Mardiris, V; Karafyllidis, I; Glykos, N; Sandaltzopoulos, R

    2008-04-01

    Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.

  1. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution

    PubMed Central

    Day, Troy

    2012-01-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390

  2. Middle to late Holocene coastal evolution along the south coast of Upolu Island, Samoa

    USGS Publications Warehouse

    Goodwin, I.D.; Grossman, E.E.

    2003-01-01

    Stratigraphic surveys and sedimentological analyses of coastal sediments and reef cores along the south coast of Upolu Island, Samoa, reveal that during the middle Holocene this coast was characterised by barrier spits, open lagoons, and estuaries. These estuarine systems matured during the late Holocene, with progressive sedimentation and inlet closure, leading to the dominance of mangrove swamps in the past 1000 years. Contemporaneous with the transition of open estuaries to mangrove swamps was the aggradation and progradation of coastal plains. The coastal progradation since 700-1000 years BP is best explained by increased sediment availability and reduced incident wave energy at the shore resulting from the shallowing and subsequent cessation of reef crest accretion following the mid-Holocene sea-level highstand ca. ???4500 yr BP. A small relative sea-level (RSL) lowering since 700-1000 years may have contributed to the positive sediment budget. This study highlights the need for island-wide coastal surveys to assess the relative roles of RSL, sediment budgets, and hydrodynamics on coastal evolution and stability. Differences in coastal evolution around Upolu Island may also be influenced by differential tectonic movements associated with late Holocene volcanism, coseismicity, and/ or submarine landslides. ?? 2003 Elsevier B.V. All rights reserved.

  3. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.

    PubMed

    Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra

    2015-09-01

    The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Open University Staff Development Materials for Tutors of Open Learning.

    ERIC Educational Resources Information Center

    Langley, Anne; Perkins, Isabel

    1999-01-01

    Discusses the evolution of staff development and the new Supporting Open Learners' (SOL) materials at the United Kingdom Open University. Outlines objectives of the SOL program. Discusses issues arising from use of SOL materials, including instructional attitudes; modelling good practice; developing the reflective practitioner; perceived value;…

  5. Thirty years of beta Pic and debris disks studies

    NASA Astrophysics Data System (ADS)

    Lagrange, Anne-Marie; Boccaletti, Anthony

    2015-01-01

    In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full, comprehensive description of the whole beta Pictoris system, and to organize the necessary work, and possible milestones. In the next years, a similar approach may, eventually, be applicable to other systems.

  6. Thirty years of beta Pic and debris disks studies

    NASA Astrophysics Data System (ADS)

    Lagrange, A.-M.; Boccaletti, A.

    2014-09-01

    In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full, comprehensive description of the whole beta Pictoris system, and to organize the necessary work, and possible milestones. In the next years, a similar approach may, eventually, be applicable to other systems.

  7. Some fundamental questions about the evolution of the Sea of Japan back-arc

    NASA Astrophysics Data System (ADS)

    Van Horne, A.; Sato, H.; Ishiyama, T.

    2016-12-01

    The Japanese island arc separated from Asia through the rifting of an active continental margin, and the opening of the Sea of Japan back-arc, in the middle Miocene. Due to its complex tectonic setting, the Sea of Japan back-arc was affected by multiple external events contemporary with its opening, including a plate reorganization, the opening of at least two other nearby back-arcs (Shikoku Basin and Okhotsk Sea/Kuril Basin), and two separate arc-arc collisions, involving encroachment upon Japan of the Izu-Bonin and Kuril arcs. Recent tectonic inversion has exposed entire sequences of back-arc structure on land, which remain virtually intact because of the short duration of inversion. Japan experiences a high level of seismic activity due to its position on the overriding plate of an active subduction margin. Continuous geophysical monitoring via a dense nationwide seismic/geodetic network, and a program of controlled-source refraction/wide-angle reflection profiling, directed towards earthquake hazard mitigation, have made it the repository of a rich geophysical data set through which to understand the processes that have shaped back-arc development. Timing, structural evolution, and patterns of magmatic activity during back-arc opening in the Sea of Japan were established by earlier investigations, but fundamental questions regarding back-arc development remain outstanding. These include (1) timing of the arrival of the Philippine Sea plate in southwest Japan, (2) the nature of the plate boundary prior to its arrival, (3) the pre-rift location of the Japanese island arc when it was attached to Asia, (4) the mechanism of back-arc opening (pull-apart or trench retreat), (5) the speed of opening, (6) simultaneous or sequential development of the multi-rift system, (7) the origin of the anomalously thick Yamato Basin ocean crust, and (8) the pattern of concentrated deformation in the failed-rift system of the eastern Sea of Japan since tectonic inversion. Resolving uncertainties like those posed here will be necessary for a more complete understanding of the nature of and processes involved in back-arc development in the Sea of Japan.

  8. Task-switching costs promote the evolution of division of labor and shifts in individuality

    PubMed Central

    Goldsby, Heather J.; Dornhaus, Anna; Kerr, Benjamin; Ofria, Charles

    2012-01-01

    From microbes to humans, the success of many organisms is achieved by dividing tasks among specialized group members. The evolution of such division of labor strategies is an important aspect of the major transitions in evolution. As such, identifying specific evolutionary pressures that give rise to group-level division of labor has become a topic of major interest among biologists. To overcome the challenges associated with studying this topic in natural systems, we use actively evolving populations of digital organisms, which provide a unique perspective on the de novo evolution of division of labor in an open-ended system. We provide experimental results that address a fundamental question regarding these selective pressures: Does the ability to improve group efficiency through the reduction of task-switching costs promote the evolution of division of labor? Our results demonstrate that as task-switching costs rise, groups increasingly evolve division of labor strategies. We analyze the mechanisms by which organisms coordinate their roles and discover strategies with striking biological parallels, including communication, spatial patterning, and task-partitioning behaviors. In many cases, under high task-switching costs, individuals cease to be able to perform tasks in isolation, instead requiring the context of other group members. The simultaneous loss of functionality at a lower level and emergence of new functionality at a higher level indicates that task-switching costs may drive both the evolution of division of labor and also the loss of lower-level autonomy, which are both key components of major transitions in evolution. PMID:22872867

  9. Global change, parasite transmission and disease control: lessons from ecology

    PubMed Central

    Boag, Brian; Ellison, Amy R.; Morgan, Eric R.; Murray, Kris; Pascoe, Emily L.; Sait, Steven M.; Booth, Mark

    2017-01-01

    Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host–parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289256

  10. Continuous-time quantum random walks require discrete space

    NASA Astrophysics Data System (ADS)

    Manouchehri, K.; Wang, J. B.

    2007-11-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.

  11. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  12. General Formalism of Decision Making Based on Theory of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.

    2013-01-01

    We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.

  13. Exact stochastic unraveling of an optical coherence dynamics by cumulant expansion

    NASA Astrophysics Data System (ADS)

    Olšina, Jan; Kramer, Tobias; Kreisbeck, Christoph; Mančal, Tomáš

    2014-10-01

    A numerically exact Monte Carlo scheme for calculation of open quantum system dynamics is proposed and implemented. The method consists of a Monte Carlo summation of a perturbation expansion in terms of trajectories in Liouville phase-space with respect to the coupling between the excited states of the molecule. The trajectories are weighted by a complex decoherence factor based on the second-order cumulant expansion of the environmental evolution. The method can be used with an arbitrary environment characterized by a general correlation function and arbitrary coupling strength. It is formally exact for harmonic environments, and it can be used with arbitrary temperature. Time evolution of an optically excited Frenkel exciton dimer representing a molecular exciton interacting with a charge transfer state is calculated by the proposed method. We calculate the evolution of the optical coherence elements of the density matrix and linear absorption spectrum, and compare them with the predictions of standard simulation methods.

  14. Autonomous Evolution of Dynamic Gaits with Two Quadruped Robots

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Takamura, Seichi; Yamamoto, Takashi; Fujita, Masahiro

    2004-01-01

    A challenging task that must be accomplished for every legged robot is creating the walking and running behaviors needed for it to move. In this paper we describe our system for autonomously evolving dynamic gaits on two of Sony's quadruped robots. Our evolutionary algorithm runs on board the robot and uses the robot's sensors to compute the quality of a gait without assistance from the experimenter. First we show the evolution of a pace and trot gait on the OPEN-R prototype robot. With the fastest gait, the robot moves at over 10/min/min., which is more than forty body-lengths/min. While these first gaits are somewhat sensitive to the robot and environment in which they are evolved, we then show the evolution of robust dynamic gaits, one of which is used on the ERS-110, the first consumer version of AIBO.

  15. Lattice Wigner equation.

    PubMed

    Solórzano, S; Mendoza, M; Succi, S; Herrmann, H J

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  16. Lattice Wigner equation

    NASA Astrophysics Data System (ADS)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  17. Reference Model for an Open Archival Information System

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document is a technical report for use in developing a consensus on what is required to operate a permanent, or indefinite long-term, archive of digital information. It may be useful as a starting point for a similar document addressing the indefinite long-term preservation of non-digital information. This report establishes a common framework of terms and concepts which comprise an Open Archival Information System (OAIS). It allows existing and future archives to be more meaningfully compared and contrasted. It provides a basis for further standardization of within an archival context and it should promote greater vendor awareness of, and support of , archival requirements. Through the process of normal evolution, it is expected that expansion, deletion, or modification to this document may occur. This report is therefore subject to CCSDS document management and change control procedures.

  18. Stability of Local Quantum Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David

    2015-08-01

    Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb-Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.

  19. Star formation in evolving molecular clouds

    NASA Astrophysics Data System (ADS)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  20. Early 20th-century research at the interfaces of genetics, development, and evolution: reflections on progress and dead ends.

    PubMed

    Deichmann, Ute

    2011-09-01

    Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to Goldschmidt's approach of studying systems as a whole, and that attempts to integrate different fields at a too early stage may prove futile or worse. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  2. Cellular automaton model for molecular traffic jams

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Schütz, G. M.

    2011-07-01

    We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

  3. Bose-Hubbard lattice as a controllable environment for open quantum systems

    NASA Astrophysics Data System (ADS)

    Cosco, Francesco; Borrelli, Massimo; Mendoza-Arenas, Juan José; Plastina, Francesco; Jaksch, Dieter; Maniscalco, Sabrina

    2018-04-01

    We investigate the open dynamics of an atomic impurity embedded in a one-dimensional Bose-Hubbard lattice. We derive the reduced evolution equation for the impurity and show that the Bose-Hubbard lattice behaves as a tunable engineered environment allowing one to simulate both Markovian and non-Markovian dynamics in a controlled and experimentally realizable way. We demonstrate that the presence or absence of memory effects is a signature of the nature of the excitations induced by the impurity, being delocalized or localized in the two limiting cases of a superfluid and Mott insulator, respectively. Furthermore, our findings show how the excitations supported in the two phases can be characterized as information carriers.

  4. A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie

    2010-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.

  5. Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2018-03-01

    The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise-Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb-Sr-Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.

  6. Gene networks and the evolution of plant morphology.

    PubMed

    Das Gupta, Mainak; Tsiantis, Miltos

    2018-06-06

    Elaboration of morphology depends on the precise orchestration of gene expression by key regulatory genes. The hierarchy and relationship among the participating genes is commonly known as gene regulatory network (GRN). Therefore, the evolution of morphology ultimately occurs by the rewiring of gene network structures or by the co-option of gene networks to novel domains. The availability of high-resolution expression data combined with powerful statistical tools have opened up new avenues to formulate and test hypotheses on how diverse gene networks influence trait development and diversity. Here we summarize recent studies based on both big-data and genetics approaches to understand the evolution of plant form and physiology. We also discuss recent genome-wide investigations on how studying open-chromatin regions may help study the evolution of gene expression patterns. Copyright © 2018. Published by Elsevier Ltd.

  7. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  8. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  9. Quantifying the behavior of price dynamics at opening time in stock market

    NASA Astrophysics Data System (ADS)

    Ochiai, Tomoshiro; Takada, Hideyuki; Nacher, Jose C.

    2014-11-01

    The availability of huge volume of financial data has offered the possibility for understanding the markets as a complex system characterized by several stylized facts. Here we first show that the time evolution of the Japan’s Nikkei stock average index (Nikkei 225) futures follows the resistance and breaking-acceleration effects when the complete time series data is analyzed. However, in stock markets there are periods where no regular trades occur between the close of the market on one day and the next day’s open. To examine these time gaps we decompose the time series data into opening time and intermediate time. Our analysis indicates that for the intermediate time, both the resistance and the breaking-acceleration effects are still observed. However, for the opening time there are almost no resistance and breaking-acceleration effects, and volatility is always constantly high. These findings highlight unique dynamic differences between stock markets and forex market and suggest that current risk management strategies may need to be revised to address the absence of these dynamic effects at the opening time.

  10. Impacts and Viability of Open Source Software on Earth Science Metadata Clearing House and Service Registry Applications

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Cechini, M. F.; Mitchell, A.

    2011-12-01

    Earth Science applications typically deal with large amounts of data and high throughput rates, if not also high transaction rates. While Open Source is frequently used for smaller scientific applications, large scale, highly available systems frequently fall back to "enterprise" class solutions like Oracle RAC or commercial grade JEE Application Servers. NASA's Earth Observing System Data and Information System (EOSDIS) provides end-to-end capabilities for managing NASA's Earth science data from multiple sources - satellites, aircraft, field measurements, and various other programs. A core capability of EOSDIS, the Earth Observing System (EOS) Clearinghouse (ECHO), is a highly available search and order clearinghouse of over 100 million pieces of science data that has evolved from its early R&D days to a fully operational system. Over the course of this maturity ECHO has largely transitioned from commercial frameworks, databases, and operating systems to Open Source solutions...and in some cases, back. In this talk we discuss the progression of our technological solutions and our lessons learned in the areas of: ? High performance, large scale searching solutions ? GeoSpatial search capabilities and dealing with multiple coordinate systems ? Search and storage of variable format source (science) data ? Highly available deployment solutions ? Scalable (elastic) solutions to visual searching and image handling Throughout the evolution of the ECHO system we have had to evaluate solutions with respect to performance, cost, developer productivity, reliability, and maintainability in the context of supporting global science users. Open Source solutions have played a significant role in our architecture and development but several critical commercial components remain (or have been reinserted) to meet our operational demands.

  11. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2018-03-01

    We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

  12. Emergence of entanglement with temperature and time in factorization-surface states

    NASA Astrophysics Data System (ADS)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-01-01

    There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.

  13. GOC-TX: A Reliable Ticket Synchronization Application for the Open Science Grid

    NASA Astrophysics Data System (ADS)

    Hayashi, Soichi; Gopu, Arvind; Quick, Robert

    2011-12-01

    One of the major operational issues faced by large multi-institutional collaborations is permitting its users and support staff to use their native ticket tracking environment while also exchanging these tickets with collaborators. After several failed attempts at email-parser based ticket exchanges, the OSG Operations Group has designed a comprehensive ticket synchronizing application. The GOC-TX application uses web-service interfaces offered by various commercial, open source and other homegrown ticketing systems, to synchronize tickets between two or more of these systems. GOC-TX operates independently from any ticketing system. It can be triggered by one ticketing system via email, active messaging, or a web-services call to check for current sync-status, pull applicable recent updates since prior synchronizations to the source ticket, and apply the updates to a destination ticket. The currently deployed production version of GOC-TX is able to synchronize tickets between the Numara Footprints ticketing system used by the OSG and the following systems: European Grid Initiative's system Global Grid User Support (GGUS) and the Request Tracker (RT) system used by Brookhaven. Additional interfaces to the BMC Remedy system used by Fermilab, and to other instances of RT used by other OSG partners, are expected to be completed in summer 2010. A fully configurable open source version is expected to be made available by early autumn 2010. This paper will cover the structure of the GOC-TX application, its evolution, and the problems encountered by OSG Operations group with ticket exchange within the OSG Collaboration.

  14. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  15. Characterization of a multilayer aquifer using open well dilution tests.

    PubMed

    West, L Jared; Odling, Noelle E

    2007-01-01

    An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.

  16. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    NASA Technical Reports Server (NTRS)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  17. Bioelectrochemical oxidation of water.

    PubMed

    Pita, Marcos; Mate, Diana M; Gonzalez-Perez, David; Shleev, Sergey; Fernandez, Victor M; Alcalde, Miguel; De Lacey, Antonio L

    2014-04-23

    The electrolysis of water provides a link between electrical energy and hydrogen, a high energy density fuel and a versatile energy carrier, but the process is very expensive. Indeed, the main challenge is to reduce energy consumption for large-scale applications using efficient renewable catalysts that can be produced at low cost. Here we present for the first time that laccase can catalyze electrooxidation of H2O to molecular oxygen. Native and laboratory-evolved laccases immobilized onto electrodes serve as bioelectrocatalytic systems with low overpotential and a high O2 evolution ratio against H2O2 production during H2O electrolysis. Our results open new research ground on H2O splitting, as they overcome serious practical limitations associated with artificial electrocatalysts currently used for O2 evolution.

  18. Resonant Capture and Tidal Evolution in Circumbinary Systems: Testing the Case of Kepler-38

    NASA Astrophysics Data System (ADS)

    Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.

    2018-04-01

    Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disk, ultimately stopping near their present location either by a planetary trap near the disk inner edge or by resonance capture. Here, we analyze the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modeled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disk, for time-spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.

  19. Resonant capture and tidal evolution in circumbinary systems: testing the case of Kepler-38

    NASA Astrophysics Data System (ADS)

    Zoppetti, F. A.; Beaugé, C.; Leiva, A. M.

    2018-07-01

    Circumbinary planets are thought to form far from the central binary and migrate inwards by interactions with the circumbinary disc, ultimately stopping near their present location either by a planetary trap near the disc inner edge or by resonance capture. Here, we analyse the second possibility, presenting a detailed numerical study on the capture process, resonant dynamics, and tidal evolution of circumbinary planets in high-order mean-motion resonances (MMRs). Planetary migration was modelled as an external acceleration in an N-body code, while tidal effects were incorporated with a weak-friction equilibrium tide model. As a working example, we chose Kepler-38, a highly evolved system with a planet in the vicinity of the 5/1 MMR. Our simulations show that resonance capture is a high-probability event under a large range of system parameters, although several different resonant configuration are possible. We identified three possible outcomes: aligned librations, anti-aligned librations, and chaotic solutions. All were found to be dynamically stable, even after the dissipation of the disc, for time spans of the order of the system's age. We found that while tidal evolution decreases the binary's separation, the semimajor axis of the planet is driven outwards. Although the net effect is a secular increase in the mean-motion ratio, the system requires a planetary tidal parameter of the order of unity to reproduce the observed orbital configuration. The results presented here open an interesting outlook into the complex dynamics of high-order resonances in circumbinary systems.

  20. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji-Tire model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M.

    2014-04-01

    This paper presents a historical socio-hydrological analysis of the Tarim River basin (TRB), Xinjiang Uyghur Autonomous Region, in Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human-water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human-water system in the Tarim Basin reached stable states for long periods of time, but then was punctuated by sudden shifts due to internal or external disturbances. In this study, we discuss three stable periods (i.e., natural, human exploitation, and degradation and recovery) and the transitions in between during the past 2000 years. During the "natural" stage that existed pre-18th century, with small-scale human society and sound environment, evolution of the SHS was mainly driven by natural environmental changes such as river channel migration and climate change. During the human exploitation stage, especially in the 19th and 20th centuries, it experienced rapid population growth, massive land reclamation and fast socio-economic development, and humans became the principal players of system evolution. By the 1970s, the Tarim Basin had evolved into a new regime with a vulnerable eco-hydrological system seemingly populated beyond its carrying capacity, and a human society that began to suffer from serious water shortages, land salinization and desertification. With intensified deterioration of river health and increased recognition of unsustainability of traditional development patterns, human intervention and recovery measures have since been adopted. As a result, the basin has shown a reverse regime shift towards some healing of the environmental damage. Based on our analysis within TRB and a common theory of social development, four general types of SHSs are defined according to their characteristic spatio-temporal variations of historical co-evolution, including primitive agricultural, traditional agricultural, industrial agricultural, and urban SHSs. These co-evolutionary changes have been explained in the paper in terms of the Taiji-Tire model, a refinement of a special concept in Chinese philosophy, relating to the co-evolution of a system because of interactions among its components.

  1. Solving a Health Information Management Problem. An international success story.

    PubMed

    Hannan, Terry J

    2015-01-01

    The management of health care delivery requires the availability of effective 'information management' tools based on e-technologies [eHealth]. In developed economies many of these 'tools' are readily available whereas in Low and Middle Income Countries (LMIC) there is limited access to eHealth technologies and this has been defined as the "digital divide". This paper provides a short introduction to the fundamental understanding of what is meant by information management in health care and how it applies to all social economies. The core of the paper describes the successful implementation of appropriate information management tools in a resource poor environment to manage the HIV/AIDS epidemic and other disease states, in sub-Saharan Africa and how the system has evolved to become the largest open source eHealth project in the world and become the health information infrastructure for several national eHealth economies. The system is known as Open MRS [www.openmrs.org). The continuing successful evolution of the OpenMRS project has permitted its key implementers to define core factors that are the foundations for successful eHealth projects.

  2. Publishing in open access era: focus on respiratory journals

    PubMed Central

    Xu, Dingyao; Zhong, Xiyao; Li, Li; Ling, Qibo; Bu, Zhaode

    2014-01-01

    We have entered an open access publishing era. The impact and significance of open access is still under debate after two decades of evolution. Open access journals benefit researchers and the general public by promoting visibility, sharing and communicating. Non-mainstream journals should turn the challenge of open access into opportunity of presenting best research articles to the global readership. Open access journals need to optimize their business models to promote the healthy and continuous development. PMID:24822120

  3. Publishing in open access era: focus on respiratory journals.

    PubMed

    Dai, Ni; Xu, Dingyao; Zhong, Xiyao; Li, Li; Ling, Qibo; Bu, Zhaode

    2014-05-01

    We have entered an open access publishing era. The impact and significance of open access is still under debate after two decades of evolution. Open access journals benefit researchers and the general public by promoting visibility, sharing and communicating. Non-mainstream journals should turn the challenge of open access into opportunity of presenting best research articles to the global readership. Open access journals need to optimize their business models to promote the healthy and continuous development.

  4. Prospect for Development of Open Access in Argentina

    ERIC Educational Resources Information Center

    Miguel, Sandra; Bongiovani, Paola C.; Gomez, Nancy D.; Bueno-de-la-Fuente, Gema

    2013-01-01

    This perspective article presents an overview of the Open Access movement in Argentina, from a global and regional (Latin American) context. The article describes the evolution and current state of initiatives by examining two principal approaches to Open Access in Argentina: "golden" and "green roads". The article will then…

  5. In-situ measurement of sulfur isotopic ratios in zoned apatite crystals via SIMS: a new tool for interpreting dynamic sulfur behavior in magmas

    NASA Astrophysics Data System (ADS)

    Economos, R. C.; Boehnke, P.; Burgisser, A.

    2017-12-01

    Sulfur is an important element in igneous systems due to its impact on magma redox, its role in the formation of economically valuable ore deposits, and the influence of catastrophic volcanogenic sulfur degassing on global climate. The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-valent (from S2- to S6+) and multi-phase (solid, immiscible liquid, gaseous, dissolved ions) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often difficult to extract from rock records, particularly for intrusive systems that undergo cyclical magmatic processes and crystallize to the solidus. We apply a novel method of measuring S isotopic ratios via secondary ion mass spectrometry (SIMS) in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We analyzed the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe at UCLA. A single, isotopically homogeneous crystal of Durango apatite was characterized for absolute isotopic ratio for this study (UCLA-D1). Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO +1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. These findings have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  6. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    PubMed

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. Nonlinear evolution of coarse-grained quantum systems with generalized purity constraints

    NASA Astrophysics Data System (ADS)

    Burić, Nikola

    2010-12-01

    Constrained quantum dynamics is used to propose a nonlinear dynamical equation for pure states of a generalized coarse-grained system. The relevant constraint is given either by the generalized purity or by the generalized invariant fluctuation, and the coarse-grained pure states correspond to the generalized coherent, i.e. generalized nonentangled states. Open system model of the coarse-graining is discussed. It is shown that in this model and in the weak coupling limit the constrained dynamical equations coincide with an equation for pointer states, based on Hilbert-Schmidt distance, that was previously suggested in the context of the decoherence theory.

  8. Structure of exoplanets.

    PubMed

    Spiegel, David S; Fortney, Jonathan J; Sotin, Christophe

    2014-09-02

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems--from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth.

  9. The many facets of the (non-relativistic) Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Giuliani, G.; Zheng, H.; Bonasera, A.

    2014-05-01

    A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.

  10. Thermal control of low-pressure fractionation processes. [in basaltic magma solidification

    NASA Technical Reports Server (NTRS)

    Usselman, T. M.; Hodge, D. S.

    1978-01-01

    Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.

  11. Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data

    NASA Astrophysics Data System (ADS)

    Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2014-08-01

    Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.

  12. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  13. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.

    2009-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  14. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  15. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system

    NASA Astrophysics Data System (ADS)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2018-03-01

    We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

  16. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.

  17. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, Roberto; Mikić, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2011-04-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet—it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R sun to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions—the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.

  18. a Statistical Dynamic Approach to Structural Evolution of Complex Capital Market Systems

    NASA Astrophysics Data System (ADS)

    Shao, Xiao; Chai, Li H.

    As an important part of modern financial systems, capital market has played a crucial role on diverse social resource allocations and economical exchanges. Beyond traditional models and/or theories based on neoclassical economics, considering capital markets as typical complex open systems, this paper attempts to develop a new approach to overcome some shortcomings of the available researches. By defining the generalized entropy of capital market systems, a theoretical model and nonlinear dynamic equation on the operations of capital market are proposed from statistical dynamic perspectives. The US security market from 1995 to 2001 is then simulated and analyzed as a typical case. Some instructive results are discussed and summarized.

  19. Gaussian ancillary bombardment

    NASA Astrophysics Data System (ADS)

    Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo

    2018-05-01

    We analyze in full detail the time evolution of an open Gaussian quantum system rapidly bombarded by Gaussian ancillae. As a particular case this analysis covers the thermalization (or not) of a harmonic oscillator coupled to a thermal reservoir made of harmonic oscillators. We derive general results for this scenario and apply them to the problem of thermalization. We show that only a particular family of system-environment couplings will cause the system to thermalize to the temperature of its environment. We discuss that if we want to understand thermalization as ensuing from the Markovian interaction of a system with the individual microconstituents of its (thermal) environment then the process of thermalization is not as robust as one might expect.

  20. Morphological evolution of an ephemeral tidal inlet from opening to closure: The Albufeira inlet, Portugal

    NASA Astrophysics Data System (ADS)

    Fortunato, André B.; Nahon, Alphonse; Dodet, Guillaume; Rita Pires, Ana; Conceição Freitas, Maria; Bruneau, Nicolas; Azevedo, Alberto; Bertin, Xavier; Benevides, Pedro; Andrade, César; Oliveira, Anabela

    2014-02-01

    Like other similar coastal systems, the Albufeira lagoon is artificially opened every year to promote water renewal and closes naturally within a few months. The evolution of the Albufeira Lagoon Inlet from its opening in April 2010 to its closure 8 months later is qualitatively and quantitatively analyzed through a combination of monthly field surveys and the application of a process-based morphodynamic model. Field data alone would not cover the whole space-time domain of the morphology of the inlet during its life time, whereas the morphodynamic model alone cannot reliably simulate the morphological development. Using a nudging technique introduced herein, this problem is overcome and a reliable and complete data set is generated for describing the morphological development of the tidal inlet. The new technique is shown to be a good alternative to extensive model calibration, as it can drastically improve the model performance. Results reveal that the lagoon imported sediments during its life span. However, the whole system (lagoon plus littoral barrier) actually lost sediments to the sea. This behavior is partly attributed to the modulation of tidal asymmetry by the spring-neap cycle, which reduces flood dominance on spring tides. Results also allowed the assessment of the relationship between the spring tidal prism and the cross-section of tidal inlets (the PA relationship). While this relationship is well established from empirical, theoretical and numerical evidences, its validity in inlets that are small or away from equilibrium was unclear. Results for the Albufeira lagoon reveal an excellent match between the new data and the empirical PA relationship derived for larger inlets and equilibrium conditions, supporting the validity of the relationship beyond its original scope.

  1. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: Application to 1H NMR reversion experiments in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibrium.

  2. Simulating large atmospheric phase screens using a woofer-tweeter algorithm.

    PubMed

    Buscher, David F

    2016-10-03

    We describe an algorithm for simulating atmospheric wavefront perturbations over ranges of spatial and temporal scales spanning more than 4 orders of magnitude. An open-source implementation of the algorithm written in Python can simulate the evolution of the perturbations more than an order-of-magnitude faster than real time. Testing of the implementation using metrics appropriate to adaptive optics systems and long-baseline interferometers show accuracies at the few percent level or better.

  3. The mass balance of soil evolution on late Quaternary marine terraces, northern California

    NASA Technical Reports Server (NTRS)

    Merritts, Dorothy J.; Chadwick, Oliver A.; Hendricks, David M.; Brimhall, George H.; Lewis, Christopher J.

    1992-01-01

    Mass-balance interpretation of a soil chronosequence provides a means of quantifying elemental addition, removal, and transformation that occur in soils from a flight of marine terraces in northern California. Six soil profiles that range in age from several to 240,000 yr are developed in unconsolidated, sandy-marine, and eolian parent material deposited on bedrock marine platforms. Soil evolution is dominated by (1) open-system depletion of Si, Ca, Mg, K, and Na; (2) open-system enrichment of P in surface soil horizons; (3) relative immobility of Fe and Al; and (4) transformation of Fe, Si, and Al in the parent material to secondary clay minerals and sesquioxides. Net mass losses of bases and Si are generally uniform with depth and substantial, in some cases approaching 100 percent; however, the rate of loss of each element differs markedly, causing the ranking of each by relative abundance to shift with time. Loss of Si from the sand fraction by dissolution and particle-size diminution, from about 100 percent to less than 35 percent over 240 ky, mirrors a similar gain in the silt and clay size fractions. The Fe originally present in the sand fraction decreases from greater than 80 percent to less than 10 percent, whereas the amount of Fe present in the clay and crystalline oxyhydroxide fractions increases to 25 percent and 70 percent, respectively.

  4. Visualization on the Web of 20 Years of Crop Rotation and Wildlife Co-Evolutions

    NASA Astrophysics Data System (ADS)

    Plumejeaud-Perreau, Christine; Poitevin, Cyril; Bretagnolle, Vincent

    2018-05-01

    The accumulation of evidences of the effects of intensive agricultural practices against wildlife fauna and flora, and biodiversity in general, has been largely published in scientific papers (Tildman, 1999). However, data serving as sup-port to their conclusions are often kept hidden behind research institutions. This paper presents a data visualization sys-tem opened on the Web allowing citizens to get a comprehensive access to data issued from such kind of research institution, collected for more than 20 years. The Web Information System has been thought in order to ease the comparison of data issues from various databases describing the same object, the agricultural landscape, at different scales and through different observation devices. An interactive visualization is proposed in order to check co-evolution of fauna and flora together with agricultural practices. It mixes aerial orthoimagery produced since 1950 with vectorial data showing the evolutions of agricultural parcels with those of a few sentinel species such as the Montagu's harrier. This is made through a composition of maps, charts and time lines, and specific tools for comparison. A particular concern is given to the observation effort bias in order to show meaningful statistical aggregates.

  5. A DFT-Based Computational-Experimental Methodology for Synthetic Chemistry: Example of Application to the Catalytic Opening of Epoxides by Titanocene.

    PubMed

    Jaraíz, Martín; Enríquez, Lourdes; Pinacho, Ruth; Rubio, José E; Lesarri, Alberto; López-Pérez, José L

    2017-04-07

    A novel DFT-based Reaction Kinetics (DFT-RK) simulation approach, employed in combination with real-time data from reaction monitoring instrumentation (like UV-vis, FTIR, Raman, and 2D NMR benchtop spectrometers), is shown to provide a detailed methodology for the analysis and design of complex synthetic chemistry schemes. As an example, it is applied to the opening of epoxides by titanocene in THF, a catalytic system with abundant experimental data available. Through a DFT-RK analysis of real-time IR data, we have developed a comprehensive mechanistic model that opens new perspectives to understand previous experiments. Although derived specifically from the opening of epoxides, the prediction capabilities of the model, built on elementary reactions, together with its practical side (reaction kinetics simulations of real experimental conditions) make it a useful simulation tool for the design of new experiments, as well as for the conception and development of improved versions of the reagents. From the perspective of the methodology employed, because both the computational (DFT-RK) and the experimental (spectroscopic data) components can follow the time evolution of several species simultaneously, it is expected to provide a helpful tool for the study of complex systems in synthetic chemistry.

  6. Hamiltonian quantum simulation with bounded-strength controls

    NASA Astrophysics Data System (ADS)

    Bookatz, Adam D.; Wocjan, Pawel; Viola, Lorenza

    2014-04-01

    We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed.

  7. Early evolution of the venom system in lizards and snakes.

    PubMed

    Fry, Bryan G; Vidal, Nicolas; Norman, Janette A; Vonk, Freek J; Scheib, Holger; Ramjan, S F Ryan; Kuruppu, Sanjaya; Fung, Kim; Hedges, S Blair; Richardson, Michael K; Hodgson, Wayne C; Ignjatovic, Vera; Summerhayes, Robyn; Kochva, Elazar

    2006-02-02

    Among extant reptiles only two lineages are known to have evolved venom delivery systems, the advanced snakes and helodermatid lizards (Gila Monster and Beaded Lizard). Evolution of the venom system is thought to underlie the impressive radiation of the advanced snakes (2,500 of 3,000 snake species). In contrast, the lizard venom system is thought to be restricted to just two species and to have evolved independently from the snake venom system. Here we report the presence of venom toxins in two additional lizard lineages (Monitor Lizards and Iguania) and show that all lineages possessing toxin-secreting oral glands form a clade, demonstrating a single early origin of the venom system in lizards and snakes. Construction of gland complementary-DNA libraries and phylogenetic analysis of transcripts revealed that nine toxin types are shared between lizards and snakes. Toxinological analyses of venom components from the Lace Monitor Varanus varius showed potent effects on blood pressure and clotting ability, bioactivities associated with a rapid loss of consciousness and extensive bleeding in prey. The iguanian lizard Pogona barbata retains characteristics of the ancestral venom system, namely serial, lobular non-compound venom-secreting glands on both the upper and lower jaws, whereas the advanced snakes and anguimorph lizards (including Monitor Lizards, Gila Monster and Beaded Lizard) have more derived venom systems characterized by the loss of the mandibular (lower) or maxillary (upper) glands. Demonstration that the snakes, iguanians and anguimorphs form a single clade provides overwhelming support for a single, early origin of the venom system in lizards and snakes. These results provide new insights into the evolution of the venom system in squamate reptiles and open new avenues for biomedical research and drug design using hitherto unexplored venom proteins.

  8. Survey on open peer review: Attitudes and experience amongst editors, authors and reviewers.

    PubMed

    Ross-Hellauer, Tony; Deppe, Arvid; Schmidt, Birgit

    2017-01-01

    Open peer review (OPR) is a cornerstone of the emergent Open Science agenda. Yet to date no large-scale survey of attitudes towards OPR amongst academic editors, authors, reviewers and publishers has been undertaken. This paper presents the findings of an online survey, conducted for the OpenAIRE2020 project during September and October 2016, that sought to bridge this information gap in order to aid the development of appropriate OPR approaches by providing evidence about attitudes towards and levels of experience with OPR. The results of this cross-disciplinary survey, which received 3,062 full responses, show the majority (60.3%) of respondents to be believe that OPR as a general concept should be mainstream scholarly practice (although attitudes to individual traits varied, and open identities peer review was not generally favoured). Respondents were also in favour of other areas of Open Science, like Open Access (88.2%) and Open Data (80.3%). Among respondents we observed high levels of experience with OPR, with three out of four (76.2%) reporting having taken part in an OPR process as author, reviewer or editor. There were also high levels of support for most of the traits of OPR, particularly open interaction, open reports and final-version commenting. Respondents were against opening reviewer identities to authors, however, with more than half believing it would make peer review worse. Overall satisfaction with the peer review system used by scholarly journals seems to strongly vary across disciplines. Taken together, these findings are very encouraging for OPR's prospects for moving mainstream but indicate that due care must be taken to avoid a "one-size fits all" solution and to tailor such systems to differing (especially disciplinary) contexts. OPR is an evolving phenomenon and hence future studies are to be encouraged, especially to further explore differences between disciplines and monitor the evolution of attitudes.

  9. Survey on open peer review: Attitudes and experience amongst editors, authors and reviewers

    PubMed Central

    Deppe, Arvid; Schmidt, Birgit

    2017-01-01

    Open peer review (OPR) is a cornerstone of the emergent Open Science agenda. Yet to date no large-scale survey of attitudes towards OPR amongst academic editors, authors, reviewers and publishers has been undertaken. This paper presents the findings of an online survey, conducted for the OpenAIRE2020 project during September and October 2016, that sought to bridge this information gap in order to aid the development of appropriate OPR approaches by providing evidence about attitudes towards and levels of experience with OPR. The results of this cross-disciplinary survey, which received 3,062 full responses, show the majority (60.3%) of respondents to be believe that OPR as a general concept should be mainstream scholarly practice (although attitudes to individual traits varied, and open identities peer review was not generally favoured). Respondents were also in favour of other areas of Open Science, like Open Access (88.2%) and Open Data (80.3%). Among respondents we observed high levels of experience with OPR, with three out of four (76.2%) reporting having taken part in an OPR process as author, reviewer or editor. There were also high levels of support for most of the traits of OPR, particularly open interaction, open reports and final-version commenting. Respondents were against opening reviewer identities to authors, however, with more than half believing it would make peer review worse. Overall satisfaction with the peer review system used by scholarly journals seems to strongly vary across disciplines. Taken together, these findings are very encouraging for OPR’s prospects for moving mainstream but indicate that due care must be taken to avoid a “one-size fits all” solution and to tailor such systems to differing (especially disciplinary) contexts. OPR is an evolving phenomenon and hence future studies are to be encouraged, especially to further explore differences between disciplines and monitor the evolution of attitudes. PMID:29236721

  10. Origins, evolution, and diversification of cleptoparasitic lineages in long-tongued bees.

    PubMed

    Litman, Jessica R; Praz, Christophe J; Danforth, Bryan N; Griswold, Terry L; Cardinal, Sophie

    2013-10-01

    The evolution of parasitic behavior may catalyze the exploitation of new ecological niches yet also binds the fate of a parasite to that of its host. It is thus not clear whether evolutionary transitions from free-living organism to parasite lead to increased or decreased rates of diversification. We explore the evolution of brood parasitism in long-tongued bees and find decreased rates of diversification in eight of 10 brood parasitic clades. We propose a pathway for the evolution of brood parasitic strategy and find that a strategy in which a closed host nest cell is parasitized and the host offspring is killed by the adult parasite represents an obligate first step in the appearance of a brood parasitic lineage; this ultimately evolves into a strategy in which an open host cell is parasitized and the host offspring is killed by a specialized larval instar. The transition to parasitizing open nest cells expanded the range of potential hosts for brood parasitic bees and played a fundamental role in the patterns of diversification seen in brood parasitic clades. We address the prevalence of brood parasitic lineages in certain families of bees and examine the evolution of brood parasitism in other groups of organisms. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Brine evolution and mineral deposition in hydrologically open evaporite basins

    USGS Publications Warehouse

    Sanford, W.E.; Wood, W.W.

    1991-01-01

    A lumped-parameter, solute mass-balance model is developed to define the role of water outflow from a well-mixed basin. A mass-balance model is analyzed with a geochemical model designed for waters with high ionic strengths. Two typical waters, seawater and a Na-HCO3 ground water, are analyzed to illustrate the control that the leakage ratio (or hydrologic openness of the basin) has on brine evolution and the suite and thicknesses of evaporite minerals deposited. The analysis suggests that brines evolve differently under different leakage conditions. -from Authors

  12. Using Publish-Subscribe Messaging for System Status and Automation

    NASA Technical Reports Server (NTRS)

    Smith, Danford S.

    2015-01-01

    The NASA Goddard Mission Services Evolution Center (GMSEC) system is a message-based plug-and-play open system architecture used in many of NASA mission operations centers. This presentation will focus on the use of GMSEC standard messages to report and analyze the status of a system and enable the automation of the system's components. In GMSEC systems, each component reports its status using a keep-alive message and also publishes status and activities as log messages. In addition, the components can accept functional directive messages from the GMSEC message bus. Over the past several years, development teams have found ways to utilize these messages to create innovative display pages and increasingly sophisticated approaches to automation. This presentation will show the flexibility and value of the message-based approach to system awareness and automation.

  13. Star-Forming Regions in Orion as a Dust Evolution Laboratory

    NASA Astrophysics Data System (ADS)

    Wiebe, D.; Murga, M.; Sivkova, E.

    2017-06-01

    Star-forming regions (SFR) represent a convenient opportunity to study various processes related both to dust growth and to dust destruction. While extragalactic SFRs allow considering these processes in a wide range of metallicities, UV field intensities, etc., the Orion star-forming complex opens up a possibility to observe dust evolution with an unprecedented angular resolution. We review various observations related to dust evolution in some most prominent Orion regions, paying special attention to organic dust evolution, and introduce a new model of organic dust evolution.

  14. Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion

    NASA Astrophysics Data System (ADS)

    Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.

    2018-04-01

    Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.

  15. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution

    PubMed Central

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662

  16. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution.

    PubMed

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D; Rainey, Paul B; de Visser, J Arjan G M; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes-via growth-over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.

  17. Understanding semantic mapping evolution by observing changes in biomedical ontologies.

    PubMed

    dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2014-02-01

    Knowledge Organization Systems (KOSs) are extensively used in the biomedical domain to support information sharing between software applications. KOSs are proposed covering different, but overlapping subjects, and mappings indicate the semantic relation between concepts from two KOSs. Over time, KOSs change as do the mappings between them. This can result from a new discovery or a revision of existing knowledge which includes corrections of concepts or mappings. Indeed, changes affecting KOS entities may force the underline mappings to be updated in order to ensure their reliability over time. To tackle this open research problem, we study how mappings are affected by KOS evolution. This article presents a detailed descriptive analysis of the impact that changes in KOS have on mappings. As a case study, we use the official mappings established between SNOMED CT and ICD-9-CM from 2009 to 2011. Results highlight factors according to which KOS changes in varying degrees influence the evolution of mappings. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. TTLEM: Open access tool for building numerically accurate landscape evolution models in MATLAB

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Schwanghart, Wolfgang; Govers, Gerard

    2017-04-01

    Despite a growing interest in LEMs, accuracy assessment of the numerical methods they are based on has received little attention. Here, we present TTLEM which is an open access landscape evolution package designed to develop and test your own scenarios and hypothesises. TTLEM uses a higher order flux-limiting finite-volume method to simulate river incision and tectonic displacement. We show that this scheme significantly influences the evolution of simulated landscapes and the spatial and temporal variability of erosion rates. Moreover, it allows the simulation of lateral tectonic displacement on a fixed grid. Through the use of a simple GUI the software produces visible output of evolving landscapes through model run time. In this contribution, we illustrate numerical landscape evolution through a set of movies spanning different spatial and temporal scales. We focus on the erosional domain and use both spatially constant and variable input values for uplift, lateral tectonic shortening, erodibility and precipitation. Moreover, we illustrate the relevance of a stochastic approach for realistic hillslope response modelling. TTLEM is a fully open source software package, written in MATLAB and based on the TopoToolbox platform (topotoolbox.wordpress.com). Installation instructions can be found on this website and the therefore designed GitHub repository.

  19. Genomic Quantitative Genetics to Study Evolution in the Wild.

    PubMed

    Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin

    2017-12-01

    Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Time-invariant PT product and phase locking in PT -symmetric lattice models

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  1. [Scale Relativity Theory in living beings morphogenesis: fratal, determinism and chance].

    PubMed

    Chaline, J

    2012-10-01

    The Scale Relativity Theory has many biological applications from linear to non-linear and, from classical mechanics to quantum mechanics. Self-similar laws have been used as model for the description of a huge number of biological systems. Theses laws may explain the origin of basal life structures. Log-periodic behaviors of acceleration or deceleration can be applied to branching macroevolution, to the time sequences of major evolutionary leaps. The existence of such a law does not mean that the role of chance in evolution is reduced, but instead that randomness and contingency may occur within a framework which may itself be structured in a partly statistical way. The scale relativity theory can open new perspectives in evolution. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. WIYN OPEN CLUSTER STUDY. LXXI. SPECTROSCOPIC MEMBERSHIP AND ORBITS OF NGC 6791 SUB-SUBGIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliman, Katelyn E.; Leiner, Emily; Mathieu, Robert D.

    2016-06-01

    In an optical color–magnitude diagram, sub-subgiants (SSGs) lie redward of the main sequence and fainter than the base of the red giant branch in a region not easily populated by standard stellar-evolution pathways. In this paper, we present multi-epoch radial velocities for five SSG candidates in the old and metal-rich open cluster NGC 6791 (8 Gyr, [Fe/H] = +0.30). From these data, we are able to make three-dimensional kinematic membership determinations and confirm four SSG candidates as likely cluster members. We also identify three member SSGs as short-period binary systems and present their orbital solutions. These are the first SSGsmore » with known three-dimensional kinematic membership, binary status, and orbital parameters since the two SSGs in M67 studied by Mathieu et al. We also remark on the other properties of these stars including photometric variability, H α emission, and X-ray luminosity. The membership confirmation of these SSGs in NGC 6791 strengthens the case that SSGs are a new class of nonstandard stellar evolution products, and that a physical mechanism must be found that explains the evolutionary paths of these stars.« less

  3. Nonmathematical concepts of selection, evolutionary energy, and levels of evolution.

    PubMed

    Darlington, P J

    1972-05-01

    The place of mathematics in hypotheticodeductive processes and in biological research is discussed. (Natural) Selection is defined and described as differential elimination of performed sets at any level. Sets and acting sets are groups of units (themselves sets of smaller units) at any level that may or do interact. A pseudomathematical equation describes directional change (evolution) in sets at any level. Selection is the ram of evolution; it cannot generate, but can only direct, evolutionary energy. The energy of evolution is derived from molecular or chemical levels, is transmitted upwards through the increasingly complex sets of sets that form living systems, and is turned in directions determined by the sum of selective processes, at different levels, which may either supplement or oppose each other. All evolutionary processes conform to the pseudomathematical equation referred to above, use energy as described above, and have a P/OE (ratio of programming to open-endedness) that cannot be measured, but can be related to other P/OE values. Phylogeny and ontogeny are compared as processes af directional change with set selection. Stages in the evolution of multi-cellular individuals are suggested, and are essentially the same as stages in the evolution of some multi-individual insect societies. Thinking is considered as a part of ontogeny involving an irreversible, nonrepetitive process of set selection in the brain.

  4. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  5. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation.

    PubMed

    D'Ariano, G M; Lo Presti, P

    2001-05-07

    Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.

  6. Open Integrated Personal Learning Environment: Towards a New Conception of the ICT-Based Learning Processes

    NASA Astrophysics Data System (ADS)

    Conde, Miguel Ángel; García-Peñalvo, Francisco José; Casany, Marià José; Alier Forment, Marc

    Learning processes are changing related to technological and sociological evolution, taking this in to account, a new learning strategy must be considered. Specifically what is needed is to give an effective step towards the eLearning 2.0 environments consolidation. This must imply the fusion of the advantages of the traditional LMS (Learning Management System) - more formative program control and planning oriented - with the social learning and the flexibility of the web 2.0 educative applications.

  7. Official Ideology in the People’s Republic of China - Evolution and Impact on Foreign Policy

    DTIC Science & Technology

    1998-06-01

    policy processes, Joseph Frankel explores several definitions of ideology. One attempt is "a system of political, economic, and social values and ideas...and can therefore be used to determine policy and the correct "political line." Further, achievement of a higher level of social development hinges...intervene to correct any deviations. To be sure, the open policy entails risks and may bring into China some decadent bourgeois things. But with our

  8. Trends in the Evolution of the Public Web, 1998-2002; The Fedora Project: An Open-source Digital Object Repository Management System; State of the Dublin Core Metadata Initiative, April 2003; Preservation Metadata; How Many People Search the ERIC Database Each Day?

    ERIC Educational Resources Information Center

    O'Neill, Edward T.; Lavoie, Brian F.; Bennett, Rick; Staples, Thornton; Wayland, Ross; Payette, Sandra; Dekkers, Makx; Weibel, Stuart; Searle, Sam; Thompson, Dave; Rudner, Lawrence M.

    2003-01-01

    Includes five articles that examine key trends in the development of the public Web: size and growth, internationalization, and metadata usage; Flexible Extensible Digital Object and Repository Architecture (Fedora) for use in digital libraries; developments in the Dublin Core Metadata Initiative (DCMI); the National Library of New Zealand Te Puna…

  9. Natural selection in chemical evolution.

    PubMed

    Fernando, Chrisantha; Rowe, Jonathan

    2007-07-07

    We propose that chemical evolution can take place by natural selection if a geophysical process is capable of heterotrophic formation of liposomes that grow at some base rate, divide by external agitation, and are subject to stochastic chemical avalanches, in the absence of nucleotides or any monomers capable of modular heredity. We model this process using a simple hill-climbing algorithm, and an artificial chemistry that is unique in exhibiting conservation of mass and energy in an open thermodynamic system. Selection at the liposome level results in the stabilization of rarely occurring molecular autocatalysts that either catalyse or are consumed in reactions that confer liposome level fitness; typically they contribute in parallel to an increasingly conserved intermediary metabolism. Loss of competing autocatalysts can sometimes be adaptive. Steady-state energy flux by the individual increases due to the energetic demands of growth, but also of memory, i.e. maintaining variations in the chemical network. Self-organizing principles such as those proposed by Kauffman, Fontana, and Morowitz have been hypothesized as an ordering principle in chemical evolution, rather than chemical evolution by natural selection. We reject those notions as either logically flawed or at best insufficient in the absence of natural selection. Finally, a finite population model without elitism shows the practical evolutionary constraints for achieving chemical evolution by natural selection in the lab.

  10. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu

    Since only the magnetic conditions at the photosphere can be routinely observed in current observations, it is of great significance to determine the influences of photospheric magnetic conditions on solar eruptive activities. Previous studies about catastrophe indicated that the magnetic system consisting of a flux rope in a partially open bipolar field is subject to catastrophe, but not if the bipolar field is completely closed under the same specified photospheric conditions. In order to investigate the influence of the photospheric magnetic conditions on the catastrophic behavior of this system, we expand upon the 2.5-dimensional ideal magnetohydrodynamic model in Cartesian coordinatesmore » to simulate the evolution of the equilibrium states of the system under different photospheric flux distributions. Our simulation results reveal that a catastrophe occurs only when the photospheric flux is not concentrated too much toward the polarity inversion line and the source regions of the bipolar field are not too weak; otherwise no catastrophe occurs. As a result, under certain photospheric conditions, a catastrophe could take place in a completely closed configuration, whereas it ceases to exist in a partially open configuration. This indicates that whether the background field is completely closed or partially open is not the only necessary condition for the existence of catastrophe, and that the photospheric conditions also play a crucial role in the catastrophic behavior of the flux rope system.« less

  12. Identifying open magnetic field regions of the Sun and their heliospheric counterparts

    NASA Astrophysics Data System (ADS)

    Krista, L. D.; Reinard, A.

    2017-12-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature. Both phenomena are fundamental to our understanding of the solar behavior as a whole. Coronal holes are the sources of high-speed solar wind streams that cause recurrent geomagnetic storms. Furthermore, the variation of coronal hole properties (area, location, magnetic field strength) over the solar activity cycle is an important marker of the global evolution of the solar magnetic field. Dimming regions, on the other hand, are short-lived coronal holes that often emerge in the wake of solar eruptions. By analyzing their physical properties and their temporal evolution, we aim to understand their connection with their eruptive counterparts (flares and coronal mass ejections) and predict the possibility of a geomagnetic storm. The author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) and the Coronal Dimming Tracker (CoDiT) algorithms. These tools not only identify but track the evolution of open magnetic field regions. CHARM also provides daily coronal hole maps, that are used for forecasts at the NOAA Space Weather Prediction Center. Our goal is to better understand the processes that give rise to eruptive and non-eruptive open field regions and investigate how these regions evolve over time and influence space weather.

  13. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Comparative empirical analysis of flow-weighted transit route networks in R-space and evolution modeling

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei

    2017-05-01

    Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.

  15. Primary repair of the anterior cruciate ligament: A paradigm shift.

    PubMed

    van der List, Jelle P; DiFelice, Gregory S

    2017-06-01

    Over the last century, many surgical treatments have been developed in the orthopedic field, including treatments of anterior cruciate ligament (ACL) injuries. These treatments ideally evolve in a process of trial and error with prospective comparison of new treatments to the current treatment standard. However, these evolutions are sometimes not linear and periodically undergo paradigm shifts. In this article, we review the evolution of ACL treatment and explain how it underwent a paradigm shift. Open primary ACL repair was the most common treatment in the 1970s and 1980s, but because multiple studies noted deterioration of outcomes at mid-term follow-up, in addition to several randomized clinical trials (RCTs) that noted better outcomes following ACL reconstruction, the open primary repair technique was abandoned. At the end of the primary repair era, however, several studies showed that outcomes of open primary repair were good to excellent and did not deteriorate when this technique was selectively performed in patients with proximal ACL tears, whereas primary repair led to disappointing and unpredictable results in patients with mid-substance tears. Unfortunately, enrollment of patients in the aforementioned RCTs was already finished, ultimately leading to abandoning of open primary repair, despite the advantages of ligament preservation. In this review, we discuss (I) why the evolution of ACL treatment underwent a paradigm shift, (II) which factors may have played a role in this and (III) what the future role of arthroscopic primary ACL repair is in the evolution of ACL treatments. Copyright © 2016. Published by Elsevier Ltd.

  16. Symplectic evolution of Wigner functions in Markovian open systems.

    PubMed

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  17. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE PAGES

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...

    2017-05-18

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  18. Structure and function of a compound eye, more than half a billion years old.

    PubMed

    Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K

    2017-12-19

    Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.

  19. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  20. Quantization of Non-Lagrangian Systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.

  1. Seismological Constraints on the Magmato-tectonic Behavior of the Asal-Ghoubbet Rift (Afar Depression, Republic of Djibouti) Since the Last 1978-Rifting Episode

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Manighetti, I.; Bertil, D.; Dorbath, C.; Dorbath, L.; Jacques, E.

    2004-12-01

    The Asal-Ghoubbet rift was the locus of a seismic and volcanic crisis in 1978 followed by 8 years of rapid opening (60 mm/yr) before returning to its long-term opening rate of 16 mm/yr. We analyze the space-time evolution of the seismicity that occurred in the rift between 1979 and 2001. The data recorded by the Djibouti Observatory provide only hypocentral locations before 1995 and P and S-wave arrival times since 1996. Additional data acquired during a five months experiment in 2000-2001 allowed us to determine a 3D-velocity model of the rift, used to precisely relocate post 1996 events. The 2545 small-magnitude earthquakes (Md ≤ 3.2) recorded in the rift since the 1978 crisis provide a negligible contribution to the total extension across the rift, which occurs essentially aseismically. The temporal evolution of the seismicity reveals two distinct phases consistent with those observed in the geodetic data. The post-crisis period (1979-1986) is characterized by large-magnitude earthquakes exclusively located below the northern rift shoulder. These events are associated with the contraction of the side of the rift resulting from the fast opening of the central dyke system. The subsequent period (1987-2001) corresponding to normal opening rate across the rift is characterized by a micro-seismicity essentially located below the major rift caldera (Fieale). Most recorded events during this period concentrate within the rift inner floor at the top of an aseismic, low velocity zone located below the Fiale caldera, which we interpret as hot material above the magma chamber. Outside from post-crisis periods, the seismicity tends to cluster in time in response to stress changes in the brittle layer induced by episodic magmatic movements.

  2. Model and simulation of Krause model in dynamic open network

    NASA Astrophysics Data System (ADS)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  3. Status and future of MUSE

    NASA Astrophysics Data System (ADS)

    Harfst, S.; Portegies Zwart, S.; McMillan, S.

    2008-12-01

    We present MUSE, a software framework for combining existing computational tools from different astrophysical domains into a single multi-physics, multi-scale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a ``Noah's Ark'' milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe two examples calculated using MUSE: the merger of two galaxies and an N-body simulation with live stellar evolution. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.

  4. Teachers' Roles in Light of Massive Open Online Courses (MOOCs): Evolution and Challenges in Higher Distance Education

    ERIC Educational Resources Information Center

    Gil-Jaurena, Inés; Domínguez, Daniel

    2018-01-01

    This article analyses the challenges teachers face when entering a digital and open online environment in higher education. Massive open online courses (MOOCs) have become a popular phenomenon, making online learning more visible in the educational agenda; therefore, it is appropriate to analyse their expansion and diversification to help inform…

  5. Role of oxygen functionality on the band structure evolution and conductance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Chakrabarty, Soubhik; Jha, Arunava; Midya, Priyanka R.; Kumar, E. Mathan; Chattopadhyay, Kalyan K.

    2017-06-01

    Here we report, structural and electrical transport properties of reduced graphene oxide as a function of oxygen bonding configuration. We find that mainly epoxy (Csbnd Osbnd C) and carbonyl (Cdbnd O) functional groups remain as major residual components after reduction using three different reducing agents. We calculate the band structure in the presence of epoxy and carbonyl groups and defects. Finally, we calculate the theoretical band mobility and find that it is less for the carbonyl with epoxy system. We correlate the distortion of linear dispersion and opening of bandgap at K-point with conductance for different graphene system in presence of oxygen moieties.

  6. Structure of exoplanets

    PubMed Central

    Spiegel, David S.; Fortney, Jonathan J.; Sotin, Christophe

    2014-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems—from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  7. Optical Properties in Nonequilibrium Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ao, T.; Lee, E.; Tam, H.

    An open question about the dynamical behavior of materials is how phase transition occurs in highly nonequilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to nonthermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reachesmore » a critical value.« less

  8. Optical Properties in Non-equilibrium Phase Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ao, T; Ping, Y; Widmann, K

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reachesmore » a critical value.« less

  9. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach

    NASA Astrophysics Data System (ADS)

    Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar

    2016-06-01

    Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica adjacent to the coast exhibit a history of major human interventions interfering with the coastal system, many of which originated and maintained a sediment deficit. In contrast, the coastal segments Troia-Sines and Sines-Cape S. Vicente have experienced less intervention and show stable or moderate accretion behaviour.

  10. The Evolution of DEOMI

    DTIC Science & Technology

    2017-09-15

    technology opens the world to information in the computer database to all learners without the use of a human teacher other than the controller or manager ...THE EVOLUTION DE MI DEFENSE EQU AL OPPORTU NITY MANAG EMENT INST ITUTE IDENTITY TITLE: Dr. G · NAME: William Ga ry Mc u1re RACE: White NDER...The Evolution of DEOMI Defense Equal Opportunity Management Institute Research Directorate Written by William Gary McGuire, PhD

  11. Bioinspired nanovalves with selective permeability and pH sensitivity

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Huang, X.; Schenderlein, M.; Moehwald, H.; Xu, G.-K.; Shchukin, D. G.

    2015-01-01

    Biological systems with controlled permeability and release functionality, which are among the successful examples of living beings to survive in evolution, have attracted intensive investigation and have been mimicked due to their broad spectrum of applications. We present in this work, for the first time, an example of nuclear pore complexes (NPCs)-inspired controlled release system that exhibits on-demand release of angstrom-sized molecules. We do so in a cost-effective way by stabilizing porous cobalt basic carbonates as nanovalves and realizing pH-sensitive release of entrapped subnano cargo. The proof-of-concept work also consists of the establishment of two mathematical models to explain the selective permeability of the nanovalves. Finally, gram-sized (or larger) quantities of the bio-inspired controlled release system can be synthesized through a scaling-up strategy, which opens up opportunities for controlled release of functional molecules in wider practical applications.Biological systems with controlled permeability and release functionality, which are among the successful examples of living beings to survive in evolution, have attracted intensive investigation and have been mimicked due to their broad spectrum of applications. We present in this work, for the first time, an example of nuclear pore complexes (NPCs)-inspired controlled release system that exhibits on-demand release of angstrom-sized molecules. We do so in a cost-effective way by stabilizing porous cobalt basic carbonates as nanovalves and realizing pH-sensitive release of entrapped subnano cargo. The proof-of-concept work also consists of the establishment of two mathematical models to explain the selective permeability of the nanovalves. Finally, gram-sized (or larger) quantities of the bio-inspired controlled release system can be synthesized through a scaling-up strategy, which opens up opportunities for controlled release of functional molecules in wider practical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06378c

  12. Model for calorimetric measurements in an open quantum system

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay

    2018-05-01

    We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.

  13. Simulation of a main steam line break with steam generator tube rupture using trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallardo, S.; Querol, A.; Verdu, G.

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less

  14. Value Creation Through Integrated Networks and Convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Martini, Paul; Taft, Jeffrey D.

    2015-04-01

    Customer adoption of distributed energy resources and public policies are driving changes in the uses of the distribution system. A system originally designed and built for one-way energy flows from central generating facilities to end-use customers is now experiencing injections of energy from customers anywhere on the grid and frequent reversals in the direction of energy flow. In response, regulators and utilities are re-thinking the design and operations of the grid to create more open and transactive electric networks. This evolution has the opportunity to unlock significant value for customers and utilities. Alternatively, failure to seize this potential may insteadmore » lead to an erosion of value if customers seek to defect and disconnect from the system. This paper will discuss how current grid modernization investments may be leveraged to create open networks that increase value through the interaction of intelligent devices on the grid and prosumerization of customers. Moreover, even greater value can be realized through the synergistic effects of convergence of multiple networks. This paper will highlight examples of the emerging nexus of non-electric networks with electricity.« less

  15. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  16. Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium.

    PubMed

    de Marchin, Thomas; Erpicum, Michel; Franck, Fabrice

    2015-12-10

    Two outdoor open thin-layer cascade systems operated as batch cultures with the alga Scenedesmus obliquus were used to compare the productivity and photosynthetic acclimations in control and CO2 supplemented cultures in relation with the outdoor light irradiance. We found that the culture productivity was limited by CO2 availability. In the CO2 supplemented culture, we obtained a productivity of up to 24gdwm(-2)day(-1) and found a photosynthetic efficiency (value based on the PAR solar radiation energy) of up to 5%. In the CO2 limited culture, we obtained a productivity of up to 10gdwm(-2)day(-1) while the photosynthetic efficiency was up to 3.3% and decreased to 2.1% when the integrated daily PAR increased. Fluorescence and oxygen evolution measurements showed that ETR and oxygen evolution light saturation curves, as well as light-dependent O2 uptake were similar in algal samples from both cultures when the CO2 limitation was removed. In contrast, we found that CO2 limitation conducted to a decreased PSII photochemical efficiency and an increased light-induced heat-dissipation in the control culture compared to the CO2 supplemented culture. These features are in line with a lower light use efficiency and may therefore contribute to the lower productivity observed in absence of CO2 supplementation in outdoor mass cultures of S. obliquus. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Novel data visualizations of X-ray data for aviation security applications using the Open Threat Assessment Platform (OTAP)

    NASA Astrophysics Data System (ADS)

    Gittinger, Jaxon M.; Jimenez, Edward S.; Holswade, Erica A.; Nunna, Rahul S.

    2017-02-01

    This work will demonstrate the implementation of a traditional and non-traditional visualization of x-ray images for aviation security applications that will be feasible with open system architecture initiatives such as the Open Threat Assessment Platform (OTAP). Anomalies of interest to aviation security are fluid, where characteristic signals of anomalies of interest can evolve rapidly. OTAP is a limited scope open architecture baggage screening prototype that intends to allow 3rd-party vendors to develop and easily implement, integrate, and deploy detection algorithms and specialized hardware on a field deployable screening technology [13]. In this study, stereoscopic images were created using an unmodified, field-deployed system and rendered on the Oculus Rift, a commercial virtual reality video gaming headset. The example described in this work is not dependent on the Oculus Rift, and is possible using any comparable hardware configuration capable of rendering stereoscopic images. The depth information provided from viewing the images will aid in the detection of characteristic signals from anomalies of interest. If successful, OTAP has the potential to allow for aviation security to become more fluid in its adaptation to the evolution of anomalies of interest. This work demonstrates one example that is easily implemented using the OTAP platform, that could lead to the future generation of ATR algorithms and data visualization approaches.

  18. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    NASA Astrophysics Data System (ADS)

    Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

    2013-06-01

    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

  19. Inverse approach to estimating larval dispersal reveals limited population connectivity along 700 km of wave-swept open coast.

    PubMed

    Hameed, Sarah O; White, J Wilson; Miller, Seth H; Nickols, Kerry J; Morgan, Steven G

    2016-06-29

    Demographic connectivity is fundamental to the persistence and resilience of metapopulations, but our understanding of the link between reproduction and recruitment is notoriously poor in open-coast marine populations. We provide the first evidence of high local retention and limited connectivity among populations spanning 700 km along an open coast in an upwelling system. Using extensive field measurements of fecundity, population size and settlement in concert with a Bayesian inverse modelling approach, we estimated that, on average, Petrolisthes cinctipes larvae disperse only 6.9 km (±25.0 km s.d.) from natal populations, despite spending approximately six weeks in an open-coast system that was once assumed to be broadly dispersive. This estimate differed substantially from our prior dispersal estimate (153.9 km) based on currents and larval duration and behaviour, revealing the importance of employing demographic data in larval dispersal estimates. Based on this estimate, we predict that demographic connectivity occurs predominantly among neighbouring populations less than 30 km apart. Comprehensive studies of larval production, settlement and connectivity are needed to advance an understanding of the ecology and evolution of life in the sea as well as to conserve ecosystems. Our novel approach provides a tractable framework for addressing these questions for species occurring in discrete coastal populations. © 2016 The Author(s).

  20. Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells.

    PubMed

    Alkotaini, Bassam; Tinucci, Samantha L; Robertson, Stuart J; Hasan, Kamrul; Minteer, Shelley D; Grattieri, Matteo

    2018-04-27

    A microbial fuel cell (MFC) based on a new wild-type strain of Salinivibrio sp. allowed the self-sustained treatment of hypersaline solutions (100 g L -1 , 1.71 m NaCl), reaching a removal of (87±11) % of the initial chemical oxygen demand after five days of operation, being the highest value achieved for hypersaline MFC. The degradation process and the evolution of the open circuit potential of the MFCs were correlated, opening the possibility for online monitoring of the treatment. The use of alginate capsules to trap bacterial cells, increasing cell density and stability, resulted in an eightfold higher power output, together with a more stable system, allowing operation up to five months with no maintenance required. The reported results are of critical importance to efforts to develop a sustainable and cost-effective system that treats hypersaline waste streams and reduces the quantity of polluting compounds released. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury

    2016-04-01

    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  2. Cloud System Evolution in the Trades—CSET

    NASA Astrophysics Data System (ADS)

    Albrecht, B. A.; Zuidema, P.; Bretherton, C. S.; Wood, R.; Ghate, V. P.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The observational component of this study centered on 7 round-trips made by the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy used a Lagrangian approach to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii and then updated forecast trajectories helped set the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures. A full suite of probes on the aircraft were used for in situ measurements of aerosol, cloud, precipitation, and turbulence properties during the low-level aircraft profiling portions of the flights. A wide range of boundary layer structures and aerosol, cloud, and precipitation conditions were observed during CSET. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale (100-200 km) cloud-precipitation complexes, and patches of shallow cumuli in environments with accumulation mode aerosol concentrations of less than 50 cm-3. Ultra clean layers (UCLs with accumulation mode concentrations of less than 10 cm-3) were observed frequently near the top of the boundary layer and were often associated with shallow, gray (optically thin) layered clouds—features that are the subject of focused investigations by the CSET science team. The extent of aerosol, cloud, drizzle and boundary layer sampling that was made over open areas of the North Pacific along 2-day trajectories during CSET is unprecedented and will enable focused modeling studies of cloud system evolution and the role of aerosol-cloud-precipitation interactions in that evolution.

  3. Quantum Control of Open Systems and Dense Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.

  4. Roughness evolution in dewetted Ag and Pt nanoscale films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2018-01-01

    The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.

  5. Transmission dynamics: critical questions and challenges

    PubMed Central

    2017-01-01

    This article overviews the dynamics of disease transmission in one-host–one-parasite systems. Transmission is the result of interacting host and pathogen processes, encapsulated with the environment in a ‘transmission triangle’. Multiple transmission modes and their epidemiological consequences are often not understood because the direct measurement of transmission is difficult. However, its different components can be analysed using nonlinear transmission functions, contact matrices and networks. A particular challenge is to develop such functions for spatially extended systems. This is illustrated for vector transmission where a ‘perception kernel’ approach is developed that incorporates vector behaviour in response to host spacing. A major challenge is understanding the relative merits of the large number of approaches to quantifying transmission. The evolution of transmission mode itself has been a rather neglected topic, but is important in the context of understanding disease emergence and genetic variation in pathogens. Disease impacts many biological processes such as community stability, the evolution of sex and speciation, yet the importance of different transmission modes in these processes is not understood. Broader approaches and ideas to disease transmission are important in the public health realm for combating newly emerging infections. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289255

  6. Openers for Biology Classes.

    ERIC Educational Resources Information Center

    Gridley, C. Robert R.

    This teaching guide contains 200 activities that are suitable for openers and demonstrations in biology classes. Details are provided regarding the use of these activities. Some of the broad topics under which the activities are organized include algae, amphibians, bacteria, biologists, crustaceans, dinosaurs, ecology, evolution, flowering plants,…

  7. Comparisons of different witnesses of non-Markovianity

    NASA Astrophysics Data System (ADS)

    Zuo, Wei; Qian, Xiao-Qing; Liang, Xian-Ting

    2017-01-01

    In this paper, the evolutions of two kinds of witnesses of the non-Markovianity and their rates of changes with time are investigated and compared. Four definitions, the trace distance, fidelity, quantum relative entropy, and quantum Fisher information are used for the first kind of witnesses which are based on the completely positive maps (CPM). Three definitions, the quantum entanglement, quantum mutual information, and quantum discord are used for the second kind of witnesses, and they are based on the local completely positive maps (LCPM). An open two-level quantum system model and a numerically quantum dissipative dynamics method, hierarchy equation of motion (HEM) are used in the investigations. It is shown that the evolutions of the witnesses and their rates of the changes calculated with different definitions clearly show the characteristics of the non-Markovianity and they are in agreement with each other.

  8. Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-05-01

    The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.

  9. Data Collection, Collaboration, Analysis, and Publication Using the Open Data Repository's (ODR) Data Publisher

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Stone, N.; Bristow, T.; Keller, R. M.; Blake, D. F.; Downs, R. T.; Pires, A.; Dateo, C. E.; Fonda, M.

    2017-12-01

    In development for nearly four years, the Open Data Repository's (ODR) Data Publisher software has become a useful tool for researchers' data needs. Data Publisher facilitates the creation of customized databases with flexible permission sets that allow researchers to share data collaboratively while improving data discovery and maintaining ownership rights. The open source software provides an end-to-end solution from collection to final repository publication. A web-based interface allows researchers to enter data, view data, and conduct analysis using any programming language supported by JupyterHub (http://www.jupyterhub.org). This toolset makes it possible for a researcher to store and manipulate their data in the cloud from any internet capable device. Data can be embargoed in the system until a date selected by the researcher. For instance, open publication can be set to a date that coincides with publication of data analysis in a third party journal. In conjunction with teams at NASA Ames and the University of Arizona, a number of pilot studies are being conducted to guide the software development so that it allows them to publish and share their data. These pilots include (1) the Astrobiology Habitable Environments Database (AHED), a central searchable repository designed to promote and facilitate the integration and sharing of all the data generated by the diverse disciplines in astrobiology; (2) a database containing the raw and derived data products from the CheMin instrument on the MSL rover Curiosity (http://odr.io/CheMin), featuring a versatile graphing system, instructions and analytical tools to process the data, and a capability to download data in different formats; and (3) the Mineral Evolution project, which by correlating the diversity of mineral species with their ages, localities, and other measurable properties aims to understand how the episodes of planetary accretion and differentiation, plate tectonics, and origin of life lead to a selective evolution of mineral species through changes in temperature, pressure, and composition. Ongoing development will complete integration of third party meta-data standards and publishing data to the semantic web. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, MSL.

  10. The Peculiarities in O-Type Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Panko, E. A.; Emelyanov, S. I.

    We present the results of analysis of 2D distribution of galaxies in galaxy cluster fields. The Catalogue of Galaxy Clusters and Groups PF (Panko & Flin) was used as input observational data set. We selected open rich PF galaxy clusters, containing 100 and more galaxies for our study. According to Panko classification scheme open galaxy clusters (O-type) have no concentration to the cluster center. The data set contains both pure O-type clusters and O-type clusters with overdence belts, namely OL and OF types. According to Rood & Sastry and Struble & Rood ideas, the open galaxy clusters are the beginning stage of cluster evolution. We found in the O-type clusters some types of statistically significant regular peculiarities, such as two crossed belts or curved strip. We suppose founded features connected with galaxy clusters evolution and the distribution of DM inside the clusters.

  11. Earth-to-Orbit Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III

    2003-01-01

    The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.

  12. EDOS Evolution to Support NASA Future Earth Sciences Missions

    NASA Technical Reports Server (NTRS)

    Cordier, Guy R.; McLemore, Bruce; Wood, Terri; Wilkinson, Chris

    2010-01-01

    This paper presents a ground system architecture to service future NASA decadal missions and in particular, the high rate science data downlinks, by evolving EDOS current infrastructure and upgrading high rate network lines. The paper will also cover EDOS participation to date in formulation and operations concepts for the respective missions to understand the particular mission needs and derived requirements such as data volumes, downlink rates, data encoding, and data latencies. Future decadal requirements such as onboard data recorder management and file protocols drive the need to emulate these requirements within the ground system. The EDOS open system modular architecture is scalable to accommodate additional missions using the current sites antennas and future sites as well and meet the data security requirements and fulfill mission's objectives

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less

  14. The Allegheny Observatory search for planetary systems

    NASA Technical Reports Server (NTRS)

    Gatewood, George D.

    1989-01-01

    The accomplishments of the observatory's search for planetary systems are summarized. Among these were the construction, implementation, and regular use of the Multichannel Astrometric Photometer (MAP), and the design, fabrication and use of the second largest refractor objective built since 1950. The MAP parallax and planetary observing programs are described. Various developments concerning alternate solid state photodetectors and telescope instrumentation are summarized. The extreme accuracy of the system is described in relation to a study of the position and velocity of the members of the open cluster Upgren 1. The binary star system stringently tests the theory of stellar evolution since it is composed of an evolved giant F5 III and a subgiant F5 IV star. A study that attempts to measure the luminosities, surface temperatures, and masses of these stars is discussed.

  15. CompactPCI/Linux Platform in FTU Slow Control System

    NASA Astrophysics Data System (ADS)

    Iannone, F.; Wang, L.; Centioli, C.; Panella, M.; Mazza, G.; Vitale, V.

    2004-12-01

    In large fusion experiments, such as tokamak devices, there is a common trend for slow control systems. Because of complexity of the plants, the so-called `Standard Model' (SM) in slow control has been adopted on several tokamak machines. This model is based on a three-level hierarchical control: 1) High-Level Control (HLC) with a supervisory function; 2) Medium-Level Control (MLC) to interface and concentrate I/O field equipments; 3) Low-Level Control (LLC) with hard real-time I/O function, often managed by PLCs. FTU control system designed with SM concepts has underwent several stages of developments in its fifteen years duration of runs. The latest evolution was inevitable, due to the obsolescence of the MLC CPUs, based on VME-MOTOROLA 68030 with OS9 operating system. A large amount of C code was developed for that platform to route the data flow from LLC, which is constituted by 24 Westinghouse Numalogic PC-700 PLCs with about 8000 field-points, to HLC, based on a commercial Object-Oriented Real-Time database on Alpha/CompaqTru64 platform. Therefore, we have to look for cost-effective solutions and finally a CompactPCI-Intel x86 platform with Linux operating system was chosen. A software porting has been done, taking into account the differences between OS9 and Linux operating system in terms of Inter/Network Processes Communications and I/O multi-ports serial driver. This paper describes the hardware/software architecture of the new MLC system, emphasizing the reliability and the low costs of the open source solutions. Moreover, a huge amount of software packages available in open source environment will assure a less painful maintenance, and will open the way to further improvements of the system itself.

  16. Development of wireless vehicle remote control for fuel lid operation

    NASA Astrophysics Data System (ADS)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  17. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    USGS Publications Warehouse

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.

    2006-01-01

    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions. ?? 2005 Elsevier B.V. All rights reserved.

  18. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M., E-mail: leiner@astro.wisc.edu

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolutionmore » code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.« less

  19. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in Warblers

    PubMed Central

    Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.

    2014-01-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318

  20. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate.

    PubMed

    Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L

    2016-03-01

    We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.

  1. First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion

    NASA Astrophysics Data System (ADS)

    Surendralal, Sudarsan; Todorova, Mira; Finnis, Michael W.; Neugebauer, Jörg

    2018-06-01

    Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes. To demonstrate the performance and the opportunities opened by this approach, we study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on this insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.

  2. Competitive Electricity Market Regulation in the United States: A Primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Espino, Francisco; Tian, Tian; Chernyakhovskiy, Ilya

    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  3. Defect evolution and impurity migration in Na-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2011-11-01

    Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.

  4. Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds.

    PubMed

    Riede, Tobias; Eliason, Chad M; Miller, Edward H; Goller, Franz; Clarke, Julia A

    2016-08-01

    Most birds vocalize with an open beak, but vocalization with a closed beak into an inflating cavity occurs in territorial or courtship displays in disparate species throughout birds. Closed-mouth vocalizations generate resonance conditions that favor low-frequency sounds. By contrast, open-mouth vocalizations cover a wider frequency range. Here we describe closed-mouth vocalizations of birds from functional and morphological perspectives and assess the distribution of closed-mouth vocalizations in birds and related outgroups. Ancestral-state optimizations of body size and vocal behavior indicate that closed-mouth vocalizations are unlikely to be ancestral in birds and have evolved independently at least 16 times within Aves, predominantly in large-bodied lineages. Closed-mouth vocalizations are rare in the small-bodied passerines. In light of these results and body size trends in nonavian dinosaurs, we suggest that the capacity for closed-mouth vocalization was present in at least some extinct nonavian dinosaurs. As in birds, this behavior may have been limited to sexually selected vocal displays, and hence would have co-occurred with open-mouthed vocalizations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. Passive margin evolution, initiation of subduction and the Wilson cycle

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1984-10-01

    We have constructed finite element models at various stages of passive margin evolution, in which we have incorporated the system of forces acting on the margin, depth-dependent rheological properties and lateral variations across the margin. We have studied the interrelations between age-dependent forces, geometry and rheology, to decipher their net effect on the state of stress at passive margins. Lithospheric flexure induced by sediment loading dominates the state of stress at passive margins. This study has shown that if after a short evolution of the margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favourable for transformation into an active margin. Although much geological evidence is available in support of the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept.

  6. Star clusters in evolving galaxies

    NASA Astrophysics Data System (ADS)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  7. Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou

    2010-04-01

    The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.

  8. Using Satellite Classes to Optimise Access to and Participation in First-Year Business Management: A Case at an Open and Distance-Learning University in South Africa

    ERIC Educational Resources Information Center

    Swanepoel, Elana; De Beer, Andreas; Muller, Helene

    2009-01-01

    We investigated the effect of satellite classes as a component of blended learning, to enhance student performance of the Business Management I and Management I students at an open and distance-learning university. We discuss the evolution of distance education, the interactivities promoted by open and distance learning and the concept of blended…

  9. Intellectual Initiatives at a Research University: Origins, Evolutions, and Challenges.

    ERIC Educational Resources Information Center

    Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.

    This qualitative case study explored the origins, evolutions, and challenges of 12 cross-disciplinary intellectual initiatives at 1 research university. Researchers conducted open-ended interviews with leaders of the 12 initiatives and used program literature to support the data gathered from the interviews. The study found that key factors such…

  10. Evolution of Protein Lipograms: A Bioinformatics Problem

    ERIC Educational Resources Information Center

    White, Harold B., III; Dhurjati, Prasad

    2006-01-01

    A protein lacking one of the 20 common amino acids is a protein lipogram. This open-ended problem-based learning assignment deals with the evolution of proteins with biased amino acid composition. It has students query protein and metabolic databases to test the hypothesis that natural selection has reduced the frequency of each amino acid…

  11. Building a Snow Data Management System using Open Source Software (and IDL)

    NASA Astrophysics Data System (ADS)

    Goodale, C. E.; Mattmann, C. A.; Ramirez, P.; Hart, A. F.; Painter, T.; Zimdars, P. A.; Bryant, A.; Brodzik, M.; Skiles, M.; Seidel, F. C.; Rittger, K. E.

    2012-12-01

    At NASA's Jet Propulsion Laboratory free and open source software is used everyday to support a wide range of projects, from planetary to climate to research and development. In this abstract I will discuss the key role that open source software has played in building a robust science data processing pipeline for snow hydrology research, and how the system is also able to leverage programs written in IDL, making JPL's Snow Data System a hybrid of open source and proprietary software. Main Points: - The Design of the Snow Data System (illustrate how the collection of sub-systems are combined to create a complete data processing pipeline) - Discuss the Challenges of moving from a single algorithm on a laptop, to running 100's of parallel algorithms on a cluster of servers (lesson's learned) - Code changes - Software license related challenges - Storage Requirements - System Evolution (from data archiving, to data processing, to data on a map, to near-real-time products and maps) - Road map for the next 6 months (including how easily we re-used the snowDS code base to support the Airborne Snow Observatory Mission) Software in Use and their Software Licenses: IDL - Used for pre and post processing of data. Licensed under a proprietary software license held by Excelis. Apache OODT - Used for data management and workflow processing. Licensed under the Apache License Version 2. GDAL - Geospatial Data processing library used for data re-projection currently. Licensed under the X/MIT license. GeoServer - WMS Server. Licensed under the General Public License Version 2.0 Leaflet.js - Javascript web mapping library. Licensed under the Berkeley Software Distribution License. Python - Glue code and miscellaneous data processing support. Licensed under the Python Software Foundation License. Perl - Script wrapper for running the SCAG algorithm. Licensed under the General Public License Version 3. PHP - Front-end web application programming. Licensed under the PHP License Version 3.01

  12. A novel procedure for the identification of chaos in complex biological systems

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Pereira, M. B. P. N.; Brito, A. V.; Oliveira, B. F. De; Ramos, J. G. G. S.

    2017-03-01

    We demonstrate the presence of chaos in stochastic simulations that are widely used to study biodiversity in nature. The investigation deals with a set of three distinct species that evolve according to the standard rules of mobility, reproduction and predation, with predation following the cyclic rules of the popular rock, paper and scissors game. The study uncovers the possibility to distinguish between time evolutions that start from slightly different initial states, guided by the Hamming distance which heuristically unveils the chaotic behavior. The finding opens up a quantitative approach that relates the correlation length to the average density of maxima of a typical species, and an ensemble of stochastic simulations is implemented to support the procedure. The main result of the work shows how a single and simple experimental realization that counts the density of maxima associated with the chaotic evolution of the species serves to infer its correlation length. We use the result to investigate others distinct complex systems, one dealing with a set of differential equations that can be used to model a diversity of natural and artificial chaotic systems, and another one, focusing on the ocean water level.

  13. Self-organized magnetic particles to tune the mechanical behavior of a granular system

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Barés, Jonathan; Behringer, Robert P.

    2016-09-01

    Above a certain density a granular material jams. This property can be controlled by either tuning a global property, such as the packing fraction or by applying shear strain, or at the micro-scale by tuning grain shape, inter-particle friction or externally controlled organization. Here, we introduce a novel way to change a local granular property by adding a weak anisotropic magnetic interaction between particles. We measure the evolution of the pressure, P, and coordination number, Z, for a packing of 2D photo-elastic disks, subject to uniaxial compression. A fraction R m of the particles have embedded cuboidal magnets. The strength of the magnetic interactions between particles is too weak to have a strong direct effect on P or Z when the system is jammed. However, the magnetic interactions play an important role in the evolution of latent force networks when systems containing a large enough fraction of the particles with magnets are driven through unjammed to jammed states. In this case, a statistically stable network of magnetic chains self-organizes before jamming and overlaps with force chains once jamming occurs, strengthening the granular medium. This property opens a novel way to control mechanical properties of granular materials.

  14. Characteristics of depositional environment and evolution of Upper Cretaceous Mishrif Formation, Halfaya Oil field, Iraq based on sedimentary microfacies analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Zhou, Lu; Tan, Xiucheng; Guo, Rui; Zhao, Limin; Li, Fei; Jin, Zhimin; Chen, Yantao

    2018-04-01

    As one of the most important carbonate targets in the Middle East, Upper Cretaceous Mishrif Formation has been highlighted for a long time. Although consensus has been reached on the overall sedimentary background, disputes still exist in understanding the sedimentary environment changes among sub-regions due to relatively limited research, rare outcrop, and incomplete drilled core, which hinders the analysis on sedimentary environment and thus the horizontal and vertical correlation. In this study, taking the Halfaya Oil Field as an example, the sedimentary microfacies analysis method was introduced to comprehensively characterize the cored interval of Mishrif Formation, including Single Layers MC1-1 to MA2. A total of 11 sedimentary microfacies are identified through system identification of sedimentary microfacies and environmental analysis, with reference to the standard microfacies classification in the rimmed carbonate platform. Then three kinds of environments are identified through microfacies assemblage analysis, namely restricted platform, open platform, and platform margin. Systematic analyses indicate that the deposits are mainly developed in the open platform and platform margin. Meanwhile, rock-electricity interpretation model is established according to the electricity response to cored intervals, and is then employed to interpret the uncored intervals, which finally helps build the sedimentary evolution pattern through horizontal and vertical correlation. It is proposed that the Single Layers MC1-1 to MB2-3 were deposited in the open platform featured by low water level, including sub-environments of low-energy shoal within platform and inter-shoal sea; Single Layers MB2-2 to MB1-2B were deposited in the open platform and platform margin, including sub-environments of high-energy shoal on the platform margin, low-energy shoal within platform, inter-shoal sea, and open sea; and Single Layers MB1-2A to MA2 were again deposited in the open platform with high water level, and the circumstance of open sea was dominant. The deposition of Single Layers MC1-1 to MA2 actually corresponded to a retrogradation-progradation process. Results of this study will not only provide significant guidance to the exploration and development of Mishrif Formation, Halfaya Oil Field, but also support that the theory of sedimentary environment correlation with adjacent areas is reliable.

  15. Revisiting the configuration of small satellites structures in the framework of 3D Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Gaudenzi, P.; Atek, S.; Cardini, V.; Eugeni, M.; Graterol Nisi, G.; Lampani, L.; Pasquali, M.; Pollice, L.

    2018-05-01

    In this paper the AM-induced evolution of the design process for small satellites is investigated, leading to the identification of optimal design strategies and the definition of a new MAIT concept. A review of the open literature is presented and some introductory concepts are exposed to highlight the effect of the introduction of AM technologies in the development of new satellites systems. In particular, an innovative structural configuration for the CubeSat class of satellites is proposed, with the ultimate goal of minimizing system complexity via parts reduction and the integration of subsystems through an innovative assembly configuration, as an example to be considered for larger satellites.

  16. The spread of European models of engineering education: the challenges faced in emerging countries

    NASA Astrophysics Data System (ADS)

    Gardelle, Linda; Cardona Gil, Emmanuel; Benguerna, Mohamed; Bolat, Altangul; Naran, Boldmaa

    2017-03-01

    The major European models of engineering training (the German, the British and the French model) spread throughout the world during the twentieth century. Historical heritage, cultural proximity and languages explain the open expression of faithfulness to one system in some countries. In these countries, the national standards inherited are now completed by international standards or are in direct competition with new influences. This article will attempt, through the existing literature, interviews and on-site investigations, to analyse current engineering training in some emerging countries and its relations with European models, the objective being to analyse the evolution of local systems and so the challenges and issues raised by the dissemination of European models.

  17. Ideal photon number amplifier and duplicator

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.

    1992-01-01

    The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

  18. Evolution of the long-wavelength, subduction-driven topography of South America since 150 Ma

    NASA Astrophysics Data System (ADS)

    Flament, N. E.; Gurnis, M.; Williams, S.; Bower, D. J.; Seton, M.; Müller, D.

    2014-12-01

    Subduction to the west of South America spans 6000 km along strike and has been active for over 250 Myr. The influence of the history of subduction on the geodynamics of South America has been profound, driving mountain building and arc volcanism in the Andean Cordillera. Here, we investigate the long-wavelength changes in the topography of South America associated with subduction and plate motion and their interplay with the lithospheric deformation associated with the opening of the South Atlantic. We pay particular attention to the topographic expression of flat-lying subduction zones. We develop time-dependent geodynamic models of mantle flow and lithosphere deformation to investigate the evolution of South American dynamic and total topography since the late Jurassic (150 Ma). Our models are semi-empirical because the computational cost of fully dynamic, evolutionary models is still prohibitive. We impose the kinematics of global plate reconstructions with deforming continents in forward global mantle convection models with compositionally distinct crust and continental lithosphere embedded within the thermal lithosphere. The shallow thermal structure of subducting slabs is imposed, allowing us to investigate the evolution of dynamic topography around flat slab segments in time-dependent models. Multiple cases are used to investigate how the evolution of South American dynamic topography is influenced by mantle viscosity, the kinematics of the opening of the South Atlantic and alternative scenarios for recent and past flat-slab subduction. We predict that the migration of South America over sinking oceanic lithosphere resulted in continental tilt to the west until ~ 45 Ma, inverting to an eastward tilt thereafter. This first-order result is consistent with the reversal of the drainage of the Amazon River system. We investigate which scenarios of flat-slab subduction since the Eocene are compatible with geological constraints on the evolution of the Solimoes Basin, the Chaco Basin, the Sierras Pampeanas and the Central Patagonian Basin. To broadly constrain mantle viscosity, we compare models to the total subsidence inferred from well data offshore Argentina and Brazil, and to mantle tomography, since the initial and boundary conditions are based on independent plate reconstructions.

  19. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  20. [Origin of the plague microbe Yersinia pestis: structure of the process of speciation].

    PubMed

    Suntsov, V V

    2012-01-01

    The origin and evolution of the plague microbe Yersinia pestis are considered in the context of propositions of modern Darwinism. It was shown that the plague pathogen diverged from the pseudotuberculous microbe Yersinia pseudotuberculosis O:1b in the mountain steppe landscapes of Central Asia in the Sartan: 22000-15000 years ago. Speciation occurred in the tarbagan (Marmota sibirica)--flea (Oropsylla silantiewi) parasitic system. The structure of the speciation process included six stages: isolation, genetic drift, enhancement of intrapopulational polymorphism, the beginning of pesticin synthesis (genetic conflict and emergence of hiatus), specialization (stabilization of characteristics), and adaptive irradiation (transformation of the monotypic species Y. pestis tarbagani into a polytypic species). The scenario opens up wide prospects for construction of the molecular phylogeny of the plague microbe Y. pestis and for investigation of the biochemical and molecular-genetic aspects of "Darwinian" evolution of pathogens from many other nature-focal infections.

  1. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  2. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    NASA Astrophysics Data System (ADS)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  3. Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method

    NASA Astrophysics Data System (ADS)

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Hong, Yang; Zuo, Depeng; Ren, Minglei; Lei, Tianjie; Liang, Ke

    2018-01-01

    Hydrological model calibration has been a hot issue for decades. The shuffled complex evolution method developed at the University of Arizona (SCE-UA) has been proved to be an effective and robust optimization approach. However, its computational efficiency deteriorates significantly when the amount of hydrometeorological data increases. In recent years, the rise of heterogeneous parallel computing has brought hope for the acceleration of hydrological model calibration. This study proposed a parallel SCE-UA method and applied it to the calibration of a watershed rainfall-runoff model, the Xinanjiang model. The parallel method was implemented on heterogeneous computing systems using OpenMP and CUDA. Performance testing and sensitivity analysis were carried out to verify its correctness and efficiency. Comparison results indicated that heterogeneous parallel computing-accelerated SCE-UA converged much more quickly than the original serial version and possessed satisfactory accuracy and stability for the task of fast hydrological model calibration.

  4. A Uniform System For The Annotation Of Human microRNA Genes And The Evolution Of The Human microRNAome

    PubMed Central

    Fromm, Bastian; Billipp, Tyler; Peck, Liam E.; Johansen, Morten; Tarver, James E.; King, Benjamin L.; Newcomb, James M.; Sempere, Lorenzo F.; Flatmark, Kjersti; Hovig, Eivind; Peterson, Kevin J.

    2016-01-01

    Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that fewer than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation, and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database -- MirGeneDB (http://mirgenedb.org) -- to catalog this set of robustly supported miRNAs, which complements the efforts of miRBase, but differs from it by annotating the mature versus star products, and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire. PMID:26473382

  5. [Thermodynamic theory of evolution and aging].

    PubMed

    Gladyshev, G P

    2012-01-01

    Life in the Universe emerges and develops under certain conditions in accordance with the general laws of nature, in particular, in accordance with the law of temporal hierarchies, the second law of thermodynamics and the principle of stability of matter. Biological evolution and organism's aging are accompanied by a change in the chemical and supramolecular compositions of living bodies. As shown by the author in 1977 these well-known changes have the thermodynamic nature (origin). Phenomenological hierarchical thermodynamics of near-equilibrium quasi-closed systems allows us to explain and predict the evolutionary transformation in the living world. From a viewpoint of power-consuming substance of biological objects the phenomenon of life, first, is the struggle for power-consuming chemicals. The accumulation of this substance in biological systems is associated with the aspiration of the specific Gibbs function of formation of supramolecular structures of living organisms to a minimum. The development of classical science opens up new horizons to explore the real world and contributes to the success of gerontology and geriatrics. This paper is a brief review containing new results.

  6. The Substorm Current Wedge Revisited

    NASA Astrophysics Data System (ADS)

    Kepko, Larry; McPherron, Robert; Apatenkov, Sergey; Baumjohann, Wolfgang; Birn, Joachim; Lester, Mark; Nakamura, Rumi; Pulkkinen, Tuija; Sergeev, Victor

    2015-04-01

    Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. In this paper, we briefly review recent in situ and ground-based observations and theoretical work that have demonstrated a need for an update of the original picture. We present a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery, and conclude by identifying open questions.

  7. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment

    PubMed Central

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell’Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-01-01

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps. PMID:27775652

  8. Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Shun; Wang, Yi-Tao; Yu, Shang; He, De-Yong; Xu, Jin-Shi; Liu, Bi-Heng; Chen, Geng; Sun, Yong-Nan; Sun, Kai; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-10-01

    The experimental progress achieved in parity-time () symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for -symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether -symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the -symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a -symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully -symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the -symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.

  9. Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Shun; Wang, Yi-Tao; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    The experimental progress achieved in parity-time (PT) symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for PT-symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether PT-symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the PT-symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a PT-symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully PT-symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the PT-symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.

  10. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment.

    PubMed

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell'Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-10-21

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps.

  11. Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints

    NASA Astrophysics Data System (ADS)

    Silva, Orildo L.; Bezerra, Francisco H. R.; Maia, Rubson P.; Cazarin, Caroline L.

    2017-10-01

    This paper analyzes different types of karst landforms and their relationships with fracture systems, sedimentary bedding, and fluvial processes. We mapped karst features in the Cretaceous carbonates of the Jandaíra Formation in the Potiguar Basin, Brazil. We used high-resolution digital elevation models acquired using LiDAR and aerial orthophotographs acquired using an unmanned aerial vehicle (UAV). We grouped and described karst evolution according to scale and degree of karstification. These degrees of karst evolution are coeval. Fractures are opened by dissolution, forming vertical fluid conduits, whereas coeval dissolution occurs along horizontal layers. This conduit system acts as pathways for water flow. The enlargement of conduits contributes to the collapse of blocks in sinkholes and expansion of caves during an intermediate degree of karstification. Propagation of dissolution can cause the coalescence of sinkholes and the capture of small streams. Fluvial processes dominate karst dissolution at an advanced degree of karstification. Comparisons with previously published ground-penetrating radar (GPR), borehole and seismic surveys in sedimentary basins indicate that these structures can be partially preserved during burial.

  12. Maximisation Principles in Foodwebs and Daisyworlds

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; Gallagher, I. D.

    2005-12-01

    Using computer simulation we investigate whether the steady-state time averaged state of a self-organising system with many internal degrees of freedom can be described by optimising a single quantity. Our open systems follow evolutionary dynamics hence the conservation laws and energy-based state probabilities which underpin Hamiltonian dynamics do not apply. We find that these dynamics observe a novel optimality principle, that the system self-organises to a state which maximises the sustainable amount of replicating objects. We have studied a number of mathematical models of evolving replicating systems: daisyworlds[1], logistic map and generalized Lotka Volterra foodwebs[2]. Each is characterised by being (1) "open" - resources flow into and out of the system. (2) "self-regulating" - the inflow/outflow of resources is not fixed externally. (3) "evolving" - the increase in population at the next timestep depends on the population at the current timestep. These properties violate the assumptions made in deriving optimality principles such as free energy minimisation, maximum/mimimum entropy production etc., so it is unsurprising that they are not observed. The absence of a Hamiltonian for ecosystems is particularly problematic for coupled models of life and the environment - moreover there is ambiguity in defining an entropy for an ecosystem. By considering large and small species within the 2D daisyworld model we show that the appropriate measure comes from the interaction with the rest of the system, not the information theoretic entropy of the daisy field. We introduce evolution within the classic Lotka-Volterra model for interaction between species in an ecosystem. Generalisation to many species is straightforward, but the resulting network is usually unstable. By restricting the number of links between species it is possible to form a stable network by evolution - allowing some species to go extinct. This method can be used to generate arbitrarily large network, from which a treelike structure of trophic levels emerges, but typically the number of connection is much smaller than in real ecosystems. Here, we show that applying evolution to the strength of the links, rather than simply their existence, stabilises the entire network and generates a power-law distribution of link strengths. The network dynamics are chaotic, but as a whole tend towards maximising the use of resources. If the dynamics are linearised to remove the chaos, the scale-free link strengths also disappear. [1] Maximisation Principles and Daisyworld G.J. Ackland J.Theo.Bio. 227, 121, (2004) [2] Stabilization of large generalized Lotka-Volterra foodwebs by evolutionary feedback G.J. Ackland and I.D. Gallagher Phys Rev Lett 93 158701 2004

  13. Facies characterization and sequential evolution of an ancient offshore dunefield in a semi-enclosed sea: Neuquén Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Veiga, Gonzalo D.; Schwarz, Ernesto

    2017-08-01

    This study analyses a 30-m-thick, sand-dominated succession intercalated between offshore mudstones in the Lower Cretaceous record of the Neuquén Basin, Argentina, defining facies associated with unidirectional currents as sand dunes (simple and compound), rippled sand sheets and heterolithic sheets. These facies associations are related to the development of an offshore, forward-accreting dunefield developed as a response to the onset of a tidal-transport system. The reported stratigraphic record results from the combination of the gradual downcurrent decrease of the current speed together with the long-term climbing of the entire system. Maximum amplification of the tidal effect associated with incoming oceanic tides to this epicontinental sea would develop at the time of more efficient connection between the basin and the open ocean. Thus, the onset of the offshore tidal system approximately corresponds to the time of maximum flooding conditions (or immediately after). The short-term evolution of the tidal-transport system is more complex and characterized by the vertical stacking of small-scale cycles defined by the alternation of episodes of construction and destruction of the dunefield. The development of these cycles could be the response to changes in tidal current speed and transport capacity.

  14. Understanding Learners' Motivation and Learning Strategies in MOOCs

    ERIC Educational Resources Information Center

    Alario-Hoyos, Carlos; Estévez-Ayres, Iria; Pérez-Sanagustín, Mar; Delgado Kloos, Carlos; Fernández-Panadero, Carmen

    2017-01-01

    MOOCs (Massive Open Online Courses) have changed the way in which OER (Open Educational Resources) are bundled by teachers and consumed by learners. MOOCs represent an evolution towards the production and offering of structured quality OER. Many institutions that were initially reluctant to providing OER have, however, joined the MOOC wave.…

  15. Improving the Learning Design of Massive Open Online Courses

    ERIC Educational Resources Information Center

    Rubens, Wilfred

    2014-01-01

    Massive Open Online Courses (MOOCs) can be regarded as a promising next step in the evolution of distance education. However, they have been criticised for their poor learning design. This article describes the development of an adequate learning design in a series of nineteen MOOCs (called online master classes). A formative evaluation focuses on…

  16. Is Open Source the ERP Cure-All?

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2008-01-01

    Conventional and hosted applications thrive, but open source ERP (enterprise resource planning) is coming on strong. In many ways, the evolution of the ERP market is littered with ironies. When Oracle began buying up customer relationship management (CRM) and ERP companies, some universities worried that they would be left with fewer choices and…

  17. The influence of Mars' magnetic topology on atmospheric escape

    NASA Astrophysics Data System (ADS)

    Curry, S.; Luhmann, J. G.; DiBraccio, G. A.; Dong, C.; Xu, S.; Mitchell, D.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; McFadden, J. P.; Ma, Y. J.; Brain, D.

    2017-12-01

    At weakly magnetized planets such as Mars and Venus, the solar wind directly interacts with the upper atmosphere where ions can be picked up and swept away by the background convection electric field. These pick-up ions have a gyroradius on the planetary scale that is largely dominated by the interplanetary magnetic field (IMF). But at Mars, their trajectory is also influenced by the existence of remanent crustal magnetic fields, which are thought to create a shielding effect for escaping planetary ions when they are on the dayside. Consequently, the magnetic topology changes at Mars as magnetic reconnection occurs between the draped (IMF) and the crustal magnetic fields (closed). The resulting topology includes open field lines in the solar wind with one footprint attached to the planet. Using magnetohydrodynamic (MHD) and test particle simulations, we will explore the influence of the magnetic topology on ion escape. We will present escape rates for planetary ions for different crustal field positions during different IMF configurations, with +/-BY and +/-BZ components in the Mars Sun Orbit (MSO) coordinate system. We will also compare global maps of ion outflow and escape with open / closed magnetic field line maps and compare our results with ion fluxes and magnetic field data from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission. Our results relating the dynamic magnetic field topology at Mars and planetary ion escape are an important aspect of magnetospheric physics and planetary evolution, both of which have applications to our own solar system and the increasing number of exoplanets discovered every year.

  18. PHENIX measurements of open and hidden heavy flavor in p+p, p+Al, and p/d/3He+Au collisions across a wide range of rapidity

    NASA Astrophysics Data System (ADS)

    Lim, Sanghoon; Phenix Collaboration

    2017-11-01

    Despite intense theoretical and experimental investigation, the physical mechanisms governing the suppression of bound quark-antiquark states in nuclear collisions are not yet fully understood. While color screening in a plasma phase is expected to play a role, there are numerous other possible suppression mechanisms that do not require deconfinement, as well as effects on the heavy quark initial state in the nucleus which can also play a role. To study these effects, the PHENIX collaboration has used the flexibility of the RHIC accelerator complex to observe the evolution of open heavy flavor and quarkonia dynamics as both the projectile and target nuclei size are varied. Open heavy flavor in small collision systems can serve as the baseline for interpreting quarkonia production in the nuclear environment, and comparisons of the ψ (2 S) with the ψ (1 S) show that in rapidity regions with relatively high hadron density, the larger 2S state is preferentially more suppressed than the more tightly bound ψ (1 S). This suggests that late-stage mechanisms may be at least partially responsible for quarkonia suppression in nuclear collisions. In this talk, we will present results on excited-state quarkonia in p+p, p+Al, and p/d/3He+Au collisions and open heavy flavor in small systems, and discuss how these measurements impact our understanding of heavy quark behavior in the quark-gluon plasma.

  19. Evolution from BCS superconductivity to Bose condensation: Calculation of the zero-temperature phase coherence length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, F.; Strinati, G.C.

    1996-06-01

    We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of the type introduced by Nozi{grave e}res and Schmitt-Rink, and calculate the {ital phase} coherence length {xi}{sub phase} (associated with the spatial fluctuations of the superconducting order parameter) by exploiting a functional-integral formulation for the correlation functions and the associated loop expansion. This formulation is especially suited to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a Bose-condensed system for strong coupling, since in the latter limit a {ital direct} mapping of the original fermionic system onto an effectivemore » system of bosons with a residual boson-boson interaction can be established. Explicit calculations are performed at the one-loop order. The phase coherence length {xi}{sub phase} is compared with the coherence length {xi}{sub pair} for two-electron correlation, which is relevant to distinguish the weak- ({ital k}{sub {ital F}}{xi}{sub pair}{gt}1) from the strong- ({ital k}{sub {ital F}}{xi}{sub pair}{lt}1) coupling limits ({ital k}{sub {ital F}} being the Fermi wave vector) {ital as} {ital well} {ital as} to follow the crossover in between. It is shown that {xi}{sub phase} coincides with {xi}{sub pair} down to {ital k}{sub {ital F}}{xi}{sub pair}{approx_equal}10, {xi}{sub pair} in turn coinciding with the Pippard coherence length. In the strong-coupling limit we find instead that {xi}{sub phase}{gt}{xi}{sub pair}, with {xi}{sub pair} coinciding with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the strong-coupling limit we further relate {xi}{sub pair} with the {open_quote}{open_quote}range{close_quote}{close_quote} of the residual boson-boson interaction, which is physically the only significant length associated with the dynamics of the bosonic system. {copyright} {ital 1996 The American Physical Society.}« less

  20. Sustainable Data Evolution Technology for Power Grid Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The SDET Tool is used to create open-access power grid data sets and facilitate updates of these data sets by the community. Pacific Northwest National Laboratory (PNNL) and its power industry and software vendor partners are developing an innovative sustainable data evolution technology (SDET) to create open-access power grid datasets and facilitate updates to these datasets by the power grid community. The objective is to make this a sustained effort within and beyond the ARPA-E GRID DATA program so that the datasets can evolve over time and meet the current and future needs for power grid optimization and potentially othermore » applications in power grid operation and planning.« less

  1. On-line thermal dependence study of the main solar cell electrical photoconversion parameters using low thermal emission lamps.

    PubMed

    Gallardo, J J; Navas, J; Alcántara, R; Fernández-Lorenzo, C; Aguilar, T; Martín-Calleja, J

    2012-06-01

    This paper presents a non-conventional methodology and an instrumental system to measure the effect of temperature on the photovoltaic properties of solar cells. The system enables the direct measurement of the evolution of open-circuit voltage and short-circuit current intensity in relation to a continuously decreasing temperature. The system uses a high-intensity white light-emitting diode light source with low emissions of radiation in the infrared region of the electromagnetic spectrum, resulting in a reduced heating of the photovoltaic devices by the irradiation source itself. To check the goodness of the system and the methodology designed, several measurements were performed with monocrystalline silicon solar cells, dye-sensitized solar cells, and thin-film amorphous silicon solar cells, showing similar tendencies to those reported in the literature.

  2. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  3. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  4. Studying Tidal Effects In Planetary Systems With Posidonius. A N-Body Simulator Written In Rust.

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-10-01

    Planetary systems with several planets in compact orbital configurations such as TRAPPIST-1 are surely affected by tidal effects. Its study provides us with important insight about its evolution. We developed a second generation of a N-body code based on the tidal model used in Mercury-T, re-implementing and improving its functionalities using Rust as programming language (including a Python interface for easy use) and the WHFAST integrator. The new open source code ensures memory safety, reproducibility of numerical N-body experiments, it improves the spin integration compared to Mercury-T and allows to take into account a new prescription for the dissipation of tidal inertial waves in the convective envelope of stars. Posidonius is also suitable for binary system simulations with evolving stars.

  5. Tapping into yeast diversity.

    PubMed

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  6. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  7. Dynamics of quantum tomography in an open system

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2015-06-01

    In this study, we provide a way to describe the dynamics of quantum tomography in an open system with a generalized master equation, considering a case where the relevant system under tomographic measurement is influenced by the environment. We apply this to spin tomography because such situations typically occur in μSR (muon spin rotation/relaxation/resonance) experiments where microscopic features of the material are investigated by injecting muons as probes. As a typical example to describe the interaction between muons and a sample material, we use a spin-boson model where the relevant spin interacts with a bosonic environment. We describe the dynamics of a spin tomogram using a time-convolutionless type of generalized master equation that enables us to describe short time scales and/or low-temperature regions. Through numerical evaluation for the case of Ohmic spectral density with an exponential cutoff, a clear interdependency is found between the time evolution of elements of the density operator and a spin tomogram. The formulation in this paper may provide important fundamental information for the analysis of results from, for example, μSR experiments on short time scales and/or in low-temperature regions using spin tomography.

  8. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    NASA Technical Reports Server (NTRS)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  9. Color-magnitude Diagrams for the Stellar Open Cluster M 67 in theVilnius Photometric System

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, Robert

    2015-01-01

    Stellar photometry in the Vilnius Photometric System requires one percent quality for deriving luminosity class and spectral type subclass. We use such existing photometry of the open cluster M 67 to calibrate new CCD observations at the Vatican Advanced Technology Telescope (VATT) for correcting the flat-fielding zero-point and deriving the color-transformation in this intermediate-band, seven filter system (Boyle et al., BAAS 37 #4, 2005).Recently we have developed a "tie-in" observational practice to apply the zero-point and color transformation of the M 67 observations to neighboring starfields of interest that have no existing photometry. Sky transparency must remain constant to better than one percent during a round of short exposures in a filter between the field having calibrated photometry and the new field having no photometry as if the new field was exposed simultaneously with the master field.Proof of success for this "tie-in" method is shown with the master field being M 67 and the "tie-in" field being the nearby extended "corona" area. The distinctive color-magnitude diagrams of the old open clusterM 67 reveal the sensitivity to having constant sky transparency during the round of short exposures on M 67 and its extended area. For the extended area has the same form in its color-magnitude diagram as M 67. So variation in sky transparency shows displacement on the color-magnitude diagrams at the one percent quality.We will attempt new analysis concerning evolution of this very old open cluster (2.56 Gyr, WEBDA, http://www.univie.ac.at/webda/) and the surrounding "coronal" extent with reference to previous work by Chupina and Vereshchagin (Astron. Astrophys, 334, 552, 1998).

  10. The adaptive safety analysis and monitoring system

    NASA Astrophysics Data System (ADS)

    Tu, Haiying; Allanach, Jeffrey; Singh, Satnam; Pattipati, Krishna R.; Willett, Peter

    2004-09-01

    The Adaptive Safety Analysis and Monitoring (ASAM) system is a hybrid model-based software tool for assisting intelligence analysts to identify terrorist threats, to predict possible evolution of the terrorist activities, and to suggest strategies for countering terrorism. The ASAM system provides a distributed processing structure for gathering, sharing, understanding, and using information to assess and predict terrorist network states. In combination with counter-terrorist network models, it can also suggest feasible actions to inhibit potential terrorist threats. In this paper, we will introduce the architecture of the ASAM system, and discuss the hybrid modeling approach embedded in it, viz., Hidden Markov Models (HMMs) to detect and provide soft evidence on the states of terrorist network nodes based on partial and imperfect observations, and Bayesian networks (BNs) to integrate soft evidence from multiple HMMs. The functionality of the ASAM system is illustrated by way of application to the Indian Airlines Hijacking, as modeled from open sources.

  11. A new and trustworthy formalism to compute entropy in quantum systems

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad

    Entropy is nonlinear in density matrix and as such its evaluation in open quantum system has not been fully understood. Recently a quantum formalism was proposed by Ansari and Nazarov that evaluates entropy using parallel time evolutions of multiple worlds. We can use this formalism to evaluate entropy flow in a photovoltaic cells coupled to thermal reservoirs and cavity modes. Recently we studied the full counting statistics of energy transfers in such systems. This rigorously proves a nontrivial correspondence between energy exchanges and entropy changes in quantum systems, which only in systems without entanglement can be simplified to the textbook second law of thermodynamics. We evaluate the flow of entropy using this formalism. In the presence of entanglement, however, interestingly much less information is exchanged than what we expected. This increases the upper limit capacity for information transfer and its conversion to energy for next generation devices in mesoscopic physics.

  12. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems.

    PubMed

    Szilágyi, András; Zachar, István; Scheuring, István; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás

    2017-11-27

    As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future.

  13. Calling it what it is. Thesauri in the Flanders Heritage Agency: History, Importance, Use and Technological Advances

    NASA Astrophysics Data System (ADS)

    Mortier, S.; Van Daele, K.; Meganck, L.

    2017-08-01

    Heritage organizations in Flanders started using thesauri fairly recently compared to other countries. This paper starts with examining the historical use of thesauri and controlled vocabularies in computer systems by the Flemish Government dealing with immovable cultural heritage. Their evolution from simple, flat, controlled lists to actual thesauri with scope notes, hierarchical and equivalence relations and links to other thesauri will be discussed. An explanation will be provided for the evolution in our approach to controlled vocabularies, and how they radically changed querying and the way data is indexed in our systems. Technical challenges inherent to complex thesauri and how to overcome them will be outlined. These issues being solved, thesauri have become an essential feature of the Flanders Heritage inventory management system. The number of vocabularies rose over the years and became an essential tool for integrating heritage from different disciplines. As a final improvement, thesauri went from being a core part of one application (the inventory management system) to forming an essential part of a new general resource oriented system architecture for Flanders Heritage influenced by Linked Data. For this purpose, a generic SKOS based editor was created. Due to the SKOS model being generic enough to be used outside of Flanders Heritage, the decision was made early on to develop this editor as an open source project called Atramhasis and share it with the larger heritage world.

  14. Coarsening mechanism of phase separation caused by a double temperature quench in an off-symmetric binary mixture.

    PubMed

    Sigehuzi, Tomoo; Tanaka, Hajime

    2004-11-01

    We study phase-separation behavior of an off-symmetric fluid mixture induced by a "double temperature quench." We first quench a system into the unstable region. After a large phase-separated structure is formed, we again quench the system more deeply and follow the pattern-evolution process. The second quench makes the domains formed by the first quench unstable and leads to double phase separation; that is, small droplets are formed inside the large domains created by the first quench. The complex coarsening behavior of this hierarchic structure having two characteristic length scales is studied in detail by using the digital image analysis. We find three distinct time regimes in the time evolution of the structure factor of the system. In the first regime, small droplets coarsen with time inside large domains. There a large domain containing small droplets in it can be regarded as an isolated system. Later, however, the coarsening of small droplets stops when they start to interact via diffusion with the large domain containing them. Finally, small droplets disappear due to the Lifshitz-Slyozov mechanism. Thus the observed behavior can be explained by the crossover of the nature of a large domain from the isolated to the open system; this is a direct consequence of the existence of the two characteristic length scales.

  15. Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems

    PubMed Central

    Szilágyi, András; Kun, Ádám; Könnyű, Balázs; Czárán, Tamás

    2017-01-01

    As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future. PMID:29186916

  16. Magnetic reconnection and Blandford-Znajek process around rotating black holes

    NASA Astrophysics Data System (ADS)

    Singh, Chandra B.; Garofalo, David; de Gouveia Dal Pino, Elisabete M.

    2018-05-01

    We provide a semi-analytic comparison between the Blandford-Znajek (BZ) and the magnetic reconnection power for accreting black holes in the curved spacetime of a rotating black hole. Our main result is that for a realistic range of astrophysical parameters, the reconnection power may compete with the BZ power. The field lines anchored close to or on the black hole usually evolve to open field lines in general relativistic magnetohydrodynamic (GRMHD) simulations. The BZ power is dependent on the black hole spin while magnetic reconnection power is independent of it for the near force-free magnetic configuration with open field lines adopted in our theoretical study. This has obvious consequences for the time evolution of such systems particularly in the context of black hole X-ray binary state transitions. Our results provide analytical justification of the results obtained in GRMHD simulations.

  17. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Förster, Hans-Jürgen; Heinrich, Wilhelm

    2002-09-01

    Detailed analyses of melt and fluid inclusions combined with an electron-microprobe survey of boron-bearing minerals reveal the evolution of boron in a highly evolved peraluminous granite-pegmatite complex and the associated high- and medium-temperature ore-forming hydrothermal fluids (Ehrenfriedersdorf, Erzgebirge, Germany). Melt inclusions in granite represent embryonic pegmatite-forming melts containing about 10 wt% H2O and 1.8 wt% B2O3. These melts are also enriched in F, P, and other incompatible elements such as Be, Sn, Rb, and Cs. Ongoing differentiation and volatile enrichment drove the system into a solvus, where two pegmatite-forming melts coexisted. The critical point is at about 712 °C, 100 MPa, 20 wt% H2O and 4.1 wt% B2O3. Cooling and concomitant fractional crystallisation from 700 to 500 °C induced development of two conjugate melts, an H2O-poor (A-melt) and an H2O-rich melt (B-melt) along the opening solvus. Boron is a major element in both melts and is preferentially partitioned into the H2O-rich melt. Temperature-dependent distribution coefficients $ D{boron}{{B - melt/A - melt}} $ are 1.3 at 650 °C, 1.5 at 600 °C, and 1.8 at 500 °C. In both melts, boron concentrations decreased during cooling because of exsolution of a boron-rich hypersaline brine throughout the pegmatitic stage. Boromuscovite containing up to 8.5 wt% was another sink for boron at this stage. The end of the melt-dominated pegmatitic stage was attained at a solidus temperature of around 490 °C. Fluid inclusions of the hydrothermal stage reveal trapping temperatures of 480 to 370 °C, along with varying densities and highly variable B2O3 contents ranging from 0.20 to 2.94 wt%. A boiling system evolved, indicating a complex interplay between closed- and open-system behaviour. Pressure switched from lithostatic to hydrostatic and back, generating hydrothermal convection cells where meteoric waters were introduced and mixed with magmatic fluids. Boron-rich solutions originated from magmatic fluids, whereas boron-depleted fluids were mainly of meteoric origin. This highlights the potential of boron for discriminating fluids of different origin. Tin is continuously enriched during the evolution because tin and boron are cross-linked by formation of boron-, fluorine- and tin-fluorine-bearing complexes and is finally deposited within quartz-cassiterite veins during the transition from closed- to open-system behaviour. Boron does not only trace the complex evolution of the Ehrenfriedersdorf complex but exerts, together with H2O, F and P, an important control on the physical and chemical properties of pegmatite-forming melts, and particularly on the formation of a two-melt solvus at low pressure. We discuss this with respect to experimental results on H2O solubility and the critical behaviour of the haplogranite-water system which contained variable concentrations of volatiles.

  18. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Förster, Hans-Jürgen; Heinrich, Wilhelm

    Detailed analyses of melt and fluid inclusions combined with an electron-microprobe survey of boron-bearing minerals reveal the evolution of boron in a highly evolved peraluminous granite-pegmatite complex and the associated high- and medium-temperature ore-forming hydrothermal fluids (Ehrenfriedersdorf, Erzgebirge, Germany). Melt inclusions in granite represent embryonic pegmatite-forming melts containing about 10 wt% H2O and 1.8 wt% B2O3. These melts are also enriched in F, P, and other incompatible elements such as Be, Sn, Rb, and Cs. Ongoing differentiation and volatile enrichment drove the system into a solvus, where two pegmatite-forming melts coexisted. The critical point is at about 712 °C, 100 MPa, 20 wt% H2O and 4.1 wt% B2O3. Cooling and concomitant fractional crystallisation from 700 to 500 °C induced development of two conjugate melts, an H2O-poor (A-melt) and an H2O-rich melt (B-melt) along the opening solvus. Boron is a major element in both melts and is preferentially partitioned into the H2O-rich melt. Temperature-dependent distribution coefficients $ D{boron}{{B - melt/A - melt}} $ are 1.3 at 650 °C, 1.5 at 600 °C, and 1.8 at 500 °C. In both melts, boron concentrations decreased during cooling because of exsolution of a boron-rich hypersaline brine throughout the pegmatitic stage. Boromuscovite containing up to 8.5 wt% was another sink for boron at this stage. The end of the melt-dominated pegmatitic stage was attained at a solidus temperature of around 490 °C. Fluid inclusions of the hydrothermal stage reveal trapping temperatures of 480 to 370 °C, along with varying densities and highly variable B2O3 contents ranging from 0.20 to 2.94 wt%. A boiling system evolved, indicating a complex interplay between closed- and open-system behaviour. Pressure switched from lithostatic to hydrostatic and back, generating hydrothermal convection cells where meteoric waters were introduced and mixed with magmatic fluids. Boron-rich solutions originated from magmatic fluids, whereas boron-depleted fluids were mainly of meteoric origin. This highlights the potential of boron for discriminating fluids of different origin. Tin is continuously enriched during the evolution because tin and boron are cross-linked by formation of boron-, fluorine- and tin-fluorine-bearing complexes and is finally deposited within quartz-cassiterite veins during the transition from closed- to open-system behaviour. Boron does not only trace the complex evolution of the Ehrenfriedersdorf complex but exerts, together with H2O, F and P, an important control on the physical and chemical properties of pegmatite-forming melts, and particularly on the formation of a two-melt solvus at low pressure. We discuss this with respect to experimental results on H2O solubility and the critical behaviour of the haplogranite-water system which contained variable concentrations of volatiles.

  19. On the formation of planetary systems in photoevaporating transition discs

    NASA Astrophysics Data System (ADS)

    Terquem, Caroline

    2017-01-01

    In protoplanetary discs, planetary cores must be at least 0.1 M⊕ at 1 au for migration to be significant; this mass rises to 1 M⊕ at 5 au. Planet formation models indicate that these cores form on million year time-scales. We report here a study of the evolution of 0.1 and 1 M⊕ cores, migrating from about 2 and 5 au, respectively, in million year old photoevaporating discs. In such a disc, a gap opens up at around 2 au after a few million years. The inner region subsequently accrete on to the star on a smaller time-scale. We find that, typically, the smallest cores form systems of non-resonant planets beyond 0.5 au with masses up to about 1.5 M⊕. In low-mass discs, the same cores may evolve in situ. More massive cores form systems of a few Earth-mass planets. They migrate within the inner edge of the disc gap only in the most massive discs. Delivery of material to the inner parts of the disc ceases with opening of the gap. Interestingly, when the heavy cores do not migrate significantly, the type of systems that are produced resembles our Solar system. This study suggests that low-mm flux transition discs may not form systems of planets on short orbits but may instead harbour Earth-mass planets in the habitable zone.

  20. Accuracy of the adiabatic-impulse approximation for closed and open quantum systems

    NASA Astrophysics Data System (ADS)

    Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.

  1. New Legislation Threatens the Teaching of Evolution

    NASA Astrophysics Data System (ADS)

    Landau, Elizabeth

    2008-05-01

    A new twist on an old legislative tactic may help open the door for the discussion of creationism and intelligent design in science classrooms across the United States. While previous attempts have been made to pass legislation regarding the teaching of evolution, new state legislation is being introduced with the purpose of affording ``rights'' and ``protection'' to teachers or students ``concerning their positions on views regarding biological and chemical evolution,'' according to the text from several bills. The proposed legislation would lessen the authority of written science curricula and potentially would allow legal protection for teachers or students to discuss nonscientific views of evolution in science classrooms.

  2. Nonlinear vortex dynamics in open nonequilibrium systems with bulk mass loss and a generation mechanism for tornadoes and typhoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.u

    2010-06-15

    Based on a general model of nonlinear vortex dynamics in open thermodynamically nonequilibrium systems with bulk or surface mass losses, an analysis is presented of the mechanism of generation of violent atmospheric vortices (tornadoes, typhoons, cyclones) associated with the formation of deep cloud systems by intense condensation of water vapor from moist air cooled below the dew point. Simple particular solutions to the Navier-Stokes equations are found that describe both axisymmetric and nonaxisymmetric incompressible vortex motions involving radial and vertical flows with viscous dissipation vanishing identically everywhere except for a thin shear layer at the boundary of the condensation region.more » It is shown that the nonlinear convective and local Coriolis forces generated by radial inflow in the presence of a background vorticity due to a global Coriolis force (the Earth's rotation) accelerate the solid-body rotation in the vortex core either exponentially or in a nonlinear regime of finite-time blow-up. Due to updrafts, such a vortex is characterized by a strong helicity. This mechanism explains a number of observed properties and characteristics of the structure and evolution of tornadoes and typhoons. Upper estimates are found for the kinetic energies of violent atmospheric vortices. It is shown that increase in rotational kinetic energy of atmospheric vortices with constant vortex-core radii is consistent with energy and momentum conservation, because radial inflow continually supplies the required amount of rotational kinetic energy drawn from the ambient atmosphere to an open system.« less

  3. Two contrasted future scenarios for the French agro-food system.

    PubMed

    Billen, Gilles; Le Noë, Julia; Garnier, Josette

    2018-10-01

    Narratives of two prospective scenarios for the future of French agriculture were elaborated by pushing several trends already acting on the dynamics of the current system to their logical end. The first one pursues the opening and specialization characterizing the long-term evolution of the last 50 years of most French agricultural regions, while the second assumes a shift, already perceptible through weak signals, towards more autonomy at the farm and regional scales, a reconnection of crop and livestock farming and a more frugal human diet. A procedure is proposed to translate these qualitative narratives into a quantitative description of the corresponding nutrient fluxes using the GRAFS (Generalized Representation of Agro-Food Systems) methodology, thus allowing a comprehensive exploration of the agronomical and environmental performance of these two scenarios. The results show that the pursuit of the opening and specialization of French agriculture, even complying with regulations regarding reasoned fertilization, would result in considerable environmental burdens namely in terms of water pollution. The scenario generalizing organic farming practices, reconnection of crop and livestock farming systems and a demitarian human diet makes it possible to meet the future national food demand while still exporting significant amounts of cereals to the international market and ensuring better groundwater quality in most French regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of elevated CO2 and N fertilization on soil respiration from ponderosa pine (Pine ponderosa) in open-top chambers

    Treesearch

    James M. Vose; Katherine J. Elliott; Dale W. Johnson; Roger F. Walker; Mark G. Johnson; David T. Tingey

    1995-01-01

    We measured growing season soil CO2 evolution under elevated atmospheric CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and determine regulating mechanisms. Elevated CO2 treatments were applied in open-top chambers containing 3-...

  5. Photometry of Standard Stars and Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Jefferies, Amanda; Frinchaboy, Peter

    2010-10-01

    Photometric CCD observations of open star clusters and standard stars were carried out at the McDonald Observatory in Fort Davis, Texas. This data was analyzed using aperture photometry algorithms (DAOPHOT II and ALLSTAR) and the IRAF software package. Color-magnitude diagrams of these clusters were produced, showing the evolution of each cluster along the main sequence.

  6. Open Learning in India: Evolution, Diversification and Reaching Out

    ERIC Educational Resources Information Center

    Sharma, Ramesh C.

    2005-01-01

    Distance education has a history of over four decades in India. There has been a vast growth in the number of learners who need education and thus also the corresponding channels of providing education. Due to the constraints of the traditional educational sector, open and distance learning has been found to be a workable alternative strategy in…

  7. Open Science: Trends in the Development of Science Learning

    ERIC Educational Resources Information Center

    Scanlon, Eileen

    2011-01-01

    This article comments on some trends in the evolution of science teaching at a distance using the Open University UK (OU UK) experience as a benchmark. Even from the first years of the university there was an understanding of the potential role for media in developing methods for teaching science at a distance, in particular the potential for…

  8. Musing on the Memes of Open and Distance Education

    ERIC Educational Resources Information Center

    Latchem, Colin

    2014-01-01

    Just as genes propagate themselves in the gene pool by leaping from body to body, so memes (ideas, behaviours, and actions) transmit cultural ideas or practices from one mind to another through writing, speech, or other imitable phenomena. This paper considers the memes that influence the evolution of open and distance education. If the…

  9. The Evolution of iSchool Movement (1988-2013): A Bibliometric View

    ERIC Educational Resources Information Center

    Shu, Fei; Mongeon, Phillippe

    2016-01-01

    The iSchool movement is a controversial topic within the library and information science (LIS) community. While some argue that the movement isolates small size schools and splits the LIS community others insist it will broaden the field of LIS and form an open and boundaryless iField. This study investigates the evolution of the iSchool movement…

  10. Exploring stellar evolution with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  11. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes.

    PubMed

    Gu, Meng; Parent, Lucas R; Mehdi, B Layla; Unocic, Raymond R; McDowell, Matthew T; Sacci, Robert L; Xu, Wu; Connell, Justin Grant; Xu, Pinghong; Abellan, Patricia; Chen, Xilin; Zhang, Yaohui; Perea, Daniel E; Evans, James E; Lauhon, Lincoln J; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D; Cui, Yi; Arslan, Ilke; Wang, Chong-Min

    2013-01-01

    Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.

  12. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  13. Electron anions and the glass transition temperature.

    PubMed

    Johnson, Lewis E; Sushko, Peter V; Tomota, Yudai; Hosono, Hideo

    2016-09-06

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) ⋅ (e(-))2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design.

  14. Electron anions and the glass transition temperature

    DOE PAGES

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; ...

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca 12Al 14O 32] 2+ ∙ (e –) 2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  15. De Novo ORFs in Drosophila Are Important to Organismal Fitness and Evolved Rapidly from Previously Non-coding Sequences

    PubMed Central

    Reinhardt, Josephine A.; Wanjiru, Betty M.; Brant, Alicia T.; Saelao, Perot; Begun, David J.; Jones, Corbin D.

    2013-01-01

    How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important. PMID:24146629

  16. Decoherence effect on quantum-memory-assisted entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2018-01-01

    Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

  17. Breeding systems, hybridization and continuing evolution in Avon Gorge Sorbus

    PubMed Central

    Ludwig, Shanna; Robertson, Ashley; Rich, Timothy C. G.; Djordjević, Milena; Cerović, Radosav; Houston, Libby; Harris, Stephen A.; Hiscock, Simon J.

    2013-01-01

    Background and Aims Interspecific hybridization and polyploidy are key processes in plant evolution and are responsible for ongoing genetic diversification in the genus Sorbus (Rosaceae). The Avon Gorge, Bristol, UK, is a world ‘hotspot’ for Sorbus diversity and home to diploid sexual species and polyploid apomictic species. This research investigated how mating system variation, hybridization and polyploidy interact to generate this biological diversity. Methods Mating systems of diploid, triploid and tetraploid Sorbus taxa were analysed using pollen tube growth and seed set assays from controlled pollinations, and parent–offspring genotyping of progeny from open and manual pollinations. Key Results Diploid Sorbus are outcrossing and self-incompatible (SI). Triploid taxa are pseudogamous apomicts and genetically invariable, but because they also display self-incompatibility, apomictic seed set requires pollen from other Sorbus taxa – a phenomenon which offers direct opportunities for hybridization. In contrast tetraploid taxa are pseudogamous but self-compatible, so do not have the same obligate requirement for intertaxon pollination. Conclusions The mating inter-relationships among Avon Gorge Sorbus taxa are complex and are the driving force for hybridization and ongoing genetic diversification. In particular, the presence of self-incompatibility in triploid pseudogamous apomicts imposes a requirement for interspecific cross-pollination, thereby facilitating continuing diversification and evolution through rare sexual hybridization events. This is the first report of naturally occurring pseudogamous apomictic SI plant populations, and we suggest that interspecific pollination, in combination with a relaxed endosperm balance requirement, is the most likely route to the persistence of these populations. We propose that Avon Gorge Sorbus represents a model system for studying the establishment and persistence of SI apomicts in natural populations. PMID:23408832

  18. Wave-ice interaction, observed and modelled

    NASA Astrophysics Data System (ADS)

    Gemmrich, Johannes

    2017-04-01

    The need for wide-spread, up-to-date sea state predictions and observations in the emerging ice-free Arctic will further increase as the region will open up to marine operations. Wave models for arctic regions have to capture the additional wave physics associated with wave-ice interactions, and different prediction schemes have to be tested against observations. Here we present examples of spatial wave field parameters obtained from TerraSAR-X StripMap swaths in the southern Beaufort Sea taken as part of the "Arctic Sea State and Boundary Layer DRI". Fetch evolution of the significant wave height and length in open waters, and dominant wave lengths and the high frequency cut-off of the wave spectrum in ice are readily extracted from the SAR (synthetic aperture radar) data. A surprising result is that wave evolution in off-ice wind conditions is more rapidly than the fetch evolution in off-land cases, suggesting seeding of the wave field within the ice-covered region.

  19. The Evolution of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Kahn, R.

    1985-01-01

    The consequences of the hypothesis that the evolution of CO2 is directly linked to the occurrence of at least transitory pockets of moisture were exposed. The current conditions preclude the existence of open bodies of liquid water and the formation of moisture in disequilibrium is not excluded by any known constraints. The water evaporation rate is inversely proportional to PCO2, and the existence of a limiting value (P*) for which liquid water can form in the Mars environment is postulated. The evolution of PCO2 is controlled largely by relatively rapid aqueous chemistry forming carbon-containing sedimentary rocks, perhaps during early history in open water, but more recently in transitory pockets of moisture in the soil. Once the total atmospheric pressure is reduced to near P*, the occurrence of transitory moisture is inhibited, and atmospheric CO2 is no longer depleted by an efficient mechanism. The role of the carbonate reservoir in the current overall carbon budget on Mars, according to this scheme, is illustrated.

  20. A Record of Uranium-Series Transport in Fractured, Unsaturated Tuff at Nopal I, Sierra Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Denton, J.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2015-12-01

    In this study we utilize U-series disequilibria measurements to investigate mineral fluid interactions and the role fractures play in the geochemical evolution of an analogue for a high level nuclear waste repository, the Nopal I uranium ore deposit. Samples of fracture-fill materials have been collected from a vertical drill core and surface fractures. High uranium concentrations in these materials (12-7700 ppm) indicate U mobility and transport from the deposit in the past. U concentrations generally decrease with horizontal distance away from the ore deposit but show no trend with depth. Isotopic activity ratios indicate a complicated geochemical evolution in terms of the timing and extent of actinide mobility, possibly due to changing environmental (redox) conditions over the history of the deposit. 234U/238U activity ratios are generally distinct from secular equilibrium and indicate some degree of open system U behavior during the past 1.2 Ma. However, calculated closed system 238U-234U-230Th model ages are generally >313 ka and >183 ka for the surface fracture and drill core samples respectively, suggesting closed system behavior for U and Th over this most recent time period. Whole rock isochrons drawn for the drill core samples show that at two of three depths fractures have remained closed with respect to U and Th mobility for >200 ka. However, open system behavior for U in the last 350 ka is suggested at 67 m depth. 231Pa/235U activity ratios within error of unity suggest closed system behavior for U and Pa for at least the past 185 ka. 226Ra/230Th activity ratios are typically <1 (0.7-1.2), suggesting recent (<8 ka) radium loss and mobility due to ongoing fluid flow in the fractures. Overall, the mainly closed system behavior of U-Th-Pa over the past ~200 ka provides one indicator of the geochemical immobility of these actinides over long time-scales for potential nuclear waste repositories sited in fractured, unsaturated tuff.

  1. Navigating the unfolding open data landscape in ecology and evolution.

    PubMed

    Culina, Antica; Baglioni, Miriam; Crowther, Tom W; Visser, Marcel E; Woutersen-Windhouwer, Saskia; Manghi, Paolo

    2018-03-01

    Open access to data is revolutionizing the sciences. To allow ecologists and evolutionary biologists to confidently find and use the existing data, we provide an overview of the landscape of online data infrastructures, and highlight the key points to consider when using open data. We introduce an online collaborative platform to keep a community-driven, updated list of the best sources that enable search for data in one interface. In doing so, our aim is to lower the barrier to accessing open data, and encourage its use by researchers hoping to increase the scope, reliability and value of their findings.

  2. A security mechanism based on evolutionary game in fog computing.

    PubMed

    Sun, Yan; Lin, Fuhong; Zhang, Nan

    2018-02-01

    Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  3. Observation of Entangled States of a Fully Controlled 20-Qubit System

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai; Marty, Oliver; Maier, Christine; Hempel, Cornelius; Holzäpfel, Milan; Jurcevic, Petar; Plenio, Martin B.; Huber, Marcus; Roos, Christian; Blatt, Rainer; Lanyon, Ben

    2018-04-01

    We generate and characterize entangled states of a register of 20 individually controlled qubits, where each qubit is encoded into the electronic state of a trapped atomic ion. Entanglement is generated amongst the qubits during the out-of-equilibrium dynamics of an Ising-type Hamiltonian, engineered via laser fields. Since the qubit-qubit interactions decay with distance, entanglement is generated at early times predominantly between neighboring groups of qubits. We characterize entanglement between these groups by designing and applying witnesses for genuine multipartite entanglement. Our results show that, during the dynamical evolution, all neighboring qubit pairs, triplets, most quadruplets, and some quintuplets simultaneously develop genuine multipartite entanglement. Witnessing genuine multipartite entanglement in larger groups of qubits in our system remains an open challenge.

  4. Heller myotomy for achalasia. From the open to the laparoscopic approach.

    PubMed

    Allaix, Marco E; Patti, Marco G

    2015-07-01

    The last three decades have witnessed a progressive evolution in the surgical treatment of esophageal achalasia, with a shift from open to a minimally invasive Heller myotomy. The laparoscopic approach is currently the standard of care with better short-term outcomes and similar long-term functional results when compared to open surgery. More recently, the laparoscopic single-site approach and the use of the robot have been proposed to further improve the surgical outcome in achalasia patients.

  5. Open clusters as laboratories: The angular momentum evolution of young stars

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.

    1994-01-01

    This is the annual status report for the third year of our LTSA grant 'Open Clusters as Laboratories.' Because we have now had a few years to work on the project, we have started to produce and publish a large number of papers. We have been extremely successful in obtaining ROSAT observations of open clusters. With the demise of the PSPC on ROSAT, our main data source has come to an end and we will be able to concentrate on analyzing those data.

  6. Within-host evolution of bacterial pathogens

    PubMed Central

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  7. Within-host evolution of bacterial pathogens.

    PubMed

    Didelot, Xavier; Walker, A Sarah; Peto, Tim E; Crook, Derrick W; Wilson, Daniel J

    2016-03-01

    Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.

  8. Multi-phase structural and tectonic evolution of the Andaman Sea Region

    NASA Astrophysics Data System (ADS)

    Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga

    2017-04-01

    We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the opening of the South China Sea to the east. Consequently, the obliquity of plate convergence along this margin increased, ultimately resulting in a change from minor strain partitioning to hyper oblique convergence and full strain partitioning by the mid-Miocene. Investigation into the effects of slab-steepening and dynamic subsidence in the Indochina region could be used as further tests of our proposed tectonic evolution of the Andaman Sea.

  9. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics

    PubMed Central

    Osborne, Colin P.; Sack, Lawren

    2012-01-01

    C4 photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C3 photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C4 than C3 type under atmospheric CO2 depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant–water relations. We hypothesize that excessive demand for water transport associated with low CO2, high light and temperature would have selected for C4 photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C4 pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO2. The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C4 photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO2 declined and ecological demand for water rose. PMID:22232769

  10. Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics.

    PubMed

    Osborne, Colin P; Sack, Lawren

    2012-02-19

    C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.

  11. Nonecholocating fruit bats produce biosonar clicks with their wings.

    PubMed

    Boonman, Arjan; Bumrungsri, Sara; Yovel, Yossi

    2014-12-15

    Because evolution mostly acts over millions of years, the intermediate steps leading to a functional sensory system remain enigmatic. Accordingly, there is an ongoing debate regarding the evolution of bat echolocation. In search of the origin of bat echolocation, we studied how Old World fruit bats, which have always been classified as nonecholocating, orient in complete darkness. We found that two of these nonecholocating species used click-like sounds to detect and discriminate objects in complete darkness. However, we discovered that this click-based echo sensing is rudimentary and does not allow these bats to estimate distance accurately as all other echolocating bats can. Moreover, unlike all other echolocating bats, which generate pulses using the larynx or the tongue, these bats generated clicks with their wings. We provide evidence suggesting that all Old World fruit bats can click with their wings. Although this click-based echo sensing used by Old World fruit bats may not represent the ancestral form of current (laryngeal) bat echolocation, we argue that clicking fruit bats could be considered behavioral fossils, opening a window to study the evolution of echolocation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Heavy quarkonium suppression in a fireball

    NASA Astrophysics Data System (ADS)

    Brambilla, Nora; Escobedo, Miguel A.; Soto, Joan; Vairo, Antonio

    2018-04-01

    We perform a comprehensive study of the time evolution of heavy-quarkonium states in an expanding hot QCD medium by implementing effective field theory techniques in the framework of open quantum systems. The formalism incorporates quarkonium production and its subsequent evolution in the fireball including quarkonium dissociation and recombination. We consider a fireball with a local temperature that is much smaller than the inverse size of the quarkonium and much larger than its binding energy. The calculation is performed at an accuracy that is leading order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. Within this accuracy, for a smooth variation of the temperature and large times, the evolution equation can be written as a Lindblad equation. We solve the Lindblad equation numerically both for a weakly coupled quark-gluon plasma and a strongly coupled medium. As an application, we compute the nuclear modification factor for the ϒ (1 S ) and ϒ (2 S ) states. We also consider the case of static quarks, which can be solved analytically. Our study fulfills three essential conditions: it conserves the total number of heavy quarks, it accounts for the non-Abelian nature of QCD, and it avoids classical approximations.

  13. Reconnection and Associated Flares in Global Relativistic Jets Containing Helical Magnetic Fields with PIC Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Hartmann, Dieter; Mizuno, Yosuke; Niemiec, Jacek; Dutan, Ioana; Kobzar, Oleh; Gomez, Jose; Meli, Athina; POHL, Martin

    2018-01-01

    In the study of relativistic jets one of the key open questions is their interaction with theenvironment on the microscopic level. Here, we study the initial evolution of both electron–proton and electron–positron relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI) using a larger jet radius. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the electron-proton jet simulation a recollimation-like instability occurs near the center of jet. In the electron-positron jet simulation mixed kinetic instabilities grow and the jet electrons are accelerated. The evolution of electron-ion jets will be investigated with different mass ratios. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields. We will investigate mechanisms of flares possibly due to reconnection.

  14. Optimizing the resource usage in Cloud based environments: the Synergy approach

    NASA Astrophysics Data System (ADS)

    Zangrando, L.; Llorens, V.; Sgaravatto, M.; Verlato, M.

    2017-10-01

    Managing resource allocation in a cloud based data centre serving multiple virtual organizations is a challenging issue. In fact, while batch systems are able to allocate resources to different user groups according to specific shares imposed by the data centre administrator, without a static partitioning of such resources, this is not so straightforward in the most common cloud frameworks, e.g. OpenStack. In the current OpenStack implementation, it is only possible to grant fixed quotas to the different user groups and these resources cannot be exceeded by one group even if there are unused resources allocated to other groups. Moreover in the existing OpenStack implementation, when there aren’t resources available, new requests are simply rejected: it is then up to the client to later re-issue the request. The recently started EU-funded INDIGO-DataCloud project is addressing this issue through “Synergy”, a new advanced scheduling service targeted for OpenStack. Synergy adopts a fair-share model for resource provisioning which guarantees that resources are distributed among users following the fair-share policies defined by the administrator, taken also into account the past usage of such resources. We present the architecture of Synergy, the status of its implementation, some preliminary results and the foreseen evolution of the service.

  15. The Topical Evolution: Free Ions, Orthomolecular Agents, Phytochemicals, and Insect-Produced Substances

    PubMed Central

    Conner-Kerr, Teresa

    2014-01-01

    Significance: A variety of topical antiseptic substances have been used historically to treat open wounds with suspected tissue infection or that are slow to heal. However, the effectiveness of these substances in treating infected or recalcitrant wounds remains controversial. Recent Advances: Newly formulated topical antiseptics delivered through differing dressing technologies, such as ionic substances, hold the potential to limit the development of and treat antibiotic-resistant microbes in open wounds. Other topically delivered substances, such as insect-derived substances, orthomolecular agents, and phytochemicals, also present opportunities to optimize wound healing by decreasing tissue bioburden and facilitating the wound healing process. Critical Issues: Limited systemic perfusion of open wounds in individuals with certain diagnoses, such as peripheral arterial disease or necrotizing infection and the increasing number of antibiotic-resistant wound pathogens, suggests a continued role for topically applied antiseptic agents. Likewise, the failure of wounds to heal when treated with standard of care therapy opens the door to innovative treatment approaches that include the natural substances described in this article. Future Directions: Evidence for the use of select topical antiseptic agents from each of the aforementioned categories will be discussed in this article. Additional well-controlled clinical studies are needed to provide definitive recommendations for many of these topical agents. PMID:25126473

  16. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas C.; Polashenski, Chris M.

    2018-04-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  17. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron Capture Abundance Gradients

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia M. L.; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-01-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity, and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron-capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  18. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    NASA Astrophysics Data System (ADS)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  19. The origin and evolution of chordate nervous systems

    PubMed Central

    Holland, Linda Z.

    2015-01-01

    In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum. PMID:26554041

  20. Is our heart a well-designed pump? The heart along animal evolution.

    PubMed

    Bettex, Dominique A; Prêtre, René; Chassot, Pierre-Guy

    2014-09-07

    A carrier system for gases and nutrients became mandatory when primitive animals grew larger and developed different organs. The first circulatory systems are peristaltic tubes pushing slowly the haemolymph into an open vascular tree without capillaries (worms). Arthropods developed contractile bulges on the abdominal aorta assisted by accessory hearts for wings or legs and by abdominal respiratory motions. Two-chamber heart (atrium and ventricle) appeared among mollusks. Vertebrates have a multi-chamber heart and a closed circulation with capillaries. Their heart has two chambers in fishes, three chambers (two atria and one ventricle) in amphibians and reptiles, and four chambers in birds and mammals. The ventricle of reptiles is partially divided in two cavities by an interventricular septum, leaving only a communication of variable size leading to a variable shunt. Blood pressure increases progressively from 15 mmHg (worms) to 170/70 mmHg (birds) according to the increase in metabolic rate. When systemic pressure exceeds 50 mmHg, a lower pressure system appears for the circulation through gills or lungs in order to improve gas exchange. A four-chamber heart allows a complete separation of systemic and pulmonary circuits. This review describes the circulatory pumping systems used in the different classes of animals, their advantages and failures, and the way they have been modified with evolution. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  1. Teaching students to think critically about science and origins

    NASA Astrophysics Data System (ADS)

    Seals, Mark A.

    2010-03-01

    In David Long's article, Scientists at Play in a Field of the Lord, he studies the discourse between a network of regional scientists, atheists, activists and evolutionists at the opening of The Creation Museum on Memorial Day, 2007. This review essay examines the teaching of evolution through the teacher's `lens of empathy' and also considers a `pupil centeredness' approach. As a practicing science educator, I have found it paramount to take into consideration my students' backgrounds and their families' beliefs in order to understand their preconceived notions about the origins of life. By teaching evolution as `a theory with both facts and fallacies' only then does it become an opportunity for critical thinking that fosters growth and risk taking in a safe environment. Most times students hear evolution preached as a one-sided lecture by teachers who believe it's "my way or the highway" and leave little or no room for dialogue. I believe that a teacher's job is to stay updated with current research on the theory of evolution and then present all the information to students in a way that creates personal opportunities for them to adjust their existing schema without demeaning them, their ideas, or their faith or belief system. This not only shows value, compassion and tolerance for them as thinking humans, but also allows them opportunities to develop critical thinking, which helps to shape whom they become as adults.

  2. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner-Preston (GP) zones in dilute Al-Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson-Mehl-Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  3. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates.

    PubMed

    Anderson, Samantha R; Wiens, John J

    2017-08-01

    Many animals are active only during a particular time (e.g., day vs. night), a partitioning that may have important consequences for species coexistence. An open question is the extent to which this diel activity niche is evolutionarily conserved or labile. Here, we analyze diel activity data across a phylogeny of 1914 tetrapod species. We find strong phylogenetic signal, showing that closely related species tend to share similar activity patterns. Ancestral reconstructions show that nocturnality was the most likely ancestral diel activity pattern for tetrapods and many major clades within it (e.g., amphibians, mammals). Remarkably, nocturnal activity appears to have been maintained continuously in some lineages for ∼350 million years. Thus, we show that traits involved in local-scale resource partitioning can be conserved over strikingly deep evolutionary time scales. We also demonstrate a potentially important (but often overlooked) metric of niche conservatism. Finally, we show that diurnal lineages appear to have faster speciation and diversification rates than nocturnal lineages, which may explain why there are presently more diurnal tetrapod species even though diurnality appears to have evolved more recently. Overall, our results may have implications for studies of community ecology, species richness, and the evolution of diet and communication systems. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. A Search for Quiet Massive X-ray Binaries

    NASA Astrophysics Data System (ADS)

    McSwain, M. V.; Boyajian, T. S.; Grundstrom, E.; Gies, D. R.

    2005-12-01

    Wind accretion models of the X-ray luminosity in massive X-ray binaries (MXRBs) predict a class of "quiet" MXRBs in which the stellar wind is too weak to power a strong X-ray source. The first two candidates systems, HD 14633 and HD 15137, were recently detected. These O star + neutron star systems were ejected from the open cluster NGC 654, but although they both show evidence of a past supernova within the binary system, neither is a known X-ray emitter. These systems provide a new opportunity to examine the ejection mechanisms responsible for the OB runaway stars, and they can also provide key information about the evolution of spun-up, rejuvenated massive stars. We present here preliminary results from a search for other such quiet MXRBs. MVM is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.

  5. Lightweight mid-infrared methane sensor for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Golston, Levi M.; Tao, Lei; Brosy, Caroline; Schäfer, Klaus; Wolf, Benjamin; McSpiritt, James; Buchholz, Bernhard; Caulton, Dana R.; Pan, Da; Zondlo, Mark A.; Yoel, David; Kunstmann, Harald; McGregor, Marty

    2017-06-01

    The design and field performance of a compact diode laser-based instrument for measuring methane on unmanned aerial systems (UAS) is described. The system is based on open-path, wavelength modulation spectroscopy with a 3.27 µm GaSb laser. We design two versions of the sensor for a long-endurance fixed wing UAS and a rotary wing hexacopter, with instrument masses of 4.6 and 1.6 kg, respectively. The long-endurance platform was used to measure vertical profiles of methane up to 600 m in altitude and showed repeatability of 13 ppbv between multiple profiles. Additionally, the hexacopter system was used to evaluate the evolution of methane in the nocturnal boundary layer during the ScaleX field campaign in Germany, where measured data is consistent with supporting ground-based methane and meteorological measurements. Testing results on both platforms demonstrated our lightweight methane sensor had an in-flight precision of 5-10 ppbv Hz-1/2.

  6. Hole-Accepting-Ligand-Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy.

    PubMed

    Li, Xu-Bing; Liu, Bin; Wen, Min; Gao, Yu-Ji; Wu, Hao-Lin; Huang, Mao-Yong; Li, Zhi-Jun; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-04-01

    Solar H 2 evolution of CdSe QDs can be significantly enhanced simply by introducing a suitable hole-accepting-ligand for achieving efficient hole extraction and transfer at the nanoscale interfaces, which opens an effective pathway for dissociation of excitons to generate long-lived charge separation, thus improving the solar-to-fuel conversion efficiency.

  7. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts

    DTIC Science & Technology

    2016-12-24

    Te, and Michael Lynch Department of Biology , Indiana University, Bloomington, IN *Corresponding author: E-mail: longhongan@gmail.com. Accepted...GBE The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access...fungal mutation spectrum. Supplementary Material Supplementary data are available at Genome Biology and Evolution online. Acknowledgments This research

  8. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system. The lengthscale of the migration and the nature of invading fluids during these connections is different in every studied example, and can be related to the tectonic nature of the fold, along with the burial depth at the time of deformation. Thus, to decipher fluid-fracture relationships provides insights to better reconstruct the mechanisms of deformation at reservoir-scale.

  9. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.

  10. Expanding Our Now: The Story of Open Space Technology. First Edition.

    ERIC Educational Resources Information Center

    Owen, Harrison

    Suggesting that Open Space Technology (OST) is an effective, fast, and easily repeatable strategy for organizing meetings of between 5 and 1,000 participants, this book offers numerous examples to illustrate the evolution of OST and explores what it is, and how it developed as a process for meeting management. The book also discusses how and why…

  11. Lidar observations of wind- and wave-driven morphological evolution of coastal foredunes

    NASA Astrophysics Data System (ADS)

    Spore, N.; Brodie, K. L.; Kershner, C. M.

    2016-02-01

    Coastal foredunes are continually evolving geomorphic features that are slowly built up by wind-blown sand and rapidly eroded during storms by large waves and swash. Landward aeolian transport removes sediment from the active beach and surf-zone, trapping it in the dune, where as coastal erosion both removes sediment from the dune and can decrease the overall fetch and sediment supply available to the dune. Understanding how wave and wind-driven process interact with each other and the dune-beach system itself is a critical component of improving predictions of coastal evolution. To investigate these processes, two 50 m alongshore by 25 m cross-shore patches of dune along an open coast beach fronting the Atlantic Ocean in Duck, NC were scanned with a high resolution terrestrial lidar scanner ( 5000 points per m^2) every three weeks over the last year to observe detailed morphological evolution of the dune and upper beach. Sequential scans were co-registered to each other using fixed objects in the field of view, significantly increasing precision and accuracy of the observations. The north study site featured a 7.5 m tall scarped foredune system, where as the southern study site featured a 6 m tall, hummocky, prograding foredune. Initial analyses show large accretion events on the southern prograding site. For example, during one three week period in February, portions of the site accreted over 40 cm. In contrast, during the same three week period at the northern site (less than 1 km away), response was alongshore variable with erosion and accretion of roughly 10 cm on the foredune face. Further analysis will focus on separating wind vs. wave driven evolution of these sites. Funded by the USACE Coastal Inlets Research Program.

  12. [Renin-angiotensin-aldosteron system: evolution of views from renin discovery to nowadays. Perspectives of therapeutic block].

    PubMed

    Shestakova, M V

    2011-01-01

    Recent revolution in the knowledge about structure, physiological and pathophysiological effects of renin-angiotensin-aldosteron system (RAAS) took place recently when it was discovered that local synthesis of all the RAAS components occurs in target organs and their tissues (the heart, kidneys, vessels, brain tissues). It was found that besides classic RAAS acting via activation of angiotensin II (Ang-II) and its receptors, there is an alternative RAAS opposed to atherogenic potential of Ang-II. Renin and prorenin are shown to have both enzymatic and hormonal activities. Wider understanding appeared of extrarenal effects of aldosteron, its non-genomic activity. The above discoveries open new opportunities for pharmacological regulation of RAAS activity, which enables more effectively correct overactivity of this system in organs at risk of negativeAng-II impact.

  13. Network-based recommendation algorithms: A review

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  14. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis

    PubMed Central

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-01-01

    The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board’s memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications. PMID:26053749

  15. Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-06-04

    The Indoor Environmental Quality (IEQ) refers to the quality of the environment in relation to the health and well-being of the occupants. It is a holistic concept, which considers several categories, each related to a specific environmental parameter. This article describes a low-cost and open-source hardware architecture able to detect the indoor variables necessary for the IEQ calculation as an alternative to the traditional hardware used for this purpose. The system consists of some sensors and an Arduino board. One of the key strengths of Arduino is the possibility it affords of loading the script into the board's memory and letting it run without interfacing with computers, thus granting complete independence, portability and accuracy. Recent works have demonstrated that the cost of scientific equipment can be reduced by applying open-source principles to their design using a combination of the Arduino platform and a 3D printer. The evolution of the 3D printer has provided a new means of open design capable of accelerating self-directed development. The proposed nano Environmental Monitoring System (nEMoS) instrument is shown to have good reliability and it provides the foundation for a more critical approach to the use of professional sensors as well as for conceiving new scenarios and potential applications.

  16. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  17. Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae)

    PubMed Central

    Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan

    2012-01-01

    Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research. PMID:22792207

  18. Key Science Goals for a Next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Murphy, Eric Joseph; ngVLA Science Advisory Council and all ngVLA Science Working Groups

    2018-01-01

    Inspired by dramatic discoveries from the Jansky VLA and ALMA, a plan to pursue a large collecting area radio interferometer that will open new discovery space from proto-planetary disks to distant galaxies is being developed by NRAO and the science community. Building on the superb cm observing conditions and existing infrastructure of the VLA site, the current vision of the ngVLA will be an interferometric array with more than 10 times the effective collecting area and spatial resolution of the current VLA and ALMA, that will operating at frequencies spanning ~1.2. – 116 GHz. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. As such, the ngVLA will open a new window on the universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcecond resolution, as well as deliver unprecedented broad band continuum polarimetric imaging of non-thermal processes. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: unveil the formation of Solar System analogues; probe the initial conditions for planetary systems and life with astrochemistry; characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; use pulsars in the Galactic center as fundamental tests of gravity; and understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.

  19. A multiphysics and multiscale software environment for modeling astrophysical systems

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; McMillan, Steve; Harfst, Stefan; Groen, Derek; Fujii, Michiko; Nualláin, Breanndán Ó.; Glebbeek, Evert; Heggie, Douglas; Lombardi, James; Hut, Piet; Angelou, Vangelis; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Gaburov, Evghenii; Izzard, Rob; Jurić, Mario; Justham, Stephen; Sottoriva, Andrea; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel

    2009-05-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a "Noah's Ark" milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.

  20. Spatial Models of Prebiotic Evolution: Soup Before Pizza?

    NASA Astrophysics Data System (ADS)

    Scheuring, István; Czárán, Tamás; Szabó, Péter; Károlyi, György; Toroczkai, Zoltán

    2003-10-01

    The problem of information integration and resistance to the invasion of parasitic mutants in prebiotic replicator systems is a notorious issue of research on the origin of life. Almost all theoretical studies published so far have demonstrated that some kind of spatial structure is indispensable for the persistence and/or the parasite resistance of any feasible replicator system. Based on a detailed critical survey of spatial models on prebiotic information integration, we suggest a possible scenario for replicator system evolution leading to the emergence of the first protocells capable of independent life. We show that even the spatial versions of the hypercycle model are vulnerable to selfish parasites in heterogeneous habitats. Contrary, the metabolic system remains persistent and coexistent with its parasites both on heterogeneous surfaces and in chaotically mixing flowing media. Persistent metabolic parasites can be converted to metabolic cooperators, or they can gradually obtain replicase activity. Our simulations show that, once replicase activity emerged, a gradual and simultaneous evolutionary improvement of replicase functionality (speed and fidelity) and template efficiency is possible only on a surface that constrains the mobility of macromolecule replicators. Based on the results of the models reviewed, we suggest that open chaotic flows (`soup') and surface dynamics (`pizza') both played key roles in the sequence of evolutionary events ultimately concluding in the appearance of the first living cell on Earth.

  1. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  2. Coronal hole boundaries evolution at small scales. I. EIT 195 Å  and TRACE 171 Å view

    NASA Astrophysics Data System (ADS)

    Madjarska, M. S.; Wiegelmann, T.

    2009-09-01

    Aims: We aim to study the small-scale evolution at the boundaries of an equatorial coronal hole connected with a channel of open magnetic flux to the polar region and an “isolated” one in the extreme-ultraviolet spectral range. We determine the spatial and temporal scale of these changes. Methods: Imager data from TRACE in the Fe ix/x 171 Å passband and EIT on-board Solar and Heliospheric Observatory in the Fe xii 195 Å passband were analysed. Results: We found that small-scale loops known as bright points play an essential role in coronal hole boundary evolution at small scales. Their emergence and disappearance continuously expand or contract coronal holes. The changes appear to be random on a time scale comparable to the lifetime of the loops seen at these temperatures. No signature was found for a major energy release during the evolution of the loops. Conclusions: Although coronal holes seem to maintain their general shape during a few solar rotations, a closer look at their day-by-day and even hour-by-hour evolution demonstrates significant dynamics. The small-scale loops (10´´-40´´ and smaller) which are abundant along coronal hole boundaries contribute to the small-scale evolution of coronal holes. Continuous magnetic reconnection of the open magnetic field lines of the coronal hole and the closed field lines of the loops in the quiet Sun is more likely to take place. Movies are only available in electronic form at http://www.aanda.org

  3. Sharing Lessons-Learned on Effective Open Data, Open-Source Practices from OpenAQ, a Global Open Air Quality Community.

    NASA Astrophysics Data System (ADS)

    Hasenkopf, C. A.

    2017-12-01

    Increasingly, open data, open-source projects are unearthing rich datasets and tools, previously impossible for more traditional avenues to generate. These projects are possible, in part, because of the emergence of online collaborative and code-sharing tools, decreasing costs of cloud-based services to fetch, store, and serve data, and increasing interest of individuals to contribute their time and skills to 'open projects.' While such projects have generated palpable enthusiasm from many sectors, many of these projects face uncharted paths for sustainability, visibility, and acceptance. Our project, OpenAQ, is an example of an open-source, open data community that is currently forging its own uncharted path. OpenAQ is an open air quality data platform that aggregates and universally formats government and research-grade air quality data from 50 countries across the world. To date, we make available more than 76 million air quality (PM2.5, PM10, SO2, NO2, O3, CO and black carbon) data points through an open Application Programming Interface (API) and a user-customizable download interface at https://openaq.org. The goal of the platform is to enable an ecosystem of users to advance air pollution efforts from science to policy to the private sector. The platform is also an open-source project (https://github.com/openaq) and has only been made possible through the coding and data contributions of individuals around the world. In our first two years of existence, we have seen requests for data to our API skyrocket to more than 6 million datapoints per month, and use-cases as varied as ingesting data aggregated from our system into real-time models of wildfires to building open-source statistical packages (e.g. ropenaq and py-openaq) on top of the platform to creating public-friendly apps and chatbots. We will share a whirl-wind trip through our evolution and the many lessons learned so far related to platform structure, community engagement, organizational model type and sustainability.

  4. Quantum trajectories for time-dependent adiabatic master equations

    NASA Astrophysics Data System (ADS)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  5. The dynamics of correlated novelties.

    PubMed

    Tria, F; Loreto, V; Servedio, V D P; Strogatz, S H

    2014-07-31

    Novelties are a familiar part of daily life. They are also fundamental to the evolution of biological systems, human society, and technology. By opening new possibilities, one novelty can pave the way for others in a process that Kauffman has called "expanding the adjacent possible". The dynamics of correlated novelties, however, have yet to be quantified empirically or modeled mathematically. Here we propose a simple mathematical model that mimics the process of exploring a physical, biological, or conceptual space that enlarges whenever a novelty occurs. The model, a generalization of Polya's urn, predicts statistical laws for the rate at which novelties happen (Heaps' law) and for the probability distribution on the space explored (Zipf's law), as well as signatures of the process by which one novelty sets the stage for another. We test these predictions on four data sets of human activity: the edit events of Wikipedia pages, the emergence of tags in annotation systems, the sequence of words in texts, and listening to new songs in online music catalogues. By quantifying the dynamics of correlated novelties, our results provide a starting point for a deeper understanding of the adjacent possible and its role in biological, cultural, and technological evolution.

  6. The dynamics of correlated novelties

    NASA Astrophysics Data System (ADS)

    Tria, F.; Loreto, V.; Servedio, V. D. P.; Strogatz, S. H.

    2014-07-01

    Novelties are a familiar part of daily life. They are also fundamental to the evolution of biological systems, human society, and technology. By opening new possibilities, one novelty can pave the way for others in a process that Kauffman has called ``expanding the adjacent possible''. The dynamics of correlated novelties, however, have yet to be quantified empirically or modeled mathematically. Here we propose a simple mathematical model that mimics the process of exploring a physical, biological, or conceptual space that enlarges whenever a novelty occurs. The model, a generalization of Polya's urn, predicts statistical laws for the rate at which novelties happen (Heaps' law) and for the probability distribution on the space explored (Zipf's law), as well as signatures of the process by which one novelty sets the stage for another. We test these predictions on four data sets of human activity: the edit events of Wikipedia pages, the emergence of tags in annotation systems, the sequence of words in texts, and listening to new songs in online music catalogues. By quantifying the dynamics of correlated novelties, our results provide a starting point for a deeper understanding of the adjacent possible and its role in biological, cultural, and technological evolution.

  7. The dynamics of correlated novelties

    PubMed Central

    Tria, F.; Loreto, V.; Servedio, V. D. P.; Strogatz, S. H.

    2014-01-01

    Novelties are a familiar part of daily life. They are also fundamental to the evolution of biological systems, human society, and technology. By opening new possibilities, one novelty can pave the way for others in a process that Kauffman has called “expanding the adjacent possible”. The dynamics of correlated novelties, however, have yet to be quantified empirically or modeled mathematically. Here we propose a simple mathematical model that mimics the process of exploring a physical, biological, or conceptual space that enlarges whenever a novelty occurs. The model, a generalization of Polya's urn, predicts statistical laws for the rate at which novelties happen (Heaps' law) and for the probability distribution on the space explored (Zipf's law), as well as signatures of the process by which one novelty sets the stage for another. We test these predictions on four data sets of human activity: the edit events of Wikipedia pages, the emergence of tags in annotation systems, the sequence of words in texts, and listening to new songs in online music catalogues. By quantifying the dynamics of correlated novelties, our results provide a starting point for a deeper understanding of the adjacent possible and its role in biological, cultural, and technological evolution. PMID:25080941

  8. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    PubMed

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  9. WRAP low level waste (LLW) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into anothermore » 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  10. Multimedia courseware in an open-systems environment: a DoD strategy

    NASA Astrophysics Data System (ADS)

    Welsch, Lawrence A.

    1991-03-01

    The federal government is about to invest billions of dollars to develop multimedia training materials for delivery on computer-based interactive training systems. Acquisition of a variety of computers and peripheral devices hosting various operating systems and suites of authoring system software will be necessary to facilitate the development of this courseware. There is no single source that will satisfy all needs. Although high-performance, low-cost interactive training hardware is available, the products have proprietary software interfaces. Because the interfaces are proprietary, expensive reprogramming is usually required to adapt such software products to other platforms. This costly reprogramming could be eliminated by adopting standard software interfaces. DoD's Portable Courseware Project (PORTCO) is typical of projects worldwide that require standard software interfaces. This paper articulates the strategy whereby PORTCO leverages the open systems movement and the new realities of information technology. These realities encompass changes in the pace at which new technology becomes available, changes in organizational goals and philosophy, new roles of vendors and users, changes in the procurement process, and acceleration toward open system environments. The PORTCO strategy is applicable to all projects and systems that require open systems to achieve mission objectives. The federal goal is to facilitate the creation of an environment in which high quality portable courseware is available as commercial off-the-shelf products and is competitively supplied by a variety of vendors. In order to achieve this goal a system architecture incorporating standards to meet the users' needs must be established. The Request for Architecture (RFA) developed cooperatively by DoD and the National Institute of Standards and Technology (NIST) will generate the PORTCO systems architecture. This architecture must freely integrate the courseware and authoring software from the lower levels of machine architecture and systems service implementation. In addition, the systems architecture will establish how the application-specific technologies relate to other technologies. Further, a computer-based interactive training applications profile must be developed. This profile, along with the systems architecture derived as a result of the RFA, provides the basis for identifying the needed standards. NIST will then accelerate the development of these standards using, but not restricted to, existing standards activities within established standards forums. The federal multimedia courseware effort has adopted the Interactive Multimedia Association (INA) Recommended Practices for Interactive Video Portability as the baseline for the migration of computer-based interactive training systems to an open systems environment based upon international standards. The PORTCO strategy includes an evolutionary migration to a standards-based, Open System Environments (OSE). An important aspect of this migration strategy is to move to open systems via stepwise evolution rather than via quantum leaps. Another area of concern is that of infrastructure issues, such as maintaining and supporting the technologies required for computer-based interactive training. The federal multimedia initiative will use the RFA-based architecture to differentiate between those technologies that can be maintained and supported by existing infrastructure mechanisms and those that require new mechanisms. Existing infrastructure mechanisms will be used and where infrastructure mechanisms do not exist, the approach will be to place high priority on establishing the appropriate mechanisms. Establishing an infrastructure mechanism is a nontrivial task requiring sustained investment of resources.

  11. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    High-resolution topography data acquired with lidar (light detection and ranging) technology are revolutionizing the way we study the Earth's surface and overlying vegetation. These data, collected from airborne, tripod, or mobile-mounted scanners have emerged as a fundamental tool for research on topics ranging from earthquake hazards to hillslope processes. Lidar data provide a digital representation of the earth's surface at a resolution sufficient to appropriately capture the processes that contribute to landscape evolution. The U.S. National Science Foundation-funded OpenTopography Facility (http://www.opentopography.org) is a web-based system designed to democratize access to earth science-oriented lidar topography data. OpenTopography provides free, online access to lidar data in a number of forms, including the raw point cloud and associated geospatial-processing tools for customized analysis. The point cloud data are co-located with on-demand processing tools to generate digital elevation models, and derived products and visualizations which allow users to quickly access data in a format appropriate for their scientific application. The OpenTopography system is built using a service-oriented architecture (SOA) that leverages cyberinfrastructure resources at the San Diego Supercomputer Center at the University of California San Diego to allow users, regardless of expertise level, to access these massive lidar datasets and derived products for use in research and teaching. OpenTopography hosts over 500 billion lidar returns covering 85,000 km2. These data are all in the public domain and are provided by a variety of partners under joint agreements and memoranda of understanding with OpenTopography. Partners include national facilities such as the NSF-funded National Center for Airborne Lidar Mapping (NCALM), as well as non-governmental organizations and local, state, and federal agencies. OpenTopography has become a hub for high-resolution topography resources. Datasets hosted by other organizations, as well as lidar-specific software, can be registered into the OpenTopography catalog, providing users a "one-stop shop" for such information. With several thousand active users, OpenTopography is an excellent example of a mature Spatial Data Infrastructure system that is enabling access to challenging data for research, education and outreach. Ongoing OpenTopography design and development work includes the archive and publication of datasets using digital object identifiers (DOIs); creation of a more flexible and scalable high-performance environment for processing of large datasets; expanded support for satellite and terrestrial lidar; and creation of a "pluggable" infrastructure for third-party programs and algorithms. OpenTopography has successfully created a facility for sharing lidar data. In the project's next phase, we are working to enable equally easy and successful sharing of services for processing and analysis of these data.

  12. Expanding the Scope of Anatomical Sciences: The Case of "Human Evolution--The Fossil Evidence" Course at the Sackler School of Medicine, Tel-Aviv University

    ERIC Educational Resources Information Center

    Notzer, Netta; Abramovitz, Ruth

    2012-01-01

    The Anatomy Department at Tel-Aviv University Medical School offers its students an elective course of 26 didactic hours on human evolution. The course is open to students from all faculties, who must fulfill all academic requirements, without a prerequisite of a background in anatomy. Approximately 120 students attend annually, a third of them…

  13. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.

    Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less

  15. Locality for quantum systems on graphs depends on the number field

    NASA Astrophysics Data System (ADS)

    Hall, H. Tracy; Severini, Simone

    2013-07-01

    Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.

  16. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  17. Unexpectedly large charge radii of neutron-rich calcium isotopes

    DOE PAGES

    Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; ...

    2016-02-08

    Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less

  18. The eikonal function: the commom concept in ray optics and particle mechanics

    NASA Astrophysics Data System (ADS)

    Krautter, Martin

    1993-04-01

    The habit of teaching the movements of masses first, and propagation of light later, as an electromagnetic phenomenon was widespread. Looking further back into the history of physics, however, we see earlier the concepts for understanding light rays, and later their successful application to particle trajectories, leading to the highly developed celestial mechanics towards the end of the 19th century. And then, 1905, Karl Schwarzschild transferred the technique of `canonical coordinates,' named so by C.G.J. Jacobi in 1837, back to light rays in imaging systems. I would like to point to the chief steps in the evolution. The learning process for handling both particle and wave propagation aspects continues up to our time: Richard Feynman 1918 - 1988. We may judge each contribution: whether it opens our mind to a unifying theory, or whether it hardens partial understanding. And we can notice where the understanding of light propagation led the evolution, and how the theory for movement of masses caught up.

  19. Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China.

    PubMed

    Li, Zhiheng; Clarke, Julia A; Eliason, Chad M; Stidham, Thomas A; Deng, Tao; Zhou, Zhonghe

    2018-05-25

    Modifications to the upper vocal tract involving hyper-elongated tracheae have evolved many times within crown birds, and their evolution has been linked to a 'size exaggeration' hypothesis in acoustic signaling and communication, whereby smaller-sized birds can produce louder sounds. A fossil skeleton of a new extinct species of wildfowl (Galliformes: Phasianidae) from the late Miocene of China, preserves an elongated, coiled trachea that represents the oldest fossil record of this vocal modification in birds and the first documentation of its evolution within pheasants. The phylogenetic position of this species within Phasianidae has not been fully resolved, but appears to document a separate independent origination of this vocal modification within Galliformes. The fossil preserves a coiled section of the trachea and other remains supporting a tracheal length longer than the bird's body. This extinct species likely produced vocalizations with a lower fundamental frequency and reduced harmonics compared to similarly-sized pheasants. The independent evolution of this vocal feature in galliforms living in both open and closed habitats does not appear to be correlated with other factors of biology or its open savanna-like habitat. Features present in the fossil that are typically associated with sexual dimorphism suggest that sexual selection may have resulted in the evolution of both the morphology and vocalization mechanism in this extinct species.

  20. Crustal forensics in arc magmas

    NASA Astrophysics Data System (ADS)

    Davidson, Jon P.; Hora, John M.; Garrison, Jennifer M.; Dungan, Michael A.

    2005-01-01

    The geochemical characteristics of continental crust are present in nearly all arc magmas. These characteristics may reflect a specific source process, such as fluid fluxing, common to both arc magmas and the continental crust, and/or may reflect the incorporation of continental crust into arc magmas either at source via subducted sediment, or via contamination during differentiation. Resolving the relative mass contributions of juvenile, mantle-derived material, versus that derived from pre-existing crust of the upper plate, and providing these estimates on an element-by-element basis, is important because: (1) we want to constrain crustal growth rates; (2) we want to quantitatively track element cycling at convergent margins; and (3) we want to determine the origin of economically important elements and compounds. Traditional geochemical approaches for determining the contributions of various components to arc magmas are particularly successful when applied on a comparative basis. Studies of suites from multiple magmatic systems along arcs, for which differentiation effects can be individually constrained, can be used to extrapolate to potential source compositions. In the Lesser Antilles Arc, for example, differentiation trends from individual volcanoes are consistent with open-system evolution. However, such trends do not project back to a common primitive magma composition, suggesting that differentiation modifies magmas that were derived from distinct mantle sources. We propose that such approaches should now be complemented by petrographically constrained mineral-scale isotope and trace element analysis to unravel the contributing components to arc magmas. This innovative approach can: (1) better constrain true end-member compositions by returning wider ranges in geochemical compositions among constituent minerals than is found in whole rocks; (2) better determine magmatic evolution processes from core-rim isotopic or trace element profiles from the phases contained in magmas; and (3) constrain rates of differentiation by applying diffusion-controlled timescales to element profiles. An example from Nguaruhoe Volcano, New Zealand, underscores the importance of such a microsampling approach, showing that mineral isotopic compositions encompass wide ranges, that whole-rock isotopic compositions are consequently simply element-weighted averages of the heterogeneous crystal cargo, and that open-system evolution is proved by core-rim variations in Sr isotope ratios. Nguaruhoe is just one of many systems examined through microanalytical approaches. The overwhelming conclusion of these studies is that crystal cargoes are not truly phenocrystic, but are inherited from various sources. The implication of this realization is that the interpretation of whole-rock isotopic data, including the currently popular U-series, needs careful evaluation in the context of petrographic observations.

  1. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom.

    PubMed

    Olsen, Aaron M; Camp, Ariel L; Brainerd, Elizabeth L

    2017-12-15

    The planar, one degree of freedom (1-DoF) four-bar linkage is an important model for understanding the function, performance and evolution of numerous biomechanical systems. One such system is the opercular mechanism in fishes, which is thought to function like a four-bar linkage to depress the lower jaw. While anatomical and behavioral observations suggest some form of mechanical coupling, previous attempts to model the opercular mechanism as a planar four-bar have consistently produced poor model fits relative to observed kinematics. Using newly developed, open source mechanism fitting software, we fitted multiple three-dimensional (3D) four-bar models with varying DoF to in vivo kinematics in largemouth bass to test whether the opercular mechanism functions instead as a 3D four-bar with one or more DoF. We examined link position error, link rotation error and the ratio of output to input link rotation to identify a best-fit model at two different levels of variation: for each feeding strike and across all strikes from the same individual. A 3D, 3-DoF four-bar linkage was the best-fit model for the opercular mechanism, achieving link rotational errors of less than 5%. We also found that the opercular mechanism moves with multiple degrees of freedom at the level of each strike and across multiple strikes. These results suggest that active motor control may be needed to direct the force input to the mechanism by the axial muscles and achieve a particular mouth-opening trajectory. Our results also expand the versatility of four-bar models in simulating biomechanical systems and extend their utility beyond planar or single-DoF systems. © 2017. Published by The Company of Biologists Ltd.

  2. Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, sourthern volcanic zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers

    USGS Publications Warehouse

    Dungan, M.A.; Wulff, A.; Thompson, R.

    2001-01-01

    The Quaternary Tatara-San Pedro volcanic complex (36°S, Chilean Andes) comprises eight or more unconformity-bound volcanic sequences, representing variably preserved erosional remnants of volcanic centers generated during 930 ky of activity. The internal eruptive histories of several dominantly mafic to intermediate sequences have been reconstructed, on the basis of correlations of whole-rock major and trace element chemistry of flows between multiple sampled sections, but with critical contributions from photogrammetric, geochronologic, and paleomagnetic data. Many groups of flows representing discrete eruptive events define internal variation trends that reflect extrusion of heterogeneous or rapidly evolving magna batches from conduit-reservoir systems in which open-system processes typically played a large role. Long-term progressive evolution trends are extremely rare and the magma compositions of successive eruptive events rarely lie on precisely the same differentiation trend, even where they have evolved from similar parent magmas by similar processes. These observations are not consistent with magma differentiation in large long-lived reservoirs, but they may be accommodated by diverse interactions between newly arrived magma inputs and multiple resident pockets of evolved magma and / or crystal mush residing in conduit-dominated subvolcanic reservoirs. Without constraints provided by the reconstructed stratigraphic relations, the framework for petrologic modeling would be far different. A well-established eruptive stratigraphy may provide independent constraints on the petrologic processes involved in magma evolution-simply on the basis of the specific order in which diverse, broadly cogenetic magmas have been erupted. The Tatara-San Pedro complex includes lavas ranging from primitive basalt to high-SiO2 rhyolite, and although the dominant erupted magma type was basaltic andesite ( 52-55 wt % SiO2) each sequence is characterized by unique proportions of mafic, intermediate, and silicic eruptive products. Intermediate lava compositions also record different evolution paths, both within and between sequences. No systematic long-term pattern is evident from comparisons at the level of sequences. The considerable diversity of mafic and evolved magmas of the Tatara-San Pedro complex bears on interpretations of regional geochemical trends. The variable role of open-system processes in shaping the compositions of evolved Tatara-San Pedro complex magmas, and even some basaltic magmas, leads to the conclusion that addressing problems such as are magma genesis and elemental fluxes through subduction zones on the basis of averaged or regressed reconnaissance geochemical datasets is a tenuous exercise. Such compositional indices are highly instructive for identifying broad regional trends and first-order problems, but they should be used with extreme caution in attempts to quantify processes and magma sources, including crustal components, implicated in these trends.

  3. Effect of silicate and phosphate additives on the kinetics of the oxygen evolution reaction in valve-regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Vinod, M. P.; Vijayamohanan, K.; Joshi, S. N.

    Effect of sodium silicate and phosphoric acid additives on the kinetics of oxygen evolution on PbO 2 electrodes in sulfuric acid has been studied in gelled and flooded electrolytes with relevance to valve-regulated lead/acid batteries. A comparison of the open-circuit potential versus time transients, with and without these additives, indicates that the additives suppress self-discharge of the electrodes. Tafel polarization studies also suggest that the addition of phosphoric acid attenuates the rate of oxygen evolution reaction. These findings have been supported with cyclic voltammetric data.

  4. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  5. RANGER-DTL 2.0: Rigorous Reconstruction of Gene-Family Evolution by Duplication, Transfer, and Loss.

    PubMed

    Bansal, Mukul S; Kellis, Manolis; Kordi, Misagh; Kundu, Soumya

    2018-04-24

    RANGER-DTL 2.0 is a software program for inferring gene family evolution using Duplication-Transfer-Loss reconciliation. This new software is highly scalable and easy to use, and offers many new features not currently available in any other reconciliation program. RANGER-DTL 2.0 has a particular focus on reconciliation accuracy and can account for many sources of reconciliation uncertainty including uncertain gene tree rooting, gene tree topological uncertainty, multiple optimal reconciliations, and alternative event cost assignments. RANGER-DTL 2.0 is open-source and written in C ++ and Python. Pre-compiled executables, source code (open-source under GNU GPL), and a detailed manual are freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/. mukul.bansal@uconn.edu.

  6. Performing SELEX experiments in silico

    NASA Astrophysics Data System (ADS)

    Wondergem, J. A. J.; Schiessel, H.; Tompitak, M.

    2017-11-01

    Due to the sequence-dependent nature of the elasticity of DNA, many protein-DNA complexes and other systems in which DNA molecules must be deformed have preferences for the type of DNA sequence they interact with. SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments and similar sequence selection experiments have been used extensively to examine the (indirect readout) sequence preferences of, e.g., nucleosomes (protein spools around which DNA is wound for compactification) and DNA rings. We show how recently developed computational and theoretical tools can be used to emulate such experiments in silico. Opening up this possibility comes with several benefits. First, it allows us a better understanding of our models and systems, specifically about the roles played by the simulation temperature and the selection pressure on the sequences. Second, it allows us to compare the predictions made by the model of choice with experimental results. We find agreement on important features between predictions of the rigid base-pair model and experimental results for DNA rings and interesting differences that point out open questions in the field. Finally, our simulations allow application of the SELEX methodology to systems that are experimentally difficult to realize because they come with high energetic costs and are therefore unlikely to form spontaneously, such as very short or overwound DNA rings.

  7. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Rainville, Luc; Perry, Mary Jane

    2016-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  8. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Perry, M. J.

    2016-02-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  9. Decaying and growing eigenmodes in open quantum systems: Biorthogonality and the Petermann factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soo-Young

    2009-10-15

    We study the biorthogonality between decaying and growing eigenmodes in one-dimensional potential barrier problems. It is shown that Petermann factors K{sub n} of the eigenmodes, a measure of nonorthogonality, are involved in decaying mechanism of an initially confined particle. We also show that the decay tail of the growing modes at an exceptional point (EP), where K{sub n} become infinite, is not exponential, but {approx}t{sup 2}e{sup -{gamma}{sub EP}t}, {gamma}{sub EP} the decay rate of the decaying mode at EP. In addition, the geometrical phase near an EP is illustrated by the evolution of wave function.

  10. A Successful Component Architecture for Interoperable and Evolvable Ground Data Systems

    NASA Technical Reports Server (NTRS)

    Smith, Danford S.; Bristow, John O.; Wilmot, Jonathan

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has adopted an open architecture approach for satellite control centers and is now realizing benefits beyond those originally envisioned. The Goddard Mission Services Evolution Center (GMSEC) architecture utilizes standardized interfaces and a middleware software bus to allow functional components to be easily integrated. This paper presents the GMSEC architectural goals and concepts, the capabilities enabled and the benefits realized by adopting this framework approach. NASA experiences with applying the GMSEC architecture on multiple missions are discussed. The paper concludes with a summary of lessons learned, future directions for GMSEC and the possible applications beyond NASA GSFC.

  11. SBEToolbox: A Matlab Toolbox for Biological Network Analysis

    PubMed Central

    Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J.

    2013-01-01

    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases. PMID:24027418

  12. SBEToolbox: A Matlab Toolbox for Biological Network Analysis.

    PubMed

    Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J

    2013-01-01

    We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.

  13. Neuronal and molecular mechanisms of sleep homeostasis.

    PubMed

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hospital Management Between The Modern Image And Aging

    NASA Astrophysics Data System (ADS)

    Dadulescu, Ana-Maria

    2015-09-01

    Hospital management has experienced significant progress with the evolution of the Romanian health system reform, it has made strides in terms of resource allocation and cost control, new systems for classification, evaluation and monitoring (DRGs, SIUI, CaPeSaRo) were implemented, some taken from other countries and adapted to local conditions, but not always integrated with the other components and sometimes incompletely implemented and developed. This material does not offer definite solutions to current problems. It only briefly addresses the main aspects of hospital activity, and points out some failures with whom hospital managers are presently faced. Once the problems are identified it creates prerequisites for solving them, it opens channels of research and development of new methodologies or correlation of the existing deficient workflows that can be corrected.

  15. A Korteweg-de Vries description of dark solitons in polariton superfluids

    NASA Astrophysics Data System (ADS)

    Carretero-González, R.; Cuevas-Maraver, J.; Frantzeskakis, D. J.; Horikis, T. P.; Kevrekidis, P. G.; Rodrigues, A. S.

    2017-12-01

    We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed of a generalized open-dissipative Gross-Pitaevskii equation for the polaritons' wavefunction and a rate equation for the exciton reservoir density. Considering a perturbative regime of sufficiently small reservoir excitations, we use the reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equation with linear loss. This model is used to describe the analytical form and the dynamics of dark solitons. We show that the polariton field supports decaying dark soliton solutions with a decay rate determined analytically in the weak pumping regime. We also find that the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively the effective KdV picture.

  16. Software reuse in spacecraft planning and scheduling systems

    NASA Technical Reports Server (NTRS)

    Mclean, David; Tuchman, Alan; Broseghini, Todd; Yen, Wen; Page, Brenda; Johnson, Jay; Bogovich, Lynn; Burkhardt, Chris; Mcintyre, James; Klein, Scott

    1993-01-01

    The use of a software toolkit and development methodology that supports software reuse is described. The toolkit includes source-code-level library modules and stand-alone tools which support such tasks as data reformatting and report generation, simple relational database applications, user interfaces, tactical planning, strategic planning and documentation. The current toolkit is written in C and supports applications that run on IBM-PC's under DOS and UNlX-based workstations under OpenLook and Motif. The toolkit is fully integrated for building scheduling systems that reuse AI knowledge base technology. A typical scheduling scenario and three examples of applications that utilize the reuse toolkit will be briefly described. In addition to the tools themselves, a description of the software evolution and reuse methodology that was used is presented.

  17. Spin-imbalance in a 2D Fermi-Hubbard system

    NASA Astrophysics Data System (ADS)

    Brown, Peter T.; Mitra, Debayan; Guardado-Sanchez, Elmer; Schauß, Peter; Kondov, Stanimir S.; Khatami, Ehsan; Paiva, Thereza; Trivedi, Nandini; Huse, David A.; Bakr, Waseem S.

    2017-09-01

    The interplay of strong interactions and magnetic fields gives rise to unusual forms of superconductivity and magnetism in quantum many-body systems. Here, we present an experimental study of the two-dimensional Fermi-Hubbard model—a paradigm for strongly correlated fermions on a lattice—in the presence of a Zeeman field and varying doping. Using site-resolved measurements, we revealed anisotropic antiferromagnetic correlations, a precursor to long-range canted order. We observed nonmonotonic behavior of the local polarization with doping for strong interactions, which we attribute to the evolution from an antiferromagnetic insulator to a metallic phase. Our results pave the way to experimentally mapping the low-temperature phase diagram of the Fermi-Hubbard model as a function of both doping and spin polarization, for which many open questions remain.

  18. A new kinematic model for the Mesozoic evolution of the Iberia plate

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Tugend, Julie; Kusznir, Nick; Sauter, Daniel

    2017-04-01

    During the Mesozoic Iberia was progressively surrounded by rift systems leading to its transient individualization as a tectonic plate. The kinematic evolution of Iberia prior to oceanic magnetic anomaly C34 ( 83 Ma) is controversial. To date, no kinematic models accounts for the Late Aptian to Albian hyper-extended rift phase observed in the Pyrenees. Consistent isochronal features, such as oceanic magnetic anomalies, representing the backbones of oceanic plate reconstructions are lacking. The only potential candidate, the J-anomaly, located offshore Iberia and Newfoundland has recently been re-interpreted as resulting from polyphased and polygenic magmatic events and does not provide a useful constraint. We use a new reconstruction approach that integrates the spatio-temporal evolution of adjacent hyper-extended rift domains systems to investigate Iberia plate motion during the separation of the super-continent Pangea. The plate modeling is based on careful mapping and restoration of the rift domains with key rift events dated within the study area. The main outcomes of this new model are as follows: 1) A full-fit of the southern North Atlantic 2) Extension on the southern and eastern boundary of Iberia related to the opening of the Central Atlantic 3) Segmentation of the Iberia-Newfoundland rift system by fracture zones prior to a V-shape propagation of mantle exhumation and seafloor spreading 4) No Aptian subduction in the Pyrenean domain and a limited rotation of the Iberia plate 5) The partitioning of deformation between different micro-blocks along the Iberian-Eurasian boundary enabling Late Aptian to Albian extension in the Pyrenees The resulting plate kinematic model for Iberia differs from previous ones on three main points: it does not make use of the J magnetic anomaly because the J anomlay is neither an isochron or a COB marker; the deformation along the Iberian-Eurasian boundary is partitioned between distinct rift systems; and it incorporates extension in the Pyrenees consistent with published geological studies. Nonetheless this model is non-unique and additional observations are needed to further constrain the plate modeling notably by adding new constraints on the rift evolution of the southern and eastern margin of the Iberia plate during the Jurassic.

  19. TLM-Quant: an open-source pipeline for visualization and quantification of gene expression heterogeneity in growing microbial cells.

    PubMed

    Piersma, Sjouke; Denham, Emma L; Drulhe, Samuel; Tonk, Rudi H J; Schwikowski, Benno; van Dijl, Jan Maarten

    2013-01-01

    Gene expression heterogeneity is a key driver for microbial adaptation to fluctuating environmental conditions, cell differentiation and the evolution of species. This phenomenon has therefore enormous implications, not only for life in general, but also for biotechnological applications where unwanted subpopulations of non-producing cells can emerge in large-scale fermentations. Only time-lapse fluorescence microscopy allows real-time measurements of gene expression heterogeneity. A major limitation in the analysis of time-lapse microscopy data is the lack of fast, cost-effective, open, simple and adaptable protocols. Here we describe TLM-Quant, a semi-automatic pipeline for the analysis of time-lapse fluorescence microscopy data that enables the user to visualize and quantify gene expression heterogeneity. Importantly, our pipeline builds on the open-source packages ImageJ and R. To validate TLM-Quant, we selected three possible scenarios, namely homogeneous expression, highly 'noisy' heterogeneous expression, and bistable heterogeneous expression in the Gram-positive bacterium Bacillus subtilis. This bacterium is both a paradigm for systems-level studies on gene expression and a highly appreciated biotechnological 'cell factory'. We conclude that the temporal resolution of such analyses with TLM-Quant is only limited by the numbers of recorded images.

  20. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    NASA Astrophysics Data System (ADS)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  1. Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion

    NASA Astrophysics Data System (ADS)

    Kobchenko, Maya; Hafver, Andreas; Jettestuen, Espen; Renard, François; Galland, Olivier; Jamtveit, Bjørn; Meakin, Paul; Dysthe, Dag Kristian

    2014-11-01

    A simple and reproducible analog experiment was used to simulate fracture formation in a low-permeability elastic solid during internal fluid/gas production, with the objective of developing a better understanding of the mechanisms that control the dynamics of fracturing, fracture opening and closing, and fluid transport. In the experiment, nucleation, propagation, and coalescence of fractures within an elastic gelatin matrix, confined in a Hele-Shaw cell, occurred due to CO2 production via fermentation of sugar, and it was monitored by optical means. We first quantified how a fracture network develops, and then how intermittent fluid transport is controlled by the dynamics of opening and closing of fractures. The gas escape dynamics exhibited three characteristic behaviors: (1) Quasiperiodic release of gas with a characteristic frequency that depends on the gas production rate but not on the system size. (2) A 1 /f power spectrum for the fluctuations in the total open fracture area over an intermediate range of frequencies (f ), which we attribute to collective effects caused by interaction between fractures in the drainage network. (3) A 1 /f2 power spectrum was observed at high frequencies, which can be explained by the characteristic behavior of single fractures.

  2. Deformations and Structural Evolution of Mesozoic Complexes in Western Chukotka

    NASA Astrophysics Data System (ADS)

    Golionko, B. G.; Vatrushkina, E. V.; Verzhbitskii, V. E.; Sokolov, S. D.; Tuchkova, M. I.

    2018-01-01

    Detailed structural investigations have been carried out in the Pevek district to specify tectonic evolution of the Chukotka mesozoids. The earliest south-verging folds F1 formed in Triassic rocks at the first deformation stage DI. These structures are overlapped by the northern-verging folds F2 and overthrusts pertain to the second deformation stage DII. Folding structures F1 and F2 were deformed by shear folds F3, completing stage DII. The DI and DII structures are complicated by roughly NS-trending normal faults marking deformation stage DIII. It has been established that DI is related to the onset of opening of the Amerasian Basin in the Early Jurassic, or, alternatively, to the later accretion of the Kulpolnei ensimatic arc toward the Chukotka microcontinent. DII marks the collision of Siberia and the Chukotka microcontinent in the Late Neocomian. Normal faulting under the roughly E-W-trending extension during DIII is likely related to rift opening of the Podvodnikov and Makarov-Toll basins in the deep Amerasian Basin. Formation of the Okhotsk-Chukotka volcanoplutonic belt completed the structural evolution of the studied region.

  3. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  4. Interference and differentiation of the neighboring surface microcracks in distributed sensing with PPP-BOTDA.

    PubMed

    Meng, Dewei; Ansari, Farhad

    2016-12-01

    Detection of cracks while at their early stages of evolution is important in health monitoring of civil structures. Review of technical literature reveals that single or sparsely distributed multiple cracks can be detected by Brillouin-scattering-based optical fiber sensor systems. In a recent study, a pre-pump-pulse Brillouin optical time-domain analysis (PPP-BOTDA) system was employed for detection of a single microcrack. Specific characteristics of the Brillouin gain spectrum, such as Brillouin frequency shift, and Brillouin gain spectrum width, were utilized in order to detect the formation and growth of microcracks with crack opening displacements as small as 25 μm. In most situations, formations of neighboring microcracks are not detected due to inherent limitations of Brillouin-based systems. In the study reported here, the capability of PPP-BOTDA for detection of two neighboring microcracks was investigated in terms of the proximity of the microcracks with respect to each other, i.e., crack spacing distance, crack opening displacement, and the spatial resolution of the PPP-BOTDA. The extent of the study pertained both to theoretical as well as experimental investigations. The concept of shape index is introduced in order to establish an analytical method for gauging the influence of the neighboring microcracks in detection and microcrack differentiation capabilities of Brillouin-based optical fiber sensor systems.

  5. Understanding Divergent Evolution Among Earth-like Planets, the Case for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2001-11-01

    Venus was once considered to be Earth's twin because of its similar size, mass, and solar distance. Prevailing theories early in the 20th century alternately characterized it as a hot, lifeless desert or a cool, habitable swamp. Venus was therefore the target of intense scrutiny during the first three decades of the space age. Those studies found that although Venus and Earth apparently formed in similar parts of the solar nebula, sharing common inventories of refractory and volatile constituents, these two planets followed dramatically different evolutionary paths. While the Earth evolved into the only known oasis for life, Venus developed an almost unimaginably inhospitable environment for such an Earth-like planet. Some features of Venus can be understood as products of its location in the solar system, but other properties and processes governing the evolution and present state of its interior, surface, and climate remain mysterious or even contradictory. A more comprehensive understanding of these factors is clearly essential as NASA embarks on efforts to detect and then characterize Earth-like planets in other solar systems. As part of the National Research Council's effort to identify themes and priorities for solar system exploration over the next decade, an open community panel was formed to provide input on future Venus exploration. A comprehensive investigation of the processes driving the divergent evolution of Venus is emerging as the primary focus. In other words, why is Venus a failed Earth? From this theme, we will define specific measurement objectives, instrument requirements, and mission requirements. Priorities will then be based on a number of factors including the needs for simultaneous or correlative measurements, technology readiness, and available opportunities.

  6. Evolution of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Einasto, J.

    2017-07-01

    In the evolution of the cosmic web dark energy plays an important role. To understand the role of dark energy we investigate the evolution of superclusters in four cosmological models: standard model SCDM, conventional model LCDM, open model OCDM, and a hyper-dark-energy model HCDM. Numerical simulations of the evolution are performed in a box of size 1024 Mpc/h. Model superclusters are compared with superclusters found for Sloan Digital Sky Survey (SDSS). Superclusters are searched using density fields. LCDM superclusters have properties, very close to properties of observed SDSS superclusters. Standard model SCDM has about 2 times more superclusters than other models, but SCDM superclusters are smaller and have lower luminosities. Superclusters as principal structural elements of the cosmic web are present at all cosmological epochs.

  7. Teachers' roles in light of massive open online courses (MOOCs): Evolution and challenges in higher distance education

    NASA Astrophysics Data System (ADS)

    Gil-Jaurena, Inés; Domínguez, Daniel

    2018-03-01

    This article analyses the challenges teachers face when entering a digital and open online environment in higher education. Massive open online courses (MOOCs) have become a popular phenomenon, making online learning more visible in the educational agenda; therefore, it is appropriate to analyse their expansion and diversification to help inform the next generation of courses. In this article, MOOCs are contextualised in a historical and wider approach to online education, building upon lessons learned from open and distance education, and exploring the introduction of technologies in providing higher education to massive populations over the past 45 years. In particular, the research study presented in this article used the open scholarship approach to analyse many of the changes that can occur in teaching when an open context applies, as in the case of MOOCs. Taking into account that a collaborative online learning experience is influenced by the simultaneous presence and overlap of cognitive, social and teaching elements, the study also used the community of inquiry model as a theoretical framework. In the study, 24 teachers (from the Universidad Nacional de Educación a Distancia [UNED] in Madrid, Spain) were surveyed about their experiences of MOOCs in terms of their current tasks, and the main changes they have observed compared to teaching in a more traditional electronic learning (e-learning) environment (at both graduate and postgraduate levels). These changes in roles, as well as teachers' views about the impact of "massiveness" and "openness" on their understanding and teaching practice, are presented and analysed. Finally, the article also discusses how the evolution towards adapted learning, collaborative learning and assessment supported by technical tools, for example, was already in progress at UNED before MOOCs were initiated.

  8. Interchange Reconnection and Coronal Hole Dynamics

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2011-01-01

    We investigate the effect of magnetic reconnection between open and closed field, (often referred to as "interchange" reconnection), on the dynamics and topology of coronal hole boundaries. The most important and most prevalent 3D topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully 3D MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed field. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary, and find that the field remains well-connected throughout this process. Our results imply that open flux cannot penetrate deeply into the closed field region below a helmet streamer and, hence, support the quasi-steady models in which open and closed flux remain topologically distinct. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. We discuss the implications of this work for coronal observations. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection Sun: coronal hole

  9. Structural controls on Eocene to Pliocene tectonic and metallogenic evolution of the southernmost Lesser Caucasus, Armenia: paleostress field reconstruction and fault-slip analysis

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik

    2017-04-01

    The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors. During the Eocene, dextral displacement along the NS-oriented strike-slip faults were favorable for the opening of NE-oriented en-échelon normal faults. The NS-oriented faults, in particular at their intersection with EW- and NE-oriented faults, were important ore-controlling structures for the emplacement of major porphyry Cu-Mo (Dastakert, Aygedzor and Agarak) and epithermal (Tey-Lichkvaz and Terterasar) deposits. In summary, we conclude that from the Eocene to the Oligocene the dominant structural system consisted essentially in dextral strike-slip tectonics along the major NS-oriented faults. During the Oligocene to Miocene, NS-oriented compression and EW-oriented extension predominated, which is consistent with the collisional and post-collisional geodynamic evolution of the study area. This setting resulted in renewed dextral displacement along the NS-oriented ore-controlling faults, and sinistral displacement along the EW-oriented antithetic faults. This setting created the favorable geometry for opening NS- EW- and NE-oriented extension fractures, and the adequate conditions for the emplacement of vein-, stockwork-type porphyry deposits, including the giant Kadjaran deposit. During the Lower Miocene to Pliocene there was a rotation in the main regional stress components according to progressive regional evolution. Paleostress reconstructions indicate a change in compression from NS during the Miocene to NNW during the Pliocene. The Tashtun transcurrent fault had an oblique-slip behavior. It formed a negative flower structure with a sinistral strike-slip component, which resulted in the development of a pull-apart basin and the formation of the Lichk porphyry-epithermal system.

  10. Future Sky Surveys: New Discovery Frontiers

    NASA Astrophysics Data System (ADS)

    Tyson, J. Anthony; Borne, Kirk D.

    2012-03-01

    Driven by the availability of new instrumentation, there has been an evolution in astronomical science toward comprehensive investigations of new phenomena. Major advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our capability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) can be achieved through the application of advanced data mining methods and machine learning algorithms operating on the numerous large astronomical databases that will be generated from a variety of revolutionary future sky surveys. Over the next decade, astronomy will irrevocably enter the era of big surveys and of really big telescopes. New sky surveys (some of which will produce petabyte-scale data collections) will begin their operations, and one or more very large telescopes (ELTs = Extremely Large Telescopes) will enter the construction phase. These programs and facilities will generate a remarkable wealth of data of high complexity, endowed with enormous scientific knowledge discovery potential. New parameter spaces will be opened, in multiple wavelength domains as well as the time domain, across wide areas of the sky, and down to unprecedented faint source flux limits. The synergies of grand facilities, massive data collections, and advanced machine learning algorithms will come together to enable discoveries within most areas of astronomical science, including Solar System, exo-planets, star formation, stellar populations, stellar death, galaxy assembly, galaxy evolution, quasar evolution, and cosmology. Current and future sky surveys, comprising an alphabet soup of project names (e.g., Pan- STARRS, WISE, Kepler, DES, VST, VISTA, GAIA, EUCLID, SKA, LSST, and WFIRST; some of which are discussed in Chapters 17, 18, and 20),will contribute to the exponential explosion of complex data in astronomy. The scientific goals of these projects are as monumental as the programs themselves. The core scientific output of all of these will be their scientific data collection. Consequently, data mining and machine learning algorithms and specialists will become a common component of future astronomical research with these facilities. This synergistic combination and collaboration among multiple disciplines are essential in order to maximize the scientific discovery potential, the science output, the research efficiency, and the success of these projects.

  11. Digital data collection in paleoanthropology.

    PubMed

    Reed, Denné; Barr, W Andrew; Mcpherron, Shannon P; Bobe, René; Geraads, Denis; Wynn, Jonathan G; Alemseged, Zeresenay

    2015-01-01

    Understanding patterns of human evolution across space and time requires synthesizing data collected by independent research teams, and this effort is part of a larger trend to develop cyber infrastructure and e-science initiatives. At present, paleoanthropology cannot easily answer basic questions about the total number of fossils and artifacts that have been discovered, or exactly how those items were collected. In this paper, we examine the methodological challenges to data integration, with the hope that mitigating the technical obstacles will further promote data sharing. At a minimum, data integration efforts must document what data exist and how the data were collected (discovery), after which we can begin standardizing data collection practices with the aim of achieving combined analyses (synthesis). This paper outlines a digital data collection system for paleoanthropology. We review the relevant data management principles for a general audience and supplement this with technical details drawn from over 15 years of paleontological and archeological field experience in Africa and Europe. The system outlined here emphasizes free open-source software (FOSS) solutions that work on multiple computer platforms; it builds on recent advances in open-source geospatial software and mobile computing. © 2015 Wiley Periodicals, Inc.

  12. Indico 2.0 - the whole Iceberg

    NASA Astrophysics Data System (ADS)

    Mönnich, A.; Avilés, A.; Ferreira, P.; Kolodziejski, M.; Trichopoulos, I.; Vessaz, F.

    2017-10-01

    The last two years have been atypical to the Indico community, as the development team undertook an extensive rewrite of the application and deployed no less than 9 major releases of the system. Users at CERN have had the opportunity to experience the results of this ambitious endeavour. They have only seen, however, the “tip of the iceberg“. Indico 2.0 employs a completely new stack, leveraging open source packages in order to provide a web application that is not only more feature-rich but, more importantly, builds on a solid foundation of modern technologies and patterns. But this milestone represents not only a complete change in technology - it is also an important step in terms of user experience and usability that opens the way to many potential improvements in the years to come. In this article, we will describe the technology and all the different dimensions in which Indico 2.0 constitutes an evolution vis-à-vis its predecessor and what it can provide to users and server administrators alike. We will go over all major system features and explain what has changed, the reasoning behind the most significant modifications and the new possibilities that they pave the way for.

  13. Constraints on Omega_0 and cluster evolution using the ROSAT log N-log S relation

    NASA Astrophysics Data System (ADS)

    Mathiesen, B.; Evrard, A. E.

    1998-04-01

    We examine the likelihoods of different cosmological models and cluster evolutionary histories by comparing semi-analytical predictions of X-ray cluster number counts with observational data from the ROSAT satellite. We model cluster abundance as a function of mass and redshift using a Press-Schechter distribution, and assume that the temperature T(M,z) and bolometric luminosity L_X(M,z) scale as power laws in mass and epoch, in order to construct expected counts as a function of X-ray flux. The L_X-M scaling is fixed using the local luminosity function, while the degree of evolution in the X-ray luminosity with redshift L_X~(1+z)^s is left open, with s an interesting free parameter which we investigate. We examine open and flat cosmologies with initial, scale-free fluctuation spectra having indices n=0, -1 and -2. An independent constraint arising from the slope of the luminosity-temperature relation strongly favours the n=-2 spectrum. The expected counts demonstrate a strong dependence on Omega_0 and s, with lesser dependence on lambda_0 and n. Comparison with the observed counts reveals a `ridge' of acceptable models in the Omega_0-s plane, roughly following the relation s~6Omega_0 and spanning low-density models with a small degree of evolution to Omega=1 models with strong evolution. Models with moderate evolution are revealed to have a strong lower limit of Omega_0>~0.3, and low-evolution models imply that Omega_0<1 at a very high confidence level. We suggest observational tests for breaking the degeneracy along this ridge, and discuss implications for evolutionary histories of the intracluster medium.

  14. Coupling Fluid Dynamics and Multiphase Disequilibria: Applications to Eutectic and Peritectic Systems

    NASA Astrophysics Data System (ADS)

    Tweed, L. E. L.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    Computational thermodynamics has yielded great insights into petrological processes. However, on its own it cannot capture the inherently dynamic nature of many of these processes which depend on the interaction between time-dependent processes including advection, diffusion and chemical reaction. To understand this interplay, and to move away from a purely equilibrium view, requires the integration of computational thermodynamics and fluid mechanics. A key aspect of doing this is the treatment of chemical reactions as time-dependent, irreversible processes. Such a development is integral to understanding a host of petrological questions from the open system evolution of magma chambers to the dynamics of melt migration beneath mid-ocean ridges and flux melting of the mantle wedge in subduction zones. A simple thermodynamically consistent reactive model is developed that can be integrated with conservation equations for mass, momentum and energy. The model rests on the thermodynamic characterization of an independent set of reactions and has the advantage of being completely general and easily extensible to systems comprising multiple solid and liquid phases. The underlying theory is described in detail in another contribution in this session. Here we apply the framework to experimentally constrained simple systems of petrological interest including the fo-qz binary and the fo-qz-k2o ternary. These systems contain a variety of phase topologies including eutectic and peritectic reactions. As the model allows for the seamless exhaustion and stabilization of phases, we can explore the effect that these discontinuous changes have on the compositional and dynamic evolution of the system. To do this we track how the systems respond to sudden changes in intensive variables that perturb them from equilibrium. Such changes are rife in crustal magmatic systems. Simulations for decompression melting are also run to explore the interplay between reactive and advective fluxes. Buffering between the multiple reactions can result in surprising reaction paths highlighting that micro-mechanics could play a significant role in magmatic evolution. By building up the complexity of the problems gradually, we develop an intuition for the effect of model choices including the kinetic law and the set of reactions used.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian

    We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less

  16. Mapping forces in a 3D elastic assembly of grains

    NASA Astrophysics Data System (ADS)

    Saadatfar, Mohammad; Sheppard, Adrian P.; Senden, Tim J.; Kabla, Alexandre J.

    2012-01-01

    Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterise their behaviour at the particle scale. While 2D observations are now routinely carried out in laboratories, 3D measurements remain a challenge. In this paper, we use a simple model system, a packing of soft elastic spheres, to illustrate the capability of X-ray microtomography to characterise the internal structure and local behaviour of granular systems. Image analysis techniques can resolve grain positions, shapes and contact areas; this is used to investigate the material's microstructure and its evolution upon strain. In addition to morphological measurements, we develop a technique to quantify contact forces and estimate the internal stress tensor. As will be illustrated in this paper, this opens the door to a broad array of static and dynamical measurements in 3D disordered systems.

  17. Portable vibro-acoustic testing system for in situ microstructure characterization and metrology

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa

    2018-04-01

    There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.

  18. Opening of Schemes and the Expression of Knowledge Structures in the Construction of Novelty: A Developmental Study of Brazilian and American Children.

    ERIC Educational Resources Information Center

    Figueiredo, Eliane L.; Sisto, Fermino F.

    The evolution of creative thought was examined, an examination that resulted in the construction of universal criteria for analysis and detailed evidence for the evolution of novelty, i.e. how children create knowledge. The collected data came from 200 students from the United States and 200 from Brazil. Each of the 10 age groups (from 4 to 13…

  19. Scalar collapse in AdS with an OpenCL open source code

    NASA Astrophysics Data System (ADS)

    Liebling, Steven L.; Khanna, Gaurav

    2017-10-01

    We study the spherically symmetric collapse of a scalar field in anti-de Sitter spacetime using a newly constructed, open-source code which parallelizes over heterogeneous architectures using the open standard OpenCL. An open question for this scenario concerns how to tell, a priori, whether some form of initial data will be stable or will instead develop under the turbulent instability into a black hole in the limit of vanishing amplitude. Previous work suggested the existence of islands of stability around quasi-periodic solutions, and we use this new code to examine the stability properties of approximately quasi-periodic solutions which balance energy transfer to higher modes with energy transfer to lower modes. The evolutions provide some evidence, though not conclusively, for stability of initial data sufficiently close to quasiperiodic solutions.

  20. Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet.

    PubMed

    Chávez-Servín, Jorge L; de la Torre Carbot, Karina; García-Gasca, Teresa; Castellote, Ana I; López-Sabater, M Carmen

    2015-01-01

    Potential furfural compounds were examined by RP-HPLC-DAD in 20 commercial milk-based powdered infant formula (IF) brands from local markets from Paris, France; DF, Mexico; Copenhagen, Denmark; England, UK; and Barcelona, Spain. We traced the evolution of these compounds after the packets had been opened at 0, 30 and 70 days of storage at room temperature (≈25 °C; minimum 23 °C and maximum 25.5 °C). All formula brands were analysed during the first 3-5 months of their shelf life. The mean values of all IFs for potential 5-hydroxymethyl-2-furaldehyde (HMF)+2-furaldehyde (F) were 1115.2 μg/100 g (just opened), 1157.6 μg/100 g (30 days) and 1344.5 μg/100 g of product (70 days). In general, slight increases of potential furfural contents were observed in most of the studied IFs, which suggests that the Maillard reaction increases after opening the packets. The main furfural compound found was HMF, as expected. The range of potential HMF consumed for an infant about 6 months old feeding only on formula was estimated between 0.63 mg and 3.25 mg per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top