Science.gov

Sample records for open water evaporation

  1. Evaporation from open microchannel grooves.

    PubMed

    Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm

    2014-02-21

    The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.

  2. A comparison of methods for estimating open-water evaporation in small wetlands

    USGS Publications Warehouse

    Masoner, Jason R.; Stannard, David I.

    2010-01-01

    We compared evaporation measurements from a floating pan, land pan, chamber, and the Priestley-Taylor (PT) equation. Floating pan, land pan, and meteorological data were collected from June 6 to July 21, 2005, at a small wetland in the Canadian River alluvium in central Oklahoma, USA. Evaporation measured with the floating pan compared favorably to 12 h chamber measurements. Differences between chamber and floating pan rates ranged from −0.2 to 0.3 mm, mean of 0.1 mm. The difference between chamber and land pan rates ranged from 0.8 to 2.0 mm, mean of 1.5 mm. The mean chamber-to-floating pan ratio was 0.97 and the mean chamber-to-land pan ratio was 0.73. The chamber-to-floating pan ratio of 0.97 indicates the use of a floating pan to measure evaporation in small limited-fetch water bodies is an appropriate and accurate method for the site investigated. One-sided Paired t-Tests indicate daily floating pan rates were significantly less than land pan and PT rates. A two-sided Paired t-Test indicated there was no significant difference between land pan and PT values. The PT equation tends to overestimate evaporation during times when the air is of low drying power and tends to underestimate as drying power increases.

  3. Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi

    NASA Astrophysics Data System (ADS)

    Liu, Heping; Zhang, Yu; Liu, Shuhua; Jiang, Haimei; Sheng, Li; Williams, Quinton L.

    2009-02-01

    Eddy covariance measurements of sensible (H) and latent (LE) heat fluxes were made over a large southern open water surface of Ross Barnett Reservoir (the Reservoir hereafter) in Mississippi during the cool season with frequent incursions of cold fronts from 1 September 2007 to 31 January 2008. The eddy covariance tower was located in the middle of the main body of the Reservoir with the tower fetches exceeding 2.0 km in all directions. The Reservoir was ice-free in winter and the water temperatures always decreased with depth. Over the entire cool season, the averaged water surface temperatures were 1.8°C higher than the overlying air (i.e., positive temperature gradients that led to thermally convective conditions) and the averaged vapor pressure near the water surface was 0.8 kPa greater than the overlying air (i.e., positive vapor pressure gradients), though occasionally negative gradients for temperature and vapor pressure were also observed for short periods. On average, the wind speeds were considerably large (3.9 m s-1) to maintain adequate turbulent mixing mechanically. As a consequence of the combined effect of thermally and mechanically generated turbulent mixing, consistently positive H (with a mean H of 20.0 W m-2) and LE (with a mean LE of 80.0 W m-2) occurred during the entire season. These continuous energy losses via H and LE resulted in release of a large amount of energy stored in the water to the atmosphere. The mean Bowen ratio was low for this open water surface (i.e., 0.3), suggesting that most of the energy released from the water fueled evaporation rather than sensible heating of the atmosphere. Nighttime evaporative water losses were substantial, contributing to 45% of the total evaporative water loss in this cool season. Frequent incursions of cold fronts with windy, cold, and dry air masses significantly promoted turbulent exchanges of sensible and latent heat through enhanced turbulent mixing thermally and mechanically, leading to

  4. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  5. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    USGS Publications Warehouse

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  6. Molecular Mechanism of Water Evaporation.

    PubMed

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-04

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  7. Molecular Mechanism of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-01

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  8. Evaporation of inclined water droplets

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  9. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  10. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  11. Evaporation of Topopah Spring tuff pore water

    SciTech Connect

    Dibley, M J; Knauss, K G; Rosenberg, N D

    1999-09-10

    We report on the results to date for experiments on the evaporative chemical evolution of a CaSO, rich water representative of Topopah Spring Tuff porewater from Yucca Mountain. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures.

  12. Evaporative Lithography in Open Microfluidic Channel Networks.

    PubMed

    Lone, Saifullah; Zhang, Jia Ming; Vakarelski, Ivan U; Li, Er Qiang; Thoroddsen, Sigurdur T

    2017-03-13

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  13. A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status1[C][W][OPEN

    PubMed Central

    Caldeira, Cecilio F.; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1–2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture. PMID:24420931

  14. Evaporation rate of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  15. Evaporation rate of water in hydrophobic confinement

    PubMed Central

    Sharma, Sumit; Debenedetti, Pablo G.

    2012-01-01

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm2), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm2) than by the smaller (1 nm2) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube. PMID:22392972

  16. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  17. Accelerated evaporation of water on graphene oxide.

    PubMed

    Wan, Rongzheng; Shi, Guosheng

    2017-03-29

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  18. Controlling water evaporation through self-assembly

    PubMed Central

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-01-01

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  19. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  20. Water evaporation: a transition path sampling study.

    PubMed

    Varilly, Patrick; Chandler, David

    2013-02-07

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  1. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Lukenbach, M.; Hokanson, K. J.; Devito, K. J.; Petrone, R. M.; Hopkinson, C.; Waddington, J. M.

    2015-12-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This large scale reduction in evaporation promotes high water table positions at a landscape scale which limits the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  2. Water evaporation on highly viscoelastic polymer surfaces.

    PubMed

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  3. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, Nick; Lukenbach, Max; Hokanson, Kelly; Devito, Kevin; Hopkinson, Chris; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This promotes high water table positions at a landscape scale which limit the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  4. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  5. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Water droplet evaporation from sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  7. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  8. Water evaporation characterization by its isotopic signature in controlled conditions

    NASA Astrophysics Data System (ADS)

    Biron, Philippe; Richard, Patricia; Delay, Frederick; Ackerer, Philippe; Durand, Jean-Louis; Bariac, Thierry

    2017-04-01

    Water balance closure remains a critical problem in studies of the continental hydrological cycle. This is especially emphasized regarding the various components of evapotranspiration, that are difficult to measure all the more they concern evaporation fluxes from open water bodies. The natural isotopic tracing of water is increasingly used to better understand the water balance and to measure the signatures of the different vapour sources. However, this approach needs for a sharp characterization of the source signatures and of the products in the vapour-liquid exchanges. Therefore, it is necessary to determine the isotopic composition of the vapour from open water reservoirs before it exchanges and mixes its own components with the ambient atmosphere. In our work, we conducted the characterization of water vapour above open water tanks for different experiments under controlled conditions in a biogeochemical reactor, the aim being to validate an isotopic evaporation-condensation model coupled with mass balance equations. This work should be further extended to the other components of the evapotranspiration flux as the soil evaporation and plant transpiration.

  9. Thermocapillary transport of energy during water evaporation.

    PubMed

    Duan, Fei; Badam, V K; Durst, F; Ward, C A

    2005-11-01

    When evaporation occurs at a spherical water-vapor interface maintained at the circular mouth of a small funnel, studies of the energy transport have indicated that thermal conduction alone does not provide enough energy to evaporate the liquid at the observed rate. If the Gibbs model of the interface is adopted and the "surface-thermal capacity" is assigned a value of 30.6+/-0.8 kJ/(m2 K), then for evaporation experiments with the interfacial temperature in the range -10 degrees C< or =TLV< or =3.5 degrees C and Marangoni number (Ma) in the range 100water-vapor interface that can be used in other circumstances. Accordingly, a series of experiments has been conducted in which water evaporated at cylindrical interfaces that were, on average, 4.4 times larger in area than that of the spherical interfaces used to measure the surface-thermal capacity initially. It is shown that using the value of the surface-thermal capacity determined at a spherical interface, the energy transported by thermocapillary convection and thermal conduction at a cylindrical interface is sufficient to evaporate the liquid at the observed rate. Knowing the value of the surface-thermal capacity also allows the local evaporation flux to be calculated from the measured temperature profiles in the liquid and vapor phases. The calculated local evaporation flux can then be used with statistical rate theory to calculate the vapor-phase pressure along the interface. The predicted mean vapor-phase pressure is in close agreement with that measured, and the predicted pressure gradient is consistent with that expected when thermocapillary convection is present.

  10. The Sites of Evaporation within Leaves1[OPEN

    PubMed Central

    Sack, Lawren

    2017-01-01

    The sites of evaporation within leaves are unknown, but they have drawn attention for decades due to their perceived implications for many factors, including patterns of leaf isotopic enrichment, the maintenance of mesophyll water status, stomatal regulation, and the interpretation of measured stomatal and leaf hydraulic conductances. We used a spatially explicit model of coupled water and heat transport outside the xylem, MOFLO 2.0, to map the distribution of net evaporation across leaf tissues in relation to anatomy and environmental parameters. Our results corroborate earlier predictions that most evaporation occurs from the epidermis at low light and moderate humidity but that the mesophyll contributes substantially when the leaf center is warmed by light absorption, and more so under high humidity. We also found that the bundle sheath provides a significant minority of evaporation (15% in darkness and 18% in high light), that the vertical center of amphistomatous leaves supports net condensation, and that vertical temperature gradients caused by light absorption vary over 10-fold across species, reaching 0.3°C. We show that several hypotheses that depend on the evaporating sites require revision in light of our findings, including that experimental measurements of stomatal and hydraulic conductances should be affected directly by changes in the location of the evaporating sites. We propose a new conceptual model that accounts for mixed-phase water transport outside the xylem. These conclusions have far-reaching implications for inferences in leaf hydraulics, gas exchange, water use, and isotope physiology. PMID:28153921

  11. Soil water evaporation and crop residues

    USDA-ARS?s Scientific Manuscript database

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  12. Soil water evaporation and crop residues

    USDA-ARS?s Scientific Manuscript database

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  13. Open cycle OTEC system with falling jet evaporator and condenser

    SciTech Connect

    Kogan, A.; Johnson, D. H.; Green, H. J.; Olson, D. A.

    1980-07-01

    A configuration for the open cycle (OC) Ocean Thermal Energy Conversion (OTEC) system is presented incorporating a countercurrent falling jet evaporator and a concurrent falling jet condenser. The parameters governing performance of the proposed configuration are discussed and the sizing of equipment for a 100-MWe net power output OC OTEC plant is performed, based on recent experimental falling jet heat and mass transfer results. The performance of an OC OTEC plant with falling jet evaporator-condenser is compared with the Westinghouse conceptual design that uses an open-channel evaporator and a surface condenser. Preliminary calculations indicate that falling jet heat and mass transfer, when applied in the proposed configuration, leads to a very simple and compact plant assembly resulting in substantial capital cost savings.

  14. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  15. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  16. 242-A Evaporator water hammer event investigation

    SciTech Connect

    Wegener, D.L.

    1992-04-01

    On February 28, 1992, at approximately 1053 hours, a water hammer occurred at the 242-A Evaporator Facility located in the 200 East Area of the Hanford Site. The facility's Raw Water/Used Raw Water (RW/URW) system was undergoing operational testing at the time of the event. While trying to establish system water pressure, a downstream pressure control valve was overcome by water pressure and abruptly shut. Approximately 2300 gal/min of raw water flow was established before the valve closed. Supply water pressure was determined to be approximately 105 psig. During preliminary damage assessments a pressure gauge was found overranged and water was observed leaking from various components. Detailed evaluations are being conducted to assess potential damage to the EC-1 Condenser and other equipment associated with the RW/URW systems.

  17. 242-A Evaporator water hammer event investigation

    SciTech Connect

    Wegener, D.L.

    1992-04-01

    On February 28, 1992, at approximately 1053 hours, a water hammer occurred at the 242-A Evaporator Facility located in the 200 East Area of the Hanford Site. The facility`s Raw Water/Used Raw Water (RW/URW) system was undergoing operational testing at the time of the event. While trying to establish system water pressure, a downstream pressure control valve was overcome by water pressure and abruptly shut. Approximately 2300 gal/min of raw water flow was established before the valve closed. Supply water pressure was determined to be approximately 105 psig. During preliminary damage assessments a pressure gauge was found overranged and water was observed leaking from various components. Detailed evaluations are being conducted to assess potential damage to the EC-1 Condenser and other equipment associated with the RW/URW systems.

  18. On the effect of marangoni flow on evaporation rates of heated water drops.

    PubMed

    Girard, F; Antoni, M; Sefiane, K

    2008-09-02

    In this letter we show that the Marangoni flow contribution to the evaporation rate of small heated water droplets resting on hot substrates is negligible. We compare data of evaporating droplet experiments with numerical results and assess the effect of Marangoni flow and its contribution to the evaporation process. We demonstrate that heat conduction inside these water droplets is sufficient to give an accurate estimate of evaporation rates. Although convection in evaporating water droplets remains an open problem, our aim in this study is to demonstrate that these effects can be neglected in the investigation of evaporation rate evaluation. It is worth noting that the presented results apply to volatile heated drops which might differ from spontaneously evaporating cases.

  19. The evaporation of the water-sodium chlorides solution droplets on the heated substrate

    NASA Astrophysics Data System (ADS)

    Orlova, Evgenija; Kuznetsov, Geniy; Feoktistov, Dmitriy

    2014-08-01

    This work presents an experimental study of the evaporation of a sessile water- sodium chlorides solution drop to open atmosphere on the solid substrate (anodized aluminum) under the varying heat flux. The main parameters defining drop profile were obtained: contact diameter, contact angle, height of the drop. The specific evaporation rate was calculated. The influence of the initial concentration of the evaporated solution to a value of the specific evaporation rate has been found out. The specific evaporation rate decreases with increasing of the concentration.

  20. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  1. Soil tension mediates isotope fractionation during soil water evaporation

    NASA Astrophysics Data System (ADS)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  2. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  3. Evaporative cooling of speleothem drip water

    PubMed Central

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  4. Evaporative cooling of speleothem drip water

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-06-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change.

  5. Continuous flow in open microfluidics using controlled evaporation.

    PubMed

    Zimmermann, Martin; Bentley, Steven; Schmid, Heinz; Hunziker, Patrick; Delamarche, Emmanuel

    2005-12-01

    This paper presents a method for programming the flow rate of liquids inside open microfluidic networks (MFNs). A MFN comprises a number of independent flow paths, each of which starts with an open filling port, has a sealed microchannel in which assays can be performed, and an open capillary pump (CP). The MFN is placed over Peltier elements and its flow paths initially fill owing to capillary forces when liquids are added to the filling ports. A cooling Peltier element underneath the filling ports dynamically prevents evaporation in all filling ports using the ambient temperature and relative humidity as inputs. Another Peltier element underneath the CPs heats the pumps thereby inducing evaporation in the CPs and setting the flow rate in the microchannels. This method achieves flow rates in the microchannels ranging from approximately 1.2 nL s(-1) to approximately 30 pL s(-1), and is able to keep 90% of a 0.6 microL solution placed in an open filling port for 60 min. This simple and efficient method should be applicable to numerous assays or chemical reactions that require small and precise flow of liquids and reagents inside microfluidics.

  6. Water evaporation from substrate tooth surface during dentin treatments.

    PubMed

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  7. Evaporation Heat Transfer of Ammonia/Water Mixtures for Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Kushibe, Mitsuteru; Ikegami, Yasuyuki; Monde, Masanori

    The performance test of plate type evaporators was carried out. Ammonia/Water mixtures were utilized as working fluid and warm water was utilized as heat source. Five kinds of ammonia mass fraction are tested. The overall heat transfer coefficient of ammonia/water mixtures was lower than the pure ammonia in the same experimental condition. In the convection dominant region, the mean evaporation heat transfer of ammonia/water mixtures was almost the same as ammonia by considering thermophysical properties. In the region where nucleate boiling contributes to the heat transfer, the mean evaporation heat transfer coefficient was influenced of mass fraction. An empirical correlation was proposed in order to predict the mean evaporation heat transfer coefficient of ammonia/water mixtures for plate type evaporators.

  8. Analytical solution for soil water redistribution during evaporation process.

    PubMed

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.

  9. Precision measurements of water droplet evaporation rates.

    PubMed

    Ro, P S; Fahlen, T S; Bryant, H C

    1968-05-01

    The rate at which a motionless droplet evaporates can be measured continuously and precisely by determining the period of the intensity fluctuation of laser light reflected off the center of the droplet. The back scattered light is the coherent sum of light reflected from the external and the internal surfaces of the droplet; under typical conditions the back scattered light intensity oscillates at about 2 Hz or 3 Hz. This method is applied to pure water droplets in the diameter range from 0.6 mm to 1.8 mm, supported by bead thermistors and beaded glass fibers, and the results are compared with the quasi-stationary theory of Maxwell. Our measurements show that, after steady state is reached, the rate of change of diameter is inversely proportional to the diameter, as predicted in the quasi-stationary theory. Our experiments give a somewhat slower evaporation rate than the theory predicts; this discrepancy can be eliminated if one assumes that the surface temperature of the droplet is somewhat lower than measured with the bead thermistor. Using the optical method, mechanical resonances of the droplet can be sensitively detected; acoustically induced shape resonances are briefly investigated.

  10. Water addition, evaporation and water holding capacity of poultry litter.

    PubMed

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. Sensible heat observations reveal soil-water evaporation dynamics

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet, routine measurments are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth a...

  12. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Membrane evaporative cooling to 30 degrees C or less: 1. Membrane evaporative cooling of contained water.

    PubMed

    Loeb, Sidney

    2003-03-01

    Microporous hydrophobic membranes have been examined for possible use as containers in the evaporative cooling of water, particularly in desert climates. An experimental determination was made of the overall heat and mass transfer coefficients of these membranes while surmounting contained water and with air flowing over the surface of the membranes. Similar tests were made with water alone, that is, without a membrane. The coefficients were then used to compare the performance of existing (canvas water) coolers and membrane evaporative coolers under desert conditions. The performance of the membrane coolers was close enough to that of the canvas coolers that extensive investigation of various aspects of membrane evaporative cooling appears to be justified, particularly in view of the potential advantages of the latter over the existing evaporative cooling methods. For example, for cool storage of perishable goods in a desert climate, the membrane container might be uniquely qualified because of its low rate of water consumption compared to that of a canvas cooler.

  14. A phylogenetic approach to total evaporative water loss in mammals.

    PubMed

    Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B

    2012-01-01

    Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.

  15. Contaminated Water Evaporation System Design for the Tailing Facility

    NASA Astrophysics Data System (ADS)

    Langer, J. M.; Cheng, J.

    2012-12-01

    The treatment and disposal of contaminated water is a major issue for the mining industry. A common approach to this issue is through the process of evaporation and evapotranspiration. This process is commonly done simply by spreading the contaminated water over a given area and exposing it to the sun. This causes the water to evaporate and be returned into the hydrological cycle as clean water, leaving the contaminants behind. Evaporation systems are based on the continuity principle for conservation of mass, so that the rate of evaporation is greater than the inflow. Evaporation systems are by no means a new method, but the design criteria, procedures, and methodology have not been documented. Without design criteria there are no guidelines to creating a successful evaporation system for water treatment. This paper describes the methodology of designing a water evaporation system based on the continuity principle and conservation of mass. This paper also presents how incorporating a time series model can utilize historical data to predict future requirements for the evaporation area and contaminated water storage. With this methodology, the mining industry can have guidelines and design standards to follow for a sustainable alternative for the treatment of contaminated water.; ;

  16. Hydrophobically modified nanoparticle suspensions to enhance water evaporation rate

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Li, Xiaoying; Yuan, Hao; Feng, Yanhui; Zhang, Xinxin

    2016-10-01

    The evaporation rates of water can be enhanced by adding the hydrophobically modified nanoparticles as a suspension. The magnitudes of enhancement are related to the diameter and mass concentration of nanoparticles. In particular, a 15% enhancement was achieved after adding the modified Al2O3 nanoparticle with a diameter of 13 nm and mass percentage of 0.02%. A theoretical model was established in order to estimate the evaporation rates of hydrophobic particle-based nanofluids. The obtained results indicate that the enhanced evaporation rates are attributed to the elevated saturated vapor pressures of the nanofluids. These results may have important applications for energy-efficient enhancement of water evaporation rates.

  17. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  18. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    PubMed

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  19. Evaporation estimates from the Dead Sea and their implications on its water balance

    NASA Astrophysics Data System (ADS)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  20. 17Oexcess in evaporated desert waters and vapor from evaporation experiments

    NASA Astrophysics Data System (ADS)

    Surma, J.; Assonov, S.; Staubwasser, M.

    2013-12-01

    Oxygen and hydrogen isotopes are classical proxies for the investigation of climatic effects in hydrological processes. The combination of the isotopic ratios 17O/16O and 18O/16O in water allowed the determination of mass dependent processes and enabled differentiation between equilibrium and kinetic fractionation (Barkan and Luz, 2007). In analogy to d-excess, deviation in δ17O from the global average trend of meteoric water is defined as: 17Oexcess = δ'17O - 0.528 × δ'18O 17Oexcess depends on the impact of diffusive evaporation into air and thus reflects relative humidity conditions. The isotope ratios of water δ17O and δ18O were determined by isotope ratio gas mass spectrometry in dual inlet mode on a ThermoFinnigan MAT 253. The oxygen was extracted by water fluorination with CoF3. Our average measurement precision for δ17O is ×0.03 ‰, for δ18O ×0.05 ‰ and for 17Oexcess approximately ×7 per meg (1σ). We compared 17Oexcess in natural waters from the highly arid deserts of Sistan (East Iran) and Atacama (Chile) with data obtained from evaporation experiments. In these experiments, water was evaporated into a stream of dry nitrogen and vapor collected cryogenically. The data show a systematic depletion of 17Oexcess in water with increasing degree of evaporation in the residual water body. Most negative 17Oexcess were determined for samples from ponds (Sistan) and salars (Atacama). These strongly evaporated samples indicate an evaporation development, following a fractionation trend (λ) of approximately 0.523. The evaporation experiment shows a λ of 0.525 and is in agreement with water data from an experiment by Barkan and Luz (2007). The difference between natural and experimental evaporation suggests either different evaporation kinetics in the natural environment, variable proportion of kinetic and equilibrium fractionation, or additional diffusive processes during ground water seepage. References: Barkan, E. and Luz, L. (2007). Diffusivity

  1. Quantification of soil water evaporation using TDR-microlysimetry

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is conventionally measured using microlysimeters by evaluating the daily change in mass. Daily removal is laborious and replacement immediately after irrigation events is impractical because of field wetness which leads to delays and an underestimation of evaporation. Irrigati...

  2. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    PubMed

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO3, KCl, MgCl2, CaCl2) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH4Cl, NH4NO3, (NH4)2SO4) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl2) of the solution evaporation rates are well described by the modified Maxwell equation.

  3. Complex Effects of Salinity on Water Evaporation From Porous Media.

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, S. M. S.; Webb, C.; Shokri, N.

    2016-12-01

    Saline water evaporation from porous media is influenced by transport properties of porous media, properties of the evaporating solution and external conditions. In this work, we investigated the effects of salt concentration on the drying behaviour of a porous medium and its surface temperature. Our key focus was about how the precipitated salt forming at the surface of drying porous media influences the evaporation rate. To do so, a series of evaporation experiments were conducted using columns packed with sand particles saturated with NaCl solutions of varying concentrations. The columns were placed on digital balances to record the evaporation dynamics and were exposed to metal halide lamps to boost the evaporation. A FLIR thermal camera was fixed above the sand columns to record the surface temperature. Additional experiments were conducted using sand packs saturated with salty water in the presence of water table at well-defined depths using Mariotte flasks. We could delineate the effects of salt concentration and crust formation on the general dynamics of the evaporation process (at different salt concentrations). Microscopic analysis of precipitated salt at the surface revealed the complex dynamics of salt evolution at the surface and its consequences on the evaporation behaviour. Our results suggest that the presence of porous salt at the surface causes top-supplied creeping of the solution feeding the growth of subsequent precipitation. This causes appearance and disappearance of cold-spots at the surface of porous media brought about by crust formation and preferential water evaporation visualized by the thermal images. This study extends the fundamental understanding of the evaporation of saline water from porous media.

  4. Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions

    SciTech Connect

    R. C. Trautz; Joseph S. Y. Wang

    2001-06-07

    Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are used to demonstrate that a seepage threshold exists and to measure the magnitude of the seepage threshold flux for three test zones that seeped. The seepage data are interpreted using analytical techniques to estimate the test-specific strength of the rock capillary forces ({alpha}{sup -1}) that prevent water from seeping into the drift. Evaporation increases the seepage threshold flux making it more difficult for water to seep into the drift and producing artificially inflated {alpha}{sup -1} values. With adjustments for evaporation, the minimum test-specific threshold is 1,600 mm/yr with a corresponding {alpha}{sup -1} of 0.027 m.

  5. Evaporative water losses through a temporary wound dressing under simulated wound conditions.

    PubMed

    Gwosdow, A R; Cunningham, J J; Lydon, M; Rascati, R; Berglund, L G

    1993-01-01

    Patients with burns lose large amounts of water through evaporation from open wounds. Because the wound covering is the first line of defense for maintenance of body fluid balance in these patients, quantification of the evaporative water loss through wound coverings at the bedside would improve the accuracy of estimations of body water loss. The present experiment evaluates the use of a small ventilated capsule system automated with miniature resistance-type dew-point sensors for measurement of evaporative water loss through biologic dressings under simulated wound conditions. Evaporative water loss from wounds was simulated by pilocarpine-induced profuse sweating on the forearm. Evaporative water loss through uncovered skin was compared with that of skin covered with commercially available temporary wound dressings. Compared with an adjacent unstimulated area, forearm dew-point temperature in the capsule (Tcdp) and sweat rate increased immediately after pilocarpine exposure and remained significantly elevated and relatively constant for an additional 60 minutes. Evaporative water loss of the forearm was 29 +/- 4.8 gm/m2/hr (mean +/- SE) at baseline and rose significantly to 275 +/- 18.2 gm/m2/hr after pilocarpine exposure. The pilocarpine-stimulated sweat rate and Tcdp at neutral conditions were similar to those obtained from walking on a treadmill for 60 minutes in a 30 degrees C room. Compared with pilocarpine-induced evaporative water loss of the uncovered skin, temporary wound dressings significantly reduced evaporative water loss by 40% to 60%. No significant differences were observed between varieties of temporary wound dressings differing in thickness and/or porosity.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  7. Isotope effects accompanying evaporation of water from leaky containers.

    PubMed

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  8. Evaporation of water between two microspheres: how wetting affects drying

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Kim, Yeseul; Lim, Jun; Kim, Joon Heon; Weon, Byung Mook

    2016-11-01

    When a small volume of water is confined between microparticles or nanoparticles, its evaporation behavior can be influenced by wettability of particles. This situation frequently appears in coating or printing of colloidal drops in which colloidal particles are uniformly dispersed into a liquid. To explore water evaporation between particles, here we study on evaporation dynamics of water between two microspheres by utilizing high-resolution X-ray microscopy for side views and optical microscopy for bottom views. We find that evaporating water gets pinned on microsphere surfaces, due to a force balance among air, water, and microspheres. Side and bottom views of evaporating water enable us to evaluate water curvature evolution around microspheres before and after pinning. Interestingly curvature evolution is controlled by cooperation of evaporation and wetting dynamics. This study would be useful in identifying and controlling of coating or printing for colloidal drops. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  9. Trade Study for 9 kW Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Ungar, Gene; Stephan, Ryan

    2010-01-01

    Sublimators have been proposed and used in spacecraft for heat rejection. Sublimators are desirable heat rejection devices for short duration use because they can transfer large amounts of heat using little mass and are self-regulating devices. Sublimators reject heat into space by freezing water inside a porous substrate, allowing it to sublimate into vapor, and finally venting it into space. The state of the art thermal control system in orbiting spacecraft is a two loop, two fluid system. The external coolant loop typically uses a toxic single phase fluid that acquires heat from the spacecraft and rejects most of it via a radiator. The sublimator functions as a transient topper for orbiting spacecraft during day pass periods when radiator efficiency decreases. The sublimator interfaces with the internal loop through a built in heat exchanger. The internal loop fluid is non-toxic and is typically a propylene glycol and water solution with inhibitors to prevent corrosion with aluminum fins of the heat exchangers. Feedwater is supplied from a separate line to the sublimator to maintain temperature control of the cabin and vehicle hardware. Water membrane evaporators have been developed for spacecraft and spacesuits. They function similar to a sublimator but require a backpressure valve which could be actuated for this application with a simple fully open or fully closed modes. This technology would be applied to orbital thermal control (lunar or planetary). This paper details a trade study showing that evaporators would greatly reduce the consumable that is used, effectively wasted, by sublimators during start up and shut down during the topping phases of each orbit. State of the art for 9 kW sublimators reject about 870 W per kilogram of mass and 1150 W per liter of volume. If water with corrosion inhibitors is used the evaporators would be about 80% of the mass and volume of the equivalent system. The size and mass increases to about 110% if the internal fluid is

  10. Urban evaporation rates for water-permeable pavements.

    PubMed

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  11. Developing a CFD-based Approach to Estimate Evaporation from Water Surfaces in (Semi-) Arid Regions

    NASA Astrophysics Data System (ADS)

    Abbasi, Ali; Annor, Frank; van de Giesen, Nick

    2015-04-01

    In arid and semi-arid regions where evaporation highly exceeds rainfall, approximately one half of the stored water in shallow lakes may be lost due to evaporation. Precisely estimating this for very shallow lakes is however a daunting tasks due to the complexity of lake thermodynamics and the interactions between the water surface and air. Evaporation in water is largely uncoupled from land based evapotranspiration and most methods used are case-specific equations which are usually not applicable for other lakes. In this study a Computational Fluid Dynamics(CFD) Evaporation Model is established to adequately quantify the evaporation losses by simulating the air flow and heat transfer in the atmospheric boundary layer. Consideration of the air flow and heat transfer is required to simulate the fetch effect. This model will help to understand the complexities involved in open water evaporation and consequently will lead to more accurate estimates and better strategies for managing and controlling the evaporative loss of fresh water in arid and semi-arid regions. The proposed approach is used to drive a convective mass-transfer coefficient (wind function) required for estimating evaporation of water bodies with the mass-transfer method. The model was applied for a small shallow (with a surface area of 45 hectares and 3m deep on the average) artificial lake in Ghana called Binaba. The heat and mass transfer coefficient over the water surface and their distributions were extracted from the CFD analysis. The results showed that the CFD-derived wind functions were very similar to those empirically derived from the measurements over the lake using Eddy Covariance(EC) System. The evaporation rates calculated with the synthetic wind functions were in good agreement with hourly and daily evaporation measurements for the lake. The established CFD-model is generalizable and cost effective, since it needs low input data. Besides, the model is able to provide additional

  12. Wind increases "evaporative demand" but reduces plant water requirements

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.

    2015-12-01

    Transpiration is commonly conceptualised as a fraction of some potential rate, determined by stomatal or canopy resistance. Therefore, so-called "atmospheric evaporative demand" or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. An increase in potential evaporation (e.g. due to climate change) is generally believed to cause increased transpiration and/or vegetation water stress, aggravating drought effects. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at the leaf scale. In fact, in a range of field measurements, we found that water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, enabling plants to conserve water during photosynthesis. We estimate that the observed global decrease in terrestrial near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric carbon dioxide concentrations. We conclude that trends in wind speed and atmospheric carbon dioxide concentrations have to be considered explicitly for the estimation of drought effects on

  13. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  14. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  15. Evaporation and Marangoni driven convection in small heated water droplets.

    PubMed

    Girard, Fabien; Antoni, Mickaël; Faure, Sylvain; Steinchen, Annie

    2006-12-19

    Evaporation dynamics of small sessile water droplets under microgravity conditions is investigated numerically. The water-air interface is free, and the surrounding air is assumed to be quasisteady. The droplet is described by Navier-Stokes and heat equations and its surrounding water/air gaseous phase with Laplace equation. In the thermodynamic conditions of the simulations presented herein, the evaporative mass flow is nonlinear. It shows a minimum that indicates the existence of qualitative changes in the evaporative regimes although the droplet is sessile. Due to temperature gradients on the free interface, Marangoni motion occurs and generates inside the droplet convection cells that furthermore exhibit small fluctuating motion as evaporation goes on.

  16. Evaporation dynamics of water droplets on inclined surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2016-11-01

    When a water droplet is gently placed on a flat substrate, particularly which is tilted at an inclined angle, usually there are advancing and receding angles inside the droplet formed by inclination under gravitational force. Evaporation dynamics of an nonspherical inclined droplet at inclinations would deviate from that of a spherical droplet. Here we study on evaporation dynamics rates of inclined droplets by measuring mass changes with time and their lifetimes. We find that the lifetime of an evaporating inclined droplets becomes longer as the gravitational influence becomes stronger. The lifetime depends on the pinning-depinning transitions and the depinning onset times, which are changed by the gravitational influence. This The dependence inclination-induced evaporation behavior would be useful important in understanding evaporation dynamics of inclined droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  17. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    PubMed

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm(2). The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  18. Thermal effects of the substrate on water droplet evaporation

    NASA Astrophysics Data System (ADS)

    Sobac, B.; Brutin, D.

    2012-08-01

    We experimentally investigate the behavior of a pinned water droplet evaporating into air. The influence of the substrate temperature and substrate thermal properties on the evaporation process are studied in both hydrophilic and hydrophobic conditions. Our objective is to understand the effect of thermal mechanisms on the droplet evaporation process. The experimental results are compared with the quasisteady, diffusion-driven evaporation model, which is implemented under the influence of the temperature; the model assumes the isothermia of the droplet at the substrate temperature. The results highlight a favorable correlation between the model and the experimental data at ambient temperatures for most situations considered here. The model works to qualitatively describe the influence of the substrate temperature on the evaporation process. However, with an increase in the substrate temperature, the role of the thermal-linked mechanisms becomes increasingly important; this experiment highlights the need for more accurate models to account for the buoyant convection in vapor transport and the evaporative cooling and heat conduction between the droplet and the substrate. Finally, the experimental data reveal the modification of contact angle evolution as the temperature increases and the crucial role played by the nature of the substrate in the evaporation of a sessile droplet. The influence of the substrate thermal properties on the global evaporation rate is explained by the parallel thermal effusivity of the liquid and solid phases.

  19. Evaporation of J13 water: laboratory experiments and geochemical modeling

    SciTech Connect

    Dibley, M.J.; Knauss, K.G.; Rosenberg, N.D.

    1999-08-11

    We report results from experiments on the evaporative chemical evolution of synthetic J13 water, representative of water from well J13, a common reference water in the Yucca Mountain Project. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures. Ca and Mg precipitated readily as carbonates and anions Cl, F, NO{sub 3} and SO{sub 4} remained in solution in nearly identical ratios. The pH stabilized at about 10. After {approx} 1000x concentration, the minerals formed were amorphous silica, aragonite and calcite. The presence of tuff appears to have very little effect on the relative distribution of the anions in solution, except for possibly F, which had a relatively lower concentration ratio. The Si was lower in the solutions with tuff present suggesting that the tuff enhances SiO{sub 2} precipitation. Even though the tools to model highly-concentrated salt solutions are limited, we compare our experimental results with the results of geochemical models, with (perhaps) surprising good results. In response to different assumed CO{sub 2} levels, pH varied, but anion concentrations were not greatly affected.

  20. Open water bells

    NASA Astrophysics Data System (ADS)

    Paramati, Manjula; Tirumkudulu, Mahesh S.

    2016-03-01

    A smooth circular moving liquid sheet is formed by the head-on impingement of two equal laminar water jets. We subject such a liquid sheet to uniform laminar air flow from one side such that the direction of air velocity is perpendicular to the liquid sheet. The pressure of the moving air deforms the liquid sheet giving rise to an open water bell. The water bell is symmetric suggesting that the gas flow around the bell is also symmetric and that the gravitational force is negligible. We have captured the shape of the water bells for varying air flow rates and for varying Weber numbers, and compared the measurements with theoretical predictions obtained from a force balance involving liquid inertia, surface tension, and pressure difference across the sheet. The pressure exerted by the gas phase on the front and the rear surface of the deformed liquid sheet is obtained from known results of flow past flat circular discs. The predicted steady state shapes match well with the measurements at low Weber numbers but differences are observed at high Weber numbers, where the sheet flaps and is no longer smooth. Interestingly, the shape predicted by assuming a constant pressure difference equal to the stagnation pressure over the whole of the front face of the sheet and free stream value over the whole of the rear face yields nearly identical results suggesting that an open water bell is similar to a closed water bell in that, to a good approximation, the pressure on either sides of the water bell is homogeneous.

  1. Influence of organic films on the evaporation and condensation of water in aerosol.

    PubMed

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  2. Influence of organic films on the evaporation and condensation of water in aerosol

    PubMed Central

    Davies, James F.; Miles, Rachael E. H.; Haddrell, Allen E.; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid. PMID:23674675

  3. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  4. Water sources, mixing and evaporation in the Akyatan lagoon, Turkey

    NASA Astrophysics Data System (ADS)

    Lécuyer, C.; Bodergat, A.-M.; Martineau, F.; Fourel, F.; Gürbüz, K.; Nazik, A.

    2012-12-01

    Akyatan lagoon, located southeast of Turkey along the Mediterranean coast, is a choked and hypersaline lagoon, and hosts a large and specific biodiversity including endangered sea turtles and migrating birds. Physicochemical properties of this lagoon were investigated by measuring temperature, salinity, and hydrogen and oxygen isotope ratios of its waters at a seasonal scale during years 2006 and 2007. Winter and spring seasons were dominated by mixing processes between freshwaters and Mediterranean seawater. The majority of spring season waters are formed by evapoconcentration of brackish water at moderate temperatures of 22 ± 2 °C. During summer, hypersaline waters result from evaporation of seawater and brackish waters formed during spring. Evaporation over the Akyatan lagoon reaches up to 76 wt% based on salinity measurements and operated with a dry (relative humidity of 0.15-0.20) and hot (44 ± 6 °C) air. These residual waters were characterized by the maximal seasonal isotopic enrichment in both deuterium and 18O relative to VSMOW. During autumn, most lagoonal waters became hypersaline and were formed by evaporation of waters that had isotopic compositions and salinities close to that of seawater. These autumnal hypersaline waters result from an air humidity close to 0.45 and an atmospheric temperature of evaporation of 35 ± 5 °C, which are responsible for up to 71 wt% of evaporation, with restricted isotopic enrichments relative to VSMOW. During the warm seasons, the combination of air humidity, wind velocity and temperature were responsible for a large kinetic component in the total isotopic fractionation between water liquid and water vapour.

  5. Surface excess properties from energy transport measurements during water evaporation.

    PubMed

    Duan, Fei; Ward, C A

    2005-11-01

    When water evaporates at high rates, recent studies indicate thermal conduction to the interface does not provide enough energy to evaporate water at the observed rate and that it is perhaps thermocapillary convection that transports the remaining energy. This possibility is examined by applying the Gibbs dividing-surface approximation to develop an expression for the energy transported along the interface. When this energy transport rate is compared with that required to evaporate the liquid at the observed rate, it is found that a Gibbs excess property, the "surface-thermal capacity," can be evaluated. A series of 19 evaporation experiments has been conducted under conditions for which there was no buoyancy-driven convection and for which the evaporation rate was progressively increased. For Marangoni numbers, (Ma) less than approximately 100, the interface was quiescent and thermal conduction (the Stefan condition) correctly predicted the energy transport rate to the surface. For experiments with 100evaporate the liquid at the observed rate. For experiments with Ma>22,000, the interfacial flow was turbulent and viscous dissipation became important.

  6. Water-evaporation-induced electricity with nanostructured carbon materials.

    PubMed

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  7. Water-evaporation-induced electricity with nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  8. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  9. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  10. Numerical simulation of water evaporation inside vertical circular tubes

    NASA Astrophysics Data System (ADS)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  11. Fully automated open access platform for rapid, combined serial evaporation and sample reformatting.

    PubMed

    Benali, Otman; Davies, Gary; Deal, Martyn; Farrant, Elizabeth; Guthrie, Duncan; Holden, John; Wheeler, Rob

    2008-01-01

    This paper reports a novel evaporator and its integration with an automated sample handling system to create a high throughput evaporation platform. The Vaportec V-10 evaporator uses a high speed rotation motor ( approximately 6000 rpm) to spin the vial containing a sample, creating a thin film of solvent which can be readily evaporated by the application of heat to the vial, while the consequent centrifugal force prevents "bumping". An intelligent algorithm controls pressure and temperature for optimum solvent removal conditions and end of run detection, critical for automation. The system allows the option of evaporation directly from a sample source vial, or alternatively, integrated liquid handling facilities provide the capability of transferring samples portionwise from a (large) source vial or bottle to a (small) daughter container, enabling efficient sample reformatting, with minimum user intervention. The open access system makes significant advances over current vacuum centrifugal evaporators in terms of evaporation rate and ease of automation. The evaporator's main features, the integration of robotics to provide automation, and examples of evaporation rates of a wide range of solvents from a variety of containers are described.

  12. bbThermodynamic quantities and Urmia Sea water evaporation

    PubMed Central

    2010-01-01

    The relation between climatic parameters (relative air humidity) and the water activity of the Urmia Sea water determines the possible maximum evaporation of the lake. Using the Pitzer thermodynamic approach, the activity of the Urmia Lake water during evaporation was calculated and compared to the present relative air humidity above the water. Present climatic conditions allow the Urmia Sea water to evaporate down to water with activity of 0.55, corresponding to the lowest air humidity measured over the lake. This water activity falls in the range of halite precipitation, while carnalite precipitation starts at somewhat lower (a H2O = 0.499) point. Our dynamic model predicts that for air humidity as low as 55% (reflecting present climate conditions), the Urmia Sea level may drop to as low as 1270 m (i. e., 1270 m above mean sea level). At that point, the lake water volume will have a volume of 11 km3. For the sake of comparison, at the beginning of 1990, the level of the lake was 1275 m, its volume was 25 km3, and its surface area was 5145 km2. PMID:20356384

  13. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    PubMed

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  15. Benefits of evaporating FGD purge water

    SciTech Connect

    Shaw, W.A.

    2008-03-15

    In the US and the European Union, scrubbers are installed on all new coal-fired power plants because their technology is considered the best available for removing SO{sub 2}. A zero liquid discharge (ZLD) system is the best technology for treating wet scrubber wastewate. With the future promising stricter limits on power plants' water use, ZLD systems that concentrate scrubber purge streams are sure to become as common as ZLD cooling tower blowdonw systems. 7 figs.

  16. Determining evaporation in the model of water transfer in soil

    NASA Astrophysics Data System (ADS)

    Zasukhin, Sergey

    2016-10-01

    In considered model a process of vertical water transfer in soil is described by one-dimensional nonlinear parabolic equation. Evaporation is one of most hard-determined component of the model. Determination of evaporation is formulated as an optimal control problem. In this problem, the objective function is mean-square deviation of soil moisture obtained by the model at various depths from some prescribed values. The sensitivity of soil moisture to changes of evaporation is estimated. These estimates allowed to determine an effective subsurface soil layer where it is advisable to compare calculated values of soil moisture with prescribed ones and to compute the objective function. This region definition has accelerated the convergence of numeric optimization process and has reduced the time of its execution.

  17. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  18. Free energy barriers to evaporation of water in hydrophobic confinement.

    PubMed

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  19. Evaporating behaviors of water droplet on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  20. Simulation Studies of Evaporation of Water on Mars

    NASA Astrophysics Data System (ADS)

    Chittenden, J. D.; Sears, D. W. G.

    2005-08-01

    In order to better understand the stability of water on Mars and demonstrate the effectiveness of our laboratory simulation techniques in reproducing conditions approximate to Mars, we have determined the evaporation rate of brine at temperatures from 0oC to -25oC. Measurements were made in a CO2 atmosphere at 5.25 Torr with eutectic solutions of NaCl and CaCl2 and maintaining the atmospheric and chamber wall temperatures close (+/-1oC) to the water temperature to avoid condensation effects. An extrapolation technique was used to remove the effect of water build-up in the atmosphere, but this was unimportant at temperatures below -10oC. We corrected the data for the lower gravity on Mars relative to Earth, by multiplying the data by 0.726, the ratio of buoyancy on Mars relative to that on Earth. We observed a very strong decrease in evaporation rate with temperature from 1.13 mm/h at 0oC to 0.04 mm/h at -25.0oC. The results are in excellent agreement with the theoretical predictions of Ingersoll's (1971) treatment, lending support to the theory and our procedures. Thus, brine formation could considerably increase the stability of water on Mars by both extending the temperature range over which water is stable to -40oC and by decreasing the evaporation rates by two orders of magnitude.

  1. Sheet Membrane Spacesuit Water Membrane Evaporator Thermal Test

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.

  2. Cancel the Cardinals Home Opener?! Lessons in Melting and Evaporation

    ERIC Educational Resources Information Center

    Market, Patrick S.

    2005-01-01

    The St. Louis Cardinals are scheduled to play their home opener the next day and Megan Riley, a young meteorologist who works for a private weather consulting firm, is responsible for developing the weather forecast. It's looking like she may need to change her prediction from rain to snow. In this interrupted case study, students work in small…

  3. Cancel the Cardinals Home Opener?! Lessons in Melting and Evaporation

    ERIC Educational Resources Information Center

    Market, Patrick S.

    2005-01-01

    The St. Louis Cardinals are scheduled to play their home opener the next day and Megan Riley, a young meteorologist who works for a private weather consulting firm, is responsible for developing the weather forecast. It's looking like she may need to change her prediction from rain to snow. In this interrupted case study, students work in small…

  4. Evaporation of water droplets on soft patterned surfaces.

    PubMed

    Chuang, Yu-Chen; Chu, Che-Kang; Lin, Shih-Yao; Chen, Li-Jen

    2014-05-21

    The evaporation process of a sessile drop of water on soft patterned polydimethylsiloxane (PDMS) substrates is investigated in this study. Different softness of a regular pillar-like patterned PDMS substrate can be achieved by controlling the mixing ratio of a PDMS's prepolymer base and a curing agent at 10 : 1, 20 : 1 and 30 : 1. The receding contact angle is smaller for softer pillar-like patterned substrates. Consequently, the evaporation rate is faster on softer pillar-like substrates. A sessile drop on the regular pillar-like PDMS substrates, prepared at the mixing ratio of a base to a curing agent of 10 : 1 and 20 : 1, is observed to start evaporating in the constant contact radius (CCR) mode then switching to the constant contact angle (CCA) mode via stepwise jumping of the contact line, and finally shifting to the mixed mode sequentially. During the evaporation, a wetting transition from the Cassie to the Wenzel state occurs earlier for the softer substrate because softer pillars relatively cannot stand the increasingly high Laplace pressure. For the softest regular pillar-like PDMS substrate prepared at the mixing ratio of the base to the curing agent of 30 : 1 (abbreviated by PDMS-30 : 1 substrate), the pillars collapse irreversibly after the sessile drop exhibits the wetting transition into the Wenzel state. Furthermore, it is interesting to find out that the initial stage of evaporation of a sessile drop on the PDMS-30 : 1 substrate in the Cassie state is in the CCR mode followed by the CCA mode with stepwise retreatment of the contact line. Further evaporation would induce the wetting transition from the Cassie to the Wenzel state (due to the collapse of pillars) and resume the CCR mode followed by the CCA mode again sequentially.

  5. Sub-canopy evapotranspiration from floating vegetation and open water in a swamp forest

    USDA-ARS?s Scientific Manuscript database

    Among previous studies, there are large discrepancies in the difference between evapotranspiration from wetland vegetation and evaporation from open water. In this study, we investigate evapotranspiration differences between water and vegetation in a scenario that has otherwise not been extensively ...

  6. Evaporation rates of water from concentrated oil-in-water emulsions.

    PubMed

    Aranberri, I; Binks, B P; Clint, J H; Fletcher, P D I

    2004-03-16

    We have investigated the rate of water evaporation from concentrated oil-in-water (o/w) emulsions containing an involatile oil. Evaporation of the water continuous phase causes compression of the emulsion with progressive distortion of the oil drops and thinning of the water films separating them. Theoretically, the vapor pressure of water is sensitive to the interdroplet interactions, which are a function of the film thickness. Three main possible situations are considered. First, under conditions when the evaporation rate is controlled by mass transfer across the stagnant vapor phase, model calculations show that evaporation can, in principle, be slowed by repulsive interdroplet interactions. However, significant retardation requires very strong repulsive forces acting over large separations for typical emulsion drop sizes. Second, water evaporation may be limited by diffusion in the network of water films within the emulsion. In this situation, water loss by evaporation from the emulsion surface leads to a gradient in the water concentration (and in the water film thickness). Third, compression of the drops may lead to coalescence of the emulsion drops and the formation of a macroscopic oil film at the emulsion surface, which serves to prevent further water evaporation. Water mass-loss curves have been measured for silicone o/w emulsions stabilized by the anionic surfactant SDS as a function of the water content, the thickness of the stagnant vapor-phase layer, and the concentration of electrolyte in the aqueous phase, and the results are discussed in terms of the three possible scenarios just described. In systems with added salt, water evaporation virtually ceases before all the water present is lost, probably as a result of oil-drop coalescence resulting in the formation of a water-impermeable oil film at the emulsion surface.

  7. Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation.

    PubMed

    Duffey, Kaitlin C; Shih, Orion; Wong, Nolan L; Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2013-07-28

    The presence of organic surfactants in atmospheric aerosol may lead to a depression of cloud droplet growth and evaporation rates affecting the radiative properties and lifetime of clouds. Both the magnitude and mechanism of this effect, however, remain poorly constrained. We have used Raman thermometry measurements of freely evaporating micro-droplets to determine evaporation coefficients for several concentrations of acetic acid, which is ubiquitous in atmospheric aerosol and has been shown to adsorb strongly to the air-water interface. We find no suppression of the evaporation kinetics over the concentration range studied (1-5 M). The evaporation coefficient determined for 2 M acetic acid is 0.53 ± 0.12, indistinguishable from that of pure water (0.62 ± 0.09).

  8. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland

    NASA Astrophysics Data System (ADS)

    Balugani, E.; Lubczynski, M. W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A. P.; Metselaar, K.

    2017-04-01

    Studies on evapotranspiration partitioning under eddy covariance (EC) towers rarely address the separate effects of transpiration and evaporation on groundwater resources. Such partitioning is important to accurately assess groundwater resources, especially in arid and semi-arid areas. The main objective of this study was to partition (evaluate separately) the evaporation and transpiration components of evapotranspiration, originated either from saturated or unsaturated zone, and estimate their contributions in a semi-arid area characterized by relatively shallow groundwater Table (0-10 m deep). Evapotranspiration, tree transpiration and subsurface evaporation were estimated with EC tower, using sap flow methods and HYDRUS1D model, respectively. To set up the HYDRUS1D model, soil material properties, soil moisture, soil temperature, soil matric potential and water table depth were measured in the area. The tree transpiration was sourced into groundwater and unsaturated zone components (∼0.017 mm d-1 for both) and accounted for only ∼6% of the evapotranspiration measured by the EC tower (∼0.565 mm d-1), due to the low canopy coverage in the study area (7%). The subsurface evaporation fluxes were also sourced into groundwater and unsaturated zone components using the SOURCE package, and their relative relevance in total evapotranspiration was assessed. Subsurface evaporation was the main flux year-round (∼0.526 mm d-1). During late autumn, winter and early spring time, the unsaturated zone evaporation was dominant, while in dry summer the relevance of groundwater evaporation increased, reaching one third of evapotranspiration, although errors in the water balance closure point still at its possible underestimation. The results show that, in arid and semi-arid areas with sparse vegetation, the often neglected groundwater evaporation is a relevant contribution to evapotranspiration, and that water vapor flow should be taken into account in the calculation of

  9. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron

    2011-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi?s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 1200 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 1200 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  10. Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron; Conger, Bruce

    2012-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.

  11. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  12. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. How water droplets evaporate on a superhydrophobic substrate.

    PubMed

    Gelderblom, Hanneke; Marín, Álvaro G; Nair, Hrudya; van Houselt, Arie; Lefferts, Leon; Snoeijer, Jacco H; Lohse, Detlef

    2011-02-01

    Evaporation of water droplets on a superhydrophobic substrate, on which the contact line is pinned, is investigated. While previous studies focused mainly on droplets with contact angles smaller than 90°, here we analyze almost the full range of possible contact angles (10°-150°). The greater contact angles and pinned contact lines can be achieved by use of superhydrophobic carbon nanofiber substrates. The time evolutions of the contact angle and the droplet mass are examined. The experimental data are in good quantitative agreement with the model presented by Popov [Phys. Rev. E 71, 036313 (2005)], demonstrating that the evaporation process is quasistatic, diffusion-driven, and that thermal effects play no role. Furthermore, we show that the experimental data for the evolution of both the contact angle and the droplet mass can be collapsed onto one respective universal curve for all droplet sizes and initial contact angles. ©2011 American Physical Society

  14. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    PubMed

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  15. Evaporation and Infiltration from Water Bodies in the Lerma-Chapala Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; Flores-Lopez, F. F.

    2001-05-01

    Reservoirs and ponds significantly influence the hydrology of the Lerma-Chapala river basin in Mexico and affect inflows to the receiving waters of Lake Chapala. This paper reports on remote sensing and GIS assessment of the 55,511 km2 basin, in which 81 lakes and reservoirs, and 28,895 ponds were identified from post-rainy season 1998 Thematic Mapper imagery. Digital terrain analysis coupled with sedimentation estimates from soil and land cover data were used to estimate impounded volumes in ponds, and in reservoirs for which storage data were unreported. Open water surface evaporation (3.2 - 7.4 mm/day) was determined using a surface energy balance model, Penman-Monteith, and corrected pan evaporation methods. Sediment samples were analyzed, and a pedo-transfer function was used to estimate saturated hydraulic conductivity (0.2 - 6.6 mm/day) of the bed sediments, which are assumed to be the layer that limits percolation recharge to groundwater. The ponds' shallow depths and sediments with high clay and low organic matter contents result in evaporation to infiltration ratios of approximately 2:1 over the dry season. Increasing irrigation from ponds or permitting this water to flow downstream to deeper reservoirs may result in less water loss than allowing impounded water to recharge and subsequently withdrawing groundwater.

  16. Heat pulse probe measurements of soil water evaporation in a corn field

    USDA-ARS?s Scientific Manuscript database

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  17. Addressing Water Consumption of Evaporative Coolers with Greywater

    SciTech Connect

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  18. Super-Maxwellian helium evaporation from pure and salty water.

    PubMed

    Hahn, Christine; Kann, Zachary R; Faust, Jennifer A; Skinner, J L; Nathanson, Gilbert M

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  19. Super-Maxwellian helium evaporation from pure and salty water

    SciTech Connect

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L. E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M. E-mail: nathanson@chem.wisc.edu

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  20. Super-Maxwellian helium evaporation from pure and salty water

    NASA Astrophysics Data System (ADS)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L.; Nathanson, Gilbert M.

    2016-01-01

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4-8.5 molal LiCl and LiBr at 232-252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He-water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He-water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  1. Moisture variation associated with water input and evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Gao, Ding; Chen, Tong-Bin; Liu, Hong-Tao; Zheng, Guo-Di; Yang, Qi-Wei

    2012-08-01

    The variation of moisture during sewage sludge bio-drying was investigated. In situ measurements were conducted to monitor the bulk moisture and water vapor, while the moisture content, water generation, water evaporation and aeration water input of the bio-drying bulk were calculated based on the water mass balance. The moisture in the sewage sludge bio-drying material decreased from 66% to 54% in response to control technology for bio-drying. During the temperature increasing and thermophilic phases of sewage sludge bio-drying, the moisture content, water generation and water evaporation of the bulk initially increased and then decreased. The peak water generation and evaporation occurred during the thermophilic phase. During the bio-drying, water evaporation was much greater than water generation, and aeration facilitated the water evaporation.

  2. Molecular dynamics study on the microscopic details of the evaporation of water.

    PubMed

    Mason, Phillip E

    2011-06-16

    Molecular dynamics simulations were conducted on a drop of water (containing 4890 TIP3P waters) at 350 K. About 70 evaporation events were found and characterized in enough detail to determine significant patterns relating to the mechanism of evaporation. It was found that in almost all evaporation events that a single, high-energy state immediately preceded the evaporation event. In ∼50% of the cases, this high-energy state involved a short oxygen-oxygen distance, suggesting a van der Waals collision, whereas in the remaining cases, a short hydrogen-hydrogen distance was found, suggesting an electrostatic "collision". Of the high-energy states that led to evaporation, about half occurred when the coordination number of water was 1, and about half, when the coordination number was 2. It was found that the 1-coordinated waters (∼1% of the surface waters) and 2-coordinated waters (6% of the surface waters) were responsible for almost all the evaporation events.

  3. Components of evaporative water loss in the desert tenebrionid beetles, Eleodes armata and Cryptoglossa verrucosa

    SciTech Connect

    Cooper, P.D.

    1981-01-01

    Water loss in Eleodes armata and Cryptoglossa verrucosa increased with increasing temperature and decreasing vapor activity (a/sub v/). Rates of evaporative water loss were always about 4 times greater in E. armata than in C. verrucosa at the different temperatures and 0.0 a/sub v/, while as a/sub v/ increased the ratio of E. armata loss to C. verrucosa decreased from 4 at 0.0 a/sub v/ to about 2 at 0.94 a/sub v/. A method for determining mesothoracic spiracular, sub-elytral abdominal, and cuticular water loss rates was described and validated for living E. armata. Sub-elytral abdominal water loss through the caudal opening was 8.0 mg H/sub 2/O (g.d)/sup -1/, meso-thoracic spiracular water loss was approximately 7.9 mg H/sub 2/O (g.d)/sup -1/, and cuticular loss was 26.2 mg H/sub 2/O (g.d)/sup -1/ at 30 C and 0.0 a/sub v/. Evaporative water loss was shown to have two unidirectional components, efflux and influx, for both beetles with the use of tritiated water (H/sup 3/HO). Efflux was independent of a/sub v/, while influx increased linearly with a/sub v/, with both components having lower rates in C. verrucosa compared to E. armata.

  4. Measured and simulated soil water evaporation from four Great Plains soils

    USDA-ARS?s Scientific Manuscript database

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  5. Cumulative soil water evaporation as a function of depth and time

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the surface water balance and the surface energy balance. Accurate and dynamic measurements of soil water evaporation enhance the understanding of water and energy partitioning at the land-atmosphere interface. The objective of this study is to mea...

  6. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  7. Analysis of evaporative water loss in the Skylab astronauts

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Daily evaporative water losses (EWL) during the three Skylab missions were measured using the indirect mass and water balance techniques. A mean inflight EWL of 860 ml/day-m 2 was obtained for nine men who averaged one hour of daily exercise. Although it was expected the EWL would increase in the hypobaric environment of Skylab (1/3 atmosphere), an average decrease from preflight sea level conditions of 11 percent was measured. The results suggest that weightlessness may have been a factor in modifying EWL primarily by decreasing sweat losses during exercise and possibly by reducing insensible skin losses as well. The weightless environment apparently promotes the formation of a sweat film on the skin surface both directly, by reducing heat and mass convective flow and sweat drippage, and perhaps indirectly by inducing measurable biochemical changes resulting in high initial sweating rates. It is proposed that these high levels of skin wettedness favor sweat suppression by a previously described mechanism.

  8. Development of an evaporation-optimized and water-permeable pavement

    NASA Astrophysics Data System (ADS)

    Starke, P.; Göbel, P.; Coldewey, W. G.

    2009-04-01

    the soil-mechanics laboratory of the University of Muenster. For their street construction useability, and having regard to evaporation, a selection of appropriate materials were built into a test field. The test field consisted of seven hexagonal areas each about 10 m2 large, which are placed in a honeycomb manner. The evaporation measurements are carried out with a WERNER tunnel-evaporation gauge (TUV) which is able to detect the actual evaporation rate. Its functional principle also allows a direct comparison between the middle reference area and one outer area of the test field. Every measuring period lasts one week and after that the TUV is moved to between the next outer area and the reference area. So the TUV rotates over the whole test field and every measuring area is covered by a measurement. In addition, a Hellman rain-gauge near the test field enables the measurement of a direct precipitation-evaporation ratio. Since the start of the measurements in July 2008, the first results collected showed that measureable differences in evaporation rates could be detected after a few measuring periods, i.e. the differences are up to 32% between the reference area and one outer area. In July 2009, the six outer measuring areas of the test field will be replaced and, based on the actual results collected, the sub-base layers will be replaced by an evaporation-optimized sub-base. The new outer measuring areas will only differ in terms of a different paving-stone surface. These paving stones are actually under developement and under laboratory testing (i.e. permeability, porosity, capillary water and evaporationrates), and so they will be evaporation-opimized. The open-air test in the test field is to assure and compare the evaporation rates. As a final result, the evaporation-optimized and water-permeable pavement and the knowledge of its exact drainage ratio will allow city planners or architects to build water-permeable streets with due regard to the respective area

  9. Physiological state influences evaporative water loss and microclimate preference in the snake Vipera aspis.

    PubMed

    Dupoué, Andréaz; Stahlschmidt, Zachary R; Michaud, Bruno; Lourdais, Olivier

    2015-05-15

    Animals typically respond to environmental variation by adjusting their physiology, behavior, or both. Ectothermic animals are particularly sensitive to microclimatic conditions and behaviorally thermoregulate to optimize physiological performance. Yet, thermoregulation can be costly and may obligate a physiological tradeoff with water loss. Presumably, this tradeoff intensifies when animals undergo necessary life-history events (e.g., pregnancy or digestion) that impose significant behavioral and physiological changes, including shifts in behavioral thermoregulation and increased metabolic rate. Thus, behavioral responses, such as modified microclimatic preferences, may help mitigate the physiological tradeoff between thermoregulation and water loss. Herein, we examined the influence of major physiological states (specifically, pregnancy, ecdysis, and digestion) on evaporative water loss and on behavioral adjustments in a viviparous snake, Vipera aspis. First, we used open-flow respirometry to measure the effects of physiological states and microclimatic conditions (temperature and humidity) on the rate of total evaporative water loss (TEWL) and metabolic rate (rate of O2 consumption, V˙O2). Then, we experimentally tested the influence of physiological state on microclimate selection. We found that energy-demanding physiological states were associated with i) an increased rate of TEWL and V˙O2 compared to control states and ii) a slight preference (statistically marginal) for both warm and humid conditions compared to controls, suggesting a state-specificity in behavioral response. Overall our results underline the impact of physiological state on water loss and demonstrate the potential for behavior to mitigate the physiological tradeoff between thermoregulation and water balance.

  10. Theoretical investigation of the injection and evaporation of water in a hydrogen/oxygen steam generator

    NASA Astrophysics Data System (ADS)

    Beer, Stefan

    1991-07-01

    Water is injected into the gas stream for the purpose of cooling the reaction products resulting from the stochiometric combustion of hydrogen with oxygen. The penetration of the jet decisively influences the temperature profile across the flow cross section in the water vapor. The penetration of the water jet into the stream is calculated using the jet shedding model and compared with the garden hose model. Models for the evaporation of water droplets in superheated steam are developed for calculating the evaporation paths. The parameters which influence the injection and evaporation process are subjected to variation and their effects in the evaporation paths are analyzed.

  11. Water Evaporation and Condensation by a Phase-Field Model

    NASA Astrophysics Data System (ADS)

    Fabrizio, Mauro; Grandi, Diego; Molari, Luisa

    2016-10-01

    We develop a phase-field model for the liquid-vapor phase transition. The model aims to describe in a thermodynamically consistent way the phase change phenomenon coupled with the macroscopic motion of the fluid. The phase field φ in [0, 1] describes the liquid fraction at any point and the overall water density is a function of the phase field and the pressure. An extra gaseous substance (e.g. air) is allowed in the system and contributes to the mechanical pressure. The phase transition is described by a Ginzburg-Landau equation. The parameter that drives the transition is the partial vapor pressure, which is the relevant quantity for condensation and evaporation phenomena. Moreover, a velocity-dependent term contributes to the phase change in the transition layers where a vapor pressure gradient exists.

  12. Ground cover influence on evaporation and stable water isotopes in soil water

    NASA Astrophysics Data System (ADS)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  13. The continuous similarity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  14. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  15. Convective Evaporation Through Water-Permeable Membranes for Rapid Beverage Chilling

    DTIC Science & Technology

    2008-12-01

    utilizing evaporation, a beverage chiller can achieve efficiencies above and beyond vapor compression and the Carnot Cycle . Using evaporation, a flow of...compression system which has a COP of about 3-6 and exceeds Carnot efficiency by 324 percent. 2.7 Water Temperature Due to the preferred use of...CONVECTIVE EVAPORATION THROUGH WATER -PERMEABLE MEMBRANES FOR RAPID BEVERAGE CHILLING Dr. M. Izenson* and Dr. W. Chen, Creare Inc. Hanover

  16. Water-evaporation reduction by duplex films: application to the human tear film.

    PubMed

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

    PubMed

    Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V; Evans, Geoffrey M; Dao, Dzung V; Nguyen, Nam-Trung

    2016-06-21

    Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble containing a liquid binary mixture has not been reported before. The present paper investigates the effective density and the effective surface tension of an evaporating liquid marble that contains aqueous ethanol at relatively low concentrations. The effective density of an evaporating liquid marble is determined from the concurrent measurement of instantaneous mass and volume. Density measurements combined with surface profile fitting provide the effective surface tension of the marble. We found that the density and surface tension of an evaporating marble are significantly affected by the particle coating.

  18. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    PubMed Central

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur

    2015-01-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632

  19. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators.

    PubMed

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-16

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  20. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    PubMed

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  1. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    PubMed Central

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  2. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  3. Sensible Heat Measurements Indicating Depth and Magnitude of Subsurface Soil Water Evaporation

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is typically determined by techniques that assume the latent heat flux originates from the soil surface. Here, we describe a new technique for determining in situ soil water evaporation dynamics from fine-scale measurements of soil temperature and thermal properties with heat ...

  4. Soil-water evaporation dynamics determined with measurement of sensible heat transfer

    USDA-ARS?s Scientific Manuscript database

    Soil-water evaporation is important in both the hydrologic cycle and the surface energy balance. Yet, routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in evaporation. Recent improvements for fine-scale measurement of soil thermal propert...

  5. Self-evaporation Phenomena of Water Accompanied by a Circulation Water Flow in a Vessel

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuo; Ogushi, Hidemasa

    In the self-evaporation process of hot water in a vertical steam accumulator, the mean temperature of hot water in the vessel is higher than the saturation temperature corresponding to the operation pressure. This temperature deviation generates a capacity loss of a thermal storage system, and should be reduced by optimal designs of internal baffles. In this study, hot water circulation, that is naturally and permanently induced by self evaporation, is analytically studied on an assumption and a simplification as follows. (1) single straight tube is used as the internal baffle, (2) steam and hot water in the two phase flow are in the thermal equilibrium condition. Analysis results show that the solution obtained agree well with visual test results. By using this analysis method, temperature deviations in hot water layer were estimated for various accumulators having wide range of operation conditions, volume and aspect ratio of the vessel.

  6. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    PubMed

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  7. Evaluation and Generalization of 13 Mass-Transfer Equations for Determining Free Water Evaporation

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Xu, C.-Y.

    1997-03-01

    Thirteen equations based on the mass-transfer method for determining free water evaporation were expressed in seven generalized equations. These seven equations were then compared with pan evaporation at four climatological stations in north-western Ontario, Canada. The comparisons were based on monthly evaporation. Equations were compared by calibrating them on the entire data sets as well as by calibrating on part of the data and then verifying them on the remainder of the data. The results of comparison showed that all equations were in reasonable agreement with observed evaporation, and that the effect of wind velocity on monthly evaporation was marginal. However, when an equation with parameters obtained at one site was applied to compute evaporation at another site, the computed evaporation was not in good agreement with observed values.

  8. Residual Patterns of Alkyl Polyoxyethylene Surfactant Droplets after Water Evaporation

    USDA-ARS?s Scientific Manuscript database

    Using a nonionic, alkyl polyoxyethylene surfactant (X-77®) in aqueous solutions, sessile droplet spreading, pinning, evaporation, contraction, and post-evaporation deposits are characterized. X-77® is widely used in the agricultural field as a spreader/adherent, intended to optimize pathenogenic ag...

  9. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.

    PubMed

    Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V

    2013-12-23

    Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the

  10. Evaporation of sessile water/ethanol drops in a controlled environment.

    PubMed

    Liu, Chuanjun; Bonaccurso, Elmar; Butt, Hans-Jürgen

    2008-12-21

    The evaporation of water/ethanol drops with different mixing ratios was investigated at controlled vapor pressure of water (relative humidity) and ethanol in the background gas. Therefore, a drop of about 1 microL was deposited on a hydrophobized silicon substrate at room temperature in a closed cell. With a microscope camera we monitored the contact angle, the volume and the contact radius of the drops as function of time. Pure water drops evaporated in constant contact angle mode. The evaporation rate of water decreased with increasing humidity. In mixed drops ethanol did not evaporate completely at first, but a fraction still remained in the drop until the end of evaporation. Depending on ethanol concentration in the drop and on relative humidity in the background gas, water vapor condensed at the beginning of the evaporation of mixed drops. Also, at a high vapor pressure of ethanol, ethanol condensed at the beginning of the evaporation. The presence of ethanol vapor accelerated the total evaporation time of water drops.

  11. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    NASA Technical Reports Server (NTRS)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  12. The desorptivity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  13. Thermal Effects of the Substrate on Water Droplet Evaporation

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Brutin, David

    2012-11-01

    Since a few decades, the evaporation of a drop deposited onto a substrate has been subject to numerous research activities due to the increase of the range of applications underpinned by this phenomenon. However, this process today is always a challenging problem in soft matter physics due to the complexity of present couplings: fluid dynamic, physical chemistry of the substrate, heat and mass transfer. The originality of the presented experiment is to decouple the effects of wetting properties and thermal properties of the substrate. Thus, whereas we previously presented the role of wetting properties on evaporation by changing the surface energy and the roughness while maintaining the thermal properties constant thanks to nanoscale coatings on the substrate surface (B. Sobac and D. Brutin, Langmuir 27, 14999 (2011)), we investigate here the influence of the thermal properties of the substrate while keeping the wetting properties the same (B. Sobac and D. Brutin, Phys. Rev. E, underpress). We experimentally investigate the behavior of a pinned droplet evaporating into air. The influences of the substrate temperature and substrate thermal properties on the evaporation process are studied in both hydrophilic and hydrophobic conditions. Experimental data are compared to the quasi-steady diffusion-driven evaporation model assuming the isothermia of the drop at the substrate temperature. This comparison permits to highlights several thermal mechanisms linked to evaporation and their respective contributions in regard of pure mass diffusion mechanism. The range of validity of the classical evaporation model is also discussed.

  14. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaporation rate of water as a function of a magnetic field and field gradient.

    PubMed

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  16. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    PubMed Central

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  17. Charge separation at evaporation and vapor growth of ice and water

    SciTech Connect

    Shavlov, A. V.

    2008-11-15

    A mathematical model of the interface charging at evaporation and growth of ice and water phases from vapor is proposed. This model takes into account the competition between the two mechanisms of charge separation, one of which is based on protons and the other involves orientational defects. The first mechanism leads to the accumulation of a positive charge by ice and water during evaporation, while the second one provides negative charge accumulation. The protonic mechanism dominates at low velocities of the evaporation front with respect to the condensed phase material (lower than 10{sup -11}-10{sup -9} m/s). At high rates, the mechanism based on orientational defects is dominant. When vapor is condensed, and, correspondingly, the ice and water phases grow, the charge polarity is opposite to the polarity in the case of evaporation. The proposed model adequately describes the experimentally observed interface electric current and the signs of phase charges during evaporation and condensation.

  18. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation.

  19. Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy.

    PubMed

    Innocenzi, Plinio; Malfatti, Luca; Costacurta, Stefano; Kidchob, Tongjit; Piccinini, Massimo; Marcelli, Augusto

    2008-07-24

    The knowledge of the physics and the chemistry behind the evaporation of solvents is very important for the development of several technologies, especially in the fabrication of thin films from liquid phase and the organization of nanostructures by evaporation-induced self-assembly. Ethanol, in particular, is one of the most common solvents in sol-gel and evaporation-induced self-assembly processing of thin films, and a detailed understanding of its role during these processes is of fundamental importance. Rapid scan time-resolved infrared spectroscopy has been applied to study in situ the evaporation of ethanol and ethanol-water droplets on a ZnSe substrate. Whereas the evaporation rate of ethanol remains constant during the process, water is adsorbed by the ethanol droplet from the external environment and evaporates in three stages that are characterized by different evaporation rates. The adsorption and evaporation process of water in an ethanol droplet has been observed to follow a complex behavior: due to this reason, it has been analyzed by two-dimensional infrared correlation. Three different components in the water bending band have been resolved.

  20. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    NASA Astrophysics Data System (ADS)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  1. Treatment of waste water in non-evaporating dehydration of low grade coal

    SciTech Connect

    Nakabayashi, Y.; Kamei, T.; Komai, K.; Kurihara, M.; Matsuura, Y.; Nakamura, A.; Shimotamari, A.; Wakabayashi, T.

    1983-07-26

    In a non-evaporating dehydration of brown coal, the coal is crushed and classified into lumps and fine particles. The lumps of coal are subjected to a non-evaporating dehydration in which waste water is produced. The waste water is contacted with the fine particles of coal so that components which affect the COD value of the water are absorbed by the coal particles. The coal particles are then burnt to produce saturated steam which is used in the non-evaporating dehydration.

  2. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  3. The daily evaporation characteristics of deeply buried phreatic water in an extremely arid region

    NASA Astrophysics Data System (ADS)

    Li, Hongshou; Wang, Wanfu; Liu, Benli

    2014-06-01

    Measurements of the daily evaporation characteristics of deeply buried phreatic water in an extremely arid area are reported. The results are used to analyze the mechanism responsible for water movement in the groundwater-soil-plant-atmosphere continuum. A closed PVC greenhouse was set up on Gobi land at the top of the Mogao Grottoes where phreatic water is more than 200 m deep. An air-conditioning unit and an automatic weighing scale were placed inside the greenhouse to condense and monitor phreatic evaporation and soil water changes in this extremely arid region. Soil temperature and humidity at various depths (0-40 cm) and other meteorological factors were also recorded on a sub-hourly basis. The relationship between evaporated water and soil water movement was analyzed by observing changes in soil weight, the condensate from the air-conditioning unit, and air moisture. The results show that phreatic water evaporation occurs from this deeply buried source in this extremely arid zone. The daily characteristics are consistent with the variation in the Sun’s radiation intensity (i.e. both show a sinusoidal behavior). In the daytime, most of the soil water does not evaporate but moves to cooler sub-layers. In the afternoon, the shallow soil layer absorbs moisture as the temperature decreases. At night, an abundance of water vapor moves upwards from the sub-layers and supplements the evaporated and downward-moving moisture of the superstratum in the daytime, but there is no evaporation. The stable, upwardly migrating vapor and film water is supported by geothermy and comes from phreatic water, the daily evaporation characteristics of which changes according to soil temperature when it reaches the ground.

  4. Marangoni Convection Instabilities Induced by Evaporation of Liquid Layer in an Open Rectangular Pool

    NASA Astrophysics Data System (ADS)

    Shi, Wan-Yuan; Rong, Shang-Ming; Feng, Lin

    2016-12-01

    In order to investigate the Marangoni convection instability of 0.65cSt silicone oil induced by evaporation in liquid layer, a series of experiments are carried out in an open rectangular pool. The effects of side wall temperature as well as ambient temperature on competitions between BM convection and thermocapillary convection are analyzed thoroughly. Increasing of the side wall temperature would inevitably enhance thermocapillary convection and suppress the formation of BM cells by transferring hot fluid from border to surface. As long as the side wall temperature is high enough, BM cells would disappear completely and multicellular rolls as well as hydrothermal waves would occur in the whole layer. Increasing ambient temperature would enhance both BM convection and thermocapillary convection, but the later one benefits more from it because hydrothermal waves can occur at a lower Ma number. Critical Marangoni numbers for the incipience of hydrothermal waves and that disappearance of BM convection cells are obtained under different ambient temperatures.

  5. Marangoni Convection Instabilities Induced by Evaporation of Liquid Layer in an Open Rectangular Pool

    NASA Astrophysics Data System (ADS)

    Shi, Wan-Yuan; Rong, Shang-Ming; Feng, Lin

    2017-02-01

    In order to investigate the Marangoni convection instability of 0.65cSt silicone oil induced by evaporation in liquid layer, a series of experiments are carried out in an open rectangular pool. The effects of side wall temperature as well as ambient temperature on competitions between BM convection and thermocapillary convection are analyzed thoroughly. Increasing of the side wall temperature would inevitably enhance thermocapillary convection and suppress the formation of BM cells by transferring hot fluid from border to surface. As long as the side wall temperature is high enough, BM cells would disappear completely and multicellular rolls as well as hydrothermal waves would occur in the whole layer. Increasing ambient temperature would enhance both BM convection and thermocapillary convection, but the later one benefits more from it because hydrothermal waves can occur at a lower Ma number. Critical Marangoni numbers for the incipience of hydrothermal waves and that disappearance of BM convection cells are obtained under different ambient temperatures.

  6. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions

    NASA Astrophysics Data System (ADS)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.

    2016-12-01

    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  7. Characteristics of the Self-evaporation Behavior of Sprinkled Water near the Triple Point

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuo; Hayashi, Kanetoshi; Ogoshi, Hidemasa; Maeyama, Katsuya; Yonezawa, Noriyuki

    For the sake of capturing the basic data in concern with the designing of vacuum evaporation apparatus, characteristics of the self-evaporation behavior of sprinkled water near the triple point has been investigated experimentally. The relationship between the amount of the vaporized water and the pressure in the vessel was elucidated quantitatively on the condition that over-heated water was sprinkled from water supplying nozzles of diameter of 4 mm into the center of the steam area in the heat insulation glass evaporation vessel having diameter of 200 mm and height of 1100 mm. Even under the mild water sprinkling conditions such as no small particle formation, small Reynolds number, and small Weber number, the temperature effectiveness of the self-evaporation in the center of the steam was as high as 80%, which clearly shows the effectiveness of this water-sprinkling method. In addition, the basic data for system designing such as water evaporation coefficient from water layer surface and temperature effectiveness of self-evaporation during the f1ight in the steam space were obtained.

  8. Sub- and super-Maxwellian evaporation of simple gases from liquid water.

    PubMed

    Kann, Z R; Skinner, J L

    2016-04-21

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H2 from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and it is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.

  9. Sub- and super-Maxwellian evaporation of simple gases from liquid water

    NASA Astrophysics Data System (ADS)

    Kann, Z. R.; Skinner, J. L.

    2016-04-01

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H2 from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and it is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.

  10. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  11. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  12. PROCESS WATER BUILDING, TRA605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. INSIDE A FLASH EVAPORATOR. INL NEGATIVE NO. 3323. Unknown Photographer, 9/12/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Metabolic rate and evaporative water loss of Mexican Spotted and Great Horned Owls

    Treesearch

    Joseph L. Ganey; Russell P. Balda; Rudy M. King

    1993-01-01

    We measured rates of oxygen consumption and evaporative water loss (EWL) of Mexican Spotted (Strix occidentalis lucida) and Great Horned (Bubo virginianus) owls in Arizona. Basal metabolic rate averaged 0.84 ccO2. g-1. h-1...

  14. RECYCLING NICKEL ELECTROPLATING RINSE WATERS BY LOW TEMPERATURE EVAPORATION AND REVERSE OSMOSIS

    EPA Science Inventory

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperat...

  15. Evaporative Water Loss in Superficial to Full Thickness Burns.

    PubMed

    Busche, Marc Nicolai; Roettger, Anne; Herold, Christian; Vogt, Peter Maria; Rennekampff, Hans-Oliver

    2016-10-01

    Increased evaporative water loss (EWL) in burn patients leads to dehydration and hypothermia. Early clinical studies performed with outdated hygrometers suggested a 17 to 75 times increased EWL in burns with contradicting results for the different burn depths.Our study proposals were: (1) obtain reliable data of the EWL of all burn depths, (2) compare these results with findings from earlier studies, (3) evaluate the usefulness of the EWL in differentiating between superficial and deep partial thickness burns, (4) determine the effect of Biobrane on the EWL of superficial partial thickness burns in vivo, and (5) evaluate the effect of the sterile incision foil Opraflex on the EWL in split skin graft donor sites. We measured the EWL of all burn depths in 28 patients under stable and recorded conditions regarding room temperature and humidity with a modern digital evaporimeter (Tewameter TM 300). For the first time in vivo, we also determined the effect of Biobrane on the EWL of burns and evaluated the EWL in split skin graft donor sites covered with Opraflex. The EWL in all burn depths was significantly increased (P < 0.001) compared with unburned skin. There was no significant difference (P > 0.05) in the EWL of superficial compared with deep partial thickness burns, whereas full thickness burns had a significantly lower EWL (P < 0.05) compared with superficial and deep partial thickness burns. Biobrane significantly reduced the EWL (P < 0.05) of superficial partial thickness burns. The EWL of Opraflex covered skin graft donor sites was significantly reduced compared with uncovered donor sites (P < 0.05). Our data suggest that the actual EWL in burns is approximately 3 times higher in full thickness burns and approximately 4 times higher in superficial and deep partial thickness burns compared with normal skin and therefore much lower than suggested previously.Because there was no significant difference in the EWL of superficial compared with deep partial thickness

  16. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  17. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    NASA Technical Reports Server (NTRS)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  18. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    PubMed

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  19. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis

    PubMed Central

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  20. Global sensitivity analysis of a local water balance model predicting evaporation, water yield and drought

    NASA Astrophysics Data System (ADS)

    Speich, Matthias; Zappa, Massimiliano; Lischke, Heike

    2017-04-01

    Evaporation and transpiration affect both catchment water yield and the growing conditions for vegetation. They are driven by climate, but also depend on vegetation, soil and land surface properties. In hydrological and land surface models, these properties may be included as constant parameters, or as state variables. Often, little is known about the effect of these variables on model outputs. In the present study, the effect of surface properties on evaporation was assessed in a global sensitivity analysis. To this effect, we developed a simple local water balance model combining state-of-the-art process formulations for evaporation, transpiration and soil water balance. The model is vertically one-dimensional, and the relative simplicity of its process formulations makes it suitable for integration in a spatially distributed model at regional scale. The main model outputs are annual total evaporation (TE, i.e. the sum of transpiration, soil evaporation and interception), and a drought index (DI), which is based on the ratio of actual and potential transpiration. This index represents the growing conditions for forest trees. The sensitivity analysis was conducted in two steps. First, a screening analysis was applied to identify unimportant parameters out of an initial set of 19 parameters. In a second step, a statistical meta-model was applied to a sample of 800 model runs, in which the values of the important parameters were varied. Parameter effect and interactions were analyzed with effects plots. The model was driven with forcing data from ten meteorological stations in Switzerland, representing a wide range of precipitation regimes across a strong temperature gradient. Of the 19 original parameters, eight were identified as important in the screening analysis. Both steps highlighted the importance of Plant Available Water Capacity (AWC) and Leaf Area Index (LAI). However, their effect varies greatly across stations. For example, while a transition from a

  1. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries.

    PubMed

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    Incipient caries is characterized as demineralization of the tooth enamel reflecting in increased porosity of enamel structure. As a result, the demineralized enamel may contain increased amount of water, and exhibit different water evaporation dynamics than the sound enamel. The objective of this paper is to assess the applicability of water evaporation dynamics of sound and demineralized enamel for detection and quantification of incipient caries using near-infrared hyperspectral imaging. The time lapse of water evaporation from enamel samples with artificial and natural caries lesions of different stages was imaged by a near-infrared hyperspectral imaging system. Partial least squares regression was used to predict the water content from the acquired spectra. The water evaporation dynamics was characterized by a first order logarithmic drying model. The calculated time constants of the logarithmic drying model were used as the discriminative feature. The conducted measurements showed that demineralized enamel contains more water and exhibits significantly faster water evaporation than the sound enamel. By appropriate modelling of the water evaporation process from the enamel surface, the contrast between the sound and demineralized enamel observed in the individual near infrared spectral images can be substantially enhanced. The presented results indicate that near-infrared based prediction of water content combined with an appropriate drying model presents a strong foundation for development of novel diagnostic tools for incipient caries detection. The results of the study enhance the understanding of the water evaporation process from the sound and demineralized enamel and have significant implications for the detection of incipient caries by near-infrared hyperspectral imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator

    SciTech Connect

    Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza

    2016-12-19

    Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of some pump designs to assuage cavitation issues.

  3. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    PubMed

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  4. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study

    PubMed Central

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-01-01

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207

  5. Effect of the Heat Flux Density on the Evaporation Rate of a Distilled Water Drop

    NASA Astrophysics Data System (ADS)

    Ponomarev, Konstantin; Orlova, Evgeniya; Feoktistov, Dmitry

    2016-02-01

    This paper presents the experimental dependence of the evaporation rate of a nondeaerated distilled water drop from the heat flux density on the surfaces of non-ferrous metals (copper and brass). A drop was placed on a heated substrate by electronic dosing device. To obtain drop profile we use a shadow optical system; drop symmetry was controlled by a high-speed video camera. It was found that the evaporation rate of a drop on a copper substrate is greater than on a brass. The evaporation rate increases intensively with raising volume of a drop. Calculated values of the heat flux density and the corresponding evaporation rates are presented in this work. The evaporation rate is found to increase intensively on the brass substrate with raising the heat flux density.

  6. Evaporation of water droplets on "lock-and-key" structures with nanoscale features.

    PubMed

    Zhu, Xiaolong; Zhang, Chi; Liu, Xiaohan; Hansen, Ole; Xiao, Sanshui; Mortensen, N A; Zi, Jian

    2012-06-26

    Highly ordered poly(dimethylsiloxane) microbowl arrays (MBAs) and microcap arrays (MCAs) with "lock-and-key" properties are successfully fabricated by self-assembly and electrochemical deposition. The wetting properties and evaporation dynamics of water droplets for both cases have been investigated. For the MBAs case, the wetting radius of the droplets remains unchanged until the portion of the droplet completely dries out at the end of the evaporation process. The pinning state extends for more than 99.5% of the total evaporation time, and the pinning-shrinking transition is essentially prevented whereas in the case of the MCAs the contact radius exhibits distinct stages during evaporation and the contact line retreats significantly in the middle of the evaporation process. We explain the phenomenon by a qualitative energy balance argument based on the different shrinkage types of the nanoscale-folded contact line.

  7. Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect

    NASA Astrophysics Data System (ADS)

    Feng, Xiahong; Lauder, Alex M.; Posmentier, Eric S.; Kopec, Ben G.; Virginia, Ross A.

    2016-01-01

    Isotopic compositions of evaporative flux from a lake are used in many hydrological and paleoclimate studies that help constrain the water budget of a lake and/or to infer changes in climate conditions. The isotopic fluxes of evaporation from a water surface are typically computed using a zero dimensional (0-D) model originally conceptualized by Craig and Gordon (1965). Such models generally have laminar and turbulent layers, assume a steady state condition, and neglect horizontal variations. In particular, the effect of advection on isotopic variations is not considered. While this classical treatment can be used for some sections of large open surface water bodies, such as an ocean or a large lake, it may not apply to relatively small water bodies where limited fetch does not allow full equilibration between air from land and the water surface. Both horizontal and vertical gradients in water vapor concentration and isotopic ratios may develop over a lake. These gradients, in turn, affect the evaporative fluxes of water vapor and its isotopic ratios, which is not adequately predicted by a 0-D model. We observed, for the first time, the vertical as well as horizontal components of vapor and isotopic gradients as relatively dry and isotopically depleted air advected over the surfaces of several lakes up to a 5 km fetch under winds of 1-5 m/s in Kangerlussuaq, Greenland. We modeled the vapor and isotopic distribution in air above the lake using a steady state 2-D model, in which vertical diffusive transport balances horizontal advection. The model was verified by our observations, and then used to calculate evaporative fluxes of vapor and its isotopic ratios. In the special case of zero wind speed, the model reduces to 1-D. Results from this 1-D model are compared with those from the 2-D model to assess the discrepancy in isotopic fluxes between advection and no advection conditions. Since wind advection above a lake alters the concentrations, gradients, and

  8. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    USGS Publications Warehouse

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  9. Numerical study of heat and mass transfer of ammonia-water in falling film evaporator

    NASA Astrophysics Data System (ADS)

    Bu, Xianbiao; Ma, Weibin; Huang, Yuanfeng

    2012-05-01

    To investigate the performance of the heat and mass transfer of ammonia water during the process of falling film evaporation in vertical tube evaporator, a mathematical model of evaporation process was developed and solved based on stream function. Then an experimental study of falling film evaporation was carried out in order to validate the mathematical model. A series of parameters, such as velocity, film thickness and concentration, etc., were obtained from the mathematical model. The calculated results show that the average velocity and the film thickness change sharp at the entrance region when x < 100 mm, while they vary slightly in the fully developed region when x > 100 mm. The film thickness depends largely on the flow rate of solution. It is observed that the heating power and mass flow of solution significantly affect the concentration difference between the inlet and outlet of evaporation tube. The calculated results reveal that the tube length has a significant impact on the amounts of ammonia vapor evaporated. It is suggested that the roll-worked enhanced tube should be used in order to decrease the concentration gradient in the film thickness direction and enhance the heat and mass transfer rate. Furthermore, the experimental and calculated results indicate that the inlet solution concentration has a great influence on the heat exchange capacity, the amounts of ammonia vapor evaporated and the evaporation pressure.

  10. Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li-O2 Batteries.

    PubMed

    Mohazabrad, Farhad; Wang, Fangzhou; Li, Xianglin

    2017-05-10

    This study experimentally investigates and numerically simulates the influence of the cathode electrode open ratio (ratio of oxygen-opening area to the total electrode surface area) on the performance of Li-O2 batteries at various discharge current densities. At the current density of 0.1 mA/cm(2), the maximum discharge capacity is achieved at 25% open ratio among the tested open ratios (0-100%). As the open ratio increases from 25% to 100%, the specific discharge capacity decreases from 995 to 397 mA h/gcarbon. A similar trend is observed at 0.3 mA/cm(2), while the maximum discharge capacity is obtained at 3% open ratio among the tested open ratios. The model that assumes the electrode is always fully saturated by the electrolyte does not obtain similar trends with experimental results, while the model that considers electrolyte loss by evaporation and the volume change of the solid obtains the same trend with experimental observations. The open ratio governs not only availability of oxygen but also the evaporation of the electrolyte and the contact resistance. The faster evaporation of the electrolyte at a higher open ratio can be the main reason for the decrease of the discharge capacity, especially when the open ratio is relatively high (above 25%). Meanwhile, the contact resistance of the battery, measured by the electrochemical impedance spectroscopy (EIS), increases from 3.97 to 7.02 Ω when the open ratio increased from 3% to 95%. The increase of the Ohmic overpotential, however, is negligible (on the order of millivolts) because of the low discharge and charge current rates (on the order of 0.1 mA).

  11. Variation of Phreatic Evaporation of Bare Soil and Integration Application in Water Allocation in Shule Basin

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, P.; Gong, G.

    2011-12-01

    Phreatic evaporation is a key element in regional water balance, but it is hardly measured directly. Recently the development of some new technologies brings new dawn to phreatic evaporation measurement, such as eddy covariance, remote sensing ET and so on. But the new technologies have no ability to connect to groundwater yet. Conventional groundwater balance equipment was set up in Shule basin in northwestern China, with located E97°01', N45°13' , altitude 1520m, annual average precipitation 61.8mm and annual evaporation 2600mm (pan 20cm). The experiment field contains 45 lysimeters (65cm diameter). 11 different water table depths are set in the lysimeters, which are 0.5m, 0.75m, 1.0m, 1.25m, 1.5m, 2.0m, 2.5m, 3.0m, 4.0m, 5.0m and 6.0m. The water table in the lysimeter is controlled by Marriott Bottle System. The evaporation and percolation is measured for three different soil types (silt sandy soil, loam soil and clay soil) in the 11 different water table depths. Based on the data from 2006 to 2010, the influences of atmosphere evaporation capacity, phreatic water depth and soil textures are analyzed. Empirical formulae for estimating phreatic evaporation are regressed. The fitting precision of the different formulae are evaluated. The results show that, fitting effect of common empirical formulae is good in Shule river basin. For the different soil types, fitting effect of silt soil is the best, while that of clay soil is relatively low. At last, formulae fitted in other areas and phreatic evaporation tests are summarized. The reasons of difference of fitted coefficients lie in three aspects: the range of depth of groundwater, choice of the value of water evaporation, method to optimize coefficients. Physical meaning of the coefficients in empirical formulae is analyzed. The features, fitting effect and notes in application of formulae are evaluated. The results are applied in water requirement calculation of ecological conservation Dunhuang Xihu Nature

  12. Experimental Measurements of the Water Evaporation Rate of a Physical Model

    NASA Astrophysics Data System (ADS)

    Turza, Róbert; Füri, Belo B.

    2017-03-01

    As the number of indoor swimming pools and wellness centers are currently growing, it is necessary to concentrate on the parameters of indoor environments. These parameters are necessary for the design of the HVAC systems that operate these premises. In indoor swimming-pool facilities, the energy demand is large due to ventilation losses from exhaust air. Since water evaporates from a pool's surface, exhaust air has a high water content and specific enthalpy. In this paper the results of the water evaporation rate measured from swimming pool surfaces at higher thermal water temperatures are described.

  13. Effects on evaporation rates from different water-permeable pavement designs.

    PubMed

    Starke, P; Göbel, P; Coldewey, W G

    2011-01-01

    The urban water balance can be attenuated to the natural by water-permeable pavements (WPPs). Furthermore, WPPs have a 16% higher evaporation rate than impermeable pavements, which can lead to a better urban climate. Evaporation rates from pavements are influenced by the pavement surface and by the deeper layers. By a compared evaporation measurement between different WPP designs, the grain size distribution of the sub-base shows no influence on the evaporation rates in a significant way. On the contrary, a sub-base made of a twin-layer decreases the evaporation by 16% compared to a homogeneous sub-base. By a change in the colour of the paving stone, 19% higher evaporation rates could be achieved. A further comparison shows that the transpiration-effect of the grass in grass pavers increases the evaporation rates more than threefold to pervious concrete pavements. These high evapotranspiration rates can not be achieved with a pervious concrete paving stone. In spite of this, the broad field of application of the pervious concrete paving stone increases the importance in regard to the urban climate.

  14. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    PubMed

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  15. Evaporative Evolution of Carbonate-Rich Brines from Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain

    SciTech Connect

    Sutton, M; Alai, M; Carroll, S A

    2004-04-14

    The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol%SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

  16. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Borg, Matthew K.; Sefiane, Khellil; Reese, Jason M.

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  17. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  18. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGES

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  19. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory.

    PubMed

    Schlesinger, Daniel; Sellberg, Jonas A; Nilsson, Anders; Pettersson, Lars G M

    2016-03-28

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  20. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  1. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    PubMed Central

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  2. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces.

    PubMed

    Chen, Xuemei; Weibel, Justin A; Garimella, Suresh V

    2015-11-25

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality.

  3. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-11-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality.

  4. Energy transport by thermocapillary convection during Sessile-Water-droplet evaporation.

    PubMed

    Ghasemi, H; Ward, C A

    2010-09-24

    The energy transport mechanisms of a sessile-water droplet evaporating steadily while maintained on a Cu substrate are compared. Buoyancy-driven convection is eliminated, but thermal conduction and thermocapillary convection are active. The dominant mode varies along the interface. Although neglected in previous studies, near the three-phase line, thermocapillary convection is by far the larger mode of energy transport, and this is the region where most of the droplet evaporation occurs.

  5. Dynamics of pore-water and salt in estuarine marshes subjected to tide and evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shen, C.; Li, L.; Lockington, D. A.

    2015-12-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore water and salt in a vertical cross section perpendicular to the tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore water from unsaturated soil surface with salt left in soils, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, solute concentration and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the tidal signal, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period in a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains close to that of seawater. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water-saturated soil is maintained while tidal inundation absent. On the contrary, the sandy supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  6. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    PubMed

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  7. Evaporation of Water Droplets in a High-Temperature Gaseous Medium

    NASA Astrophysics Data System (ADS)

    Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-01-01

    A numerical solution of the problem of heat and mass transfer in evaporation of a droplet of water moving in a stream of high-temperature (up to 1200 K) gases is done on the basis of a system of nonlinear nonstationary partial differential equations describing conductive and radiative heat transfer in the droplet, as well as composite heat transfer at the ″liquid-gas″ interface. The values of the water evaporation rate have been determined. It is shown that the dependence of the evaporation rate on the droplet surface temperature has a nonlinear character. Characteristic relationships between the convective and radiative heat fluxes on the droplet surface (the radiative flux substantially exceeds the convective one; on decrease in the difference between the gas and droplet surface temperatures the difference between the radiative and convective heat fluxes decreases), the lifetimes (total evaporation) of droplets, as well as of the temperature and concentration of steam and gases in the vicinity of droplets have been determined. The calculated characteristics of the water droplet evaporation under conditions of high temperatures of the gas medium differ considerably from those obtained within the framework of the "diffusional" model of evaporation. A comparison of the results of numerical simulation with the experimental data obtained with the use of high-velocity panoramic optical methods of visualization by ″tracing particles″ is carried out.

  8. Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water.

    PubMed

    Altabet, Y Elia; Haji-Akbari, Amir; Debenedetti, Pablo G

    2017-03-28

    The evaporation of water induced by confinement between hydrophobic surfaces has received much attention due to its suggested functional role in numerous biophysical phenomena and its importance as a general mechanism of hydrophobic self-assembly. Although much progress has been made in understanding the basic physics of hydrophobically induced evaporation, a comprehensive understanding of the substrate material features (e.g., geometry, chemistry, and mechanical properties) that promote or inhibit such transitions remains lacking. In particular, comparatively little research has explored the relationship between water's phase behavior in hydrophobic confinement and the mechanical properties of the confining material. Here, we report the results of extensive molecular simulations characterizing the rates, free energy barriers, and mechanism of water evaporation when confined between model hydrophobic materials with tunable flexibility. A single-order-of-magnitude reduction in the material's modulus results in up to a nine-orders-of-magnitude increase in the evaporation rate, with the corresponding characteristic time decreasing from tens of seconds to tens of nanoseconds. Such a modulus reduction results in a 24-orders-of-magnitude decrease in the reverse rate of condensation, with time scales increasing from nanoseconds to tens of millions of years. Free energy calculations provide the barriers to evaporation and confirm our previous theoretical predictions that making the material more flexible stabilizes the confined vapor with respect to liquid. The mechanism of evaporation involves surface bubbles growing/coalescing to form a subcritical gap-spanning tube, which then must grow to cross the barrier.

  9. Field-measured, hourly soil water evaporation stages in relation to reference evapotranspiration rate and soil to air temperature ratio

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation takes critical water supplies away from crops, especially in areas where both rainfall and irrigation water are limited. This study measured bare soil water evaporation from clay loam, silt loam, sandy loam, and fine sand soils. It found that on average almost half of the ir...

  10. The 2014 water release into the arid Colorado River delta and associated water losses by evaporation.

    PubMed

    Daesslé, L W; van Geldern, R; Orozco-Durán, A; Barth, J A C

    2016-01-15

    For the first time in history, water was intentionally released for environmental purposes into the final, otherwise dry, 160-km stretch of the Colorado River basin, south of the Mexican border. Between March and May 2014 three pulses of water with a total volume of 132×10(6) m(3) were released to assess the restoration potential of endemic flora along its course and to reach its estuary. The latter had not received a sustained input of fresh water and nutrients from its main fluvial source for over 50 years because of numerous upstream dam constructions. During this pulse flow large amounts of water were lost and negligible amounts reached the ocean. While some of these water losses can be attributed to plant uptake and infiltration, we were able to quantify evaporation losses between 16.1 to 17.3% of the original water mass % within the first 80 km after the Morels Dam with water stable isotope data. Our results showed no evidence for freshwater reaching the upper Colorado River estuary and it is assumed that the pulse flow had only negligible influences on the coastal ecosystem. Future water releases that aim on ecological restoration need to become more frequent and should have larger volumes if more significant effects are to be established on the area. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle

    NASA Technical Reports Server (NTRS)

    Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael; hide

    2007-01-01

    Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.

  12. Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle

    NASA Technical Reports Server (NTRS)

    Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael; Osterman, Gregory; Rinsland, Curtis P.; Rogders, Clive; Sander, Stanley; Shepard, Mark; Webster, Christopher R.; Worden, H. M.

    2007-01-01

    Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.

  13. Experimental and Numerical Study of the Evaporation of Water at Low Pressures.

    PubMed

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-05-09

    Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.

  14. Spatiotemporal infrared measurement of interface temperatures during water droplet evaporation on a nonwetting substrate

    NASA Astrophysics Data System (ADS)

    Chandramohan, Aditya; Weibel, Justin A.; Garimella, Suresh V.

    2017-01-01

    High-fidelity experimental characterization of sessile droplet evaporation is required to understand the interdependent physical mechanisms that drive the evaporation. In particular, cooling of the interface due to release of the latent heat of evaporation, which is not accounted for in simplified vapor-diffusion-based models of droplet evaporation, may significantly suppress the evaporation rate on nonwetting substrates, which support tall droplet shapes. This suppression is counteracted by convective mass transfer from the droplet to the air. While prior numerical modeling studies have identified the importance of these mechanisms, there is no direct experimental evidence of their influence on the interfacial temperature distribution. Infrared thermography is used here to simultaneously measure the droplet volume, contact angle, and spatially resolved interface temperatures for water droplets on a nonwetting substrate. The technique is calibrated and validated to quantify the temperature measurement accuracy; a correction is employed to account for reflections from the surroundings when imaging the evaporating droplets. Spatiotemporally resolved interface temperature data, obtained via infrared thermography measurements, allow for an improved prediction of the evaporation rate and can be utilized to monitor temperature-controlled processes in droplets for various lab-on-a-chip applications.

  15. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    PubMed

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  16. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  17. Impact of type of salt and ambient conditions on saline water evaporation from porous media

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, Salomé M. S.; Norouzi Rad, Mansoureh; Webb, Colin; Shokri, Nima

    2017-07-01

    Saline water evaporation from porous media is important in many processes such as soil salinization, CO2 sequestration, crop production and water management. This process is influenced by the transport properties of porous media, properties of the evaporating solution and external conditions. In this work, we investigated the effects of external conditions and type of salt on the drying behaviour of sandy media and on the dynamics of surface salt precipitation. To do so, a comprehensive series of evaporation experiments were conducted using 33 columns packed with sand saturated with salt solutions. The evaporation experiments were conducted in an environmental chamber to investigate the effects of relative humidity, ambient temperature and type of salt on the evaporation process. Sodium Chloride, Calcium Chloride and Potassium Iodide with a wide range of concentration were used to saturate the sand columns mounted on digital balances. A digital camera was fixed at the surface of the sand packs to record the dynamics of salt precipitation at the surface. The results provide further confirmation that ambient conditions are the controlling factors during stage-1 evaporation of pure water. Additionally, the minor impact of the presence of precipitated salt at the surface on the saline water evaporation during the early stages of the process is discussed. Strong correlations between the cumulative water losses and the precipitation at the surface were found under different ambient conditions. The results obtained from different types of salt highlight the significant influence of the relationship between the saturated vapour pressure and salt concentration on the general dynamics of the process.

  18. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  19. Tillage effects on soil water redistribution and bare soil evaporation throughout a season

    USDA-ARS?s Scientific Manuscript database

    Tillage-induced changes in soil properties are difficult to predict, yet can influence how water is redistributed within the profile after precipitation and subsequent evaporation rates. We evaluated the effects of sweep tillage (ST) on near surface soil water dynamics as compared with an untilled (...

  20. Tillage effects on soil water redistribution and bare soil evaporation throughout a season

    USDA-ARS?s Scientific Manuscript database

    Tillage-induced changes in soil properties are difficult to predict, yet can influence evaporation, infiltration, and how water is redistributed within the profile after precipitation. We evaluated the effects of sweep tillage (ST) on near surface soil water dynamics as compared with an untilled (UT...

  1. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers.

    PubMed

    Roberts, Aled D; Zhang, Haifei

    2013-04-15

    A generic method is described to form poorly water-soluble drug nanoparticles within water-soluble porous polymer by solvent evaporation. The simple dissolution of porous polymer with drug nanoparticles results in stable aqueous drug nanoparticle suspension under the optimized conditions. The porous polymers were prepared by freeze-drying aqueous solutions of polyvinyl alcohol, polyethylene glycol, and a surfactant. They were then used as scaffolds for the formation of nanoparticles by initially soaking them in an organic drug solution, followed with removing the solvent via evaporation under ambient conditions. This process was optimized for an antifungal drug griseofulvin, before being translated to anticonvulsant carbamazepine and antineoplastic paclitaxel via a similar procedure, with an aim to improve the loading of drug nanoparticles. By varying certain process parameters a degree of control over the particle size and surface charge could be attained, as well as the drug to stabilizer ratio (drug payload). Noticeably, aqueous paclitaxel nanoparticles (500 nm) were prepared which used the equivalent of 46% less stabilizer than the formulation Taxol.

  2. Toxicity assessment of oil field produced water treated by evaporative processes to produce water to irrigation.

    PubMed

    Andrade, V T; Andrade, B G; Costa, B R S; Pereira, O A; Dezotti, M

    2010-01-01

    During the productive life of an oil well, a high quantity of produced water is extracted together with the oil, and it may achieve up to 99% in the end of the well's economical life. Desalination is one of mankind's earliest forms of saline water treatment, and nowadays, it is still a common process used throughout the world. A single-effect mechanical vapor compression (MVC) process was tested. This paper aims to assess the potential toxicity of produced water to be re-used in irrigation. Samples of both produced and distilled water were evaluated by 84 chemical parameters. The distilled produced water presented a reduction up to 97% for the majority of the analyzed parameters, including PAHs. Toxicity bioassays were performed with distilled produced water to evaluate the growth inhibition of Pseudokirchneriella subcapitata algae, the acute toxicity to Danio rerio fish, the germination inhibition of Lactuca sativa vegetable and the severity of toxicity, as well as behavior test with Lumbricid Earthworm Eisenia fetida. The ecotoxicological assays results showed no toxicity, indicating that the referred evaporative process can produce water to be reused in irrigation.

  3. Water evaporation rates across hydrophobic acid monolayers at equilibrium spreading pressure.

    PubMed

    Tsuji, Minami; Nakahara, Hiromichi; Moroi, Yoshikiyo; Shibata, Osamu

    2008-02-15

    The effect of alkanoic acid [CH(3)(CH(2))(n-2)COOH; HCn] and perfluoroalkanoic acid [CF(3)(CF(2))(n-2)COOH; FCn] monolayers on the water evaporation rate was investigated by thermogravimetry tracing the decrease in amount of water with time. The evaporation rate from the surface covered by a monolayer was measured as a function of temperature and hydrophobic chain length of the acids, where the monolayer was under an equilibrium spreading pressure. From thermal behavior of the crystallized acids, their solid states are C-type in crystalline state over the temperature range from 298.2 to 323.2 K. The dry air was flowed through a furnace tube of a thermogravimetry apparatus at the flow rate of 80 mL min(-1), where the evaporation rate becomes almost constant irrespective of the flow rate. The temperature dependence of the evaporation rate was analyzed kinetically to evaluate the activation energy and thermodynamics values for the activated complex, which demonstrated that these values were almost the same for both alkanoic acids and perfluoroalkanoic acids, although the effect of perfluoroalkanoic acids on the evaporation rate was smaller than that of corresponding hydrogenated fatty acids. The difference in the evaporation rate between FCn and HCn was examined by atomic force microscopy (AFM), Brewster angle microscopy (BAM), surface potential (DeltaV) at equilibrium spreading pressure, and Langmuir curve (pi-A isotherm), and their results were consistent and supported the difference.

  4. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  5. Using water stable isotopes to assess evaporation and water residence time of lakes in EPA’s National Lakes Assessment.

    EPA Science Inventory

    Stable isotopes of water (18O and 2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and water isotopes integrate information about basic hydrological processes such as evaporation as a percentage of inflow (E/I), w...

  6. Constraints in calculations of evaporative losses in arid climates using the stable isotope composition of water

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Mydlowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J. J.; Grierson, P. F.

    2014-12-01

    Accurate quantification of evaporative losses to the atmosphere from surface water bodies is essential for calibration and validation of hydrological models, particularly in remote arid and semi-arid regions, where rivers and lakes are generally minimally gauged. In this study, we reviewed and combined the most recent equations for estimation of evaporative losses based on the revised Craig-Gordon model. We designed new software, called Hydrocalculator, which allows quick and robust estimation of evaporative losses based on the isotopic composition of water. We validated Hydrocalculator by testing the range of uncertainty in the estimation of evaporative losses in arid climates by cross-validating a simplified stable isotope model with field pan evaporation experiments. The use of standardized pans (1.2 m diameter, volume 300 dm3) in hot and dry climates (temperature 29°C and relative humidity between 19 and 26%) allowed simulation of fast evaporation from shallow water bodies. Several factors may contribute to the uncertainty in the evaporative loss calculations. The analytical uncertainty in the determination of the stable isotope composition of water may contribute to ~0.6% for δ18O and ~1.4% for δ2H. The model is less sensitive to uncertainty in climatic variables and an uncertainty of 1°C in air temperature will result only in the ~0.1% uncertainty in δ18O and δ2H. However, uncertainty in relative humidity of 10% will result in an uncertainty in the final outcome of 0.4% (δ18O) and 1.0% (δ2H). Significantly higher uncertainty in evaporative loss estimation is thus associated with uncertainty in ambient air moisture estimation or analysis. An error of 20‰ in δ2H and 5.0‰ in δ18O will result in a maximum difference of 2.4% (δ2H) and 1.7% (δ18O) in the final calculations. Hydrocalculator can thus provide accurate, rapid and cost-effective insight into the water balance of surface water pools. We used the new software to determine the origin of

  7. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures.

    PubMed

    Tsai, Peichun; Lammertink, Rob G H; Wessling, Matthias; Lohse, Detlef

    2010-03-19

    When placed on rough hydrophobic surfaces, water droplets of diameter larger than a few millimeters can easily form pearls, as they are in the Cassie-Baxter state with air pockets trapped underneath the droplet. Intriguingly, a natural evaporating process can drive such a Fakir drop into a completely wetting (Wenzel) state. Our microscopic observations with simultaneous side and bottom views of evaporating droplets upon transparent hydrophobic microstructures elucidate the water-filling dynamics and suggest the mechanism of this evaporation-triggered transition. For the present material the wetting transition occurs when the water droplet size decreases to a few hundreds of micrometers in radius. We present a general global energy argument which estimates the interfacial energies depending on the drop size and can account for the critical radius for the transition.

  8. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  9. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  10. Droplet evaporation with complexity of evaporation modes

    NASA Astrophysics Data System (ADS)

    Hwang, In Gyu; Kim, Jin Young; Weon, Byung Mook

    2017-01-01

    Evaporation of a sessile droplet often exhibits a mixed evaporation mode, where the contact radius and the contact angle simultaneously vary with time. For sessile water droplets containing polymers with different initial polymer concentrations, we experimentally study their evaporation dynamics by measuring mass and volume changes. We show how diffusion-limited evaporation governs droplet evaporation, regardless of the complexity of evaporation behavior, and how the evaporation rate depends on the polymer concentration. Finally, we suggest a unified expression for a diffusion-limited evaporation rate for a sessile droplet with complexity in evaporation dynamics.

  11. Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator

    DOE PAGES

    Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza

    2016-12-19

    Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less

  12. Stable isotope ratios in irrigation water can estimate rice crop evaporation

    NASA Astrophysics Data System (ADS)

    Simpson, H. J.; Herczeg, A. L.; Meyer, W. S.

    1992-02-01

    Irrigated crops provide about one third of world food production, and the total area under irrigation has increased by more than a factor of three since 1950 [Brown, 1988]. Possibilities for further geographical expansion are limited; therefore future production increases are likely to require higher efficiency of water use. Of the major grain crops, lowland rice requires the most water, with total demand per unit area at least twice that for wheat and maize. Stable isotope abundance changes in irrigation water can provide direct indication of integrated evaporation losses exclusive of transpiration and thus provide a new tool to monitor a key parameter relevant to water use efficiency. Large enrichments of deuterium and oxygen-18 in rice field water compared to initial input water in a semi-arid region of southeastern Australia indicate high evaporation rates (7 mm day-1) during the first month following flooding. This contrasts with semi-mature rice crops which had small heavy isotope enrichments of field water, indicating low evaporation (<1 mm day-1), compared to transpiration (6 to 7 mm day-1). Over the entire rice-cropping season, evaporation accounted for about 40 per cent of total losses to the atmosphere, with transpiration providing the remainder.

  13. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  14. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.

    PubMed

    Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve

    2016-03-22

    We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and

  15. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    SciTech Connect

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-08-15

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  16. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    NASA Astrophysics Data System (ADS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-08-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  17. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights.

    PubMed

    Choi, Chang-Hwan; Kim, Chang-Jin C J

    2009-07-07

    Evaporation of liquids on substrates is important for many applications including lab-on-a-chip, especially when they are in droplets. Unlike on planar substrates, droplet evaporation on micropatterned substrates has been studied only recently and none so far on nanopatterns. Driven by the applicability of nanostructured surfaces to biomaterials and tissue engineering, we report on the evaporative process of sessile droplets of pure water and a protein solution on superhydrophobic surfaces of sharp-tip post structures in a submicrometer pitch (230 nm) and varying heights (100-500 nm). We find that the nanotopographical three-dimensionalities such as structural height and sidewall profile affect the surface superhydrophobicity in such a way that only tall and slender nanostructures provide the surface with great superhydrophobicity (a contact angle more than 170 degrees). The evaporation process was different between the pure water and the protein solution; unlike pure water, a significant contact-line spreading and pinning effect was observed in a droplet of a protein solution with an intermediate transition from a dewetting (Cassie) to a wetting (Wenzel) state. Enabled by well-defined nanostructures, our results highlight that the surface superhydrophobicity and the droplet evaporation are significantly affected by the three-dimensional nanometric topography and the surface fouling such as protein adsorption.

  18. Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum.

    PubMed

    Baldo, María Belén; Antenucci, C Daniel; Luna, Facundo

    2015-10-01

    Subterranean rodents face unique thermoregulatory challenges. Evaporative water loss (EWL) is a crucial mechanism for maintaining heat balance in endotherms subjected to heat stress but also leads to potential dehydration. EWL depends on gradients of temperature and humidity between the surface of the individual and the surrounding environment. Underground burrows generally provide a stable water vapor saturated atmosphere which may impede evaporative heat loss (EHL). This will mainly occur when ambient temperature exceeds the upper limit of individual's thermoneutral zone, or when body temperature rises as result of digging activities. Here we evaluate the effect of ambient temperature on EWL and energy metabolism in the subterranean rodent Ctenomys talarum (tuco-tucos), which inhabits sealed burrows, but makes an extensive use of the aboveground environment. We observed that EWL is increased when ambient temperature rises above thermoneutrality; below this point, evaporation remains stable. Though EWL contributes to total heat loss by increasing ∼1.3 times at 35°C, dry thermal conductance is raised four times. In tuco-tucos' burrows both non-evaporative and, to some extent, evaporative and behavioral mechanisms are essential for body temperature regulation, preventing overheating at high ambient temperatures in a water vapor-saturated atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Improved spreading rates for monolayers applied as emulsions to reduce water evaporation.

    PubMed

    Herzig, M A; Barnes, G T; Gentle, I R

    2011-05-01

    To be suitable for reducing water evaporation, monolayers need to be easy to apply and also spread quickly across the surface of water. However, the choice of monolayer often involves a compromise between spreading rate and evaporation resistance. Because emulsions of the monolayer material have been suggested as a way to improve spreading, emulsions were made with the long-chain alcohols hexadecanol, octadecanol and eicosanol using the non-ionic surfactants Brij 78 and Tween 60 as emulsifying agents. The emulsions of octadecanol and eicosanol spread faster than the corresponding powder. However there was no improvement in the spreading of hexadecanol emulsion due to a significant amount of the material dispersing into the bulk water instead of spreading at the interface. The choice of emulsifier to stabilise the emulsions is critical for effective evaporation resistance. Whereas the octadecanol emulsion made with Brij 78 showed improved evaporation resistance, the emulsion with Tween 60 had an appreciably lower evaporation resistance than powdered octadecanol. One limitation of the emulsion application method is the poor spreading on surfaces with an already high surface pressure. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Measurements and simulations of the near-surface composition of evaporating ethanol-water droplets.

    PubMed

    Homer, Christopher J; Jiang, Xingmao; Ward, Timothy L; Brinker, C Jeffrey; Reid, Jonathan P

    2009-09-28

    The evolving composition of evaporating ethanol-water droplets (initially 32.6 or 45.3 microm radius) is probed by stimulated Raman scattering over the period 0.2 to 3 ms following droplet generation and with a surrounding nitrogen gas pressure in the range 10 to 100 kPa. The dependence of the evaporation rate on the relative humidity of the surrounding gas phase is also reported. The measured data are compared with both a quasi-steady state model and with numerical simulations of the evaporation process. Results from the numerical simulations are shown to agree closely with the measurements when the stimulated signal is assumed to arise from an outer shell with a probe depth of 2.9+/-0.4% of the droplet radius, consistent with a previous determination. Further, the time-dependent measurements are shown to be sensitive to the development of concentration gradients within evaporating droplets. This represents the first direct measurement of the spatial gradients in composition that arise during the evaporation of aerosol droplets and allows the influence of liquid phase diffusion within the condensed phase on droplet evaporation to be examined.

  1. Evaporation dehydrator

    SciTech Connect

    Bland, L.

    1985-08-06

    A method and apparatus for the treatment of oilfield heavy oil emulsions is provided. The method utilizes, in combination, the steps of evaporation, vapor/liquid separation, and solids settling to dehydrate, degassify and remove solids from the heavy oil emulsion and produce oil having less than 0.5% by volume basic solids and water. The apparatus comprises an insulated, horizontal, cylindrical vessel. Mounted in the upper end of the vessel chamber is an inclined, tubular member having a closed upper end and an open lower end. At its closed end, the member forms a receiving chamber. A mechanical foam breaker extends transversely across the interior of the tubular member, downstream of the chamber. A stack of angularly inclined, heated trays, arranged in zigzag fashion, are positioned beneath the tubular member, to provide an elongate flowpath. The lower end of the tubular member is positioned to feed onto the upper end of the first tray. The flowpath formed by the stack of trays terminates at a level above the bottom of the vessel, so that a quiescent settling sump is provided by the base of the vessel. The vessel includes a feed inlet opening into the receiving chamber, a vapor outlet leading from the top of said vessel, and liquid and solids outlets leading from the sump. A stream of pre-heated heavy oil emulsion is fed to the receiving chamber, wherein part of the contained water in the vapor form breaks out. The foaming stream is contained by the tubular member and is substantially disintegrated by the foam breaker. The stream then issues onto the upper end of the stack of trays and is heated as it passes as a shallow, broad layer over the trays, to gradually evaporate the remaining water from the emulsion and solids. The dehydrated solids are settled out in the sump, leaving oil containing less than 0.5% basic solids and water.

  2. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  3. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    NASA Technical Reports Server (NTRS)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  4. Numerical study of the influence of water evaporation on radiofrequency ablation.

    PubMed

    Zhu, Qing; Shen, Yuanyuan; Zhang, Aili; Xu, Lisa X

    2013-12-10

    Radiofrequency ablation is a promising minimal invasive treatment for tumor. However, water loss due to evaporation has been a major issue blocking further RF energy transmission and correspondently eliminating the therapeutic outcome of the treatment. A 2D symmetric cylindrical mathematical model coupling the transport of the electrical current, heat, and the evaporation process in the tissue, has been developed to simulate the treatment process and investigate the influence of the excessive evaporation of the water on the treatment. Our results show that the largest specific absorption rate (QSAR) occurs at the edge of the circular surface of the electrode. When excessive evaporation takes place, the water dehydration rate in this region is the highest, and after a certain time, the dehydrated tissue blocks the electrical energy transmission in the radial direction. It is found that there is an interval as long as 65 s between the beginning of the evaporation and the increase of the tissue impedance. The model is further used to investigate whether purposely terminating the treatment for a while allowing diffusion of the liquid water into the evaporated region would help. Results show it has no obvious improvement enlarging the treatment volume. Treatment with the cooled-tip electrode is also studied. It is found that the cooling conditions of the inside agent greatly affect the water loss pattern. When the convection coefficient of the cooling agent increases, excessive evaporation will start from near the central axis of the tissue cylinder instead of the edge of the electrode, and the coagulation volume obviously enlarges before a sudden increase of the impedance. It is also found that a higher convection coefficient will extend the treatment time. Though the sudden increase of the tissue impedance could be delayed by a larger convection coefficient; the rate of the impedance increase is also more dramatic compared to the case with smaller convection

  5. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-07-01

    Liquid water in a hydrophobic confinement is the object of high interest in physicochemical sciences. Confined between two macroscopic hydrophobic surfaces, liquid water transforms into vapor if the distance between surfaces is smaller than a critical separation, referred to as the evaporation lengthscale. To investigate the temperature dependence of the evaporation lengthscale of water confined between two hydrophobic parallel plates, we use the combination of the density functional theory (DFT) with the probabilistic hydrogen bond (PHB) model for water-water hydrogen bonding. The PHB model provides an analytic expression for the average number of hydrogen bonds per water molecule as a function of its distance to a hydrophobic surface and its curvature. Knowing this expression, one can implement the effect of hydrogen bonding between water molecules on their interaction with the hydrophobe into DFT, which is then employed to determine the distribution of water molecules between two macroscopic hydrophobic plates at various interplate distances and various temperatures. For water confined between hydrophobic plates, our results suggest the evaporation lengthscale to be of the order of several nanometers and a linearly increasing function of temperature from T=293 K to T=333 K, qualitatively consistent with previous results. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A comparison between wet canopy evaporation estimated by stable isotope ratios of water and canopy interception measured by water balance

    NASA Astrophysics Data System (ADS)

    Murakami, Shigeki; Hattori, Shohei; Uemura, Ryu

    2017-04-01

    Some papers proved that canopy interception is proportional to rainfall not only on a rain event basis but also on an hourly basis (e.g. Murakami, 2006, J. Hydrol.; Saito et al., 2013, J. Hydrol.). However, theoretically, evaporation does not depend on rainfall amount. These results are enigmatic and we need to reevaluate wet canopy evaporation. We measured gross rainfall and net rainfall in a plastic Christmas tree stand with a height of 165 cm placed on a 180-cm square tray as described in Murakami and Toba (2013, Hydrol. Res. Lett.). The measurement was conducted outside under natural rainfall. We also estimated wet canopy evaporation using stable isotope ratios of water. During a rain event, we manually sampled gross and net rainwater on an hourly basis. Evaporation was calculated using the difference between the δ18O (or δ2H) values in gross and net rainfall using isotope fractionation factor. Total gross rainfall in a target rain event in October, 2014, was 28.0 mm and net rainfall (discharge from the tray) was 22.7 mm, i.e. canopy interception was 5.3 mm (18.9% of gross rainfall). The δ18O (or δ2H) value in net rainfall was higher than that in gross rainfall because of fractionation by evaporation on wet canopy surface. Hourly evaporation calculated by the values of δ18O varied from 2% to 24% of gross rainfall, and the weighted average by hourly gross rainfall was 5.2% of gross rainfall. Further, we estimated rainfall interception using a tank model (Yoshida et al., 1993) assuming constant evaporation rate, i.e. 20% of gross rainfall. Total net rainfall calculated by the model was 23.1 mm, i.e. calculated canopy interception was 4.9 mm (17.5% of gross rainfall). Then, keeping the parameters of the model, we simulated net rainfall using hourly surface evaporation obtained by the δ18O values. Calculated net rainfall was 25.6 mm, i.e. wet canopy evaporation was only 2.4 mm (8.6% of gross rainfall). So far, possible explanation of the discrepancy between

  7. Microdrops on atomic force microscope cantilevers: evaporation of water and spring constant calibration.

    PubMed

    Bonaccurso, Elmar; Butt, Hans-Jürgen

    2005-01-13

    The evaporation of water drops with radii approximately 20 microm was investigated experimentally by depositing them onto atomic force microscope (AFM) cantilevers and measuring the deflection versus time. Because of the surface tension of the liquid, the Laplace pressure inside the drop, and the change of interfacial stress at the solid-liquid interface, the cantilever is deflected by typically a few hundred nanometers. The experimental results are in accordance with an analytic theory developed. The evaporation process could be monitored with high accuracy even at the last stage of evaporation because (1) cantilever deflections can be measured with nanometer resolution and (2) the time resolution, given by the inverse of the resonance frequency of the cantilever of approximately 0.3 ms, is much faster than the typical evaporation time of 1 s. Experimental results indicate that evaporation of the last thin layer of water is significantly slower than the rest of the drop, which can be due to surface forces. This drop-on-cantilever system can also be used to analyze the drop impact dynamics on a surface and to determine the spring constant of cantilevers.

  8. Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wang, Zhen-Xia; Wang, Qin; Li, Xing-Jia; Liu, Jian-Ping; Yin, Jian-Ping

    2015-11-01

    We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0 =1.5 mm, and derive a set of new analytical equations to calculate the spatial distributions of the electrostatic field in the above charged-disk layout. Afterwards, we calculate the electric-field distributions of our electrostatic trap and the Stark potential for cold ND3 molecules, and analyze the dependences of both the electric field and the Stark potential on the geometric parameters of our charged-disk scheme, and find an optimal condition to form a desirable trap with the same trap depth in the x, y, and z directions. Also, we propose a desirable scheme to realize an efficient loading of cold polar molecules in the weak-field-seeking states, and investigate the dependences of the loading efficiency on both the initial forward velocity of the incident molecular beam and the loading time by Monte Carlo simulations. Our study shows that the maximal loading efficiency of our trap scheme can reach about 95%, and the corresponding temperature of the trapped cold molecules is about 28.8 mK. Finally, we study the Stark-potential evaporative cooling for cold polar molecules in our trap by the Monte Carlo method, and find that our simulated evaporative cooling results are consistent with our developed analytical model based on trapping-potential evaporative cooling.

  9. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATORS ARE PLACED ON UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATORS ARE PLACED ON UPPER LEVEL OF EAST SIDE OF BUILDING. WALLS WILL BE FORMED AROUND THEM. WORKING RESERVOIR BEYOND. CAMERA FACING EASTERLY. EXHAUST AIR STACK IS UNDER CONSTRUCTION AT RIGHT OF VIEW. INL NEGATIVE NO. 2579. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. PROCESS WATER BUILDING, TRA605. ONE OF THREE EVAPORATORS BEFORE IT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. ONE OF THREE EVAPORATORS BEFORE IT IS INSTALLED IN UPPER LEVEL OF EAST HALF OF BUILDING. INL NEGATIVE NO. 1533. Unknown Photographer, 3/1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Uricotelism and low evaporative water loss in a South American frog.

    PubMed

    Shoemaker, V H; Balding, D; Ruibal, R; McClanahan, L L

    1972-03-03

    A South American anuran (Phyllomedusa sauvagii) produced large amounts of semisolid urate when it was maintained on a diet of insects. Rates of evaporative water loss in Phyllomedusa sauvagii were only about 5 to 10 percent of those other anurans tested and were similar to those of lizards of comparable size.

  12. An Analysis of Water-Use and Energy-Use Impacts of Residential-Scale Evaporative Cooling Technologies

    NASA Astrophysics Data System (ADS)

    Tajmand, Nasim

    The use of evaporative technology for cooling increases the demand for good water quality (e.g., treated municipal water). The problem is further aggravated in regions with poor water quality and where long-term droughts have decreased water availability. At the same time, energy savings achieved by new evaporative cooling technologies compared to conventional systems have attracted attention in hot and dry climatic zones. In this study, the balance between water consumption and energy savings, and concerns about adequate water quantity and quality, were examined in small-scale evaporative cooling systems. First, the trade-off between water use and energy savings was explored by comparing energy base and cost analyses for three different water resources (tap water, rainwater, and desalination water). Then, one laboratory study to understand the precipitation reaction mechanism in small-scale evaporative cooling systems, plus one field experiment, were conducted to understand water quality impacts and concerns raised by evaporative cooling technologies. The results of the study indicate that evaporative cooling technologies make sense in terms of energy and cost expended in hot and dry climates, even considering the high energy costs of desalination water. Mineral scale deposition formed for water of both low and high hardness (a range representative of municipal water resources) due to high degrees of mineral saturation. The use of rainwater could both mitigate the challenges of scale deposition from municipal tap water (by providing excellent water quality) and decrease water consumption by reducing bleed rate.

  13. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    NASA Technical Reports Server (NTRS)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  14. Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths

    NASA Astrophysics Data System (ADS)

    Kurosaki, K.; Ikoma, M.; Hori, Y.

    2014-02-01

    Context. Recent progress in transit photometry opened a new window to the interior of super-Earths. From measured radii and masses, we can infer constraints on planetary internal compositions. It has been recently revealed that super-Earths orbiting close to host stars (i.e., hot super-Earths) are diverse in composition. This diversity is thought to arise from diversity in volatile content. Aims: The stability of the volatile components, which we call the envelopes, is to be examined, because hot super-Earths, which are exposed to strong irradiation, undergo photo-evaporative mass loss. While several studies investigated the impact of photo-evaporative mass loss on hydrogen-helium envelopes, there are few studies as to the impact on water-vapor envelopes, which we investigate in this study. To obtain theoretical prediction to future observations, we also investigate the relationships among masses, radii, and semi-major axes of water-rich super-Earths and also sub-Earths that have undergone photo-evaporative mass loss. Methods: We simulate the interior structure and evolution of highly-irradiated sub/super-Earths that consist of a rocky core surrounded by a water envelope, which include mass loss due to the stellar XUV-driven energy-limited hydrodynamic escape. Results: We find that the photo-evaporative mass loss has a significant impact on the evolution of hot sub/super-Earths. With a widely-used empirical formula for XUV flux from typical G-stars and the heating efficiency of 0.1 for example, the planets of less than 3 Earth masses orbiting 0.03 AU have their water envelopes completely stripped off. We then derive the threshold planetary mass and radius below which the planet loses its water envelope completely as a function of the initial water content and find that there are minimums of the threshold mass and radius. Conclusions: We constrain the domain in the parameter space of planetary mass, radius, and the semi-major axis in which sub/super-Earths never

  15. Experimental particle acceleration by water evaporation induced by shock waves

    NASA Astrophysics Data System (ADS)

    Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.

    2010-12-01

    condensation front exhibited large accelerations, with velocity varying from few tens of m/s up to 479 (±0.5) m/s, at distances of 1.5 (±0.3) cm and in times of 0.1 ms. This process preceded the appearance of the Ar front. Our first results suggest that the evaporation of moisture induced by compression waves associated with the air shock is able to accelerate particles (ca.100s microns in size) efficiently, at short distances. This process could have broader implications in active volcanic areas where shock waves are generated, for the damage that may follow.

  16. Dynamics of water evaporation from saline porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-04-01

    Understanding of the dynamics of salt transport and precipitation in porous media during evaporation is of crucial concern in various environmental and hydrological applications such as soil salinization, rock weathering, terrestrial ecosystem functioning, microbiological activities and biodiversity in vadose zone. Vegetation, plant growth and soil organisms can be severely limited in salt-affected land. This process is influenced by the complex interaction among atmospheric conditions, transport properties of porous media and properties of the evaporating solution (1-5). We investigated effects of mixed wettability conditions on salt precipitation during evaporation from saline porous media. To do so, we conducted a series of evaporation experiments with sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. The dynamics of salt precipitation at the surface of sand columns (mounted on digital balances to record the evaporation curves) as well as the displacement of the receding drying front (the interface between wet and partially wet zone) were recorded using an automatic imaging system at well-defined time intervals. The experiments were conducted with sand packs containing 0, 25, 40, 50, 65, and 80% fraction of hydrophobic grains. All experiments were conducted in an environmental chamber in which the relative humidity and ambient temperature were kept constant at 30% and 30 C, respectively. Our results show that partial wettability conditions had minor impacts on the evaporative mass losses from saline sand packs due to the presence of salt. This is significantly different than what is normally observed during evaporation from mixed wettability porous media saturated with pure water (6). In our experiments, increasing the fraction of hydrophobic grains did not result in any notable reduction of the evaporative mass losses from saline porous media. Our results show that the presence of hydrophobic grains on the surface

  17. Evaporation and energy balance of partially covered water reservoirs using self-assembling floating elements

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Milad; Lehmann, Peter; Or, Dani

    2017-04-01

    The projected increase in fresh water storage to meet growing municipal and irrigation needs and mitigate effects of rainfall variability and prolonged droughts will require new measures for suppressing evaporation from reservoirs and conserve water resources. A low risk and cost effective means for evaporation suppression uses self-assembling floating elements. We seek to develop a systematic framework for quantifying impacts of various cover designs and properties on heat and mass fluxes and energy balance of water reservoirs of different characteristics and climatic regions. The vertical energy balance equation including diurnal and seasonal variations in atmospheric forcing and energy transport to the water column was employed to resolve temperature and flux dynamics from water bodies. We then consider energy coupling of a unit floating cover element with water body (including lateral heat exchanges) to evaluate effect of different cover designs, climate conditions, and reservoir characteristics on evaporation suppression and energy balance of water body. The mechanistic framework offers a means for evaluating ecological impacts of covers, enables consideration of different cover designs (shape, size, thermal and radiative properties), and advances this largely empirical resource conservation strategy into a predictive framework for design and management purposes.

  18. Experimental study of evaporation of horizontal films of water-salt solutions

    NASA Astrophysics Data System (ADS)

    Elistratov, S. L.; Morozov, V. S.

    2015-01-01

    The present studies were carried out for the horizontal films (thin layers) of water and water solutions of NaCl, CaCl2, LiCl, and LiBr with different solubility characteristics, as well as with specific features of formation and decay of water hydrates. Required volume of solution Vo of given weight concentration ξo, preliminary heated to the working surface temperature, was put in one step on the horizontal bottom of the bowl, heated to working temperature tCT, by means of volume batchers Thermo Scientific. After evaporation completion, the final mass of solution and form of their residue were registered. At the final stage of evaporation formation of NaCl crystals and water hydrates of CaCl2 · 2H2O, LiCl · H2O, and LiBr · 2H2O occurred.

  19. Evaporation and wetting dynamics of sessile water droplets on submicron-scale patterned silicon hydrophobic surfaces

    SciTech Connect

    Choi, Chang Kyoung; Shin, Dong Hwan; Lee, Seong Hyuk; Retterer, Scott T

    2010-01-01

    The evaporation characteristics of 1 l sessile water droplets on hydrophobic surfaces are experimentally examined. The proposed hydrophobic surfaces are composed of submicron diameter and 4.2- m-height silicon post arrays. A digital image analysis algorithm was developed to obtain time-dependent contact angles, contact diameters, and center heights for both non-patterned polydimethylsiloxane (PDMS) surfaces and patterned post array surfaces, which have the same hydrophobic contact angles. While the contact angles exhibit three distinct stages during evaporation in the non-patterned surface case, those in the patterned silicon post array surface case decrease linearly. In the case of post array hydrophobic surfaces, the initial contact diameter remains unchanged until the portion of the droplet above the posts completely dries out. The edge shrinking velocity of the droplet shows nonlinear characteristics, and the velocity magnitude increases rapidly near the last stage of evaporation.

  20. Water relations of the tos1 tomato mutant at contrasting evaporative demand.

    PubMed

    Jurado, Oliva; Albacete, Alfonso; Martínez-Ballesta, M Carmen; Carvajal, Micaela; Pérez-Alfocea, Francisco; Dodd, Ian C; Romero-Aranda, M Remedios

    2009-09-01

    The tos1 (tomato osmotically sensitive) mutant, isolated from an in vitro screen of root growth during osmotic stress, was less sensitive to exogenous ABA, but accumulated more ABA under osmotic stress than WT plants. We assessed growth and water relations characteristics of hydroponically grown tos1 seedlings (in the absence of osmotic stress) at low and high evaporative demands. Growth of tos1 was severely inhibited at both high and low evaporative demands. Twenty DAS, WT and tos1 genotypes had a similar leaf water and turgor potential, but mature tos1 plants (45 day old) showed a significant diurnal loss of leaf turgor, with recovery overnight. Increased evaporative demand increased turgor loss of tos1 plants. High evaporative demand at the beginning of the day decreased stomatal conductance of tos1, without diurnal recovery, thus whole plant transpiration was decreased. De-topped tos1 seedlings showed decreased root hydraulic conductance and had a 1.4-fold increase in root ABA concentration. Impaired root function of tos1 plants failed to meet transpirational water demand and resulted in shoot turgor loss, stomatal closure and growth inhibition.

  1. Analysis of condensation and evaporation of ammonia/water mixtures in matrix heat-exchangers

    NASA Astrophysics Data System (ADS)

    Panchal, C. B.; Arman, B.

    A theoretical analysis is carried out for the condensation and evaporation of water/ammonia mixtures in matrix heat-exchangers. A set of equations is formulated and a calculation algorithm is developed to predict the local rate of heat and mass transfer for binary-component systems. A thermodynamic property model is developed for ammonia/water mixtures on the basis of the Peng-Robinson equation of state. The two-phase flow heat-transfer coefficient for matrix heat-exchangers is calculated by using the analytical method developed in a previous study. The experimental data are analyzed to determine the effects of small amounts of water in ammonia on the rate of evaporation. The role of diffusion in simultaneous heat and mass transfer associated with condensation and evaporation processes are analyzed by comparing the results from three limiting cases, which include equilibrium conditions, and liquid-phase diffusion- resistance of finite and infinite values. The results show that the vapor-phase mass-transfer resistance is the controlling mechanism for condensation, and the liquid-phase mass-transfer resistance is the controlling mechanism for evaporation.

  2. Insight into the molecular mechanism of water evaporation via the finite temperature string method.

    PubMed

    Musolino, Nicholas; Trout, Bernhardt L

    2013-04-07

    The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O-H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process.

  3. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.

    PubMed

    Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai

    2008-03-01

    The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to

  4. Insight into the molecular mechanism of water evaporation via the finite temperature string method

    PubMed Central

    Musolino, Nicholas; Trout, Bernhardt L.

    2013-01-01

    The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations as well. In this work, we simulated water's evaporation using the classical extended simple point charge model water model, and identified a minimum free energy path for this process in terms of 10 descriptive order parameters. The measured free energy change was 7.4 kcal/mol at 298 K, in reasonable agreement with the experimental value of 6.3 kcal/mol, and the mean first-passage time was 1375 ns for a single molecule, corresponding to an evaporation coefficient of 0.25. In the observed minimum free energy process, the water molecule diffuses to the surface, and tends to rotate so that its dipole and one O–H bond are oriented outward as it crosses the Gibbs dividing surface. As the water molecule moves further outward through the interfacial region, its local density is higher than the time-averaged density, indicating a local solvation shell that protrudes from the interface. The water molecule loses donor and acceptor hydrogen bonds, and then, with its dipole nearly normal to the interface, stops donating its remaining hydrogen bond. At that point, when the final, accepted hydrogen bond is broken, the water molecule is free. We also analyzed which order parameters are most important in the process and in reactive trajectories, and found that the relative orientation of water molecules near the evaporating molecule, and the number of accepted hydrogen bonds, were important variables in reactive trajectories and in kinetic descriptions of the process. PMID:23574252

  5. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    PubMed

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ(18)O and δ(2)H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ(2)H and δ(18)O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ(2)H and δ(18)O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  6. Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water

    PubMed Central

    Altabet, Y. Elia; Haji-Akbari, Amir; Debenedetti, Pablo G.

    2017-01-01

    The evaporation of water induced by confinement between hydrophobic surfaces has received much attention due to its suggested functional role in numerous biophysical phenomena and its importance as a general mechanism of hydrophobic self-assembly. Although much progress has been made in understanding the basic physics of hydrophobically induced evaporation, a comprehensive understanding of the substrate material features (e.g., geometry, chemistry, and mechanical properties) that promote or inhibit such transitions remains lacking. In particular, comparatively little research has explored the relationship between water’s phase behavior in hydrophobic confinement and the mechanical properties of the confining material. Here, we report the results of extensive molecular simulations characterizing the rates, free energy barriers, and mechanism of water evaporation when confined between model hydrophobic materials with tunable flexibility. A single-order-of-magnitude reduction in the material’s modulus results in up to a nine-orders-of-magnitude increase in the evaporation rate, with the corresponding characteristic time decreasing from tens of seconds to tens of nanoseconds. Such a modulus reduction results in a 24-orders-of-magnitude decrease in the reverse rate of condensation, with time scales increasing from nanoseconds to tens of millions of years. Free energy calculations provide the barriers to evaporation and confirm our previous theoretical predictions that making the material more flexible stabilizes the confined vapor with respect to liquid. The mechanism of evaporation involves surface bubbles growing/coalescing to form a subcritical gap-spanning tube, which then must grow to cross the barrier. PMID:28289194

  7. Effects of crop residue on soil and plant water evaporation in a dryland cotton system

    NASA Astrophysics Data System (ADS)

    Lascano, R. J.; Baumhardt, R. L.

    1996-03-01

    Dryland agricultural cropping systems emphasize sustaining crop yields with limited use of fertilizer while conserving both rain water and the soil. Conservation of these resources may be achieved with management systems that retain residues at the soil surface simultaneously modifying both its energy and water balance. A conservation practice used with cotton grown on erodible soils of the Texas High Plains is to plant cotton into chemically terminated wheat residues. In this study, the partitioning of daily and seasonal evapotranspiration ( E t) into soil and plant water evaporation was compared for a conventional and a terminated-wheat cotton crop using the numerical model ENWATBAL. The model was configured to account for the effects of residue on the radiative fluxes and by introducing an additional resistance to latent and sensible heat fluxes derived from measurements of wind speed and vapor conductance from a soil covered with wheat-stubble. Our results showed that seasonal E t was similar in both systems and that cumulative soil water evaporation was 50% of E t in conventional cotton and 31% of E t in the wheat-stubble cotton. Calculated values of E t were in agreement with measured values. The main benefit of the wheat residues was to suppress soil water evaporation by intercepting irradiance early in the growing season when the crop leaf area index (LAI) was low. In semiarid regions LAI of dryland cotton seldom exceeds 2 and residues can improve water conservation. Measured soil temperatures showed that early in the season residues reduced temperature at 0.1 m depth by as much as 5°C and that differences between systems diminished with depth and over time. Residues increased lint yield per unit of E t while not modifying seasonal E t and reducing cumulative soil water evaporation.

  8. Characteristics of elite open-water swimmers.

    PubMed

    VanHeest, Jaci L; Mahoney, Carrie E; Herr, Larry

    2004-05-01

    Open-water swimming (5, 10, and 25 km) has many unique challenges that separate it from other endurance sports, like marathon running and cycling. The characteristics of a successful open-water swimmer are unclear. The purpose of this study was to determine the physical and metabolic characteristics of a group of elite-level open-water swimmers. The open-water swimmers were participating in a 1-week training camp. Anthropometric, metabolic, and blood chemistry assessments were performed on the athletes. The swimmers had a VO(2)peak of 5.51 +/- 0.96 and 5.06 +/- 0.57 ml.kg(-1).min(-1) for males and females, respectively. Their lactate threshold (LT) occurred at a pace equal to 88.75% of peak pace for males and 93.75% for females. These elite open-water swimmers were smaller and lighter than competitive pool swimmers. They possess aerobic metabolic alterations that resulted in enhanced performance in distance swimming. Trainers and coaches should develop dry-land programs that will improve the athlete's muscular endurance. Furthermore, programs should be designed to increase the LT velocity as a percentage of peak swimming velocity.

  9. Effect of porous polymer films (track membranes) on the isothermal evaporation kinetics of water

    NASA Astrophysics Data System (ADS)

    Novikov, S. N.; Ermolaeva, A. I.; Timoshenkov, S. P.; Korobova, N. E.; Goryunova, E. P.

    2016-06-01

    The kinetics of isothermal evaporation of distilled water that was in remote (10-15-mm) contact with porous polymer films (track membranes (TMs)) was studied by microgravimetry (derivatograph). When the H2O-TM system contained a disperse medium, the supramolecular structure of water changed, and the number of clusters (coherent domains) drastically decreased. The extraction of the light phase from liquid water was correlated with the chemisorption of H2O molecules containing the para-isomer of hydrogen, which predominantly form coherent domains of water.

  10. Physiological responses of a rodent to heliox reveal constancy of evaporative water loss under perturbing environmental conditions.

    PubMed

    Cooper, Christine Elizabeth; Withers, Philip Carew

    2014-10-15

    Total evaporative water loss of endotherms is assumed to be determined essentially by biophysics, at least at temperatures below thermoneutrality, with evaporative water loss determined by the water vapor deficit between the animal and the ambient air. We present here evidence, based on the first measurements of evaporative water loss for a small mammal in heliox, that mammals may have a previously unappreciated ability to maintain acute constancy of total evaporative water loss under perturbing environmental conditions. Thermoregulatory responses of ash-grey mice (Pseudomys albocinereus) to heliox were as expected, with changes in metabolic rate, conductance, and respiratory ventilation consistent with maintaining constancy of body temperature under conditions of enhanced heat loss. However, evaporative water loss did not increase in heliox. This is despite our confirmation of the physical effect that heliox augments evaporation from nonliving surfaces, which should increase cutaneous water loss, and increases minute volume of live ash-grey mice in heliox to accommodate their elevated metabolic rate, which should increase respiratory water loss. Therefore, mice had not only a thermoregulatory but also a hygroregulatory response to heliox. We interpret these results as evidence that ash-grey mice can acutely control their evaporative water loss under perturbing environmental conditions and suggest that hygroregulation at and below thermoneutrality is an important aspect of the physiology of at least some small mammals.

  11. Thermal management of a Li-ion battery pack employing water evaporation

    NASA Astrophysics Data System (ADS)

    Ren, Yonghuan; Yu, Ziqun; Song, Guangji

    2017-08-01

    Battery thermal management (BTM) system plays a key part in vehicle thermal safety. A novel method employing water evaporation is presented in this paper. The thin sodium alginate film (SA-1 film) with water content of 99 wt% is prepared using a simple spraying method, and is attached on the surface of battery pack to explore its effectiveness on preventing heat accumulation. The result shows that under the condition with constant current charge/discharge larger than 1 C, the temperature rise rate is reduced by half. Under the condition with the New Europe Drive Cycle, the temperature could maintain stable without obvious rise. Moreover, a simple water automatic-refilling system is designed to address the dry issue of the film in terms of evaporation elimination. The proposed SA-1 film BTM system shows to be a very convenient and efficient approach in handling the thermal surge of Li-ion batteries without any change in battery pack integration and assembly.

  12. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    PubMed

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  13. Combining Heat and Mass Flux Methods for Estimating Real-Time Evaporation from a Water Surface

    NASA Astrophysics Data System (ADS)

    Mathis, T. J.; Schladow, G.; Hook, S. J.

    2015-12-01

    Quantifying the heat and mass fluxes associated with evaporation from lakes and reservoirs is achallenge for hydrologists and water managers. This is in large part due to a lack of comprehensivemeasurement data for most systems, which is itself related to the inherent difficulties associated withmeasuring turbulent quantities. An alternative to direct measurement is to develop better models for theevaporative flux, based on the mean terms (as opposed to the turbulent terms) that drive evaporation.Algorithms for the evaporative heat and mass flux must reflect changes in heat storage in the system aswell as the other components of a mass balance (inflow, outflow, and precipitation). The energy budget basedapproach requires records of all the other energy fluxes across the air-water interface to separateout the latent heat component. Other approaches utilize the similarity between atmospheric velocity,temperature and humidity profiles. This study seeks to combine these approaches to build and calibrateheat flux models that can be used to accurately recreate a long-term record of mass storage changefrom a sub-set of meteorological data, lake surface temperature data, and hydrologic observations. Highfrequency lake level data are used to check that the mass balance is in fact achieved. Good agreement isshown between the heat flux methods and the mass balance results through comparison with a three-yearrecord of lake level. The results demonstrate that a combination of mass and heat flux approaches canbe used to generate accurate values of evaporation on daily or even sub-daily time-scales.

  14. The effect of additives on the treatment of oil-in-water emulsions by vacuum evaporation.

    PubMed

    Gutiérrez, Gemma; Cambiella, Angel; Benito, José M; Pazos, Carmen; Coca, José

    2007-06-18

    A simple batch vacuum evaporation process for the treatment of several oil-in-water (O/W) emulsions is reported. The experiments were carried out with waste emulsions from an industrial copper rolling process and with model emulsions prepared in the laboratory. No detailed information on the formulation of the industrial waste O/W emulsions was available. Several model emulsions were formulated using the same base oil (an 85-15% (w/w) mixture of a synthetic poly-alpha-olefin and a trimethylol propane trioleate ester, respectively) and one of the three following surfactants: Brij-76 (polyethylene glycol octadecyl ether, non-ionic), CTAB (hexadecyltrimethyl ammonium bromide, cationic), and Oleth-10 (glycolic acid ethoxylate oleyl ether, anionic). Experimental results show a strong influence of operating conditions, such as pressure or bath temperature, on the evaporation performance. As a general trend, the higher the values of these parameters, the higher the pollutant content in the obtained aqueous effluent. The presence of surfactants increase the evaporation rate, especially at low operating vacuum pressures, the solubility of oil molecules in water and the evaporation temperature of model O/W emulsions. Furthermore, COD reductions higher than 99.5% for the treated waste O/W emulsions were achieved.

  15. Influence of Local Heating on Marangoni Flows and Evaporation Kinetics of Pure Water Drops.

    PubMed

    Askounis, Alexandros; Kita, Yutaku; Kohno, Masamichi; Takata, Yasuyuki; Koutsos, Vasileios; Sefiane, Khellil

    2017-06-13

    The effect of localized heating on the evaporation of pure sessile water drops was probed experimentally by a combination of infrared thermography and optical imaging. In particular, we studied the effect of three different heating powers and two different locations, directly below the center and edge of the drop. In all cases, four distinct stages were identified according to the emerging thermal patterns. In particular, depending on heating location, recirculating vortices emerge that either remain pinned or move azimuthally within the drop. Eventually, these vortices oscillate in different modes depending on heating location. Infrared data allowed extraction of temperature distribution on each drop surface. In turn, the flow velocity in each case was calculated and was found to be higher for edge heating, due to the one-directional nature of the heating. Additionally, calculation of the dimensionless Marangoni and Rayleigh numbers yielded the prevalence of Marangoni convection. Heating the water drops also affected the evaporation kinetics by promoting the "stick-slip" regime. Moreover, both the total number of depinning events and the pinning strength were found to be highly dependent on heating location. Lastly, we report a higher than predicted relationship between evaporation rate and heating temperature, due to the added influence of the recirculating flows on temperature distribution and hence evaporation flux.

  16. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition.

    PubMed

    Tong, Wei Li; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K; Hung, Yew Mun

    2015-06-23

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.

  17. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition

    NASA Astrophysics Data System (ADS)

    Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew

    2015-06-01

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.

  18. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition

    PubMed Central

    Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew

    2015-01-01

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977

  19. Determination of kinetic isotopic fractionation of water during bare soil evaporation

    NASA Astrophysics Data System (ADS)

    Quade, Maria; Brüggemann, Nicolas; Graf, Alexander; Rothfuss, Youri

    2017-04-01

    A process-based understanding of the water cycle in the atmosphere is important for improving meteorological and hydrological forecasting models. Usually only net fluxes of evapotranspiration - ET are measured, while land-surface models compute their raw components evaporation -E and transpiration -T. Isotopologues can be used as tracers to partition ET, but this requires knowledge of the isotopic kinetic fractionation factor (αK) which impacts the stable isotopic composition of water pools (e.g., soil and plant waters) during phase change and vapor transport by soil evaporation and plant transpiration. It is defined as a function of the ratio of the transport resistances in air of the less to the most abundant isotopologue. Previous studies determined αK for free evaporating water (Merlivat, 1978) or bare soil evaporation (Braud et al. 2009) at only low temporal resolution. The goal of this study is to provide estimates at higher temporal resolution. We performed a soil evaporation laboratory experiment to determine the αK by applying the Craig and Gordon (1965) model. A 0.7 m high column (0.48 m i.d.) was filled with silt loam (20.1 % sand, 14.9 % loam, 65 % silt) and saturated with water of known isotopic composition. Soil volumetric water content, temperature and the isotopic composition (δ) of the soil water vapor were measured at six different depths. At each depth microporous polypropylene tubing allowed the sampling of soil water vapor and the measurement of its δ in a non-destructive manner with high precision and accuracy as detailed in Rothfuss et al. (2013). In addition, atmospheric water vapor was sampled at seven different heights up to one meter above the surface for isotopic analysis. Results showed that soil and atmospheric δ profiles could be monitored at high temporal and vertical resolutions during the course of the experiment. αK could be calculated by using an inverse modeling approach and the Keeling (1958) plot method at high temporal

  20. Effect of top soil wettability on water evaporation and plant growth.

    PubMed

    Gupta, Bharat; Shah, D O; Mishra, Brijesh; Joshi, P A; Gandhi, Vimal G; Fougat, R S

    2015-07-01

    In general, agricultural soil surfaces being hydrophilic in nature get easily wetted by water. The water beneath the soil moves through capillary effect and comes to the surface of the soil and thereafter evaporates into the surrounding air due to atmospheric conditions such as sunlight, wind current, temperature and relative humidity. To lower the water loss from soil, an experiment was designed in which a layer of hydrophobic soil was laid on the surface of ordinary hydrophilic soil. This technique strikingly decreased loss of water from the soil. The results indicated that the evaporation rate significantly decreased and 90% of water was retained in the soil in 83 h by the hydrophobic layer of 2 cm thickness. A theoretical calculation based on diffusion of water vapour (gas phase) through hydrophobic capillaries provide a meaningful explanation of experimental results. A greater retention of water in the soil by this approach can promote the growth of plants, which was confirmed by growing chick pea (Cicer arietinum) plants and it was found that the length of roots, height of shoot, number of branches, number of leaves, number of secondary roots, biomass etc. were significantly increased upon covering the surface with hydrophobic soil in comparison to uncovered ordinary hydrophilic soil of identical depth. Such approach can also decrease the water consumption by the plants particularly grown indoors in residential premises, green houses and poly-houses etc. and also can be very useful to prevent water loss and enhance growth of vegetation in semi-arid regions.

  1. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status.

    PubMed

    Caldeira, Cecilio F; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-04-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1-2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture.

  2. Absence of Marangoni convection at Marangoni numbers above 27,000 during water evaporation.

    PubMed

    Thompson, Ian; Duan, Fei; Ward, C A

    2009-11-01

    Two mechanisms by which Marangoni convection can be produced at the interface of water with its vapor are: (1) by imposing a temperature gradient parallel to the water-vapor interface, and (2) by imposing a temperature gradient perpendicular to the interface that results in the liquid becoming unstable. A series of evaporation experiments conducted with H2O and with D2O maintained at the mouth of a stainless-steel funnel indicated the presence of Marangoni convection, but the mechanism producing the convection was unclear. We have investigated the mechanism using a funnel constructed with a polymethyl methacrylate that has a small thermal conductivity relative to that of water and repeating the evaporation experiments. Marangoni convection was eliminated with this funnel even though the Marangoni number, Ma, was in the range 8277< or =Ma< or =27 847 . A comparison of the assumptions made in the theories available to predict the onset of Marangoni convection with the observations made in this study indicates some of the assumptions are invalid: although generally neglected, energy transport through the vapor to the interface of evaporating water is significant; there is an interfacial temperature discontinuity, but it is in the opposite direction of that assumed in the existing theories: the interfacial-vapor temperature is greater than that of the liquid during evaporation; and the prediction of the critical Marangoni number is based on an arbitrarily chosen value of the heat-transfer coefficient. When the temperature gradient is perpendicular to the water-vapor interface, these invalid assumptions indicate present theories do not apply to volatile liquids.

  3. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    PubMed

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  4. Comparing the mechanism of water condensation and evaporation in glassy aerosol

    PubMed Central

    Bones, David L.; Reid, Jonathan P.; Lienhard, Daniel M.; Krieger, Ulrich K.

    2012-01-01

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3–4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫103 s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 1013 Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk. PMID:22753520

  5. Influence of understory cover on soil water and evaporation fluxes: a trial

    NASA Astrophysics Data System (ADS)

    Jiménez-Rodríguez, César; Magdalena Warter, Maria; Coenders-Gerrits, Miriam

    2017-04-01

    Within a forest ecosystem the litter layer is an important hydrological component and contributes towards the water and energy exchange between the sub-canopy and the soil. Evaporation within a forest is made up of different fractions coming from the dry soil, vegetation and litter layers. The quantification and partitioning of each fraction remains difficult as there is hard to estimate correctly the amount of water moved by evaporation or percolation at ecosystem level. With the aim to determine the influence of forest understory on the evaporation fluxes, four ground cover types were selected from the Speulderbos forest in the Netherlands. The mosses species of "Thamariskmoss" (Thuidium thamariscinum), "Rough Stalked Feathermoss" (Brachythecium rutabulum), and "Haircapmoss" (Polytrichum commune) were compared with a litter layer made up of Douglas-Fir needles (Pseudotsuga menziesii). Four PVC basins with 40cm x 60cm were filled with forest soil and sheltered with the selected ground covers. Each box was equipped with a soil moisture sensor, and a set Temperature and Relative Humidity sensors to determine the VPD during the study period. The study period lasts 4 weeks, while the percolation rates were measured in a daily basis. The rainfall events were simulated in the lab, applying the same rain event to each box at the same time. A total amount of 43.12 mm of rain were added to the boxes during the 4 weeks of the experiment, and distributed in 11 rain events which differ in amount and timing between events. The percolation in all the boxes was more than the 50% of the rain events due to the sandy condition of the soil, while the evaporation rates were affected not only by the room atmospheric conditions, but for the cover type present in each box. Except for the Polytrichum moss, a moss known for its water conducting abilities, all cover types showed a decline before and increase after a rain event. This species showed a steady increase in soil water content

  6. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology.

    PubMed

    Martín-Gómez, Paula; Serrano, Luis; Ferrio, Juan Pedro

    2017-04-01

    In ecohydrology, it is generally assumed that xylem water reflects the water source used by plants. Several studies have reported isotopic enrichment within woody tissues, particularly during dormancy periods or after long periods of inactivity. However, little is known about the short-term dynamics of this process. Here we assessed the magnitude and dynamics of xylem isotopic enrichment in suberized twigs of pines and oaks. We performed a series of laboratory experiments, in which we monitored hourly changes in water content and isotopic composition under two contrasting scenarios of sap flow restriction. First, we simulated the effect of extreme hydraulic failure by excising twigs to restrict sap flow, while sealing the wounds to ensure that water loss took place only through the leaves or bark, as would be the case for evaporation in attached stems. Second, we studied the effect of reduced leaf transpiration by darkening with aluminium foil all the leaves of healthy, well-watered saplings growing in pot conditions. We found evidence of fast evaporative enrichment in metabolically active stems, as a consequence of a temporal decline in sap flow rates, and not necessarily linked to a traceable decline in stem water content. The excision experiments showed significant isotopic changes (~+1‰ in oxygen) appearing in <1 h. Similarly, the pot experiment showed a progressive increase in isotope composition (up to +8‰ in oxygen in a 3-day cycle) when the leaves were covered, and a rapid recovery to initial values when sap flow rates were re-established. We conclude that evaporative enrichment of xylem water in stems is a highly dynamic process that may have significant effects even during short periods of restricted water flow. This has important implications for the study of plant water uptake, as well as for ecosystem- and global-scale hydrological models. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e

  7. Precipitation recycling in West Africa - regional modeling, evaporation tagging and atmospheric water budget analysis

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Kunstmann, Harald; Knoche, Hans-Richard

    2015-04-01

    Many numerical studies have shown that the West African monsoon is highly sensitive to the state of the land surface. It is however questionable to which extend a local change of land surface properties would affect the local climate, especially with respect to precipitation. This issue is traditionally addressed with the concept of precipitation recycling, defined as the contribution of local surface evaporation to local precipitation. For this study the West African monsoon has been simulated with the Weather Research and Forecasting (WRF) model using explicit convection, for the domain (1°S-21°N, 18°W-14°E) at a spatial resolution of 10 km, for the period January-October 2013, and using ERA-Interim reanalyses as driving data. This WRF configuration has been selected for its ability to simulate monthly precipitation amounts and daily histograms close to TRMM (Tropical Rainfall Measuring Mission) data. In order to investigate precipitation recycling in this WRF simulation, surface evaporation tagging has been implemented in the WRF source code as well as the budget of total and tagged atmospheric water. Surface evaporation tagging consists in duplicating all water species and the respective prognostic equations in the source code. Then, tagged water species are set to zero at the lateral boundaries of the simulated domain (no inflow of tagged water vapor), and tagged surface evaporation is considered only in a specified region. All the source terms of the prognostic equations of total and tagged water species are finally saved in the outputs for the budget analysis. This allows quantifying the respective contribution of total and tagged atmospheric water to atmospheric precipitation processes. The WRF simulation with surface evaporation tagging and budgets has been conducted two times, first with a 100 km2 tagged region (11-12°N, 1-2°W), and second with a 1000 km2 tagged region (7-16°N, 6°W -3°E). In this presentation we will investigate hydro

  8. Theoretical investigation of the injection and evaporation of water in a hydrogen/oxygen steam generator

    NASA Astrophysics Data System (ADS)

    Beer, Stefan

    1990-05-01

    For the cooling of the reaction products resulting from a stoichiometric hydrogen/oxygen combustion, water is injected normal to the gas stream. The penetration of the jet strongly influences the temperature distribution across the streaming water vapor. The penetration of the jet is calculated by using the jet shedding model. The results are compared with the data of the garden hose model. To calculate the lifetime of a water droplet in super heated stream, several models are developed. The parameters of the injection and evaporation process are varied and analyzed.

  9. Recycling nickel electroplating rinse waters by low temperature evaporation and reverse osmosis

    SciTech Connect

    Lindsey, T.C.; Randall, P.M.

    1993-08-01

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperature evaporation system was best suited to processing solutions with relatively high (greater than 4,000 to 5,000 mg/L) nickel concentrations. The reverse osmosis system was best adapted to conditions where the feed solution had a relatively low (less than4,000 to 5,000 mg/L) nickel concentration. In electroplating operations where relatively dilute rinse water solutions must be concentrated to levels acceptable for replacement in the plating bath, a combination of the two technologies might provide the best process alternative.

  10. Evaporation and heating of a single suspended coal-water slurry droplet in hot gas streams

    SciTech Connect

    Shi-chune, Y.; Liu, L.

    1982-01-01

    The evaporation, heating, and burning of single coal-water slurry droplets are studied. The coal selected in this study is Pittsburgh Seam number 8 coal which is a medium volatile caking bituminous coal. The droplet is suspended on a microthermocouple and exposed to a hot gas stream. Temperature measurement and microscopic observation are performed in the parametric studies. The duration of water evaporation in CWS droplets decreases with the reduction of the droplet size, increasing of coal weight fraction, and increasing of gas temperature and velocity. The duration of heat-up is always significant due to the agglomeration. The CWS droplets are generally observed to swell like popcorn during heating. A model for the formation of the popped swelling is proposed and discussed.

  11. Accurate evaporation rates of pure and doped water clusters in vacuum: A statistico-dynamical approach.

    PubMed

    Calvo, F; Douady, J; Spiegelman, F

    2010-01-14

    Unimolecular evaporation of selected pure (H(2)O)(n) and heterogeneous (H(2)O)(n-1)X(+) water clusters containing a single hydronium or ammonium impurity is investigated in the framework of phase space theory (PST) in its orbiting transition state version. Using the many-body polarizable Kozack-Jordan potential and its extensions for X(+)=H(3)O(+) and NH(4) (+), the thermal evaporation of clusters containing 21 and 50 molecules is simulated at several total energies. Numerous molecular dynamics (MD) trajectories at high internal energies provide estimates of the decay rate constant, as well as the kinetic energy and angular momentum released upon dissociation. Additional Monte Carlo simulations are carried out to determine the anharmonic densities of vibrational states, which combined with suitable forms for the rotational densities of states provide expressions for the energy-resolved differential rates. Successful comparison between the MD results and the independent predictions of PST for the distributions of kinetic energy and angular momentum released shows that the latter statistical approach is quantitative. Using MD data as a reference, the absolute evaporation rates are calculated from PST over broad energy and temperature ranges. Based on these results, the presence of an ionic impurity is generally found to decrease the rate, however the effect is much more significant in the 21-molecule clusters. Our calculations also suggest that due to backbendings in the microcanonical densities of states the variations of the evaporation rates may not be strictly increasing with energy or temperature.

  12. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  13. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    Grant Bue and Matthew Vogel presented the two types of Spacesuit Water Membrane Evaporators (SWME) that were developed based on hydrophobic microporous membranes. One type, the Sheet Membrane (SaM) SWME, is composed of six concentric Teflon sheet membranes fixed on cylindrical-supporting screens to form three concentric annular water channels. Those water channels are surrounded by vacuum passages to draw off the water vapor that passes through the membrane. The other type, the Hollow Fiber (HoFi) SWME, is composed of more than 14,000 tubes. Water flows through the tubes and water vapor passes through the tube wall to the shell side that vents to the vacuum of space. Both SWME types have undergone testing to baseline the performance at predicted operating temperatures and flow rates; the units also have been subjected to contamination testing and other conditions to test resiliency.

  14. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    NASA Astrophysics Data System (ADS)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  15. Infrared Thermography Investigation of an Evaporating Water/Oil Meniscus in Confined Geometry.

    PubMed

    Liu, Xiang; Huang, Lu; Guo, Dan; Xie, Guoxin

    2017-01-10

    To simulate the heat and mass transfer in real heterogeneous systems, such as metal-production processes and lubrication, the point-contact condition with the formation of narrowly confined liquid film and its surrounding meniscus was constructed to study the classical microchannel boiling problem in this work. Specifically, the evaporation and diffusion of the superheated water meniscus and water/oil droplet in the point-contact geometry were investigated. The emphasis is put on the influence of the contact-line transport behaviors on nucleation and bubble dynamics in the confined meniscus. The observations suggested that superheat is the necessary condition for bubble formation, and enough vapor supply is the necessary condition for bubble growth in the confined liquid. The oil film could significantly inhibit the evaporation and diffusion of water molecules in the superheat geometry. The water/oil droplet can exist for a long time even in the hot contact region, which could have sustained damages to the mechanical system suffering from water pollution. This work is of great significance to better understand the damage mechanism of water pollution to the mechanical system.

  16. Movement and evaporation of water droplets under conditions typical for heat-exchange chambers of contact water heaters

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-09-01

    The macroscopic regularities and integrated characteristics of the motion and evaporation of sprayed water droplets in the field of high-temperature (1100 K) combustion products under the conditions typical for water heaters of contact type (economizers) were studied using a cross-correlation complex working on the basis of panoramic optical methods (particle image velocimetry, particle tracking velocimetry, shadow photography) and high-speed (105 fps) Phantom video cameras. High-speed video recording devices with specialized software were used for continuously monitoring the motion and evaporation of droplets. Titanium dioxide nanopowder tracer particles were introduced to determine the rate of high-temperature gases. The characteristic distances covered by water droplets before their full retardation in the counter-flow of high-temperature combustion products were determined. The integrated dependences were obtained, and the main characteristics of evaporation were determined, which allow one to predict the intensity of the phase transformations of droplets (with sizes of 0.05-0.5 mm) and the distances covered by them before they completely turn in the opposite direction under the conditions corresponding to the heat-exchange chambers of contact water heaters: the vapor-droplet rate 1-5 m/s, gas flow rate 0.5-2 m/s, and gas temperature ~1100 K. Approximating expressions were derived to predict the characteristics of the processes. The performance of the economizers under study can be significantly increased by using the obtained experimental dependences, the corresponding approximating expressions, and the resulting conclusions. Conditions were determined under which the influence of phase transformations on retardation exceeds the contribution of the counter-motion and active retardation and evaporation of water droplets occur in the heat-exchange chambers of contact water heaters of typical sizes.

  17. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    NASA Technical Reports Server (NTRS)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  18. The chemical behavior of silica in water in saline area; comparison for region and evaporation process.

    PubMed

    Tanaka, Miho; Takahashi, Kazuya

    2007-09-01

    The chemical behavior of silica in the water samples from Death Valley were examined by the speciation of silica and the measurements of the silica and alkaline and alkaline earth cation contents to compare with those from the arid area in Xinjiang, Northwest China. Basically, the chemical behavior of silica in spring water samples from Death Valley coherent with those in Xinjiang, Northwest China. And the observed chemical species of silica with alkaline and alkaline earth cations in spring water samples in Death Valley were in good agreement with those in Xinjiang, Northwest China. However, some of the silica behavior observed in water samples in Death Valley was distinct from those observed in Xinjiang, Northwest China. It is considered that some of the water samples in Death Valley were subject to evaporation process.

  19. Evaporation of Water from Particles in the Aerodynamic Lens Inlet: An Experimental Study

    SciTech Connect

    Zelenyuk, Alla; Imre, Dan G.; Cuadra-Rodriguez, Luis A.

    2006-10-01

    The extremely high particle transmission efficiency of aerodynamic lens inlets resulted in their wide use in aerosol mass spectrometers. One of the consequences of a transport of particles from high ambient pressure into the vacuum is that it is accompanied by a rapid drop in relative humidity (RH). Since many atmospheric particles exist in the form of hygroscopic water droplets, a drop in RH may result in a significant loss of water and even a change in phase. To predict how much water will be evaporated is not feasible. Because water loss can effect in addition to particle size, its transmission efficiency, ionization probability and mass spectrum it is imperative to provide definitive experimental data that can serve to guide the field to a reasonable and uniform sampling approach. In this study we present the results of a number of carefully conducted measurements that provide the first experimentally determined benchmark of water evaporation from a range of particles, during their transport through an aerodynamic lens inlet. We conclude that the only sure way to avoid ambiguities during measurements of aerodynamic diameter in instruments that utilize low pressure aerodynamic lens inlets is to dry the particles prior to sampling.

  20. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  1. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  2. Molecular Gas Dynamics on Condensation and Evaporation of Water Induced by Sound Waves

    NASA Astrophysics Data System (ADS)

    Inaba, M.; Fujikawa, S.; Yano, T.

    2008-12-01

    The condensation and evaporation induced at a vapor-liquid interface by the incidence and reflection of sound waves are studied theoretically. In particular, we focus on the case that the vapor is a polyatomic gas, e.g., water, and the liquid is its own condensed phase and no other species of molecules are included. One-dimensional behavior of the sound waves in a finite region bounded by an oscillating plate, sound source, and the vapor-liquid interface is analyzed by applying the general asymptotic theory by Sone. It is assumed that the Knudsen number defined as the ratio of the mean free path of gas molecules to the wavelength of sound is sufficiently small compared with unity and the Mach number defined by the ratio of the maximum speed of oscillating plate to the sound speed is sufficiently small compared with the Knudsen number. The result shows that the gas region may be comprised of three regions of the linear isentropic region of sound wave, the thermal boundary layer and the Knudsen layer. From the analytical solution in the time-periodic case, it is found that the amplitude of the sound wave decreases with increase in the evaporation coefficient at the interface. When the evaporation coefficient is unity, almost 80 percent in amplitude of sound wave incident on the interface is absorbed there.

  3. Experimental study on evaporation from seasonally frozen soils under various water, solute and groundwater conditions in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Wu, Mousong; Huang, Jiesheng; Wu, Jingwei; Tan, Xiao; Jansson, Per-Erik

    2016-04-01

    Soil freezing and thawing significantly impact water balance in cold regions. To improve estimations of evaporation from seasonally frozen and saline soils, field experiments representing various water and solute conditions were conducted during a 5-month-period in Inner Mongolia, China. A mass balance method was used to estimate evaporation from frost tubes (5.5 × 300 cm) with treatments combining three solute contents (0.2%, 0.4%, and 0.6% g g-1 dry soil) with three initial groundwater table depth (GWTDs) (2.0, 1.5, and 1.0 m). The dynamics of water, heat and solute transport in the frost tubes and in field plots were also investigated. Seasonal changes in evaporation rates were observed during soil freezing/thawing periods. Low evaporation rates were maintained when the soil was deeply frozen (e.g., in P3), and relatively higher values occurred at the beginning and the end of the experiments (e.g., in P1 and P5). The cumulative evaporation amount increased with an increase in initial solute content and declined with a lowering of the initial GWTDs. Solute accumulation with water in the surface layer during freezing decreased the osmotic potential in soil, resulting in obvious freezing point depressions and higher liquid water contents in the uppermost layer of soil. During the soil thawing periods, no evidence of any control of water availability on evaporation was noticed, although the surface soil contained large amounts of water. This study has led to an improved understanding of the coupled effects of water, heat and solute on evaporation from seasonally frozen saline soils and also has important implications for water and energy balance studies in cold regions.

  4. Nutrition considerations for open-water swimming.

    PubMed

    Shaw, Gregory; Koivisto, Anu; Gerrard, David; Burke, Louise M

    2014-08-01

    Open-water swimming (OWS) is a rapidly developing discipline. Events of 5-25 km are featured at FINA World Championships, and the international circuit includes races of 5-88 km. The Olympic OWS event, introduced in 2008, is contested over 10 km. Differing venues present changing environmental conditions, including water and ambient temperatures, humidity, solar radiation, and unpredictable tides. Furthermore, the duration of most OWS events (1-6 hr) creates unique physiological challenges to thermoregulation, hydration status, and muscle fuel stores. Current nutrition recommendations for open-water training and competition are either an extension of recommendations from pool swimming or are extrapolated from other athletic populations with similar physiological requirements. Competition nutrition should focus on optimizing prerace hydration and glycogen stores. Although swimmers should rely on self-supplied fuel and fluid sources for shorter events, for races of 10 km or greater, fluid and fuel replacement can occur from feeding pontoons when tactically appropriate. Over the longer races, feeding pontoons should be used to achieve desirable targets of up to 90 g/ hr of carbohydrates from multitransportable sources. Exposure to variable water and ambient temperatures will play a significant role in determining race nutrition strategies. For example, in extreme environments, thermoregulation may be assisted by manipulating the temperature of the ingested fluids. Swimmers are encouraged to work with nutrition experts to develop effective and efficient strategies that enhance performance through appropriate in-competition nutrition.

  5. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    1997-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or "time to drying" (t(sub d)), is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage 1 drying (as water is removed from storage), and then become more or less constant during soil limited, or "stage 2" drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  6. Thermal and Hydrologic Signatures of Soil Controls on Evaporation: A Combined Energy and Water Balance Approach with Implications for Remote Sensing of Evaporation

    NASA Technical Reports Server (NTRS)

    Salvucci, Guido D.

    2000-01-01

    The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.

  7. Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Knoche, Richard; Wei, Jianhui; Kunstmann, Harald

    2016-04-01

    Regional precipitation recycling is the measure of the contribution of local evaporation E to local precipitation. This study provides a set of two methods developed in the Weather Research and Forecasting WRF model system for investigating regional precipitation recycling mechanisms: (1) tracking of tagged atmospheric water species originating from evaporation in a source region, ie E-tagging, and (2) three-dimensional budgets of total and tagged atmospheric water species. These methods are used to quantify the effect of return flow and non-well vertical mixing neglected in the computation of the bulk precipitation recycling ratio. The developed algorithms are applied to a WRF simulation of the West African Monsoon 2003. The simulated region is characterized by vertical wind shear condition, i.e. southwesterlies in the low levels and easterlies in the mid-levels, which favours return flow and non-well vertical mixing. Regional precipitation recycling is investigated in 100x100 and 1000x1000 km2 areas. A prerequisite condition for evaporated water to contribute to the precipitation process in both areas is that it is lifted to the mid-levels where hydrometeors are produced. In the 100x100 (1000x1000) km2 area the bulk precipitation recycling ratio is 0.9 (7.3) %. Our budget analysis reveals that return flow and non-well vertically mixed outflow increase this value by about +0.2 (2.9) and +0.2 (1.6) %, respectively, thus strengthening the well-known scale-dependency of regional precipitation recycling.

  8. An open source simulator for water management

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Selby, Philip; Mohammed, Khaled; Khadem, Majed; Padula, Silvia; Harou, Julien; Rosenberg, David; Rheinheimer, David

    2015-04-01

    Descriptive modelling of water resource systems requires the representation of different aspects in one model: the physical system including hydrological inputs and engineered infrastructure, and human management, including social, economic and institutional behaviours and constraints. Although most water resource systems share some characteristics such as the ability to represent them as a network of nodes and links, geographical, institutional and other differences mean that invariably each water system functions in a unique way. A diverse group is developing an open source simulation framework which will allow model developers to build generalised water management models that are customised to the institutional, physical and economical components they are seeking to model. The framework will allow the simulation of complex individual and institutional behaviour required for the assessment of real-world resource systems. It supports the spatial and hierarchical structures commonly found in water resource systems. The individual infrastructures can be operated by different actors while policies are defined at a regional level by one or more institutional actors. The framework enables building multi-agent system simulators in which developers can define their own agent types and add their own decision making code. Developers using the framework have two main tasks: (i) Extend the core classes to represent the aspects of their particular system, and (ii) write model structure files. Both are done in Python. For task one, users must either write new decision making code for each class or link to an existing code base to provide functionality to each of these extension classes. The model structure file links these extension classes in a standardised way to the network topology. The framework will be open-source and written in Python and is to be available directly for download through standard installer packages. Many water management model developers are unfamiliar

  9. Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony

    2009-01-01

    Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.

  10. Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony

    2009-01-01

    Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.

  11. Hypotheses of calculation of the water flow rate evaporated in a wet cooling tower

    SciTech Connect

    Bourillot, C.

    1983-08-01

    The method developed by Poppe at the University of Hannover to calculate the thermal performance of a wet cooling tower fill is presented. The formulation of Poppe is then validated using full-scale test data from a wet cooling tower at the power station at Neurath, Federal Republic of Germany. It is shown that the Poppe method predicts the evaporated water flow rate almost perfectly and the condensate content of the warm air with good accuracy over a wide range of ambient conditions. The simplifying assumptions of the Merkel theory are discussed, and the errors linked to these assumptions are systematically described, then illustrated with the test data.

  12. Visualization study of evaporation of single n-pentane drops in water

    NASA Astrophysics Data System (ADS)

    Ehara, N.; Nojima, K.; Mori, Y. H.

    1993-12-01

    A laser shadowgraph system was constructed to enable successive filming of a drop or a bubble rising or falling in an immiscible liquid confined within a vertical column. The assembly was applied to a study of the evaporation of n-pentane drops in a stagnant medium of water. The liquid/vapor two-phase bubble evolving from each pentane drop was observed together with its wake, the morphology and the dynamics of which are our primary concern in considering the mechanism of the medium-to-bubble heat transfer.

  13. Investigation of the falling water flow with evaporation for the passive containment cooling system and its scaling-down criteria

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Li, Junming; Li, Le

    2017-09-01

    Falling water evaporation cooling could efficiently suppress the containment operation pressure during the nuclear accident, by continually removing the core decay heat to the atmospheric environment. In order to identify the process of large-scale falling water evaporation cooling, the water flow characteristics of falling film, film rupture and falling rivulet were deduced, on the basis of previous correlation studies. The influences of the contact angle, water temperature and water flow rates on water converge along the flow direction were then numerically obtained and results were compared with the data for AP1000 and CAP1400 nuclear power plants. By comparisons, it is concluded that the water coverage fraction of falling water could be enhanced by either reducing the surface contact angle or increasing the water temperature. The falling water flow with evaporation for AP1000 containment was then calculated and the feature of its water coverage fraction was analyzed. Finally, based on the phenomena identification of falling water flow for AP1000 containment evaporation cooling, the scaling-down is performed and the dimensionless criteria were obtained.

  14. Does metabolic rate and evaporative water loss reflect differences in migratory strategy in sexually dimorphic hoverflies?

    PubMed

    Tomlinson, Sean; Menz, Myles H M

    2015-12-01

    A typical explanation for ecologically stable strategies that apply to only a proportion of a population, is bet hedging, where increased reproductive success offsets reduced reproductive rate. One such is partial migration, where only a proportion of a population moves seasonally to avoid inclement climatic conditions. Bet hedging may overlook unseen costs to maintain broad physiological resilience, implied by encountering a breadth of environmental conditions. We investigated the physiological correlates of partial migration by measuring standard metabolic rates, and rates of evaporative water loss, and then estimating upper and lower thermal tolerance in males and females of two hoverfly species, Episyrphus balteatus and Eristalis tenax. In central Europe, females of these species may either migrate or overwinter, whereas males may migrate south to the Mediterranean, but have not been found overwintering. Both species were sexually dimorphic; female Ep. balteatus were lighter than males, but female Er. tenax were heavier than males. While allometrically- corrected metabolic rate in both species increased with temperature, the most parsimonious models included no sex-specific differences in metabolic rate for either species. Evaporative water loss of both species also increased with temperature, but was higher for females of both species than males. Assuming that resting metabolism is congruent with the activity requirements of migration, highly consistent thermal tolerance and metabolic rate suggests that any given fly could migrate, although water loss patterns suggest that females may be less well-adapted to Mediterranean climates. We infer that partial migration probably results from the imperatives of their reproductive strategies.

  15. Lake Evaporation: a Model Study

    NASA Astrophysics Data System (ADS)

    Amayreh, Jumah Ahmad

    1995-01-01

    Reliable evaporation data are an essential requirement in any water and/or energy budget studies. This includes operation and management of both urban and agricultural water resources. Evaporation from large, open water surfaces such as lakes and reservoirs may influence many agricultural and irrigation decisions. In this study evaporation from Bear Lake in the states of Idaho and Utah was measured using advanced research instruments (Bowen Ratio and Eddy Correlation). Actual over-lake evaporation and weather data measurements were used to understand the mechanism of evaporation in the lake, determine lake-related parameters (such as roughness lengths, heat storage, net radiation, etc.), and examine and evaluate existing lake evaporation methods. This enabled the development of a modified and flexible model incorporating the tested methods for hourly and daily best estimates of lake evaporation using nearby simple land-based weather data and, if available, remotely sensed data. Average evaporation from Bear Lake was about 2 mm/day during the summer season (March-October) of this two-year (1993-1994) study. This value reflects the large amount of energy consumed in heating the water body of the lake. Moreover, evaporation from the lake was not directly related to solar radiation. This observation was clear during night time when the evaporation continued with almost the same rate as daytime evaporation. This explains the vital role of heat storage in the lake as the main driving energy for evaporation during night time and day time cloudy sky conditions. When comparing over-lake and nearby land-based weather parameters, land-based wind speed was the only weather parameter that had a significant difference of about 50% lower than over-lake measurements. Other weather parameters were quite similar. The study showed that evaporation from the lake can be accurately estimated using Penman-type equations if related parameters such as net radiation, heat storage, and

  16. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  17. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  18. Characteristic of Local Boiling Heat Transfer of Ammonia / Water Binary Mixture on the Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Okamoto, Akio; Arima, Hirofumi; Kim, Jeong-Hun; Akiyama, Hirokuni; Ikegami, Yasuyuki; Monde, Masanori

    Ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) are expected to be the next generation energy production systems. Both systems use a plate type evaporator, and ammonia or ammonia/water mixture as a working fluid. It is important to clarify heat transfer characteristic for designing efficient power generation systems. Measurements of local boiling heat transfer coefficients and visualization were performed for ammonia /water mixture (z = 0.9) on a vertical flat plate heat exchanger in a range of mass flux (7.5 - 15 kg/m2s), heat flux (15 - 23 kW/m2), and pressure (0.7 - 0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of vapor quality and mass flux, and decrease with an increase of heat flux, and the influence of the flow pattern on the local heat transfer coefficient is observed.

  19. Comparison of Experimental and Model Data for the Evaporation of a Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain, NV

    SciTech Connect

    Alai, M; Sutton, M; Carroll, S

    2003-10-14

    The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol% SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

  20. Cooling by cutaneous water evaporation in the heat-acclimated rock pigeon (Columba livia).

    PubMed

    Arieli, Yehuda; Peltonen, Liisa; Ophir, Eshel

    2002-03-01

    The present study provides an up-to-date overview of the cutaneous water-evaporation cooling mechanism in the rock pigeon. Cutaneous water evaporation fully replaces the classic respiratory cooling mechanism in the resting, heat-acclimated bird, and is more economical in terms of water conservation. It enables the pigeon to maintain homeostasis, and to breed successfully in harsh environments. Adrenergic signaling is involved in the initiation of this novel mechanism, either by deactivation of the beta-adrenergic receptors (ARs), or activation of the alpha-AR. The adrenergic signaling results in a marked increase in cutaneous blood flow and in the arterial-to-venous blood-flow ratio. This is associated with alterations in the cutaneous capillary wall ultrastructure, which increase its permeability to plasma proteins and water. The end result of this process might be an increase in water efflux from the capillary lumen. The properties of beta-ARs were measured in the cardiac muscle of thermal-acclimated pigeons. Significant down-regulation in the density of beta-ARs, associated with increased affinity of these receptors, was measured in the heat-acclimated pigeon. Concomitantly, changes in the skin ultrastructure and lipid composition were found in very well defined patches in the epidermis of heat-acclimated pigeons. These suppress the skin resistance to water transfer. We suggest that this cooling mechanism involves finely orchestrated adjustments in the ultrastructure of the skin and the cutaneous capillaries, and in skin blood flow. Adrenergic signals are among those factors that regulate this cooling mechanism during exposure to a hot environment.

  1. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    SciTech Connect

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  2. Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Leuning, Ray; Hutley, Lindsay B.; Beringer, Jason; McHugh, Ian; Walker, Jeffrey P.

    2010-05-01

    Evaporation from the land surface, averaged over successive 8 day intervals and at 0.05° (˜5 km) spatial resolution, was calculated using the Penman-Monteith (PM) energy balance equation, gridded meteorology, and a simple biophysical model for surface conductance. This conductance is a function of evaporation from the soil surface, leaf area index, absorbed photosynthetically active radiation, atmospheric water vapor pressure deficit, and maximum stomatal conductance (gsx). The novelty of this paper is the use of a "Budyko-curve" hydrometeorological model to estimate mean annual evaporation rates and hence a unique value of gsx for each grid cell across the Australian continent. First, the hydrometeorological model was calibrated using long-term water balances from 285 gauged catchments. Second, gridded meteorological data were used with the calibrated hydrometeorological model to estimate mean annual average evaporation (?) for each grid cell. Third, the value of gsx for each cell was adjusted to equate ? calculated using the PM equation with ? from the hydrometeorological model. This closes the annual water balance but allows the PM equation to provide a finer temporal resolution for evaporation than is possible with an annual water balance model. There was satisfactory agreement (0.49 < R2 < 0.80) between 8 day average evaporation rates obtained using remotely sensed leaf area indices, the parameterized PM equation, and observations of actual evaporation at four Australian eddy covariance flux sites for the period 2000-2008. The evaporation product can be used for hydrological model calibration to improve runoff prediction studies in ungauged catchments.

  3. Understanding thermal Marangoni flow in water sessile evaporating drops via 3D-PTV

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Marin, Alvaro; Kaehler, Christian J.

    2016-11-01

    Understanding the flow inside sessile evaporating drops is of great interest both from a fundamental and technological point of view. Despite strong research efforts in the recent years, a complete picture on the phenomena involved in this process and a way to control them is still far to be reached. This is due to a lack of reliable experimental data on the internal flow but more dramatically on the interfacial flow. A relevant open debate concerns the role played by the Marangoni flow induced by thermal gradients. We recently show how 3D particle tracking techniques are suitable to measure the internal flow of drops and to derive quantities such as surface shear and surface tension differences. Such experiments also indicated an increase of the thermal Marangoni flow as the droplet becomes thinner, in disagreement with current theoretical models and simulations. A possible reason for that could be a discrepancy of the imposed boundary conditions in the simulations and the experimental ones. This work follows up these observations with fully 3D time-resolved measurements of the flow inside drops evaporating on a quartz substrate, which temperature is controlled using a feedback temperature control and a microscope incubator system. Supported by DFG, Grant No. KA 1808/22.

  4. Evaporative assembly of MEH-PPV rings using mixed solvents at the air/water interface.

    PubMed

    Chao, Kung-Po; Biswal, Sibani L

    2014-04-22

    Controlling the morphology of conjugated polymers has recently attracted considerable attention because of their applications in photovoltaic (PV) devices and organic light-emitting diodes (OLEDs). Here, we describe the self-assembly of a common conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), into ringlike structures via solvent evaporation on an air/water interface. The films are monitored using Brewster angle microscopy (BAM) and transferred onto a solid substrate by either the Langmuir-Blodgett (LB) or the Langmuir-Schaefer (LS) method and further characterized by atomic force microscopy (AFM). The morphology of the MEH-PPV thin film at the air/water interface can be controlled by the spreading solvent. By mixing solvents of varying spreading coefficients and evaporation rates, such as chloroform and chlorobenzene, MEH-PPV can be assembled into micrometer-sized ring structures. The optical properties of these MEH-PPV ring structures are also characterized. Lastly, MEH-PPV can be used as a soft template to organize microscale structures of nanoparticles.

  5. Temperature and evaporative water loss of leaf-sitting frogs: the role of reflection spectra.

    PubMed

    Herrerías-Azcué, Francisco; Blount, Chris; Dickinson, Mark

    2016-12-15

    The near infrared reflection peak in some frogs has been speculated to be either for enhancing crypticity, or to help them with thermoregulation. The theoretical background for the thermoregulatory processes has been established before, but little consideration has been given to the contribution from the frogs' reflection spectra differences. In this investigation, the reflection spectra from a range of different species of frogs were taken and combined with precise surface area measurements of frogs and an approximation to the mass transfer coefficient of agar frog models. These were then used to simulate the temperature and water evaporation in anurans with and without the near infrared reflective peak. We have shown that the presence of the near infrared reflection peak can contribute significantly to the temperature and evaporative water loss of a frog. The significance of the steady-state temperature differences between frogs with and without the near infrared reflection peak is discussed in a realistic and an extreme scenario. Temperature differences of up to 3.2°C were found, and the rehydration period was increased by up to 16.7%, although this does not reduce the number of rehydration events between dawn and dusk.

  6. Temperature and evaporative water loss of leaf-sitting frogs: the role of reflection spectra

    PubMed Central

    Blount, Chris; Dickinson, Mark

    2016-01-01

    ABSTRACT The near infrared reflection peak in some frogs has been speculated to be either for enhancing crypticity, or to help them with thermoregulation. The theoretical background for the thermoregulatory processes has been established before, but little consideration has been given to the contribution from the frogs' reflection spectra differences. In this investigation, the reflection spectra from a range of different species of frogs were taken and combined with precise surface area measurements of frogs and an approximation to the mass transfer coefficient of agar frog models. These were then used to simulate the temperature and water evaporation in anurans with and without the near infrared reflective peak. We have shown that the presence of the near infrared reflection peak can contribute significantly to the temperature and evaporative water loss of a frog. The significance of the steady-state temperature differences between frogs with and without the near infrared reflection peak is discussed in a realistic and an extreme scenario. Temperature differences of up to 3.2°C were found, and the rehydration period was increased by up to 16.7%, although this does not reduce the number of rehydration events between dawn and dusk. PMID:27793832

  7. Importance of soil heating, liquid water loss, and vapor flow enhancement for evaporation

    NASA Astrophysics Data System (ADS)

    Novak, Michael D.

    2016-10-01

    Field measurements conducted by Cahill and Parlange (1998) are reanalyzed to verify if their conclusion that daytime peak values of 60-70 W m-2 of latent heat flux divergence occurred in the 7-10 cm soil layer of a drying Yolo silt loam when maximum values of surface latent heat flux are estimated to have been about 100 W m-2. The new analyses, as similar to theirs as possible, are validated using a numerical simulation of coupled soil moisture and heat flow based on Philip and de Vries (1957) as a test bed. The numerical simulation is extended to include the flow of air induced by diurnal soil heating and evaporative water loss to verify the flux divergence calculations reported in Parlange et al. (1998) that explained the findings of Cahill and Parlange (1998). It is shown that the conclusions of both of these papers are in error, so that the original version of the Philip and de Vries (1957) theory is consistent with their field measurements after all and the effects of airflow associated with soil heating and liquid water loss (and low-frequency barometric pressure variations also considered) are negligible in practice. In an additional investigation, enhancement of diffusive vapor flow (first postulated by Philip and de Vries (1957)) and discussed extensively in the literature since is shown to have negligible effects on cumulative evaporation under field conditions.

  8. What controls differences in Stream Water Evaporation Lines in a nested catchment system?

    NASA Astrophysics Data System (ADS)

    Klaus, J.; Pfister, L.

    2016-12-01

    Catchment properties, together with the hydro-meteorological conditions, influence the transformation of the stable isotopic signal from precipitation to stream discharge and the fraction of isotopic fractionated water (by evaporation) in stream flow. Several studies showed that catchments often exhibit a lower slope of the regression line between δOxygen-18 (δ18O) and δDeuterium (δD) of stream water (Stream Water Evaporation Lines: SEL) compared to the Local Meteoric Water Line (LMWL). Here we hypothesize that the combination of land use, geology, and topography is controlling these differences. In this work we test this hypothesis relying on regression analysis in the nested river setup of the Attert catchment (250 km2), with 9 sub-catchment ranging from 0.45 km2 to 161 km2. We employed a three year time series of bi-weekly stable isotope samples of stream water at the catchment outlets. The different sub-catchments show remarkable different catchment characteristics in terms of geology and land use, while the hydro-meteorological forcing is rather uniform between the sub-catchments. Eventually, we found that an elevation effect strongly controlled the differences in mean δ18O and δD of stream flow between the catchments (-1.2‰ δD/100 m). Stream flow also showed remarkable evaporative enrichment, the slopes of the SEL ranges from 3.2 to 5.1. Sandstone showed the highest explanatory power in simple linear regression with R2=0.46. Increasing fractions of sandstone geology and forest cover generally lead to lower slopes of the SEL, while the extent of alluvial floodplain lead to slopes more similar to the LMWL. None of the multiple linear regression models showed higher explanatory power than 0.7 (adjusted R2) based on alluvial coverage and geological permeability. This contribution shows how different catchment properties influence the relationship δ18O and δD that is generally controlled by non-kinetic fractionation. Further work on the processes that

  9. Selective retardation of perfume oil evaporation from oil-in-water emulsions stabilized by either surfactant or nanoparticles.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Holt, Benjamin L; Beaussoubre, Pascal; Wong, Kenneth

    2010-12-07

    We have used dynamic headspace analysis to investigate the evaporation rates of perfume oils from stirred oil-in-water emulsions into a flowing gas stream. We compare the behavior of an oil of low water solubility (limonene) and one of high water solubility (benzyl acetate). It is shown how the evaporation of an oil of low water solubility is selectively retarded and how the retardation effect depends on the oil volume fraction in the emulsion. We compare how the evaporation retardation depends on the nature of the adsorbed film stabilizing the emulsion. Surfactant films are less effective than adsorbed films of nanoparticles, and the retardation can be further enhanced by compression of the adsorbed nanoparticle films by preshrinking the emulsion drops.

  10. Evaporative water loss in man in a gravity-free environment

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Leonard, J. I.; Rambaut, P. C.; Johnson, P. C.

    1978-01-01

    Daily evaporative water losses (EWL) during the three Skylab missions were measured indirectly using mass and water-balance techniques. The mean daily values of EWL for the nine crew members who averaged 1 hr of daily exercise were: preflight 1,750 + or - 37 (SE) ml or 970 + or - 20 ml/sq m and inflight 1,560 + or - 26 ml or 860 + or - 14 ml/sq m. Although it was expected the EWL would increase in the hypobaric environment of Skylab, an average decrease from preflight sea-level conditions of 11% was measured. The results suggest that weightlessness decreased sweat losses during exercise and possibly reduced insensible skin losses. The weightlessness environment apparently promotes the formation of an observed sweat film on the skin surface during exercise by reducing convective flow and sweat drippage, resulting in high levels of skin wettedness that favor sweat suppression.

  11. Universal wetting transition of an evaporating water droplet on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, Peichun Amy; Bussonnière, Adrien; Bigdeli, Masoud; Chueh, Di-Yen; Liu, Qingxia; Chen, Peilin

    2016-11-01

    An evaporating water droplet on a superhydrophobic surface undergoes a wetting transition from a heterogeneous wetting (Cassie-Baxter) to homogeneous wetting (Wenzel) state. The critical transition is manifested by a sudden decrease of contact angle, when "Fakir" water drop permeates the minute hydrophobic cavities. This breakdown of superhydrophobicity would hinder various applications of self-cleaning, low-frictional, and potentially ice-phobic properties of superhydrophobic materials. In this work, we experimentally investigate such wetting transition using hydrophobic nanostructures. With a theoretical model, we find a universal criterion of the critical contact angle at the transition point. The prediction of critical contact angle, which solely depends on the geometrical parameters of the hydrophobic pillars, agree well with various data for both micro- and nano-structures.

  12. Evaporative water loss in man in a gravity-free environment

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Leonard, J. I.; Rambaut, P. C.; Johnson, P. C.

    1978-01-01

    Daily evaporative water losses (EWL) during the three Skylab missions were measured indirectly using mass and water-balance techniques. The mean daily values of EWL for the nine crew members who averaged 1 hr of daily exercise were: preflight 1,750 + or - 37 (SE) ml or 970 + or - 20 ml/sq m and inflight 1,560 + or - 26 ml or 860 + or - 14 ml/sq m. Although it was expected the EWL would increase in the hypobaric environment of Skylab, an average decrease from preflight sea-level conditions of 11% was measured. The results suggest that weightlessness decreased sweat losses during exercise and possibly reduced insensible skin losses. The weightlessness environment apparently promotes the formation of an observed sweat film on the skin surface during exercise by reducing convective flow and sweat drippage, resulting in high levels of skin wettedness that favor sweat suppression.

  13. Evaporative water loss in man in a gravity-free environment.

    PubMed

    Leach, C S; Leonard, J I; Rambaut, P C; Johnson, P C

    1978-09-01

    Daily evaporative water losses (EWL) during the three Skylab missions were measured indirectly using mass and water-balance techniques. The mean daily values of EWL for the nine crew members who averaged 1 h of daily exercise were: preflight 1,750 +/- 37 (SE) ml or 970 +/- 20 ml/m2 and inflight 1,560 +/- 26 ml or 860 +/- 14 ml/m2. Although it was expected the EWL would increase in the hypobaric environment of Skylab (one-third atmosphere). an average decrease from preflight sealevel conditions of 11% was measured. The results suggest that weightlessness decreased sweat losses during exercise and possibly reduced insensible skin losses as well. The weightlessness environment apparently promotes the formation of an observed sweat film on the skin surface during exercise by reducing convective flow and sweat drippage, resulting in high levels of skin wettedness that favor sweat suppression.

  14. Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates

    SciTech Connect

    Huang, Y.J.; Hanford, J.W.; Wu, H.F.

    1992-09-01

    This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

  15. Thermoregulation in juvenile red kangaroos (Macropus rufus) after pouch exit: higher metabolism and evaporative water requirements.

    PubMed

    Munn, A J; Dawson, T J

    2001-01-01

    The population dynamics of red kangaroos (Macropus rufus) in the Australian arid zone is tightly linked with environmental factors, which partly operate via the survival of juvenile animals. A crucial stage is the young-at-foot (YAF) stage when kangaroos permanently exit the pouch. We have examined the thermal biology of YAF red kangaroos during ages from permanent pouch exit until weaning. Over a wide range of environmental temperatures (ambient temperature [T(a)] -5 degrees to 45 degrees C), YAF red kangaroos had a mass-specific metabolism that was generally twice that of adults, considerably higher than would be expected for an adult marsupial of their body size. The total energy requirements of YAF red kangaroos were 60%-70% of those of adult females, which were three times their size. Over the same range in T(a), YAF red kangaroos also had total evaporative water losses equal to those of adult females. At the highest T(a) (45 degrees C), differences were noted in patterns of dry heat loss (dry conductance) between YAF red kangaroos and adult females, which may partially explain the relatively high levels of evaporative cooling by YAF. By weaning age, young kangaroos showed little change in their basal energy and water requirements (at T(a) 25 degrees C) but did show reduced mass-specific costs in terms of energy and water use at extremes of T(a) (-5 degrees and 45 degrees C, respectively). In their arid environment, typified by unpredictable rainfall and extremes of T(a), young red kangaroos may need to remain close to water points, which, in turn, may restrict their ability to find the high-quality forage needed to meet their high energy demands.

  16. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    PubMed

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources.

  17. Evaluation of the return periods of water crises and evaporation in Monte Cotugno reservoir (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Copertino, Vito; Lo Vecchio, Giuseppina; Marotta, Lucia; Pastore, Vittoria; Ponzio, Giuseppe; Scavone, Giuseppina; Telesca, Vito; Vita, Michele

    2010-05-01

    In the past water resources management has been dealt and solved increasing water availabilities; today such opportunities have been considerably reduced and the technical-scientific perspectives are addressed above all to improve water system effectiveness and to promote an use of water resources that holds account of the droughts frequency and based on a correct estimate of the hydrologic balance. In this work a study on the water stored in Monte Cotugno reservoir in Sinni river - Basilicata (Southern Italy) - is proposed, estimating water crises return periods and reservoir evaporation. For such purpose the runs method was applied, based on the comparison between the temporal series of the "water volume" hydrological variable and a threshold representative of the "normal" conditions regarding which the availability in excess or defect was estimated. This allowed to individualize the beginning and the end of a water crisis event and to characterize the droughts in terms of duration, sum deficit and intensity. Therefore the return period was evaluated by means of the methodology proposed by Shiau and Shen in 2001, turned out equal approximately to 6 years. Such value was then verified with a frequency analysis of the "water volume" random variable, using the Weibull's distribution. Subsequently, the Fourier's analysis in the last twenty years was carried out, obtaining the same result of the previous methods. Moreover, in proximity of the Monte Cotugno reservoir the weather station of Senise is located, managed by ALSIA (Agenzia Lucana di Sviluppo e Innovazione in Agricultura), that provides in continuous measurements of air temperature and humidity, wind speed and direction, and global solar radiation since 2000. Such parameters allowed to apply five methods for reservoir evaporation estimate selected from those proposed in the literature, of which the first three, the Jensen-Haise's method, Makkink's method and Stephens-Stewart's one are based on solar radiation

  18. Evaporation Pathways and Solubility of Fe-Ca-Mg-Rich Salts in Acid Sulfate Waters. A Model for Martian Ancient Surface Waters

    NASA Astrophysics Data System (ADS)

    Sansano, A.; Sobron, P.; Sanz, J. A.

    2012-03-01

    In this work we have characterized a layered deposit formed from the evaporation of stream water from Rio Tinto, Spain, a relevant Mars analog site. The minerals detected in-situ, confirmed later via high resolution Raman spectroscopy.

  19. Evaporation, transpiration, and ecosystem water use efficiency in a multi-annual sugarcane production system in Hawai’i, USA

    USDA-ARS?s Scientific Manuscript database

    Food and biofuel production will require practices that increase water use efficiency in order to have future sustainability in a water-constrained environment. One possible practice is the use of food and energy crops with multi-annual growing periods, which could reduce bare soil evaporation. We...

  20. Evaporation mitigation using floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  1. Epiphyte Water Retention and Evaporation in Native and Invaded Tropical Montane Cloud Forests in Hawaii

    NASA Astrophysics Data System (ADS)

    Mudd, R. G.; Giambelluca, T. W.

    2006-12-01

    Epiphyte water retention was quantified at two montane cloud forest sites in Hawai'i Volcanoes National Park, one native and the other invaded by an alien tree species. Water storage elements measured included all epiphytic mosses, leafy liverworts, and filmy ferns. Tree surface area was estimated and a careful survey was taken to account for all epiphytes in the sample area of the forest. Samples were collected and analyzed in the lab for epiphyte water retention capacity (WRC). Based on the volume of the different kinds of epiphytes and their corresponding WRC, forest stand water retention capacity for each survey area was estimated. Evaporation from the epiphyte mass was quantified using artificial reference samples attached to trees that were weighed at intervals to determine changes in stored water on days without significant rain or fog. In addition, a soil moisture sensor was wrapped in an epiphyte sample and left in the forest for a 6-day period. Epiphyte biomass at the Native Site and Invaded Site were estimated to be 2.89 t ha-1 and 1.05 t ha-1, respectively. Average WRC at the Native Site and Invaded Site were estimated at 1.45 mm and 0.68 mm, respectively. The difference is likely due to the presence of the invasive Psidium cattleianum at the Invaded Site because its smooth stem surface is unable to support a significant epiphytic layer. The evaporation rate from the epiphyte mass near WSC for the forest stand at the Native Site was measured at 0.38 mm day-1, which represented 10.6 % of the total ET from the forest canopy at the Native Site during the period. The above research has been recently complemented by a thorough investigation of the WSC of all water storage elements (tree stems, tree leaves, shrubs, grasses, litter, fallen branches, and epiphytes) at six forested sites at different elevations within, above, and below the zone of frequent cloud-cover. The goal of this study was to create an inexpensive and efficient methodology for acquiring

  2. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation.

    PubMed

    Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen

    2011-01-30

    A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Evaporative Concentration of 100x J13 Ground Water at 60% Relative Humidity and 90C

    SciTech Connect

    Staggs, K; Maureen Alai,; Hailey, P; Carroll, S A; Sutton, M; Nguyen, Q A

    2003-12-04

    In these experiments we studied the behavior of a synthetic concentrated J13 solution as it comes in contact with a Ni-Cr-Mo-alloy selected for waste canisters in the designated high-level nuclear-waste repository at Yucca Mountain, Nevada. Concentrated synthetic J13 solution was allowed to drip slowly onto heated test specimens (90 C, 60% relative humidity) where the water moved down the surface of the specimens, evaporated and minerals precipitated. Mineral separation or zoning along the evaporation path was not observed. We infer from solid analyses and geochemical modeling, that the most corrosive components (Ca, Mg, and F) are limited by mineral precipitation. Minerals identified by x-ray diffraction include thermonatrite, natrite, and trona, all sodium carbonate minerals, as well as kogarkoite (Na{sub 3}SO{sub 4}F), halite (NaCl), and niter (KNO{sub 3}). Calcite and a magnesium silicate precipitation are based on chemical analyses of the solids and geochemical modeling. The most significant finding of this study is that sulfate and fluoride concentrations are controlled by the solubility of kogarkoite. Kogarkoite thermodynamic data are needed in the Yucca Mountain Project database to predict the corrosiveness of carbonate brines and to establish the extent to which fluoride is removed from the brines as a solid.

  4. Evaporation dynamics and sedimentation pattern of a sessile particle laden water droplet

    NASA Astrophysics Data System (ADS)

    Corkidi, G.; Montoya, F.; Hernández-Cruz, G.; Vargas, M.; Luviano-Ortíz, J. L.; Ramos, E.

    2016-06-01

    The dynamics of the flow inside an evaporating sessile droplet of water with polystyrene micro-spheres of 1.0 μm in diameter in suspension is described. The initial volume of the droplets is in the range from 0.6 to 1.0 μl, and observations were made in the last stages before total evaporation. The flow was recorded in a sequence of images that were analyzed with a micro-PIV system to extract quantitative information. Also, using image analysis techniques we determined the dynamics of the retreating liquid film once unpinned from the original contact line. Additionally, we have explored its correlation to the formation of the sediment pattern which is organized in elongated mounds roughly deposited in azimuthal and radial orientations. It is found that the aggregation dynamics of micro-spheres in the segments of the two orientations is different. This might have a substantial influence on the final arrangement of micro-spheres in the sediments.

  5. Correlation between shape, evaporation mode and mobility of small water droplets on nanorough fibres.

    PubMed

    Funk, C S; Winzer, B; Peukert, W

    2014-03-01

    The dynamic wetting behaviour and the mobility of droplets on fibres is a very important factor in coating processes, textile fabrication, in self-cleaning processes and in the filtration of fluids. In principal, filter regeneration depends on the mobility of the droplets on the fibre surface. Mobile droplets tend to coalesce which greatly simplifies their removal from the filter. In this contribution mobility analyses of water droplets on monofilaments in air are performed. Studies of droplet evaporation on pure PET fibres and on nanorough fibres coated with SiO2 nanoparticles of diameters between 6 nm and 50 nm in a hydrophilic binder system were done. We show that the mobility of water droplets correlates with the droplet conformation which in turn is determined by the droplet-fibre interface. We demonstrate that fibre coatings can be used to tailor the conformation and mobility of water droplets. The smaller the nanoparticle diameters in the coating are, the smaller are the contact angles between water droplets and fibre and the better is the mobility of the droplets on the fibre. Our results allow a fast optimization of the fibre surface properties which are directly influencing the contact angle, the mobility and the coalescence of water droplets and thus filter regeneration.

  6. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  7. Full-Scale Hollow Fiber Spacesuit Water Membrane Evaporator Prototype Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Dillon, Paul; Weaver, Gregg

    2009-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the superior candidate among commercial alternatives for HoFi SWME prototype development. Although a number of design variants were considered, one that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was deemed best for further development. An analysis of test data showed that eight layer stacks of the HoFi sheets that had good exposure on each side of the stack would evaporate water with high efficiency. A design that has 15,000 tubes, with 18 cm of exposed tubes between headers has been built and tested that meets the size, weight, and performance requirements of the SWME. This full-scale prototype consists of 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Testing has been performed to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the sensitivity to surfactants.

  8. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.

    PubMed

    Briones, Alejandro M; Ervin, Jamie S; Putnam, Shawn A; Byrd, Larry W; Gschwender, Lois

    2010-08-17

    A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line

  9. Magnetic resonance imaging of slow water flow during infiltration and evaporation by tracer motion

    NASA Astrophysics Data System (ADS)

    Pohlmeier, A.; Haber-Pohlmeier, S.; Bechtold, M.; Vanderborght, J.; Vereecken, H.

    2012-04-01

    Water fluxes in soils control many processes in the environment like plant nutrition, solute and pollutant transport. In the last two decades non-invasive visualization methods have been adapted to monitor flux processes on the small scale. Magnetic resonance imaging (MRI), also well known from medical diagnostics, is one of the most versatile ones. It mostly probes directly the substance of interest: water, and it offers many opportunities to manipulate the observed signals for creating different contrasts and thus probing different properties of the porous medium and the embedded fluids. For example, one can make the signal sensitive to the total proton density, i. e. water content, to spatial distributions of relaxation times which reflect pore sizes, to spatial distributions of transport coefficients, and to concentration of contrast agents by using strongly T1 weighted MRI pulse sequences. In this presentation we use GdDTPA2- for monitoring flux processes in soil columns in an ultra-wide bore MRI scanner. It offers the opportunity for monitoring slow water fluxes mainly occurring in soil systems which are not monitorable with direct MRI flow imaging. This contrast agent is most convenient since it behaves conservatively, i.e. it does not sorb at different soil materials and it is chemically stable. Firstly, we show that its mode of action in natural porous media is identical to that known from medical applications as proved by the identical relaxivity parameters [1]. Secondly, the tracer is applied for the visualization of flux processes during evaporation-driven flow. Theoretical considerations by forward simulation predicted a lateral redistribution of solutes during evaporative upward fluxes from highly conductive fine material to neighbouring domains with low water content and conductivity. Here we could prove that such near-surface redistribution really takes place [2]. Thirdly, this tracer is applied for the investigation of water uptake by root systems

  10. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    NASA Astrophysics Data System (ADS)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  11. Changing Demands from Riparian Evapotranspiration and Free-Water Evaporation in the Lower Colorado River Basin Under Different Climate Scenarios

    NASA Astrophysics Data System (ADS)

    Bunk, D. A.; Piechota, T. C.

    2012-12-01

    Observed and projected trends in riparian evapotranspiration (ET) and free-water evaporation are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most previous research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in precipitation and wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering cropping patterns; and changing the temporal and spatial distribution of water deliveries. This study uses observations and projections under changing climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on riparian ET and free-water evaporation in the lower Colorado River mainstream downstream of Lake Mead and Hoover Dam. The projected changes in evaporative demands were assessed to determine their impacts on water supply and reservoir operations in the Colorado River basin under changing climate conditions. Based on analysis of observed and projected hydroclimatic data from the Variable Infiltration Capacity (VIC) hydrologic model, mean annual daily temperature in the lower Colorado River mainstream reach has increased by 0.8° Celsius (C) from the 30-year period ending in 1980 to period ending in 2010 and is projected to increase by an additional 1.7° C by 30-year period ending in 2060. Analysis of riparian ET derived from the ASCE Penman-Monteith method (Allen et al., 2005, from Monteith, 1965 and 1981) and Westenburg et al. (2006) and free-water evaporation derived from the Penman combination model in Dingman (2008) indicates that combined evaporative demand in the lower Colorado River

  12. Effect of pore size on the condensation/evaporation transition of confined water in equilibrium with saturated bulk water.

    PubMed

    Brovchenko, Ivan; Oleinikova, Alla

    2011-08-25

    The effect of pore size on the condensation/evaporation transition of confined water upon varying the strength of the water-surface interaction is studied under conditions of equilibrium with saturated bulk. Monte Carlo simulations in the grand canonical ensemble were used to determine water density in spherical pores of radius R(p) = 9, 12, 15, 20, and 25 Å in the temperature range from T = 270 K to the bulk critical temperature. The critical values of the well depth of the water-surface interaction potential, which mark the limits of the metastability of vapor and liquid phases in pores (U(0)(cond) and U(0)(evap), respectively), were determined. U(0)(cond) strongly depends on temperature, practically does not depend on the pore size, and corresponds to some particular density of water vapor near a surface. In contrast, U(0)(evap) only slightly depends on temperature, depends strongly on pore size, and corresponds to the density in the pore interior by about 2% below the bulk value. The critical water-pore interaction U(0)(c), which separates regimes of capillary condensation and capillary evaporation, is found to be changed from -1.75 to -0.94 kcal/mol when the pore radius R(p) increases from 9 to 25 Å. The size dependence of U(0)(c) is attributed to the change of the contact angle due to the line tension effect. Extrapolation of the dependence U(0)(c)(R(p)) to the flat surface gives the critical value U(0)(c)(∞) ≈ -0.61 kcal/mol. © 2011 American Chemical Society

  13. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  14. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    PubMed

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  15. Evaporation of a water drop with a solid opaque inclusion moving through a high-temperature gaseous medium

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Volkov, R. S.; Piskunov, M. V.; Strizhak, P. A.

    2016-03-01

    The process of evaporation of an inhomogeneous (containing a graphite particle) water drop moving through a high-temperature (about 1100 K) gas medium has been experimentally studied using highspeed (no less than 105 fps) video recording tools, the PIV scanning optical method, and Tema Automotive software. The influences of the ratio of water and inclusion masses, shape of inclusion (by the example of cylindrical disk, cube, and parallelepiped), and its surface area on the integral characteristics of liquid evaporation when heterogeneous drops are passed through a channel (length 1 m, inner diameter 0.2 m) with high-temperature gases are established.

  16. Water droplet evaporation and dynamics in a mini-channel under action of the gas flow

    NASA Astrophysics Data System (ADS)

    Isachenko, E. A.; Orlik, E. V.; Bykovskaya, E. F.

    2016-10-01

    An experimental setup was developed to study the vaporization and dynamics of liquid droplets, blown by the gas flow in a mini-channel. The shadow method was the main method of measurement; a drop was also observed from the top. A series of experiments was carried out with single water drops with volumes varying from 60 to 150 gl in the channel of 6 mm height on the polished stainless steel substrate. The experiments have resulted in the dependences of evaporation rate in the temperature range of the substrate surface from 25 to 70°C and Reynolds numbers of the gas flow from 0 to 2500. The advancing and receding contact angles were measured depending on the Re number of the gas flow. The gas flow rate at which the droplet motion over the substrate starts was determined depending on the surface temperature at different drop volumes.

  17. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications

    NASA Astrophysics Data System (ADS)

    Novoselova, I. P.; Safronov, A. P.; Samatov, O. M.; Beketov, I. V.; Medvedev, A. I.; Kurlyandskaya, G. V.

    2016-10-01

    In this work spherical magnetic nanoparticles (MNPs) of iron oxide were obtained by laser target evaporation technique (LTE). Water based suspensions were prepared on the basis of obtained MNPs and their properties were also studied including inductive heat capacity. Their structure and properties were studied by a number of techniques including magnetometry and heat capacity measurements. Magnetic induction heating experiment show the specific loss power (SLP) value in the narrow range from 1.30 to 1.45 W/g for all samples under consideration when using alternating magnetic field of 1.7 kA/m and frequency of 210 kHz. These parameters insure that LTE MNPs are interesting materials promising for magnetic fluid hyperthermia.

  18. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  19. Evaporation from three water bodies of different sizes and climates: Measurements and scaling analysis

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Tyler, S. W.; Tanny, J.; Cohen, S.; Bou-Zeid, E.; Parlange, M. B.; Katul, G. G.

    2008-01-01

    Evaporation from small reservoirs, wetlands, and lakes continues to be a theoretical and practical problem in surface hydrology and micrometeorology because atmospheric flows above such systems can rarely be approximated as stationary and planar-homogeneous with no mean subsidence (hereafter referred to as idealized flow state). Here, the turbulence statistics of temperature ( T) and water vapor ( q) most pertinent to lake evaporation measurements over three water bodies differing in climate, thermal inertia and degree of advective conditions are explored. The three systems included Lac Léman in Switzerland (high thermal inertia, near homogeneous conditions with no appreciable advection due to long upwind fetch), Eshkol reservoir in Israel (intermediate thermal inertia, frequent strong advective conditions) and Tilopozo wetland in Chile (low thermal inertia, frequent but moderate advection). The data analysis focused on how similarity constants for the flux-variance approach, CT/ Cq, and relative transport efficiencies RwT/ Rwq, are perturbed from unity with increased advection or the active role of temperature. When advection is small and thermal inertia is large, CT/ Cq < 1 (or RwT/ Rwq > 1) primarily due to the active role of temperature, which is consistent with a large number of studies conducted over bare soil and vegetated surfaces. However, when advection is significantly large, then CT/ Cq > 1 (or RwT/ Rwq < 1). When advection is moderate and thermal inertia is low, then CT/ Cq ˜ 1. This latter equality, while consistent with Monin-Obukhov similarity theory (MOST), is due to the fact that advection tends to increase CT/ Cq above unity while the active role of temperature tends to decrease CT/ Cq below unity. A simplified scaling analysis derived from the scalar variance budget equation, explained qualitatively how advection could perturb MOST scaling (assumed to represent the idealized flow state).

  20. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets.

    PubMed

    Hopkins, Rebecca J; Reid, Jonathan P

    2006-02-23

    The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.

  1. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  2. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  3. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  4. Evaporative enrichment and time lags between delta18O of leaf water and organic pools in a pine stand.

    PubMed

    Barnard, Romain L; Salmon, Yann; Kodama, Naomi; Sörgel, Karin; Holst, Jutta; Rennenberg, Heinz; Gessler, Arthur; Buchmann, Nina

    2007-05-01

    Understanding ecosystem water fluxes has gained increasing attention, as climate scenarios predict a drier environment for many parts of the world. Evaporative enrichment of (18)O (Delta(18)O) of leaf water and subsequent enrichment of plant organic matter can be used to characterize environmental and physiological factors that control evaporation, based on a recently established mechanistic model. In a Pinus sylvestris forest, we measured the dynamics of oxygen isotopic composition (delta(18)O) every 6 h for 4 d in atmospheric water vapour, xylem sap, leaf water and water-soluble organic matter in current (N) and previous year (N-1) needles, phloem sap, together with leaf gas exchange for pooled N and N-1 needles, and relevant micrometeorological variables. Leaf water delta(18)O showed strong diel periodicity, while delta(18)O in atmospheric water vapour and in xylem sap showed little variation. The Delta(18)O was consistently lower for N than for N-1 needles, possibly related to phenological stage. Modelled leaf water Delta(18)O showed good agreement with measured values when applying a non-steady state evaporative enrichment model including a Péclet effect. We determined the time lags between delta(18)O signals from leaf water to water-soluble foliar organic matter and to phloem sap at different locations down the trunk, which clearly demonstrated the relevance of considering these time-lag effects for carbon transport, source-sink and carbon flux partitioning studies.

  5. A simulation study of diurnal soil evaporation dynamics using a coupled water, vapour and heat flux model.

    NASA Astrophysics Data System (ADS)

    Vanderborght, Jan; Graf, Alexander; Shahraeeni, Ebrahim; Vereecken, Harry

    2013-04-01

    The Richards equation is often used to simulate water flow in soils considering only isothermal liquid water flow. This implies the assumption that evaporation only takes place at the soil surface. When the soil surface is (partially) wet, the vapour pressure at the soil surface is assumed to be uniform and equal to the saturated vapour pressure so that the evaporation rate can be calculated directly from solving the soil surface energy balance and imposed as a flux boundary condition. For a dry soil surface, a certain threshold pressure head at the soil surface is used as a Dirichlet boundary condition so that the water flux in the soil to the evaporating surface can be calculated. In this contribution we compared simulations of soil evaporation by the Richards equation with a more physically based approach that considers coupled heat, vapour, and liquid fluxes in the soil. The parameterisation of diffusive vapour flux in the soil and through a boundary air layer at the soil surface in these coupled models is, however, strongly debated. Therefore, we investigated the effect of: (i) the enhancement of thermal vapour fluxes that is attributed to thermal non-equilibrium in the soil, (ii) the enhancement of vapour diffusion by turbulent pumping in the upper soil layer, and (iii) the resistance to vapour transfer in the air layer above a partially wet soil surface on simulated evaporation and its diurnal dynamics. For partially wet soil surfaces, the resistance of vapour transfer through the boundary air layer as a function of its thickness and the distance between evaporating surfaces leads to smaller evaporation rates than simulations that assume a uniform vapour pressure in the air at the soil surface. Since 1-D models cannot resolve spatial variations in vapour pressure at the soil surface, this effect cannot be simulated by these models but needs to be parameterized in their boundary conditions. For dry soil surfaces, the simulated diurnal dynamics of soil

  6. Measurement of water by oven evaporation using a novel oven design. 2. Water in motor oils and motor oil additives.

    PubMed

    Margolis, Sam A; Vaishnav, Kevin; Sieber, John R

    2004-11-01

    The measurement of water in lubricating oils is important because water accelerates the corrosion of metal parts and bearings in motors. Some of the additives added to lubricating oils to improve their performance react with the Karl Fischer reagent (KFR) causing a positive bias in the water measurement. A new oven evaporation technique for measuring water in oils has been developed that is automated, requires less sample handling, is easily calibrated, and is capable of measuring relatively small mass fractions of water (> or =50 mg/kg sample). A series of motor oils was analyzed with the standard KFR, a reagent that detects interfering substances that reduce iodine, and the aldehyde-ketone reagent that does not detect substances that react with methanol and form water. The oil samples were heated to 107 degrees C and then reheated to 160 degrees C. At both temperatures, material was measured by both KFRs, but only zinc dithiophosphate released sulfur compounds that would react with the reagent that detects interfering substances. Mass fractions of between 20 and 70% of the volatile material released at either temperature were measured with the standard KFR but not with the aldehyde-ketone reagent. These results demonstrate that there are a number of sources of positive bias in the measurement of water in motor oils and that the standard KFR cannot be used to measure water in motor oils and motor oil additives. These results also indicate that some of the material reacts with methanol to form water. Finally, these results suggest that some of the material that is volatile at 160 degrees C and not at 107 degrees C may be water that is physically occluded or may be substances that react with diethyleneglycol monomethylether to produce water.

  7. Evaporation From Lake Superior

    NASA Astrophysics Data System (ADS)

    Spence, C.; Blanken, P.; Hedstrom, N.; Leshkevich, G.; Fortin, V.; Charpentier, D.; Haywood, H.

    2009-05-01

    Evaporation is a critical component of the water balance of each of the Laurentian Great Lakes, and understanding the magnitude and physical controls of evaporative water losses are important for several reasons. Recently, low water levels in Lakes Superior and Michigan/Huron have had socioeconomic, ecological, and even meteorological impacts (e.g. water quality and quantity, transportation, invasive species, recreation, etc.). The recent low water levels may be due to increased evaporation, but this is not known as operational evaporation estimates are currently calculated as the residual of water or heat budgets. Perhaps surprisingly, almost nothing is known about evaporation dynamics from Lake Superior and few direct measurements of evaporation have been made from any of the Laurentian Great Lakes. This research is the first to attempt to directly measure evaporation from Lake Superior by deploying eddy covariance instrumentation. Results of evaporation rates, their patterns and controlling mechanisms will be presented. The direct measurements of evaporation are used with concurrent satellite and climate model data to extrapolate evaporation measurements across the entire lake. This knowledge could improve predictions of how climate change may impact the lake's water budget and subsequently how the water in the lake is managed.

  8. Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures.

    PubMed

    Bussonnière, Adrien; Bigdeli, Masoud B; Chueh, Di-Yen; Liu, Qingxia; Chen, Peilin; Tsai, Peichun Amy

    2017-02-07

    Water-repellent, rough surfaces have a remarkable and beneficial wetting property: when a water droplet comes in contact with a small fraction of the solid, both liquid-solid adhesion and hydrodynamic drag are reduced. As a prominent example from nature, the lotus leaf-comprised of a wax-like material with micro- and nano-scaled roughness-has recently inspired numerous syntheses of superhydrophobic substrates. Due to the diverse applications of superhydrophobicity, much research has been devoted to the fabrication and investigations of hydrophobic micro-structures using established micro-fabrication techniques. However, wetting transitions remain relatively little explored. During evaporation, a water droplet undergoes a wetting transition from a (low-frictional) partial to (adhesive) complete contact with the solid, destroying the superhydrophobicity and the self-cleaning properties of the slippery surface. Here, we experimentally examine the wetting transition of a drying droplet on hydrophobic nano-structures, a previously unexplored regime. In addition, using a theoretical analysis we found a universal criterion of this wetting transition that is characterized by a critical contact angle. Different from previous results showing different critical droplet sizes, our results show a universal, geometrically-dependent, critical contact angle, which agrees well with various data for both hydrophobic micro- and nano-structures.

  9. Influence of sea ice cover on evaporation and water vapour isotopic composition in the Arctic

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen-Larsen, Hans Christian

    2017-04-01

    Since July 2015, water stable isotopes (HDO and H218O) have been measured at two Arctic facilities: during the summer on board of the research vessel Polarstern, and year-round at the Siberian coastal site of Samoylov, situated in the Lena delta (N 72°22', E 126°29'), close to the Laptev Sea. In both places, the isotopic composition of water vapour is analysed continuously in surface air. Additional isotopic measurements are performed on a daily basis in ocean surface water samples taken on Polarstern and on an event basis from precipitation sampled in Samoylov. The two Polarstern summer campaigns cover a large region of the western Artic Ocean, including a one-month campaign in the central and eastern Arctic crossing the North Pole in September 2015, with very cold conditions (up to -20°C). Combining ocean and atmospheric observations from Polarstern allows an evaluation of local surface water evaporation and its isotopic fingerprint relative to the oceanic and meteorological conditions as well as the partial sea ice cover. In the central and eastern Arctic, a large area of complete sea ice cover also revealed a strong impact on the advected moisture above the ice cap under very cold conditions. A first year of Siberian observations at Samoylov depicted a large seasonal variability, with extremely dry and isotopically depleted winter values. Contrasted seasonal isotopic regimes might be utilized for identifying moisture sources changes in the region, such as ocean surface closure by sea ice, or freezing of the Lena River. Besides documenting the present meteorology and changes in the Arctic, our measurements will contribute to a better interpretation of regional paleoclimate records based on water isotopes and to the evaluation of climate models in the Arctic. A first model-data comparison of our measurements with simulation results by the isotope-enabled atmospheric general circulation model ECHAM5-wiso have revealed relevant model biases in the Arctic realm.

  10. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  11. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.

    PubMed

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  12. AN APPARATUS AND METHOD FOR THE CONTINUOUS MEASUREMENT OF EVAPORATIVE WATER LOSS FROM HUMAN SUBJECTS,

    DTIC Science & Technology

    BODY FLUIDS, EVAPORATION), SKIN(ANATOMY), LUNG, GAS ANALYSIS , INFRARED SPECTROSCOPY, EVAPOTRANSPIRATION, HUMANS, TEMPERATURE CONTROL, TEST EQUIPMENT, TEST METHODS, EQUILIBRIUM(PHYSIOLOGY), CALIBRATION.

  13. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  14. [Analysis of mass minimization of Thermoelectric Integrated Membrane Evaporation Subsystem in waste water processing].

    PubMed

    Ren, J X; Ji, C Y; Zhang, X R; Wang, S; Liang, X G; Guo, Z Y

    2001-02-01

    To minimize in the system level the designed mass of Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) of Environment Control Life Support System (ECLSS) in manned spacecraft, when the requirement of the production rate of fresh water and its hygiene is fulfilled. According to the characteristics of the operational process of TIMES, the physical and mathematical model for fluid flow, heat transfer and mass composition in its main parts were established to investigate numerically the relation between the system mass and those parameters associated with the structure and operation of the system. The system mass depended not only on the structural parameters and operational parameters of TIMES, but also on the operational characteristics of power subsystem and thermal control subsystem. The relative mass covered a large part of the system mass. There existed an optimum of the number of thermoelectric cooling parts and flow rate of circular waste water of the TIMES when the designed system mass was minimum. Moreover, higher condensation pressure in the system contributed to lower system mass.

  15. Evolutionary shifts in habitat aridity predict evaporative water loss across squamate reptiles.

    PubMed

    Cox, Christian L; Cox, Robert M

    2015-09-01

    Aridity is an important determinant of species distributions, shaping both ecological and evolutionary diversity. Lizards and snakes are often abundant in deserts, suggesting a high potential for adaptation or acclimation to arid habitats. However, phylogenetic evidence indicates that squamate diversity in deserts may be more strongly tied to speciation within arid habitats than to convergent evolution following repeated colonization from mesic habitats. To assess the frequency of evolutionary transitions in habitat aridity while simultaneously testing for associated changes in water-balance physiology, we analyzed estimates of total evaporative water loss (EWL) for 120 squamate species inhabiting arid, semiarid, or mesic habitats. Phylogenetic reconstructions revealed that evolutionary transitions to and from semiarid habitats were much more common than those between arid and mesic extremes. Species from mesic habitats exhibited significantly higher EWL than those from arid habitats, while species from semiarid habitats had intermediate EWL. Phylogenetic comparative methods confirmed this association between habitat aridity and EWL despite phylogenetic signal in each. Thus, the historical colonization of arid habitats by squamates is repeatedly associated with adaptive changes in EWL. This physiological convergence, which may reflect both phenotypic plasticity and genetic adaptation, has likely contributed to the success of squamates in arid environments. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  16. NEG (non evaporable getter) pumps for organic compounds and water removal in EUVL tools

    NASA Astrophysics Data System (ADS)

    Conte, A.; Manini, P.; Raimondi, S.

    2008-03-01

    One of present EUVL challenges is to reduce as much as possible the organic compounds and water partial pressures during the lithographic process. These gases can in fact interact with sensitive surfaces and, in the presence of EUV radiation, decompose to generate carbon-based films and oxides, which are detrimental to the optics, reducing its performance, lifetime and significantly increasing the equipment total cost of ownership. With this respect, use of Non Evaporable Getter (NEG) pumps seems particularly attractive. Getter pumps are very clean, vibration-free, compact, able to deliver large pumping speed for all active gases, including water and hydrogen. In the present paper, we report for the first time the results of specific tests aimed at measuring the pumping speed for some selected organic compounds, namely toluene and decane (n-decane). The study shows that getter pumps can effectively sorb these large organic molecules with high speed and capacity. Speed and capacity increases when operating the getter cartridge at moderate temperature (e.g. 150-200°C), however remarkable sorption is achieved, even at room temperature, without any power applied. When coupled with turbo-molecular pumps NEG pumps have therefore the potential to improve the ultimate vacuum and mitigate the carbon/oxygen contamination in a UHV lithographic system.

  17. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.

    PubMed

    Jung, Y C; Bhushan, B

    2008-01-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. The superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness and air pockets between solid and liquid. The geometric effects and dynamic effects, such as surface waves, can destroy the composite solid-air-liquid interface. The relationship between the water droplet size and geometric parameters governs the creation of composite interface and affects transition from solid-liquid interface to composite interface. Therefore, it is necessary to study the effect of droplets of various sizes. We have studied the effect of droplet size on contact angle by evaporation using droplets with radii ranging from about 300 to 700 microm. Experimental and theoretical studies of the wetting properties of silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values are presented. We propose a criterion where the transition from Cassie and Baxter regime to Wenzel regime occurs when the droop of the droplet sinking between two asperities is larger than the depth of the cavity. The trends are explained based on the experimental data and the proposed transition criteria. An environmental scanning electron microscopy (ESEM) is used to form smaller droplets of about 20 microm radius and measure the contact angle on the patterned surfaces. The investigation has shown that ESEM provides a new approach to wetting studies on the microscale.

  18. Interactions among evaporation, ice cover, and water temperature on the world's largest lake: Seasonal feedbacks and long-term change

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Van Cleave, K.; Blanken, P.; Hanes, J.; Hedstrom, N.; Spence, C.; Suyker, A. E.; Wang, J.

    2012-12-01

    Lake Superior, the largest freshwater lake in the world by surface area, has enormous impacts on the regional weather and climate. The lake also comprises over half of the total water volume in the Great Lakes system and is an important resource for commercial shipping, water supplies, hydropower, recreation, and aquatic ecosystems. Analysis of historical summer water temperature data and modeled evaporation rates for Lake Superior show significant increases in both parameters in recent decades, while ice cover has been decreasing at a rapid pace. A careful analysis of the long-term trends, however, shows that these changes have not been linear through time. Rather, a pronounced regime shift occurred in 1997/98 that resulted in a drop in ice duration of nearly 40 days, a 3°C increase in summer water temperature, and a near doubling of July-August evaporation rates. Linear regression analysis of data on either side of this step change shows trends which are largely insignificant and even opposite in sign from those of the step change. Using time-lagged correlation and composite analyses, interactions among ice cover, water temperature, and evaporation are explored across seasonal and interannual timescales. Contrary to what is often expected for inland water bodies, evaporation and ice cover do not show a simple, inverse relationship. Rather, seasonal feedbacks and temporal lags lead to complex interactions among multiple variables. For example, high evaporation rates in the autumn are found to be associated with more extensive ice cover during the subsequent winter months, presumably as a result of strong latent heat flux and correspondingly rapid ice onset and growth. In turn, high ice cover leads to cooler summer water temperatures and reduced evaporation rates in late summer and early fall. Thus, the overall relationship between ice cover and annual evaporation totals is often muted and complex. Quantifying these seasonal feedbacks and interactions is important

  19. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Dmitriyenko, Margarita A.; Nyashina, Galina S.; Zhdanova, Alena O.; Vysokomornaya, Olga V.

    2016-02-01

    The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone) were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  20. Separating soil evaporation and crop transpiration to improve crop water use efficiency

    NASA Astrophysics Data System (ADS)

    Heng, Lee; Nguyen, Long; Gong, Daozhi; Mei, Xurong; Amenzou, Noureddine

    2014-05-01

    A network of a FAO/IAEA Coordinated Research Project (CRP) on "Managing Irrigation Water to Enhance Crop Productivity under Water-Limiting Conditions: A Role for Isotopic Techniques", involving seven countries was implemented from 2007 to 2012, to identify approaches to improve crop water productivity (production per unit of water input) under water-limiting conditions using isotopic and related techniques. This paper presents findings from the two of the studied sites, one in China and another in Morocco, in using both isotopic and conventional techniques to separate soil evaporation (E) and crop transpiration (T) from total water losses in evapotranspiration (ET) for winter wheat grown under different climatic conditions and methods of irrigation management practices. In the North China Plain (NCP), the estimated E/ET of winter wheat by the isotopic method (Keeling plot using delta oxygen-18 (δ18O)) was in agreement with that obtained by conventional methods (eddy covariance and micro-lysimeter). The high correlation between these methods (R2=0.85, n=27) showed that the E from wheat-growing field contributes an average of 30% of water losses for the whole growing season (Nov-June), with higher E percentage (68%) can be expected before elongation stage due to incomplete canopy cover. The results also showed that through deficit irrigation and improved irrigation scheduling, soil E losses could be reduced by 10-30% of the total water loss compared with full irrigation. In Morocco, field Keeling plot isotopic E and T separation study was carried out for two days in spring of 2012 at Sidi Rahal. The percentage contribution of T to total ET was approximately 73%. The experimental results obtained from both China and Moroccan sites were used to validate FAO's AquaCrop model for E and T, and for improving irrigation scheduling and agronomic practices. Good correlation (R2=0.83) was obtained between measured (isotopic) and AquaCrop simulated ET from NCP. The measured

  1. Thermography as an evaluation tool for studying the movement of water through various porous materials: capillary rise and evaporation

    NASA Astrophysics Data System (ADS)

    Moropoulou, Antonia; Avdelidis, Nicolas P.; Theoulakis, Panayiotis; Koui, Maria

    2001-03-01

    In this work, infrared thermography is used for detecting the movement of water - moisture in various porous materials in the laboratory, with the intention of validating the examination of real scale material systems in situ. Different materials have been subjected to capillary rise tests and to cycles of evaporation with water under controlled environmental conditions (Relative Humidity and Temperature). Material samples of a reference porous stone, of three basic categories of repair mortars, of consolidated porous stones and of simulating prototype porous materials were examined in lab. Furthermore, systems like historic masonries, were examined in situ, more specifically the Venetian Fortification in Heraklion, Crete and the Medieval Fortifications in Rhodes, undergoing severe alveolation in the aggressive marine atmosphere of the Aegean. Infrared thermography has been shown to be an effective technique for verifying relations between moisture and environmental conditions. Hence, infrared thermography can be used as an evaluation tool for studying the movement of water through porous materials - water absorption and evaporation.

  2. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    PubMed

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu7 S4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu7 S4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu7 S4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of Changes in Meteorological Conditions on Lake Evaporation, Water Temperature, and Heat Budget in a Deep Lake

    NASA Astrophysics Data System (ADS)

    Ito, Yuji; Momii, Kazuro

    To reveal effects of changes in meteorological conditions on lake evaporation, water temperature, and heat budget in a deep lake, sensitivity analyses have been performed for Lake Ikeda, Kagoshima prefecture. In the study, the sensitivities of three aspects to the 10%-increased solar radiation, air temperature, relative humidity, and wind speed were estimated based on numerical calculations for 1981-2005 with the verified one-dimensional mathematical model that computes thermal transfer in the lake. The results demonstrated that the meteorological component which gives the largest evaporation-promoting effect was solar radiation and the component which brings the largest lake-heating was air temperature. When solar radiation was increased, the vapor pressure difference between lake-surface and atmosphere was increased and the atmospheric stability was decreased, which present the desirable condition for evaporation. Air temperature being higher, the lake-surface was intensively heated by increased atmospheric radiation. As for the humidity case, lake evaporation was decreased in any season due to decrease in vapor pressure difference. Although rise in water temperature was caused by decrease in latent heat, it was inhibited with cooling by sensible heat. Wind being up, water temperature was fallen at the lake-surface and risen around the 20 m depth by vertical thermal mixing effect. The mixing effect prevented from releasing heat to atmosphere, resulting in the secondary large lake-heating but smaller than air temperature case.

  4. Effects of the Shuttle Orbiter fuselage and elevon on the molecular distribution of water vapor from the flash evaporator system

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.; Kelso, R. M.

    1980-01-01

    A concern has arisen regarding the emissive distribution of water molecules from the shuttle orbiter flash evaporator system (FES). The role of the orbiter fuselage and elevon in affecting molecular scattering distributions was nuclear. The effect of these components were evaluated. Molecular distributions of the water vapor effluents from the FE were measured. These data were compared with analytically predicted values and the resulting implications were calculated.

  5. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  6. Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments

    EPA Science Inventory

    Stable isotope ratios of water (delta18O and delta2H) can be very useful in large-scale monitoring programs because water samples are easy to collect and isotope ratios integrate information about basic hydrologic processes such as evaporation as a percentage of inflow (E/I) and ...

  7. Open Cycle OTEC System with Fresh Water Product

    NASA Astrophysics Data System (ADS)

    Amano, Masatugu; Tanaka, Tadayosi

    An open-cycle ocean thermal energy conversion (OC-OTEC) system is one of energy conversion methods to generate electricity from ocean thermal energy. For OC-OTEC system, steam evaporated from the surface seawater due to flash evaporation drives the turbine. At that time, dissolved gas such as air is introduced into the low-pressure system (OC-OTEC system) as the non-condensable gas, which degrades the performance of condensation heat transfer. In this paper, a small scale OC-OTEC experimental unit experimentally investigates the effect of non-condensable gas on the heat transfer performance in a condenser. The experimental results are discussed in comparison with theoretical estimation by Sparrow-Lin method. It is shown that the condensation is occupied by heat and mass transfer near a condensation surface and that the condensation efficiency is affected by exhaust quantity of non-condensable gas at relative high concentration ratio of condensable gas.

  8. Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins

    NASA Astrophysics Data System (ADS)

    Bao, Jiawei; Feng, Jinming

    2016-02-01

    Precipitation and other hydrologic variables play important roles in river basins. In this study, summer precipitation, evaporation, and water vapor transport from 16 models that have participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the Yellow River basin (a water-limited basin) and the Yangtze River basin (an energy-limited basin) over the period 1986-2005 are analyzed and evaluated. The results suggest that most models tend to overestimate precipitation in the Yellow River basin, whereas precipitation in the Yangtze River basin is generally well simulated. Models that overestimate precipitation in the Yellow River basin also simulate evaporation with large positive biases. For water vapor transport, models and reanalysis data concur that both basins are moisture sinks in summer. In addition, models that strongly overestimate precipitation in the Yellow River basin tend to produce strong water vapor convergence in that region, which is likely to be related to the situation that the western Pacific subtropical high (WPSH) simulated by these models strengthens and advances further westward and northward, resulting in stronger water vapor convergence in the Yellow River basin. Moreover, convective precipitation biases simulated by the models are also partially responsible for their total precipitation biases. Finally, summer precipitation and evaporation are negatively correlated in the Yangtze River basin, whereas the relation between these variables is weak in the Yellow River basin. In both basins, precipitation and water vapor convergence are positively correlated, which is well simulated by all models.

  9. [Method for study of phase transitions in evaporating drop and its application for evaluation of physical-chemical properties of water and water solutions].

    PubMed

    Iakhno, T A; Sanin, A G; Sanina, O A; Iakhno, V G

    2012-01-01

    Spatial-temporal crystallization features of inorganic chlorides in evaporating drops of water solutions, considering solid surface wettability, were studied using a microscopic technique and the acoustical impedansometry. Physical-chemical mechanisms responsible for the difference in "dynamical portraits" of distilled water and salt solutions, as well as relaxation effects in water were discussed. The study demonstrated the potential use of a drying drop method in registration of changes in water properties under the action of physical and chemical factors.

  10. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration.

    PubMed

    Albright, Thomas P; Mutiibwa, Denis; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; O'Neill, Jacqueline J; McKechnie, Andrew E; Wolf, Blair O

    2017-02-28

    Extreme high environmental temperatures produce a variety of consequences for wildlife, including mass die-offs. Heat waves are increasing in frequency, intensity, and extent, and are projected to increase further under climate change. However, the spatial and temporal dynamics of die-off risk are poorly understood. Here, we examine the effects of heat waves on evaporative water loss (EWL) and survival in five desert passerine birds across the southwestern United States using a combination of physiological data, mechanistically informed models, and hourly geospatial temperature data. We ask how rates of EWL vary with temperature across species; how frequently, over what areas, and how rapidly lethal dehydration occurs; how EWL and die-off risk vary with body mass; and how die-off risk is affected by climate warming. We find that smaller-bodied passerines are subject to higher rates of mass-specific EWL than larger-bodied counterparts and thus encounter potentially lethal conditions much more frequently, over shorter daily intervals, and over larger geographic areas. Warming by 4 °C greatly expands the extent, frequency, and intensity of dehydration risk, and introduces new threats for larger passerine birds, particularly those with limited geographic ranges. Our models reveal that increasing air temperatures and heat wave occurrence will potentially have important impacts on the water balance, daily activity, and geographic distribution of arid-zone birds. Impacts may be exacerbated by chronic effects and interactions with other environmental changes. This work underscores the importance of acute risks of high temperatures, particularly for small-bodied species, and suggests conservation of thermal refugia and water sources.

  11. Open-Water Disposal of Material in Canadian Waters.

    DTIC Science & Technology

    1986-01-01

    P 5.0 COMPARISON OF PUGET SOUND AND CANADIAN REVIEW PROCESSES Technical evaluation procedures for disposal of material in open-waters are less...contamination sources 51 V’p ’ p 9U74A ’n C2. CD Z . v*A a 40a 4A %n P .. L 4.0 V L -0 en0 N. =4. La m c .L Azf aa 0%aa - A Li06 0. I 090 %n ow cc 41. S. CL ’A -k...jo.u,.-to, ftitd. aove’ .go.,lce !(@) DESCRIBE CARRIER TRACK( WHILE DUMPING If vpileablIo Oftsiroe 1 L tirlrutanpowteur a. court d. Irmm-sion P . mle

  12. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  13. Identification of resonance waves in open water channels

    USDA-ARS?s Scientific Manuscript database

    This article presents a procedure to determine the characteristics of open water channels required for controller and filter design, with special focus on the resonance waves. Also, a new simplified model structure for open water channels is proposed. The procedure applies System Identification tool...

  14. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    PubMed

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  15. Body temperature and resistance to evaporative water loss in tropical Australian frogs.

    PubMed

    Tracy, Christopher R; Christian, Keith A; Betts, Gregory; Tracy, C Richard

    2008-06-01

    Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.

  16. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats.

    PubMed

    McGuire, Liam P; Mayberry, Heather W; Willis, Craig K R

    2017-08-23

    Fungal diseases of wildlife typically manifest as superficial skin infections but can have devastating consequences for host physiology and survival. White-nose syndrome (WNS) is a fungal skin disease that has killed millions of hibernating bats in North America since 2007. Infection with the fungus Pseudogymnoascus destructans causes bats to rewarm too often during hibernation, but the cause of increased arousal rates remains unknown. Based on data from studies of captive and free-living bats, two mechanistic models have been proposed to explain disease processes in WNS. Key predictions of both models are that WNS-affected bats will show (1) higher metabolic rates during torpor (TMR), and (2) higher rates of evaporative water loss (EWL). We collected bats from a WNS-negative hibernaculum, inoculated one group with P. destructans and sham-inoculated a second group as controls. After four months of hibernation, we used respirometry to measure TMR and EWL. Both predictions were supported and our data suggest that infected bats were more affected by variation in ambient humidity than controls. Furthermore, disease severity, as indicated by the area of the wing with UV fluorescence, was positively correlated with EWL but not TMR. Our results provide the first direct evidence that heightened energy expenditure during torpor, and higher EWL, independently contribute to WNS pathophysiology with implications for the design of potential treatments for the disease. Copyright © 2017, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

  17. A study of the evaporation of heterogeneous water droplets under active heating

    NASA Astrophysics Data System (ADS)

    Piskunov, Maxim; Legros, Jean Claude; Strizhak, Pavel

    2016-11-01

    Using high-speed video registration tools with a sample rate of 102-104 frames per second (fps), we studied the patterns in the evaporation of water droplets containing 1 and 2 mm individual metallic inclusions in a high-temperature gas environment. The materials of choice for the inclusions were steels (AISI 1080 carbon steel and AISI type 316L stainless steel) and pure nickel. We established the lifetimes τh of the liquid droplets under study with a controlled increase in the gas environment temperature up to 900 K. We also considered the physical aspects behind the τh distribution in the experiments conducted and specified the conditions for more effective cooling of metallic inclusions. Following the experimental research findings, a method was devised for effective reactor vessel cooling to avoid a meltdown at a nuclear power plant. The optimization of heat and mass transfer modes was performed within the framework of the strategic plan for the development of National Research Tomsk Polytechnic University as one of the world-leading universities.

  18. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. The current spacesuit team has looked at this technology from the standpoint of using the ISS EMU to demonstrate the SWME technology while EVA, and from the standpoint of augmenting EMU cooling in the case of a fouled EMU cooling system. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  19. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    PubMed Central

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-01

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity. PMID:12590762

  20. Metabolic rate and evaporative water loss in the silky starling (Sturnus sericeus)

    PubMed Central

    Huan-Huan, BAO; Qing-Jian, LIANG; Hong-Lei, ZHU; Xiao-Qiu, ZHOU; Wei-Hong, ZHENG; Jin-Song, LIU

    2014-01-01

    To better understand the physiological characteristics of the silky starling (Sturnus sericeus), its body temperature (Tb), basal metabolic rate (BMR), evaporative water loss (EWL) and thermal conductance (C) elicited by different ambient temperatures (Ta) (5−30 ℃) were determined in the present study. Our results showed that they have a high Tb (41.6±0.1 ℃), a wide thermal neutral zone (TNZ) (20−27.5 ℃) and a relatively low BMR within the TNZ (3.37±0.17 mL O2/g·h). The EWL was nearly stable below the TNZ (0.91±0.07 mg H2O/g·h) but increased remarkably within and above the TNZ. The C was constant below the TNZ, with a minimum value of 0.14±0.01 mL O2/g·h·℃. These findings indicate that the BMR, Tb and EWL of the silky starling were all affected by Ta, especially when Ta was below 20 ℃ and the EWL plays an important role in thermal regulation. PMID:25017746

  1. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  2. Simulating evaporation from short-rotation forest: variations within and between seasons

    NASA Astrophysics Data System (ADS)

    Persson, Gunn; Lindroth, Anders

    1994-04-01

    A physically based soil water model was applied to a fertilized and irrigated short-rotation willow stand on a clay soil. The model is based on an extension of Richards' equation, and the water retention curve and saturated conductivity are determined by analyses of soil cores. The Penman-Monteith combination equation is used to calculate potential daily transpiration, soil evaporation and potential interception evaporation. Daily meteorological data are used as driving variables. Evaporation, estimated by the energy balance/Bowen ratio method, and soil-water tension measurements made over several years, were used to verify the model. Measured evaporation of water intercepted by the vegetation over 1 year was also compared with simulated monthly values. Good agreement was found between simulated evaporation and evaporation determined from Bowen ratio measurements. The cumulative seasonal evaporation exceeded the Penman open water evaporation by up to 31% in 3 years out of 4; it ranged between 416 and 584 mm for the period from May through October. On a mean seasonal basis, transpiration was 66%, soil evaporation 23% and interception evaporation 11% of total evaporation. The monthly interception evaporation comprised 5-23% of precipitation. The study period showed interannual variations attributable to variation in climate (including irrigation) as well as to stand age and development. This indicates that the model is quite general in many respects; it is tentatively suggested that it be used for accurate simulation of water balance components of short-rotation forest on a clay soil in this type of climate.

  3. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    NASA Astrophysics Data System (ADS)

    Liu, Heping; Blanken, Peter D.; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-04-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32°26'N, 90°02'W which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  4. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  5. TDR water content inverse profiling in layered soils during infiltration and evaporation

    NASA Astrophysics Data System (ADS)

    Greco, R.; Guida, A.

    2009-04-01

    discontinuities between the layers (Nguyen et al., 1997; Todoroff et al., 1998; Heimovaara, 2001; Moret et al., 2006). Other methods consider the dielectric properties of the soil as smoothly variable along probe axis (Greco, 1999; Oswald et al., 2003; Greco, 2006). Aim of the study is testing the applicability to layered soils of the inverse method for the estimation of water content profiles along vertical TDR waveguides, originally applied in laboratory to homogeneous soil samples with monotonic moisture distributions (Greco, 2006), and recently extended to field measurements with more general water content profiles (Greco and Guida, 2008). Influence of soil electrical conductivity, uniqueness of solution, choices of parametrization, parameters identifiabilty, sensitivity of the method to chosen parameters variations are discussed. Finally, the results of the application of the inverse method to a series of infiltration and evaporation experiments carried out in a flume filled with three soil layers of different physical characteristics are presented. ACKNOWLEDGEMENTS The research was co-financed by the Italian Ministry of University, by means of the PRIN 2006 PRIN program, within the research project entitled ‘Definition of critical rainfall thresholds for destructive landslides for civil protection purposes'. REFERENCES Greco, R., 1999. Measurement of water content profiles by single TDR experiments. In: Feyen, J., Wiyo, K. (Eds.), Modelling of Transport Processes in Soils. Wageningen Pers, Wageningen, the Netherlands, pp. 276-283. Greco, R., 2006. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 317, 325-339. Greco R., Guida A., 2008. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 348, 442- 451. Heimovaara, T.J., 2001. Frequency domain modelling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. In: TDR 2001 - Second International Symposium on

  6. Effects of water vapor density on cutaneous resistance to evaporative water loss and body temperature in green tree frogs (Hyla cinerea).

    PubMed

    Wygoda, Mark L; Kersten, Constance A

    2013-01-01

    Increased cutaneous resistance to evaporative water loss (Rc) in tree frogs results in decreased water loss rate and increased body temperature. We examined sensitivity of Rc to water vapor density (WVD) in Hyla cinerea by exposing individual frogs and agar models to four different WVD environments and measuring cutaneous evaporative water loss rate and body temperature simultaneously using a gravimetric wind tunnel measuring system. We found that water loss rate varied inversely and body temperature directly with WVD but that models were affected to a greater extent than were animals. Mean Rc was significantly different between the highest WVD environment and each of the three drier environments but did not differ among the drier environments, indicating that Rc initially increases and then reaches a plateau in response to decreasing WVD. Rc was equivalent when calculated using either WVD difference or WVD deficit as the driving force for evaporation. We also directly observed secretions from cutaneous glands while measuring body temperature and tested secretions and skin samples for the presence of lipids. We found that irregular transient body temperature depressions observed during wind tunnel trials occur due to evaporative cooling from intermittent skin secretions containing lipids, although we were unable to identify lipid-secreting glands.

  7. Numerical Investigation of Physicochemical Processes Occurring During Water Evaporation in the Surface Layer Pores of a Forest Combustible Material

    NASA Astrophysics Data System (ADS)

    Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2014-07-01

    A numerical investigation of the physicochemical processes occurring during water evaporation from the pores of the surface layer of a forest combustible material has been carried out. The characteristic features of the suppression of the thermal decomposition reaction of a combustible material with water filling fullyits pores and formation of a water fi lm over its surface have been determined. The characteristic times of suppression of thermal decomposition reactions under various environmental conditions and the thickness and kinds of forest combustible material (birch leaves, pine and spruce needles, etc.) have been established.

  8. Continuous, high-resolution spatial mapping of water isotopes: improving tools for quantifying local evaporation and residence times

    NASA Astrophysics Data System (ADS)

    Dennis, Kate J.; Carter, Jeffrey A.; Winkler, Renato; Downing, Brian; Kendall, Carol; Bergamaschi, Brian

    2015-04-01

    Stable isotopes of water (d2H, d18O) are unique tracers of many hydrological processes including evaporation, precipitation, reservoir mixing and residence time. Historically, discrete water samples have been collected and analyzed via either Isotope Ratio Mass Spectrometry, or more recently laser-based spectroscopic methods, such as Cavity Ring-Down Spectroscopy (CRDS). However, the analysis of discrete samples precludes the ability to construct high resolution water isotope data sets through time and space. By coupling a recently developed front-end peripheral device (Continuous Water Sampler or CWS) to a CRDS analyzer (Picarro L2130-i), we continuously measured and spatially mapped water isotopes on a transect of the Sacramento River Delta following an extended period of drought. More than two-thousand five-second average d18O and d2H measurements were made aboard the R/V King (USGS) over a six-hour period. In addition to water isotopes, nitrate, chlorophyll, dissolved organic matter (DOM) fluorescence, and other water quality parameters were also measured continuously. As you travel northeast up the delta, surface waters become progressively more enriched in 18O and 2H, while nitrate decreased in concentration and chlorophyll and DOM increased. We utilize the spatially-mapped isotope data within a single transect to understand local evaporation and residence time by (i) utilizing the secondary parameter, d-excess, and (ii) using a simple mass balance model of water moving through the system (inflow, outflow and evaporation). Additional transects, to be conducted during the rainy season, should highlight how the Delta system evolves seasonally. In concert with other data previously collected from the Sacramento River Delta, we suggest the lower region represents a mixture of river waters derived from the Sierra Nevada Mountains and the more marine waters from the mouth of the San Francisco Bay. Moving NE up the Delta into shallow sloughs through flooded wetlands

  9. Fast-Response and Flexible Nanocrystal-Based Humidity Sensor for Monitoring Human Respiration and Water Evaporation on Skin.

    PubMed

    Kano, Shinya; Kim, Kwangsoo; Fujii, Minoru

    2017-06-23

    We develop a fast-response and flexible nanocrystal-based humidity sensor for real-time monitoring of human activity: respiration and water evaporation on skin. A silicon-nanocrystal film is formed on a polyimide film by spin-coating the colloidal solution and is used as a flexible and humidity-sensitive material in a humidity sensor. The flexible nanocrystal-based humidity sensor shows a high sensitivity; current through the nanocrystal film changes by 5 orders of magnitude in the relative humidity range of 8-83%. The response/recovery time of the sensor is 40 ms. Thanks to the fast response and recovery time, the sensor can monitor human respiration and water evaporation on skin in real time. Due to the flexibility and the fast response/recovery time, the sensor is promising for application in personal health monitoring as well as environmental monitoring.

  10. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  11. Predictive Determination of the Integral Characteristics of Evaporation of Water Droplets in Gas Media with a Varying Temperature

    NASA Astrophysics Data System (ADS)

    Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-05-01

    The possibility of using three heat-transfer models based on ordinary differential equations (ODEs) has been analyzed with account taken of the relevant endothermic phase transformations to predict the integral characteristics of evaporation of liquid droplets (with the example of water) in gas media with a varying temperature. The existing formulations with "diffusive" and "kinetic" approximations to the description of the process of evaporation have been considered, and a new model has been developed according to approximations obtained from the results of conducted experiments (with the use of high-speed cameras and cross-correlation software and hardware systems). Two integral characteristics of the process of evaporation were monitored: the mass rate of vaporization and the lifetime (time of complete evaporation) of a droplet. A comparison of simulation results and experimental data allowed us to draw the conclusion on the expediency of use of ODE-based "diffusive" and "phase-transition" models in a limited temperature range (to 600 K). At high gas temperatures (particularly, higher than 1000 K), a satisfactory correlation with experimental data can be provided by a model that takes account of the substantially nonlinear dependence of the vaporization rate on temperature, the formation of a buffer (steam) layer between the droplet and the gas medium, and the basic mechanisms of heat transfer in the liquid and in the gas medium.

  12. Evaporation of water droplets on Pt-surface in presence of external electric field—A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hens, Abhiram; Biswas, Gautam; De, Sudipta

    2015-09-01

    Evaporation of a sessile droplet on a hot solid substrate is an important problem in fluid mechanics. It is relevant to theoretical issues in heat transfer as well as several practical applications. This study investigates the spreading and evaporation of a nanoscale water droplet on a solid platinum surface. The major objective was to analyze the effect of an external electric field on these phenomena. Varying the intensity and direction of the external electric field, a series of molecular dynamics simulations were carried out to understand these phenomena at a molecular level. The results reveal that a horizontal electric field assists in droplet spreading, whereas a vertical electric field enhances the rate of evaporation for a certain range of field intensities. It also shows that the substrate temperature plays an important role in such processes. It is seen that the effect of an external electric field on droplet evaporation becomes significant at an intermediate range of surface temperatures and this effect is not clearly visible for either very high or very low range of surface temperatures.

  13. Evaporation of water droplets on Pt-surface in presence of external electric field--A molecular dynamics study.

    PubMed

    Hens, Abhiram; Biswas, Gautam; De, Sudipta

    2015-09-07

    Evaporation of a sessile droplet on a hot solid substrate is an important problem in fluid mechanics. It is relevant to theoretical issues in heat transfer as well as several practical applications. This study investigates the spreading and evaporation of a nanoscale water droplet on a solid platinum surface. The major objective was to analyze the effect of an external electric field on these phenomena. Varying the intensity and direction of the external electric field, a series of molecular dynamics simulations were carried out to understand these phenomena at a molecular level. The results reveal that a horizontal electric field assists in droplet spreading, whereas a vertical electric field enhances the rate of evaporation for a certain range of field intensities. It also shows that the substrate temperature plays an important role in such processes. It is seen that the effect of an external electric field on droplet evaporation becomes significant at an intermediate range of surface temperatures and this effect is not clearly visible for either very high or very low range of surface temperatures.

  14. Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome.

    PubMed

    Willis, Craig K R; Menzies, Allyson K; Boyles, Justin G; Wojciechowski, Michal S

    2011-09-01

    White-nose syndrome (WNS) has caused alarming declines of North American bat populations in the 5 years since its discovery. Affected bats appear to starve during hibernation, possibly because of disruption of normal cycles of torpor and arousal. The importance of hydration state and evaporative water loss (EWL) for influencing the duration of torpor bouts in hibernating mammals recently led to "the dehydration hypothesis," that cutaneous infection of the wing membranes of bats with the fungus Geomyces destructans causes dehydration which in turn, increases arousal frequency during hibernation. This hypothesis predicts that uninfected individuals of species most susceptible to WNS, like little brown bats (Myotis lucifugus), exhibit high rates of EWL compared to less susceptible species. We tested the feasibility of this prediction using data from the literature and new data quantifying EWL in Natterer's bats (Myotis nattereri), a species that is, like other European bats, sympatric with G. destructans but does not appear to suffer significant mortality from WNS. We found that little brown bats exhibited significantly higher rates of normothermic EWL than did other bat species for which comparable EWL data are available. We also found that Natterer's bats exhibited significantly lower rates of EWL, in both wet and dry air, compared with values predicted for little brown bats exposed to identical relative humidity (RH). We used a population model to show that the increase in EWL required to cause the pattern of mortality observed for WNS-affected little brown bats was small, equivalent to a solitary bat hibernating exposed to RH of ∼95%, or clusters hibernating in ∼87% RH, as opposed to typical near-saturation conditions. Both of these results suggest the dehydration hypothesis is plausible and worth pursuing as a possible explanation for mortality of bats from WNS.

  15. Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West Africa

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Knoche, Richard; Wei, Jianhui; Kunstmann, Harald

    2016-03-01

    Regional precipitation recycling is the measure of the contribution of local evaporation E to local precipitation. This study provides a set of two methods developed in the Weather Research and Forecasting WRF model system for investigating regional precipitation recycling mechanisms: (1) tracking of tagged atmospheric water species originating from evaporation in a source region, ie E-tagging, and (2) three-dimensional budgets of total and tagged atmospheric water species. These methods are used to quantify the effect of return flow and nonwell vertical mixing neglected in the computation of the bulk precipitation recycling ratio. The developed algorithms are applied to a WRF simulation of the West African Monsoon 2003. The simulated region is characterized by vertical wind shear condition, i.e., southwesterlies in the low levels and easterlies in the mid-levels, which favors return flow and nonwell vertical mixing. Regional precipitation recycling is investigated in 100 × 100 and 1000 × 1000 km2 areas. A prerequisite condition for evaporated water to contribute to the precipitation process in both areas is that it is lifted to the mid-levels where hydrometeors are produced. In the 100 × 100 (1000 × 1000) km2 area the bulk precipitation recycling ratio is 0.9 (7.3) %. Our budget analysis reveals that return flow and nonwell vertically mixed outflow increase this value by about +0.2 (2.9) and +0.2 (1.6) %, respectively, thus strengthening the well-known scale-dependency of regional precipitation recycling.

  16. Transpiration and Evaporation measurements in a Mountain Ecosystem using Real-Time Field-Based Water Vapor Isotopes (Invited)

    NASA Astrophysics Data System (ADS)

    Dominguez, F.; Gochis, D. J.; Harley, P. C.; Turnipseed, A.; Hu, J.

    2010-12-01

    The partitioning of evapotranspiration between evaporation from bare soil and transpiration by vegetation is not adequately represented in land surface models coupled to atmospheric models. In this work we present measurements of stable water vapor isotopes (δD and δ18O) in Manitou Experimental Forest. At an elevation of approximately 2,400m in the Rocky Mountain foothills-pediment region the site is characterized by Ponderosa pine and a grass understory. We use a portable real time isotopic water vapor analyzer that allows us to partition evapotranspiration from the vegetated region into transpiration from plants and direct evaporation from the soil and canopy. The isotopic measurements are complementary to data from a network of eddy covariance towers and soil moisture measurements. We give particular emphasis to the temporal variability of the isotopic signature of transpiration presenting simultaneous measurements of water vapor isotopes, net photosynthesis, evapotranspiration and stomatal conductance measured using a dynamic flow-through gas exchange system. These observations are the first step towards improving our understanding and numerical modeling of the partitioning between evaporation and transpiration.

  17. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    PubMed

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  18. Measurements of mass and heat transfer at a liquid water surface during condensation or evaporation of a subnanometer thickness layer of water.

    PubMed

    Miles, Rachael E H; Knox, Kerry J; Reid, Jonathan P; Laurain, Adèle M C; Mitchem, Laura

    2010-09-10

    A novel approach for exploring the molecular dynamics during condensation or evaporation at a liquid water surface is reported at pressures between 2 and 100 kPa. By introducing or removing a heating laser illuminating an optically tweezed aqueous aerosol droplet, the temperature of the droplet can be controlled with sub-mK accuracy and the change in size to reequilibrate with the surroundings monitored with subnanometer accuracy. The time constant for equilibration is shown to provide important insight into the coupling of heat and mass transfer during condensation or evaporation.

  19. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait Loci and introgression lines of maize.

    PubMed

    Welcker, Claude; Sadok, Walid; Dignat, Grégoire; Renault, Morgan; Salvi, Silvio; Charcosset, Alain; Tardieu, François

    2011-10-01

    Evaporative demand and soil water deficit equally contribute to water stress and to its effect on plant growth. We have compared the genetic architectures of the sensitivities of maize (Zea mays) leaf elongation rate with evaporative demand and soil water deficit. The former was measured via the response to leaf-to-air vapor pressure deficit in well-watered plants, the latter via the response to soil water potential in the absence of evaporative demand. Genetic analyses of each sensitivity were performed over 21 independent experiments with (1) three mapping populations, with temperate or tropical materials, (2) one population resulting from the introgression of a tropical drought-tolerant line in a temperate line, and (3) two introgression libraries genetically independent from mapping populations. A very large genetic variability was observed for both sensitivities. Some lines maintained leaf elongation at very high evaporative demand or water deficit, while others stopped elongation in mild conditions. A complex architecture arose from analyses of mapping populations, with 19 major meta-quantitative trait loci involving strong effects and/or more than one mapping population. A total of 68% of those quantitative trait loci affected sensitivities to both evaporative demand and soil water deficit. In introgressed lines, 73% of the tested genomic regions affected both sensitivities. To our knowledge, this study is the first genetic demonstration that hydraulic processes, which drive the response to evaporative demand, also have a large contribution to the genetic variability of plant growth under water deficit in a large range of genetic material.

  20. A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity

    NASA Astrophysics Data System (ADS)

    Ruberto, S.; Reutzsch, J.; Roth, N.; Weigand, B.

    2017-05-01

    Supercooled water droplets (SWD) are present in clouds at high altitude and subjected to very low temperatures and high relative humidity. These droplets exist in a metastable state. The understanding of the evaporation of SWD at these extreme conditions is of high interest to understand rain, snow, and hail generating mechanisms in clouds. This paper focuses on the experimental results of the measurements of the evaporation rates β of supercooled water droplets. For this purpose, single SWDs are trapped by means of optical levitation. During the evaporation process, the elastically scattered light in the forward regime is recorded and evaluated. Experiments have been performed for different relative humidities φ at three constant ambient temperatures, namely, {T_∞}=268.15; 263.15; 253.15 {{K}} ({t_∞} = -5; -10; -20°C). The experimental data agrees well with direct numerical simulations (DNS) carried out with the in-house code Free Surface 3D (FS3D) and shows that the use of a simplified model is permissible for these ambient conditions.

  1. Potential for natural evaporation as a reliable renewable energy resource.

    PubMed

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  2. Wetting mode transition of nanoliter scale water droplets during evaporation on superhydrophobic surfaces with random roughness structure

    NASA Astrophysics Data System (ADS)

    Furuta, Tsutomu; Isobe, Toshihiro; Sakai, Munetoshi; Matsushita, Sachiko; Nakajima, Akira

    2012-01-01

    During evaporation, shape changes of nanoliter-scale (80-100 nL) water droplets were evaluated on two superhydrophobic surfaces with different random roughness (nm-coating, μm-coating). The square of the contact radius and the square of the droplet height decreased linearly with evaporation time. However, trend changes were observed at around 170 s (nm-coating) and around 150 s (μm-coating) suggesting a wetting mode transition. The calculated droplet radii for the wetting mode transition from the average roughness distance and the average roughness height of these surface structures were approximately equal to the experimental values at these trend changes. A certain level of correlation between the roughness size and droplet radius at the wetting mode transition was confirmed on surfaces with random roughness.

  3. On laboratory simulation and the effect of small temperature oscillations about the freezing point and ice formation on the evaporation rate of water on Mars.

    PubMed

    Moore, Shauntae R; Sears, Derek W G

    2006-08-01

    We report measurements of the evaporation rate of water under Mars-like conditions (CO2 atmosphere at 7 mbar and approximately 0 degrees C) in which small temperature oscillations about the freezing point repeatedly formed and removed a thin layer of ice. We found that the average evaporation at 2.7 +/- 0.5 degrees C without an ice layer (corrected for the difference in gravity on Earth and on Mars) was 1.24 +/- 0.12 mm/h, while at -2.1 +/- 0.3 degrees C with an ice layer the average evaporation rate was 0.84 +/- 0.08 mm/h. These values are in good agreement with those calculated for the evaporation of liquid water and ice when it is assumed that evaporation only depends on diffusion and buoyancy. Our findings suggest that such differences in evaporation rates are entirely due to the temperature difference and that the ice layer has little effect on evaporation rate. We infer that the formation of thin layers of ice on pools of water on Mars does not significantly increase the stability of water on the surface of Mars.

  4. A dynamic, non-steady state approach for paritioning of soil evaporation and plant water use at landscape scales

    NASA Astrophysics Data System (ADS)

    Caylor, K. K.; Wayland, H.; Scanlon, T. M.

    2015-12-01

    Seperate characterization of plant water use and soil evaporation are critical to understanding ecohydrological dynamics of dryland ecosystems and for efficiently managing water in dryland agriculture. The application of stable isotopes as a tracer of these individual fluxes has been constrained by obtaining robust measurements of the isotopic composition of plant water use (δT) that may be scaled up to the ecosystem level. Of particular concern is the fact that the isotopic composition of plant transpiration is usually assumed to be equal to the isotopic composition of xylem water; the so-called steady-state assumption. However, our results and the findings of other published studies strongly suggest that steady state conditions are unrealistic for vegetation in dynamic natural environments. This talk focuses on the development of a simple framework for using relationships between plant transpiration and δT to partition ET at the landscape level. Our method uses a newly-derived empirical relationship between leaf conductance and isotopic fractionation during transpiration to solve a system of equations that can provide solutions to the fraction of total ET composed of bare soil evaporation and transpiration. We apply our method to a time series of evapotranspiration fluxes and near-surface water vapor isotopic composition at a field station in central Kenya and compare the results with partitioning obtained from both steady-state approaches and non-isotopic approaches for partitioning.

  5. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  6. Evaporative Control on Soil Water Isotope Ratios: Implications for Atmosphere-Land Surface Water Fluxes and Interpretation of Terrestrial Proxy Records

    NASA Astrophysics Data System (ADS)

    Kaushik, A.; Noone, D. C.; Berkelhammer, M. B.; O'Neill, M.

    2014-12-01

    The moisture balance of the continental boundary layer plays an important role in regulating the exchange of water and energy between the land surface and atmosphere. Near-surface moisture balance is controlled by a number of factors including precipitation, infiltration and evapotranspiration. Measurements of stable isotope ratios in water can be exploited to better understand the mechanisms controlling atmosphere-land surface water fluxes. Understanding the processes that set sub-surface water isotope ratios can prove useful for refining paleoclimate interpretations of stable oxygen and hydrogen isotope-based proxies. We present in situ tower-based measurements of stable isotope ratios of water (δD and δ18O) in vapor, precipitation and soil from the Boulder Atmospheric Observatory, a semi-arid tall-tower site in Erie, Colorado, from July 2012 to September 2014. Near surface profiles from 0 to 10 m were measured approximately every ninety minutes. Soil profiles from 0 to 30 cm, the region of maximum variability, were sampled on a weekly basis and cryogenically extracted for stable water isotope measurement. Evaporation-proof bulk rain collectors provided precipitation samples at this site. Results show disequilibrium exists between surface vapor and soil water isotopes, with the top 10 cm of soil water approaching equilibrium with the surface vapor right after a rain event because of high infiltration and saturation at the surface. At this semi-arid site with little vegetation, evaporative exchange is the main driver for soil water fluxes as the soil dries, corroborated by soil Dexcess profiles showing progressive enrichment through evaporation. In addition, when nighttime surface temperatures are cooler than deep soil, as is the case in many arid and semi-arid environments, upward vapor diffusion from the soil leads to dew formation at the surface which then contributes to surface vapor values. We use these observations to constrain a Craig-Gordon evaporation

  7. Tropical Ocean Evaporation/SST Sensitivity and It's Link to Water and Energy Budget Variations During ENSO

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We

  8. Tropical Ocean Evaporation/SST Sensitivity and It's Link to Water and Energy Budget Variations During ENSO

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We

  9. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    PubMed

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  10. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  11. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  12. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  13. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  14. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.

    PubMed

    Muñoz-Garcia, Agustí; Larraín, Paloma; Ben-Hamo, Miriam; Cruz-Neto, Ariovaldo; Williams, Joseph B; Pinshow, Berry; Korine, Carmi

    2016-01-01

    Life in deserts is challenging for bats because of their relatively high energy and water requirements; nevertheless bats thrive in desert environments. We postulated that bats from desert environments have lower metabolic rates (MR) and total evaporative water loss (TEWL) than their mesic counterparts. To test this idea, we measured MR and TEWL of four species of bats, which inhabit the Negev desert in Israel, one species mainly restricted to hyper-arid deserts (Otonycteris hemprichii), two species from semi-desert areas (Eptesicus bottae and Plecotus christii), and one widespread species (Pipistrellus kuhlii). We also measured separately, in the same individuals, the two components of TEWL, respiratory water loss (RWL) and cutaneous evaporative water loss (CEWL), using a mask. In all the species, MR and TEWL were significantly reduced during torpor, the latter being a consequence of reductions in both RWL and CEWL. Then, we evaluated whether MR and TEWL in bats differ according to their geographic distributions, and whether those rates change with Ta and the use of torpor. We did not find significant differences in MR among species, but we found that TEWL was lowest in the species restricted to desert habitats, intermediate in the semi-desert dwelling species, and highest in the widespread species, perhaps a consequence of adaptation to life in deserts. Our results were supported by a subsequent analysis of data collected from the literature on rates of TEWL for 35 bat species from desert and mesic habitats.

  15. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  16. Evaporation from Lake Mead, Arizona and Nevada, 1997-99

    USGS Publications Warehouse

    Westenburg, Craig L.; DeMeo, Guy A.; Tanko, Daron J.

    2006-01-01

    Lake Mead is one of a series of large Colorado River reservoirs operated and maintained by the Bureau of Reclamation. The Colorado River system of reservoirs and diversions is an important source of water for millions of people in seven Western States and Mexico. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, conducted a study from 1997 to 1999 to estimate evaporation from Lake Mead. For this study, micrometeorological and hydrologic data were collected continually from instrumented platforms deployed at four locations on the lake, open-water areas of Boulder Basin, Virgin Basin, and Overton Arm and a protected cove in Boulder Basin. Data collected at the platforms were used to estimate Lake Mead evaporation by solving an energy-budget equation. The average annual evaporation rate at open-water stations from January 1998 to December 1999 was 7.5 feet. Because the spatial variation of monthly and annual evaporation rates was minimal for the open-water stations, a single open-water station in Boulder Basin would provide data that are adequate to estimate evaporation from Lake Mead.

  17. Assessment of the urban water system with an open ...

    EPA Pesticide Factsheets

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green infrastructure) to modify specific flows of urban water (e.g. drinking water, stormwater) that may have systemic effects. We have developed a general model that specifies the relationships among urban water system components, and a set of tools for evaluating the model for any city as the R package CityWaterBalance. CityWaterBalance provides a reproducible workflow for assessing urban water system(s) by facilitating the retrieval of open data, largely via web services, and analysis of these data using open-source R functions. It allows the user to 1) quickly assemble a quantitative, unified picture of flows thorough an urban area, and 2) easily change the spatial and temporal boundaries of analysis to match scales relevant to local decision-making. We used CityWaterBalance to evaluate the water system in the Chicago metropolitan area on a monthly basis for water years 2001-2010. Results, including the relative magnitudes and temporal variability of major water flows in greater Chicago, are used to consider 1) trade-offs associated with management alternatives for stormwater and combined sewer overflows and 2) the significance of future changes in precipitation, which is the largest

  18. Mapping the future expansion of Arctic open water

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.

    2016-03-01

    Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.

  19. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  20. Estimating net rainfall, evaporation and water storage of a bare soil from sequential L-band emissivities

    NASA Technical Reports Server (NTRS)

    Stroosnijder, L.; Lascano, R. J.; Newton, R. W.; Vanbavel, C. H. M.

    1984-01-01

    A general method to use a time series of L-band emissivities as an input to a hydrological model for continuously monitoring the net rainfall and evaporation as well as the water content over the entire soil profile is proposed. The model requires a sufficiently accurate and general relation between soil emissivity and surface moisture content. A model which requires the soil hydraulic properties as an additional input, but does not need any weather data was developed. The method is shown to be numerically consistent.

  1. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  2. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  3. Estimation of the Heat Balance of the Liquid Hydrocarbons Evaporation Process from the Open Surface During Geotechnical Monitoring

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    Researchers in Tyumen State Oil and Gas University (TSOGU) have conducted a complex research of the heat and mass transfer processes and thermophysical properties of hydrocarbons, taking into account their impact on the reliability and safety of the hydrocarbon transport and storage processes. It has been shown that the thermodynamic conditions on the surface and the color of oil influence the degree of temperature rise in the upper layers of oil when exposed to direct solar radiation. In order to establish the nature of solar radiation impact on the surface temperature the experimental studies were conducted in TSOGU on the hydrocarbon evaporation and the temperature change of various petroleum and petroleum products on the free surface with varying degrees of thermal insulation of the side walls and bottom of the vessel.

  4. Physiological regulation of evaporative water loss in endotherms: is the little red kaluta (Dasykaluta rosamondae) an exception or the rule?

    PubMed

    Withers, Philip C; Cooper, Christine E

    2014-06-07

    It is a central paradigm of comparative physiology that the effect of humidity on evaporative water loss (EWL) is determined for most mammals and birds, in and below thermoneutrality, essentially by physics and is not under physiological regulation. Fick's law predicts that EWL should be inversely proportional to ambient relative humidity (RH) and linearly proportional to the water vapour pressure deficit (Δwvp) between animal and air. However, we show here for a small dasyurid marsupial, the little kaluta (Dasykaluta rosamondae), that EWL is essentially independent of RH (and Δwvp) at low RH (as are metabolic rate and thermal conductance). These results suggest regulation of a constant EWL independent of RH, a hitherto unappreciated capacity of endothermic vertebrates. Independence of EWL from RH conserves water and heat at low RH, and avoids physiological adjustments to changes in evaporative heat loss such as thermoregulation. Re-evaluation of previously published data for mammals and birds suggests that a lesser dependence of EWL on RH is observed more commonly than previously thought, suggesting that physiological independence of EWL of RH is not just an unusual capacity of a few species, such as the little kaluta, but a more general capability of many mammals and birds.

  5. Determination of trace level bromate and perchlorate in drinking water by ion chromatography with an evaporative preconcentration technique.

    PubMed

    Liu, Yongjian; Mou, Shifen; Heberling, Shawn

    2002-05-17

    A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.

  6. Characteristic of local boiling heat transfer of ammonia and ammonia / water binary mixture on the plate type evaporator

    NASA Astrophysics Data System (ADS)

    Okamoto, Akio; Arima, Hirofumi; Ikegami, Yasuyuki

    2011-08-01

    Power generation using small temperature difference such as ocean thermal energy conversion (OTEC) and discharged thermal energy conversion (DTEC) is expected to be the countermeasures against global warming problem. As ammonia and ammonia/water are used in evaporators for OTEC and DTEC as working fluids, the research of their local boiling heat transfer is important for improvement of the power generation efficiency. Measurements of local boiling heat transfer coefficients were performed for ammonia /water mixture ( z = 0.9-1) on a vertical flat plate heat exchanger in a range of mass flux (7.5-15 kg/m2 s), heat flux (15-23 kW/m2), and pressure (0.7-0.9 MPa). The result shows that in the case of ammonia /water mixture, the local heat transfer coefficients increase with an increase of mass flux and composition of ammonia, and decrease with an increase of heat flux.

  7. Successful water reuse in open recirculating cooling systems

    SciTech Connect

    Vaska, M.; Lee, B.

    1994-12-31

    Water reuse in open recirculating cooling water systems is becoming increasingly prevalent in industry. Reuse can incorporate a number of varied approaches with the primary goal being water conservation. Market forces driving this trend include scarcity of fresh water makeup sources and higher costs associated with pretreatment of natural waters. Utilization of reuse water for cooling tower makeup has especially detrimental effects on corrosion and deposit rates. Additionally, once the reuse water is cycled and treated with inhibitors, dispersants and microbiocides, acceptability for discharge to a public waterway can be a concern. The task for water treatment suppliers is to guide industry in the feasibility and procedures for successfully achieving these goals. This paper focuses particularly on reuse of municipal wastewater for cooling tower makeup and explores techniques which have been found especially effective. Case histories are described where these concepts have been successfully applied in practice.

  8. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  9. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  10. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-07-01

    Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15-20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers

  11. Evaporation, transpiration, and ecosystem water use efficiency in a multi-annual sugarcane production system in Hawai'i, USA

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Tirado-corbala, R.; Wang, D.; Ayars, J. E.

    2013-12-01

    Food and biofuel production will require practices that increase water use efficiency in order to have future sustainability in a water-constrained environment. One possible practice is the use of food and energy crops with multi-annual growing periods, which could reduce bare soil evaporation. We integrated field water budgets, micrometeorology, and plant sampling to observe plant growth and evapotranspiration (ET) in two sugarcane (Saccharum officinarum L.) fields in Hawai'i, USA in contrasting environments with unusually long (18-24 month) growing periods. We partitioned observed ET into evaporation and transpiration using a flux partitioning model and calculated ecosystem water use efficiency (EWUE=Net Ecosystem Productivity/ET) and harvest WUE (HWUE=Aboveground Net Ecosystem Productivity/ET) to assess sugarcane water use efficiency. After the start of the mid-period, our higher elevation, less windy field ('Lee') had a slightly higher mean EWUE (31.5 kg C ha-1 mm-1) than our lower elevation, windier ('Windy') field (mean EWUE of 30.7 kg C ha-1 mm-1). HWUE was also very high (HWUE >27 kg C ha-1 mm-1) in both fields due to aboveground biomass composing >87% of total biomass. Transpiration, as a fraction of total ET, increased rapidly with canopy cover in both fields; during the mid-period, transpiration was an average of 84% of total ET in Windy and 80% in Lee, with Lee showing greater variation than Windy. As expected, daily EWUE increased with canopy cover during the initial growing stages; more significantly, EWUE showed no substantial decrease during the 2nd year with an aging crop. The results illustrate the potential for longer-rotation crop cycles for increasing water use efficiency, particularly in tropical regions.

  12. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    NASA Astrophysics Data System (ADS)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  13. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R.; Harju, J.A.

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  14. A new method using evaporation for high-resolution measurements of soil thermal conductivity at changing water contents

    NASA Astrophysics Data System (ADS)

    Markert, A.; Trinks, S.; Facklam, M.; Wessolek, G.

    2012-04-01

    The thermal conductivity of soils is a key parameter to know if their use as heat source or sink is planned. It is required to calculate the efficiency of ground-source heat pump systems in combination with soil heat exchangers. Apart from geothermal energy, soil thermal conductivity is essential to estimate the ampacity for buried power cables. The effective thermal conductivity of saturated and unsaturated soils, as a function of water transport, water vapour transport and heat conduction, mainly depends on the soil water content, its bulk density and texture. The major objectives of this study are (i) to describe the thermal conductivity of soil samples with a non-steady state measurement at changing water contents and for different bulk densities. Based on that it is (ii) tested if available soil thermal conductivity models are able to describe the measured data for the whole range of water contents. The new method allows a continuous measurement of thermal conductivity for soil from full water saturation to air-dryness. Thermal conductivity is measured with a thermal needle probe in predefined time intervals while the change of water content is controlled by evaporation. To relate the measured thermal conductivity to the current volumetric water content, the decrease in weight of the sample, due to evaporation, is logged with a lab scale. Soil texture of the 11 soil substrates tested in this study range between coarse sand and silty clay. To evaluate the impact of the bulk density on heat transport processes, thermal conductivity at 20°C was measured at 1.5g/cm3; 1.7g/cm3 and 1.9g/cm3 for each soil substrate. The results correspond well to literature values used to describe heat transport in soils. Due to the high-resolution and non-destructive measurements, the specific effects of the soil texture and bulk density on thermal conductivity could be proved. Decreasing water contents resulted in a non-linear decline of the thermal conductivity for all samples

  15. Investigation of the effect of dissolved salts, soil layers, and wind on the evaporation rate of water on Mars

    NASA Astrophysics Data System (ADS)

    Chittenden, Julie Diane

    2007-08-01

    Laboratory simulation experiments have been performed to study the stability of water under martian conditions. The first chapter of this thesis is a background introduction into the history of Mars and a description of the evidence for past and present water on Mars. The second chapter describes experiments that were performed on low concentration brine solutions, but were never published. The rest of the thesis is submitted in thesis by publication format. Chapters three and four were published in Geophysical Research Letters and chapter five has been submitted to Mars Polar Science Special Edition of Icarus . The experiments described in this thesis were performed in the planetary simulation chamber in the W.M. Keck Laboratory for Space Simulations at the Arkansas Center for Space and Planetary Sciences. By simulating the conditions on Mars, with the exception of the gravitational constant, we are able to accurately measure the evaporation and sublimation of water and water ice. We measured the evaporation rates of low concentrations of a sodium chloride brine solution, the effect of temperature on eutectic solutions of sodium chloride and calcium chloride brines, the effect of a soil layer on the sublimation rate of ice, and the effect of wind on the sublimation of ice. The results for the evaporation of brine solutions and the results for the sublimation of ice under a soil layer agree very well with theoretical calculations using Fick's Law of Diffusion, as put forth by A.P. Ingersoll and C.B. Farmer, respectively. In contrast, the sublimation rate of ice under varied wind velocities did not agree with previous theory. Therefore, a new theoretical model was developed in order to accurately describe the effect of increasing wind velocity on sublimation rates. The new theoretical model agreed extremely well with experimental data. In performing these experiments, we are better able to understand the behavior of water under martian condition and can be used to

  16. Influence of evaporation, ground water, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Lee, Terrie Mackin; Swancar, Amy

    1997-01-01

    A detailed hydrologic budget was constructed of a seepage lake of sinkhole origin in the karst terrain of central Florida. During the drought period studied, lake evaporation computed by the energy-budget and mass-transfer methods was the largest component in the budget, followed by rainfall. Ground-water inflow contributed about one-third of the total inflow. Lake leakage was about one-fourth of the evaporative losses and was increased substantially by pumping from the Upper Floridan aquifer.

  17. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration.

    PubMed

    Cryan, Paul M; Wolf, Blair O

    2003-10-01

    This study quantifies sex differences in thermoregulation and water loss of a small (20-35 g) insectivorous heterothermic mammal, the hoary bat Lasiurus cinereus, during its spring migration. We measured body temperature, metabolic rate and evaporative water loss, and calculated wet thermal conductance, for bats exposed to air temperatures ranging from 0 to 40 degrees C for periods of 2-5 h. Pregnant females maintained normothermic body temperatures (35.7+/-0.7 degrees C; mean +/- S.E.M.) independent of air temperature. In contrast, males became torpid during the majority (68%) of exposures to air temperatures <25 degrees C. The thermal neutral zone (TNZ) ranged between approximately 30 degrees C and 34 degrees C in both sexes and, within the TNZ, females had lower mass-specific metabolic rates (6.1+/-0.2 mW g(-1)) than males (9.0+/-0.9 mW g(-1)). Wet thermal conductance values in torpid bats (0.7+/-0.5 mW g(-1) deg.(-1)) were lower than those of normothermic individuals (1.1+/-0.3 mW g(-1) deg.(-1)). Mass-specific rates of evaporative water loss in males were consistently higher than in females at most air temperatures and rates of water loss in torpid bats were 63+/-6% of normothermic values. These results suggest that male and pregnant female L. cinereus employ different thermoregulatory strategies during their spring migration. Females defend normothermic body temperatures, presumably to expedite embryonic growth, while males use torpor, presumably to minimize energy and water deficits. These variable thermoregulatory strategies may reflect continental differences in the summer distribution of the sexes.

  18. Interannual variability in the surface energy budget and evaporation over a large southern inland water in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Qianyu; Liu, Heping

    2013-05-01

    Understanding how the surface energy budget and evaporation over inland waters respond to climate change and variability remains limited. Here we report 2 year measurements of the surface energy budget using the eddy covariance method over Ross Barnett Reservoir, Mississippi, USA, for 2008 and 2009. Annual mean sensible (H) and latent (LE) heat fluxes in 2008 were 9.5%, and 10.0% greater than in 2009, respectively. Most of the interannual variations in the surface energy fluxes and meteorological variables primarily occurred in the cool seasons from October to March, which was enhanced by frequent large wind events associated with cold front passages. These large wind events greatly promoted H and LE exchange and produced H and LE pulses that increased variations in H and LE between these two cool seasons. In the warm seasons from April to September, H and LE pulses were also present, which largely increased variations in LE and dampened those in H between the two warm seasons. The H and LE pulses contributed to approximately 50% of the annual H and 28% of the annual LE, although they only covered about 16% of the entire year. The interannual variations in H and L