Sample records for open-cellular foamed multiple

  1. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Xiaoxia

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors basedmore » on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.« less

  2. Application of a drainage film reduces fibroblast ingrowth into large-pored polyurethane foam during negative-pressure wound therapy in an in vitro model.

    PubMed

    Wiegand, Cornelia; Springer, Steffen; Abel, Martin; Wesarg, Falko; Ruth, Peter; Hipler, Uta-Christina

    2013-01-01

    Negative-pressure wound therapy (NPWT) is an advantageous treatment option in wound management to promote healing and reduce the risk of complications. NPWT is mainly carried out using open-cell polyurethane (PU) foams that stimulate granulation tissue formation. However, growth of wound bed tissue into foam material, leading to disruption of newly formed tissue upon dressing removal, has been observed. Consequently, it would be of clinical interest to preserve the positive effects of open-cell PU foams while avoiding cellular ingrowth. The study presented analyzed effects of NPWT using large-pored PU foam, fine-pored PU foam, and the combination of large-pored foam with drainage film on human dermal fibroblasts grown in a collagen matrix. The results showed no difference between the dressings in stimulating cellular migration during NPWT. However, when NPWT was applied using a large-pored PU foam, the fibroblasts continued to migrate into the dressing. This led to significant breaches in the cell layers upon removal of the samples after vacuum treatment. In contrast, cell migration stopped at the collagen matrix edge when fine-pored PU foam was used, as well as with the combination of PU foam and drainage film. In conclusion, placing a drainage film between collagen matrix and the large-pored PU foam dressing reduced the ingrowth of cells into the foam significantly. Moreover, positive effects on cellular migration were not affected, and the effect of the foam on tissue surface roughness in vitro was also reduced. © 2013 by the Wound Healing Society.

  3. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube measurements using an inverse technique. As the next step towards in depth understanding of the relation between cell morphology and sound absorption of open cell foams, a semi-analytical model was developed to account for the effect of micro cellular properties such as cell wall thickness and reticulation rate on overall macroscopic and structural properties. Developed model provides the tools to optimize the porous structure and enhance sound absorption capability.

  4. Self-Assembly of Porous Boron Nitride Microfibers into Ultralight Multifunctional Foams of Large Sizes.

    PubMed

    Lin, Jing; Yuan, Xiaohai; Li, Gen; Huang, Yang; Wang, Weijia; He, Xin; Yu, Chao; Fang, Yi; Liu, Zhenya; Tang, Chengchun

    2017-12-27

    As a kind of macroscopic boron nitride (BN) architectures, ultralight BN cellular materials with high porosity and great resilience would have a broad range of applications in energy and environment areas. However, creating such BN cellular materials in large sizes has still been proven challenging. Here, we report on the unique self-assembly of one-dimensional porous BN microfibers into an integral three-dimensional BN foam with open-cell cellular architectures. An ultrasonic-assisted self-assembly, freeze-drying, and high-temperature pyrolysis process has been developed for the preparation of cellular BN foam with a large size and desired shape. The developed BN foam has low density, high porosity (∼99.3%), great resilience, and excellent hydrophobic-lipophilic nature. The foam also exhibits excellent absorption capacities for a wide range of organic solvents and oils (wt % of ∼5130-7820%), as well as a high recovery efficiency (∼94%). Moreover, the unique hierarchical porous structure enables the foam to demonstrate a very low thermal conductivity (∼0.035 W/K/m). The excellent thermal insulation performance, superior mechanical property, and superb chemical and thermal stability enable the developed BN foam as an integrating multifunctional material in a broad range of high-end applications.

  5. Microstructure and calorimetric behavior of laser welded open cell foams in CuZnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Previtali, Barbara; Tuissi, Ausonio

    Cellular shape memory alloys (SMAs) are very promising smart materials able to combine functional properties of the material with lightness, stiffness, and damping capacity of the cellular structure. Their processing with low modification of the material properties remains an open question. In this work, the laser weldability of CuZnAl SMA in the form of open cell foams was studied. The cellular structure was proved to be successfully welded in lap joint configuration by using a thin plate of the same alloy. Softening was seen in the welded bead in all the investigated ranges of process speed as well as a double stage heat affected zone was identified due to different microstructures; the martensitic transformation was shifted to higher temperatures and the corresponding peaks were sharper with respect to the base material due to the rapid solidification of the material. Anyways, no compositional variations were detected in the joints.

  6. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  7. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    PubMed

    Murr, L E; Amato, K N; Li, S J; Tian, Y X; Cheng, X Y; Gaytan, S M; Martinez, E; Shindo, P W; Medina, F; Wicker, R B

    2011-10-01

    Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platelets while the mesh and foam structures were characterized by α(')-martensite with some residual α. The Co-29Cr-6Mo containing 0.22% C formed columnar (directional) Cr(23)C(6) carbides spaced ~2 μm in the build direction, while HIP-annealed Co-Cr alloy exhibited an intrinsic stacking fault microstructure. A log-log plot of relative stiffness versus relative density for Ti-6Al-4V and Co-29Cr-6Mo open-cellular mesh and foams resulted in a fitted line with a nearly ideal slope, n = 2.1. A stress shielding design graph constructed from these data permitted mesh and foam implant prototypes to be fabricated for compatible bone stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Numerical Simulation of the Motion of Aerosol Particles in Open Cell Foam Materials

    NASA Astrophysics Data System (ADS)

    Solovev, S. A.; Soloveva, O. V.; Popkova, O. S.

    2018-03-01

    The motion of aerosol particles in open cell foam material is studied. The porous medium is investigated for a three-dimensional case with detailed simulation of cellular structures within an ordered geometry. Numerical calculations of the motion of particles and their deposition due to inertial and gravitational mechanisms are performed. Deposition efficiency curves for a broad range of particle sizes are constructed. The effect deposition mechanisms have on the efficiency of the porous material as a filter is analyzed.

  9. Steady-state capabilities for hydroturbines with OpenFOAM

    NASA Astrophysics Data System (ADS)

    Page, M.; Beaudoin, M.; Giroux, A. M.

    2010-08-01

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  10. Tailoring properties of reticulated vitreous carbon foams with tunable density

    NASA Astrophysics Data System (ADS)

    Smorygo, Oleg; Marukovich, Alexander; Mikutski, Vitali; Stathopoulos, Vassilis; Hryhoryeu, Siarhei; Sadykov, Vladislav

    2016-06-01

    Reticulated vitreous carbon (RVC) foams were manufactured by multiple replications of a polyurethane foam template structure using ethanolic solutions of phenolic resin. The aims were to create an algorithm of fine tuning the precursor foam density and ensure an open-cell reticulated porous structure in a wide density range. The precursor foams were pyrolyzed in inert atmospheres at 700°C, 1100°C and 2000°C, and RVC foams with fully open cells and tunable bulk densities within 0.09-0.42 g/cm3 were synthesized. The foams were characterized in terms of porous structure, carbon lattice parameters, mechanical properties, thermal conductivity, electric conductivity, and corrosive resistance. The reported manufacturing approach is suitable for designing the foam microstructure, including the strut design with a graded microstructure.

  11. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    NASA Astrophysics Data System (ADS)

    Lipton, Jeffrey I.; Lipson, Hod

    2016-08-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing.

  12. 3D Printing Variable Stiffness Foams Using Viscous Thread Instability

    PubMed Central

    Lipton, Jeffrey I.; Lipson, Hod

    2016-01-01

    Additive manufacturing of cellular structures has numerous applications ranging from fabrication of biological scaffolds and medical implants, to mechanical weight reduction and control over mechanical properties. Various additive manufacturing processes have been used to produce open regular cellular structures limited only by the resolution of the printer. These efforts have focused on printing explicitly designed cells or explicitly planning offsets between strands. Here we describe a technique for producing cellular structures implicitly by inducing viscous thread instability when extruding material. This process allows us to produce complex cellular structures at a scale that is finer than the native resolution of the printer. We demonstrate tunable effective elastic modulus and density that span two orders of magnitude. Fine grained cellular structures allow for fabrication of foams for use in a wide range of fields ranging from bioengineering, to robotics to food printing. PMID:27503148

  13. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy absorption capacity. The behavior of Al/Cu hybrid foams under high-strain-rate condition was then investigated using experiments on a split Hopkinson pressure bar. It was found that the ED nano-copper coating can also effectively enhance the energy absorption capacities of aluminum open-cell foams under high strain rate. Similar to the quasi-static behavior, a large stress drop was observed in the compressive response of Al/Cu hybrid foams under high strain rate, which was accompanied by dramatic shattering of material. It is shown that a more ductile behavior and better energy absorption performance under high strain rate condition can be also obtained by introducing an annealing process. Finally, the manufacturing process of Al/Cu hybrid foams was customized to fabricate FGHMF systems with two dimensional property gradients. The performance of these FGHMFs at both quasi-static and dynamic conditions was evaluated. Under quasi-static condition, two flexural type loading conditions were considered, namely, a three point bending condition and a cantilever beam condition. The dynamic behavior of FGHMFs was investigated by conducting drop weight tower tests on a three point bending setup. It was found that the failure mechanism of hybrid metal foams can be modified and the mechanical properties, such as stiffness and strength, and energy absorption capacities of hybrid metal foams can be optimized under both quasi-static and dynamic conditions by introducing strategically designed coating patterns. The presented novel approach and findings in this study provide valuable information on the development of high performance hybrid and functionally-graded cellular materials.

  14. Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam.

    PubMed

    Callcut, S; Knowles, J C

    2002-05-01

    Glass-reinforced hydroxyapatite (HA) foams were produced using reticulated foam technology using a polyurethane template with two different pore size distributions. The mechanical properties were evaluated and the structure analyzed through density measurements, image analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the mechanical properties, the use of a glass significantly improved the ultimate compressive strength (UCS) as did the use of a second coating. All the samples tested showed the classic three regions characteristic of an elastic brittle foam. From the density measurements, after application of a correction to compensate for the closed porosity, the bulk and apparent density showed a 1 : 1 correlation. When relative bulk density was plotted against UCS, a non-linear relationship was found characteristic of an isotropic open celled material. It was found by image analysis that the pore size distribution did not change and there was no degradation of the macrostructure when replicating the ceramic from the initial polyurethane template during processing. However, the pore size distributions did shift to a lower size by about 0.5 mm due to the firing process. The ceramic foams were found to exhibit mechanical properties typical of isotropic open cellular foams.

  15. Microstructural architecture developed in the fabrication of solid and open-cellular copper components by additive manufacturing using electron beam melting

    NASA Astrophysics Data System (ADS)

    Ramirez, Diana Alejandra

    The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3microm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 microm in length and corresponding spatial dimensions of 1-3 microm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. The hardness for these architectures ranged from ~HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations were utilized for the fabrication of open-cellular copper structures by additive manufacturing using EBM and illustrated the ability to fabricate some form of controlled microstructural architecture by EBM parameter alteration or optimizing. The fabrication of these structures ranged in densities from 0.73g/cm3 to 6.67g/cm3. These structures correspond to four different articulated mesh arrays. While these components contained some porosity as a consequence of some unmelted regions, the Cu2O precipitates also contributed to a reduced density. Using X-ray Diffraction showed the approximate volume fraction estimated to be ~2%. The addition of precipitates created in the EBM melt scan formed microstructural arrays which contributed to hardening contributing to the strength of mesh struts and foam ligaments. The measurements of relative stiffness versus relative density plots for Cu compared very closely with Ti-6Al-4V open cellular structures - both mesh and foams. The Cu reticulated mesh structures exhibit a slope of n = 2 in contrast to a slope of n = 2.4 for the stochastic Cu foams, consistent with the Gibson-Ashby foam model where n = 2. These open cellular structure components exhibit considerable potential for novel, complex, multi-functional electrical and thermal management systems, especially complex, monolithic heat exchange device.

  16. Hybrid Deployable Foam Antennas and Reflectors

    NASA Technical Reports Server (NTRS)

    Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne

    2006-01-01

    Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very small volume - typically to 1/20 of its full size in one dimension. 4) At a temperature above its glass-transition temperature (T(sub g)), the foam strongly damps vibrations. Even at a temperature below T(sub g), the damping should exceed that of other materials. 5) In its macroscopic mechanical properties, an open-cell foam is isotropic. This isotropy facilitates computational modeling of antenna structures. 6) Through chemical formulation, the T(sub g) of an open-cell polyurethane foam can be set at a desired value between about - 100 and about 0 C. Depending on the application, it may or may not be necessary to rigidify a foam structure after deployment. If rigidification is necessary, then the T(sub g) of the foam can be tailored to exceed the temperature of the deployment environment, in conjunction with providing a heater to elasticize the foam for deployment. Once deployed, the foam would become rigidified by cooling to below T(sub g). 7) Techniques for molding or machining polymeric foams (especially including open-cell polyurethane foams) to desired sizes and shapes are well developed.

  17. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  18. Open-Cellular Co-Base and Ni-Base Superalloys Fabricated by Electron Beam Melting

    PubMed Central

    Murr, Lawrence; Li, Shujun; Tian, Yuxing; Amato, Krista; Martinez, Edwin; Medina, Frank

    2011-01-01

    Reticulated mesh samples of Co-29Cr-6Mo alloy and Ni-21Cr-9Mo-4Nb alloy (625) and stochastic foam samples of Co-29Cr-6Mo alloy fabricated by electron beam melting were characterized by optical metallography, and the dynamic stiffness (Young’s modulus) was measured by resonant frequency analysis. The relative stiffness (E/Es) versus relative density (ρ/ρs) plotted on a log-log basis resulted in a fitted straight line with a slope n ≅ 2, consistent with that for ideal open cellular materials. PMID:28879949

  19. The acoustical structure of highly porous open-cell foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1982-01-01

    This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.

  20. mdFoam+: Advanced molecular dynamics in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  1. Cellular structures with interconnected microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to meltmore » infiltration.« less

  2. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    NASA Astrophysics Data System (ADS)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  3. Guide to NavyFOAM V1.0

    DTIC Science & Technology

    2011-04-01

    NavyFOAM has been developed using an open-source CFD software tool-kit ( OpenFOAM ) that draws heavily upon object-oriented programming. The...numerical methods and the physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy and robustness of...computational fluid dynamics OpenFOAM , Object Oriented Programming (OOP) (CFD), NavyFOAM, 16. SECURITY CLASSIFICATION OF: a. REPORT UNCLASSIFIED b

  4. Light weight polarized polypropylene foam for noise shielding

    NASA Astrophysics Data System (ADS)

    Zelfer, Travis J.; Warne, Derik S.; Korde, Umesh A.

    2009-03-01

    The high levels of noise generated during launch can destroy sensitive equipment on space craft. Passive damping systems, like acoustic blankets, work to reduce the high frequency noise but do little to the low frequency noise (<400 Hz). While wall mounted transducers can reduce the low frequency noise during a launch, they also can create areas of higher increased sound pressure in the payload fairings. Ferroelectret cellular polymer foams with high piezoelectric coupling constants are being used as new types of actuators and sensors. Further impedance control through the inverse piezoelectric effect will lead to a new "semi-active" approach that will reduce low frequency noise levels. Combining layers of conventional nonpiezoelectric foam and ferroelectret materials with a multiple loop feedback system will give a total damping effect that is adaptable over a wide band of low frequencies. This paper covers the manufacturing methods that were used to make polarized polypropylene foam, to test the foam for its polarized response and its noise shielding ability.

  5. Investigations in Producing Porous NiAl by Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Zhong, Songming

    In recent years, nickel aluminide (NiAl) intermetallic foam, which combines the advantages of nickel-based alloy and metallic foam, has attracted great attention due to its extraordinary properties. In this present work, nickel aluminide (NiAl) foam has been reactively processed from elemental powder (nickel and aluminium) with different types and percentage of volume of a foaming agent (TiH2 or CaCO3), using a combustion synthesis (CS) approach. Most of the previous research has focused on producing close-cell NiAl intermetallic foam; however, this paper presents a new combustion synthesis process to fabricate a hybrid open-cell and close-cell NiAl intermetallic foam. Mixed elemental powder was compacted at moderate pressure generating closed and open porosity with green compact; as a result, part of the liberated gas could escape from the sample, which resulted in producing open-cell pores, in addition, closed cell pores in the product. The effect of foaming agent type and volume percentage on the product is discussed. An increase in volume percentage of TiH2 was found to have beneficial effects on increasing porosity; however, with the increase of volume percentage of CaCO3, there is a big drop in porosity because the low viscosity under high temperature makes more liberated gas escape and pores collapse. According to XRD and EDX analysis, despite the present of multiple phases in samples, NiAl was still the major phase. Hardness measurement shows that high hardness value was obtained at sample of low grain size, hardness value increases with decreasing grain size.

  6. Application and future of solid foams

    NASA Astrophysics Data System (ADS)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  7. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.

    PubMed

    Chevillotte, Fabien; Perrot, Camille

    2017-08-01

    The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.

  8. Optimising the Parallelisation of OpenFOAM Simulations

    DTIC Science & Technology

    2014-06-01

    UNCLASSIFIED UNCLASSIFIED Optimising the Parallelisation of OpenFOAM Simulations Shannon Keough Maritime Division Defence...Science and Technology Organisation DSTO-TR-2987 ABSTRACT The OpenFOAM computational fluid dynamics toolbox allows parallel computation of...performance of a given high performance computing cluster with several OpenFOAM cases, running using a combination of MPI libraries and corresponding MPI

  9. Method of forming a continuous polymeric skin on a cellular foam material

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  10. Foam injection molding of elastomers with iron microparticles

    NASA Astrophysics Data System (ADS)

    Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto

    2015-12-01

    In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.

  11. Gravitational Effects on Closed-Cellular-Foam Microstructure

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas

    1996-01-01

    Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.

  12. Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM

    DTIC Science & Technology

    2013-12-01

    UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared

  13. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  14. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.

  15. Modelling the physical properties of glasslike carbon foams

    NASA Astrophysics Data System (ADS)

    Letellier, M.; Macutkevic, J.; Bychanok, D.; Kuzhir, P.; Delgado-Sanchez, C.; Naguib, H.; Ghaffari Mosanenzadeh, S.; Fierro, V.; Celzard, A.

    2017-07-01

    In this work, model alveolar materials - carbon cellular and/or carbon reticulated foams - were produced in order to study and to model their physical properties. It was shown that very different morphologies could be obtained whereas the constituting vitreous carbon from which they were made remained exactly the same. Doing so, the physical properties of these foams were expected to depend neither on the composition nor on the carbonaceous texture but only on the porous structure, which could be tuned for the first time for having a constant pore size in a range of porosities, or a range of pore sizes at fixed porosity. The physical properties were then investigated through mechanical, acoustic, thermal and electromagnetic measurements. The results demonstrate the roles played by bulk density and cell size on all physical properties. Whereas some of the latter strongly depend on porosity and/or pore size, others are independent of pore size. It is expected that these results apply to many other kinds of rigid foams used in a broad range of different applications. The present results therefore open the route to their optimisation.

  16. Coated foams, preparation, uses and articles

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  17. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  18. Production, properties, and applications of hydrocolloid cellular solids.

    PubMed

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical, and even electronic industries.

  19. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  20. Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

    PubMed Central

    Murr, Lawrence E.; Gaytan, Sara M.; Martinez, Edwin; Medina, Frank; Wicker, Ryan B.

    2012-01-01

    This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that stiffness-compatible implants can be fabricated for optimal stress shielding for bone regimes as well as bone cell ingrowth. Implications for the fabrication of patient-specific, monolithic, multifunctional orthopaedic implants using EBM are described along with microstructures and mechanical properties characteristic of both Ti-6Al-4V and Co-29Cr-6Mo alloy prototypes, including both solid and open-cellular prototypes manufactured by additive manufacturing (AM) using EBM. PMID:22956957

  1. Effects of ultrasound on polymeric foam porosity.

    PubMed

    Torres-Sanchez, C; Corney, J R

    2008-04-01

    A variety of materials require functionally graded cellular microstructures whose porosity is engineered to meet specific applications (e.g. mimic bone structure for orthopaedic applications; fulfil mechanical, thermal or acoustic constraints in structural foamed components, etc.). Although a huge variety of foams can be manufactured with homogenous porosity, there are no generic processes for controlling the distribution of porosity within the resulting matrix. Motivated by the desire to create a flexible process for engineering heterogeneous foams, the authors have investigated how ultrasound, applied during the formation of a polyurethane foam, affects its cellular structure. The experimental results demonstrated how the parameters of ultrasound exposure (i.e. frequency and applied power) influenced the volume and distribution of pores within the final polyurethane matrix: the data demonstrates that porosity (i.e. volume fraction) varies in direct proportion to both the acoustic pressure and frequency of the ultrasound signal. The effects of ultrasound on porosity demonstrated by this work offer the prospect of a manufacturing process that can adjust the cellular geometry of foam and hence ensure that the resulting characteristics match the functional requirements.

  2. Computational Fluids Domain Reduction to a Simplified Fluid Network

    DTIC Science & Technology

    2012-04-19

    readily available read/ write software library. Code components from the open source projects OpenFoam and Paraview were explored for their adaptability...to the project. Both Paraview and OpenFoam read polyhedral mesh. OpenFoam does not read results data. Paraview actually allows for user “filters

  3. Impact of foamed matrix components on foamed concrete properties

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  4. From Stochastic Foam to Designed Structure: Balancing Cost and Performance of Cellular Metals

    PubMed Central

    Lehmhus, Dirk; Vesenjak, Matej

    2017-01-01

    Over the past two decades, a large number of metallic foams have been developed. In recent years research on this multi-functional material class has further intensified. However, despite their unique properties only a limited number of large-scale applications have emerged. One important reason for this sluggish uptake is their high cost. Many cellular metals require expensive raw materials, complex manufacturing procedures, or a combination thereof. Some attempts have been made to decrease costs by introducing novel foams based on cheaper components and new manufacturing procedures. However, this has often yielded materials with unreliable properties that inhibit utilization of their full potential. The resulting balance between cost and performance of cellular metals is probed in this editorial, which attempts to consider cost not in absolute figures, but in relation to performance. To approach such a distinction, an alternative classification of cellular metals is suggested which centers on structural aspects and the effort of realizing them. The range thus covered extends from fully stochastic foams to cellular structures designed-to-purpose. PMID:28786935

  5. Toucan and hornbill beaks: a comparative study.

    PubMed

    Seki, Yasuaki; Bodde, Sara G; Meyers, Marc A

    2010-02-01

    The structure and mechanical behavior of Toco Toucan (Ramphastos toco) and Wreathed Hornbill (Rhyticeros undulatus) beaks were compared. The beak of both species is a sandwich-structured composite, having an exterior, or rhamphotheca, consisting of multiple layers of keratin scales and a core composed of a fibrous network of bony closed-cell foam. The rhamphotheca is an arrangement of approximately 50microm diameter, overlapping, keratin tiles. The hornbill rhamphotheca exhibits a surface morphology on the ridged casque that is distinguishable from that observed on the bill proper. Intermediate filaments in the keratin matrix were observed by transmission electron microscopy. The Young's modulus measurements of toucan rhamphotheca indicate isotropy in longitudinal and transverse directions, whereas those of hornbill rhamphotheca may suggest anisotropy. The compressive response of beak foam is governed by brittle crushing behavior. The crushing strength of hornbill foam is six times higher than that of toucan foam. Micro- and nanoindentation hardness values were measured for rhamphotheca and foam trabeculae of toucan and hornbill specimens. The sandwich design of beaks was analyzed using the Karam-Gibson and Dawson-Gibson models. The presence of a cellular core increases the bending resistance (Brazier moment) by a factor of 3-6 while decreasing the compressive strength by only 50%.

  6. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in risk analysis software, and includes the effect of panel thickness, core density, and facesheet material properties. A comparison between the shielding performance of foam core sandwich panel structures and common MMOD shielding configurations is made for both conservative (additional 35% non-ballistic mass) and optimistic (additional mass equal to 30% of bumper mass) considerations. Suggestions to improve the shielding performance of foam core sandwich panels are made, including the use of outer mesh layers, intermediate fabric/composite layers, and varying pore density.

  7. Characterization of carbon nanofibre-reinforced polypropylene foams.

    PubMed

    Antunes, M; Velasco, J I; Realinho, V; Arencón, D

    2010-02-01

    In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.

  8. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting.

    PubMed

    Cheng, X Y; Li, S J; Murr, L E; Zhang, Z B; Hao, Y L; Yang, R; Medina, F; Wicker, R B

    2012-12-01

    Ti-6Al-4V alloy with two kinds of open cellular structures of stochastic foam and reticulated mesh was fabricated by additive manufacturing (AM) using electron beam melting (EBM), and microstructure and mechanical properties of these samples with high porosity in the range of 62%∼92% were investigated. Optical observations found that the cell struts and ligaments consist of primary α' martensite. These cellular structures have comparable compressive strength (4∼113 MPa) and elastic modulus (0.2∼6.3 GPa) to those of trabecular and cortical bone. The regular mesh structures exhibit higher specific strength than other reported metallic foams under the condition of identical specific stiffness. During the compression, these EBM samples have a brittle response and undergo catastrophic failure after forming crush band at their peak loading. These bands have identical angle of ∼45° with compression axis for the regular reticulated meshes and such failure phenomenon was explained by considering the cell structure. Relative strength and density follow a linear relation as described by the well-known Gibson-Ashby model but its exponential factor is ∼2.2, which is relative higher than the idea value of 1.5 derived from the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cellular Response to Doping of High Porosity Foamed Alumina with Ca, P, Mg, and Si.

    PubMed

    Soh, Edwin; Kolos, Elizabeth; Ruys, Andrew J

    2015-03-13

    Foamed alumina was previously synthesised by direct foaming of sulphate salt blends varying ammonium mole fraction (AMF), foaming heating rate and sintering temperature. The optimal product was produced with 0.33AMF, foaming at 100 °C/h and sintering at 1600 °C. This product attained high porosity of 94.39%, large average pore size of 300 µm and the highest compressive strength of 384 kPa. To improve bioactivity, doping of porous alumina by soaking in dilute or saturated solutions of Ca, P, Mg, CaP or CaP + Mg was done. Saturated solutions of Ca, P, Mg, CaP and CaP + Mg were made with excess salt in distilled water and decanted. Dilute solutions were made by diluting the 100% solution to 10% concentration. Doping with Si was done using the sol gel method at 100% concentration only. Cell culture was carried out with MG63 osteosarcoma cells. Cellular response to the Si and P doped samples was positive with high cell populations and cell layer formation. The impact of doping with phosphate produced a result not previously reported. The cellular response showed that both Si and P doping improved the biocompatibility of the foamed alumina.

  10. Performance evaluation of OpenFOAM on many-core architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzobohatý, Tomáš; Říha, Lubomír; Karásek, Tomáš, E-mail: tomas.karasek@vsb.cz

    In this article application of Open Source Field Operation and Manipulation (OpenFOAM) C++ libraries for solving engineering problems on many-core architectures is presented. Objective of this article is to present scalability of OpenFOAM on parallel platforms solving real engineering problems of fluid dynamics. Scalability test of OpenFOAM is performed using various hardware and different implementation of standard PCG and PBiCG Krylov iterative methods. Speed up of various implementations of linear solvers using GPU and MIC accelerators are presented in this paper. Numerical experiments of 3D lid-driven cavity flow for several cases with various number of cells are presented.

  11. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    NASA Astrophysics Data System (ADS)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  12. Mechanical properties of palm oil based bio-polyurethane foam of free rise and various densities

    NASA Astrophysics Data System (ADS)

    Hilmi, Hazmi; Zainuddin, Firuz; Cheng, Teoh Siew; Lan, Du Ngoc Uy

    2017-12-01

    Bio-foam was produced from palm oil-based polyol (POBP) and methylene diphenyl diisocyanate (MDI) with weight ratio of 1:1. The effect of opened mould (as free rise) and closed mould (control expansion) was investigated. Different densities of bio-polyurethane foam (0.3, 0.4 and 0.5 g.cm-3) were prepared using the closed mould system. The effect of density on morphology and compressive properties of bio-foam was studied. Results showed that bio-foam prepared by closed mould method possessed homogeneous cell structure and cell size compared to bio-foam prepared by opened mould. In addition, bio-foam using closed mould system had higher compression strength (0.47 MPa) than that of bio-foam using opened mould system (0.13 MPa). With higher density and lesser porosity, the compressive modulus and compressive strength of bio foams will be higher. The increase in compressive properties is due to the decrease in the cells size, more homogeneous cell structure and reduction in porosity content.

  13. Evaluation of foaming polypropylene modified with ramified polymer

    NASA Astrophysics Data System (ADS)

    Demori, Renan; de Azeredo, Ana Paula; Liberman, Susana A.; Mauler, Raquel S.

    2015-05-01

    Polypropylene foams have great industrial interest because of balanced physical and mechanical properties, recyclability as well as low material cost. During the foaming process, the elongational forces applied to produce the expanded polymer are strong enough to rupture cell walls. As a result, final foam has a high amount of coalesced as well as opened cells which decreases mechanical and also physical properties. To increase melt strength and also avoid the coalescence effect, one of the current solution is blend PP with ramified polymers as well as branched polypropylene (LCBPP) or ethylene-octene copolymer (POE). In this research to provide extensional properties and achieve uniform cellular structures of expanded PP, 20 phr of LCBPP or POE was added into PP matrix. The blend of PP with ramified polymers was prepared by twin-screw extrusion. Injection molding process was used to produce PP foams using azodicarbonamide (ACA) as chemical blowing agent. The morphological results of the expanded PP displayed a non-uniform geometrical cell, apparent density of 0.48 g/cm3 and cell density of 13.9.104 cell/cm3. Otherwise, the expanded PP blended with LCBPP or POE displayed a homogeneous cell structure and increased the amount of smaller cells (50-100 μm of size). The apparent density slightly increased with addition of LCBPP or POE, 0.64 and 0.57 g/cm3, respectively. Thus, the cell density reduced to 65% in PP/LCBPP 100/20 and 75% in the sample PP/POE 100/20 compared to expanded PP. The thermo-mechanical properties (DMTA) of PP showed specific stiffness of 159 MPa.cm-3.g-1, while the sample PP/LCBPP 100/20 increased the stiffness values of 10%. Otherwise, the expanded PP/POE 100/20 decreased the specific stiffness values at -30%, in relation to expanded PP. In summary, blending PP with ramified polymers showed increasing of the homogenous cellular structure as well as the amount of smaller cells in the expanded material.

  14. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng

    2016-04-01

    With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.

  15. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  16. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    DTIC Science & Technology

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  17. Noninvasive 3D Visualization of Defects and Crack Propagation in Layered Foam Structures by Phase Contrast Microimaging

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; DeCarlo, F.

    2006-01-01

    Applications of polymeric foams in our modern society continue to grow because of their light weight, high strength, excellent thermal and mechanical insulation, and the ease of engineering. Among others, closed-cell foam has been structurally used for thermally insulating the shuttle external tank. However, internal defects of the foams were difficult to observe non-invasively due to limited sensitivity to the low-density structures possessed by traditional imaging tools such as computed X-ray tomography By combining phase contrast X-ray imaging with pressure loading, we succeeded in precisely mapping intact cellular structure and defects inside the bulk of layered foam and visualizing its subsequent response to the pressure in three-dimensional space. The work demonstrated a powerfir1 approach for yielding insight into underlying problems in lightweight cellular materials otherwise unobtainable.

  18. Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio of -0.8

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Lakes, R. S.

    1993-01-01

    While conventional foams have positive Poisson's ratios (become smaller in cross-section when stretched and larger when compressed), foam materials have recently been defined which possess 'reentrant' cellular architectures; in these, inwardly-protruding cell ribs are responsible for negative Poisson's ratio behavior, yielding greater resilience than conventional foams. Double-exposure holographic interferometry is presently used to examine the microdeformation of a reentrant copper foam. Attention is given to the nonaffine (inhomogeneous) deformation of this foam.

  19. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The cellular structure provides strength through geometric regularity and functions as both honey storage vessels and incubators.

  20. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites

    PubMed Central

    Huber, Otto

    2017-01-01

    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  1. Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook

    2016-09-01

    The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.

  2. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  3. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    NASA Astrophysics Data System (ADS)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  4. Ultralight metal foams

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  5. Ultralight metal foams.

    PubMed

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-08

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  6. Processing of large grain Y-123 superconductors with pre-defined porous structures

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, E.; Babu, N. Hari; Shi, Y.; Cardwell, D. A.; Schmitz, G. J.

    2005-02-01

    Porous superconductors have inherent cooling advantages over their bulk counterparts and, as a result, are emerging as an important class of materials for practical applications. Single-domain Y-Ba-Cu-O (YBCO) foams processed with a pre-defined, open porous structure, for example, have significant potential for use as elements in resistive superconducting fault current limiters. In this case, the interconnected porosity is ideal for producing reinforced composites with improved mechanical and heat conducting properties. In this paper we describe a few simple methods for fabricating large grain YBCO superconductors with various predefined porous structures via an infiltration process from tailored, porous Y2BaCuO5 (Y-211) pre-forms manufactured by a variety of techniques, including slurry-coating of standard polyurethane foams to replicate their structure. Foams produced by this method typically have a strut thickness of a few hundred µm and pore sizes ranging from 10 to 100 pores per inch (PPI). Foams with increased strut thickness of up to millimetre dimensions can be produced by embedding organic ball spacers within the Y-211 pre-form followed by a burn-out and sintering process. Single-domain YBCO bulk materials with cellular and pre-defined 3D interconnected porosity may be produced by a similar process using tailored wax structures in Y-211 castings.

  7. Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.

    2008-01-01

    An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.

  8. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1983-01-01

    Copolyimide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  9. Swarm intelligence application for optimization of CO2 diffusivity in polystyrene-b-polybutadiene-b-polystyrene (SEBS) foaming

    NASA Astrophysics Data System (ADS)

    Sharudin, Rahida Wati; Ajib, Norshawalina Muhamad; Yusoff, Marina; Ahmad, Mohd Aizad

    2017-12-01

    Thermoplastic elastomer SEBS foams were prepared by using carbon dioxide (CO2) as a blowing agent and the process is classified as physical foaming method. During the foaming process, the diffusivity of CO2 need to be controlled since it is one of the parameter that will affect the final cellular structure of the foam. Conventionally, the rate of CO2 diffusion was measured experimentally by using a highly sensitive device called magnetic suspension balance (MSB). Besides, this expensive MSB machine is not easily available and measurement of CO2 diffusivity is quite complicated as well as time consuming process. Thus, to overcome these limitations, a computational method was introduced. Particle Swarm Optimization (PSO) is a part of Swarm Intelligence system which acts as a beneficial optimization tool where it can solve most of nonlinear complications. PSO model was developed for predicting the optimum foaming temperature and CO2 diffusion rate in SEBS foam. Results obtained by PSO model are compared with experimental results for CO2 diffusivity at various foaming temperature. It is shown that predicted optimum foaming temperature at 154.6 °C was not represented the best temperature for foaming as the cellular structure of SEBS foamed at corresponding temperature consisted pores with unstable dimension and the structure was not visibly perceived due to foam shrinkage. The predictions were not agreed well with experimental result when single parameter of CO2 diffusivity is considered in PSO model because it is not the only factor that affected the controllability of foam shrinkage. The modification on the PSO model by considering CO2 solubility and rigidity of SEBS as additional parameters needs to be done for obtaining the optimum temperature for SEBS foaming. Hence stable SEBS foam could be prepared.

  10. Local delivery of fluorescent dye for fiber-optics confocal microscopy of the living heart.

    PubMed

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2014-01-01

    Fiber-optics confocal microscopy (FCM) is an emerging imaging technology with various applications in basic research and clinical diagnosis. FCM allows for real-time in situ microscopy of tissue at sub-cellular scale. Recently FCM has been investigated for cardiac imaging, in particular, for discrimination of cardiac tissue during pediatric open-heart surgery. FCM relies on fluorescent dyes. The current clinical approach of dye delivery is based on systemic injection, which is associated with high dye consumption, and adverse clinical events. In this study, we investigated approaches for local dye delivery during FCM imaging based on dye carriers attached to the imaging probe. Using three-dimensional confocal microscopy, automated bench tests, and FCM imaging we quantitatively characterized dye release of carriers composed of open-pore foam only and foam loaded with agarose hydrogel. In addition, we compared local dye delivery with a model of systemic dye delivery in the isolated perfused rodent heart. We measured the signal-to-noise ratio (SNR) of images acquired in various regions of the heart. Our evaluations showed that foam-agarose dye carriers exhibited a prolonged dye release vs. foam-only carriers. Foam-agarose dye carriers allowed reliable imaging of 5-9 lines, which is comparable to 4-8 min of continuous dye release. Our study in the living heart revealed that the SNR of FCM images using local and systemic dye delivery is not different. However, we observed differences in the imaged tissue microstructure with the two approaches. Structural features characteristic of microvasculature were solely observed for systemic dye delivery. Our findings suggest that local dye delivery approach for FCM imaging constitutes an important alternative to systemic dye delivery. We suggest that the approach for local dye delivery will facilitate clinical translation of FCM, for instance, for FCM imaging during pediatric heart surgery.

  11. Comparison/Validation Study of Lattice Boltzmann and Navier Stokes for Various Benchmark Applications: Report 1 in Discrete Nano-Scale Mechanics and Simulations Series

    DTIC Science & Technology

    2014-09-15

    solver, OpenFOAM version 2.1.‡ In particular, the incompressible laminar flow equations (Eq. 6-8) were solved in conjunction with the pressure im- plicit...central differencing and upwinding schemes, respectively. Since the OpenFOAM code is inherently transient, steady-state conditions were ob- tained...collaborative effort between Kitware and Los Alamos National Laboratory. ‡ OpenFOAM is a free, open-source computational fluid dynamics software developed

  12. Architected cellular ceramics with tailored stiffness via direct foam writing

    NASA Astrophysics Data System (ADS)

    Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.

    2017-02-01

    Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (˜6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes.

  13. Architected cellular ceramics with tailored stiffness via direct foam writing

    PubMed Central

    Muth, Joseph T.; Dixon, Patrick G.; Woish, Logan; Gibson, Lorna J.; Lewis, Jennifer A.

    2017-01-01

    Hierarchical cellular structures are ubiquitous in nature because of their low-density, high-specific properties, and multifunctionality. Inspired by these systems, we created lightweight ceramic architectures composed of closed-cell porous struts patterned in the form of hexagonal and triangular honeycombs by direct foam writing. The foam ink contains bubbles stabilized by attractive colloidal particles suspended in an aqueous solution. The printed and sintered ceramic foam honeycombs possess low relative density (∼6%). By tailoring their microstructure and geometry, we created honeycombs with different modes of deformation, exceptional specific stiffness, and stiffness values that span over an order of magnitude. This capability represents an important step toward the scalable fabrication of hierarchical porous materials for applications, including lightweight structures, thermal insulation, tissue scaffolds, catalyst supports, and electrodes. PMID:28179570

  14. Injectable foams for regenerative medicine.

    PubMed

    Prieto, Edna M; Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2014-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. © 2013 Wiley Periodicals, Inc.

  15. Injectable Foams for Regenerative Medicine

    PubMed Central

    Prieto, Edna M.; Page, Jonathan M.; Harmata, Andrew J.

    2013-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements, have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable calcium phosphate cements, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and non-cytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. PMID:24127230

  16. Structure and compressive strength of silicon open-cell foam obtained by a centrifugal separation method

    NASA Astrophysics Data System (ADS)

    Cho, Ju-Young; Kim, Ki-Young

    2013-03-01

    The present study describes a new way to make an open-cell silicon foam from an Al-Si alloy melt by centrifugation during its solidification. The effects of the silicon content and the chute diameter of the crucible on the morphology, the density and the compressive strength of the silicon foams were investigated. A vertical-type centrifugal separator was designed to push the unfrozen Al-Si melt outside, leaving only the silicon foam inside the crucible during rotation. Alloys in the Al-Si system with silicon contents of 40 and 50 wt% were prepared by an electrical resistance furnace, and the revolution of the centrifugal separator was controlled to fabricate the foam. Open-cell silicon foams could be obtained successfully. The apparent density and the compressive strength were in the ranges of 620-820 kg/m3 and 7.5-14.5 MPa, respectively.

  17. A comparison of mechanical properties of some foams and honeycombs

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  18. Acoustic and vibrational damping in porous solids.

    PubMed

    Göransson, Peter

    2006-01-15

    A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.

  19. 46 CFR 160.010-1 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Specification, Plastic Material, Cellular Polyurethane, Foam-In-Place, Rigid (2 and 4 Pounds per Cubic Foot....mil/quicksearch/. (1) MIL-P-19644C, Military Specification, Plastic Molding Material (Polystyrene Foam...

  20. 46 CFR 160.010-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Specification, Plastic Material, Cellular Polyurethane, Foam-In-Place, Rigid (2 and 4 Pounds per Cubic Foot....mil/quicksearch/. (1) MIL-P-19644C, Military Specification, Plastic Molding Material (Polystyrene Foam...

  1. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All... for the purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed...

  2. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All terms used in... purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed physical...

  3. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All... for the purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed...

  4. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All terms used in... purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed physical...

  5. Propagation of sound in highly porous open-cell elastic foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1983-01-01

    This work presents both theoretical predictions and experimental measurements of attenuation and progressive phase constants of sound in open-cell, highly porous, elastic polyurethane foams. The foams are available commercially in graded pore sizes for which information about the static flow resistance, thermal time constant, volume porosity, dynamic structure factor, and speed of sound is known. The analysis is specialized to highly porous foams which can be efficient sound absorbers at audio frequencies. Negligible effect of internal wave coupling on attenuation and phase shift for the frequency range 16-6000 Hz was predicted and no experimentally significant effects were observed in the bulk samples studied. The agreement between predictions and measurements in bulk materials is excellent. The analysis is applicable to both the regular and compressed elastic open-cell foams.

  6. The distribution and mechanism of pore formation in copper foams fabricated by Lost Carbonate Sintering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahzeydi, Mohammad Hosein; Parvanian, Amir Masoud; Panjepour, Masoud, E-mail: panjepour@cc.iut.ac.ir

    2016-01-15

    In this research, utilizing X-ray computed tomography (XCT), geometrical characterization, and pore formation mechanisms of highly porous copper foams manufactured by powder metallurgical (PM) process are investigated. Open-cell copper foams with porosity percentages of 60% and 80% and with a pore size within the range of 300–600 μm were manufactured by using potassium carbonate as a space holder agent via the Lost Carbonate Sintering (LCS) technique. XCT and SEM were also employed to investigate the three-dimensional structure of foams and to find the effect of the parameters of the space holders on the structural properties of copper foams. The resultmore » showed an excellent correlation between the structural properties of the foams including the size and shape of the pores, porosity percentage, volume percentage, particle size, and the shape of the sacrificial agent used. Also, the advanced image analysis of XCT images indicated fluctuations up to ± 10% in porosity distribution across different cross-sections of the foams. Simultaneous thermal analysis (STA: DTA–TG) was also used to study the thermal history of the powders used during the manufacturing process of the foams. The results indicated that the melting and thermal decomposition of the potassium carbonate occurred simultaneously at 920 °C and created the porous structure of the foams. By combining the STA result with the result of the tension analysis of cell walls, the mechanisms of open-pore formation were suggested. In fact, most open pores in the samples were formed due to the direct contact of potassium carbonate particles with each other in green compact. Also, it was found that the thermal decomposition of potassium carbonate particles into gaseous CO{sub 2} led to the production of gas pressure inside the closed pores, which eventually caused the creation of cracks on the cell walls and the opening of the pores in foam's structure. - Highlights: • Structural characterization of copper foam produced by LCS method is investigated by tomography images. • The ability of LCS technique to control structural features of produced foams was proved. • The mechanisms of open pores formation were presented.« less

  7. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1991-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  8. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1990-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  9. Stochastic metallic-glass cellular structures exhibiting benchmark strength.

    PubMed

    Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L

    2008-10-03

    By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.

  10. Sound absorption characteristics of aluminum foam with spherical cells

    NASA Astrophysics Data System (ADS)

    Li, Yunjie; Wang, Xinfu; Wang, Xingfu; Ren, Yuelu; Han, Fusheng; Wen, Cuie

    2011-12-01

    Aluminum foams were fabricated by an infiltration process. The foams possess spherical cells with a fixed porosity of 65% and varied pore sizes which ranged from 1.3 to 1.9 mm. The spherical cells are interconnected by small pores or pore openings on the cell walls that cause the foams show a characteristic of open cell structures. The sound absorption coefficient of the aluminum foams was measured by a standing wave tube and calculated by a transfer function method. It is shown that the sound absorption coefficient increases with an increase in the number of pore openings in the unit area or with a decrease of the diameter of the pore openings in the range of 0.3 to 0.4 mm. If backed with an air cavity, the resonant absorption peaks in the sound absorption coefficient versus frequency curves will be shifted toward lower frequencies as the cavity depth is increased. The samples with the same pore opening size but different pore size show almost the same absorption behavior, especially in the low frequency range. The present results are in good agreement with some theoretical predictions based on the acoustic impedance measurements of metal foams with circular apertures and cylindrical cavities and the principle of electroacoustic analogy.

  11. Experimental analysis of R134a flow boiling inside a 5 PPI copper foam

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-04-01

    Heat dissipation is one of the most important issues for the reliability of electronic equipment. Boiling can be a very efficient heat transfer mechanism when used to face with the electronic technology needs of efficient and compact heat sinks. Recently, cellular structured materials both stochastic and periodic, particularly open cell metal foams, have been proposed as possible enhanced surfaces to lower the junction temperatures at high heat fluxes. Up today, most of the research on metal foams only regards single phase flow, whereas the two phase flow is still almost unexplored. This paper presents an experimental study on the heat transfer of R134a during flow boiling inside a 5 PPI (Pores Per linear Inch) copper foam, which is 5 mm high, 10 mm wide and 200 mm long, and it is brazed on a 10 mm thick copper plate. The experimental measurements were carried out by imposing three different heat fluxes (50, 75, and 100 kW m-2) and by varying the refrigerant mass velocity between 50 and 200 kg m-2 s-1 and the vapour quality from 0.2 to 0.90, at constant saturation temperature (30°C). The effects of the refrigerant mass flow rate, heat flux and vapour quality on the heat transfer coefficient, dry out phenomenon, and pressure drop are studied.

  12. Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion.

    PubMed

    Sen, T; Tiddy, G J T; Casci, J L; Anderson, M W

    2003-09-07

    The room-temperature synthesis of a macro-mesoporous silica material during the natural creaming process of an oil-in-water emulsion is reported. The material has 3-dimensional interconnected macropores with a strut-like structure similar to meso-cellular silica foams with mesoporous walls of worm-hole structure. The material has very high surface area (approximately 800 m2 g(-1)) with narrow mesopore size distribution.

  13. Investigation of the effectiveness of nutrient release from sludge foam after hybrid pretreatment processes by IR analysis and EDX Quantification.

    PubMed

    Machnicka, Alicja; Grübel, Klaudiusz

    2016-12-01

    One of the problems in wastewater treatment technologies is the formation of foam/scum. It is thought that filamentous microorganisms are responsible for foam formation and foam elimination/destruction can be carried out by various methods, among which disintegration is included. Hybrid disintegration (chemical decomposition and hydrodynamic cavitation) of foam microorganisms results in the transfer of phosphates, ammonium nitrogen, magnesium and potassium from the foam solids into the liquid phase. Application of both methods as a hybrid pretreatment process caused an increase in the concentration of phosphates of about 650 mg [Formula: see text] L(-1) and ammonium nitrogen of about 30 mg [Formula: see text] L(-1). The concentration of Mg(2+) and K(+) in the solution increased from 6.8 and 26.1 mg Mg(2+) L(-1) to 32.2 and 82.2 mg K(+) L(-1), respectively. The presence of nutrients and metal cations in the solid phase of foam was acknowledged by EDX Quantification. The confirmation of physico-chemical changes and release of cellular matter as a result of cellular lysis (hybrid disintegration) was done by infrared analysis. It was demonstrated that the disintegration of foam permits the removal of a part of nutrients in the form of struvite.

  14. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    PubMed

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  16. A study of tensile test on open-cell aluminum foam sandwich

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  17. Simulated Tip Rub Testing of Low-Density Metal Foam

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jones, Michael G.

    2009-01-01

    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  18. Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures

    PubMed Central

    Liu, Jiaan; Si, Fujian; Zhu, Xianyong; Liu, Yaohui; Zhang, Jiawei; Liu, Yan; Zhang, Chengchun

    2017-01-01

    Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation. PMID:28772456

  19. Foamed-metal-based catalytic afterburners in automotive exhaust systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestryakov, A.N.; Ametov, V.A.

    1994-08-10

    Properties of exhaust afterburning catalysts based on porous cellular materials (foamed metals) have been investigated. Catalysts containing oxides of base metals provide a two-to-threefold reduction of CO emission. Platinum-containing foamed catalysts lower the toxicity of exhaust by 85-90%. A favorable effect is demonstrated by the combined use of afterburners and a motor oil additive based on ultradispersed copper.

  20. The utilization of stone ash on cellular lightweight concrete

    NASA Astrophysics Data System (ADS)

    Karolina, R.; Sianipar, Y. G. C.

    2018-02-01

    Lightweight concrete brick is a brick which made of cement, sand, water, and foam as the basic composition. This brick are divided into 2, based on the foam used such as AAC (Autoclave Aerated Concrete) that use aluminium paste and CLC(Cellular Lightweight Concrete) that use foaming agent from BASF as its foaming material. In this trial, the lightweight brick that are ging to be use are the CLC with foaming agent as its foaming material with the mixture of stone ash that are produced by the Stone Crusher with spesific gravity 2666 kg/m3 as their partly sand substitution . In this research, the stone ash variant that are used are 10%, 15%, and 20% from the amount of sand that planned before. After casting, the result of the 10% will receive a reduction of compressive strength while an increasing in absorption as 25.07% and 39.005% and the 15% variant will recieve a reduction of compressive strength as much as 65.8% and a reduction of absorption as much as 17.441% and the 20% variant will recieve a reduction of compressive strength as much as 67.4% while an increasing of absorption as much as 17.956%.

  1. 46 CFR 160.010-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (Polystyrene Foam, Expanded Bead), (July 10, 1970), IBR approved for § 160.010-5 (“MIL-P-19644C”). (2) MIL-P-21929B, Military Specification, Plastic Material, Cellular Polyurethane, Foam-In-Place, Rigid (2 and 4...

  2. Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc

    NASA Astrophysics Data System (ADS)

    Hossein Elahi, S.; Arabi Jeshvaghani, R.; Shahverdi, H. R.

    2015-05-01

    In this paper, the influence of calcium addition and melt stirring on the structure and foaming behavior of molten zinc was investigated. In this regard, zinc foam was produced by Alporas method (in which foam alloy melts and titanium hydride is used as a blowing agent). Optical microscopy and scanning electron microscopy were used to investigate the phase distribution and structure in the foams. Results showed that addition of calcium increased foamability and foam efficiency of the molten zinc. In contrast, stirring had no significant effect on the foaming behavior of the melt. Microstructural examinations indicated that improving the foaming behavior of molten zinc was attributed to the formation of CaZn13 intermetallic phase and ZnO particles in the foam structure, which increased viscosity and reduced drainage rate.

  3. Holographic study of conventional and negative Poisson's ratio metallic foams - Elasticity, yield and micro-deformation

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Lakes, R. S.

    1991-01-01

    An experimental study by holographic interferometry is reported of the following material properties of conventional and negative Poisson's ratio copper foams: Young's moduli, Poisson's ratios, yield strengths and characteristic lengths associated with inhomogeneous deformation. The Young's modulus and yield strength of the conventional copper foam were comparable to those predicted by microstructural modeling on the basis of cellular rib bending. The reentrant copper foam exhibited a negative Poisson's ratio, as indicated by the elliptical contour fringes on the specimen surface in the bending tests. Inhomogeneous, non-affine deformation was observed holographically in both foam materials.

  4. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  5. Orbital fabrication of aluminum foam and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  6. Surface acoustic admittance of highly porous open-cell, elastic foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1983-01-01

    This work presents a comprehensive study of the surface acoustic admittance properties of graded sizes of open-cell foams that are highly porous and elastic. The intrinsic admittance as well as properties of samples of finite depth were predicted and then measured for sound at normal incidence over a frequency range extending from about 35-3500 Hz. The agreement between theory and experiment for a range of mean pore size and volume porosity is excellent. The implications of fibrous structure on the admittance of open-cell foams is quite evident from the results.

  7. Properties of rigid polyurethane foams filled with glass microspheres

    NASA Astrophysics Data System (ADS)

    Yakushin, V.; Bel'kova, L.; Sevastyanova, I.

    2012-11-01

    The effect of hollow glass microspheres with a density of 125 kg/m3 on the properties of low-density (54-90 kg/m3) rigid polyurethane foams is investigated. The thermal expansion coefficient of the foams and their properties in tension and compression in relation to the content of the microspheres (0.5-5 wt.%) are determined. An increase in the characteristics of the material in compression in the foam rise direction with increasing content of filler is revealed. The limiting content of the microspheres above which the mechanical characteristics of the filled foams begin to decrease is found. The distribution of the microspheres in elements of the cellular structure of the polyurethane foams is examined.

  8. Manufacturing of Open-Cell Zn-22Al-2Cu Alloy Foams by a Centrifugal-Replication Process

    NASA Astrophysics Data System (ADS)

    Sánchez, A.; Cruz, A.; Rivera, J. E.; Romero, J. A.; Suárez, M. A.; Gutiérrez, V. H.

    2018-01-01

    Centrifugal force was used to produce open-cell Zn-22Al-2Cu alloy foams by the replication method. Three different sizes (0.50, 0.69, and 0.95 mm) of NaCl spherical particles were used as space holders. A relatively low infiltration pressure was required to infiltrate completely the liquid metal into the three pore sizes, and it was determined based on the centrifugation system parameters. The infiltration pressure required was decreased when the diameter of the particle was increased. The porosity of the foam was increased from 58 to 63 pct, when the pore size was increased from 0.50 to 0.95 mm, while the relative density was decreased from 0.42 to 0.36. The NaCl preform was preheated to avoid the freezing and to keep the rheological properties of the melt. The centrifugal-replication method is a suitable technique for the fabrication of open-cell Zn-Al-Cu alloy foams with small pore size. The compressive mechanical properties of the open-cell Zn-22Al-2Cu foams increased when the pore size decreased.

  9. A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents

    DTIC Science & Technology

    2012-09-30

    for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow

  10. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  11. Air Activated Self-Decontaminating Polydicyclopentadiene PolyHIPE Foams for Rapid Decontamination of Chemical Warfare Agents.

    PubMed

    McGann, Christopher L; Daniels, Grant C; Giles, Spencer L; Balow, Robert B; Miranda-Zayas, Jorge L; Lundin, Jeffrey G; Wynne, James H

    2018-06-01

    The threat of chemical warfare agents (CWA) compels research into novel self-decontaminating materials (SDM) for the continued safety of first-responders, civilians, and active service personnel. The capacity to actively detoxify, as opposed to merely sequester, offending agents under typical environmental conditions defines the added value of SDMs in comparison to traditional adsorptive materials. Porous polymers, synthesized via the high internal phase emulsion (HIPE) templating, provide a facile fabrication method for materials with permeable open cellular structures that may serve in air filtration applications. PolyHIPEs comprising polydicyclopentadiene (polyDCPD) networks form stable hydroperoxide species following activation in air under ambient conditions. The hydroperoxide-containing polyDCPD materials react quickly with CWA simulants, Demeton-S and 2-chloroethyl ethyl sulfide, forming oxidation products as confirmed via gas chromatography mass spectrometry. The simplicity of the detoxification chemistry paired with the porous foam form factor presents an exciting opportunity for the development of self-decontaminating filter media. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Open-celled polyurethane foam

    NASA Technical Reports Server (NTRS)

    Russell, L. W.

    1970-01-01

    Open-celled polyurethane foam has a density of 8.3 pounds per cubic foot and a compressive strength of 295 to 325 psi. It is useful as a porous spacer in layered insulation and as an insulation material in vacuum tight systems.

  13. Multiple-channel detection of cellular activities by ion-sensitive transistors

    NASA Astrophysics Data System (ADS)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  14. Springback Foam

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A decade ago, NASA's Ames Research Center developed a new foam material for protective padding of airplane seats. Now known as Temper Foam, the material has become one of the most widely-used spinoffs. Latest application is a line of Temper Foam cushioning produced by Edmont-Wilson, Coshocton, Ohio for office and medical furniture. The example pictured is the Classic Dental Stool, manufactured by Dentsply International, Inc., York, Pennsylvania, one of four models which use Edmont-Wilson Temper Foam. Temper Foam is an open-cell, flameresistant foam with unique qualities.

  15. Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material.

    PubMed

    Arabnejad Khanoki, Sajad; Pasini, Damiano

    2012-03-01

    Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous distribution of material properties. A methodology based on multiscale mechanics and design optimization is introduced to synthesize a graded cellular implant that can minimize concurrently bone resorption and implant interface failure. The procedure is applied to the design of a 2D left implanted femur with optimized gradients of relative density. To assess the manufacturability of the graded cellular microstructure, a proof-of-concept is fabricated by using rapid prototyping. The results from the analysis are used to compare the optimized cellular implant with a fully dense titanium implant and a homogeneous foam implant with a relative density of 50%. The bone resorption and the maximum value of interface stress of the cellular implant are found to be over 70% and 50% less than the titanium implant while being 53% and 65% less than the foam implant.

  16. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less

  17. Non-linear properties of metallic cellular materials with a negative Poisson's ratio

    NASA Technical Reports Server (NTRS)

    Choi, J. B.; Lakes, R. S.

    1992-01-01

    Negative Poisson's ratio copper foam was prepared and characterized experimentally. The transformation into re-entrant foam was accomplished by applying sequential permanent compressions above the yield point to achieve a triaxial compression. The Poisson's ratio of the re-entrant foam depended on strain and attained a relative minimum at strains near zero. Poisson's ratio as small as -0.8 was achieved. The strain dependence of properties occurred over a narrower range of strain than in the polymer foams studied earlier. Annealing of the foam resulted in a slightly greater magnitude of negative Poisson's ratio and greater toughness at the expense of a decrease in the Young's modulus.

  18. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  19. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  20. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... Flexible Polyurethane Foam Production § 63.1296 Standards for slabstock flexible polyurethane foam... emissions from leaks from transfer pumps, valves, connectors, pressure-relief valves, and open-ended lines...

  1. A Review on Liquid Spray Models for Diesel Engine Computational Analysis

    DTIC Science & Technology

    2014-05-01

    developed by Los Alamos National Laboratories, USA (15); OpenFoam developed by OpenCFD, U.K.; and AVBP developed by Centre Européen de Recherche et de...Validating Non-Reacting Spray Cases With KIVA-3V and OpenFoam , SAE technical paper 2013-01-1595, 2013. 17. Senecal, P.; Pomraning, E.; Richards, K

  2. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing themore » core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.« less

  3. How to Study Thermal Applications of Open-Cell Metal Foam: Experiments and Computational Fluid Dynamics

    PubMed Central

    De Schampheleire, Sven; De Jaeger, Peter; De Kerpel, Kathleen; Ameel, Bernd; Huisseune, Henk; De Paepe, Michel

    2016-01-01

    This paper reviews the available methods to study thermal applications with open-cell metal foam. Both experimental and numerical work are discussed. For experimental research, the focus of this review is on the repeatability of the results. This is a major concern, as most studies only report the dependence of thermal properties on porosity and a number of pores per linear inch (PPI-value). A different approach, which is studied in this paper, is to characterize the foam using micro tomography scans with small voxel sizes. The results of these scans are compared to correlations from the open literature. Large differences are observed. For the numerical work, the focus is on studies using computational fluid dynamics. A novel way of determining the closure terms is proposed in this work. This is done through a numerical foam model based on micro tomography scan data. With this foam model, the closure terms are determined numerically. PMID:28787894

  4. 46 CFR 164.015-1 - Applicable specifications and standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet... following specification and standard, of the issue in effect on the date the plastic foam material is...) ASTM D4986-98, Standard Test Method for Horizontal Burning Characteristics of Cellular Polymeric...

  5. 46 CFR 160.035-1 - Applicable specifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Laminates, Fibrous Glass Reinforced, Marine Structural. MIL-P-19644—Plastic Foam, Molded Polystyrene..., Polyester, Low Pressure Laminating, Fire Retardant. MIL-P-21929—Plastic Material, Cellular Polyurethane, Rigid, Foam-In-Place, Low Density. (3) Federal specifications: TT-P-59—Paint, Ready-Mixed, International...

  6. 46 CFR 160.035-1 - Applicable specifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Laminates, Fibrous Glass Reinforced, Marine Structural. MIL-P-19644—Plastic Foam, Molded Polystyrene..., Polyester, Low Pressure Laminating, Fire Retardant. MIL-P-21929—Plastic Material, Cellular Polyurethane, Rigid, Foam-In-Place, Low Density. (3) Federal specifications: TT-P-59—Paint, Ready-Mixed, International...

  7. Design and testing of botanical thermotropic actuator mechanisms in thermally adaptive building coverings

    NASA Astrophysics Data System (ADS)

    Barrett, Ronald M.; Barrett, Ronald P.; Barrett, Cassandra M.

    2017-09-01

    This paper lays out the inspiration, operational principles, analytical modeling and coupon testing of a new class of thermally adaptive building coverings. The fundamental driving concepts for these coverings are derived from various families of thermotropic plant structures. Certain plant cellular structures like those in Mimosa pudica (Sensitive Plant), Rhododendron leaves or Albizia julibrissin (Mimosa Tree), exhibit actuation physiology which depends on changes in cellular turgor pressures to generate motion. This form of cellular action via turgor pressure manipulation is an inspiration for a new field of thermally adaptive building coverings which use various forms of cellular foam to aid or enable actuation much like plant cells are used to move leaves. When exposed to high solar loading, the structures use the inherent actuation capability of pockets of air trapped in closed cell foam as actuators to curve plates upwards and outwards. When cold, these same structures curve back towards the building forming large convex pockets of dead air to insulate the building. This paper describes basic classical laminated plate theory models comparing theory and experiment of such coupons containing closed-cell foam actuators. The study concludes with a global description of the effectiveness of this class of thermally adaptive building coverings.

  8. Large Eddy Simulations using oodlesDST

    DTIC Science & Technology

    2016-01-01

    Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes

  9. PUFoam : A novel open-source CFD solver for the simulation of polyurethane foams

    NASA Astrophysics Data System (ADS)

    Karimi, M.; Droghetti, H.; Marchisio, D. L.

    2017-08-01

    In this work a transient three-dimensional mathematical model is formulated and validated for the simulation of polyurethane (PU) foams. The model is based on computational fluid dynamics (CFD) and is coupled with a population balance equation (PBE) to describe the evolution of the gas bubbles/cells within the PU foam. The front face of the expanding foam is monitored on the basis of the volume-of-fluid (VOF) method using a compressible solver available in OpenFOAM version 3.0.1. The solver is additionally supplemented to include the PBE, solved with the quadrature method of moments (QMOM), the polymerization kinetics, an adequate rheological model and a simple model for the foam thermal conductivity. The new solver is labelled as PUFoam and is, for the first time in this work, validated for 12 different mixing-cup experiments. Comparison of the time evolution of the predicted and experimentally measured density and temperature of the PU foam shows the potentials and limitations of the approach.

  10. Metallized polymeric foam material

    NASA Technical Reports Server (NTRS)

    Birnbaum, B. A.; Bilow, N.

    1974-01-01

    Open-celled polyurethane foams can be coated uniformly with thin film of metal by vapor deposition of aluminum or by sensitization of foam followed by electroless deposition of nickel or copper. Foam can be further processed to increase thickness of metal overcoat to impart rigidity or to provide inert surface with only modest increase in weight.

  11. Effect of the cellular structure on thermal conductivity of rigid closed-cell foam polymers during long-term aging

    NASA Astrophysics Data System (ADS)

    Dementyev, A. G.; Dementyev, M. A.; Zinger, P. A.; Metlyakova, I. R.

    1999-03-01

    The thermal conductivity of rigid closed-cell polyurethane foams during long-term aging has been studied. The similarity between the kinetics of changes in the physical and mechanical characteristics of PU foams on progressive aging is established, which is attributed to the effect of matrix destruction. It is found that rigid foams have cell walls of various strength, whose impact on the kinetics of changes in the physical characteristics of the foams during long-term aging is ascertained. The results of predicting the thermal conductivity of PU foams by the method of temperature-time analogy and establishing the limits of its application are discussed. The research presented is of interest both in determining the foam durability and in replacing freons by alternative, ecologically less harmful blowing agents.

  12. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    NASA Technical Reports Server (NTRS)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  13. Gravity Effects in Small-Scale Structural Modeling

    DTIC Science & Technology

    1988-12-01

    attenuating material (Reference 23). The materials tested were cellular concrete with fly ash, expanded polystyrene concrete with fly ash, foamed...polyurethane, foamed sulfer and molded expanded polystyrene . The studies showed that with proper adjustments in the cement content, water-cement ratio and foam...Compression (Ou,c) 4000 100 Tension (Ou,t) 400 10 E/Quc 1000 1000 Ou,c/Ou,t 10 10 Further analysis of the properties of expanded polystyrene concrete with

  14. Prospective of employing high porosity open-cell metal foams in passive cryogenic radiators for space applications

    NASA Astrophysics Data System (ADS)

    Tisha, Dixit; Indranil, Ghosh

    2017-02-01

    Passive cryogenic radiators work on the principle of dissipating heat to the outer space purely by radiation. High porosity open-cell metal foams are a relatively new class of extended surfaces. These possess the advantages of high surface area density and low weight, characteristics which the space industry looks for. In case of radiative heat transfer, the porous nature of metal foams permits a deeper penetration of the incident radiation. Consequently, the heat transfer area participating in radiative heat exchange increases thereby enhancing the heat transfer rate. However, effective heat conduction in between the foam struts reduces as a result of the void spaces. These two conflicting phenomenon for radiation heat transfer in metal foams have been studied in this work. Similar to the foam conduction-convection heat transfer analysis, a conduction-radiation heat transfer model has been developed for metal foams in analogy with the conventional solid fin theory. Metal foams have been theoretically represented as simple cubic structures. A comparison of the radiative heat transfer through metal foams and solid fins attached to a surface having constant temperature has been presented. Effect of changes in foam characteristic properties such as porosity and pore density have also been studied.

  15. Free Open Access Medical Education (FOAM) Resources in a Team-Based Learning Educational Series.

    PubMed

    Fallon, Timothy; Strout, Tania D

    2018-01-01

    Although Free Open Access Medical Education (FOAM) has become popular within emergency medicine, concerns exist regarding its role in resident education. We sought to develop an educational intervention whereby residents could review FOAM resources while maintaining faculty oversight. We created a novel curriculum pairing FOAM from the Academic Life in Emergence Medicine (ALiEM) Approved Instructional Resources (Air) series with a team-based learning (TBL) format. Residents have an opportunity to engage with FOAM in a structured setting with faculty input on possible practice changes. This series has been well-received by residents and appears to have increased engagement with core content material. Qualitative feedback from residents on this series has been positive and we believe this is the first described use of TBL in emergency medicine.

  16. Co-doped titanium oxide foam and water disinfection device

    DOEpatents

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  17. Investigating acoustic-induced deformations in a foam using multiple light scattering.

    PubMed

    Erpelding, M; Guillermic, R M; Dollet, B; Saint-Jalmes, A; Crassous, J

    2010-08-01

    We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.

  18. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  19. Using Shock Waves to Improve the Acoustic Properties of Closed-Cell Foams

    NASA Astrophysics Data System (ADS)

    Brouillette, M.; Hébert, C.; Atalla, N.; Doutres, O.

    Foam microstructure can be seen as a collection of interlinked struts forming a packing of cells interconnected to others through pores. Materials with a totality of pores closed by thin membranes are called closed-cell foams. The filtration and acoustic efficiency of closed-cell foams is poor compared to open-cell foams since it is very difficult for the fluid or the acoustic waves to penetrate inside the material.

  20. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus simultaneously, over a wide range of relative densities, greatly expanding the property space of available materials with a pragmatic manufacturable structure. A variety of other novel and previously studied ordered foam topologies are also presented that are largely representative of the spectrum of performance of such materials, shedding insight into the behavior of all cellular materials.

  1. Design of numerical model for thermoacoustic devices using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Tisovsky, Tomas; Vit, Tomas

    2017-09-01

    Thermoacoustic devices are increasingly popular especially because of their construction simplicity and the ability to easily convert waste heat into the form of usable energy. Aim of this paper is to introduce some of the effective procedures for creating a complex mathematical model of thermoacoustic devices in OpenFOAM.

  2. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  3. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  4. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  5. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  6. 45 CFR 671.12 - Waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chloride (PVC), polyurethane foam, polystyrene foam, rubber and lubricating oils, treated timbers and other... onto ice-free areas or into any fresh water system. (h) Open burning of wastes is prohibited at all... dispose of waste by open burning prior to March 1, 1994, allowance shall be made for the wind direction...

  7. Tuning the spectral emittance of α-SiC open-cell foams up to 1300 K with their macro porosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, B., E-mail: benoit.rousseau@univ-nantes.fr; Guevelou, S.; Mekeze-Monthe, A.

    2016-06-15

    A simple and robust analytical model is used to finely predict the spectral emittance under air up to 1300 K of α-SiC open-cell foams constituted of optically thick struts. The model integrates both the chemical composition and the macro-porosity and is valid only if foams have volumes higher than their Representative Elementary Volumes required for determining their emittance. Infrared emission spectroscopy carried out on a doped silicon carbide single crystal associated to homemade numerical tools based on 3D meshed images (Monte Carlo Ray Tracing code, foam generator) make possible to understand the exact role of the cell network in emittance.more » Finally, one can tune the spectral emittance of α-SiC foams up to 1300 K by simply changing their porosity.« less

  8. Polyurethane Foam Roofing.

    DTIC Science & Technology

    1987-04-01

    degradation of foam .... ............... ... 53 38 Wet film gauge ....... ..................... 55 39 Peak dry film thickness gauge ... ........... ... 56 40...openings, splits and small holes or other imperfections as the liquid mixture expands and sets to form the finished foam . In addition, they can be applied...are based on the foam insulation thickness desired and the generic type and dry film mil thickness (DFT) of elastomeric protective coating selected

  9. Deformation behavior of open-cell dry natural rubber foam: Effect of different concentration of blowing agent and compression strain rate

    NASA Astrophysics Data System (ADS)

    Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.

    2017-04-01

    Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.

  10. The role of EPS concentration in MBR foaming: analysis of a submerged pilot plant.

    PubMed

    Di Bella, Gaetano; Torregrossa, Michele; Viviani, Gaspare

    2011-01-01

    Foaming in Membrane BioReactor (MBR) is a frequently discussed topic. Some authors reported that the phenomenon is due to filamentous organisms, like at Conventional Activated Sludge (CAS) plants. However, in recent years, other authors reported that the Extra-cellular Polymer Substances (EPSs) concentration is an important factor for controlling foam as well. Nevertheless, even if a number of MBR plants are affected by foaming, presently there are no suitable methods to evaluate the phenomenon. To facilitate the study of this controversial phenomenon in an MBR system, certain foam tests proposed in the past for CASPs were investigated. The results of the tests were able to adequately measure quantity, stability and quality of the foam. In particular, the Scum Index increased proportionally with the EPS concentration and mixed liquor viscosity; Foam Power was mainly correlated with the protein concentration of in the EPS; Foam Rating was also correlated with the EPS concentration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Statistical mechanics of two-dimensional shuffled foams: prediction of the correlation between geometry and topology.

    PubMed

    Durand, Marc; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Talebi, Shirin Ataei; Graner, François

    2011-10-14

    We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams with moderate bubble size polydispersity. It predicts without any adjustable parameters the correlations between the number of sides n of the bubbles (topology) and their areas A (geometry) observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that in shuffled cellular patterns n correlates better with √A (as claimed by Desch and Feltham) than with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam, standard deviations Δn and ΔA are in proportion. Possible applications include correlations of the detailed distributions of n and A, three-dimensional foams, and biological tissues.

  12. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  13. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

    DOE PAGES

    Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.

    2017-03-14

    High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less

  14. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.

    High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less

  15. 40 CFR 63.1306 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63... foam processes and in paragraph (d)(5) for rebond foam processes. (1) A list of diisocyanate storage... of pumps, valves, connectors, pressure-relief devices, and open-ended valves or lines in HAP ABA...

  16. 40 CFR 63.1306 - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63... foam processes and in paragraph (d)(5) for rebond foam processes. (1) A list of diisocyanate storage... of pumps, valves, connectors, pressure-relief devices, and open-ended valves or lines in HAP ABA...

  17. A study on high subsonic airfoil flows in relatively high Reynolds number by using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Nakao, Shinichiro; Kashitani, Masashi; Miyaguni, Takeshi; Yamaguchi, Yutaka

    2014-04-01

    In the present study, numerical calculations of the flow-field around the airfoil model are performed by using the OpenFOAM in high subsonic flows. The airfoil model is NACA 64A010. The maximum thickness is 10 % of the chord length. The SonicFOAM and the RhoCentralFOAM are selected as the solver in high subsonic flows. The grid point is 158,000 and the Mach numbers are 0.277 and 0.569 respectively. The CFD data are compared with the experimental data performed by the cryogenic wind tunnel in the past. The results are as follows. The numerical results of the pressure coefficient distribution on the model surface calculated by the SonicFOAM solver showed good agreement with the experimental data measured by the cryogenic wind tunnel. And the data calculated by the SonicFOAM have the capability for the quantitative comparison of the experimental data at low angle of attack.

  18. Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.

    PubMed

    Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert

    2016-06-01

    The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.

  19. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  20. Mechanical properties of porous and cellular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, K.; Green, D.J.; Gibson, L.J.

    1991-01-01

    This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less

  1. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams

    PubMed Central

    Kovtun, Anna; Goeckelmann, Melanie J.; Niclas, Antje A.; Montufar, Edgar B.; Ginebra, Maria-Pau; Planell, Josep A.; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. PMID:25448348

  2. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.

    PubMed

    Kovtun, Anna; Goeckelmann, Melanie J; Niclas, Antje A; Montufar, Edgar B; Ginebra, Maria-Pau; Planell, Josep A; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  3. Compressive and shear properties of commercially available polyurethane foams.

    PubMed

    Thompson, Mark S; McCarthy, Ian D; Lidgren, Lars; Ryd, Leif

    2003-10-01

    The shear properties of rigid polyurethane (PU-R) foams, routinely used to simulate cancellous bone, are not well characterized. The present assessment of the shear and compressive properties of four grades of Sawbones "Rigid cellular" PU-R foam tested 20 mm gauge diameter dumb-bell specimens in torsion and under axial loading. Shear moduli ranged from 13.3 to 99.7 MPa, shear strengths from 0.7 MPa to 4.2 MPa. Compressive yield strains varied little with density while shear yield strains had peak values with "200 kgm-3" grade. PU-R foams may be used to simulate the elastic but not failure properties of cancellous bone.

  4. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    PubMed

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation. Copyright © 2016. Published by Elsevier Ltd.

  5. Microgravity foam structure and rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.

    1994-01-01

    Our long-range objective is to establish the fundamental interrelationship between the microscopic structure and dynamics of foams and their macroscopic stability and rheology. Foam structure and dynamics are to be measured directly and noninvasively through the use and development of novel multiple light scattering techniques such as diffusing-wave spectroscopy (DWS). Foam rheology is to be measured in a custom rheometer which allows simultaneous optical access for multiple light drainage of liquid from in between gas bubbles as the liquid:gas volume fraction in increased towards the rigidity-loss transition.

  6. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.

  7. Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.

    PubMed

    Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo

    2012-09-27

    The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.

  8. Treatments to induce the nucleation and growth of apatite-like layers on polymeric surfaces and foams.

    PubMed

    Reis, R L; Cunha, A M; Fernandes, M H; Correia, R N

    1997-12-01

    In this work, a bioactive glass is used as a percusor of calcium-phosphate (Ca-P) film deposition onto several polymer-based materials. Both bioinert (high molecular weight polyethylene, HMWPE), and biodegradable (corn starch-based blends, SEVA-C) polymers, unreinforced or reinforced with hydroxylapatite (HA), were coated by the very simple proposed route. Also polyurethane (PU) foams, with an open-cell structure, were mineralized by the proposed method. In fact, it was possible to induce the growth of the Ca-P films not only at the surface, but also in the bulk of the PU foam. These cellular materials are intended for cancellous bone replacement applications. The morphology of the formed films was strongly dependent on the used substrate, its polar character, and on the presence of HA in its composition, as observed by SEM. Nevertheless, a well defined needly like structure was observed in all samples at high magnifications. The Ca:P ratios of the films were between 1.5 and 1.7, i.e. in the range of tricalcium phosphate-hydroxylapatite. Raman spectroscopy and thin-film x-ray diffraction (XRD) evidenced the formation of mostly amorphous calcium-phosphate films. After scraping the coating from the polymer surface and heat-treating the resulting powder at 1000 degrees C for 1 h, HA and beta-tricalcium phosphate (TCP) typical peaks were found on XRD patterns.

  9. Pore Size Control in Aluminium Foam by Standardizing Bubble Rise Velocity and Melt Viscosity

    NASA Astrophysics Data System (ADS)

    Avinash, G.; Harika, V.; Sandeepika, Ch; Gupta, N.

    2018-03-01

    In recent years, aluminium foams have found use in a wide range of applications. The properties of these foams, as good structural strength with light weight have made them as a promising structural material for aerospace industry. Foaming techniques (direct and indirect) are used to produce these foams. Direct foaming involves blowing of gas to create gas bubbles in the melt whereas indirect foaming technique uses blowing agents as metallic hydrides, which create hydrogen bubbles. Porosity and its distribution in foams directly affect its properties. This demands for more theoretical studies, to control such cellular structure and hence properties. In present work, we have studied the effect of gas bubble rise velocity and melt viscosity, on pore size and its distribution in aluminium foam. A 15 PPI aluminium foam, prepared using indirect foaming technique having porosity ~86 % was used for study. In order to obtain metal foam, the bubble must not escape from the melt and should get entrapped during solidification. Our calculations suggest that bubble rise velocity and melt viscosity are responsible for vertical displacement of bubble in the melt. It is observed that melt viscosity opposes bubble rise velocity and help the bubbles to stay in the melt, resulting in porous structure.

  10. Closed cell metal foam method

    DOEpatents

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  11. Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay

    NASA Astrophysics Data System (ADS)

    Haziq Dzulkifli, Mohd; Yazid Yahya, Mohd; Majid, Rohah A.

    2017-05-01

    This paper presents work on organically-modified montmorillonite (MMT) nanoclay embedded in rigid palm oil-based polyurethane (PU) foam. MMT was modified with organic surfactant diamino propane (DAP). PU foam was fabricated in closed mold, and the amount of DAP-MMT was varied in each foam formulation. The obtained foam was tested for its microstructure and morphology. Appearance of peaks from infra-red spectra corresponding to N-H, C=O, and C-N confirms the formation of PU networks. Scanning electron microscopy (SEM) revealed fine, closed-cellular structure at low clay loading; increasing DAP-MMT content induced larger cell sizes with blowholes. X-ray diffraction (XRD) indicates fully-exfoliated clays at 1 wt. % and partial-exfoliation at 3 wt. % clay loading, suggesting clumping of clays as DAP-MMT content increased.

  12. Drag Coefficient and Foam in Hurricane Conditions.

    NASA Astrophysics Data System (ADS)

    Golbraikh, E.; Shtemler, Y.

    2016-12-01

    he present study is motivated by recent findings of saturation and even decrease in the drag coefficient (capping) in hurricane conditions, which is accompanied by the production of a foam layer on the ocean surface. As it is difficult to expect at present a comprehensive numerical modeling of the drag coefficient saturation that is followed by wave breaking and foam production, there is no complete confidence and understanding of the saturation phenomenon. Our semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd , with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the available optical and radiometric measurements of the fractional foam coverage,αf, combined with direct wind speed measurements in hurricane conditions, which provide the minimum of the effective drag coefficient, Cd for the sea covered with foam. The present model yields Cd10 versus U10 in fair agreement with that evaluated from both open-ocean and laboratory measurements of the vertical variation of mean wind speed in the range of U10 from low to hurricane speeds. The present approach opens opportunities for drag coefficient modeling in hurricane conditions and hurricane intensity estimation by the foam-coverage value using optical and radiometric measurements.

  13. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation.

    PubMed

    Fu, Yuchang; Maianu, Lidia; Melbert, Barry R; Garvey, W Timothy

    2004-01-01

    Cellular glucose uptake is mediated by a family of facilitative glucose transporters (GLUT) exhibiting differences in kinetics, substrate specificity, and tissue-specific expression. GLUT isoform expression has not been comprehensively studied in human leukocytes, which participate in immune and inflammatory responses and are critical for host defense. Therefore, we studied the regulated expression of GLUT 1-5 mRNA and protein in isolated human lymphocytes and monocytes and in human THP-1 macrophages and foam cells. Lymphocytes expressed GLUT 1 and GLUT 3 proteins, and cellular levels of both isoforms were augmented 3.5- to 6-fold following activation by phytohemagglutinin (PHA). Monocytes expressed 8.4-fold more GLUT 3 protein and 88% less GLUT 1 than lymphocytes, and activation by lipopolysaccharide (LPS) led to a 1.9-fold increase in GLUT 1. At the level of mRNA expression, GLUT 3 mRNA was the most prevalent GLUT mRNA species in monocytes, while lymphocytes expressed equal numbers of GLUT 1 and GLUT 3 transcripts. Differentiation of THP-1 monocytes into macrophages was associated with marked induction of GLUT 3 and GLUT 5 protein expression, and high levels of GLUT 1, GLUT 3, and GLUT 5 were maintained after transformation to foam cells. GLUT 5 mRNA was expressed in 2-fold greater abundance in macrophages and foam cells than that observed for GLUT 1 mRNA, while the level of GLUT 3 mRNA was intermediate. This facilitative glucose transporters are differentially expressed and regulated in human leukocytes in a pattern that could facilitate cellular functions. Speculatively, high GLUT 1 and GLUT 3 expression could provide cellular fuel for the immune response, and high levels of high-affinity GLUT 3 in macrophages might allow the cell to compete with pathogens for hexoses, even in the presence of low interstitial glucose concentrations. Ample expression of GLUT 1 and GLUT 3 in foam cells could also provide hexose substrates and promote lipid loading. The role for high levels of the fructose transporter GLUT 5 in macrophages and foam cells is unknown since interstitial and circulating fructose concentrations are low in these cells.

  14. Effect of Microstructural Parameters on the Relative Densities of Metal Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Kerr, Jacob A.

    2010-01-01

    A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.

  15. An approach for characterising cellular polymeric foam structures using computed tomography

    NASA Astrophysics Data System (ADS)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  16. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    ERIC Educational Resources Information Center

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  17. Fracture Mechanical Analysis of Open Cell Ceramic Foams Under Thermal Shock Loading

    NASA Astrophysics Data System (ADS)

    Settgast, C.; Abendroth, M.; Kuna, M.

    2016-11-01

    Ceramic foams made by replica techniques containing sharp-edged cavities, which are potential crack initiators and therefore have to be analyzed using fracture mechanical methods. The ceramic foams made of novel carbon bonded alumina are used as filters in metal melt filtration applications, where the filters are exposed to a thermal shock. During the casting process the filters experience a complex thermo-mechanical loading, which is difficult to measure. Modern numerical methods allow the simulation of such complex processes. As a simplified foam structure an open Kelvin cell is used as a representative volume element. A three-dimensional finite element model containing realistic sharp-edged cavities and three-dimensional sub-models along these sharp edges are used to compute the transient temperature, stress and strain fields at the Kelvin foam. The sharp edges are evaluated using fracture mechanical methods like the J-integral technique. The results of this study describe the influence of the pore size, relative density of the ceramic foam, the heat transfer and selected material parameters on the fracture mechanical behaviour.

  18. Thermographic observation of heat transport in solid foams

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Abuhamad, M.; Walle, G.

    2005-06-01

    Heat transport in solid foams was studied by flash lamp heated dynamic thermography. For polyurethane foams, a movement of the peak temperature from the heated surface into the depth could be observed. This could be modelled by assuming a Beer optical absorber with non-adiabatic boundary. For large open pores, individual temperature-time curves were observed in the thermographic image. There is evidence for non-conductive heat transfer in the bulk of mixed-cell foams. In SiSiC ceramic foams, indications for sub-surface defects were detected.

  19. A numerical study of shock wave reflections on low density foam

    NASA Astrophysics Data System (ADS)

    Baer, M. R.

    1992-06-01

    A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.

  20. Hydrogen Storage in Metal Hydrides

    DTIC Science & Technology

    1990-08-01

    TitlePage 1. Properties of Reticulated Carbon Foam 26 2. Hydrogen Storage Capacity of Various Metal Hydrides 27 iv INTRODUCTION This is the final technical...pores, and results in coating of only the surface. The substrate for the fabrication of the magnesium foam was a reticulated carbon foam. This...material is an open-pore foam composed solely of vitreous carbon . It has an exceptionally high void volume (97%) and a high surface area, combined with self

  1. Low density microcellular carbon foams and method of preparation

    DOEpatents

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  2. Low density microcellular carbon foams and method of preparation

    DOEpatents

    Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.

    1989-01-01

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  3. Pharmacokinetic Comparison of Once-Daily Topical Minocycline Foam 4% vs Oral Minocycline for Moderate-to-Severe Acne.

    PubMed

    Jones, Terry M; Ellman, Herman; deVries, Tina

    2017-10-01

    To characterize minocycline pharmacokinetics and relative bioavailability following multiple-dose topical administration of minocycline hydrochloride (HCl) foam 4% (FMX101 4%) as compared with single-dose oral administration of minocycline HCl extended-release tablets (Solodyn®) in subjects with moderate-to-severe acne. A Phase 1, single-center, nonrandomized, open-label, active-controlled, 2-period, 2-treatment crossover clinical study. The study included 30 healthy adults (mean age, 22.6 years; 90% white, and 60% females) who had moderate-to-severe acne. Subjects were assigned to first receive a single oral dose of a minocycline HCl extended-release tablet (approximately 1 mg/kg). At 10 days after the oral minocycline dose, topical minocycline foam 4% was applied, once daily for 21 days. Serial blood samples were obtained before and after administration of oral minocycline and each topical application of minocycline foam 4% on days 1, 12, and 21. Following oral administration of minocycline (approximately 1 mg/kg), plasma minocycline concentration increased until 3 hours, followed by a log-linear decrease over the remainder of the 96-hour sampling period. Following topical application of a 4-g maximal-use dose of minocycline foam 4% for 21 days, plasma minocycline concentration was very low, with geometric mean Cmax values ranging from 1.1 ng/mL to 1.5 ng/mL. Steady state was achieved by day 6. Overall, minocycline exposure with topical minocycline foam 4% was 730 to 765 times lower than that with oral minocycline. There was no evidence of minocycline accumulation over the 21 days of topical application of minocycline foam 4%. Topical minocycline foam 4% appeared to be safe and well tolerated, with no serious treatment-emergent adverse events (TEAEs), treatment-related TEAEs, or TEAEs that led to treatment discontinuation. Once-daily topical application of minocycline foam 4% did not lead to significant systemic exposure to minocycline. It appears to be a well-tolerated treatment option for individuals with moderate-to-severe acne.

    J Drugs Dermatol. 2017;16(10):1022-1028.

    .

  4. Deducing multiple interfacial dynamics during polymeric foaming.

    PubMed

    Chandan, Mohammed Rehaan; Naskar, Nilanjon; Das, Anuja; Mukherjee, Rabibrata; Harikrishnan, Gopalakrishna Pillai

    2018-06-15

    Several interfacial phenomena are active during polymeric foaming, the dynamics of which significantly influence terminal stability, cell structure and in turn the thermo-mechanical properties of temporally evolved foam. Understanding these dynamics is important in achieving desired foam properties. Here, we introduce a method to simultaneously portray the time evolution of bubble growth, lamella thinning and Plateau border drainage, occurring during reactive polymeric foaming. In this method, we initially conduct bulk and surface shear rheology under polymerizing and non-foaming conditions. In a subsequent step, foaming experiments were conducted in a rheometer. The microscopic structural dimensions pertaining to the terminal values of the dynamics of each interfacial phenomena are then measured using a combination of scanning electron microscopy, optical microscopy and imaging ellipsometry, after the foaming is over. The measured surface and bulk rheological parameters are incorporated in time evolution equations that are derived from mass and momentum transport occurring when a model viscoelastic fluid is foamed by gas dispersion. Analytical and numerical solutions to these equations portray the dynamics. We demonstrate this method for a series of reactive polyurethane foams generated from different chemical sources. The effectiveness of our method is in simultaneously obtaining these dynamics that are difficult to directly monitor due to short active durations over multiple length scales.

  5. Experimental study on nonlinear vibrating of aluminum foam using electronic speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Fujun; Ma, Yinhang; Tao, Nan; He, Xiaoyuan

    2017-06-01

    Due to its multi properties, including excellent stiffness-to-weight and strength-to-weight ratios, closed-cell aluminum and its alloy foams become candidate materials for use in many high-technology industries, such as the automotive and aerospace industries. For the efficient use of closed-cell foams in structural applications, it is necessary and important to detailly understand their mechanical characteristics. In this paper, the nonlinear vibration responses of the cantilever beams of closed-cell aluminum foams were investigated by use of electronic speckle pattern interferometry (ESPI). The nonlinear resonant mode shapes of testing specimens under harmonic excitation were measured. It is first time to obtain from the experimental results that there exist super-harmonic responses when the cantilever beams of closed-cell aluminum foam were forced to vibrate, which was caused by its specific cellular structures.

  6. Pore-level numerical analysis of the infrared surface temperature of metallic foam

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Sun, Chuang; Tan, He-Ping; Wang, Jing

    2017-10-01

    Open-cell metallic foams are increasingly used in various thermal systems. The temperature distributions are significant for the comprehensive understanding of these foam-based engineering applications. This study aims to numerically investigate the modeling of the infrared surface temperature (IRST) of open-cell metallic foam measured by an infrared camera placed above the sample. Two typical approaches based on Backward Monte Carlo simulation are developed to estimate the IRSTs: the first one, discrete-scale approach (DSA), uses a realistic discrete representation of the foam structure obtained from a computed tomography reconstruction while the second one, continuous-scale approach (CSA), assumes that the foam sample behaves like a continuous homogeneous semi-transparent medium. The radiative properties employed in CSA are directly determined by a ray-tracing process inside the discrete foam representation. The IRSTs for different material properties (material emissivity, specularity parameter) are computed by the two approaches. The results show that local IRSTs can vary according to the local compositions of the foam surface (void and solid). The temperature difference between void and solid areas is gradually attenuated with increasing material emissivity. In addition, the annular void space near to the foam surface behaves like a black cavity for thermal radiation, which is ensued by copious neighboring skeletons. For most of the cases studied, the mean IRSTs computed by the DSA and CSA are close to each other, except when the material emissivity is highly weakened and the sample temperature is extremely high.

  7. 30 CFR 75.1103-9 - Minimum requirements; fire suppression materials and location; maintenance of entries and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tools and hardware required for its operation shall be stored at the foam generator. (2) Tools to open a...-expansion foam devices. 75.1103-9 Section 75.1103-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... and crosscuts; access doors; communications; fire crews; high-expansion foam devices. (a) The...

  8. 30 CFR 75.1103-9 - Minimum requirements; fire suppression materials and location; maintenance of entries and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tools and hardware required for its operation shall be stored at the foam generator. (2) Tools to open a...-expansion foam devices. 75.1103-9 Section 75.1103-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... and crosscuts; access doors; communications; fire crews; high-expansion foam devices. (a) The...

  9. 30 CFR 75.1103-9 - Minimum requirements; fire suppression materials and location; maintenance of entries and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tools and hardware required for its operation shall be stored at the foam generator. (2) Tools to open a...-expansion foam devices. 75.1103-9 Section 75.1103-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... and crosscuts; access doors; communications; fire crews; high-expansion foam devices. (a) The...

  10. 30 CFR 75.1103-9 - Minimum requirements; fire suppression materials and location; maintenance of entries and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tools and hardware required for its operation shall be stored at the foam generator. (2) Tools to open a...-expansion foam devices. 75.1103-9 Section 75.1103-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... and crosscuts; access doors; communications; fire crews; high-expansion foam devices. (a) The...

  11. 30 CFR 75.1103-9 - Minimum requirements; fire suppression materials and location; maintenance of entries and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tools and hardware required for its operation shall be stored at the foam generator. (2) Tools to open a...-expansion foam devices. 75.1103-9 Section 75.1103-9 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... and crosscuts; access doors; communications; fire crews; high-expansion foam devices. (a) The...

  12. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-12-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  13. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    NASA Astrophysics Data System (ADS)

    Baharom, Syazwani; Ahmad, Sufizar; Taib, Hariati; Muda, Rizamarhaiza

    2016-07-01

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO2) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions of SiO2 were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO2 that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO2 ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO2 ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO2 ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm3 up to 0.75 g/cm3, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.

  14. The effects of composition and sintering temperature on the silica foam fabricated by slurry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baharom, Syazwani, E-mail: hd140001@siswa.uthm.edu.my; Ahmad, Sufizar, E-mail: sufizar@uthm.edu.my; Taib, Hariati, E-mail: hariati@uthm.edu.my

    Reticulated ceramic or open pore ceramic foam is a well-known material which exhibits extremely high porosities, with a significant degree of interconnectivity that makes them desirable in a wide range of applications. There were broad types of ceramic foam fabrication method such as polymeric sponge method, direct foaming, and starch consolidation. In this study, the slurry method has been chosen to fabricate Silica (SiO{sub 2}) foam. In this process, Polyurethane (PU) foam template was dipped into ceramic slurry and followed by drying and sintering to obtain foam which contains porosity in the range of 50% to 70%. The compositions ofmore » SiO{sub 2} were varied starting from 55 wt.%, 60 wt.%, 65 wt.% and 70 wt.%. The samples of SiO{sub 2} that have been dipped and dried were sintered at 900°C, 1000°C, 1100°C, and 1250°C. The sintered SiO{sub 2} ceramic foam samples were characterized to observe their morphology, and physical properties. Thus, the microstructure of the SiO{sub 2} ceramic foams samples was examined by Scanning Electron Microscopy (SEM), and Electron Dispersive Spectroscopy (EDS). Meanwhile, the physical properties of the SiO{sub 2} ceramic foam samples such as the total porosity (%) and bulk density were determined using Archimedes method. It was found that the density of ceramic foam produced was in the range of 0.25 g/cm{sup 3} up to 0.75 g/cm{sup 3}, whereas the level of porosity percentage was in the range of 61.81% to 82.18% with the size of open pore or window cells were in between 141 µm up to 626 µm.« less

  15. Foam For Filtering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Like nature's honeycomb, foam is a structure of many-sided cells, apparently solid but actually only three percent material and 97 percent air. Foam is made by a heat-producing chemical reaction which expands a plastic material in a manner somewhat akin to the heat-induced rising of a loaf of bread. The resulting structure of interconnected cells is flexible yet strong and extremely versatile in applicati6n. Foam can, for example, be a sound absorber in one form, while in another it allows sound to pass through it. It can be a very soft powder puff material and at the same time a highly abrasive scrubber. A sampling of foam uses includes stereo speaker grilles, applying postage meter ink, filtering lawnmower carburetor air; deadening noise in trucks and tractors, applying cosmetics, releasing fabric softener and antistatic agents in home clothes dryers, painting, filtering factory heating and ventilating systems, shining shoes, polishing cars, sponge-mopping floors, acting as pre-operative surgical scrubbers-the list is virtually limitless. The process by which foam is made produces "windows," thin plastic membranes connecting the cell walls. Windowed foam is used in many applications but for certain others-filtering, for example-it is desirable to have a completely open network. Scott Paper Company's Foam Division, Chester, Pennsylvania, improved a patented method of "removing the windows," to create an open structure that affords special utility in filtering applications. NASA technology contributed to Scott's improvement.

  16. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    PubMed Central

    Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong

    2015-01-01

    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent. PMID:28793653

  17. Mechanical Properties of 17-4PH Stainless Steel Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.

    2007-01-01

    Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.

  18. Pu Anion Exchange Process Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through themore » large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.« less

  19. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  20. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    NASA Astrophysics Data System (ADS)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  1. Starch-based polyurethane/CuO nanocomposite foam: Antibacterial effects for infection control.

    PubMed

    Ashjari, Hamid Reza; Dorraji, Mir Saeed Seyed; Fakhrzadeh, Vahid; Eslami, Hosein; Rasoulifard, Mohammad Hossein; Rastgouy-Houjaghan, Mehrdad; Gholizadeh, Pourya; Kafil, Hossein Samadi

    2018-05-01

    In the present study, a new method for the synthesis of the open cell flexible polyurethane foams (PUFs) was developed by using starch powder and the modification of closed cell foam formulation. Starch is the second largest polymeric carbohydrate as a macromolecule on this planet with a large number of glucose units. Copper oxide nanoparticles (CuO NPs) were synthesized by thermal degradation method at different temperatures of 400, 600 and 800 °C as antimicrobial agents. The antimicrobial activity of CuO NPs and commercial CuO powder against the main causes of hospital infections were tested. CuO 600 was the most effective antimicrobial agent and enhanced polymer matrix tensile strength with starch powder as new polyurethane foams (PUFs) cell opener with high tensile strength. The effects of parameters on tensile strength were optimized using response surface methodology (RSM). CuO NPs and PUF had optimal conditions and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Foam synthesized at the optimal conditions had an open cell structure with high tensile strength and efficient antimicrobial activity that made them suitable to be used as an antimicrobial hospital mattress to control hospital infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. An Elongated Tetrakaidecahedron Model for Open-Celled Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2007-01-01

    A micro-mechanics model for non-isotropic, open-celled foams is developed using an elongated tetrakaidecahedron (Kelvin model) as the repeating unit cell. The micro-mechanics model employs an elongated Kelvin model geometry which is more general than that employed by previous authors. Assuming the cell edges possess axial and bending rigidity, the mechanics of deformation of the elongated tetrakaidecahedron lead to a set of equations for the Young's modulus, Poisson's ratio and strength of the foam in the principal material directions. These equations are written as a function of the cell edge lengths and cross-section properties, the inclination angle and the strength and stiffness of the solid material. The model is applied to predict the strength and stiffness of several polymeric foams. Good agreement is observed between the model results and the experimental measurements.

  3. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  4. Ultra-low density microcellular polymer foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  5. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xi, E-mail: nano-sun@hotmail.com; Ruan Jianming; Chen Qiyuan

    2009-06-03

    A porous scaffold comprising a {beta}-tricalcium phosphate matrix and bioactive glass powders was fabricated by foaming method and the effects of surfactants as foaming agent on microstructure of scaffolds were investigated. Foaming capacity and foam stability of different surfactants in water firstly were carried out to evaluate their foam properties. The porous structure and pore size distribution of the scaffolds were systematically characterized by scanning electron microscopy (SEM) and an optical microscopy connected to an image analyzer. The results showed that the foam stability of surfactant has more remarkable influence on their microstructure such as pore shape, size and interconnectivitymore » than the foaming ability of one. Porous scaffolds fabricated using nonionic surfactant Tween 80 with large foam stability exhibited higher open and total porosities, and fully interconnected porous structure with a pore size of 750-850 {mu}m.« less

  6. Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams

    NASA Astrophysics Data System (ADS)

    Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.

    2006-05-01

    A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.

  7. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  8. Development of polyimide foams with blowing agents

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Sorathia, Usman A. K. (Inventor); Lee, Raymond (Inventor)

    1985-01-01

    A method of preparing a polyimide foam which includes the steps of: preparing, foaming, and curing a precursor containing at least one alkyl ester of 3,3'4,4'-benzophenonetetracarboxylic acid; a meta- or para-substituted aromatic diamine; a heterocyclic diamine; an aliphatic diamine; and a solid blowing agent. The blowing agent is added to said precursor in a concentration which is sufficient to effect at least one of the following attributes of the foam: cell size, proportion of open cells, cell density, and indentation load deflection.

  9. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  10. Cellular thermosetting fluoropolymers and process for making them

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Y.

    1988-01-01

    Thermosetting fluoropolymer foams are made by mixing fluid from thermosetting fluoropolymer components having a substantial fluoride content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at a relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and therafter heating the fluoropolymer at a relatively low temperature to simultaneously cure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.

  11. Cellular thermosetting fluorodiepoxide polymers

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Y. (Inventor)

    1989-01-01

    Thermosetting fluoropolymer foams are made by mixing fluid form thermosetting fluoropolymer components having a substantial fluorine content, placing the mixture in a pressure tight chamber, filling the chamber with a gas, at relatively low pressure, that is unreactive with the fluoropolymer components, allowing the mixture to gel, removing the gelled fluoropolymer from the chamber and thereafter heating the fluoropolymer at a relatively low temperature to simultaneously sure and foam the fluoropolymer. The resulting fluoropolymer product is closed celled with the cells storing the gas employed for foaming. The fluoropolymer resins employed may be any thermosetting fluoropolymer including fluoroepoxies, fluoropolyurethanes and fluoroacrylates.

  12. Effect of foaming temperature on the mechanical properties of produced closed-cell A356Aluminum foams with melting method

    NASA Astrophysics Data System (ADS)

    Movahedi, N.; Mirbagheri, S. M. H.; Hoseini, S. R.

    2014-07-01

    In this study an attempt was carried out to determine the effect of production temperature on the mechanical properties and energy absorption behavior of closed-cell A356 alloy foams under uniaxial compression test. For this purpose, three different A356 alloy closed-cell foams were synthesized at three different casting temperatures, 650 °C, 675 °C and 700 °C by adding the same amounts of granulated calcium as thickening and TiH2 as blowing agent. The samples were characterized by SEM to study the pore morphology at different foaming temperatures. Compression tests of the A356 foams were carried out to assess their mechanical properties and energy absorption behavior. The results indicated that increasing the foaming temperature from 650 °C to 675 °C and 700 °C reduces the relative density of closed cell A356 alloys by 18.3% and 38% respectively and consequently affects the compressive strength and energy absorption of cellular structures by changing them from equiaxed polyhedral closed cells to distorted cells. Also at 700 °C foaming temperature, growth of micro-pores and coalescence with other surrounding pores leads to several big voids.

  13. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  14. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  15. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  16. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  17. 46 CFR 108.459 - Number and location of outlets.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... outlets. (a) A foam extinguishing system in a space must have enough outlets to spread a layer of foam of uniform thickness over the deck or bilge areas of the space. (b) A foam extinguishing system in a space that has a boiler on a flat that is open to or can drain into a lower portion of the space must have...

  18. An Evaluation of Emergency Medicine Core Content Covered by Free Open Access Medical Education Resources.

    PubMed

    Stuntz, Robert; Clontz, Robert

    2016-05-01

    Emergency physicians are using free open access medical education (FOAM) resources at an increasing rate. The extent to which FOAM resources cover the breadth of emergency medicine core content is unknown. We hypothesize that the content of FOAM resources does not provide comprehensive or balanced coverage of the scope of knowledge necessary for emergency medicine providers. Our objective is to quantify emergency medicine core content covered by FOAM resources and identify the predominant FOAM topics. This is an institutional review board-approved, retrospective review of all English-language FOAM posts between July 1, 2013, and June 30, 2014, as aggregated on http://FOAMem.com. The topics of FOAM posts were compared with those of the emergency medicine core content, as defined by the American Board of Emergency Medicine's Model of the Clinical Practice of Emergency Medicine (MCPEM). Each FOAM post could cover more than 1 topic. Repeated posts and summaries were excluded. Review of the MCPEM yielded 915 total emergency medicine topics grouped into 20 sections. Review of 6,424 FOAM posts yielded 7,279 total topics and 654 unique topics, representing 71.5% coverage of the 915 topics outlined by the MCPEM. The procedures section was covered most often, representing 2,285 (31.4%) FOAM topics. The 4 sections with the least coverage were cutaneous disorders, hematologic disorders, nontraumatic musculoskeletal disorders, and obstetric and gynecologic disorders, each representing 0.6% of FOAM topics. Airway techniques; ECG interpretation; research, evidence-based medicine, and interpretation of the literature; resuscitation; and ultrasonography were the most overrepresented subsections, equaling 1,674 (23.0%) FOAM topics when combined. The data suggest an imbalanced and incomplete coverage of emergency medicine core content in FOAM. The study is limited by its retrospective design and use of a single referral Web site to obtain available FOAM resources. More comprehensive and balanced coverage of emergency medicine core content is needed if FOAM is to serve as a primary educational resource. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  19. Cardiovascular Computed Tomography Phantom Fabrication and Characterization through the Tailored Properties of Polymeric Composites and Cellular Foams

    NASA Astrophysics Data System (ADS)

    Hoy, Carlton F. O.

    The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.

  20. The effect of changes in the USF/NASA toxicity screening test method on data from some cellular polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Miller, C. M.

    1976-01-01

    Rankings of relative toxicity can be markedly affected by changes in test variables. Revision of the USF/NASA toxicity screening test procedure to eliminate the connecting tube and supporting floor and incorporate a 1.0 g sample weight, 200 C starting temperature, and 800 C upper limit temperature for pyrolysis, reversed the rankings of flexible polyurethane and polychloroprene foams, not only in relation to each other, but also in relation to cotton and red oak. Much of the change is attributed to reduction of the distance between the sample and the test animals, and reduction of the sample weight charged. Elimination of the connecting tube increased the relative toxicity of the polyurethane foams. The materials tested were flexible polyurethane foam, without and with fire retardant; rigid polyurethane foam with fire retardant; flexible polychloroprene foam; cotton, Douglas fir, red oak, hemlock, hardboard, particle board, polystyrene, and polymethyl methacrylate.

  1. Budesonide Foam Has a Favorable Safety Profile for Inducing Remission in Mild-to-Moderate Ulcerative Proctitis or Proctosigmoiditis.

    PubMed

    Rubin, David T; Sandborn, William J; Bosworth, Brian; Zakko, Salam; Gordon, Glenn L; Sale, Mark E; Rolleri, Robert L; Golden, Pamela L; Barrett, Andrew C; Bortey, Enoch; Forbes, William P

    2015-11-01

    Budesonide foam, a rectally administered, second-generation corticosteroid with extensive hepatic first-pass metabolism, is efficacious for the treatment of mild-to-moderate ulcerative proctitis and ulcerative proctosigmoiditis. The aim of this study was to comprehensively assess the safety and pharmacokinetic profile of budesonide foam. Data from five phase III studies were pooled to further evaluate safety, including an open-label study (once-daily treatment for 8 weeks), an active-comparator study (once-daily treatment for 4 weeks), and two placebo-controlled studies and an open-label extension study (twice-daily treatment for 2 weeks, then once daily for 4 weeks). Data from the placebo-controlled studies and two phase I studies (i.e., patients with mild-to-moderate ulcerative colitis and healthy volunteers) were pooled to evaluate the pharmacokinetics of budesonide foam. A similar percentage of patients reported adverse events in the budesonide foam and placebo groups, with the majority of adverse events being mild or moderate in intensity (93.3 vs 96.0%, respectively). Adverse events occurred in 41.4 and 36.3% of patients receiving budesonide foam and placebo, respectively. Mean morning cortisol concentrations remained within the normal range for up to 8 weeks of treatment; there were no clinically relevant effects of budesonide foam on the hypothalamic-pituitary-adrenal axis. Population pharmacokinetic analysis demonstrated low systemic exposure after budesonide foam administration. This integrated analysis demonstrated that budesonide foam for the induction of remission of distal ulcerative colitis is safe overall, with no clinically relevant effects on the hypothalamic-pituitary-adrenal axis.

  2. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  3. Negative pressure wound therapy combined with acoustic pressure wound therapy for infected post surgery wounds: a case series.

    PubMed

    Howell-Taylor, Melania; Hall, Macy G; Brownlee Iii, William J; Taylor, Mary

    2008-09-01

    Acute infection of surgical incision sites often requires specialized wound care in preparation for surgical closure. Optimal therapy for preparing such wounds for a secondary closure procedure remains uncertain. The authors report wound outcomes after administering acoustic pressure wound therapy in conjunction with negative pressure wound therapy with reticulated open-cell foam dressing changes to assist with bacteria removal from open, infected surgical-incision sites in preparation for secondary surgical closure in three patients. Before incorporating acoustic pressure wound therapy at the authors' facility, the average negative pressure wound therapy with reticulated open-cell foam dressing course prior to secondary surgical closure was 30 days; with its addition, two of three patients underwent successful surgical closure with no postoperative complications after 21 and 14 days, respectively; one patient succumbed to nonwound-related complications before wound closure. Larger, prospective studies are needed to evaluate combining negative pressure wound therapy with reticulated open-cell foam dressing and acoustic pressure wound therapy for infected, acute post surgery wounds.

  4. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    NASA Astrophysics Data System (ADS)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  5. Surface Control of Cold Hibernated Elastic Memory Self-Deployable Structure

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Ghaffarian, Reza

    2006-01-01

    A new class of simple, reliable, lightweight, low packaging volume and cost, self-deployable structures has been developed for use in space and commercial applications. This technology called 'cold hibernated elastic memory' (CHEM) utilizes shape memory polymers (SMP)in open cellular (foam) structure or sandwich structures made of shape memory polymer foam cores and polymeric composite skins. Some of many potential CHEM space applications require a high precision deployment and surface accuracy during operation. However, a CHEM structure could be slightly distorted by the thermo-mechanical processing as well as by thermal space environment Therefore, the sensor system is desirable to monitor and correct the potential surface imperfection. During these studies, the surface control of CHEM smart structures was demonstrated using a Macro-Fiber Composite (MFC) actuator developed by the NASA LaRC and US Army ARL. The test results indicate that the MFC actuator performed well before and after processing cycles. It reduced some residue compressive strain that in turn corrected very small shape distortion after each processing cycle. The integrated precision strain gages were detecting only a small flat shape imperfection indicating a good recoverability of original shape of the CHEM test structure.

  6. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    NASA Astrophysics Data System (ADS)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  7. Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    NASA Astrophysics Data System (ADS)

    Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark

    2016-03-01

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  8. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    NASA Astrophysics Data System (ADS)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  9. Fire resistant resilient foams. [for seat cushions

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1976-01-01

    Primary program objectives were the formulation, screening, optimization and characterization of open-cell, fire resistant, low-smoke emitting, thermally stable, resilient polyimide foams suitable for seat cushions in commercial aircraft and spacecraft. Secondary program objectives were to obtain maximum improvement of the tension, elongation and tear characteristics of the foams, while maintaining the resiliency, thermal stability, low smoke emission and other desirable attributes of these materials.

  10. Preparation of linear hydroxy substituted polyphosphazenes. [flame retardant polyurethane foam

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Ito, T. I.; Kratzer, R. H.

    1978-01-01

    The synthesis of partially hydroxy-substituted phosphazene prepolymers amenable to processing into cellular, flexible polyurethane foams was investigated. Factors determined include (1) the environment of the hydroxyl group; (2) the ease of the hexachlorocyclotriphosphazene polymerization; (3) the nature of the nonreactive substituents; and (4) the mode of introduction of the hydroxyl entity. The specific approaches taken, the rationale of the selections made, and the results are discussed.

  11. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  12. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    PubMed

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  13. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOEpatents

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  14. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  15. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  16. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    NASA Astrophysics Data System (ADS)

    Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian

    2017-11-01

    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  17. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0065: Nanostructured Dynamic Modulus Materials

    DTIC Science & Technology

    2008-03-01

    solution-gelation (sol- gel) technique, to form hybrids of these materials with high-Tg open-cell foams so as to enhance shape memory characteristics , and...did not demonstrate the shape memory properties of the original Morthane thermoplastic due to the suppression of crystallinity following sol-gel...method. The utilization of photolatent bases to allow for improved reaction control and the combination of this system with Basotect™ open-cell foam in

  18. Verification of ANSYS Fluent and OpenFOAM CFD platforms for prediction of impact flow

    NASA Astrophysics Data System (ADS)

    Tisovská, Petra; Peukert, Pavel; Kolář, Jan

    The main goal of the article is a verification of the heat transfer coefficient numerically predicted by two CDF platforms - ANSYS-Fluent and OpenFOAM on the problem of impact flows oncoming from 2D nozzle. Various mesh parameters and solver settings were tested under several boundary conditions and compared to known experimental results. The best solver setting, suitable for further optimization of more complex geometry is evaluated.

  19. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a) Absorbent pad. Pad used... may include constructed frames, foam, box springs or other materials used alone or in combination. (q..., solid foam core segments. ...

  20. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a) Absorbent pad. Pad used... may include constructed frames, foam, box springs or other materials used alone or in combination. (q..., solid foam core segments. ...

  1. 16 CFR § 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a... structure may include constructed frames, foam, box springs or other materials used alone or in combination..., solid foam core segments. ...

  2. 16 CFR 1633.9 - Glossary of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.9 Glossary of terms. (a) Absorbent pad. Pad used... may include constructed frames, foam, box springs or other materials used alone or in combination. (q..., solid foam core segments. ...

  3. Rigid open-cell polyurethane foam for cryogenic insulation

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Lindquist, C. R.; Niendorf, L. R.; Nies, G. E.; Perkins, P. J., Jr.

    1971-01-01

    Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields.

  4. Honeycomb vs. Foam: Evaluating a Potential Upgrade to ISS Module Shielding for Micrometeoroids and Orbital Debris

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Hedman, Troy; Christiansen, Eric L.

    2009-01-01

    The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration.

  5. Foam generation and sample composition optimization for the FOAM-C experiment of the ISS

    NASA Astrophysics Data System (ADS)

    Carpy, R.; Picker, G.; Amann, B.; Ranebo, H.; Vincent-Bonnieu, S.; Minster, O.; Winter, J.; Dettmann, J.; Castiglione, L.; Höhler, R.; Langevin, D.

    2011-12-01

    End of 2009 and early 2010 a sealed cell, for foam generation and observation, has been designed and manufactured at Astrium Friedrichshafen facilities. With the use of this cell, different sample compositions of "wet foams" have been optimized for mixtures of chemicals such as water, dodecanol, pluronic, aethoxisclerol, glycerol, CTAB, SDS, as well as glass beads. This development is performed in the frame of the breadboarding development activities of the Experiment Container FOAM-C for operation in the ISS Fluid Science Laboratory (ISS). The sample cell supports multiple observation methods such as: Diffusing-Wave and Diffuse Transmission Spectrometry, Time Resolved Correlation Spectroscopy [1] and microscope observation, all of these methods are applied in the cell with a relatively small experiment volume <3cm3. These units, will be on orbit replaceable sets, that will allow multiple sample compositions processing (in the range of >40).

  6. Shape-memory polymer foam device for treating aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Jason M.; Benett, William J.; Small, Ward

    A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicitymore » of pores are located in the dome of the aneurysm.« less

  7. Investigation of heat transfer of tube line of staggered tube bank in two-phase flow

    NASA Astrophysics Data System (ADS)

    Jakubcionis, Mindaugas

    2015-06-01

    This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.

  8. Honeycomb-laminate composite structure

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A. (Inventor)

    1977-01-01

    A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described.

  9. Open Source Tools for Numerical Simulation of Urban Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Nottrott, A.; Tan, S. M.; He, Y.

    2016-12-01

    There is a global movement toward urbanization. Approximately 7% of the global population lives in just 28 megacities, occupying less than 0.1% of the total land area used by human activity worldwide. These cities contribute a significant fraction of the global budget of anthropogenic primary pollutants and greenhouse gasses. The 27 largest cities consume 9.9%, 9.3%, 6.7% and 3.0% of global gasoline, electricity, energy and water use, respectively. This impact motivates novel approaches to quantify and mitigate the growing contribution of megacity emissions to global climate change. Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model methane (CH4) emissions from various components of the natural gas distribution system, to investigate the impact of urban meteorology on mobile CH4 measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of the plume due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments.

  10. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    PubMed

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  11. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    PubMed Central

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi

    2018-01-01

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450

  12. Synthesis of α-Fe₂O₃ and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates.

    PubMed

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi

    2018-02-11

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  13. Study of Microstructure and Mechanical Properties of Particulate Reinforced Aluminum Matrix Composite Foam

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Pandey, O. P.

    Metal foams cellular metals have gained an important role in the field of metallurgy, though barely a few decades old. Aluminum composite foam exhibit unique properties such as light weight, blast palliation, sound absorption, high energy absorption, and flame resistance. In the present investigation the effect of variation in the amount of CaCO3 as blowing agent on the microstructure and wear behavior of LM13 alloy foams has been studied. The blowing agent was blended in highly viscous semi-solid melt by stirring process. The process parameters that influence the formation of bubbles like the melt temperature, size and amount of blowing agent and its distribution has been optimized to get uniform size foams. The distribution behavior of blowing agent is influenced by the melt viscosity and stirring speed. For packaging application, the dry sliding wear behavior of the prepared foam was investigated by using a pin on disc method at applied loads of 9.8, 19.6 and 29.4 N at room temperature. The results indicate that the wear rate is dependent on the cell size and cell wall thickness of the foam.

  14. Composite and Nanocomposite Metal Foams

    PubMed Central

    Duarte, Isabel; Ferreira, José M. F.

    2016-01-01

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880

  15. Mean turbulence statistics in boundary layers over high-porosity foams

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christoph; Luhar, Mitul

    2018-04-01

    This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\\epsilon \\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A Laser Doppler Velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_\\tau \\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by $<10 \\delta$ downstream from the porous transition, where $\\delta$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface ($>30\\%$ of the free stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/ \\delta \\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin-Helmholtz vortices that have streamwise length scale $2\\delta-4\\delta$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.

  16. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  17. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric

    2009-06-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ˜30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  18. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  19. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, E.; Lear, D.; Ryan, S.

    2009-01-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional 30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  20. [First experience of a polyurethane foam composition "Locus" use to stop intra-abdominal hemorrhage as a result of liver damage of V degree. (An experimental study)].

    PubMed

    Reva, V A; Litinskii, M A; Denisov, A V; Sokhranov, M V; Telitskii, S Yu; Samokhvalov, I M

    2015-04-01

    Today self-expanding polymers are considered as the most promising as means for intracavitary hemostasis in case of continuing bleeding after trauma. Testing of domestic open-cell polyurethane foam composition "Locus" was carried out on the developed experimental model simulating liver trauma of V degree. After damaging 6 experimental rabbits were injected intraperitoneally with 80 ml of the composition. 5 experimental rabbits were included into to control group (haemostatic agent was not given). Estimated blood loss was 111-124 ml. The two-hour survival rate didn't differ significantly: 3 animals survived in the experimental group; 2 animal survived in the control. Despite the 3-4-fold widening of the foam, due to open cells it absorbed 72.6 +/- 8.3 g of blood. Thus, open-cell polyurethane foam intraperitoneal administration of the composition didn't provide a temporary intra-abdominal hemostasis in liver. In order to enhance the hemostatic effect it requires changing the formulation of the polyurethane composition. For a more accurate assessment of the results it is neccessary to perform additional researches on larger animals.

  1. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    NASA Astrophysics Data System (ADS)

    Tisovský, Tomáš; Vít, Tomáš

    Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  2. LFT foam - Lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams

    NASA Astrophysics Data System (ADS)

    Roch, A.; Huber, T.; Henning, F.; Elsner, P.

    2014-05-01

    Investigations on PP-LGF30 foam sandwiches have been carried out using different manufacturing processes: standard injection molding, MuCell® and LFT-D foam. Both chemical and physical blowing agents were applied. Precision mold opening (breathing mold technology) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. The experiments showed that, at a constant mass per unit area, integral foams have a significantly higher flexural rigidity than compact components, due to their greater area moment of inertia after foaming: with an increase of the wall thickness from 3.6 mm to 4.4 mm compared to compact construction, the flexural rigidity increased by 75 %. With a final wall thickness of 5.8 mm an increase of 300 % was measured. Compared to non-reinforced components that show significant embrittlement during foaming, the energy absorption capacity (impact strength) of LFT foam components remains almost constant.

  3. Blending Novatein{sup ®} thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walallavita, Anuradha, E-mail: asw15@students.waikato.ac.nz; Verbeek, Casparus J. R., E-mail: jverbeek@waikato.ac.nz; Lay, Mark, E-mail: mclay@waikato.ac.nz

    2016-03-09

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to othermore » thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO{sub 2} expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO{sub 2} had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO{sub 2} ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.« less

  4. Follicular and percutaneous penetration pathways of topically applied minoxidil foam.

    PubMed

    Blume-Peytavi, Ulrike; Massoudy, Lida; Patzelt, Alexa; Lademann, Jürgen; Dietz, Ekkehart; Rasulev, Utkur; Garcia Bartels, Natalie

    2010-11-01

    In the past, it was assumed that the intercellular route was the only relevant penetration pathway for topically applied substances. Recent results on follicular penetration emphasize that the hair follicles represent a highly relevant and efficient penetration pathway and reservoir for topically applied substances. This study investigates a selective closure technique of hair follicle orifices in vivo assessing interfollicular and follicular absorption rates of topical minoxidil foam in humans. In delimited skin area, single hair orifices or interfollicular skin were blocked with a microdrop of special varnish-wax-mixture in vivo. Minoxidil foam (5%) was topically applied, and transcutaneous absorption was measured by a new surface ionization mass spectrometry technique in serum. Different settings (open, closed or none of both) enabled to clearly distinguish between interfollicular and follicular penetration of the topically applied minoxidil foam. Five minutes after topical application, minoxidil was detected in blood samples when follicles remained open, whereas with closed follicles 30 min were needed. Highest levels were found first when both pathways were open, followed by open follicles and subsequently by closed follicles. These results demonstrate the high importance of the follicular penetration pathway. Hair follicles are surrounded by a dense network of blood capillaries and dendritic cells and have stem cells in their immediate vicinity, making them ideal targets for drug delivery. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors

    NASA Technical Reports Server (NTRS)

    Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.

    2005-01-01

    In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness

  6. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    NASA Technical Reports Server (NTRS)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  7. Assessment of Multiaxial Mechanical Response of Rigid Polyurethane Foams

    NASA Astrophysics Data System (ADS)

    Pettarin, Valeria; Fasce, Laura A.; Frontini, Patricia M.

    2014-02-01

    Multiaxial deformation behavior and failure surface of rigid polyurethane foams were determined using standard experimental facilities. Two commercial foams of different densities were assayed under uniaxial, biaxial, and triaxial stress states. These different stress states were reached in a uniaxial universal testing machine using suitable testing configurations which imply the use of special grips and lateral restricted samples. Actual strains were monitored with a video extensometer. Polyurethane foams exhibited typical isotropic brittle behavior, except under compressive loads where the response turned out to be ductile. A general failure surface in the stress space which accounts for density effects could be successfully generated. All of failure data, determined at the loss of linear elasticity point, collapsed in a single locus defined as the combination of a brittle crushing of closed-cell cellular materials criterion capped by an elastic buckling criterion.

  8. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    PubMed

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nano-Aramid Fiber Reinforced Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  10. 46 CFR 181.500 - Required number, type, and location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (10 lb). Open Vehicle Deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal). Halon 4.5 kg (10 lb...,500 square feet) or fraction thereof A-II Foam Dry Chemical 9.5 L (2.5 gal). 4.5 kg (10 lb). Galley, Pantry, Concession Stand 1 A-II, B-II Foam 9.5 L (2.5 gal). Dry Chemical 4.5 kg (10 lb). (b) A vehicle...

  11. 46 CFR 181.500 - Required number, type, and location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (10 lb). Open Vehicle Deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal). Halon 4.5 kg (10 lb...,500 square feet) or fraction thereof A-II FoamDry Chemical 9.5 L (2.5 gal).4.5 kg (10 lb). Galley, Pantry, Concession Stand 1 A-II, B-II Foam 9.5 L (2.5 gal). Dry Chemical 4.5 kg (10 lb). (b) A vehicle...

  12. 46 CFR 181.500 - Required number, type, and location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (10 lb). Open Vehicle Deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal). Halon 4.5 kg (10 lb...,500 square feet) or fraction thereof A-II FoamDry Chemical 9.5 L (2.5 gal).4.5 kg (10 lb). Galley, Pantry, Concession Stand 1 A-II, B-II Foam 9.5 L (2.5 gal). Dry Chemical 4.5 kg (10 lb). (b) A vehicle...

  13. 46 CFR 181.500 - Required number, type, and location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (10 lb). Open Vehicle Deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal). Halon 4.5 kg (10 lb...,500 square feet) or fraction thereof A-II FoamDry Chemical 9.5 L (2.5 gal).4.5 kg (10 lb). Galley, Pantry, Concession Stand 1 A-II, B-II Foam 9.5 L (2.5 gal). Dry Chemical 4.5 kg (10 lb). (b) A vehicle...

  14. 46 CFR 181.500 - Required number, type, and location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (10 lb). Open Vehicle Deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal). Halon 4.5 kg (10 lb...,500 square feet) or fraction thereof A-II Foam Dry Chemical 9.5 L (2.5 gal). 4.5 kg (10 lb). Galley, Pantry, Concession Stand 1 A-II, B-II Foam 9.5 L (2.5 gal). Dry Chemical 4.5 kg (10 lb). (b) A vehicle...

  15. Theoretical Evaluation of Foam Proppant Carriers

    NASA Astrophysics Data System (ADS)

    von Holt, H.; Kam, S.; Williams, W. C.

    2017-12-01

    Hydraulic fracturing in oil wells results in a large amount of produced water which must be properly disposed of and is currently a key environmental issue preventing further development in US domestic oil and gas production. The primary function of this liquid is to carry particulates, a.k.a. Proppant, into the stress fractures in order to hold open a pathway in which petroleum can flow into the wellbore. A potential superior technique is to use foam instead of liquid; liquids rely on turbulence to suspend proppant while foams carry particulates on the surfaces. Therefore, foams can carry more proppant deeper into the fractures while typically using 50%-90% less liquid, depending on foam quality. This comparative analysis uses the vorticity equation for a liquid to approximate the base case of particle suspension. This is then compared to a multitude of foam transport models in order to demonstrate the efficacy of foams when used in hydraulic fracturing. This work serves as the basis for future laboratory and hopefully field scale studies of foam proppant carriers.

  16. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  17. Porous Media Approach for Modeling Closed Cell Foam

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Sullivan, Roy M.

    2006-01-01

    In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is stretched to simulate the structural response of the tank during operation. The thermal expansion mismatch between the foam and the metal substrate and the thermal gradient in the foam layer causes high tensile stresses near the metal/foam interface that can lead to delamination.

  18. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    NASA Astrophysics Data System (ADS)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  19. Flotation Analysis for Boat Docks on U.S. Army Corps of Engineers Projects. Recreation Management Support Program

    DTIC Science & Technology

    2009-06-01

    USACE 2008c)) on June 3, 1992 that “effectively precludes the future use of expanded polystyrene unless it is encased in an approved protective coating...punctured. Closed cell (extruded) expanded polystyrene of good quality and manufac- tured for marine use will be required. Lesser quality foam bead flota...Forest Service (USFS) (USFS 2008) – “Open cell Expanded Polystyrene Foam (EPS) has an open structure that easily lets water into its interior. It

  20. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    DTIC Science & Technology

    2015-09-01

    lift and drag forces on two model car geometries (designated as the VRAK model and the S80 model). For the VRAK model the OpenFOAM drag coefficient was...lift coefficient was 16.5% higher than the Fluent value. Both model car geometries were meshed using Harpoon, which is a commercial software package...2. Clarke, G., Vun, S., Giacobello, M. and Reddy, R., “Estimation of ARH Tiger Fuselage Aerodynamic Characteristics Using Computational Fluid

  1. Cellular polypropylene polymer foam as air-coupled ultrasonic transducer materials.

    PubMed

    Satyanarayan, L; Haberman, Michael R; Berthelot, Yves H

    2010-10-01

    Cellular polypropylene polymer foams, also known as ferroelectrets, are compelling candidates for air-coupled ultrasonic transducer materials because of their excellent acoustic impedance match to air and because they have a piezoelectric d(33) coefficient superior to that of PVDF. This study investigates the performance of ferroelectret transducers in the generation and reception of ultrasonic waves in air. As previous studies have noted, the piezoelectric coupling coefficients of these foams depend on the number, size, and distribution of charged voids in the microstructure. The present work studies the influence of these parameters both theoretically and experimentally. First, a three-dimensional model is employed to explain the variation of piezoelectric coupling coefficients, elastic stiffness, and dielectric permittivity as a function of void fraction based on void-scale physics and void geometry. Laser Doppler vibrometer (LDV) measurements of the effective d(33) coefficient of a specially fabricated prototype transmitting transducer are then shown which clearly indicate that the charged voids in the ferroelectret material are randomly distributed in the plane of the foam. The frequency-dependent dynamic d(33) coefficient is then reported from 50 to 500 kHz for different excitation voltages and shown to be largely insensitive to drive voltage. Lastly, two ferroelectret transducers are operated in transmit-receive mode and the received signal is shown to accurately represent the corresponding signal generated by the transmitting transducer as measured using LDV.

  2. Toxicity of pyrolysis gases from some cellular polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Machado, A. M.

    1978-01-01

    Various samples of cellular polymers were evaluated for toxicity of pyrolysis gases, using the screening test method developed at the University of San Francisco. The cellular polymer samples included polyimide, polymethacrylimide, polybismaleimide, polyurethane, polyisocyanurate, polyethylene, polychloroprene, polyvinyl chloride, polystyrene, polysiloxane, and polyphosphazene. The cellular polymers exhibited varying levels of toxicity under these test conditions. Among the rigid cellular polymers, times to death were shortest with the imide type foams and longest with polyvinyl chloride and polystyrene. Among the flexible cellular polymers, times to death were shortest with polyimide and polyester, and longest with polychloroprene and polysiloxane. Increased char yield was not necessarily associated with reduced toxicity.

  3. Foam concrete of increased strength with the thermomodified peat additives

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  4. 46 CFR 108.495 - Spare charges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., offices, lockers, small storerooms, and pantries, open decks, and similar spaces None required. service... extinguishing system is installed. 2. Not required where a fixed foam system is installed in accordance with § 108.489 of this subpart. Table 108.495(b) Classification: Type and size Water liters (gallons) Foam...

  5. 46 CFR 108.495 - Spare charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., offices, lockers, small storerooms, and pantries, open decks, and similar spaces None required. service... extinguishing system is installed. 2. Not required where a fixed foam system is installed in accordance with § 108.489 of this subpart. Table 108.495(b) Classification: Type and size Water liters (gallons) Foam...

  6. 46 CFR 108.495 - Spare charges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., offices, lockers, small storerooms, and pantries, open decks, and similar spaces None required. service... extinguishing system is installed. 2. Not required where a fixed foam system is installed in accordance with § 108.489 of this subpart. Table 108.495(b) Classification: Type and size Water liters (gallons) Foam...

  7. 46 CFR 108.495 - Spare charges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., offices, lockers, small storerooms, and pantries, open decks, and similar spaces None required. service... extinguishing system is installed. 2. Not required where a fixed foam system is installed in accordance with § 108.489 of this subpart. Table 108.495(b) Classification: Type and size Water liters (gallons) Foam...

  8. 46 CFR 108.495 - Spare charges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., offices, lockers, small storerooms, and pantries, open decks, and similar spaces None required. service... extinguishing system is installed. 2. Not required where a fixed foam system is installed in accordance with § 108.489 of this subpart. Table 108.495(b) Classification: Type and size Water liters (gallons) Foam...

  9. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  10. Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine

    NASA Technical Reports Server (NTRS)

    Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William

    2006-01-01

    As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.

  11. 46 CFR 118.500 - Required number, type, and location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Open vehicle deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal) Halon 4.5 kg (10 lb) CO2 6.8 kg (15...) or fraction thereof A-II Foam 9.5 L (2.5 gal) Dry chemical 4.5 kg (10 lb) Galley, pantry, concession stand 1 A-II Foam 9.5 L (2.5 gal) B-II Dry chemical 4.5 kg (10 lb) (b) A vehicle deck without a fixed...

  12. 46 CFR 118.500 - Required number, type, and location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Open vehicle deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal) Halon 4.5 kg (10 lb) CO2 6.8 kg (15...) or fraction thereof A-II Foam 9.5 L (2.5 gal) Dry chemical 4.5 kg (10 lb) Galley, pantry, concession stand 1 A-II Foam 9.5 L (2.5 gal) B-II Dry chemical 4.5 kg (10 lb) (b) A vehicle deck without a fixed...

  13. 46 CFR 118.500 - Required number, type, and location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Open vehicle deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal) Halon 4.5 kg (10 lb) CO2 6.8 kg (15...) or fraction thereof A-II Foam 9.5 L (2.5 gal) Dry chemical 4.5 kg (10 lb) Galley, pantry, concession stand 1 A-II Foam 9.5 L (2.5 gal) B-II Dry chemical 4.5 kg (10 lb) (b) A vehicle deck without a fixed...

  14. 46 CFR 118.500 - Required number, type, and location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Open vehicle deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal) Halon 4.5 kg (10 lb) CO2 6.8 kg (15...) or fraction thereof A-II Foam 9.5 L (2.5 gal) Dry chemical 4.5 kg (10 lb) Galley, pantry, concession stand 1 A-II Foam 9.5 L (2.5 gal) B-II Dry chemical 4.5 kg (10 lb) (b) A vehicle deck without a fixed...

  15. 46 CFR 118.500 - Required number, type, and location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Open vehicle deck 1 for every 10 vehicles B-II Foam 9.5 L (2.5 gal) Halon 4.5 kg (10 lb) CO2 6.8 kg (15...) or fraction thereof A-II Foam 9.5 L (2.5 gal) Dry chemical 4.5 kg (10 lb) Galley, pantry, concession stand 1 A-II Foam 9.5 L (2.5 gal) B-II Dry chemical 4.5 kg (10 lb) (b) A vehicle deck without a fixed...

  16. rhoCentralRfFoam: An OpenFOAM solver for high speed chemically active flows - Simulation of planar detonations -

    NASA Astrophysics Data System (ADS)

    Gutiérrez Marcantoni, L. F.; Tamagno, J.; Elaskar, S.

    2017-10-01

    A new solver developed within the framework of OpenFOAM 2.3.0, called rhoCentralRfFoam which can be interpreted like an evolution of rhoCentralFoam, is presented. Its use, performing numerical simulations on initiation and propagation of planar detonation waves in combustible mixtures H2-Air and H2-O2-Ar, is described. Unsteady one dimensional (1D) Euler equations coupled with sources to take into account chemical activity, are numerically solved using the Kurganov, Noelle and Petrova second order scheme in a domain discretized with finite volumes. The computational code can work with any number of species and its corresponding reactions, but here it was tested with 13 chemically active species (one species inert), and 33 elementary reactions. A gaseous igniter which acts like a shock-tube driver, and powerful enough to generate a strong shock capable of triggering exothermic chemical reactions in fuel mixtures, is used to start planar detonations. The following main aspects of planar detonations are here, treated: induction time of combustible mixtures cited above and required mesh resolutions; convergence of overdriven detonations to Chapman-Jouguet states; detonation structure (ZND model); and the use of reflected shocks to determine induction times experimentally. The rhoCentralRfFoam code was verified comparing numerical results and it was validated, through analytical results and experimental data.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A; Railkar, Sudhir; Shiao, Ming C

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climatemore » showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.« less

  18. Structure formation control of foam concrete

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  19. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Weisgraber, T. H.; Small, W.

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component inmore » our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.« less

  20. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES

    Maiti, A.; Small, W.; Lewicki, J.; ...

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  1. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Small, W.; Lewicki, J.

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  2. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  3. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    PubMed Central

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858

  4. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions

    NASA Astrophysics Data System (ADS)

    Namiki, Atsuko; Rivalta, Eleonora; Woith, Heiko; Walter, Thomas R.

    2016-06-01

    Large earthquakes sometimes activate volcanoes both in the near field as well as in the far field. One possible explanation is that shaking may increase the mobility of the volcanic gases stored in magma reservoirs and conduits. Here experimentally and theoretically we investigate how sloshing, the oscillatory motion of fluids contained in a shaking tank, may affect the presence and stability of bubbles and foams, with important implications for magma conduits and reservoirs. We adopt this concept from engineering: severe earthquakes are known to induce sloshing and damage petroleum tanks. Sloshing occurs in a partially filled tank or a fully filled tank with density-stratified fluids. These conditions are met at open summit conduits or at sealed magma reservoirs where a bubbly magma layer overlays a newly injected denser magma layer. We conducted sloshing experiments by shaking a rectangular tank partially filled with liquids, bubbly fluids (foams) and fully filled with density-stratified fluids; i.e., a foam layer overlying a liquid layer. In experiments with foams, we find that foam collapse occurs for oscillations near the resonance frequency of the fluid layer. Low viscosity and large bubble size favor foam collapse during sloshing. In the layered case, the collapsed foam mixes with the underlying liquid layer. Based on scaling considerations, we constrain the conditions for the occurrence of foam collapse in natural magma reservoirs. We find that seismic waves with lower frequencies < 1 Hz, usually excited by large earthquakes, can resonate with magma reservoirs whose width is > 0.5 m. Strong ground motion > 0.1 m s- 1 can excite sloshing with sufficient amplitude to collapse a magma foam in an open conduit or a foam overlying basaltic magma in a closed magma reservoir. The gas released from the collapsed foam may infiltrate the rock or diffuse through pores, enhancing heat transfer, or may generate a gas slug to cause a magmatic eruption. The overturn in the magma reservoir provides new nucleation sites which may help to prepare a following/delayed eruption. Mt. Fuji erupted 49 days after the large Hoei earthquake (1707) both dacitic and basaltic magmas. The eruption might have been triggered by magma mixing through sloshing.

  5. The effects of cognitive loading on balance control in patients with multiple sclerosis.

    PubMed

    Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran

    2011-10-01

    The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase

    NASA Astrophysics Data System (ADS)

    Xue, Ping; Xu, Fang; Xu, Lidong

    2008-12-01

    The epoxy-functionalized mesoporous cellular foams (G-MCFs) with high specific surface area (˜400 m 2/g) and large-size mesopores (˜17 nm) were obtained by condensation of 3-glycidoxypropyltriethoxysilane (GPTS) and the surface silanol groups of mesoporous cellular foams (MCFs) and used as the support for immobilization of penicillin G acylase (PGA). The structural properties of G-MCF were characterized by FT-IR, N 2 adsorption, TG-DTA and 29Si MAS NMR. The studies indicated that the glycidoxypropyl groups were chemically bonded to the silicon atoms on the surface of MCF. The epoxy-functionalized mesoporous cellular foams can provide the microenvironments suitable for the immobilization of PGA, and the enzyme molecules could be immobilized covalently onto the G-MCF under mild conditions by reaction between the amino groups of the enzyme molecules and the epoxy groups on the surface of G-MCF. The PGA immobilized on G-MCF (PGA/G-MCF) exhibited the apparent activity of 1782 IU/g and 46.6% of activity recovery for hydrolyzing penicillin G potassium to produce 6-aminopenicillanic acid at 37 °C which were higher than that of PGA on pure silica MCF (1521 IU/g and 39.8%, respectively). The kinetic study also indicated that PGA immobilized on G-MCF has a Km of 2.1 × 10 -2 mol/L lower than that of PGA immobilized on the pure silica MCF (5.0 × 10 -2 mol/L). These may be attributed to the enhanced surface affinity between G-MCF support and the substrate molecules. Due to the covalent immobilization of PGA molecules on the surface of G-MCF, the immobilized PGA with considerable operational stability was achieved. The activity of PGA/G-MCF is still about 91.4% of its initial activity at the 10th cycle reuse while that of PGA/MCF only remains 41.5% of its initial activity at the same reuse numbers. In addition, the investigation results show the thermal stability and durability on acid or basic medium of PGA immobilized on G-MCF were improved remarkably.

  7. 46 CFR 13.121 - Courses for tankerman endorsements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...

  8. 46 CFR 13.121 - Courses for tankerman endorsements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...

  9. 46 CFR 13.121 - Courses for tankerman endorsements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...

  10. Storage-stable foamable polyurethane is activated by heat

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Polyurethane foamable mixture remains inert in storage unit activated to produce a rapid foaming reaction. The storage-stable foamable composition is spread as a paste on the surface of an expandable structure and, when heated, yields a rigid open-cell polyurethane foam that is self-bondable to the substrate.

  11. Problem Definition Study of Requirements for Vapor Retarders in the Building Envelope.

    DTIC Science & Technology

    1982-11-01

    be used, and that cellular glass should be used rather than fibrous glass, mineral wool , and organic fiber insulation materials. -48- 6 Comment: (This...Oregon area. 71 were insulated with UF-foam, cellulose, and mineral wool ; 25 were uninsulated. q b. All insulated homes had been retrofitted for 3 to...ACHR was 18.7, for mineral wool insulated homes 16.4, for cellulose insulated homes 13.6, and for UF-foam insulated homes 15.2. f. No tracer-gas air

  12. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression

    PubMed Central

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2017-01-01

    Background: Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). Objective: To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. Materials and Methods: The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. Results: We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Conclusion: Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. SUMMARY Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator-activated receptor γ, HO-1: Heme oxygenase-1, CVD: Cardiovascular diseases PMID:29491646

  13. The Natural Compound Dansameum Reduces foam Cell Formation by Downregulating CD36 and Peroxisome Proliferator-activated Receptor-gamma; Expression.

    PubMed

    Park, Kang-Seo; Ahn, Sang Hyun; Lee, Kang Pa; Park, Sun-Young; Cheon, Jin Hong; Choi, Jun-Yong; Kim, Kibong

    2018-01-01

    Atherosclerosis-induced vascular disorders are major causes of death in most western countries. During the development of atherosclerotic lesions, foam cell formation is essential and formed through the expression of CD36 and the peroxisome proliferator-activated receptor gamma (PPAR-γ). To investigate whether dansameum extract (DSE) could show anti-atherosclerotic effect through down-regulating cellular redox state including CD36 and PARP-γ expression in oxidative low-density lipoprotein (oxLDL)-treated RAW264.7 cells and on differentiated foam cells in ApoE Knockout (ApoE-/-) mice. The Korean polyherbal medicine DSE was prepared from three plants in the following proportions: 40 g of Salvia miltiorrhiza root, 4 g of Amomumxanthioides fruit, and 4 g of Santalum album lignum. The immunohistochemistry and reverse transcription-polymerase chain reaction was used for analysis of protein and mRNA involved in foam cell formation. We first showed that effects of DSE on foam cell formation in both oxLDL-induced RAW264.7 cells and in blood vessels from apolipoprotein E deficientApoE-/- mice with high fat diet-fed. DSE treatment significantly reduced the expression of CD36 and PPAR-γ in oxLDL-stimulated RAW264.7 cells and ApoE-/-mice, in the latter case by regulating heme oxygenase-1. Furthermore, DSE treatment also reduced cellular lipid content in vitro and in vivo experiments. Our data suggest that DSE may have anti-atherosclerotic properties through regulating foam cell formation. Dansameum extract (DSE) Regulates the expression of CD36 and peroxisome proliferator-activated receptor gamma in oxidative low-density lipoprotein-stimulated RAW264.7 Cells and ApoE Knockout (ApoE Knockout [ApoE-/-]) miceDSE Regulates Cholesterol Levels in the Serum of ApoE-deficient (ApoE-/-) miceDSE Reduced the Formation of Foam Cells by Regulating heme oxygenase-1 in ApoE-/- mice with high fat diet-fed. Abbreviations used: DSE: Dansameum extract, PPAR-γ: Peroxisome proliferator-activated receptor γ, HO-1: Heme oxygenase-1, CVD: Cardiovascular diseases.

  14. The energetics of heterogeneous deformation in open-cell elastic foams

    NASA Astrophysics Data System (ADS)

    Gioia, Gustavo; Cuitino, Alberto

    2002-03-01

    We study the energetics of a model of elastic foams to show that the stretch heterogeneity observed in experiments stems from the lack of convexity of the governing energy functional. The predicted stretch distributions correspond to stratified mixtures of two configurational phases of the foam. Stretching occurs in the form of a phase transition, by growth of one of the phases at the expense of the other. We also compare the predicted mechanical response with experimental data for foams of different densities. Lastly, we perform displacement field measurements using the digital image correlation technique, and find the results to be in agreement with our predictions.

  15. Microcellular carbon foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1993-05-04

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  16. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    PubMed Central

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; Horn, John; Yang, Cheng-Kang; Wilson, Thomas S.; Ortega, Jason M.; Small, Ward; Nash, Landon; Skoog, Hunter; Maitland, Duncan J.

    2014-01-01

    Predominantly closed-cell low density shape memory polymer (SMP) foam was recently reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching. Reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model. PMID:25222869

  17. Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.

    PubMed

    Chevillotte, Fabien; Perrot, Camille; Panneton, Raymond

    2010-10-01

    Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.

  18. Innovative cellular distance structures from polymeric and metallic threads

    NASA Astrophysics Data System (ADS)

    Wieczorek, F.; Trümper, W.; Cherif, C.

    2017-10-01

    Knitting allows a high individual adaptability of the geometry and properties of flat-knitted spacer fabrics. This offers advantages for the specific adjustment of the mechanical properties of innovative composites based on highly viscous matrix systems such as bone cement, elastomer or foam and cellular reinforcing structures made from e. g. polymeric monofilaments or metallic wires. The prerequisite is the availability of binding solutions for highly productive production of functional, cellular, self-stabilized spacer flat knitted fabrics as supporting and functionalized structures.

  19. Adding Complex Terrain and Stable Atmospheric Condition Capability to the OpenFOAM-based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Sang, L.; Moriarty, P. J.

    This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.

  20. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    PubMed Central

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson’s disease treatment. PMID:25471830

  1. 29 CFR Appendix C to Subpart L of... - Fire Protection References For Further Information

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...—September 30, 1978. Evaluation and Performance of Open Circuit Breathing Apparatus. NU REG/CR-1235. Los.... § 1910.160. Fixed extinguishing systems—general information: 1. Standard for Foam Extinguishing Systems... for Hi-Expansion Foam Systems, ANSI/NFPA 11A; National Fire Protection Association, Batterymarch Park...

  2. 46 CFR 34.20-15 - Piping-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...

  3. 46 CFR 34.20-15 - Piping-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...

  4. 46 CFR 34.20-15 - Piping-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...

  5. 46 CFR 34.20-15 - Piping-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... in § 34.20-5(b), to any portion of the open deck of the cargo area through the use of the mounted and... at each foam station. For enclosed spaces, application of at least 1.6 gallons per minute water rate...

  6. Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method

    NASA Astrophysics Data System (ADS)

    Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.

    2017-09-01

    The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.

  7. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    NASA Astrophysics Data System (ADS)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  8. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    PubMed

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  9. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow

    PubMed Central

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu

    2018-01-01

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014

  10. Ex vivo foam cell formation is enhanced in monocytes from older individuals by both extrinsic and intrinsic mechanisms.

    PubMed

    Angelovich, Thomas A; Shi, Margaret D Y; Zhou, Jingling; Maisa, Anna; Hearps, Anna C; Jaworowski, Anthony

    2016-07-01

    Aging is the strongest predictor of cardiovascular diseases such as atherosclerosis, which are the leading causes of morbidity and mortality in elderly men. Monocytes play an important role in atherosclerosis by differentiating into foam cells (lipid-laden macrophages) and producing atherogenic proinflammatory cytokines. Monocytes from the elderly have an inflammatory phenotype that may promote atherosclerotic plaque development; here we examined whether they are more atherogenic than those from younger individuals. Using an in vitro model of monocyte transmigration and foam cell formation, monocytes from older men (median age [range]: 75 [58-85] years, n=20) formed foam cells more readily than those of younger men (32 [23-46] years, n=20) (P<0.003) following transmigration across a TNF-activated endothelial monolayer. Compared to young men, monocytes from the elderly had impaired cholesterol efflux and lower expression of regulators of cholesterol transport and metabolism. Foam cell formation was enhanced by soluble factors in serum from older men, but did not correlate with plasma lipid levels. Of the three subsets, intermediate monocytes formed the most foam cells. Therefore, both cellular changes to monocytes and soluble plasma factors in older men primes monocytes for foam cell formation following transendothelial migration, which may contribute to enhanced atherosclerosis in this population. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameli, A.; Nofar, M.; Saniei, M.

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed inmore » an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.« less

  12. Validation of OpenFoam for heavy gas dispersion applications.

    PubMed

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuenca, Jacques, E-mail: jcuenca@kth.se; Van der Kelen, Christophe; Göransson, Peter

    2014-02-28

    This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the modelmore » on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.« less

  14. A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam

    NASA Astrophysics Data System (ADS)

    Cuenca, Jacques; Van der Kelen, Christophe; Göransson, Peter

    2014-02-01

    This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.

  15. Outgassing From Open And Closed Magma Foams

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  16. Microgravity Foam Structure and Rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.

    1996-01-01

    The objective of this research was to exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest was in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate.

  17. Fabrication of porous titanium scaffold materials by a fugitive filler method.

    PubMed

    Hong, T F; Guo, Z X; Yang, R

    2008-12-01

    A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.

  18. Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.

    2017-05-01

    The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed

  19. A Numerical Analysis on a Compact Heat Exchanger in Aluminum Foam

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2016-09-01

    A numerical investigation on a compact heat exchanger in aluminum foam is carried out. The governing equations in two-dimensional steady state regime are written in local thermal non-equilibrium (LTNE). The geometrical domain under investigation is made up of a plate in aluminum foam with inside a single array of five circular tubes. The presence of the open-celled metal foam is modeled as a porous media by means of the Darcy-Forchheimer law. The foam has a porosity of 0.93 with 20 pores per inch and the LTNE assumption is used to simulate the heat transfer between metal foam and air. The compact heat exchanger at different air flow rates is studied with an assigned surface tube temperature. The results in terms of local heat transfer coefficient and Nusselt number on the external surface of the tubes are given. Moreover, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes, as a function of Reynolds number are showed. The performance evaluation criteria (PEC) is assessed in order to evaluate the effectiveness of the metal foam.

  20. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...

  1. 40 CFR 61.271 - Emission standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (i) A foam- or liquid-filled seal mounted in contact with the liquid (liquid-mounted seal). A liquid-mounted seal means a foam- or liquid-filled seal mounted in contact with the liquid between the wall of... are not in use. Rim space vents are to be set to open only when the internal floating roof is not...

  2. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...

  3. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...

  4. 40 CFR 61.271 - Emission standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (i) A foam- or liquid-filled seal mounted in contact with the liquid (liquid-mounted seal). A liquid-mounted seal means a foam- or liquid-filled seal mounted in contact with the liquid between the wall of... are not in use. Rim space vents are to be set to open only when the internal floating roof is not...

  5. 78 FR 36773 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Flexible Polyurethane Foam... Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding legal holidays. The... www.regulations.gov . Title: NESHAP for Flexible Polyurethane Foam Production (Renewal) ICR Numbers...

  6. 46 CFR 169.567 - Portable extinguishers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Minimum size Coast Guard classification Living space and open boats 1 per 1000 cu. ft. of space Halon 1211 of 1301 21/2 pounds Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical 2 pounds Propulsion machinery space with fixed CO2 or halon system 1 Foam 11/4 gallons Carbon dioxide 4 pounds B-I. Dry chemical...

  7. 40 CFR 61.271 - Emission standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (i) A foam- or liquid-filled seal mounted in contact with the liquid (liquid-mounted seal). A liquid-mounted seal means a foam- or liquid-filled seal mounted in contact with the liquid between the wall of... are not in use. Rim space vents are to be set to open only when the internal floating roof is not...

  8. 77 FR 37901 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Flexible Polyurethane Foam... Constitution Avenue NW., Washington, DC. The EPA Docket Center Public Reading Room is open from 8:30 a.m. to 4... Flexible Polyurethane Foam Fabrication (Renewal). ICR Numbers: EPA ICR Number 2027.05, OMB Control Number...

  9. Development of highly open polyhedral networks from vitreous carbon for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Güiza-Argüello, V.; Bayona-Becerra, M.; Cruz-Orellana, S.; Córdoba-Tuta, E.

    2017-01-01

    Highly open polyhedral networks were fabricated using an economical and environmentally friendly template route. Recycled cellulose foams were impregnated with a sucrose resin and then pyrolyzed in order to produce reticulated vitreous carbon foams with morphological features that closely resemble trabecular bone. Also, cell sizes ~1mm were achieved, a trait that will allow the mechanical reinforcement of such scaffolds using a biomaterial coating without compromising the pore size that favors osteoblast cell infiltration and growth (200-500µm). Moreover, initial studies showed that carbonization conditions have an effect on the mechanical properties of the synthesized foams and, therefore, such process parameters could be further evaluated towards the enhancement of the mechanical resistance of the scaffolds. The materials developed here are visualized as the porous component of a synthetic bone graft with features that could help overcome the current limitations associated with the medical treatments used for bone defect repair.

  10. X-ray Measurements of Laser Irradiated Foam Filled Liners

    NASA Astrophysics Data System (ADS)

    Patankar, Siddharth; Mariscal, Derek; Goyon, Clement; Baker, Kevin; MacLaren, Stephan; Hammer, Jim; Baumann, Ted; Amendt, Peter; Menapace, Joseph; Berger, Bob; Afeyan, Bedros; Tabak, Max; Dixit, Sham; Kim, Sung Ho; Moody, John; Jones, Ogden

    2016-10-01

    Low-density foam liners are being investigated as sources of efficient x-rays. Understanding the laser-foam interaction is key to modeling and optimizing foam composition and density for x-ray production with reduced backscatter. We report on the experimental results of laser-irradiated foam liners filled with SiO2 and Ta2O5 foams at densities between 2 to 30mg/cc. The foam liners consist of polyimide tubes filled with low-density foams and sealed with a gold foil at one end. The open end of the tube is driven with 250J of 527nm laser light in a 2ns 2-step pulse using the Jupiter Laser Facility at LLNL. A full aperture backscatter system is used to diagnose the coupled energy and losses. A streaked x-ray camera and filtered x-ray pinhole cameras are used to measure laser penetration into the low-density foam for different mass densities. A HOPG crystal spectrometer is used to estimate a thermal electron temperature. Comparisons with beam propagation and x-ray emission simulations are presented. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding support from the Laboratory Directed Research and Development Program under project 15.

  11. Covalent immobilization of penicillin G acylase on aminopropyl-functionalized mesostructured cellular foams.

    PubMed

    Zhao, Junqi; Wang, Yujun; Luo, Guangsheng; Zhu, Shenlin

    2010-10-01

    Mesostructured cellular foams (MCFs) are suitable for biomolecular immobilization because of their relatively large-pore diameter and pore volume. Penicillin G acylase (PGA) was immobilized on aminopropyl-functionalized MCFs through Schiff base reaction. It is shown that PGA could be fixed more firmly through the covalent immobilization on aminopropyl-functionalized MCFs support than through the adsorption immobilization on blank MCFs. The PGA loading amount on the aminopropyl-functionalized MCFs could reach 443 mg/g (dry support), and the apparent activity could achieve up to 4138 U/g (dry support). The influence of the amount of grafted aminopropyl group was studied, and it is found that the optimal molar ratio of MCFs to APTS was 15/1; in addition, the suitable enzyme distribution density for the specific activity of the immobilized PGA was 0.7 mg enzyme per m(2) of specific area of MCFs. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  13. Extrusion Process by Finite Volume Method Using OpenFoam Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  14. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    DOE PAGES

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; ...

    2014-08-11

    Recently, predominantly closed-cell low density shape memory polymer (SMP) foam was reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching.more » Lastly, reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede the shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model.« less

  15. A general patterning approach by manipulating the evolution of two-dimensional liquid foams

    NASA Astrophysics Data System (ADS)

    Huang, Zhandong; Su, Meng; Yang, Qiang; Li, Zheng; Chen, Shuoran; Li, Yifan; Zhou, Xue; Li, Fengyu; Song, Yanlin

    2017-01-01

    The evolution of gas-liquid foams has been an attractive topic for more than half a century. However, it remains a challenge to manipulate the evolution of foams, which restricts the development of porous materials with excellent mechanical, thermal, catalytic, electrical or acoustic properties. Here we report a strategy to manipulate the evolution of two-dimensional (2D) liquid foams with a micropatterned surface. We demonstrate that 2D liquid foams can evolve beyond Ostwald ripening (large bubbles always consuming smaller ones). By varying the arrangement of pillars on the surface, we have prepared various patterns of foams in which the size, shape and position of the bubbles can be precisely controlled. Furthermore, these patterned bubbles can serve as a template for the assembly of functional materials, such as nanoparticles and conductive polymers, into desired 2D networks with nanoscale resolution. This methodology provides new insights in controlling curvature-driven evolution and opens a general route for the assembly of functional materials.

  16. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    PubMed

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  17. On the Lateral Compressive Behavior of Empty and Ex-Situ Aluminum Foam-Filled Tubes at High Temperature

    PubMed Central

    Movahedi, Nima; Marsavina, Liviu

    2018-01-01

    In this research work, the effect of lateral loading (LL) on the crushing performance of empty tubes (ETs) and ex situ aluminum foam-filled tubes (FFTs) was investigated at 300 °C. The cylindrical thin-walled steel tube was filled with the closed-cell aluminum alloy foam that compressed under quasi-static loading conditions. During the compression test, the main mechanical properties of the ETs improved due to the interaction effect between the cellular structure of the foam and the inner wall of the empty tube. In addition, the initial propagated cracks on the steel tubes reduced considerably as a result of such interaction. Furthermore, the obtained results of the LL loading were compared with the axial loading (AL) results for both ETs and FFTs at the same temperature. The findings indicated that the application of loading on the lateral surface of the composite causes the lower mechanical properties of both ETs and FFTs in comparison with the axial loading conditions. PMID:29617300

  18. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    PubMed Central

    Molino, Giulia; Vitale Brovarone, Chiara

    2018-01-01

    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498

  19. Loss of Peripheral Sensory Function Explains Much of the Increase in Postural Sway in Healthy Older Adults

    PubMed Central

    Anson, Eric; Bigelow, Robin T.; Swenor, Bonnielin; Deshpande, Nandini; Studenski, Stephanie; Jeka, John J.; Agrawal, Yuri

    2017-01-01

    Postural sway increases with age and peripheral sensory disease. Whether, peripheral sensory function is related to postural sway independent of age in healthy adults is unclear. Here, we investigated the relationship between tests of visual function (VISFIELD), vestibular function (CANAL or OTOLITH), proprioceptive function (PROP), and age, with center of mass sway area (COM) measured with eyes open then closed on firm and then a foam surface. A cross-sectional sample of 366 community dwelling healthy adults from the Baltimore Longitudinal Study of Aging was tested. Multiple linear regressions examined the association between COM and VISFIELD, PROP, CANAL, and OTOLITH separately and in multi-sensory models controlling for age and gender. PROP dominated sensory prediction of sway across most balance conditions (β's = 0.09–0.19, p's < 0.001), except on foam eyes closed where CANAL function loss was the only significant sensory predictor of sway (β = 2.12, p < 0.016). Age was not a consistent predictor of sway. This suggests loss of peripheral sensory function explains much of the age-associated increase in sway. PMID:28676758

  20. Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation1

    PubMed Central

    Keyel, Peter A; Tkacheva, Olga A.; Larregina, Adriana T.; Salter, Russell D

    2012-01-01

    Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay utilizing liposomes of defined lipid compositions. We found that TLRs signaling through Trif promoted foam cell formation by inducing both NF-KB signaling and Type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFNα to TLR2 activator promoted robust foam cell formation. TLR signaling further required PPARα, as inhibition of PPARα blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFNα. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNFα production and T cell activation, showing that foam cell formation can occur by immunosuppressive microparticles. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation. PMID:23018455

  1. Sticky foam as a less-than-lethal technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.H.

    1996-12-31

    Sandia National Labs (SNL) in 1994 completed a project funded by the National Institute of Justice (NIJ) to determine the applicability of sticky foam for correctional applications. Sticky foam is an extremely tacky, tenacious material used to block, entangle, and impair individuals. The NIJ project developed a gun capable of firing multiple shots of sticky foam, tested the gun and sticky foam effectiveness on SNL volunteers acting out prison and law enforcement scenarios, and had the gun and sticky foam evaluated by correctional representatives. Based on the NIJ project work, SNL supported the Marine Corps Mission, Operation United Shield, withmore » sticky foam guns and supporting equipment to assist in the withdrawal of UN Peacekeepers from Somalia. Prior to the loan of the equipment, the Marines were given training in sticky foam characterization, toxicology, safety issues, cleanup and waste disposal, use limitations, use protocol and precautions, emergency facial clean-up, skin cleanup, gun filling, targeting and firing, and gun cleaning. The Marine Corps successfully used the sticky foam guns as part of that operation. This paper describes these recent developments of sticky foam for non-lethal uses and some of the lessons learned from scenario and application testing.« less

  2. The Introduction of Custom Earplugs Aboard LCS-1

    DTIC Science & Technology

    2016-03-10

    reports on the use of foam and custom HPDs, and provides interim recommendations. Custom-molded HPDs were judged by users to be superior in comfort...and able to be worn for longer periods of time than other devices ( foam ). Based on data from LCS and other related studies, the performance...acceptance, and cost of the custom-molded product are comparable, or better, than foam HPDs. The interim recommendation is to provide multiple types of

  3. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Dose, Bastian; Herraez, Ivan; Peinke, Joachim

    2015-11-01

    Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.

  4. Advanced Heat Exchangers for Dry Cooling Systems, Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortini, Arthur J.; Horwath, Joseph

    Dry cooling systems are an option for industrial and utility power plants that cannot obtain permits for cooling water or where cooling water is unavailable. Currently available dry cooling systems are more expensive and less efficient than wet cooling systems, so significant improvements in efficiency are needed to make them economically viable. Previous attempts at using foams as cooling fin materials for power generating systems have focused on high thermal conductivity graphite foams made via the Oak Ridge process. Because these materials have high flow restrictions and hence low permeability with respect to air flow, their internal volume and surfacemore » area were not effectively used. Consequently, they performed poorly and offered no advantage over aluminum fins. A foam with a more open structure would provide increased permeability, enable greater airflow through the bulk material, increase the rate of heat transfer, and enable the material to outperform traditional fin structures. In this project, Ultramet designed, fabricated, and tested low flow restriction, high-efficiency foam-based heat exchangers. Calculations based on existing thermal and hydraulic data for Ultramet’s high-performance open-cell foams indicated that 65-ppi (pores per linear inch) pyrolytic graphite foam with a relative density of 15 vol%, produced by chemical vapor infiltration (CVI), would have an effectiveness significantly greater than that of a state-of-the-art Hamon/Balcke-Durr aluminum fin system and greater than that of the POCO graphite foams previously tested for the DOE National Energy Technology Laboratory. Using the same chevron design, test setup, and run conditions as were used with the Hamon/Balcke-Durr fin system and the POCO foams, Ultramet tested graphite foams with air flow velocities of 0.07–3.2 m/sec and pressure drops of 0.03–9.7 inH2O. The best-performing graphite foam architectures had air velocities in excess of 2.5 m/sec when the pressure drop was 1 inH2O. Because a foam-based system is more efficient than a fin-based system, a smaller heat exchanger installation can be used, significantly reducing the installation cost. Furthermore, because the foam-based system is physically smaller with no increase in flow restriction, less electrical power is needed to run the fans to drive the air through the condenser. The result is a decrease in both the installation and operating costs, which in turn will decrease the overall life cycle cost of the system.« less

  5. Injectable silk foams for the treatment of cervical insufficiency

    NASA Astrophysics Data System (ADS)

    Fournier, Eric P.

    Preterm birth is the leading cause of neonatal mortality, resulting in over 4,000 deaths each year. A significant risk factor for preterm birth is cervical insufficiency, the weakening and subsequent deformation of cervical tissue. Cervical insufficiency is both detectable and treatable but current treatments are lacking. The most common approach requires multiple invasive procedures. This work investigates the injection of silk foams, a minimally-invasive method for supporting cervical tissue. Silk offers many advantages for use as a biomaterial including strength, versatility, and biocompatibility. Injectable silk foams will minimize patient discomfort while also providing more targeted and personalized treatment. A battery of mechanical testing was undertaken to determine silk foam response under physiologically relevant loading and environmental conditions. Mechanical testing was paired with analysis of foam morphology and structure that illustrated the effects of injection on pore geometry and size. Biological response to silk foams was evaluated using an in vitro degradation study and subcutaneous in vivo implantation in a mouse model. Results showed that foams exceeded the mechanical requirements for stiffening cervical tissue, although the current injection process limits foam size. Injection was shown to cause measurable but localized foam deformation. This work indicates that silk foams are a feasible treatment option for cervical insufficiency but challenges remain with foam delivery.

  6. Electrostrictive energy conversion property of cellular electrets after corona discharge

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Gao, F. K.; Sun, H. C.; Putson, C.; Liu, R. T.

    2018-03-01

    In this paper, the authors present the electrostrictive energy conversion ability of cellular electrets after the high-voltage corona polarization. Moreover, the electrostrictive effect of such foamed polymer before and after corona polarization has also been compared and discussed. The enhancement of electrostrictive effect of cellular electrets after corona polarization was observed. In particular, the impact on the electrostrictive effect of the macroscopic electric dipoles inside of cellular polymer which are generated by high-voltage corona poling procedure has been investigated. The present research has promoted the development of the application of electret in the field of energy conversion, actuator, transducers, etc.

  7. Dynamics of poroelastic foams

    NASA Astrophysics Data System (ADS)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  8. Polyimide Foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2005-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam-in an open container, or in a closed mold-under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  9. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Vazquez, Juan M. (Inventor)

    2005-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam?in an open container, or in a closed mold?under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  10. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam--in an open container, or in a closed mold--under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  11. Epoxy foams using multiple resins and curing agents

    DOEpatents

    Russick, Edward M.; Rand, Peter B.

    2000-01-01

    An epoxy foam comprising a plurality of resins, a plurality of curing agents, at least one blowing agent, at least one surfactant and optionally at least one filler and the process for making. Preferred is an epoxy foam comprising two resins of different reactivities, two curing agents, a blowing agent, a surfactant, and a filler. According to the present invention, an epoxy foam is prepared with tailorable reactivity, exotherm, and pore size by a process of admixing a plurality of resins with a plurality of curing agents, a surfactant and blowing agent, whereby a foamable mixture is formed and heating said foamable mixture at a temperature greater than the boiling temperature of the blowing agent whereby said mixture is foamed and cured.

  12. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  13. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam

    NASA Technical Reports Server (NTRS)

    Sullins, Alan D.; Daryabeigi, Kamran

    2001-01-01

    The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.

  14. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    NASA Astrophysics Data System (ADS)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  15. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  16. Human fetal bone cells in delivery systems for bone engineering.

    PubMed

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  17. EMS providers do not use FOAM for education.

    PubMed

    Bucher, Joshua; Donovan, Colleen; McCoy, Jonathan

    2018-05-24

    Free open access to medical education (FOAM, #FOAM) is the free availability of educational materials on various medicine topics. We hope to evaluate the use of social media and FOAM by emergency medical services (EMS) providers. We designed an online survey distributed to EMS providers with questions about demographics and social media/FOAM use by providers. The survey was sent to the American College of Emergency Physicians (ACEP) EMS Listserv of medical directors and was asked to be distributed to their respective agencies. The survey was designed to inquire about the providers' knowledge of FOAM and social media and their use of the above for EMS education. There were 169 respondents out of a total of 523 providers yielding a response rate of 32.3%. Fifty-three percent of respondents are paramedics, 37% are EMT-Basic trained, and the remainder (16%) were "other." The minority (20%) of respondents had heard of FOAM. However, 54% of respondents had heard of "free medical education online" regarding pertinent topics. Of the total respondents who used social media for education, 31% used Facebook and 23% used blogs and podcasts as resources for online education. Only 4% of respondents stated they produced FOAM content. Seventy-six percent of respondents said they were "interested" or "very interested" in using FOAM for medical education. If FOAM provided continuing medical education (CME), 83% of respondents would be interested in using it. Social media is not used frequently by EMS providers for the purposes of FOAM. There is interest within EMS providers to use FOAM for education, even if CME was not provided. FOAM can provide a novel area of education for EMS.

  18. OpenFOAM: Open source CFD in research and industry

    NASA Astrophysics Data System (ADS)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  19. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  20. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  1. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  2. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  3. Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity.

    PubMed

    Boonyongmaneerat, Yuttanant; Chmielus, Markus; Dunand, David C; Müllner, Peter

    2007-12-14

    Foams with 55% and 76% open porosity were produced from a Ni-Mn-Ga magnetic shape-memory alloy by replication casting. These polycrystalline martensitic foams display a fully reversible magnetic-field-induced strain of up to 0.115% without bias stress, which is about 50 times larger than nonporous, fine-grained Ni-Mn-Ga. This very large improvement is attributed to the bamboolike structure of grains in the foam struts which, due to reduced internal constraints, deform by magnetic-field-induced twinning more easily than equiaxed grains in nonporous Ni-Mn-Ga.

  4. Microcellular carbon foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1993-12-07

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  5. Microcellular carbon foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1994-01-01

    A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  6. Microcellular carbon foam and method

    DOEpatents

    Simandl, Ronald F.; Brown, John D.

    1993-01-01

    A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  7. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.

    PubMed

    Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu

    2017-12-06

    Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

  8. Chronicles of foam films.

    PubMed

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?

    PubMed

    Tayton, Edward; Purcell, M; Aarvold, A; Smith, J O; Kalra, S; Briscoe, A; Shakesheff, K; Howdle, S M; Dunlop, D G; Oreffo, R O C

    2012-05-01

    Disease transmission, availability and cost of allografts have resulted in significant efforts to find an alternative for use in impaction bone grafting (IBG). Recent studies identified two polymers with both structural strength and biocompatibility characteristics as potential replacements. The aim of this study was to assess whether increasing the polymer porosity further enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic biomaterial alternative to allografts in IBG. Solid and porous poly(DL-lactide) (P(DL)LA) and poly(DL-lactide-co-glycolide) (P(DL)LGA) scaffolds were produced via melt processing and supercritical CO(2) foaming, and the differences characterized using scanning electron microscopy (SEM). Mechanical testing included milling and impaction, with comparisons made using a shear testing rig as well as a novel agitation test for cohesion. Cellular compatibility tests for cell number, viability, and osteogenic differentiation using WST-1 assays, fluorostaining, and ALP assays were determined following 14 day culture with skeletal stem cells. SEM showed excellent porosity throughout both of the supercritical-foam-produced polymer scaffolds, with pores between 50 and 200 μm. Shear testing showed that the porous polymers exceeded the shear strength of allograft controls (P<0.001). Agitation testing showed greater cohesion between the particles of the porous polymers (P<0.05). Cellular studies showed increased cell number, viability, and osteogenic differentiation on the porous polymers compared to solid block polymers (P<0.05). The use of supercritical CO(2) to generate porous polymeric biodegradable scaffolds significantly improves the cellular compatibility and cohesion observed compared to non-porous counterparts, without substantial loss of mechanical shear strength. These improved characteristics are critical for clinical translation as a potential osteogenic composite for use in IBG. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.

  11. Investigations on injection molded, glass-fiber reinforced polyamide 6 integral foams using breathing mold technology

    NASA Astrophysics Data System (ADS)

    Roch, A.; Kehret, L.; Huber, T.; Henning, F.; Elsner, P.

    2015-05-01

    Investigations on PA6-GF50 integral foams have been carried out using different material systems: longfiber- and shortfiber-reinforced PA6 as well as unreinforced PA6 as a reference material. Both chemical and physical blowing agents were applied. Breathing mold technology (decompression of the mold) was selected for the foaming process. The integral foam design, which can be conceived as a sandwich structure, helps to save material in the neutral axis area and maintains a distance between load-bearing, unfoamed skin layers. For all test series an initial mold gap of 2.5 mm was chosen and the same amount of material was injected. In order to realize different density reductions, the mold opening stroke was varied. The experiments showed that, at a constant mass per unit area, integral polyamide 6 foams have a significantly higher bending stiffness than compact components, due to their higher area moment of inertia after foaming. At a constant surface weight the bending stiffness in these experiments could be increased by up to 600 %. Both shortfiber- and longfiber-reinforced polyamide 6 showed an increase in energy absorption during foaming.

  12. Processing Characteristics and Properties of the Cellular Products Made by Using Special Foaming Agents

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebova, Ludmila

    2012-12-01

    The paper describes the manufacturing process of extruded products by the cellular extrusion method, and presents specifications of the blowing agents used in the extrusion process as well as process conditions. The process of cellular extrusion of thermoplastic materials is aimed at obtaining cellular shapes and coats with reduced density, presenting no hollows on the surface of extruder product and displaying minimal contraction under concurrent maintenance of properties similar to properties of products extruded by means of the conventional method. In order to obtain cellular structure, the properties of extruded product are modified by applying suitable plastic or inserting auxiliary agents.

  13. Comparison of OpenFOAM and EllipSys3D actuator line methods with (NEW) MEXICO results

    NASA Astrophysics Data System (ADS)

    Nathan, J.; Meyer Forsting, A. R.; Troldborg, N.; Masson, C.

    2017-05-01

    The Actuator Line Method exists for more than a decade and has become a well established choice for simulating wind rotors in computational fluid dynamics. Numerous implementations exist and are used in the wind energy research community. These codes were verified by experimental data such as the MEXICO experiment. Often the verification against other codes were made on a very broad scale. Therefore this study attempts first a validation by comparing two different implementations, namely an adapted version of SOWFA/OpenFOAM and EllipSys3D and also a verification by comparing against experimental results from the MEXICO and NEW MEXICO experiments.

  14. A method for data handling numerical results in parallel OpenFOAM simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Alin; Muntean, Sebastian

    Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.

  15. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.

    PubMed

    Zieliński, Tomasz G

    2015-04-01

    This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material.

  16. Continuous microcellular foaming of polylactic acid/natural fiber composites

    NASA Astrophysics Data System (ADS)

    Diaz-Acosta, Carlos A.

    Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams.

  17. Development of hierarchical, tunable pore size polymer foams for ICF targets

    DOE PAGES

    Hamilton, Christopher E.; Lee, Matthew Nicholson; Parra-Vasquez, A. Nicholas Gerardo

    2016-08-01

    In this study, one of the great challenges of inertial confinement fusion experiments is poor understanding of the effects of reactant heterogeneity on fusion reactions. The Marble campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Here, we describe recent and ongoing progress in the development of CH and CH/CD polymer foams in support of Marble. Hierarchical and tunable pore sizes have been achieved by utilizing a sacrificial porogen template within an open-celled poly(divinylbenzene) or poly(divinylbenzene-co-styrene) aerogelmore » matrix, resulting in low-density foams (~30 mg/ml) with continuous multimodal pore networks.« less

  18. Low loading of carbon nanotubes to enhance acoustical properties of poly(ether)urethane foams

    NASA Astrophysics Data System (ADS)

    Basirjafari, Sedigheh; Malekfar, Rasoul; Esmaielzadeh Khadem, Siamak

    2012-11-01

    The aim of this paper is to fabricate a sound absorber flexible semi-open cell polymeric foam based on polyether urethane (PEU) with carboxylic functionalized multi-walled carbon nanotubes (COOH-MWCNTs) as an energy decaying filler at low loadings up to 0.20 wt. %. This paper provides the relationship between the mentioned foam microstructure via field emission scanning electron microscopy and different acoustical and non-acoustical properties of PEU/COOH-MWCNT composites. Addition of just 0.05 wt. % COOH-MWCNTs enhanced the sound absorption coefficient of the mentioned nanocomposite foam over the entire frequency range. Raman spectra revealed the better dispersion of COOH-MWCNTs in the PEU matrix leading to more stress transfer between them to cause a significant dissipation of energy.

  19. STS-121: Discovery Pre-Launch Mission Management Team Press Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The briefing began with Allard Buetel (NASA Public Affairs) introducing Bill Gerstenmaier (Associate Administrator for Space Operations) who provided an update of the Mission Management team meeting. The 3 criteria reviewed by the team were: a) ascent heating; b) ice formation and c) remaining foam still intact. The ascent heating had a safety factor of 5 and posed no concern. Ice formation was not a concern. In order to insure there was no damage to the remaining foam, an 8ft. pipe with a camera attached was used to provide pictures. The boroscope pictures showed there was no damage to the brackets or foam. The inspection went very well and the foam was acceptable and ready to fly. Then the floor was open to questions from the press.

  20. Material Characterization and Computer Model Simulation of Low Density Polyurethane Foam Used in a Rodent Traumatic Brain Injury Model

    PubMed Central

    Zhang, Liying; Gurao, Manish; Yang, King H.; King, Albert I.

    2011-01-01

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou’s impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou’s impact device, has not been fully characterized. The foam used in Marmarou’s device was tested at seven strain rates ranging from quasi-static to dynamic (0.014 ~ 42.86 s−1) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. PMID:21459114

  1. Material characterization and computer model simulation of low density polyurethane foam used in a rodent traumatic brain injury model.

    PubMed

    Zhang, Liying; Gurao, Manish; Yang, King H; King, Albert I

    2011-05-15

    Computer models of the head can be used to simulate the events associated with traumatic brain injury (TBI) and quantify biomechanical response within the brain. Marmarou's impact acceleration rodent model is a widely used experimental model of TBI mirroring axonal pathology in humans. The mechanical properties of the low density polyurethane (PU) foam, an essential piece of energy management used in Marmarou's impact device, has not been fully characterized. The foam used in Marmarou's device was tested at seven strain rates ranging from quasi-static to dynamic (0.014-42.86 s⁻¹) to quantify the stress-strain relationships in compression. Recovery rate of the foam after cyclic compression was also determined through the periods of recovery up to three weeks. The experimentally determined stress-strain curves were incorporated into a material model in an explicit Finite Element (FE) solver to validate the strain rate dependency of the FE foam model. Compression test results have shown that the foam used in the rodent impact acceleration model is strain rate dependent. The foam has been found to be reusable for multiple impacts. However the stress resistance of used foam is reduced to 70% of the new foam. The FU_CHANG_FOAM material model in an FE solver has been found to be adequate to simulate this rate sensitive foam. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response

    PubMed Central

    Yang, Yang; Laporte, Laura De; Zelivyanskaya, Marina L.; Whittlesey, Kevin J.; Anderson, Aileen J.; Cummings, Brian J.

    2009-01-01

    Bridges for treatment of the injured spinal cord must stabilize the injury site to prevent secondary damage and create a permissive environment that promotes regeneration. The host response to the bridge is central to creating a permissive environment, as the cell types that respond to the injury have the potential to secrete both stimulatory and inhibitory factors. We investigated multiple channel bridges for spinal cord regeneration and correlated the bridge structure to cell infiltration and axonal elongation. Poly(lactide-co-glycolide) bridges were fabricated by a gas foaming/particulate leaching process. Channels within the bridge had diameters of 150 or 250 μm, and the main body of the bridge was highly porous with a controllable pore size. Upon implantation in a rat spinal cord hemisection site, cells infiltrated into the bridge pores and channels, with the pore size influencing the rate of infiltration. The pores had significant cell infiltration, including fibroblasts, macrophages, S-100β-positive cells, and endothelial cells. The channels of the bridge were completely infiltrated with cells, which had aligned axially, and consisted primarily of fibroblasts, S-100β-positive cells, and endothelial cells. Reactive astrocytes were observed primarily outside of the bridge, and staining for chondroitin sulfate proteoglycans was decreased in the region surrounding the bridge relative to studies without bridges. Neurofilament staining revealed a preferential growth of the neural fibers within the bridge channels relative to the pores. Multiple channel bridges capable of supporting cellular infiltration, creating a permissive environment, and directing the growth of neural fibers have potential for promoting and directing spinal cord regeneration. PMID:19382871

  3. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

    DOEpatents

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.

    2017-01-17

    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  4. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.

  5. Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind

    2017-11-01

    The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.

  6. Monolithic catalyst beds for hydrazine reactors

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monolithic catalyst bed for monopropellant hydrazine decomposition was evaluated. The program involved the evaluation of a new hydrazine catalyst concept wherein open-celled foamed materials are used as supports for the active catalysts. A high-surface-area material is deposited upon the open-celled foamed material and is then coated with an active metal to provide a spontaneous catalyst. Only a fraction of the amount of expensive active metal in currently available catalysts is needed to promote monolithic catalyst. Numerous parameters were evaluated during the program, and the importance of additional parameters became obvious only while the program was in progress. A demonstration firing (using a 2.2-Newton (N)(0.5-lbf) reactor) successfully accumulated 7,700 seconds of firing time and 16 ambient temperature starts without degradation. Based on the excellent results obtained throughout the program and the demonstrated life capability of the monolithic foam, it is recommended that additional studies be conducted to further exploit the advantages of this concept.

  7. Liquid foam templating - A route to tailor-made polymer foams.

    PubMed

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It finishes with an outlook on future developments. Occasional references to non-polymeric foams are given if the analogy provides specific insight into a physical phenomenon. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Foam injection molding of poly(lactic acid) with physical blowing agents

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  9. Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: Lignin and soy oil-derived polyols.

    PubMed

    Luo, Xiaogang; Xiao, Yuqin; Wu, Qiangxian; Zeng, Jian

    2018-04-25

    Development of biodegradable polyurethane materials is the most promising in the wider context of the "greening" of industrial chemistry. To tackle this challenge, a novel biodegradable polyurethane foam from all bioresource-based polyols (lignin and soy oil-derived polyols) and polymeric methyldiphenyl diisocyanate (pMDI) have been synthesized via a one-pot and self-rising process. All these foam samples have the internal cellular morphology and microstructure. FTIR result exhibits characteristic peaks of polyurethane, and indicates covalent bonds between soy-based polyurethane and lignin, and the lignin powders can react with pMDI via active -H and -CNO. In addition, hydrogen bonding also plays an important role in forming the 3D structures. These interactions and chemical bonds made the prepared foam samples form the 3D macromolecular structure with improved mechanical, thermal, and biodegradable properties. The reaction process is time-saving and cost-effective as it requires no blowing agent and minimum processing steps, while exploring the potential of using the higher content of nature bioresource constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam.

    PubMed

    Pan, Xuejun; Saddler, Jack N

    2013-01-28

    Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs.

  11. Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jennie

    2014-03-12

    Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The bulk phase of syntactic foams is a three-part epoxy resin formulation that consists of a base resin, a curative (curing agent) and a modifier (diluent and/or accelerator) [12]. These thermoset materials [12] are used frequently for their thermal stability [9], low moisture absorption and high compressive strength [10]. The characteristic feature of a syntactic foam is a network of beads that forms pores within the epoxy matrix [3]. In this review, hollow glass beads (known as glass microballoons) are considered,more » however, solid beads or microballoons made from materials such as ceramic, polymer or metal can also be used [3M, Peter]. The network of hollow beads forms a closed-cell foam; the term closed-cell comes from the fact that the microspheres used in the resin matrix are completely closed and filled with gas (termed hollow). In contrast, the microspheres used in open-cell foams are either not completely closed or broken so that matrix material can fill the spheres [11]. Although closed foams have been found to possess higher densities than open cell foams, their rigid structures give them superior mechanical properties [12]. Past research has extensively studied the effects that changing the volume fraction of microballoons to epoxy will have on the resulting syntactic foam [3,4,9]. In addition, published literature also explores how the microballoon wall thickness affects the final product [4,9,10]. Findings detail that indeed both the mechanical and some thermal properties of syntactic foams can be tailored to a specific application by varying either the volume fraction or the wall thickness of the microballoons used [10]. The major trends in syntactic foam research show that microballoon volume fraction has an inversely proportionate relationship to dynamic properties, while microballoon wall thickness is proportional to those same properties [3,4,9,10]. The glass transition temperature has a proportional relationship to the volume fraction of microballoons used, however, there is limited research that supports correlations between other thermal variables and microballoons specifications. In fact, very little experimental data exists to relate thermal conductivity and volume fraction or wall thickness of microballoons [5]. This review proposes that thermal conductivity should be a topic of interest for future researchers because of how frequently syntactic foams are used in insulating applications. This paper will explore three aspects pertaining to epoxy resin syntactic foams with glass microballoons: the immense range of applications that syntactic foams are used for, the materials and fabrication techniques most commonly used, and lastly the results from characterization of syntactic foams with varying microballoon volume fractions and wall thicknesses. In addition to varying microballoon parameters, it is also possible to change the base, accelerator and curing agent used in the epoxy formulation. For simplicity, this paper will focus on a very common combination of materials produced by the Dow Chemical Company®.« less

  12. Microcellular carbon foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1994-04-05

    A microcellular carbon foam is described which is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  13. The relationship between office type and job satisfaction: Testing a multiple mediation model through ease of interaction and well-being.

    PubMed

    Otterbring, Tobias; Pareigis, Jörg; Wästlund, Erik; Makrygiannis, Alexander; Lindström, Anton

    2018-05-01

    Objectives This cross-sectional study investigated the associations between office type (cellular, shared-room, small open-plan, and medium-sized open-plan) and employees' ease of interaction with coworkers, subjective well-being, and job satisfaction. Methods A brief survey including measures of office type, ease of interaction with coworkers, subjective well-being, and job satisfaction was sent electronically to 1500 Swedish real-estate agents, 271 of whom returned usable surveys. The data were analyzed using a regression-based serial multiple mediation model (PROCESS Model 6), which tested whether the relationship between office type and job satisfaction would be mediated by ease of interaction and, in turn, subjective well-being. Results A negative relationship was found between the number of coworkers sharing an office and employees' job satisfaction. This association was serially mediated by ease of interaction with coworkers and subjective well-being, with employees working in small and medium-sized open-plan offices reporting lower levels of both these aspects than employees who work in either cellular or shared-room offices. Conclusions Open-plan offices may have short-term financial benefits, but these benefits may be lower than the costs associated with decreased job satisfaction and well-being. Therefore, decision-makers should consider the impact of office type on employees rather than focusing solely on cost-effective office layout, flexibility, and productivity.

  14. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  15. Numerical Evaluation of Mode 1 Stress Intensity Factor as a Function of Material Orientation For BX-265 Foam Insulation Material

    NASA Technical Reports Server (NTRS)

    Knudsen, Erik; Arakere, Nagaraj K.

    2006-01-01

    Foam; a cellular material, is found all around us. Bone and cork are examples of biological cell materials. Many forms of man-made foam have found practical applications as insulating materials. NASA uses the BX-265 foam insulation material on the external tank (ET) for the Space Shuttle. This is a type of Spray-on Foam Insulation (SOFI), similar to the material used to insulate attics in residential construction. This foam material is a good insulator and is very lightweight, making it suitable for space applications. Breakup of segments of this foam insulation on the shuttle ET impacting the shuttle thermal protection tiles during liftoff is believed to have caused the space shuttle Columbia failure during re-entry. NASA engineers are very interested in understanding the processes that govern the breakup/fracture of this complex material from the shuttle ET. The foam is anisotropic in nature and the required stress and fracture mechanics analysis must include the effects of the direction dependence on material properties. Material testing at NASA MSFC has indicated that the foam can be modeled as a transversely isotropic material. As a first step toward understanding the fracture mechanics of this material, we present a general theoretical and numerical framework for computing stress intensity factors (SIFs), under mixed-mode loading conditions, taking into account the material anisotropy. We present mode I SIFs for middle tension - M(T) - test specimens, using 3D finite element stress analysis (ANSYS) and FRANC3D fracture analysis software, developed by the Cornel1 Fracture Group. Mode I SIF values are presented for a range of foam material orientations. Also, NASA has recorded the failure load for various M(T) specimens. For a linear analysis, the mode I SIF will scale with the far-field load. This allows us to numerically estimate the mode I fracture toughness for this material. The results represent a quantitative basis for evaluating the strength and fracture properties of anisotropic foam insulation material.

  16. RANS Simulations using OpenFOAM Software

    DTIC Science & Technology

    2016-01-01

    Averaged Navier- Stokes (RANS) simulations is described and illustrated by applying the simpleFoam solver to two case studies; two dimensional flow...to run in parallel over large processor arrays. The purpose of this report is to illustrate and test the use of the steady-state Reynolds Averaged ...Group in the Maritime Platforms Division he has been simulating fluid flow around ships and submarines using finite element codes, Lagrangian vortex

  17. Dielectric properties of novel polyurethane-PZT-graphite foam composites

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Nelo, Mikko; Juuti, Jari; Jantunen, Heli

    2016-09-01

    Flexible foam composite materials offer multiple benefits to future electronic applications as the rapid development of the electronics industry requires smaller, more efficient, and lighter materials to further develop foldable and wearable applications. The aims of this work were to examine the electrical properties of three- and four-phase novel foam composites in different conditions, find the optimal mixture for four-phase foam composites, and study the combined effects of lead zirconate titanate (PZT) and graphite fillers. The flexible and highly compressible foams were prepared in a room-temperature mixing process using polyurethane, PZT, and graphite components as well as their combinations, in which air acted as one phase. In three-phase foams the amount of PZT varied between 20 and 80 wt% and the amount of graphite, between 1 and 15 wt%. The four-phase foams were formed by adding 40 wt% of PZT while the amount of graphite ranged between 1 and 15 wt%. The presented results and materials could be utilized to develop new flexible and soft sensor applications by means of material technology.

  18. Postural Stability in Young Adults with Down Syndrome in Challenging Conditions

    PubMed Central

    Bieć, Ewa; Zima, Joanna; Wójtowicz, Dorota; Wojciechowska-Maszkowska, Bożena; Kręcisz, Krzysztof; Kuczyński, Michał

    2014-01-01

    To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning. PMID:24728178

  19. Static and dynamic postural control in low-vision and normal-vision adults.

    PubMed

    Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D

    2013-04-01

    This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.

  20. Developing an Abaqus *HYPERFOAM Model for M9747 (4003047) Cellular Silicone Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siranosian, Antranik A.; Stevens, R. Robert

    This report documents work done to develop an Abaqus *HYPERFOAM hyperelastic model for M9747 (4003047) cellular silicone foam for use in quasi-static analyses at ambient temperature. Experimental data, from acceptance tests for 'Pad A' conducted at the Kansas City Plant (KCP), was used to calibrate the model. The data includes gap (relative displacement) and load measurements from three locations on the pad. Thirteen sets of data, from pads with different serial numbers, were provided. The thirty-nine gap-load curves were extracted from the thirteen supplied Excel spreadsheets and analyzed, and from those thirty-nine one set of data, representing a qualitative mean,more » was chosen to calibrate the model. The data was converted from gap and load to nominal (engineering) strain and nominal stress in order to implement it in Abaqus. Strain computations required initial pad thickness estimates. An Abaqus model of a right-circular cylinder was used to evaluate and calibrate the *HYPERFOAM model.« less

  1. Microgravity Foam Structure and Rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.

    1997-01-01

    To exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest is in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of static shear strain, shear strain rate, and time following a step strain; such data will be analyzed in terms of a yield stress, a static shear modulus, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which these macroscopic non-Newtonian properties presumably arise, will be obtained non-invasively by novel multiple-light scattering diagnostics such as Diffusing-Wave Spectroscopy (DWS). Quantitative trends with materials parameters, such as average bubble size, and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.

  2. Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test.

    PubMed

    Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele

    2015-02-01

    A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Treatment of diseases due to infections and old age using anti-foaming agents.

    PubMed

    Reinemann, Peter Joachim

    2003-06-01

    The biochemical changes taking place in the organism in the course of ageing and infectious processes result in substantial catabolic processes during which a variety of gases are created (in addition to carbon dioxide and nitrogen, depending on the conditions, methane, ammonia, hydrogen sulphide, mercaptan, etc. are also created) in addition to peptides and low molecular organic compounds. These gases are dispersed in the extra-cellular space and in the capillary system of blood and lymph in the form of micro-foam. The accompanied disturbance in the ability to flow considerably impairs the immune defence system which is inseparably connected to the transport of catabolic products. Any resulting diseases can be alleviated or even removed by the application of a simple physical-chemical principle. Anti-foaming agents (solutions, all types of dispersions, micro-emulsions) based on polydimethylsiloxane but also based on fatty acid esters (preferably unsaturated fatty acids) are proposed for treatment purposes.

  4. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.; Coplan, M.; Miller, E. C.; Thompson, Alan K.; Kowler, A. L.; Vest, Robert E.; Yue, A. T.; Koeth, T.; Al-Sheikhly, M.; Clark, Charles W.

    2015-03-01

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B4C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched 10B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  5. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C.; Coplan, M.

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portionmore » of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.« less

  6. Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam

    NASA Technical Reports Server (NTRS)

    Bootle, John

    2008-01-01

    A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.

  7. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of cellular solids and make substantial contributions to the theoretical advance of impact dynamics.

  8. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.

    PubMed

    Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2017-09-15

    It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Open cell fire-resistant foam

    NASA Technical Reports Server (NTRS)

    Thompson, J. E.; Wittman, J. W.; Reynard, K. A.

    1976-01-01

    Candidate polyphosphazene polymers were investigated to develop a fire-resistant, thermally stable and flexible open cell foam. The copolymers were prepared in several mole ratios of the substituent side chains and a (nominal) 40:60 derivative was selected for formulation studies. Synthesis of the polymers involved solution by polymerization of hexachlorophosphazene to soluble high molecular weight poly(dichlorophosphazene), followed by derivatization of the resultant polymer in a normal fashion to give polymers in high yield and high molecular weight. Small amounts of a cure site were incorporated into the polymer for vulcanization purposes. The poly(aryloxyphosphazenes) exhibited good thermal stability and the first polymer mentioned above exhibited the best thermal behavior of all the candidate polymers studied.

  10. Some issues in the simulation of two-phase flows: The relative velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräbel, J.; Hensel, S.; Ueberholz, P.

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less

  11. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration.

    PubMed

    Hadlock, T; Sundback, C; Hunter, D; Cheney, M; Vacanti, J P

    2000-04-01

    Alternatives to autografts have long been sought for use in bridging neural gaps. Many entubulation materials have been studied, although with generally disappointing results in comparison with autografts. The purpose of this study was to design a more effective neural guidance conduit, to introduce Schwann cells into the conduit, and to determine regenerative capability through it in an in vivo model. A novel, fully biodegradable polymer conduit was designed and fabricated for use in peripheral nerve repair, which approximates the macro- and microarchitecture of native peripheral nerves. It comprised a series of longitudinally aligned channels, with diameters ranging from 60 to 550 microns. The lumenal surfaces promoted the adherence of Schwann cells, whose presence is known to play a key role in nerve regeneration. This unique channel architecture increased the surface area available for Schwann cell adherence up to five-fold over that available through a simple hollow conduit. The conduit was composed of a high-molecular-weight copolymer of lactic and glycolic acids (PLGA) (MW 130,000) in an 85:15 monomer ratio. A novel foam-processing technique, employing low-pressure injection molding, was used to create highly porous conduits (approximately 90% pore volume) with continuous longitudinal channels. Using this technique, conduits were constructed containing 1, 5, 16, 45, or more longitudinally aligned channels. Prior to cellular seeding of these conduits, the foams were prewet with 50% ethanol, flushed with physiologic saline, and coated with laminin solution (10 microg/mL). A Schwann cell suspension was dynamically introduced into these processed foams at a concentration of 5 X 10(5) cells/mL, using a simple bioreactor flow loop. In vivo regeneration studies were carried out in which cell-laden five-channel polymer conduits (individual channel ID 500 microm, total conduit OD 2.3 mm) were implanted across a 7-mm gap in the rat sciatic nerve (n = 4), and midgraft axonal regeneration compared with autografts (n = 6). At 6 weeks, axonal regeneration was observed in the midconduit region of all five channels in each experimental animal. The cross-sectional area comprising axons relative to the open conduit cross sectional area (mean 26.3%, SD 10. 1%) compared favorably with autografts (mean 23.8%, SD 3.6%). Our methodology can be used to create polymer foam conduits containing longitudinally aligned channels, to introduce Schwann cells into them, and to implant them into surgically created neural defects. These conduits provide an environment permissive to axonal regeneration. Furthermore, this polymer foam-processing method and unique channeled architecture allows the introduction of neurotrophic factors into the conduit in a controlled fashion. Deposition of different factors into distinct regions within the conduit may be possible to promote more precisely guided neural regeneration.

  12. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or live steam. Closed-vent system means a system that is not open to the atmosphere and is composed... emissions from individual process vents, stacks, open pieces of process equipment, equipment leaks... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  13. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or live steam. Closed-vent system means a system that is not open to the atmosphere and is composed... emissions from individual process vents, stacks, open pieces of process equipment, equipment leaks... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  14. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  15. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.

  16. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Putt, Ronald A. (Inventor); Woodruff, Glenn (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  17. Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as Cosserat continua

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.

  18. Cellularized Cellular Solids via Freeze-Casting.

    PubMed

    Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M

    2016-02-01

    The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Multiaxial behavior of foams - Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Maheo, Laurent; Guérard, Sandra; Rio, Gérard; Donnard, Adrien; Viot, Philippe

    2015-09-01

    Cellular materials are strongly related to pressure level inside the material. It is therefore important to use experiments which can highlight (i) the pressure-volume behavior, (ii) the shear-shape behavior for different pressure level. Authors propose to use hydrostatic compressive, shear and combined pressure-shear tests to determine cellular materials behavior. Finite Element Modeling must take into account these behavior specificities. Authors chose to use a behavior law with a Hyperelastic, a Viscous and a Hysteretic contributions. Specific developments has been performed on the Hyperelastic one by separating the spherical and the deviatoric part to take into account volume change and shape change characteristics of cellular materials.

  20. Silver Foam Technologies Healing Research Program

    DTIC Science & Technology

    2009-09-01

    colonization and growth. Because many of these wounds cannot be closed primarily, the surgeon is left with packing the wound open using standard gauze...to standard gauze bandages in clinical use . Two inches in width and length and one quarter inch thick, four inches in width and length and one...incorporation into the foam. Of the agents that were identified and selected only two Zeolite and Silver Glass Beads agents were capable of being

  1. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  2. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  3. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  4. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  5. 40 CFR 61.341 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... open to the atmosphere and is composed of piping, ductwork, connections, and, if necessary, flow... foam or liquid-filled primary seal mounted in contact with the liquid between the waste management unit... to remain in a closed position during normal operations and open only when the internal pressure, or...

  6. 40 CFR 61.341 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... open to the atmosphere and is composed of piping, ductwork, connections, and, if necessary, flow... foam or liquid-filled primary seal mounted in contact with the liquid between the waste management unit... to remain in a closed position during normal operations and open only when the internal pressure, or...

  7. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  8. 40 CFR 61.341 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... open to the atmosphere and is composed of piping, ductwork, connections, and, if necessary, flow... foam or liquid-filled primary seal mounted in contact with the liquid between the waste management unit... to remain in a closed position during normal operations and open only when the internal pressure, or...

  9. 40 CFR 61.341 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... open to the atmosphere and is composed of piping, ductwork, connections, and, if necessary, flow... foam or liquid-filled primary seal mounted in contact with the liquid between the waste management unit... to remain in a closed position during normal operations and open only when the internal pressure, or...

  10. Inexpensive Device for Demonstrating Rock Slope Failure and Other Collapse Phenomena.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1980-01-01

    Describes an inexpensive modeling technique for demonstrating large-scale displacement phenomena in rock masses, such as slope collapse and failure of underground openings. Excavation of the model material occurs through openings made in the polyurethane foam in the correct excavation sequence. (Author/SA)

  11. Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Roberts, Scott; Kozachkov, Henry; Demetriou, Marios D.; Schramm, Joseph P.; Johnson, William L.

    2012-01-01

    Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure. This removes many complicated and costly fabrication steps. Moreover, the cellular structures detailed in this work are among the highest- strength and most energy-absorbent materials known. This implies that a fabricated structure made from these materials would have unequaled mechanical properties compared to other metal foams or trusses. The process works by taking advantage of the electrical properties of the matrix material in the metal-matrix composite, which in this case is a metallic glass. Due to the random nanoscale arrangement of atoms (without any grain boundaries), the matrix glass exhibits a near-constant electrical resistivity as a function of temperature. By placing the composite panels between two copper electrode plates and discharging a capacitor, the entire matrix of the panel can be heated to approximately 700 C in 10 milliseconds, which is above the alloy s solidus but below the liquidus. By designing the geometry of the panels into the shape of an egg box, the electrical discharge localizes only in the tips of each pyramidal cell. By applying a forging load during discharge, the nodes of the panels can be fused together into a single piece, which then dissipates heat through radiation back into a glassy state. This means that two panels can be metallurgically fused into one panel with no heat-affected zone, creating a seamless connection between panels. During the process, the soft metal particles (dendrites) that are uniformly distributed in the glassy matrix to increase the toughness are completely unaffected by the thermoplastic joining. The novelty is that a truss (or foam-like) structure can be formed with excellent energy- absorbing capabilities without the need for machining. The technique allows for large-scale fabrication of panels, well-suited for spacecraft shields or military vehicle door panels. Crystalline metal cellular structures cannot be fabricated using the thermoplastic joining technique described here. If metal panels were te assembled into a cellular structure, they would either have to be welded, brazed, bonded, or fastened together, creating a weak spot in the structure at each connection. Welded parts require a welding material to be added to the joint and exhibit a soft and weak heat-affected zone. Brazing and bonding do not form a metallurgical joint and thus exhibit low strengths, especially when the panels are pulled apart and fasteners require high-stress-concentration holes to be drilled. No equivalent rapid heating method exists for assembling metal panels together into cellular structures, and thus, those parts must be foamed, machined, or investment cast if they are to form a monolithic structure. If the crystalline panels were to be joined using capacitive discharge, as with a spot welder, their bond would be very weak, and the panels would have to be extremely thin. In contrast, the strength of joined BMG parts has been demonstrated to have strength comparable to the parent material. This technique opens up the possibility of using large-scale BMG hardware in spacecraft, military, or commercial applications.

  12. The Efficacy and Safety of Azelaic Acid 15% Foam in the Treatment of Facial Acne Vulgaris.

    PubMed

    Hashim, Peter W; Chen, Tinley; Harper, Julie C; Kircik, Leon H

    2018-06-01

    Azelaic acid demonstrates anti-inflammatory, anti-oxidative, anti-comedogenic, and anti-microbial effects. Azelaic acid 20% cream is currently approved for the treatment of acne vulgaris, and azelaic acid 15% foam has recently been approved for rosacea. Given the favorable tolerability profile of foam preparations, it is reasonable to assume that azelaic acid 15% foam could serve as a viable treatment option for facial acne. To examine the efficacy and safety of azelaic acid 15% foam in the treatment of moderate-to-severe facial acne Methods: Twenty subjects with moderate-to-severe facial acne vulgaris were enrolled in this two-center, open-label pilot study. All study subjects were treated with azelaic acid 15% foam for 16 weeks. Efficacy analyses were based on the change in facial investigator global assessment (FIGA) and changes in total, inflammatory, non-inflammatory lesion counts between baseline and week 16. There was a significant reduction in FIGA scores from baseline to week 16 (p = .0004), with 84% of subjects experiencing at least a 1 grade improvement, and 63% of subjects achieving a final grade of Clear or Almost Clear. All subjects experienced reductions in inflammatory and total lesion counts by week 16, and 89% of subjects experienced reductions in non-inflammatory lesions. Azelaic acid 15% foam was well tolerated, with almost all instances of erythema, dryness, peeling, oiliness, pruritus, and burning being of mild or trace degree, and most adverse effects resolving by the end of the study. Azelaic acid 15% foam is effective and safe in the treatment of facial acne vulgaris. Given the convenience of foam vehicles, azelaic acid 15% foam should be considered as a viable treatment option for this condition. J Drugs Dermatol. 2018;17(6):641-645.

  13. Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

    NASA Astrophysics Data System (ADS)

    Nilsson, H.

    2012-11-01

    This work presents an OpenFOAM case-study, based on the experimental studies of the swirling flow in the abrupt expansion by Dellenback et al.[1]. The case yields similar flow conditions as those of a helical vortex rope in a hydro turbine draft tube working at part-load. The case-study is set up similar to the ERCOFTAC Conical Diffuser and Centrifugal Pump OpenFOAM case-studies [2,3], making all the files available and the results fully reproducable using OpenSource software. The mesh generation is done using m4 scripting and the OpenFOAM built-in blockMesh mesh generator. The swirling inlet boundary condition is specified as an axi-symmetric profile. The outlet boundary condition uses the zeroGradient condition for all variables except for the pressure, which uses the fixed mean value boundary condition. The wall static pressure is probed at a number of locations during the simulations, and post-processing of the time-averaged solution is done using the OpenFOAM sample utility. Gnuplot scripts are provided for plotting the results. The computational results are compared to one of the operating conditions studied by Dellenback, and measurements for all the experimentally studied operating conditions are available in the case-study. Results from five cases are here presented, based on the kEpsilon model, the kOmegaSST model, and a filtered version of the same kOmegaSST model, named kOmegaSSTF [4,5]. Two different inlet boundary conditions are evaluated. It is shown that kEpsilon and kOmegaSST give steady solutions, while kOmegaSSTF gives a highly unsteady solution. The time-averaged solution of the kOmegaSSTF model is much more accurate than the other models. The kEpsilon and kOmegaSST models are thus unable to accurately model the effect of the large-scale unsteadiness, while kOmegaSSTF resolves those scales and models only the smaller scales. The use of two different boundary conditions shows that the boundary conditions are more important than the choice between kEpsilon and kOmegaSST, for the results just after the abrupt expansion.

  14. Morphologies, Processing and Properties of Ceramic Foams and Their Potential as TPS Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Simoes, Conan R.; Johnson, Sylvia M.

    2002-01-01

    The current research is focused on processing ceramic foams with compositions that have potential as a thermal protection material. The use of pre-ceramic polymers with the addition of sacrificial blowing agents or sacrificial fillers offers a viable approach to form either open or closed cell insulation. Our work demonstrates that this is a feasible method to form refractory ceramic foams at relatively low processing temperatures. It is possible to foam complex shapes then pyrolize the system to form a ceramic while retaining the shape of the unfired foam. Initial work focused on identifying suitable pre-ceramic polymers with desired properties such as ceramic yield and chemical make up of the pyrolysis product after firing. We focused on making foams in the Si system (Sic, Si02, Si-0-C), which is in use in current acreage TPS systems. Ceramic foams with different architectures were formed from the pyrolysis of pre-ceramic polymers at 1200 C in different atmospheres. In some systems a sacrificial polyurethane was used as the blowing agent. We have also processed foams using sacrificial fillers to introduce controlled cell sizes. Each sacrificial filler or blowing agent leads to a unique morphology. The effect of different fillers on foam morphologies and the characterization of these foams in terms of mechanical and thermal properties are presented. We have conducted preliminary arc jet testing on selected foams with the materials being exposed to typical re-entry conditions for acreage TPS and these results will be discussed. Foams processed using these approaches have bulk densities ranging from 0.15 to 0.9 g/cm3 and cell sizes ranging from 5 to 500 pm. Compression strengths ranged from 2 to 7 MPa for these systems. Finally, preliminary oxidation studies have been conducted on selected systems and will be discussed.

  15. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam

    PubMed Central

    2013-01-01

    Background Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Results Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. Conclusions It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs. PMID:23356502

  16. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.

    PubMed

    Doutres, Olivier; Atalla, Noureddine; Osman, Haisam

    2015-06-01

    Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.

  17. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  18. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection.

    PubMed

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-10-09

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink's base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  19. Technology for Transportation Safety

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Boston Insulated Wire & Cable developed a new polyimide foam material, commercially known as Solimide, which resists ignition. It chars and decomposes when exposed to open flames. Used in the space shuttle, the material does not "outgas" until it begins to char making it safer than current materials with respect to toxic fumes. The polyimide can be made in two forms: a resilient foam and a rigid foam. Used in commercial transport interiors for such soft components as seat cushions to door, wall, floor, and ceiling panels. Material's flame resistance could lengthen from two minutes to five minutes, the time needed for passenger evacuation in a ground emergency. Could help reduce airline fuel consumption, since the foam is 50% lighter than current materials. Low-smoke cable assemblies used in rapid transit systems consists of an advanced wire and cable jacketing material with superior flame resistance and smoke retardation characteristics. Being supplied to mass transit systems in the U.S. and abroad.

  20. Specifications and Other Standardization Documents Involving Cellular Plastics (Plastic Foams), Cushioning and Related Materials

    DTIC Science & Technology

    1976-07-01

    FOR MEDICAL MATERIAL REQUIRING CONTROLLED TEMPERATURE RANGES 258 PPP-C-1683(1) 8135 69 10 Oct 73 CUSHIONING MATERIAL, EXPANDED POLYSTYRENE LOOSE FILL...Liquid immersion effect on properties of elastoaeric vulcanizates - 45 Lead deflection characteristics - 264 Loose-fill expanded polystyrene - 25f

  1. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  2. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  3. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  4. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  5. 33 CFR 183.552 - Plastic encased fuel tanks: Installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Plastic encased fuel tanks... § 183.552 Plastic encased fuel tanks: Installation. (a) Each fuel tank encased in cellular plastic foam or in fiber reinforced plastic must have the connections, fittings, and labels accessible for...

  6. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    PubMed

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  7. The Influence of Clocking Angle of the Projectile on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2005-01-01

    An analytical study was conducted to determine the influence of clocking angle of a foam projectile impacting a space shuttle leading edge wing panel. Four simulations were performed using LS-DYNA. The leading edge panels are fabricated of multiple layers of reinforced carbon-carbon (RCC) material. The RCC material was represented using Mat 58, which is a material property that can be used for laminated composite fabrics. Simulations were performed of a rectangular-shaped foam block, weighing 0.23-lb., impacting RCC Panel 9 on the top surface. The material properties of the foam were input using Mat 83. The impact velocity was 1,000 ft/s along the Orbiter X-axis. In two models, the foam impacted on a corner, in one model the foam impacted the panel initially on the 2-in.-long edge, and in the last model the foam impacted the panel on the 7-in.- long edge. The simulation results are presented as contour plots of first principal infinitesimal strain and time history plots of contact force and internal and kinetic energy of the foam and RCC panel.

  8. Foam Optics and Mechanics

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Zimmerli, Gregory A.

    2002-01-01

    The Foam Optics and Mechanics (FOAM) project will exploit the microgravity environment to more accurately measure the rheological and optical characteristics of wet aqueous foams. Using both rheology and laser light scattering diagnostics, the goal is to quantify the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Of particular interest is determining how the elastic character vanishes, i.e., how the foam 'melts' into a simple viscous liquid, as a function of both increasing liquid content and increasing shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of shear strain rate and of time following a step strain. Such data will be analyzed in terms of a yield stress, shear moduli, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which the macroscopic non-Newtonian properties ultimately arise, will be obtained non-invasively by multiple-light scattering: diffuse transmission spectroscopy (DTS) and diffusing wave spectroscopy (DWS). Quantitative trends with materials parameters, most importantly average bubble size and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.

  9. Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating

    PubMed Central

    Chen, Xiaodong; Betke, Ulf; Peters, Paul Clemens; Söffker, Gerrit Maximilian; Scheffler, Michael

    2017-01-01

    The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA) a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles) to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%). The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs). PMID:28773093

  10. Field demonstration of foam injection to confine a chlorinated solvent source zone.

    PubMed

    Portois, Clément; Essouayed, Elyess; Annable, Michael D; Guiserix, Nathalie; Joubert, Antoine; Atteia, Olivier

    2018-05-01

    A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    NASA Astrophysics Data System (ADS)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  12. α-TCP cements prepared by syringe-foaming: Influence of Na2HPO4 and surfactant concentration.

    PubMed

    Vásquez, A F; Domínguez, S; Loureiro Dos Santos, L A

    2017-12-01

    The lack of intrinsic open porosity in calcium phosphate cements slows down the resorption rate and bone ingrowth when implanted In Vivo. In this study, macroporous structures were obtained by mixing α-TCP cement with a foamed liquid phase containing different concentrations of sodium hydrogen phosphate and a nonionic surfactant. The cement paste was prepared by hand mixing in a novel system of two syringes connected by a tube. Two different liquid to powder (L/P) ratios were used to prepare the cement paste. The cement samples showed open macropores with diameters>100μm. The specimens prepared with lower L/P ratio showed smaller porosity, macroporosity and pore size distribution. The cohesion of the cement paste in liquid solutions was assessed by adding 2wt% sodium alginate to the liquid phase. This study suggests that the final macrostructure of the foamed cements can be controlled by varying the phosphate and surfactant concentrations in the liquid phase and the L/P ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less

  14. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  15. Efficient solution of 3D electromagnetic eddy-current problems within the finite volume framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko

    2017-09-01

    Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.

  16. 40 CFR 63.1308 - Compliance demonstrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63... (5), each calendar day that an open-ended valve or line has no cap, blind flange, plug or second... open-ended valve or line equipped with a second valve is not closed before the second valve is closed...

  17. 40 CFR 63.1308 - Compliance demonstrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63... (5), each calendar day that an open-ended valve or line has no cap, blind flange, plug or second... open-ended valve or line equipped with a second valve is not closed before the second valve is closed...

  18. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  19. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  20. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses.

    PubMed

    He, X; Zhang, Y Z; Mansell, J P; Su, B

    2008-07-01

    Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.

  1. Shock Mitigation in Open-Celled TiNi Foams

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter

    2018-05-01

    High-energy shock events generated by impacts are effectively mitigated by Nitinol materials. Initial evidence of this capability was suggested by the dramatically superior cavitation-erosion performance of Nitinol coatings made by plasma spray processes, over steels and brasses. A fast acting hysteretic stress-strain response mechanism was proposed to explain this result, transforming the shock energy into heat. Extending this work to bulk TiNi, dynamic load characterization using Split Rod Hopkinson Bar techniques on solid porous TiNi confirmed that the mechanical response to high strain rates below 4200 s-1 were indeed hysteretic. This paper reports on dynamical load characterization on TiNi foams made by Self-Propagating High-Temperature Synthesis (SHS) using Split Rod Hopkinson Bar and gas-gun impact characterization to compare these foams to alternative materials. This work verified that SHS-derived TiNi foams were indeed hysteretic at strain rates from 180 to 2300 s-1. In addition, Shock Spectrum Analysis demonstrated that TiNi foams were very effective in mitigating the shock spectrum range below 5 kHz, and that increasing porosity increased the amount of shock attenuation in that spectral range. Finally under impact loading, 55% porous TiNi foams were a factor of 7 superior to steel and a factor of 4 better than Al 6061 or Cu in mitigating peak g-loads and this attenuation improved with bilayer structures of 57 and 73% porous TiNi foam article.

  2. Reusable cryogenic foam insulation for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.

    1991-01-01

    Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.

  3. Multiple-Nozzle Spray Head Applies Foam Insulation

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  4. Device and method for treatment of openings in vascular and septal walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    A device, system and method for treatment of an opening in vascular and/or septal walls including patent foramen ovale. The device has wings/stops on either end, an axis core covered in a shape memory foam and is deliverable via a catheter to the affected opening, finally expanding into a vascular or septal opening where it is held in place by the expandable shape memory stops or wings.

  5. Processing and Characterization of Nickel-Manganese-Gallium Shape-Memory Fibers and Foams

    NASA Astrophysics Data System (ADS)

    Zheng, Peiqi-Paige

    Ferromagnetic Ni-Mn-Ga shape memory alloys with large magnetic field-induced strains are promising candidates for actuators. Magnetic shape memory alloys display magnetic-field-induced strain (MFIS) of up to 10%, as single crystals. Polycrystalline materials are much easier to create but display a near-zero MFIS because twinning of neighboring grains introduces strain incompatibility leading to high internal stresses. Pores reduce these incompatibilities between grains and thus increase the MFIS of polycrystalline Ni-Mn-Ga which after training (thermo-magneto-mechanical cycling) exhibits MFIS as high as 8.7%. In this thesis, a systematic study of the effect of porosity on the magneto-mechanical properties of polycrystalline Ni-Mn-Ga foams is presented. The MFIS increased with increasing porosity, demonstrating that removal of constraints by addition of porosity is responsible for the high MFIS in polycrystalline foams. Ni-Mn-Ga foams with 57 volume percent of 355-500 micrometers open pores, with and without directional solidification were cast replicated. One directional solidified foam specimen showed a maximum magnetic-field induced strain of 0.65%, which is twice the value displayed by other foam specimens without directional solidification. This improvement is consistent with a reduction of incompatibility stresses under magnetic field from the reduced crystallographic misorientation between neighboring grains. Polycrystalline Ni-Mn-Ga foam displays ˜1% MFIS after the hermo-magnetic training. To show this effect in this highly textured sample, neutron diffraction texture measurements were conducted with a magnetic field applied at various orientations to the sample, demonstrating that selection of martensite variants takes place during cooling. Oligocrystalline Ni-Mn-Ga foams with an open porosity of 63.5?0.7% were created by a sintering replication process using NaCl space-holders. The high surface/volume ratio and mechanical stability under cyclic strain makes polycrystalline Ni-Mn-Ga metallic foams attractive for magnetic refrigeration. Compared to a polycrystalline bulk material, open-cells Ni-Mn-Ga foams shows a reduction in the temperature span of the phase transition and an increase in the magnetocaloric effect (MCE). Ni-Mn-Ga wires with sub-millimeter diameter, either as individual wires or as part of a 2D/3D wire assemblies, are promising candidates for actuators, sensors, magnetic cooling systems and energy harvesting devices. Here, we report the mechanical behavior of oligocrystalline Ni-Mn-Ga Taylor wires by tensile tests at room temperature. Magnetic-field induced shape recovery is demonstrated at 0°C in a martensitic Ni-Mn-Ga microwire, where a mechanically-produced 120° bend is recovered near fully within a magnetic field produced by permanent magnets. Tubes of the ferromagnetic shape-memory alloy Ni-Mn-Ga of composition near the Ni2MnGa Heusler phase can be used, alone or combined in structures, in magnetic actuators or magnetic refrigerators. However, fabrication of Ni-Mn-Ga tubes with sub-millimeter diameter by classical cold or hot drawing methods is hampered by the brittleness of the alloy. Here, we demonstrate a new process, where Ni-Mn-Ga tubes are fabricated by interdiffusion of Mn and Ga into drawn, ductile Ni tubes with 500 and 760 micrometers inner and outer diameters.

  6. Porous and Cellular Materials for Structural Applications; Symposium Held in San Francisco, California on April 13-15, 1998

    DTIC Science & Technology

    1998-04-01

    Industrial Scale 179 M. Schmidt and F. Schwertfeger Structural Graphitic Carbon Foams 185 Kristen M. Kearns, David P. Anderson, and Heather J...Nanostructured Powders and Their Industrial Application, Q. Beaucage, J.E. Mark, Q. Burns, H. Duen-Wu, 1998, ISBN: 1-55899-426-2 Volume 521—Porous and Cellular...has faces which are 0.03" thick and the core is 0.4" thick. Bonding between the core and face is achieved using a standard industrial epoxy adhesive

  7. Use of Free, Open Access Medical Education and Perceived Emergency Medicine Educational Needs Among Rural Physicians in Southwestern Ontario

    PubMed Central

    Chan, Teresa; Blau, Elaine

    2016-01-01

    Free, open access medical education (FOAM) has the potential to revolutionize continuing medical education, particularly for rural physicians who practice emergency medicine (EM) as part of a generalist practice. However, there has been little study of rural physicians’ educational needs since the advent of FOAM. We asked how rural physicians in Southwestern Ontario obtained their continuing EM education. We asked them to assess their perceived level of comfort in different areas of EM. To understand how FOAM resources might serve the rural EM community, we compared their responses with urban emergency physicians. Responses were collected via survey and interview. There was no significant difference between groups in reported use of FOAM resources. However, there was a significant difference between rural and urban physicians’ perceived level of EM knowledge, with urban physicians reporting a higher degree of confidence for most knowledge categories, particularly those related to critical care and rare procedures. This study provides the first description of EM knowledge and FOAM resource utilization among rural physicians in Southwestern Ontario. It also highlights an area of educational need -- that is, critical care and rare procedures. Future work should address whether rural physicians are using FOAM specifically to improve their critical care and procedural knowledge. As well, because of the generalist nature of rural practice, future work should clarify whether there is an opportunity cost to rural physicians’ knowledge of other clinical domains if they chose to focus more time on continuing education in critical care EM. PMID:27790389

  8. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  9. Use of Free, Open Access Medical Education and Perceived Emergency Medicine Educational Needs Among Rural Physicians in Southwestern Ontario.

    PubMed

    Folkl, Alex; Chan, Teresa; Blau, Elaine

    2016-09-21

    Free, open access medical education (FOAM) has the potential to revolutionize continuing medical education, particularly for rural physicians who practice emergency medicine (EM) as part of a generalist practice. However, there has been little study of rural physicians' educational needs since the advent of FOAM. We asked how rural physicians in Southwestern Ontario obtained their continuing EM education. We asked them to assess their perceived level of comfort in different areas of EM. To understand how FOAM resources might serve the rural EM community, we compared their responses with urban emergency physicians. Responses were collected via survey and interview. There was no significant difference between groups in reported use of FOAM resources. However, there was a significant difference between rural and urban physicians' perceived level of EM knowledge, with urban physicians reporting a higher degree of confidence for most knowledge categories, particularly those related to critical care and rare procedures. This study provides the first description of EM knowledge and FOAM resource utilization among rural physicians in Southwestern Ontario. It also highlights an area of educational need -- that is, critical care and rare procedures. Future work should address whether rural physicians are using FOAM specifically to improve their critical care and procedural knowledge. As well, because of the generalist nature of rural practice, future work should clarify whether there is an opportunity cost to rural physicians' knowledge of other clinical domains if they chose to focus more time on continuing education in critical care EM.

  10. Tunable thiol-epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Ellson, Gregory; Di Prima, Matthew; Ware, Taylor; Tang, Xiling; Voit, Walter

    2015-05-01

    Shape memory polymers (SMPs) are uniquely suited to a number of applications due to their shape storage and recovery abilities and the wide range of available chemistries. However, many of the desired performance properties are tied to the polymer chemistry which can make optimization difficult. The use of foaming techniques is one way to tune mechanical response of an SMP without changing the polymer chemistry. In this work, a novel thiol-epoxy SMP was foamed using glass microspheres (40 and 50% by volume Q-Cel 6019), using expandable polymer microspheres (1% 930 DU 120), and by a chemical blowing agent (1% XOP-341). Each approach created SMP foam with a differing density and microstructure from the others. Thermal and thermomechanical analysis was performed to observe the behavioral difference between the foaming techniques and to confirm that the glass transition (Tg) was relatively unchanged near 50 °C while the glassy modulus varied from 19.1 to 345 MPa and the rubbery modulus varied from 0.04 to 2.2 MPa. The compressive behavior of the foams was characterized through static compression testing at different temperatures, and cyclic compression testing at Tg. Constrained shape recovery testing showed a range of peak recovery stress from 5 MPa for the syntactic Q-Cel foams to ˜0.1 MPa for the chemically blown XOP-341 foam. These results showed that multiple foaming approaches can be used with a novel SMP to vary the mechanical response independent of Tg and polymer chemistry.

  11. Experimental techniques for studying the structure of foams and froths.

    PubMed

    Pugh, R J

    2005-06-30

    Several techniques are described in this review to study the structure and the stability of froths and foams. Image analysis proved useful for detecting structure changes in 2-D foams and has enabled the drainage process and the gradients in bubble size distribution to be determined. However, studies on 3-D foams require more complex techniques such as Multiple-Light Scattering Methods, Microphones and Optical Tomography. Under dynamic foaming conditions, the Foam Scan Column enables the water content of foams to be determined by conductivity analysis. It is clear that the same factors, which play a role in foam stability (film thickness, elasticity, etc.) also have a decisive influence on the stability of isolated froth or foam films. Therefore, the experimental thin film balance (developed by the Bulgarian Researchers) to study thinning of microfilms formed by a concave liquid drop suspended in a short vertical capillary tube has proved useful. Direct measurement of the thickness of the aqueous microfilm is determined by a micro-reflectance method and can give fundamental information on drainage and thin film stability. It is also important to consider the influence of the mineral particles on the stability of the froth and it have been shown that particles of well defined size and hydrophobicity can be introduced into the thin film enabling stabilization/destabilization mechanisms to be proposed. It has also been shown that the dynamic and static stability can be increased by a reduction in particle size and an increase in particle concentration.

  12. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    PubMed Central

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  13. Cellular-foam polypropylene ferroelectrets with increased film thickness and reduced resonance frequency

    NASA Astrophysics Data System (ADS)

    Sborikas, Martynas; Wegener, Michael

    2013-12-01

    Ferroelectrets are piezoelectric materials suitable for acoustic applications such as airborne ultrasonic transducers. Typical ferroelectrets exhibit resonance frequencies in the high kHz to low MHz range. In order to decrease the transducer resonance frequencies to the low kHz range, processes such as gas-diffusion expansion and electric charging were adjusted to cellular films which are initially twice as thick as in earlier studies. The demonstrated film expansion and electric charging lead to mechanically soft cellular structures which show high piezoelectric activities with coefficients up to 130 pC/N. Due to the simultaneously increased film thicknesses, the resonance frequencies are lowered down to about 233 kHz.

  14. Preparation and characterization of cellulose-based foams via microwave curing

    PubMed Central

    Demitri, Christian; Giuri, Antonella; Raucci, Maria Grazia; Giugliano, Daniela; Madaghiele, Marta; Sannino, Alessandro; Ambrosio, Luigi

    2014-01-01

    In this work, a mixture of a sodium salt of carboxymethylcellulose (CMCNa) and polyethylene glycol diacrylate (PEGDA700) was used for the preparation of a microporous structure by using the combination of two different procedures. First, physical foaming was induced using Pluronic as a blowing agent, followed by a chemical stabilization. This second step was carried out by means of an azobis(2-methylpropionamidine)dihydrochloride as the thermoinitiator (TI). This reaction was activated by heating the sample homogeneously using a microwave generator. Finally, the influence of different CMCNa and PEGDA700 ratios on the final properties of the foams was investigated. The viscosity, water absorption capacity, elastic modulus and porous structure were evaluated for each sample. In addition, preliminary biological characterization was carried out with the aim to prove the biocompatibility of the resulting material. The foam, including 20% of PEGDA700 in the mixture, demonstrated higher viscosity and stability before thermo-polymerization. In addition, increased water absorption capacity, mechanical resistance and a more uniform microporous structure were obtained for this sample. In particular, foam with 3% of CMCNa shows a hierarchical structure with open pores of different sizes. This morphology increased the properties of the foams. The full set of samples demonstrated an excellent biocompatibility profile with a good cell proliferation rate of more than 7 days. PMID:24501679

  15. Preparation and characterization of triple shape memory composite foams.

    PubMed

    Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T

    2014-10-28

    Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.

  16. Foam Cushioning

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  17. Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds

    Treesearch

    Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg

    2014-01-01

    Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...

  18. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  19. 14 CFR Appendix - Special Federal Aviation Regulation No. 109

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... absorbing protective padding (foam or equivalent) such as Ensolite. (6) Shoulder Strap Loads. Where upper... must have a means to signal to the flightcrew, at the flightdeck, that the door is in the open position... that any such door is in the open configuration for takeoff and landing. (c) Each door between any...

  20. 50 CFR 14.106 - Primary enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... affixed in the conveyance or has an open top for certain large mammals, spacer bars allowing circulation... enclosure, a sling, or on foam is exempt from the requirement to contain litter. An enclosure used to... height, “Live Animals” or “Wild Animals”, “Do Not Tip,” “Only Authorized Personnel May Open Container...

Top