Human factors for capacity building: lessons learned from the OpenMRS implementers network.
Seebregts, C J; Mamlin, B W; Biondich, P G; Fraser, H S F; Wolfe, B A; Jazayeri, D; Miranda, J; Blaya, J; Sinha, C; Bailey, C T; Kanter, A S
2010-01-01
The overall objective of this project was to investigate ways to strengthen the OpenMRS community by (i) developing capacity and implementing a network focusing specifically on the needs of OpenMRS implementers, (ii) strengthening community-driven aspects of OpenMRS and providing a dedicated forum for implementation-specific issues, and; (iii) providing regional support for OpenMRS implementations as well as mentorship and training. The methods used included (i) face-to-face networking using meetings and workshops; (ii) online collaboration tools, peer support and mentorship programmes; (iii) capacity and community development programmes, and; (iv) community outreach programmes. The community-driven approach, combined with a few simple interventions, has been a key factor in the growth and success of the OpenMRS Implementers Network. It has contributed to implementations in at least twenty-three different countries using basic online tools; and provided mentorship and peer support through an annual meeting, workshops and an internship program. The OpenMRS Implementers Network has formed collaborations with several other open source networks and is evolving regional OpenMRS Centres of Excellence to provide localized support for OpenMRS development and implementation. These initiatives are increasing the range of functionality and sustainability of open source software in the health domain, resulting in improved adoption and enterprise-readiness. Social organization and capacity development activities are important in growing a successful community-driven open source software model.
Implementation, reliability, and feasibility test of an Open-Source PACS.
Valeri, Gianluca; Zuccaccia, Matteo; Badaloni, Andrea; Ciriaci, Damiano; La Riccia, Luigi; Mazzoni, Giovanni; Maggi, Stefania; Giovagnoni, Andrea
2015-12-01
To implement a hardware and software system able to perform the major functions of an Open-Source PACS, and to analyze it in a simulated real-world environment. A small home network was implemented, and the Open-Source operating system Ubuntu 11.10 was installed in a laptop containing the Dcm4chee suite with the software devices needed. The Open-Source PACS implemented is compatible with Linux OS, Microsoft OS, and Mac OS X; furthermore, it was used with operating systems that guarantee the operation in portable devices (smartphone, tablet) Android and iOS. An OSS PACS is useful for making tutorials and workshops on post-processing techniques for educational and training purposes.
Getting Open Source Software into Schools: Strategies and Challenges
ERIC Educational Resources Information Center
Hepburn, Gary; Buley, Jan
2006-01-01
In this article Gary Hepburn and Jan Buley outline different approaches to implementing open source software (OSS) in schools; they also address the challenges that open source advocates should anticipate as they try to convince educational leaders to adopt OSS. With regard to OSS implementation, they note that schools have a flexible range of…
Implementing an Open Source Learning Management System: A Critical Analysis of Change Strategies
ERIC Educational Resources Information Center
Uys, Philip M.
2010-01-01
This paper analyses the change and innovation strategies that Charles Sturt University (CSU) used from 2007 to 2009 during the implementation and mainstreaming of an open source learning management system (LMS), Sakai, named locally as "CSU Interact". CSU was in January 2008 the first Australian University to implement an open source…
Simulation of partially coherent light propagation using parallel computing devices
NASA Astrophysics Data System (ADS)
Magalhães, Tiago C.; Rebordão, José M.
2017-08-01
Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.
The openEHR Java reference implementation project.
Chen, Rong; Klein, Gunnar
2007-01-01
The openEHR foundation has developed an innovative design for interoperable and future-proof Electronic Health Record (EHR) systems based on a dual model approach with a stable reference information model complemented by archetypes for specific clinical purposes.A team from Sweden has implemented all the stable specifications in the Java programming language and donated the source code to the openEHR foundation. It was adopted as the openEHR Java Reference Implementation in March 2005 and released under open source licenses. This encourages early EHR implementation projects around the world and a number of groups have already started to use this code. The early Java implementation experience has also led to the publication of the openEHR Java Implementation Technology Specification. A number of design changes to the specifications and important minor corrections have been directly initiated by the implementation project over the last two years. The Java Implementation has been important for the validation and improvement of the openEHR design specifications and provides building blocks for future EHR systems.
Using R to implement spatial analysis in open source environment
NASA Astrophysics Data System (ADS)
Shao, Yixi; Chen, Dong; Zhao, Bo
2007-06-01
R is an open source (GPL) language and environment for spatial analysis, statistical computing and graphics which provides a wide variety of statistical and graphical techniques, and is highly extensible. In the Open Source environment it plays an important role in doing spatial analysis. So, to implement spatial analysis in the Open Source environment which we called the Open Source geocomputation is using the R data analysis language integrated with GRASS GIS and MySQL or PostgreSQL. This paper explains the architecture of the Open Source GIS environment and emphasizes the role R plays in the aspect of spatial analysis. Furthermore, one apt illustration of the functions of R is given in this paper through the project of constructing CZPGIS (Cheng Zhou Population GIS) supported by Changzhou Government, China. In this project we use R to implement the geostatistics in the Open Source GIS environment to evaluate the spatial correlation of land price and estimate it by Kriging Interpolation. We also use R integrated with MapServer and php to show how R and other Open Source software cooperate with each other in WebGIS environment, which represents the advantages of using R to implement spatial analysis in Open Source GIS environment. And in the end, we points out that the packages for spatial analysis in R is still scattered and the limited memory is still a bottleneck when large sum of clients connect at the same time. Therefore further work is to group the extensive packages in order or design normative packages and make R cooperate better with other commercial software such as ArcIMS. Also we look forward to developing packages for land price evaluation.
Weather forecasting with open source software
NASA Astrophysics Data System (ADS)
Rautenhaus, Marc; Dörnbrack, Andreas
2013-04-01
To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.
Managing Digital Archives Using Open Source Software Tools
NASA Astrophysics Data System (ADS)
Barve, S.; Dongare, S.
2007-10-01
This paper describes the use of open source software tools such as MySQL and PHP for creating database-backed websites. Such websites offer many advantages over ones built from static HTML pages. This paper will discuss how OSS tools are used and their benefits, and after the successful implementation of these tools how the library took the initiative in implementing an institutional repository using DSpace open source software.
ERIC Educational Resources Information Center
Kisworo, Marsudi Wahyu
2016-01-01
Information and Communication Technology (ICT)-supported learning using free and open source platform draws little attention as open source initiatives were focused in secondary or tertiary educations. This study investigates possibilities of ICT-supported learning using open source platform for primary educations. The data of this study is taken…
Implementation and Testing of Low Cost Uav Platform for Orthophoto Imaging
NASA Astrophysics Data System (ADS)
Brucas, D.; Suziedelyte-Visockiene, J.; Ragauskas, U.; Berteska, E.; Rudinskas, D.
2013-08-01
Implementation of Unmanned Aerial Vehicles for civilian applications is rapidly increasing. Technologies which were expensive and available only for military use have recently spread on civilian market. There is a vast number of low cost open source components and systems for implementation on UAVs available. Using of low cost hobby and open source components ensures considerable decrease of UAV price, though in some cases compromising its reliability. In Space Science and Technology Institute (SSTI) in collaboration with Vilnius Gediminas Technical University (VGTU) researches have been performed in field of constructing and implementation of small UAVs composed of low cost open source components (and own developments). Most obvious and simple implementation of such UAVs - orthophoto imaging with data download and processing after the flight. The construction, implementation of UAVs, flight experience, data processing and data implementation will be further covered in the paper and presentation.
Reflections on the role of open source in health information system interoperability.
Sfakianakis, S; Chronaki, C E; Chiarugi, F; Conforti, F; Katehakis, D G
2007-01-01
This paper reflects on the role of open source in health information system interoperability. Open source is a driving force in computer science research and the development of information systems. It facilitates the sharing of information and ideas, enables evolutionary development and open collaborative testing of code, and broadens the adoption of interoperability standards. In health care, information systems have been developed largely ad hoc following proprietary specifications and customized design. However, the wide deployment of integrated services such as Electronic Health Records (EHRs) over regional health information networks (RHINs) relies on interoperability of the underlying information systems and medical devices. This reflection is built on the experiences of the PICNIC project that developed shared software infrastructure components in open source for RHINs and the OpenECG network that offers open source components to lower the implementation cost of interoperability standards such as SCP-ECG, in electrocardiography. Open source components implementing standards and a community providing feedback from real-world use are key enablers of health care information system interoperability. Investing in open source is investing in interoperability and a vital aspect of a long term strategy towards comprehensive health services and clinical research.
Open source EMR software: profiling, insights and hands-on analysis.
Kiah, M L M; Haiqi, Ahmed; Zaidan, B B; Zaidan, A A
2014-11-01
The use of open source software in health informatics is increasingly advocated by authors in the literature. Although there is no clear evidence of the superiority of the current open source applications in the healthcare field, the number of available open source applications online is growing and they are gaining greater prominence. This repertoire of open source options is of a great value for any future-planner interested in adopting an electronic medical/health record system, whether selecting an existent application or building a new one. The following questions arise. How do the available open source options compare to each other with respect to functionality, usability and security? Can an implementer of an open source application find sufficient support both as a user and as a developer, and to what extent? Does the available literature provide adequate answers to such questions? This review attempts to shed some light on these aspects. The objective of this study is to provide more comprehensive guidance from an implementer perspective toward the available alternatives of open source healthcare software, particularly in the field of electronic medical/health records. The design of this study is twofold. In the first part, we profile the published literature on a sample of existent and active open source software in the healthcare area. The purpose of this part is to provide a summary of the available guides and studies relative to the sampled systems, and to identify any gaps in the published literature with respect to our research questions. In the second part, we investigate those alternative systems relative to a set of metrics, by actually installing the software and reporting a hands-on experience of the installation process, usability, as well as other factors. The literature covers many aspects of open source software implementation and utilization in healthcare practice. Roughly, those aspects could be distilled into a basic taxonomy, making the literature landscape more perceivable. Nevertheless, the surveyed articles fall short of fulfilling the targeted objective of providing clear reference to potential implementers. The hands-on study contributed a more detailed comparative guide relative to our set of assessment measures. Overall, no system seems to satisfy an industry-standard measure, particularly in security and interoperability. The systems, as software applications, feel similar from a usability perspective and share a common set of functionality, though they vary considerably in community support and activity. More detailed analysis of popular open source software can benefit the potential implementers of electronic health/medical records systems. The number of examined systems and the measures by which to compare them vary across studies, but still rewarding insights start to emerge. Our work is one step toward that goal. Our overall conclusion is that open source options in the medical field are still far behind the highly acknowledged open source products in other domains, e.g. operating systems market share. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
[GNU Pattern: open source pattern hunter for biological sequences based on SPLASH algorithm].
Xu, Ying; Li, Yi-xue; Kong, Xiang-yin
2005-06-01
To construct a high performance open source software engine based on IBM SPLASH algorithm for later research on pattern discovery. Gpat, which is based on SPLASH algorithm, was developed by using open source software. GNU Pattern (Gpat) software was developped, which efficiently implemented the core part of SPLASH algorithm. Full source code of Gpat was also available for other researchers to modify the program under the GNU license. Gpat is a successful implementation of SPLASH algorithm and can be used as a basic framework for later research on pattern recognition in biological sequences.
openPSTD: The open source pseudospectral time-domain method for acoustic propagation
NASA Astrophysics Data System (ADS)
Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis
2016-06-01
An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.
State-of-the-practice and lessons learned on implementing open data and open source policies.
DOT National Transportation Integrated Search
2012-05-01
This report describes the current government, academic, and private sector practices associated with open data and open source application development. These practices are identified; and the potential uses with the ITS Programs Data Capture and M...
Interim Open Source Software (OSS) Policy
This interim Policy establishes a framework to implement the requirements of the Office of Management and Budget's (OMB) Federal Source Code Policy to achieve efficiency, transparency and innovation through reusable and open source software.
The use of open source electronic health records within the federal safety net.
Goldwater, Jason C; Kwon, Nancy J; Nathanson, Ashley; Muckle, Alison E; Brown, Alexa; Cornejo, Kerri
2014-01-01
To conduct a federally funded study that examines the acquisition, implementation and operation of open source electronic health records (EHR) within safety net medical settings, such as federally qualified health centers (FQHC). The study was conducted by the National Opinion Research Center (NORC) at the University of Chicago from April to September 2010. The NORC team undertook a comprehensive environmental scan, including a literature review, a dozen key informant interviews using a semistructured protocol, and a series of site visits to West Virginia, California and Arizona FQHC that were currently using an open source EHR. Five of the six sites that were chosen as part of the study found a number of advantages in the use of their open source EHR system, such as utilizing a large community of users and developers to modify their EHR to fit the needs of their provider and patient communities, and lower acquisition and implementation costs as compared to a commercial system. Despite these advantages, many of the informants and site visit participants felt that widespread dissemination and use of open source was restrained due to a negative connotation regarding this type of software. In addition, a number of participants stated that there is a necessary level of technical acumen needed within the FQHC to make an open source EHR effective. An open source EHR provides advantages for FQHC that have limited resources to acquire and implement an EHR, but additional study is needed to evaluate its overall effectiveness.
Development and Use of an Open-Source, User-Friendly Package to Simulate Voltammetry Experiments
ERIC Educational Resources Information Center
Wang, Shuo; Wang, Jing; Gao, Yanjing
2017-01-01
An open-source electrochemistry simulation package has been developed that simulates the electrode processes of four reaction mechanisms and two typical electroanalysis techniques: cyclic voltammetry and chronoamperometry. Unlike other open-source simulation software, this package balances the features with ease of learning and implementation and…
Borland, Rob; Barasa, Mourice; Iiams-Hauser, Casey; Velez, Olivia; Kaonga, Nadi Nina; Berg, Matt
2013-01-01
The purpose of this paper is to illustrate the importance of using open source technologies and common standards for interoperability when implementing eHealth systems and illustrate this through case studies, where possible. The sources used to inform this paper draw from the implementation and evaluation of the eHealth Program in the context of the Millennium Villages Project (MVP). As the eHealth Team was tasked to deploy an eHealth architecture, the Millennium Villages Global-Network (MVG-Net), across all fourteen of the MVP sites in Sub-Saharan Africa, the team recognized the need for standards and uniformity but also realized that context would be an important factor. Therefore, the team decided to utilize open source solutions. The MVP implementation of MVG-Net provides a model for those looking to implement informatics solutions across disciplines and countries. Furthermore, there are valuable lessons learned that the eHealth community can benefit from. By sharing lessons learned and developing an accessible, open-source eHealth platform, we believe that we can more efficiently and rapidly achieve the health-related and collaborative Millennium Development Goals (MDGs). PMID:22894051
Delay Tolerant Networking on NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Johnson, Sandra; Eddy, Wesley
2016-01-01
This presentation covers the status of the implementation of an open source software that implements the specifications developed by the CCSDS Working Group. Interplanetary Overlay Network (ION) is open source software and it implements specifications that have been developed by two international working groups through IETF and CCSDS. ION was implemented on the SCaN Testbed, a testbed located on an external pallet on ISS, by the GRC team. The presentation will cover the architecture of the system, high level implementation details, and issues porting ION to VxWorks.
OpenSHMEM-UCX : Evaluation of UCX for implementing OpenSHMEM Programming Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Matthew B; Gorentla Venkata, Manjunath; Aderholdt, William Ferrol
2016-01-01
The OpenSHMEM reference implementation was developed towards the goal of developing an open source and high-performing Open- SHMEM implementation. To achieve portability and performance across various networks, the OpenSHMEM reference implementation uses GAS- Net and UCCS for network operations. Recently, new network layers have emerged with the promise of providing high-performance, scalabil- ity, and portability for HPC applications. In this paper, we implement the OpenSHMEM reference implementation to use the UCX framework for network operations. Then, we evaluate its performance and scalabil- ity on Cray XK systems to understand UCX s suitability for developing the OpenSHMEM programming model. Further, wemore » develop a bench- mark called SHOMS for evaluating the OpenSHMEM implementation. Our experimental results show that OpenSHMEM-UCX outperforms the vendor supplied OpenSHMEM implementation in most cases on the Cray XK system by up to 40% with respect to message rate and up to 70% for the execution of application kernels.« less
The use of open source electronic health records within the federal safety net
Goldwater, Jason C; Kwon, Nancy J; Nathanson, Ashley; Muckle, Alison E; Brown, Alexa; Cornejo, Kerri
2014-01-01
Objective To conduct a federally funded study that examines the acquisition, implementation and operation of open source electronic health records (EHR) within safety net medical settings, such as federally qualified health centers (FQHC). Methods and materials The study was conducted by the National Opinion Research Center (NORC) at the University of Chicago from April to September 2010. The NORC team undertook a comprehensive environmental scan, including a literature review, a dozen key informant interviews using a semistructured protocol, and a series of site visits to West Virginia, California and Arizona FQHC that were currently using an open source EHR. Results Five of the six sites that were chosen as part of the study found a number of advantages in the use of their open source EHR system, such as utilizing a large community of users and developers to modify their EHR to fit the needs of their provider and patient communities, and lower acquisition and implementation costs as compared to a commercial system. Discussion Despite these advantages, many of the informants and site visit participants felt that widespread dissemination and use of open source was restrained due to a negative connotation regarding this type of software. In addition, a number of participants stated that there is a necessary level of technical acumen needed within the FQHC to make an open source EHR effective. Conclusions An open source EHR provides advantages for FQHC that have limited resources to acquire and implement an EHR, but additional study is needed to evaluate its overall effectiveness. PMID:23744787
ERIC Educational Resources Information Center
Hartnett, Eric; Beh, Eugenia; Resnick, Taryn; Ugaz, Ana; Tabacaru, Simona
2013-01-01
In 2010, after two previous unsuccessful attempts at electronic resources management system (ERMS) implementation, Texas A&M University (TAMU) Libraries set out once again to find an ERMS that would fit its needs. After surveying the field, TAMU Libraries selected the University of Notre Dame Hesburgh Libraries-developed, open-source ERMS,…
T-Check in Technologies for Interoperability: Web Services and Security--Single Sign-On
2007-12-01
following tools: • Apache Tomcat 6.0—a Java Servlet container to host the Web services and a simple Web client application [Apache 2007a] • Apache Axis...Eclipse. Eclipse – an open development platform. http://www.eclipse.org/ (2007) [Hunter 2001] Hunter, Jason. Java Servlet Programming, 2nd Edition...Citation SAML 1.1 Java Toolkit SAML Ping Identity’s SAML-1.1 implementation [SourceID 2006] OpenSAML SAML An open source implementation of SAML 1.1
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What is an implementation plan for open... AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Open Molding Resin and Gel Coat Operations § 63.5707 What is an implementation plan...
Development and validation of an open source quantification tool for DSC-MRI studies.
Gordaliza, P M; Mateos-Pérez, J M; Montesinos, P; Guzmán-de-Villoria, J A; Desco, M; Vaquero, J J
2015-03-01
This work presents the development of an open source tool for the quantification of dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion studies. The development of this tool is motivated by the lack of open source tools implemented on open platforms to allow external developers to implement their own quantification methods easily and without the need of paying for a development license. This quantification tool was developed as a plugin for the ImageJ image analysis platform using the Java programming language. A modular approach was used in the implementation of the components, in such a way that the addition of new methods can be done without breaking any of the existing functionalities. For the validation process, images from seven patients with brain tumors were acquired and quantified with the presented tool and with a widely used clinical software package. The resulting perfusion parameters were then compared. Perfusion parameters and the corresponding parametric images were obtained. When no gamma-fitting is used, an excellent agreement with the tool used as a gold-standard was obtained (R(2)>0.8 and values are within 95% CI limits in Bland-Altman plots). An open source tool that performs quantification of perfusion studies using magnetic resonance imaging has been developed and validated using a clinical software package. It works as an ImageJ plugin and the source code has been published with an open source license. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tay, Lee Yong; Lim, Cher Ping; Lye, Sze Yee; Ng, Kay Joo; Lim, Siew Khiaw
2011-01-01
This paper analyses how an elementary-level future school in Singapore implements and uses various open-source online platforms, which are easily available online and could be implemented with minimal software cost, for the purpose of teaching and learning. Online platforms have the potential to facilitate students' engagement for independent and…
OPAL: An Open-Source MPI-IO Library over Cray XT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Weikuan; Vetter, Jeffrey S; Canon, Richard Shane
Parallel IO over Cray XT is supported by a vendor-supplied MPI-IO package. This package contains a proprietary ADIO implementation built on top of the sysio library. While it is reasonable to maintain a stable code base for application scientists' convenience, it is also very important to the system developers and researchers to analyze and assess the effectiveness of parallel IO software, and accordingly, tune and optimize the MPI-IO implementation. A proprietary parallel IO code base relinquishes such flexibilities. On the other hand, a generic UFS-based MPI-IO implementation is typically used on many Linux-based platforms. We have developed an open-source MPI-IOmore » package over Lustre, referred to as OPAL (OPportunistic and Adaptive MPI-IO Library over Lustre). OPAL provides a single source-code base for MPI-IO over Lustre on Cray XT and Linux platforms. Compared to Cray implementation, OPAL provides a number of good features, including arbitrary specification of striping patterns and Lustre-stripe aligned file domain partitioning. This paper presents the performance comparisons between OPAL and Cray's proprietary implementation. Our evaluation demonstrates that OPAL achieves the performance comparable to the Cray implementation. We also exemplify the benefits of an open source package in revealing the underpinning of the parallel IO performance.« less
Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael
2018-06-01
To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Towards an Artificial Space Object Taxonomy
2013-09-01
demonstrate how to implement this taxonomy in Figaro, an open source probabilistic programming language. 2. INTRODUCTION Currently, US Space Command...Taxonomy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...demonstrate how to implement this taxonomy in Figaro, an open source probabilistic programming language. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF
NASA Astrophysics Data System (ADS)
Bouchpan-Lerust-Juéry, L.
2007-08-01
Current and next generation on-board computer systems tend to implement real-time embedded control applications (e.g. Attitude and Orbit Control Subsystem (AOCS), Packet Utililization Standard (PUS), spacecraft autonomy . . . ) which must meet high standards of Reliability and Predictability as well as Safety. All these requirements require a considerable amount of effort and cost for Space Sofware Industry. This paper, in a first part, presents a free Open Source integrated solution to develop RTAI applications from analysis, design, simulation and direct implementation using code generation based on Open Source and in its second part summarises this suggested approach, its results and the conclusion for further work.
ERIC Educational Resources Information Center
Consortium for School Networking (NJ1), 2008
2008-01-01
This report introduces educators to Moodle, an open-source software program for managing courses online. It briefly defines what Moodle is, what it can do, and gives specific examples of how it is being implemented. An appendix contains brief profiles of five school organizations that are using Moodle.
Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs
2011-01-01
This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.
Open source data assimilation framework for hydrological modeling
NASA Astrophysics Data System (ADS)
Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik
2013-04-01
An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.
OpenMC In Situ Source Convergence Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldrich, Garrett Allen; Dutta, Soumya; Woodring, Jonathan Lee
2016-05-07
We designed and implemented an in situ version of particle source convergence for the OpenMC particle transport simulator. OpenMC is a Monte Carlo based-particle simulator for neutron criticality calculations. For the transport simulation to be accurate, source particles must converge on a spatial distribution. Typically, convergence is obtained by iterating the simulation by a user-settable, fixed number of steps, and it is assumed that convergence is achieved. We instead implement a method to detect convergence, using the stochastic oscillator for identifying convergence of source particles based on their accumulated Shannon Entropy. Using our in situ convergence detection, we are ablemore » to detect and begin tallying results for the full simulation once the proper source distribution has been confirmed. Our method ensures that the simulation is not started too early, by a user setting too optimistic parameters, or too late, by setting too conservative a parameter.« less
An Open Source Model for Open Access Journal Publication
Blesius, Carl R.; Williams, Michael A.; Holzbach, Ana; Huntley, Arthur C.; Chueh, Henry
2005-01-01
We describe an electronic journal publication infrastructure that allows a flexible publication workflow, academic exchange around different forms of user submissions, and the exchange of articles between publishers and archives using a common XML based standard. This web-based application is implemented on a freely available open source software stack. This publication demonstrates the Dermatology Online Journal's use of the platform for non-biased independent open access publication. PMID:16779183
Visualizing relativity: The OpenRelativity project
NASA Astrophysics Data System (ADS)
Sherin, Zachary W.; Cheu, Ryan; Tan, Philip; Kortemeyer, Gerd
2016-05-01
We present OpenRelativity, an open-source toolkit to simulate effects of special relativity within the popular Unity game engine. Intended for game developers, educators, and anyone interested in physics, OpenRelativity can help people create, test, and share experiments to explore the effects of special relativity. We describe the underlying physics and some of the implementation details of this toolset with the hope that engaging games and interactive relativistic "laboratory" experiments might be implemented.
Real-time implementation of logo detection on open source BeagleBoard
NASA Astrophysics Data System (ADS)
George, M.; Kehtarnavaz, N.; Estevez, L.
2011-03-01
This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.
Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs
2011-01-01
This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages. PMID:21253357
Opening our science: Open science and cyanobacterial research at the US EPA
In this blog post we introduce the idea of Open Science and discuss multiple ways we are implementing these concepts in our cyanobacteria research. We give examples of our open access publications, open source code that support our research, and provide open access to our resear...
The Particle Accelerator Simulation Code PyORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less
LSST communications middleware implementation
NASA Astrophysics Data System (ADS)
Mills, Dave; Schumacher, German; Lotz, Paul
2016-07-01
The LSST communications middleware is based on a set of software abstractions; which provide standard interfaces for common communications services. The observatory requires communication between diverse subsystems, implemented by different contractors, and comprehensive archiving of subsystem status data. The Service Abstraction Layer (SAL) is implemented using open source packages that implement open standards of DDS (Data Distribution Service1) for data communication, and SQL (Standard Query Language) for database access. For every subsystem, abstractions for each of the Telemetry datastreams, along with Command/Response and Events, have been agreed with the appropriate component vendor (such as Dome, TMA, Hexapod), and captured in ICD's (Interface Control Documents).The OpenSplice (Prismtech) Community Edition of DDS provides an LGPL licensed distribution which may be freely redistributed. The availability of the full source code provides assurances that the project will be able to maintain it over the full 10 year survey, independent of the fortunes of the original providers.
Finding Resolution for the Responsible Transparency of Economic Models in Health and Medicine.
Padula, William V; McQueen, Robert Brett; Pronovost, Peter J
2017-11-01
The Second Panel on Cost-Effectiveness in Health and Medicine recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses has a number of questions unanswered with respect to the implementation of transparent, open source code interface for economic models. The possibility of making economic model source code could be positive and progressive for the field; however, several unintended consequences of this system should be first considered before complete implementation of this model. First, there is the concern regarding intellectual property rights that modelers have to their analyses. Second, the open source code could make analyses more accessible to inexperienced modelers, leading to inaccurate or misinterpreted results. We propose several resolutions to these concerns. The field should establish a licensing system of open source code such that the model originators maintain control of the code use and grant permissions to other investigators who wish to use it. The field should also be more forthcoming towards the teaching of cost-effectiveness analysis in medical and health services education so that providers and other professionals are familiar with economic modeling and able to conduct analyses with open source code. These types of unintended consequences need to be fully considered before the field's preparedness to move forward into an era of model transparency with open source code.
pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.
Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J
2018-05-08
Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .
An object oriented implementation of the Yeadon human inertia model
Dembia, Christopher; Moore, Jason K.; Hubbard, Mont
2015-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365
An object oriented implementation of the Yeadon human inertia model.
Dembia, Christopher; Moore, Jason K; Hubbard, Mont
2014-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.
Chinese Localisation of Evergreen: An Open Source Integrated Library System
ERIC Educational Resources Information Center
Zou, Qing; Liu, Guoying
2009-01-01
Purpose: The purpose of this paper is to investigate various issues related to Chinese language localisation in Evergreen, an open source integrated library system (ILS). Design/methodology/approach: A Simplified Chinese version of Evergreen was implemented and tested and various issues such as encoding, indexing, searching, and sorting…
ERIC Educational Resources Information Center
Ge, Xun; Huang, Kun; Dong, Yifei
2010-01-01
A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…
Makahiki: An Open Source Serious Game Framework for Sustainability Education and Conservation
ERIC Educational Resources Information Center
Xu, Yongwen; Johnson, Philip M.; Lee, George E.; Moore, Carleton A.; Brewer, Robert S.
2014-01-01
Sustainability education and conservation have become an international imperative due to the rising cost of energy, increasing scarcity of natural resource and irresponsible environmental practices. This paper presents Makahiki, an open source serious game framework for sustainability, which implements an extensible framework for different…
OpenCFU, a new free and open-source software to count cell colonies and other circular objects.
Geissmann, Quentin
2013-01-01
Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net.
mdFoam+: Advanced molecular dynamics in OpenFOAM
NASA Astrophysics Data System (ADS)
Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.
2018-03-01
This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.
Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS.
Zaidan, A A; Zaidan, B B; Al-Haiqi, Ahmed; Kiah, M L M; Hussain, Muzammil; Abdulnabi, Mohamed
2015-02-01
Evaluating and selecting software packages that meet the requirements of an organization are difficult aspects of software engineering process. Selecting the wrong open-source EMR software package can be costly and may adversely affect business processes and functioning of the organization. This study aims to evaluate and select open-source EMR software packages based on multi-criteria decision-making. A hands-on study was performed and a set of open-source EMR software packages were implemented locally on separate virtual machines to examine the systems more closely. Several measures as evaluation basis were specified, and the systems were selected based a set of metric outcomes using Integrated Analytic Hierarchy Process (AHP) and TOPSIS. The experimental results showed that GNUmed and OpenEMR software can provide better basis on ranking score records than other open-source EMR software packages. Copyright © 2014 Elsevier Inc. All rights reserved.
PACS for Bhutan: a cost effective open source architecture for emerging countries.
Ratib, Osman; Roduit, Nicolas; Nidup, Dechen; De Geer, Gerard; Rosset, Antoine; Geissbuhler, Antoine
2016-10-01
This paper reports the design and implementation of an innovative and cost-effective imaging management infrastructure suitable for radiology centres in emerging countries. It was implemented in the main referring hospital of Bhutan equipped with a CT, an MRI, digital radiology, and a suite of several ultrasound units. They lacked the necessary informatics infrastructure for image archiving and interpretation and needed a system for distribution of images to clinical wards. The solution developed for this project combines several open source software platforms in a robust and versatile archiving and communication system connected to analysis workstations equipped with a FDA-certified version of the highly popular Open-Source software. The whole system was implemented on standard off-the-shelf hardware. The system was installed in three days, and training of the radiologists as well as the technical and IT staff was provided onsite to ensure full ownership of the system by the local team. Radiologists were rapidly capable of reading and interpreting studies on the diagnostic workstations, which had a significant benefit on their workflow and ability to perform diagnostic tasks more efficiently. Furthermore, images were also made available to several clinical units on standard desktop computers through a web-based viewer. • Open source imaging informatics platforms can provide cost-effective alternatives for PACS • Robust and cost-effective open architecture can provide adequate solutions for emerging countries • Imaging informatics is often lacking in hospitals equipped with digital modalities.
Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems
NASA Astrophysics Data System (ADS)
Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel
The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.
JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning
NASA Astrophysics Data System (ADS)
Lauricella, Marco; Pontrelli, Giuseppe; Coluzza, Ivan; Pisignano, Dario; Succi, Sauro
2015-12-01
We present the open-source computer program JETSPIN, specifically designed to simulate the electrospinning process of nanofibers. Its capabilities are shown with proper reference to the underlying model, as well as a description of the relevant input variables and associated test-case simulations. The various interactions included in the electrospinning model implemented in JETSPIN are discussed in detail. The code is designed to exploit different computational architectures, from single to parallel processor workstations. This paper provides an overview of JETSPIN, focusing primarily on its structure, parallel implementations, functionality, performance, and availability.
ELATE: an open-source online application for analysis and visualization of elastic tensors
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier
2016-07-01
We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.
NASA Astrophysics Data System (ADS)
Terminanto, A.; Swantoro, H. A.; Hidayanto, A. N.
2017-12-01
Enterprise Resource Planning (ERP) is an integrated information system to manage business processes of companies of various business scales. Because of the high cost of ERP investment, ERP implementation is usually done in large-scale enterprises, Due to the complexity of implementation problems, the success rate of ERP implementation is still low. Open Source System ERP becomes an alternative choice of ERP application to SME companies in terms of cost and customization. This study aims to identify characteristics and configure the implementation of OSS ERP Payroll module in KKPS (Employee Cooperative PT SRI) using OSS ERP Odoo and using ASAP method. This study is classified into case study research and action research. Implementation of OSS ERP Payroll module is done because the HR section of KKPS has not been integrated with other parts. The results of this study are the characteristics and configuration of OSS ERP payroll module in KKPS.
NASA Astrophysics Data System (ADS)
Bellerby, Tim
2014-05-01
Model Integration System (MIST) is open-source environmental modelling programming language that directly incorporates data parallelism. The language is designed to enable straightforward programming structures, such as nested loops and conditional statements to be directly translated into sequences of whole-array (or more generally whole data-structure) operations. MIST thus enables the programmer to use well-understood constructs, directly relating to the mathematical structure of the model, without having to explicitly vectorize code or worry about details of parallelization. A range of common modelling operations are supported by dedicated language structures operating on cell neighbourhoods rather than individual cells (e.g.: the 3x3 local neighbourhood needed to implement an averaging image filter can be simply accessed from within a simple loop traversing all image pixels). This facility hides details of inter-process communication behind more mathematically relevant descriptions of model dynamics. The MIST automatic vectorization/parallelization process serves both to distribute work among available nodes and separately to control storage requirements for intermediate expressions - enabling operations on very large domains for which memory availability may be an issue. MIST is designed to facilitate efficient interpreter based implementations. A prototype open source interpreter is available, coded in standard FORTRAN 95, with tools to rapidly integrate existing FORTRAN 77 or 95 code libraries. The language is formally specified and thus not limited to FORTRAN implementation or to an interpreter-based approach. A MIST to FORTRAN compiler is under development and volunteers are sought to create an ANSI-C implementation. Parallel processing is currently implemented using OpenMP. However, parallelization code is fully modularised and could be replaced with implementations using other libraries. GPU implementation is potentially possible.
Is Multitask Deep Learning Practical for Pharma?
Ramsundar, Bharath; Liu, Bowen; Wu, Zhenqin; Verras, Andreas; Tudor, Matthew; Sheridan, Robert P; Pande, Vijay
2017-08-28
Multitask deep learning has emerged as a powerful tool for computational drug discovery. However, despite a number of preliminary studies, multitask deep networks have yet to be widely deployed in the pharmaceutical and biotech industries. This lack of acceptance stems from both software difficulties and lack of understanding of the robustness of multitask deep networks. Our work aims to resolve both of these barriers to adoption. We introduce a high-quality open-source implementation of multitask deep networks as part of the DeepChem open-source platform. Our implementation enables simple python scripts to construct, fit, and evaluate sophisticated deep models. We use our implementation to analyze the performance of multitask deep networks and related deep models on four collections of pharmaceutical data (three of which have not previously been analyzed in the literature). We split these data sets into train/valid/test using time and neighbor splits to test multitask deep learning performance under challenging conditions. Our results demonstrate that multitask deep networks are surprisingly robust and can offer strong improvement over random forests. Our analysis and open-source implementation in DeepChem provide an argument that multitask deep networks are ready for widespread use in commercial drug discovery.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
... opportunities for questions and discussion, EPA will hold open houses prior to the public hearings. During these... comments, in English or Dine, and data pertaining to our proposal at the Public Hearing. English-Dine... Farmington. English-Dine translation services will not be provided at the Durango Open House and Public...
OpenCFU, a New Free and Open-Source Software to Count Cell Colonies and Other Circular Objects
Geissmann, Quentin
2013-01-01
Counting circular objects such as cell colonies is an important source of information for biologists. Although this task is often time-consuming and subjective, it is still predominantly performed manually. The aim of the present work is to provide a new tool to enumerate circular objects from digital pictures and video streams. Here, I demonstrate that the created program, OpenCFU, is very robust, accurate and fast. In addition, it provides control over the processing parameters and is implemented in an intuitive and modern interface. OpenCFU is a cross-platform and open-source software freely available at http://opencfu.sourceforge.net. PMID:23457446
OOSTethys - Open Source Software for the Global Earth Observing Systems of Systems
NASA Astrophysics Data System (ADS)
Bridger, E.; Bermudez, L. E.; Maskey, M.; Rueda, C.; Babin, B. L.; Blair, R.
2009-12-01
An open source software project is much more than just picking the right license, hosting modular code and providing effective documentation. Success in advancing in an open collaborative way requires that the process match the expected code functionality to the developer's personal expertise and organizational needs as well as having an enthusiastic and responsive core lead group. We will present the lessons learned fromOOSTethys , which is a community of software developers and marine scientists who develop open source tools, in multiple languages, to integrate ocean observing systems into an Integrated Ocean Observing System (IOOS). OOSTethys' goal is to dramatically reduce the time it takes to install, adopt and update standards-compliant web services. OOSTethys has developed servers, clients and a registry. Open source PERL, PYTHON, JAVA and ASP tool kits and reference implementations are helping the marine community publish near real-time observation data in interoperable standard formats. In some cases publishing an OpenGeospatial Consortium (OGC), Sensor Observation Service (SOS) from NetCDF files or a database or even CSV text files could take only minutes depending on the skills of the developer. OOSTethys is also developing an OGC standard registry, Catalog Service for Web (CSW). This open source CSW registry was implemented to easily register and discover SOSs using ISO 19139 service metadata. A web interface layer over the CSW registry simplifies the registration process by harvesting metadata describing the observations and sensors from the “GetCapabilities” response of SOS. OPENIOOS is the web client, developed in PERL to visualize the sensors in the SOS services. While the number of OOSTethys software developers is small, currently about 10 around the world, the number of OOSTethys toolkit implementers is larger and growing and the ease of use has played a large role in spreading the use of interoperable standards compliant web services widely in the marine community.
DasPy – Open Source Multivariate Land Data Assimilation Framework with High Performance Computing
NASA Astrophysics Data System (ADS)
Han, Xujun; Li, Xin; Montzka, Carsten; Kollet, Stefan; Vereecken, Harry; Hendricks Franssen, Harrie-Jan
2015-04-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. Multivariate data assimilation refers to the simultaneous assimilation of observation data for multiple model state variables into a simulation model. Our main motivation was to develop an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with C++ and Fortran language. This system has been evaluated in several soil moisture, L-band brightness temperature and land surface temperature assimilation studies. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be represented by perturbed atmospheric forcings, perturbed soil and vegetation properties and model initial conditions. The CLM4.5 (Community Land Model) was integrated as the model operator. The CMEM (Community Microwave Emission Modelling Platform), COSMIC (COsmic-ray Soil Moisture Interaction Code) and the two source formulation were integrated as observation operators for assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy is parallelized using the hybrid MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) techniques. All the input and output data flow is organized efficiently using the commonly used NetCDF file format. Online 1D and 2D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
The role of open-source software in innovation and standardization in radiology.
Erickson, Bradley J; Langer, Steve; Nagy, Paul
2005-11-01
The use of open-source software (OSS), in which developers release the source code to applications they have developed, is popular in the software industry. This is done to allow others to modify and improve software (which may or may not be shared back to the community) and to allow others to learn from the software. Radiology was an early participant in this model, supporting OSS that implemented the ACR-National Electrical Manufacturers Association (now Digital Imaging and Communications in Medicine) standard for medical image communications. In radiology and in other fields, OSS has promoted innovation and the adoption of standards. Popular OSS is of high quality because access to source code allows many people to identify and resolve errors. Open-source software is analogous to the peer-review scientific process: one must be able to see and reproduce results to understand and promote what is shared. The authors emphasize that support for OSS need not threaten vendors; most vendors embrace and benefit from standards. Open-source development does not replace vendors but more clearly defines their roles, typically focusing on areas in which proprietary differentiators benefit customers and on professional services such as implementation planning and service. Continued support for OSS is essential for the success of our field.
Mobile service for open data visualization on geo-based images
NASA Astrophysics Data System (ADS)
Lee, Kiwon; Kim, Kwangseob; Kang, Sanggoo
2015-12-01
Since the early 2010s, governments in most countries have adopted and promoted open data policy and open data platform. Korea are in the same situation, and government and public organizations have operated the public-accessible open data portal systems since 2011. The number of open data and data type have been increasing every year. These trends are more expandable or extensible on mobile environments. The purpose of this study is to design and implement a mobile application service to visualize various typed or formatted public open data with geo-based images on the mobile web. Open data cover downloadable data sets or open-accessible data application programming interface API. Geo-based images mean multi-sensor satellite imageries which are referred in geo-coordinates and matched with digital map sets. System components for mobile service are fully based on open sources and open development environments without any commercialized tools: PostgreSQL for database management system, OTB for remote sensing image processing, GDAL for data conversion, GeoServer for application server, OpenLayers for mobile web mapping, R for data analysis and D3.js for web-based data graphic processing. Mobile application in client side was implemented by using HTML5 for cross browser and cross platform. The result shows many advantageous points such as linking open data and geo-based data, integrating open data and open source, and demonstrating mobile applications with open data. It is expected that this approach is cost effective and process efficient implementation strategy for intelligent earth observing data.
A Framework for the Systematic Collection of Open Source Intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pouchard, Line Catherine; Trien, Joseph P; Dobson, Jonathan D
2009-01-01
Following legislative directions, the Intelligence Community has been mandated to make greater use of Open Source Intelligence (OSINT). Efforts are underway to increase the use of OSINT but there are many obstacles. One of these obstacles is the lack of tools helping to manage the volume of available data and ascertain its credibility. We propose a unique system for selecting, collecting and storing Open Source data from the Web and the Open Source Center. Some data management tasks are automated, document source is retained, and metadata containing geographical coordinates are added to the documents. Analysts are thus empowered to search,more » view, store, and analyze Web data within a single tool. We present ORCAT I and ORCAT II, two implementations of the system.« less
ERIC Educational Resources Information Center
Lin, Yu-Wei; Zini, Enrico
2008-01-01
This empirical paper shows how free/libre open source software (FLOSS) contributes to mutual and collaborative learning in an educational environment. Unlike proprietary software, FLOSS allows extensive customisation of software to support the needs of local users better. This also allows users to participate more proactively in the development…
Application of Open-Source Enterprise Information System Modules: An Empirical Study
ERIC Educational Resources Information Center
Lee, Sang-Heui
2010-01-01
Although there have been a number of studies on large scale implementation of proprietary enterprise information systems (EIS), open-source software (OSS) for EIS has received limited attention in spite of its potential as a disruptive innovation. Cost saving is the main driver for adopting OSS among the other possible benefits including security…
Boulos, Maged N Kamel; Honda, Kiyoshi
2006-01-01
Open Source Web GIS software systems have reached a stage of maturity, sophistication, robustness and stability, and usability and user friendliness rivalling that of commercial, proprietary GIS and Web GIS server products. The Open Source Web GIS community is also actively embracing OGC (Open Geospatial Consortium) standards, including WMS (Web Map Service). WMS enables the creation of Web maps that have layers coming from multiple different remote servers/sources. In this article we present one easy to implement Web GIS server solution that is based on the Open Source University of Minnesota (UMN) MapServer. By following the accompanying step-by-step tutorial instructions, interested readers running mainstream Microsoft® Windows machines and with no prior technical experience in Web GIS or Internet map servers will be able to publish their own health maps on the Web and add to those maps additional layers retrieved from remote WMS servers. The 'digital Asia' and 2004 Indian Ocean tsunami experiences in using free Open Source Web GIS software are also briefly described. PMID:16420699
Performance evaluation of OpenFOAM on many-core architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzobohatý, Tomáš; Říha, Lubomír; Karásek, Tomáš, E-mail: tomas.karasek@vsb.cz
In this article application of Open Source Field Operation and Manipulation (OpenFOAM) C++ libraries for solving engineering problems on many-core architectures is presented. Objective of this article is to present scalability of OpenFOAM on parallel platforms solving real engineering problems of fluid dynamics. Scalability test of OpenFOAM is performed using various hardware and different implementation of standard PCG and PBiCG Krylov iterative methods. Speed up of various implementations of linear solvers using GPU and MIC accelerators are presented in this paper. Numerical experiments of 3D lid-driven cavity flow for several cases with various number of cells are presented.
ERIC Educational Resources Information Center
Byrd, Rob
2008-01-01
Is open source business intelligence (OS BI) software ready for prime time? The author thoroughly investigated each of three OS BI toolsets--Pentaho BI Suite, Jaspersoft BI Suite, and Talend Open Studio--by installing the OS BI tools himself, by interviewing technologists at academic institutions who had implemented these OS BI solutions, and by…
OpenICE medical device interoperability platform overview and requirement analysis.
Arney, David; Plourde, Jeffrey; Goldman, Julian M
2018-02-23
We give an overview of OpenICE, an open source implementation of the ASTM standard F2761 for the Integrated Clinical Environment (ICE) that leverages medical device interoperability, together with an analysis of the clinical and non-functional requirements and community process that inspired its design.
Steady-state capabilities for hydroturbines with OpenFOAM
NASA Astrophysics Data System (ADS)
Page, M.; Beaudoin, M.; Giroux, A. M.
2010-08-01
The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.
High School Open On-Line Courses (HOOC): A Case Study from Italy
ERIC Educational Resources Information Center
Canessa, Enrique; Pisani, Armando
2013-01-01
The first implementation of complete high school, open on-line courses (HOOC) aiming to support the training and basic scientific knowledge of young students from the Liceo Ginnasio Dante Alighieri in Gorizia, Italy, is discussed. Using the open source and automated recording system openEyA, HOOC give a student the opportunity to watch on-line, at…
Open-Source, Web-Based Dashboard Components for DICOM Connectivity.
Bustamante, Catalina; Pineda, Julian; Rascovsky, Simon; Arango, Andres
2016-08-01
The administration of a DICOM network within an imaging healthcare institution requires tools that allow for monitoring of connectivity and availability for adequate uptime measurements and help guide technology management strategies. We present the implementation of an open-source widget for the Dashing framework that provides basic dashboard functionality allowing for monitoring of a DICOM network using network "ping" and DICOM "C-ECHO" operations.
ERIC Educational Resources Information Center
Thankachan, Briju; Moore, David Richard
2017-01-01
The use of Free and Open Source Software (FOSS), a subset of Information and Communication Technology (ICT), can reduce the cost of purchasing software. Despite the benefit in the initial purchase price of software, deploying software requires total cost that goes beyond the initial purchase price. Total cost is a silent issue of FOSS and can only…
Processing Uav and LIDAR Point Clouds in Grass GIS
NASA Astrophysics Data System (ADS)
Petras, V.; Petrasova, A.; Jeziorska, J.; Mitasova, H.
2016-06-01
Today's methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV) imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM), and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM). Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL), Point Cloud Library (PCL), and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.
PARAVT: Parallel Voronoi tessellation code
NASA Astrophysics Data System (ADS)
González, R. E.
2016-10-01
In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Boonn, William
2010-03-01
Data mining of existing radiology and pathology reports within an enterprise health system can be used for clinical decision support, research, education, as well as operational analyses. In our health system, the database of radiology and pathology reports exceeds 13 million entries combined. We are building a web-based tool to allow search and data analysis of these combined databases using freely available and open source tools. This presentation will compare performance of an open source full-text indexing tool to MySQL's full-text indexing and searching and describe implementation procedures to incorporate these capabilities into a radiology-pathology search engine.
A Tale of Two Observing Systems: Interoperability in the World of Microsoft Windows
NASA Astrophysics Data System (ADS)
Babin, B. L.; Hu, L.
2008-12-01
Louisiana Universities Marine Consortium's (LUMCON) and Dauphin Island Sea Lab's (DISL) Environmental Monitoring System provide a unified coastal ocean observing system. These two systems are mirrored to maintain autonomy while offering an integrated data sharing environment. Both systems collect data via Campbell Scientific Data loggers, store the data in Microsoft SQL servers, and disseminate the data in real- time on the World Wide Web via Microsoft Internet Information Servers and Active Server Pages (ASP). The utilization of Microsoft Windows technologies presented many challenges to these observing systems as open source tools for interoperability grow. The current open source tools often require the installation of additional software. In order to make data available through common standards formats, "home grown" software has been developed. One example of this is the development of software to generate xml files for transmission to the National Data Buoy Center (NDBC). OOSTethys partners develop, test and implement easy-to-use, open-source, OGC-compliant software., and have created a working prototype of networked, semantically interoperable, real-time data systems. Partnering with OOSTethys, we are developing a cookbook to implement OGC web services. The implementation will be written in ASP, will run in a Microsoft operating system environment, and will serve data via Sensor Observation Services (SOS). This cookbook will give observing systems running Microsoft Windows the tools to easily participate in the Open Geospatial Consortium (OGC) Oceans Interoperability Experiment (OCEANS IE).
2008-03-01
is implemented using the Drupal (2007) content management system (CMS) and many of the baseline information sharing and collaboration tools have...been contributed through the Dru- pal open source community. Drupal is a very modular open source software written in PHP hypertext processor...needed to suit the particular problem domain. While other frameworks have the potential to provide similar advantages (“Ruby,” 2007), Drupal was
compomics-utilities: an open-source Java library for computational proteomics.
Barsnes, Harald; Vaudel, Marc; Colaert, Niklaas; Helsens, Kenny; Sickmann, Albert; Berven, Frode S; Martens, Lennart
2011-03-08
The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with) spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool. In order to simplify the development of proteomics tools, we have implemented an open-source support library for computational proteomics, called compomics-utilities. The library contains a broad set of features required for reading, parsing, and analyzing proteomics data. compomics-utilities is already used by a long list of existing software, ensuring library stability and continued support and development. As a user-friendly, well-documented and open-source library, compomics-utilities greatly simplifies the implementation of the basic features needed in most proteomics tools. Implemented in 100% Java, compomics-utilities is fully portable across platforms and architectures. Our library thus allows the developers to focus on the novel aspects of their tools, rather than on the basic functions, which can contribute substantially to faster development, and better tools for proteomics.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-07
... ) emissions from sources of fugitive dust such as unpaved roads and disturbed soils in open and agricultural... trespass and stabilize disturbed soil on open areas larger than 0.5 acres in urban areas, and larger than...
2009-09-01
boarding team, COTS, WLAN, smart antenna, OpenVPN application, wireless base station, OFDM, latency, point-to-point wireless link. 16. PRICE CODE 17...16 c. SSL/TLS .................................17 2. OpenVPN ......................................17 III. EXPERIMENT METHODOLOGY...network frame at Layer 2 has already been secured by encryption at a higher level. 2. OpenVPN OpenVPN is open source software that provides a VPN
Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.
Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig
2017-06-01
Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.
Tolentino, Herman; Marcelo, Alvin; Marcelo, Portia; Maramba, Inocencio
2005-01-01
Community-based primary care information systems are one of the building blocks for national health information systems. In the Philippines, after the devolution of health care to local governments, we observed “health information system islands” connected to national vertical programs being implemented in devolved health units. These structures lead to a huge amount of “information work” in the transformation of health information at the community level. This paper describes work done to develop and implement the open-source Community Based Health Information Tracking System (CHITS) Project, which was implemented to address this information management problem and its outcomes. Several lessons learned from the field as well as software development strategies are highlighted in building community level information systems that link to national level health information systems. PMID:16779052
Magare, Steve; Monda, Jonathan; Kamau, Onesmus; Houston, Stuart; Fraser, Hamish; Powell, John; English, Mike; Paton, Chris
2018-01-01
Background The Kenyan government, working with international partners and local organizations, has developed an eHealth strategy, specified standards, and guidelines for electronic health record adoption in public hospitals and implemented two major health information technology projects: District Health Information Software Version 2, for collating national health care indicators and a rollout of the KenyaEMR and International Quality Care Health Management Information Systems, for managing 600 HIV clinics across the country. Following these projects, a modified version of the Open Medical Record System electronic health record was specified and developed to fulfill the clinical and administrative requirements of health care facilities operated by devolved counties in Kenya and to automate the process of collating health care indicators and entering them into the District Health Information Software Version 2 system. Objective We aimed to present a descriptive case study of the implementation of an open source electronic health record system in public health care facilities in Kenya. Methods We conducted a landscape review of existing literature concerning eHealth policies and electronic health record development in Kenya. Following initial discussions with the Ministry of Health, the World Health Organization, and implementing partners, we conducted a series of visits to implementing sites to conduct semistructured individual interviews and group discussions with stakeholders to produce a historical case study of the implementation. Results This case study describes how consultants based in Kenya, working with developers in India and project stakeholders, implemented the new system into several public hospitals in a county in rural Kenya. The implementation process included upgrading the hospital information technology infrastructure, training users, and attempting to garner administrative and clinical buy-in for adoption of the system. The initial deployment was ultimately scaled back due to a complex mix of sociotechnical and administrative issues. Learning from these early challenges, the system is now being redesigned and prepared for deployment in 6 new counties across Kenya. Conclusions Implementing electronic health record systems is a challenging process in high-income settings. In low-income settings, such as Kenya, open source software may offer some respite from the high costs of software licensing, but the familiar challenges of clinical and administration buy-in, the need to adequately train users, and the need for the provision of ongoing technical support are common across the North-South divide. Strategies such as creating local support teams, using local development resources, ensuring end user buy-in, and rolling out in smaller facilities before larger hospitals are being incorporated into the project. These are positive developments to help maintain momentum as the project continues. Further integration with existing open source communities could help ongoing development and implementations of the project. We hope this case study will provide some lessons and guidance for other challenging implementations of electronic health record systems as they continue across Africa. PMID:29669709
Modular and Spatially Explicit: A Novel Approach to System Dynamics
The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine which has been created as a joint project between Oregon State University and the US Environmental Protection Agency. It is designed around a modular implementation, and provides a standa...
Bru, Juan; Berger, Christopher A
2012-01-01
Background Point-of-care electronic medical records (EMRs) are a key tool to manage chronic illness. Several EMRs have been developed for use in treating HIV and tuberculosis, but their applicability to primary care, technical requirements and clinical functionalities are largely unknown. Objectives This study aimed to address the needs of clinicians from resource-limited settings without reliable internet access who are considering adopting an open-source EMR. Study eligibility criteria Open-source point-of-care EMRs suitable for use in areas without reliable internet access. Study appraisal and synthesis methods The authors conducted a comprehensive search of all open-source EMRs suitable for sites without reliable internet access. The authors surveyed clinician users and technical implementers from a single site and technical developers of each software product. The authors evaluated availability, cost and technical requirements. Results The hardware and software for all six systems is easily available, but they vary considerably in proprietary components, installation requirements and customisability. Limitations This study relied solely on self-report from informants who developed and who actively use the included products. Conclusions and implications of key findings Clinical functionalities vary greatly among the systems, and none of the systems yet meet minimum requirements for effective implementation in a primary care resource-limited setting. The safe prescribing of medications is a particular concern with current tools. The dearth of fully functional EMR systems indicates a need for a greater emphasis by global funding agencies to move beyond disease-specific EMR systems and develop a universal open-source health informatics platform. PMID:22763661
C3I and Modelling and Simulation (M&S) Interoperability
2004-03-01
customised Open Source products. The technical implementation is based on the use of the eXtendend Markup Language (XML) and Python . XML is developed...to structure, store and send information. The language is focus on the description of data. Python is a portable, interpreted, object-oriented...programming language. A huge variety of usable Open Source Projects were issued by the Python Community. 3.1 Phase 1: Feasibility Studies Phase 1 was
ImTK: an open source multi-center information management toolkit
NASA Astrophysics Data System (ADS)
Alaoui, Adil; Ingeholm, Mary Lou; Padh, Shilpa; Dorobantu, Mihai; Desai, Mihir; Cleary, Kevin; Mun, Seong K.
2008-03-01
The Information Management Toolkit (ImTK) Consortium is an open source initiative to develop robust, freely available tools related to the information management needs of basic, clinical, and translational research. An open source framework and agile programming methodology can enable distributed software development while an open architecture will encourage interoperability across different environments. The ISIS Center has conceptualized a prototype data sharing network that simulates a multi-center environment based on a federated data access model. This model includes the development of software tools to enable efficient exchange, sharing, management, and analysis of multimedia medical information such as clinical information, images, and bioinformatics data from multiple data sources. The envisioned ImTK data environment will include an open architecture and data model implementation that complies with existing standards such as Digital Imaging and Communications (DICOM), Health Level 7 (HL7), and the technical framework and workflow defined by the Integrating the Healthcare Enterprise (IHE) Information Technology Infrastructure initiative, mainly the Cross Enterprise Document Sharing (XDS) specifications.
Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus
NASA Astrophysics Data System (ADS)
Baun, Christian; Kunze, Marcel
Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.
PyEEG: an open source Python module for EEG/MEG feature extraction.
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582
Evaluation of Teacher Perceptions and Potential of OpenOffice in a K-12 School District
ERIC Educational Resources Information Center
Vajda, James; Abbitt, Jason T.
2011-01-01
Through this mixed-method evaluation study the authors investigated a pilot implementation of an open-source productivity suite for teachers in a K-12 public school district. The authors evaluated OpenOffice version 3.0 using measures identified by the technology acceptance model as predictors of acceptance and use of technology systems. During a…
An Open Source Web Map Server Implementation For California and the Digital Earth: Lessons Learned
NASA Technical Reports Server (NTRS)
Sullivan, D. V.; Sheffner, E. J.; Skiles, J. W.; Brass, J. A.; Condon, Estelle (Technical Monitor)
2000-01-01
This paper describes an Open Source implementation of the Open GIS Consortium's Web Map interface. It is based on the very popular Apache WWW Server, the Sun Microsystems Java ServIet Development Kit, and a C language shared library interface to a spatial datastore. This server was initially written as a proof of concept, to support a National Aeronautics and Space Administration (NASA) Digital Earth test bed demonstration. It will also find use in the California Land Science Information Partnership (CaLSIP), a joint program between NASA and the state of California. At least one WebMap enabled server will be installed in every one of the state's 58 counties. This server will form a basis for a simple, easily maintained installation for those entities that do not yet require one of the larger, more expensive, commercial offerings.
CellAnimation: an open source MATLAB framework for microscopy assays.
Georgescu, Walter; Wikswo, John P; Quaranta, Vito
2012-01-01
Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.
Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R
2003-01-01
Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545
SPIM-fluid: open source light-sheet based platform for high-throughput imaging
Gualda, Emilio J.; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno
2015-01-01
Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007
Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets.
Clark, Alex M; Dole, Krishna; Coulon-Spektor, Anna; McNutt, Andrew; Grass, George; Freundlich, Joel S; Reynolds, Robert C; Ekins, Sean
2015-06-22
On the order of hundreds of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) models have been described in the literature in the past decade which are more often than not inaccessible to anyone but their authors. Public accessibility is also an issue with computational models for bioactivity, and the ability to share such models still remains a major challenge limiting drug discovery. We describe the creation of a reference implementation of a Bayesian model-building software module, which we have released as an open source component that is now included in the Chemistry Development Kit (CDK) project, as well as implemented in the CDD Vault and in several mobile apps. We use this implementation to build an array of Bayesian models for ADME/Tox, in vitro and in vivo bioactivity, and other physicochemical properties. We show that these models possess cross-validation receiver operator curve values comparable to those generated previously in prior publications using alternative tools. We have now described how the implementation of Bayesian models with FCFP6 descriptors generated in the CDD Vault enables the rapid production of robust machine learning models from public data or the user's own datasets. The current study sets the stage for generating models in proprietary software (such as CDD) and exporting these models in a format that could be run in open source software using CDK components. This work also demonstrates that we can enable biocomputation across distributed private or public datasets to enhance drug discovery.
Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets
2015-01-01
On the order of hundreds of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) models have been described in the literature in the past decade which are more often than not inaccessible to anyone but their authors. Public accessibility is also an issue with computational models for bioactivity, and the ability to share such models still remains a major challenge limiting drug discovery. We describe the creation of a reference implementation of a Bayesian model-building software module, which we have released as an open source component that is now included in the Chemistry Development Kit (CDK) project, as well as implemented in the CDD Vault and in several mobile apps. We use this implementation to build an array of Bayesian models for ADME/Tox, in vitro and in vivo bioactivity, and other physicochemical properties. We show that these models possess cross-validation receiver operator curve values comparable to those generated previously in prior publications using alternative tools. We have now described how the implementation of Bayesian models with FCFP6 descriptors generated in the CDD Vault enables the rapid production of robust machine learning models from public data or the user’s own datasets. The current study sets the stage for generating models in proprietary software (such as CDD) and exporting these models in a format that could be run in open source software using CDK components. This work also demonstrates that we can enable biocomputation across distributed private or public datasets to enhance drug discovery. PMID:25994950
Voet, T; Devolder, P; Pynoo, B; Vercruysse, J; Duyck, P
2007-11-01
This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3 years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31 ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license.
Case study of open-source enterprise resource planning implementation in a small business
NASA Astrophysics Data System (ADS)
Olson, David L.; Staley, Jesse
2012-02-01
Enterprise resource planning (ERP) systems have been recognised as offering great benefit to some organisations, although they are expensive and problematic to implement. The cost and risk make well-developed proprietorial systems unaffordable to small businesses. Open-source software (OSS) has become a viable means of producing ERP system products. The question this paper addresses is the feasibility of OSS ERP systems for small businesses. A case is reported involving two efforts to implement freely distributed ERP software products in a small US make-to-order engineering firm. The case emphasises the potential of freely distributed ERP systems, as well as some of the hurdles involved in their implementation. The paper briefly reviews highlights of OSS ERP systems, with the primary focus on reporting the case experiences for efforts to implement ERPLite software and xTuple software. While both systems worked from a technical perspective, both failed due to economic factors. While these economic conditions led to imperfect results, the case demonstrates the feasibility of OSS ERP for small businesses. Both experiences are evaluated in terms of risk dimension.
NASA Astrophysics Data System (ADS)
Han, X.; Li, X.; He, G.; Kumbhar, P.; Montzka, C.; Kollet, S.; Miyoshi, T.; Rosolem, R.; Zhang, Y.; Vereecken, H.; Franssen, H.-J. H.
2015-08-01
Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. Multivariate data assimilation refers to the simultaneous assimilation of observation data from multiple model state variables into a simulation model. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. We developed an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with the C++ and Fortran programming languages. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be introduced by perturbed atmospheric forcing data, and represented by perturbed soil and vegetation parameters and model initial conditions. The Community Land Model (CLM) was integrated as the model operator. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. The Community Microwave Emission Modelling platform (CMEM), COsmic-ray Soil Moisture Interaction Code (COSMIC) and the Two-Source Formulation (TSF) were integrated as observation operators for the assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy has been evaluated in several assimilation studies of neutron count intensity (soil moisture), L-band brightness temperature and land surface temperature. DasPy is parallelized using the hybrid Message Passing Interface and Open Multi-Processing techniques. All the input and output data flows are organized efficiently using the commonly used NetCDF file format. Online 1-D and 2-D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.
OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seyong; Vetter, Jeffrey S
2014-01-01
Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing andmore » implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.« less
pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2014-01-01
pyOpenMS is an open-source, Python-based interface to the C++ OpenMS library, providing facile access to a feature-rich, open-source algorithm library for MS-based proteomics analysis. It contains Python bindings that allow raw access to the data structures and algorithms implemented in OpenMS, specifically those for file access (mzXML, mzML, TraML, mzIdentML among others), basic signal processing (smoothing, filtering, de-isotoping, and peak-picking) and complex data analysis (including label-free, SILAC, iTRAQ, and SWATH analysis tools). pyOpenMS thus allows fast prototyping and efficient workflow development in a fully interactive manner (using the interactive Python interpreter) and is also ideally suited for researchers not proficient in C++. In addition, our code to wrap a complex C++ library is completely open-source, allowing other projects to create similar bindings with ease. The pyOpenMS framework is freely available at https://pypi.python.org/pypi/pyopenms while the autowrap tool to create Cython code automatically is available at https://pypi.python.org/pypi/autowrap (both released under the 3-clause BSD licence). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Increasing the value of geospatial informatics with open approaches for Big Data
NASA Astrophysics Data System (ADS)
Percivall, G.; Bermudez, L. E.
2017-12-01
Open approaches to big data provide geoscientists with new capabilities to address problems of unmatched size and complexity. Consensus approaches for Big Geo Data have been addressed in multiple international workshops and testbeds organized by the Open Geospatial Consortium (OGC) in the past year. Participants came from government (NASA, ESA, USGS, NOAA, DOE); research (ORNL, NCSA, IU, JPL, CRIM, RENCI); industry (ESRI, Digital Globe, IBM, rasdaman); standards (JTC 1/NIST); and open source software communities. Results from the workshops and testbeds are documented in Testbed reports and a White Paper published by the OGC. The White Paper identifies the following set of use cases: Collection and Ingest: Remote sensed data processing; Data stream processing Prepare and Structure: SQL and NoSQL databases; Data linking; Feature identification Analytics and Visualization: Spatial-temporal analytics; Machine Learning; Data Exploration Modeling and Prediction: Integrated environmental models; Urban 4D models. Open implementations were developed in the Arctic Spatial Data Pilot using Discrete Global Grid Systems (DGGS) and in Testbeds using WPS and ESGF to publish climate predictions. Further development activities to advance open implementations of Big Geo Data include the following: Open Cloud Computing: Avoid vendor lock-in through API interoperability and Application portability. Open Source Extensions: Implement geospatial data representations in projects from Apache, Location Tech, and OSGeo. Investigate parallelization strategies for N-Dimensional spatial data. Geospatial Data Representations: Schemas to improve processing and analysis using geospatial concepts: Features, Coverages, DGGS. Use geospatial encodings like NetCDF and GeoPackge. Big Linked Geodata: Use linked data methods scaled to big geodata. Analysis Ready Data: Support "Download as last resort" and "Analytics as a service". Promote elements common to "datacubes."
Real-Time Processing Library for Open-Source Hardware Biomedical Sensors
Castro-García, Juan A.; Lebrato-Vázquez, Clara
2018-01-01
Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive. PMID:29596394
Real-Time Processing Library for Open-Source Hardware Biomedical Sensors.
Molina-Cantero, Alberto J; Castro-García, Juan A; Lebrato-Vázquez, Clara; Gómez-González, Isabel M; Merino-Monge, Manuel
2018-03-29
Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive.
Architecture/Implementation of GIS Applications Open Source Programming and Web Development Spatial Analysis and Cartography Research Interests Transportation Systems and Urban Mobility Wind and Solar Resource
Muinga, Naomi; Magare, Steve; Monda, Jonathan; Kamau, Onesmus; Houston, Stuart; Fraser, Hamish; Powell, John; English, Mike; Paton, Chris
2018-04-18
The Kenyan government, working with international partners and local organizations, has developed an eHealth strategy, specified standards, and guidelines for electronic health record adoption in public hospitals and implemented two major health information technology projects: District Health Information Software Version 2, for collating national health care indicators and a rollout of the KenyaEMR and International Quality Care Health Management Information Systems, for managing 600 HIV clinics across the country. Following these projects, a modified version of the Open Medical Record System electronic health record was specified and developed to fulfill the clinical and administrative requirements of health care facilities operated by devolved counties in Kenya and to automate the process of collating health care indicators and entering them into the District Health Information Software Version 2 system. We aimed to present a descriptive case study of the implementation of an open source electronic health record system in public health care facilities in Kenya. We conducted a landscape review of existing literature concerning eHealth policies and electronic health record development in Kenya. Following initial discussions with the Ministry of Health, the World Health Organization, and implementing partners, we conducted a series of visits to implementing sites to conduct semistructured individual interviews and group discussions with stakeholders to produce a historical case study of the implementation. This case study describes how consultants based in Kenya, working with developers in India and project stakeholders, implemented the new system into several public hospitals in a county in rural Kenya. The implementation process included upgrading the hospital information technology infrastructure, training users, and attempting to garner administrative and clinical buy-in for adoption of the system. The initial deployment was ultimately scaled back due to a complex mix of sociotechnical and administrative issues. Learning from these early challenges, the system is now being redesigned and prepared for deployment in 6 new counties across Kenya. Implementing electronic health record systems is a challenging process in high-income settings. In low-income settings, such as Kenya, open source software may offer some respite from the high costs of software licensing, but the familiar challenges of clinical and administration buy-in, the need to adequately train users, and the need for the provision of ongoing technical support are common across the North-South divide. Strategies such as creating local support teams, using local development resources, ensuring end user buy-in, and rolling out in smaller facilities before larger hospitals are being incorporated into the project. These are positive developments to help maintain momentum as the project continues. Further integration with existing open source communities could help ongoing development and implementations of the project. We hope this case study will provide some lessons and guidance for other challenging implementations of electronic health record systems as they continue across Africa. ©Naomi Muinga, Steve Magare, Jonathan Monda, Onesmus Kamau, Stuart Houston, Hamish Fraser, John Powell, Mike English, Chris Paton. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 18.04.2018.
Project-based physics labs using low-cost open-source hardware
NASA Astrophysics Data System (ADS)
Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.
2017-03-01
We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.
LMS Transitioning to "Moodle": A Surprising Case of Successful, Emergent Change Management
ERIC Educational Resources Information Center
Lawler, Alan
2011-01-01
During 2009-10 the University of Ballarat implemented the open-source learning management system (LMS) "Moodle" alongside its existing legacy LMS, "Blackboard". While previous IT implementations have been troublesome at the university, notably the student information and finance management systems in 2008-09, the…
Web catalog of oceanographic data using GeoNetwork
NASA Astrophysics Data System (ADS)
Marinova, Veselka; Stefanov, Asen
2017-04-01
Most of the data collected, analyzed and used by Bulgarian oceanographic data center (BgODC) from scientific cruises, argo floats, ferry boxes and real time operating systems are spatially oriented and need to be displayed on the map. The challenge is to make spatial information more accessible to users, decision makers and scientists. In order to meet this challenge, BgODC concentrate its efforts on improving dynamic and standardized access to their geospatial data as well as those from various related organizations and institutions. BgODC currently is implementing a project to create a geospatial portal for distributing metadata and search, exchange and harvesting spatial data. There are many open source software solutions able to create such spatial data infrastructure (SDI). Finally, the GeoNetwork open source is chosen, as it is already widespread. This software is free, effective and "cheap" solution for implementing SDI at organization level. It is platform independent and runs under many operating systems. Filling of the catalog goes through these practical steps: • Managing and storing data reliably within MS SQL spatial data base; • Registration of maps and data of various formats and sources in GeoServer (most popular open source geospatial server embedded with GeoNetwork) ; • Filling added meta data and publishing geospatial data at the desktop of GeoNetwork. GeoServer and GeoNetwork are based on Java so they require installing of a servlet engine like Tomcat. The experience gained from the use of GeoNetwork Open Source confirms that the catalog meets the requirements for data management and is flexible enough to customize. Building the catalog facilitates sustainable data exchange between end users. The catalog is a big step towards implementation of the INSPIRE directive due to availability of many features necessary for producing "INSPIRE compliant" metadata records. The catalog now contains all available GIS data provided by BgODC for Internet access. Searching data within the catalog is based upon geographic extent, theme type and free text search.
OpenMS: a flexible open-source software platform for mass spectrometry data analysis.
Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver
2016-08-30
High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.
Open Data and Open Science for better Research in the Geo and Space Domain
NASA Astrophysics Data System (ADS)
Ritschel, B.; Seelus, C.; Neher, G.; Iyemori, T.; Koyama, Y.; Yatagai, A. I.; Murayama, Y.; King, T. A.; Hughes, S.; Fung, S. F.; Galkin, I. A.; Hapgood, M. A.; Belehaki, A.
2015-12-01
Main open data principles had been worked out in the run-up and finally adopted in the Open Data Charta at the G8 summit in Lough Erne, Northern Ireland in June 2013. Important principles are also valid for science data, such as Open Data by Default, Quality and Quantity, Useable by All, Releasing Data for Improved Governance, Releasing Data for Innovation. There is also an explicit relationship to such areas of high values as earth observation, education and geospatial data. The European union implementation plan of the Open Data Charta identifies among other things objectives such as making data available in an open format, enabling semantic interoperability, ensuring quality, documentation and where appropriate reconciliation across different data sources, implementing software solutionsallowing easy management, publication or visualization of datasets and simplifying clearance of intellectual property rights.Open Science is not just a list of already for a longer time known principles but stands for a lot of initiatives and projects around a better handling of scientific data and openly shared scientific knowledge. It is also about transparency in methodology and collection of data, availability and reuse of scientific data, public accessibility to scientific communication and using of social media to facility scientific collaboration. Some projects are concentrating on open sharing of free and open source software and even further hardware in kind of processing capabilities. In addition question about the mashup of data and publication and an open peer review process are addressed.Following the principles of open data and open science the newest results of the collaboration efforts in mashing up the data servers related to the Japanese IUGONET, the European Union ESPAS and the GFZ ISDC semantic Web projects will be presented here. The semantic Web based approach for the mashup is focusing on the design and implementation of a common but still distributed data catalog based on semantical interoperability including the transparent access to data in relational data bases. References: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/207772/Open_Data_Charter.pdfhttp://www.openscience.org/blog/wp-content/uploads/2013/06/OpenSciencePoster.pdf
77 FR 25111 - Revisions to the Hawaii State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
... matter (PM) emissions from motor vehicles, water separation, pumps, compressors, waste gas, and open... to regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act). DATES... not plan to open a second comment period, so anyone interested in commenting should do so at this time...
Laajala, Teemu D; Murtojärvi, Mika; Virkki, Arho; Aittokallio, Tero
2018-06-15
Prognostic models are widely used in clinical decision-making, such as risk stratification and tailoring treatment strategies, with the aim to improve patient outcomes while reducing overall healthcare costs. While prognostic models have been adopted into clinical use, benchmarking their performance has been difficult due to lack of open clinical datasets. The recent DREAM 9.5 Prostate Cancer Challenge carried out an extensive benchmarking of prognostic models for metastatic Castration-Resistant Prostate Cancer (mCRPC), based on multiple cohorts of open clinical trial data. We make available an open-source implementation of the top-performing model, ePCR, along with an extended toolbox for its further re-use and development, and demonstrate how to best apply the implemented model to real-world data cohorts of advanced prostate cancer patients. The open-source R-package ePCR and its reference documentation are available at the Central R Archive Network (CRAN): https://CRAN.R-project.org/package=ePCR. R-vignette provides step-by-step examples for the ePCR usage. Supplementary data are available at Bioinformatics online.
Ahdesmäki, Miika J; Gray, Simon R; Johnson, Justin H; Lai, Zhongwu
2016-01-01
Grafting of cell lines and primary tumours is a crucial step in the drug development process between cell line studies and clinical trials. Disambiguate is a program for computationally separating the sequencing reads of two species derived from grafted samples. Disambiguate operates on DNA or RNA-seq alignments to the two species and separates the components at very high sensitivity and specificity as illustrated in artificially mixed human-mouse samples. This allows for maximum recovery of data from target tumours for more accurate variant calling and gene expression quantification. Given that no general use open source algorithm accessible to the bioinformatics community exists for the purposes of separating the two species data, the proposed Disambiguate tool presents a novel approach and improvement to performing sequence analysis of grafted samples. Both Python and C++ implementations are available and they are integrated into several open and closed source pipelines. Disambiguate is open source and is freely available at https://github.com/AstraZeneca-NGS/disambiguate.
Maintaining Quality and Confidence in Open-Source, Evolving Software: Lessons Learned with PFLOTRAN
NASA Astrophysics Data System (ADS)
Frederick, J. M.; Hammond, G. E.
2017-12-01
Software evolution in an open-source framework poses a major challenge to a geoscientific simulator, but when properly managed, the pay-off can be enormous for both the developers and the community at large. Developers must juggle implementing new scientific process models, adopting increasingly efficient numerical methods and programming paradigms, changing funding sources (or total lack of funding), while also ensuring that legacy code remains functional and reported bugs are fixed in a timely manner. With robust software engineering and a plan for long-term maintenance, a simulator can evolve over time incorporating and leveraging many advances in the computational and domain sciences. In this positive light, what practices in software engineering and code maintenance can be employed within open-source development to maximize the positive aspects of software evolution and community contributions while minimizing its negative side effects? This presentation will discusses steps taken in the development of PFLOTRAN (www.pflotran.org), an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. As PFLOTRAN's user base and development team continues to grow, it has become increasingly important to implement strategies which ensure sustainable software development while maintaining software quality and community confidence. In this presentation, we will share our experiences and "lessons learned" within the context of our open-source development framework and community engagement efforts. Topics discussed will include how we've leveraged both standard software engineering principles, such as coding standards, version control, and automated testing, as well unique advantages of object-oriented design in process model coupling, to ensure software quality and confidence. We will also be prepared to discuss the major challenges faced by most open-source software teams, such as on-boarding new developers or one-time contributions, dealing with competitors or lookie-loos, and other downsides of complete transparency, as well as our approach to community engagement, including a user group email list, hosting short courses and workshops for new users, and maintaining a website. SAND2017-8174A
OpenStructure: a flexible software framework for computational structural biology.
Biasini, Marco; Mariani, Valerio; Haas, Jürgen; Scheuber, Stefan; Schenk, Andreas D; Schwede, Torsten; Philippsen, Ansgar
2010-10-15
Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural bioinformatics. OpenStructure consists primarily of a set of libraries written in C++ with a cleanly designed application programmer interface. All functionality can be accessed directly in C++ or in a Python layer, meeting both the requirements for high efficiency and ease of use. Powerful selection queries and the notion of entity views to represent these selections greatly facilitate the development and implementation of algorithms on structural data. The modular integration of computational core methods with powerful visualization tools makes OpenStructure an ideal working and development environment. Several applications, such as the latest versions of IPLT and QMean, have been implemented based on OpenStructure-demonstrating its value for the development of next-generation structural biology algorithms. Source code licensed under the GNU lesser general public license and binaries for MacOS X, Linux and Windows are available for download at http://www.openstructure.org. torsten.schwede@unibas.ch Supplementary data are available at Bioinformatics online.
Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam
2018-03-11
To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.
AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8
2015-08-15
We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less
An open-source wireless sensor stack: from Arduino to SDI-12 to Water One Flow
NASA Astrophysics Data System (ADS)
Hicks, S.; Damiano, S. G.; Smith, K. M.; Olexy, J.; Horsburgh, J. S.; Mayorga, E.; Aufdenkampe, A. K.
2013-12-01
Implementing a large-scale streaming environmental sensor network has previously been limited by the high cost of the datalogging and data communication infrastructure. The Christina River Basin Critical Zone Observatory (CRB-CZO) is overcoming the obstacles to large near-real-time data collection networks by using Arduino, an open source electronics platform, in combination with XBee ZigBee wireless radio modules. These extremely low-cost and easy-to-use open source electronics are at the heart of the new DIY movement and have provided solutions to countless projects by over half a million users worldwide. However, their use in environmental sensing is in its infancy. At present a primary limitation to widespread deployment of open-source electronics for environmental sensing is the lack of a simple, open-source software stack to manage streaming data from heterogeneous sensor networks. Here we present a functioning prototype software stack that receives sensor data over a self-meshing ZigBee wireless network from over a hundred sensors, stores the data locally and serves it on demand as a CUAHSI Water One Flow (WOF) web service. We highlight a few new, innovative components, including: (1) a versatile open data logger design based the Arduino electronics platform and ZigBee radios; (2) a software library implementing SDI-12 communication protocol between any Arduino platform and SDI12-enabled sensors without the need for additional hardware (https://github.com/StroudCenter/Arduino-SDI-12); and (3) 'midStream', a light-weight set of Python code that receives streaming sensor data, appends it with metadata on the fly by querying a relational database structured on an early version of the Observations Data Model version 2.0 (ODM2), and uses the WOFpy library to serve the data as WaterML via SOAP and REST web services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moussa, Jonathan E.
2013-05-13
This piece of software is a new feature implemented inside an existing open-source library. Specifically, it is a new implementation of a density functional (HSE, short for Heyd-Scuseria-Ernzerhof) for a repository of density functionals, the libxc library. It fixes some numerical problems with existing implementations, as outlined in a scientific paper recently submitted for publication. Density functionals are components of electronic structure simulations, which model properties of electrons inside molecules and crystals.
An Open-Source Standard T-Wave Alternans Detector for Benchmarking.
Khaustov, A; Nemati, S; Clifford, Gd
2008-09-14
We describe an open source algorithm suite for T-Wave Alternans (TWA) detection and quantification. The software consists of Matlab implementations of the widely used Spectral Method and Modified Moving Average with libraries to read both WFDB and ASCII data under windows and Linux. The software suite can run in both batch mode and with a provided graphical user interface to aid waveform exploration. Our software suite was calibrated using an open source TWA model, described in a partner paper [1] by Clifford and Sameni. For the PhysioNet/CinC Challenge 2008 we obtained a score of 0.881 for the Spectral Method and 0.400 for the MMA method. However, our objective was not to provide the best TWA detector, but rather a basis for detailed discussion of algorithms.
Tycho 2: A Proxy Application for Kinetic Transport Sweeps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Charles Kristopher; Warsa, James S.
2016-09-14
Tycho 2 is a proxy application that implements discrete ordinates (SN) kinetic transport sweeps on unstructured, 3D, tetrahedral meshes. It has been designed to be small and require minimal dependencies to make collaboration and experimentation as easy as possible. Tycho 2 has been released as open source software. The software is currently in a beta release with plans for a stable release (version 1.0) before the end of the year. The code is parallelized via MPI across spatial cells and OpenMP across angles. Currently, several parallelization algorithms are implemented.
FreeSASA: An open source C library for solvent accessible surface area calculations.
Mitternacht, Simon
2016-01-01
Calculating solvent accessible surface areas (SASA) is a run-of-the-mill calculation in structural biology. Although there are many programs available for this calculation, there are no free-standing, open-source tools designed for easy tool-chain integration. FreeSASA is an open source C library for SASA calculations that provides both command-line and Python interfaces in addition to its C API. The library implements both Lee and Richards' and Shrake and Rupley's approximations, and is highly configurable to allow the user to control molecular parameters, accuracy and output granularity. It only depends on standard C libraries and should therefore be easy to compile and install on any platform. The library is well-documented, stable and efficient. The command-line interface can easily replace closed source legacy programs, with comparable or better accuracy and speed, and with some added functionality.
Design and Implementation of a Modern Automatic Deformation Monitoring System
NASA Astrophysics Data System (ADS)
Engel, Philipp; Schweimler, Björn
2016-03-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
MzJava: An open source library for mass spectrometry data processing.
Horlacher, Oliver; Nikitin, Frederic; Alocci, Davide; Mariethoz, Julien; Müller, Markus; Lisacek, Frederique
2015-11-03
Mass spectrometry (MS) is a widely used and evolving technique for the high-throughput identification of molecules in biological samples. The need for sharing and reuse of code among bioinformaticians working with MS data prompted the design and implementation of MzJava, an open-source Java Application Programming Interface (API) for MS related data processing. MzJava provides data structures and algorithms for representing and processing mass spectra and their associated biological molecules, such as metabolites, glycans and peptides. MzJava includes functionality to perform mass calculation, peak processing (e.g. centroiding, filtering, transforming), spectrum alignment and clustering, protein digestion, fragmentation of peptides and glycans as well as scoring functions for spectrum-spectrum and peptide/glycan-spectrum matches. For data import and export MzJava implements readers and writers for commonly used data formats. For many classes support for the Hadoop MapReduce (hadoop.apache.org) and Apache Spark (spark.apache.org) frameworks for cluster computing was implemented. The library has been developed applying best practices of software engineering. To ensure that MzJava contains code that is correct and easy to use the library's API was carefully designed and thoroughly tested. MzJava is an open-source project distributed under the AGPL v3.0 licence. MzJava requires Java 1.7 or higher. Binaries, source code and documentation can be downloaded from http://mzjava.expasy.org and https://bitbucket.org/sib-pig/mzjava. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.
Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas
2016-01-01
Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses. PMID:26996201
NASA Astrophysics Data System (ADS)
Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird H.; Wells, Leanne; Jones, David
2011-12-01
Florida International University has undergone a reform in the introductory physics classes by focusing on the laboratory component of these classes. We present results from the secondary implementation of two research-based instructional strategies: the implementation of the Learning Assistant model as developed by the University of Colorado at Boulder and the Open Source Tutorial curriculum developed at the University of Maryland, College Park. We examine the results of the Force Concept Inventory (FCI) for introductory students over five years (n=872) and find that the mean raw gain of students in transformed lab sections was 0.243, while the mean raw gain of the traditional labs was 0.159, with a Cohen’s d effect size of 0.59. Average raw gains on the FCI were 0.243 for Hispanic students and 0.213 for women in the transformed labs, indicating that these reforms are not widening the gaps between underrepresented student groups and majority groups. Our results illustrate how research-based instructional strategies can be successfully implemented in a physics department with minimal department engagement and in a sustainable manner.
Xiao, Wangxin; Ning, Peishan; Schwebel, David C; Hu, Guoqing
2017-07-25
In 2011, China implemented a more severe drunk-driving law. This study evaluated the effectiveness of the law on road traffic morbidity and mortality attributed to alcohol use. Data were from two open-access data sources, the Global Burden of Disease (GBD) 2015 update and police data. Poisson regression examined the significance of changes in morbidity and mortality. Large gaps in crude death estimates from road traffic crashes attributed to alcohol use emerged between the two data sources. For the GBD 2015 update, crude and age-standardized mortality displayed consistent trends between 1990 and 2015; age-standardized mortality per 100,000 persons increased from 5.71 in 1990 to 7.48 in 2005 and then continuously decreased down to 5.94 in 2015. Police data showed a decrease for crude mortality per 100,000 persons from 0.29 in 2006 to 0.15 in 2010 and then an increase to 0.19 in 2015. We conclude available data are inadequate to determine the effectiveness of the implementation of the more severe drunk-driving law in China since the two data sources present highly inconsistent results. Further effort is needed to tackle data inconsistencies and obtain reliable and accurate data on road traffic injury attributable to alcohol use in China.
Xiao, Wangxin; Ning, Peishan; Hu, Guoqing
2017-01-01
In 2011, China implemented a more severe drunk-driving law. This study evaluated the effectiveness of the law on road traffic morbidity and mortality attributed to alcohol use. Data were from two open-access data sources, the Global Burden of Disease (GBD) 2015 update and police data. Poisson regression examined the significance of changes in morbidity and mortality. Large gaps in crude death estimates from road traffic crashes attributed to alcohol use emerged between the two data sources. For the GBD 2015 update, crude and age-standardized mortality displayed consistent trends between 1990 and 2015; age-standardized mortality per 100,000 persons increased from 5.71 in 1990 to 7.48 in 2005 and then continuously decreased down to 5.94 in 2015. Police data showed a decrease for crude mortality per 100,000 persons from 0.29 in 2006 to 0.15 in 2010 and then an increase to 0.19 in 2015. We conclude available data are inadequate to determine the effectiveness of the implementation of the more severe drunk-driving law in China since the two data sources present highly inconsistent results. Further effort is needed to tackle data inconsistencies and obtain reliable and accurate data on road traffic injury attributable to alcohol use in China. PMID:28757551
Implementation of Open-Source Web Mapping Technologies to Support Monitoring of Governmental Schemes
NASA Astrophysics Data System (ADS)
Pulsani, B. R.
2015-10-01
Several schemes are undertaken by the government to uplift social and economic condition of people. The monitoring of these schemes is done through information technology where involvement of Geographic Information System (GIS) is lacking. To demonstrate the benefits of thematic mapping as a tool for assisting the officials in making decisions, a web mapping application for three government programs such as Mother and Child Tracking system (MCTS), Telangana State Housing Corporation Limited (TSHCL) and Ground Water Quality Mapping (GWQM) has been built. Indeed the three applications depicted the distribution of various parameters thematically and helped in identifying the areas with higher and weaker distributions. Based on the three applications, the study tends to find similarities of many government schemes reflecting the nature of thematic mapping and hence deduces to implement this kind of approach for other schemes as well. These applications have been developed using SharpMap Csharp library which is a free and open source mapping library for developing geospatial applications. The study highlights upon the cost benefits of SharpMap and brings out the advantage of this library over proprietary vendors and further discusses its advantages over other open source libraries as well.
BANNER: an executable survey of advances in biomedical named entity recognition.
Leaman, Robert; Gonzalez, Graciela
2008-01-01
There has been an increasing amount of research on biomedical named entity recognition, the most basic text extraction problem, resulting in significant progress by different research teams around the world. This has created a need for a freely-available, open source system implementing the advances described in the literature. In this paper we present BANNER, an open-source, executable survey of advances in biomedical named entity recognition, intended to serve as a benchmark for the field. BANNER is implemented in Java as a machine-learning system based on conditional random fields and includes a wide survey of the best techniques recently described in the literature. It is designed to maximize domain independence by not employing brittle semantic features or rule-based processing steps, and achieves significantly better performance than existing baseline systems. It is therefore useful to developers as an extensible NER implementation, to researchers as a standard for comparing innovative techniques, and to biologists requiring the ability to find novel entities in large amounts of text.
Plenario: An Open Data Discovery and Exploration Platform for Urban Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catlett, Charlie; Malik, Tanu; Goldstein, Brett J.
2014-12-01
The past decade has seen the widespread release of open data concerning city services, conditions, and activities by government bodies and public institutions of all sizes. Hundreds of open data portals now host thousands of datasets of many different types. These new data sources represent enormous po- tential for improved understanding of urban dynamics and processes—and, ultimately, for more livable, efficient, and prosperous communities. However, those who seek to realize this potential quickly discover that discovering and applying those data relevant to any particular question can be extraordinarily dif- ficult, due to decentralized storage, heterogeneous formats, and poor documentation. Inmore » this context, we introduce Plenario, a platform designed to automating time-consuming tasks associated with the discovery, exploration, and application of open city data—and, in so doing, reduce barriers to data use for researchers, policymakers, service providers, journalists, and members of the general public. Key innovations include a geospatial data warehouse that allows data from many sources to be registered into a common spatial and temporal frame; simple and intuitive interfaces that permit rapid discovery and exploration of data subsets pertaining to a particular area and time, regardless of type and source; easy export of such data subsets for further analysis; a user-configurable data ingest framework for automated importing and periodic updating of new datasets into the data warehouse; cloud hosting for elastic scaling and rapid creation of new Plenario instances; and an open source implementation to enable community contributions. We describe here the architecture and implementation of the Plenario platform, discuss lessons learned from its use by several communities, and outline plans for future work.« less
Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology.
Siegle, Joshua H; López, Aarón Cuevas; Patel, Yogi A; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob
2017-08-01
Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard 'open-loop' visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.
Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology
NASA Astrophysics Data System (ADS)
Siegle, Joshua H.; Cuevas López, Aarón; Patel, Yogi A.; Abramov, Kirill; Ohayon, Shay; Voigts, Jakob
2017-08-01
Objective. Closed-loop experiments, in which causal interventions are conditioned on the state of the system under investigation, have become increasingly common in neuroscience. Such experiments can have a high degree of explanatory power, but they require a precise implementation that can be difficult to replicate across laboratories. We sought to overcome this limitation by building open-source software that makes it easier to develop and share algorithms for closed-loop control. Approach. We created the Open Ephys GUI, an open-source platform for multichannel electrophysiology experiments. In addition to the standard ‘open-loop’ visualization and recording functionality, the GUI also includes modules for delivering feedback in response to events detected in the incoming data stream. Importantly, these modules can be built and shared as plugins, which makes it possible for users to extend the functionality of the GUI through a simple API, without having to understand the inner workings of the entire application. Main results. In combination with low-cost, open-source hardware for amplifying and digitizing neural signals, the GUI has been used for closed-loop experiments that perturb the hippocampal theta rhythm in a phase-specific manner. Significance. The Open Ephys GUI is the first widely used application for multichannel electrophysiology that leverages a plugin-based workflow. We hope that it will lower the barrier to entry for electrophysiologists who wish to incorporate real-time feedback into their research.
Open-source Software for Exoplanet Atmospheric Modeling
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph
2018-01-01
I will present a suite of self-standing open-source tools to model and retrieve exoplanet spectra implemented for Python. These include: (1) a Bayesian-statistical package to run Levenberg-Marquardt optimization and Markov-chain Monte Carlo posterior sampling, (2) a package to compress line-transition data from HITRAN or Exomol without loss of information, (3) a package to compute partition functions for HITRAN molecules, (4) a package to compute collision-induced absorption, and (5) a package to produce radiative-transfer spectra of transit and eclipse exoplanet observations and atmospheric retrievals.
scikit-image: image processing in Python.
van der Walt, Stéfan; Schönberger, Johannes L; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony
2014-01-01
scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.
SuML: A Survey Markup Language for Generalized Survey Encoding
Barclay, MW; Lober, WB; Karras, BT
2002-01-01
There is a need in clinical and research settings for a sophisticated, generalized, web based survey tool that supports complex logic, separation of content and presentation, and computable guidelines. There are many commercial and open source survey packages available that provide simple logic; few provide sophistication beyond “goto” statements; none support the use of guidelines. These tools are driven by databases, static web pages, and structured documents using markup languages such as eXtensible Markup Language (XML). We propose a generalized, guideline aware language and an implementation architecture using open source standards.
NASA Astrophysics Data System (ADS)
Sturmberg, Björn C. P.; Dossou, Kokou B.; Lawrence, Felix J.; Poulton, Christopher G.; McPhedran, Ross C.; Martijn de Sterke, C.; Botten, Lindsay C.
2016-05-01
We describe EMUstack, an open-source implementation of the Scattering Matrix Method (SMM) for solving field problems in layered media. The fields inside nanostructured layers are described in terms of Bloch modes that are found using the Finite Element Method (FEM). Direct access to these modes allows the physical intuition of thin film optics to be extended to complex structures. The combination of the SMM and the FEM makes EMUstack ideally suited for studying lossy, high-index contrast structures, which challenge conventional SMMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, K; Huang, T; Buttler, D
We present the C-Cat Wordnet package, an open source library for using and modifying Wordnet. The package includes four key features: an API for modifying Synsets; implementations of standard similarity metrics, implementations of well known Word Sense Disambiguation algorithms, and an implementation of the Castanet algorithm. The library is easily extendible and usable in many runtime environments. We demonstrate it's use on two standard Word Sense Disambiguation tasks and apply the Castanet algorithm to a corpus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seyong; Kim, Jungwon; Vetter, Jeffrey S
This paper presents a directive-based, high-level programming framework for high-performance reconfigurable computing. It takes a standard, portable OpenACC C program as input and generates a hardware configuration file for execution on FPGAs. We implemented this prototype system using our open-source OpenARC compiler; it performs source-to-source translation and optimization of the input OpenACC program into an OpenCL code, which is further compiled into a FPGA program by the backend Altera Offline OpenCL compiler. Internally, the design of OpenARC uses a high- level intermediate representation that separates concerns of program representation from underlying architectures, which facilitates portability of OpenARC. In fact, thismore » design allowed us to create the OpenACC-to-FPGA translation framework with minimal extensions to our existing system. In addition, we show that our proposed FPGA-specific compiler optimizations and novel OpenACC pragma extensions assist the compiler in generating more efficient FPGA hardware configuration files. Our empirical evaluation on an Altera Stratix V FPGA with eight OpenACC benchmarks demonstrate the benefits of our strategy. To demonstrate the portability of OpenARC, we show results for the same benchmarks executing on other heterogeneous platforms, including NVIDIA GPUs, AMD GPUs, and Intel Xeon Phis. This initial evidence helps support the goal of using a directive-based, high-level programming strategy for performance portability across heterogeneous HPC architectures.« less
NASA Technical Reports Server (NTRS)
Stensrud, Kjell C.; Hamm, Dustin
2007-01-01
NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.
Hart, Reece K.; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A.
2015-01-01
Summary: Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. Availability and implementation: The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Contact: reecehart@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25273102
Ham, Timothy S; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J; Keasling, Jay D
2012-10-01
The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about 'legacy' parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.
MGtoolkit: A python package for implementing metagraphs
NASA Astrophysics Data System (ADS)
Ranathunga, D.; Nguyen, H.; Roughan, M.
In this paper we present MGtoolkit: an open-source Python package for implementing metagraphs - a first of its kind. Metagraphs are commonly used to specify and analyse business and computer-network policies alike. MGtoolkit can help verify such policies and promotes learning and experimentation with metagraphs. The package currently provides purely textual output for visualising metagraphs and their analysis results.
BioContainers: an open-source and community-driven framework for software standardization
da Veiga Leprevost, Felipe; Grüning, Björn A.; Alves Aflitos, Saulo; Röst, Hannes L.; Uszkoreit, Julian; Barsnes, Harald; Vaudel, Marc; Moreno, Pablo; Gatto, Laurent; Weber, Jonas; Bai, Mingze; Jimenez, Rafael C.; Sachsenberg, Timo; Pfeuffer, Julianus; Vera Alvarez, Roberto; Griss, Johannes; Nesvizhskii, Alexey I.; Perez-Riverol, Yasset
2017-01-01
Abstract Motivation BioContainers (biocontainers.pro) is an open-source and community-driven framework which provides platform independent executable environments for bioinformatics software. BioContainers allows labs of all sizes to easily install bioinformatics software, maintain multiple versions of the same software and combine tools into powerful analysis pipelines. BioContainers is based on popular open-source projects Docker and rkt frameworks, that allow software to be installed and executed under an isolated and controlled environment. Also, it provides infrastructure and basic guidelines to create, manage and distribute bioinformatics containers with a special focus on omics technologies. These containers can be integrated into more comprehensive bioinformatics pipelines and different architectures (local desktop, cloud environments or HPC clusters). Availability and Implementation The software is freely available at github.com/BioContainers/. Contact yperez@ebi.ac.uk PMID:28379341
2016-01-06
of- breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The... commercially priced closed source software components, to be used in the design, implementation, deployment, and evolution of open architecture (OA... breed software components and software products lines (SPLs) that are subject to different IP license and cybersecurity requirements. The Department
DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.
Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less
DistributedFBA.jl: High-level, high-performance flux balance analysis in Julia
Heirendt, Laurent; Thiele, Ines; Fleming, Ronan M. T.
2017-01-16
Flux balance analysis and its variants are widely used methods for predicting steady-state reaction rates in biochemical reaction networks. The exploration of high dimensional networks with such methods is currently hampered by software performance limitations. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on a subset or all the reactions of large and huge-scale networks, on any number of threads or nodes. DistributedFBA.jl is a high-level, high-performance, open-source implementation of flux balance analysis in Julia. It is tailored to solve multiple flux balance analyses on amore » subset or all the reactions of large and huge-scale networks, on any number of threads or nodes.« less
Koush, Yury; Ashburner, John; Prilepin, Evgeny; Sladky, Ronald; Zeidman, Peter; Bibikov, Sergei; Scharnowski, Frank; Nikonorov, Artem; De Ville, Dimitri Van
2017-08-01
Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph
2015-01-01
Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).
MyMolDB: a micromolecular database solution with open source and free components.
Xia, Bing; Tai, Zheng-Fu; Gu, Yu-Cheng; Li, Bang-Jing; Ding, Li-Sheng; Zhou, Yan
2011-10-01
To manage chemical structures in small laboratories is one of the important daily tasks. Few solutions are available on the internet, and most of them are closed source applications. The open-source applications typically have limited capability and basic cheminformatics functionalities. In this article, we describe an open-source solution to manage chemicals in research groups based on open source and free components. It has a user-friendly interface with the functions of chemical handling and intensive searching. MyMolDB is a micromolecular database solution that supports exact, substructure, similarity, and combined searching. This solution is mainly implemented using scripting language Python with a web-based interface for compound management and searching. Almost all the searches are in essence done with pure SQL on the database by using the high performance of the database engine. Thus, impressive searching speed has been archived in large data sets for no external Central Processing Unit (CPU) consuming languages were involved in the key procedure of the searching. MyMolDB is an open-source software and can be modified and/or redistributed under GNU General Public License version 3 published by the Free Software Foundation (Free Software Foundation Inc. The GNU General Public License, Version 3, 2007. Available at: http://www.gnu.org/licenses/gpl.html). The software itself can be found at http://code.google.com/p/mymoldb/. Copyright © 2011 Wiley Periodicals, Inc.
VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration
2012-02-01
A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.
Web accessibility and open source software.
Obrenović, Zeljko
2009-07-01
A Web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long-term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for Web accessibility can be found as open source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the Web. To address these problems, we have started several activities that aim at exploiting the potential of open-source software for Web accessibility. The first of these activities is the development of Adaptable Multi-Interface COmmunicator (AMICO):WEB, an infrastructure that facilitates efficient reuse and integration of open source software components into the Web environment. The main contribution of AMICO:WEB is in enabling the syntactic and semantic interoperability between Web extension mechanisms and a variety of integration mechanisms used by open source and free software components. Its design is based on our experiences in solving practical problems where we have used open source components to improve accessibility of rich media Web applications. The second of our activities involves improving education, where we have used our platform to teach students how to build advanced accessibility solutions from diverse open-source software. We are also partially involved in the recently started Eclipse projects called Accessibility Tools Framework (ACTF), the aim of which is development of extensible infrastructure, upon which developers can build a variety of utilities that help to evaluate and enhance the accessibility of applications and content for people with disabilities. In this article we briefly report on these activities.
Kasthurirathne, Suranga N; Mamlin, Burke; Grieve, Grahame; Biondich, Paul
2015-01-01
Interoperability is essential to address limitations caused by the ad hoc implementation of clinical information systems and the distributed nature of modern medical care. The HL7 V2 and V3 standards have played a significant role in ensuring interoperability for healthcare. FHIR is a next generation standard created to address fundamental limitations in HL7 V2 and V3. FHIR is particularly relevant to OpenMRS, an Open Source Medical Record System widely used across emerging economies. FHIR has the potential to allow OpenMRS to move away from a bespoke, application specific API to a standards based API. We describe efforts to design and implement a FHIR based API for the OpenMRS platform. Lessons learned from this effort were used to define long term plans to transition from the legacy OpenMRS API to a FHIR based API that greatly reduces the learning curve for developers and helps enhance adhernce to standards.
Observations and Thermochemical Calculations for Hot-Jupiter Atmospheres
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver; Cubillos, Patricio; Stemm, Madison
2015-01-01
I present Spitzer eclipse observations for WASP-14b and WASP-43b, an open source tool for thermochemical equilibrium calculations, and components of an open source tool for atmospheric parameter retrieval from spectroscopic data. WASP-14b is a planet that receives high irradiation from its host star, yet, although theory does not predict it, the planet hosts a thermal inversion. The WASP-43b eclipses have signal-to-noise ratios of ~25, one of the largest among exoplanets. To assess these planets' atmospheric composition and thermal structure, we developed an open-source Bayesian Atmospheric Radiative Transfer (BART) code. My dissertation tasks included developing a Thermochemical Equilibrium Abundances (TEA) code, implementing the eclipse geometry calculation in BART's radiative transfer module, and generating parameterized pressure and temperature profiles so the radiative-transfer module can be driven by the statistical module.To initialize the radiative-transfer calculation in BART, TEA calculates the equilibrium abundances of gaseous molecular species at a given temperature and pressure. It uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA, written in Python, is modular, documented, and available to the community via the open-source development site GitHub.com.Support for this work was provided by NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX12AL83H, by NASA through an award issued by JPL/Caltech, and through the Science Mission Directorate's Planetary Atmospheres Program, grant NNX12AI69G.
Gichoya, Judy W; Kohli, Marc; Ivange, Larry; Schmidt, Teri S; Purkayastha, Saptarshi
2018-05-10
Open-source development can provide a platform for innovation by seeking feedback from community members as well as providing tools and infrastructure to test new standards. Vendors of proprietary systems may delay adoption of new standards until there are sufficient incentives such as legal mandates or financial incentives to encourage/mandate adoption. Moreover, open-source systems in healthcare have been widely adopted in low- and middle-income countries and can be used to bridge gaps that exist in global health radiology. Since 2011, the authors, along with a community of open-source contributors, have worked on developing an open-source radiology information system (RIS) across two communities-OpenMRS and LibreHealth. The main purpose of the RIS is to implement core radiology workflows, on which others can build and test new radiology standards. This work has resulted in three major releases of the system, with current architectural changes driven by changing technology, development of new standards in health and imaging informatics, and changing user needs. At their core, both these communities are focused on building general-purpose EHR systems, but based on user contributions from the fringes, we have been able to create an innovative system that has been used by hospitals and clinics in four different countries. We provide an overview of the history of the LibreHealth RIS, the architecture of the system, overview of standards integration, describe challenges of developing an open-source product, and future directions. Our goal is to attract more participation and involvement to further develop the LibreHealth RIS into an Enterprise Imaging System that can be used in other clinical imaging including pathology and dermatology.
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang
2017-10-01
The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.
Datacube Services in Action, Using Open Source and Open Standards
NASA Astrophysics Data System (ADS)
Baumann, P.; Misev, D.
2016-12-01
Array Databases comprise novel, promising technology for massive spatio-temporal datacubes, extending the SQL paradigm of "any query, anytime" to n-D arrays. On server side, such queries can be optimized, parallelized, and distributed based on partitioned array storage. The rasdaman ("raster data manager") system, which has pioneered Array Databases, is available in open source on www.rasdaman.org. Its declarative query language extends SQL with array operators which are optimized and parallelized on server side. The rasdaman engine, which is part of OSGeo Live, is mature and in operational use databases individually holding dozens of Terabytes. Further, the rasdaman concepts have strongly impacted international Big Data standards in the field, including the forthcoming MDA ("Multi-Dimensional Array") extension to ISO SQL, the OGC Web Coverage Service (WCS) and Web Coverage Processing Service (WCPS) standards, and the forthcoming INSPIRE WCS/WCPS; in both OGC and INSPIRE, OGC is WCS Core Reference Implementation. In our talk we present concepts, architecture, operational services, and standardization impact of open-source rasdaman, as well as experiences made.
a Framework for AN Open Source Geospatial Certification Model
NASA Astrophysics Data System (ADS)
Khan, T. U. R.; Davis, P.; Behr, F.-J.
2016-06-01
The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105 respondents worldwide. 15 interviews (face-to-face or by telephone) with experts in different countries provided additional insights into Open Source usage and certification. The findings led to the development of a certification framework of three main categories with in total eleven sub-categories, i.e., "Certified Open Source Geospatial Data Associate / Professional", "Certified Open Source Geospatial Analyst Remote Sensing & GIS", "Certified Open Source Geospatial Cartographer", "Certified Open Source Geospatial Expert", "Certified Open Source Geospatial Associate Developer / Professional Developer", "Certified Open Source Geospatial Architect". Each certification is described by pre-conditions, scope and objectives, course content, recommended software packages, target group, expected benefits, and the methods of examination. Examinations can be flanked by proofs of professional career paths and achievements which need a peer qualification evaluation. After a couple of years a recertification is required. The concept seeks the accreditation by the OSGeo Foundation (and other bodies) and international support by a group of geospatial scientific institutions to achieve wide and international acceptance for this Open Source geospatial certification model. A business case for Open Source certification and a corresponding SWOT model is examined to support the goals of the Geo-For-All initiative of the ICA-OSGeo pact.
Web-client based distributed generalization and geoprocessing
Wolf, E.B.; Howe, K.
2009-01-01
Generalization and geoprocessing operations on geospatial information were once the domain of complex software running on high-performance workstations. Currently, these computationally intensive processes are the domain of desktop applications. Recent efforts have been made to move geoprocessing operations server-side in a distributed, web accessible environment. This paper initiates research into portable client-side generalization and geoprocessing operations as part of a larger effort in user-centered design for the US Geological Survey's The National Map. An implementation of the Ramer-Douglas-Peucker (RDP) line simplification algorithm was created in the open source OpenLayers geoweb client. This algorithm implementation was benchmarked using differing data structures and browser platforms. The implementation and results of the benchmarks are discussed in the general context of client-side geoprocessing. (Abstract).
Open Babel: An open chemical toolbox
2011-01-01
Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org. PMID:21982300
NASA Astrophysics Data System (ADS)
Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie
2017-06-01
Objective. Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Approach. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys + EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. Main results. The Open Ephys + EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys + EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Significance. Open Ephys + EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.
Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie
2017-06-01
Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys + EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. The Open Ephys + EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys + EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Open Ephys + EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.
ERIC Educational Resources Information Center
El-Seoud, M. Samir Abou; El-Sofany, Hosam F.; Taj-Eddin, Islam A. T. F.; Nosseir, Ann; El-Khouly, Mahmoud M.
2013-01-01
The information technology educational programs at most universities in Egypt face many obstacles that can be overcome using technology enhanced learning. An open source Moodle eLearning platform has been implemented at many public and private universities in Egypt, as an aid to deliver e-content and to provide the institution with various…
Sybil--efficient constraint-based modelling in R.
Gelius-Dietrich, Gabriel; Desouki, Abdelmoneim Amer; Fritzemeier, Claus Jonathan; Lercher, Martin J
2013-11-13
Constraint-based analyses of metabolic networks are widely used to simulate the properties of genome-scale metabolic networks. Publicly available implementations tend to be slow, impeding large scale analyses such as the genome-wide computation of pairwise gene knock-outs, or the automated search for model improvements. Furthermore, available implementations cannot easily be extended or adapted by users. Here, we present sybil, an open source software library for constraint-based analyses in R; R is a free, platform-independent environment for statistical computing and graphics that is widely used in bioinformatics. Among other functions, sybil currently provides efficient methods for flux-balance analysis (FBA), MOMA, and ROOM that are about ten times faster than previous implementations when calculating the effect of whole-genome single gene deletions in silico on a complete E. coli metabolic model. Due to the object-oriented architecture of sybil, users can easily build analysis pipelines in R or even implement their own constraint-based algorithms. Based on its highly efficient communication with different mathematical optimisation programs, sybil facilitates the exploration of high-dimensional optimisation problems on small time scales. Sybil and all its dependencies are open source. Sybil and its documentation are available for download from the comprehensive R archive network (CRAN).
Macyszyn, Luke; Lega, Brad; Bohman, Leif-Erik; Latefi, Ahmad; Smith, Michelle J; Malhotra, Neil R; Welch, William; Grady, Sean M
2013-09-01
Digital radiology enhances productivity and results in long-term cost savings. However, the viewing, storage, and sharing of outside imaging studies on compact discs at ambulatory offices and hospitals pose a number of unique challenges to a surgeon's efficiency and clinical workflow. To improve the efficiency and clinical workflow of an academic neurosurgical practice when evaluating patients with outside radiological studies. Open-source software and commercial hardware were used to design and implement a departmental picture archiving and communications system (PACS). The implementation of a departmental PACS system significantly improved productivity and enhanced collaboration in a variety of clinical settings. Using published data on the rate of information technology problems associated with outside studies on compact discs, this system produced a cost savings ranging from $6250 to $33600 and from $43200 to $72000 for 2 cohorts, urgent transfer and spine clinic patients, respectively, therefore justifying the costs of the system in less than a year. The implementation of a departmental PACS system using open-source software is straightforward and cost-effective and results in significant gains in surgeon productivity when evaluating patients with outside imaging studies.
ERIC Educational Resources Information Center
Conway, Paul; Weaver, Shari
1994-01-01
This report documents the second phase of Yale University's Project Open Book, which explored the uses of digital technology for preservation of and access to deteriorating documents. Highlights include preconditions for project implementation; quality digital conversion; characteristics of source materials; digital document indexing; workflow…
NASA Astrophysics Data System (ADS)
Antonelli, Charles J.; Honeyman, Peter
2001-02-01
This paper describes the Advanced Packet Vault, a technology for creating such a record by collecting and securely storing all packets observed on a network, with a scalable architecture intended to support network speeds in excess of 100 Mbps. Encryption is used to preserve users' security and privacy, permitting selected traffic to be made available without revealing other traffic. The Vault implementation, based on Linux and OpenBSD, is open-source.
scikit-image: image processing in Python
Schönberger, Johannes L.; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D.; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony
2014-01-01
scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org. PMID:25024921
Bendou, Hocine; Sizani, Lunga; Reid, Tim; Swanepoel, Carmen; Ademuyiwa, Toluwaleke; Merino-Martinez, Roxana; Meuller, Heimo; Abayomi, Akin
2017-01-01
A laboratory information management system (LIMS) is central to the informatics infrastructure that underlies biobanking activities. To date, a wide range of commercial and open-source LIMSs are available and the decision to opt for one LIMS over another is often influenced by the needs of the biobank clients and researchers, as well as available financial resources. The Baobab LIMS was developed by customizing the Bika LIMS software (www.bikalims.org) to meet the requirements of biobanking best practices. The need to implement biobank standard operation procedures as well as stimulate the use of standards for biobank data representation motivated the implementation of Baobab LIMS, an open-source LIMS for Biobanking. Baobab LIMS comprises modules for biospecimen kit assembly, shipping of biospecimen kits, storage management, analysis requests, reporting, and invoicing. The Baobab LIMS is based on the Plone web-content management framework. All the system requirements for Plone are applicable to Baobab LIMS, including the need for a server with at least 8 GB RAM and 120 GB hard disk space. Baobab LIMS is a server–client-based system, whereby the end user is able to access the system securely through the internet on a standard web browser, thereby eliminating the need for standalone installations on all machines. PMID:28375759
Bendou, Hocine; Sizani, Lunga; Reid, Tim; Swanepoel, Carmen; Ademuyiwa, Toluwaleke; Merino-Martinez, Roxana; Meuller, Heimo; Abayomi, Akin; Christoffels, Alan
2017-04-01
A laboratory information management system (LIMS) is central to the informatics infrastructure that underlies biobanking activities. To date, a wide range of commercial and open-source LIMSs are available and the decision to opt for one LIMS over another is often influenced by the needs of the biobank clients and researchers, as well as available financial resources. The Baobab LIMS was developed by customizing the Bika LIMS software ( www.bikalims.org ) to meet the requirements of biobanking best practices. The need to implement biobank standard operation procedures as well as stimulate the use of standards for biobank data representation motivated the implementation of Baobab LIMS, an open-source LIMS for Biobanking. Baobab LIMS comprises modules for biospecimen kit assembly, shipping of biospecimen kits, storage management, analysis requests, reporting, and invoicing. The Baobab LIMS is based on the Plone web-content management framework. All the system requirements for Plone are applicable to Baobab LIMS, including the need for a server with at least 8 GB RAM and 120 GB hard disk space. Baobab LIMS is a server-client-based system, whereby the end user is able to access the system securely through the internet on a standard web browser, thereby eliminating the need for standalone installations on all machines.
A Standard Platform for Testing and Comparison of MDAO Architectures
NASA Technical Reports Server (NTRS)
Gray, Justin S.; Moore, Kenneth T.; Hearn, Tristan A.; Naylor, Bret A.
2012-01-01
The Multidisciplinary Design Analysis and Optimization (MDAO) community has developed a multitude of algorithms and techniques, called architectures, for performing optimizations on complex engineering systems which involve coupling between multiple discipline analyses. These architectures seek to efficiently handle optimizations with computationally expensive analyses including multiple disciplines. We propose a new testing procedure that can provide a quantitative and qualitative means of comparison among architectures. The proposed test procedure is implemented within the open source framework, OpenMDAO, and comparative results are presented for five well-known architectures: MDF, IDF, CO, BLISS, and BLISS-2000. We also demonstrate how using open source soft- ware development methods can allow the MDAO community to submit new problems and architectures to keep the test suite relevant.
Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)
George, Ansel; Dorval, Alan D.; Christini, David J.
2017-01-01
The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998
Long distance education for croatian nurses with open source software.
Radenovic, Aleksandar; Kalauz, Sonja
2006-01-01
Croatian Nursing Informatics Association (CNIA) has been established as result of continuing work on promoting nursing informatics in Croatia. Main goals of CNIA are promoting nursing informatics and education of nurses about nursing informatics and using information technology in nursing process. CNIA in start of work is developed three courses from nursing informatics all designed with support of long distance education with open source software. Courses are: A - 'From Data to Wisdom', B - 'Introduction to Nursing Informatics' and C - 'Nursing Informatics I'. Courses A and B are obligatory for C course. Technology used to implement these online courses is based on the open source Learning Management System (LMS), Claroline, free online collaborative learning platform. Courses are divided in two modules/days. First module/day participants have classical approach to education and second day with E-learning from home. These courses represent first courses from nursing informatics' and first long distance education for nurses also.
CymeR: cytometry analysis using KNIME, docker and R
Muchmore, B.; Alarcón-Riquelme, M.E.
2017-01-01
Abstract Summary: Here we present open-source software for the analysis of high-dimensional cytometry data using state of the art algorithms. Importantly, use of the software requires no programming ability, and output files can either be interrogated directly in CymeR or they can be used downstream with any other cytometric data analysis platform. Also, because we use Docker to integrate the multitude of components that form the basis of CymeR, we have additionally developed a proof-of-concept of how future open-source bioinformatic programs with graphical user interfaces could be developed. Availability and Implementation: CymeR is open-source software that ties several components into a single program that is perhaps best thought of as a self-contained data analysis operating system. Please see https://github.com/bmuchmore/CymeR/wiki for detailed installation instructions. Contact: brian.muchmore@genyo.es or marta.alarcon@genyo.es PMID:27998935
astroplan: An Open Source Observation Planning Package in Python
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Tollerud, Erik; Sipőcz, Brigitta; Deil, Christoph; Douglas, Stephanie T.; Berlanga Medina, Jazmin; Vyhmeister, Karl; Smith, Toby R.; Littlefair, Stuart; Price-Whelan, Adrian M.; Gee, Wilfred T.; Jeschke, Eric
2018-03-01
We present astroplan—an open source, open development, Astropy affiliated package for ground-based observation planning and scheduling in Python. astroplan is designed to provide efficient access to common observational quantities such as celestial rise, set, and meridian transit times and simple transformations from sky coordinates to altitude-azimuth coordinates without requiring a detailed understanding of astropy’s implementation of coordinate systems. astroplan provides convenience functions to generate common observational plots such as airmass and parallactic angle as a function of time, along with basic sky (finder) charts. Users can determine whether or not a target is observable given a variety of observing constraints, such as airmass limits, time ranges, Moon illumination/separation ranges, and more. A selection of observation schedulers are included that divide observing time among a list of targets, given observing constraints on those targets. Contributions to the source code from the community are welcome.
PLACE: an open-source python package for laboratory automation, control, and experimentation.
Johnson, Jami L; Tom Wörden, Henrik; van Wijk, Kasper
2015-02-01
In modern laboratories, software can drive the full experimental process from data acquisition to storage, processing, and analysis. The automation of laboratory data acquisition is an important consideration for every laboratory. When implementing a laboratory automation scheme, important parameters include its reliability, time to implement, adaptability, and compatibility with software used at other stages of experimentation. In this article, we present an open-source, flexible, and extensible Python package for Laboratory Automation, Control, and Experimentation (PLACE). The package uses modular organization and clear design principles; therefore, it can be easily customized or expanded to meet the needs of diverse laboratories. We discuss the organization of PLACE, data-handling considerations, and then present an example using PLACE for laser-ultrasound experiments. Finally, we demonstrate the seamless transition to post-processing and analysis with Python through the development of an analysis module for data produced by PLACE automation. © 2014 Society for Laboratory Automation and Screening.
RINGMesh: A programming library for developing mesh-based geomodeling applications
NASA Astrophysics Data System (ADS)
Pellerin, Jeanne; Botella, Arnaud; Bonneau, François; Mazuyer, Antoine; Chauvin, Benjamin; Lévy, Bruno; Caumon, Guillaume
2017-07-01
RINGMesh is a C++ open-source programming library for manipulating discretized geological models. It is designed to ease the development of applications and workflows that use discretized 3D models. It is neither a geomodeler, nor a meshing software. RINGMesh implements functionalities to read discretized surface-based or volumetric structural models and to check their validity. The models can be then exported in various file formats. RINGMesh provides data structures to represent geological structural models, either defined by their discretized boundary surfaces, and/or by discretized volumes. A programming interface allows to develop of new geomodeling methods, and to plug in external software. The goal of RINGMesh is to help researchers to focus on the implementation of their specific method rather than on tedious tasks common to many applications. The documented code is open-source and distributed under the modified BSD license. It is available at https://www.ring-team.org/index.php/software/ringmesh.
NASA Astrophysics Data System (ADS)
Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-01
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning
2018-05-16
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry
Röst, Hannes L.; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
Motivation In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Results Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Availability Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS. PMID:25927999
Open Source Drug Discovery in Practice: A Case Study
Årdal, Christine; Røttingen, John-Arne
2012-01-01
Background Open source drug discovery offers potential for developing new and inexpensive drugs to combat diseases that disproportionally affect the poor. The concept borrows two principle aspects from open source computing (i.e., collaboration and open access) and applies them to pharmaceutical innovation. By opening a project to external contributors, its research capacity may increase significantly. To date there are only a handful of open source R&D projects focusing on neglected diseases. We wanted to learn from these first movers, their successes and failures, in order to generate a better understanding of how a much-discussed theoretical concept works in practice and may be implemented. Methodology/Principal Findings A descriptive case study was performed, evaluating two specific R&D projects focused on neglected diseases. CSIR Team India Consortium's Open Source Drug Discovery project (CSIR OSDD) and The Synaptic Leap's Schistosomiasis project (TSLS). Data were gathered from four sources: interviews of participating members (n = 14), a survey of potential members (n = 61), an analysis of the websites and a literature review. Both cases have made significant achievements; however, they have done so in very different ways. CSIR OSDD encourages international collaboration, but its process facilitates contributions from mostly Indian researchers and students. Its processes are formal with each task being reviewed by a mentor (almost always offline) before a result is made public. TSLS, on the other hand, has attracted contributors internationally, albeit significantly fewer than CSIR OSDD. Both have obtained funding used to pay for access to facilities, physical resources and, at times, labor costs. TSLS releases its results into the public domain, whereas CSIR OSDD asserts ownership over its results. Conclusions/Significance Technically TSLS is an open source project, whereas CSIR OSDD is a crowdsourced project. However, both have enabled high quality research at low cost. The critical success factors appear to be clearly defined entry points, transparency and funding to cover core material costs. PMID:23029588
NASA Astrophysics Data System (ADS)
Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.
2018-04-01
Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.
Performance evaluation of multi-channel wireless mesh networks with embedded systems.
Lam, Jun Huy; Lee, Sang-Gon; Tan, Whye Kit
2012-01-01
Many commercial wireless mesh network (WMN) products are available in the marketplace with their own proprietary standards, but interoperability among the different vendors is not possible. Open source communities have their own WMN implementation in accordance with the IEEE 802.11s draft standard, Linux open80211s project and FreeBSD WMN implementation. While some studies have focused on the test bed of WMNs based on the open80211s project, none are based on the FreeBSD. In this paper, we built an embedded system using the FreeBSD WMN implementation that utilizes two channels and evaluated its performance. This implementation allows the legacy system to connect to the WMN independent of the type of platform and distributes the load between the two non-overlapping channels. One channel is used for the backhaul connection and the other one is used to connect to the stations to wireless mesh network. By using the power efficient 802.11 technology, this device can also be used as a gateway for the wireless sensor network (WSN).
Lu, Hao; Papathomas, Thomas G; van Zessen, David; Palli, Ivo; de Krijger, Ronald R; van der Spek, Peter J; Dinjens, Winand N M; Stubbs, Andrew P
2014-11-25
In prognosis and therapeutics of adrenal cortical carcinoma (ACC), the selection of the most active areas in proliferative rate (hotspots) within a slide and objective quantification of immunohistochemical Ki67 Labelling Index (LI) are of critical importance. In addition to intratumoral heterogeneity in proliferative rate i.e. levels of Ki67 expression within a given ACC, lack of uniformity and reproducibility in the method of quantification of Ki67 LI may confound an accurate assessment of Ki67 LI. We have implemented an open source toolset, Automated Selection of Hotspots (ASH), for automated hotspot detection and quantification of Ki67 LI. ASH utilizes NanoZoomer Digital Pathology Image (NDPI) splitter to convert the specific NDPI format digital slide scanned from the Hamamatsu instrument into a conventional tiff or jpeg format image for automated segmentation and adaptive step finding hotspots detection algorithm. Quantitative hotspot ranking is provided by the functionality from the open source application ImmunoRatio as part of the ASH protocol. The output is a ranked set of hotspots with concomitant quantitative values based on whole slide ranking. We have implemented an open source automated detection quantitative ranking of hotspots to support histopathologists in selecting the 'hottest' hotspot areas in adrenocortical carcinoma. To provide wider community easy access to ASH we implemented a Galaxy virtual machine (VM) of ASH which is available from http://bioinformatics.erasmusmc.nl/wiki/Automated_Selection_of_Hotspots . The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_216.
Jun Liu; Fan Zhang; Huang, He Helen
2014-01-01
Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.
Plenario: A Spatio-Temporal Platform for Discovery and Exploration of Urban Science Data
NASA Astrophysics Data System (ADS)
Engler, W. H.; Malik, T.; Catlett, C.; Foster, I.; Goldstein, B.
2015-12-01
The past decade has seen the widespread release of open data concerning city services, conditions, and activities by government bodies and public institutions of all sizes. Hundreds of open data portals now host thousands of datasets of many different types. These new data sources represent enormous potential for improved understanding of urban dynamics and processes—and, ultimately, for more livable, efficient, and prosperous communities. However, those who seek to realize this potential quickly discover that discovering and applying those data relevant to any particular question can be extraordinarily difficult, due to decentralized storage, heterogeneous formats, and poor documentation. In this context, we introduce Plenario, a platform designed to automating time-consuming tasks associated with the discovery, exploration, and application of open city data—and, in so doing, reduce barriers to data use for researchers, policymakers, service providers, journalists, and members of the general public. Key innovations include a geospatial data warehouse that allows data from many sources to be registered into a common spatial and temporal frame; simple and intuitive interfaces that permit rapid discovery and exploration of data subsets pertaining to a particular area and time, regardless of type and source; easy export of such data subsets for further analysis; a user-configurable data ingest framework for automated importing and periodic updating of new datasets into the data warehouse; cloud hosting for elastic scaling and rapid creation of new Plenario instances; and an open source implementation to enable community contributions. We describe here the architecture and implementation of the Plenario platform, discuss lessons learned from its use by several communities, and outline plans for future work.
Open-WiSe: a solar powered wireless sensor network platform.
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.
Kasthurirathne, Suranga N; Mamlin, Burke W; Cullen, Theresa
2017-02-01
Despite significant awareness on the value of leveraging patient relationships across the healthcare continuum, there is no research on the potential of using Electronic Health Record (EHR) systems to store structured patient relationship data, or its impact on enabling better healthcare. We sought to identify which EHR systems supported effective patient relationship data collection, and for systems that do, what types of relationship data is collected, how this data is used, and the perceived value of doing so. We performed a literature search to identify EHR systems that supported patient relationship data collection. Based on our results, we defined attributes of an effective patient relationship model. The Open Medical Record System (OpenMRS), an open source medical record platform for underserved settings met our eligibility criteria for effective patient relationship collection. We performed a survey to understand how the OpenMRS patient relationship model was used, and how it brought value to implementers. The OpenMRS patient relationship model has won widespread adoption across many implementations and is perceived to be valuable in enabling better health care delivery. Patient relationship information is widely used for community health programs and enabling chronic care. Additionally, many OpenMRS implementers were using this feature to collect custom relationship types for implementation specific needs. We believe that flexible patient relationship data collection is critical for better healthcare, and can inform community care and chronic care initiatives across the world. Additionally, patient relationship data could also be leveraged for many other initiatives such as patient centric care and in the field of precision medicine.
Menu-driven cloud computing and resource sharing for R and Bioconductor
Bolouri, Hamid; Angerman, Michael
2011-01-01
Summary: We report CRdata.org, a cloud-based, free, open-source web server for running analyses and sharing data and R scripts with others. In addition to using the free, public service, CRdata users can launch their own private Amazon Elastic Computing Cloud (EC2) nodes and store private data and scripts on Amazon's Simple Storage Service (S3) with user-controlled access rights. All CRdata services are provided via point-and-click menus. Availability and Implementation: CRdata is open-source and free under the permissive MIT License (opensource.org/licenses/mit-license.php). The source code is in Ruby (ruby-lang.org/en/) and available at: github.com/seerdata/crdata. Contact: hbolouri@fhcrc.org PMID:21685055
MOSES: A Matlab-based open-source stochastic epidemic simulator.
Varol, Huseyin Atakan
2016-08-01
This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.
ERIC Educational Resources Information Center
Bissels, Gerhard
2008-01-01
Purpose: The purpose of this paper is to describe the selection process and criteria that led to the implementation of the Koha 3.0 library management system (LMS) at the Complementary and Alternative Medicine Library and Information Service (CAMLIS), Royal London Homoeopathic Hospital. Design/methodology/approach: The paper is a report based on…
E-Standards For Mass Properties Engineering
NASA Technical Reports Server (NTRS)
Cerro, Jeffrey A.
2008-01-01
A proposal is put forth to promote the concept of a Society of Allied Weight Engineers developed voluntary consensus standard for mass properties engineering. This standard would be an e-standard, and would encompass data, data manipulation, and reporting functionality. The standard would be implemented via an open-source SAWE distribution site with full SAWE member body access. Engineering societies and global standards initiatives are progressing toward modern engineering standards, which become functioning deliverable data sets. These data sets, if properly standardized, will integrate easily between supplier and customer enabling technically precise mass properties data exchange. The concepts of object-oriented programming support all of these requirements, and the use of a JavaTx based open-source development initiative is proposed. Results are reported for activity sponsored by the NASA Langley Research Center Innovation Institute to scope out requirements for developing a mass properties engineering e-standard. An initial software distribution is proposed. Upon completion, an open-source application programming interface will be available to SAWE members for the development of more specific programming requirements that are tailored to company and project requirements. A fully functioning application programming interface will permit code extension via company proprietary techniques, as well as through continued open-source initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatsavai, Raju; Burk, Thomas E; Lime, Steve
2012-01-01
The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explainedmore » in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.« less
OpenFOAM: Open source CFD in research and industry
NASA Astrophysics Data System (ADS)
Jasak, Hrvoje
2009-12-01
The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.
Reference software implementation for GIFTS ground data processing
NASA Astrophysics Data System (ADS)
Garcia, R. K.; Howell, H. B.; Knuteson, R. O.; Martin, G. D.; Olson, E. R.; Smuga-Otto, M. J.
2006-08-01
Future satellite weather instruments such as high spectral resolution imaging interferometers pose a challenge to the atmospheric science and software development communities due to the immense data volumes they will generate. An open-source, scalable reference software implementation demonstrating the calibration of radiance products from an imaging interferometer, the Geosynchronous Imaging Fourier Transform Spectrometer1 (GIFTS), is presented. This paper covers essential design principles laid out in summary system diagrams, lessons learned during implementation and preliminary test results from the GIFTS Information Processing System (GIPS) prototype.
QuantumOptics.jl: A Julia framework for simulating open quantum systems
NASA Astrophysics Data System (ADS)
Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut
2018-06-01
We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.
NASA Astrophysics Data System (ADS)
Engel, P.; Schweimler, B.
2016-04-01
The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.
Implementation and performance evaluation open-source controller for precision control of gripper
NASA Astrophysics Data System (ADS)
Lee, Seung-Yong; Ham, Un-Hyeong; Park, Young-Woo; Jung, Hak-Sang; Jung, Il-Kyun; Lim, Sun
2017-12-01
This paper proposes integrating gripper embedded operating system, which consist of external interface structure for sophisticated gripper control. This system has multiple functions that control the gripping module and measure the pose of the gripper body with respect to contact environment. A controller based on open source only for the gripper is developed and an external communication interface between robot controller and gripper controller is designed. An experimental environment for the fixed-cycle test consists of integrating magic gripper software system and hardware on commercial business. As a result, a deviation is measured approximately 2% and the system were verified for gripper control.
ZeBase: an open-source relational database for zebrafish laboratories.
Hensley, Monica R; Hassenplug, Eric; McPhail, Rodney; Leung, Yuk Fai
2012-03-01
Abstract ZeBase is an open-source relational database for zebrafish inventory. It is designed for the recording of genetic, breeding, and survival information of fish lines maintained in a single- or multi-laboratory environment. Users can easily access ZeBase through standard web-browsers anywhere on a network. Convenient search and reporting functions are available to facilitate routine inventory work; such functions can also be automated by simple scripting. Optional barcode generation and scanning are also built-in for easy access to the information related to any fish. Further information of the database and an example implementation can be found at http://zebase.bio.purdue.edu.
AtomicJ: An open source software for analysis of force curves
NASA Astrophysics Data System (ADS)
Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina
2014-06-01
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Bagayoko, Cheick-Oumar; Dufour, Jean-Charles; Chaacho, Saad; Bouhaddou, Omar; Fieschi, Marius
2010-04-16
We are currently witnessing a significant increase in use of Open Source tools in the field of health. Our study aims to research the potential of these software packages for developing countries. Our experiment was conducted at the Centre Hospitalier Mere Enfant in Mali. After reviewing several Open Source tools in the field of hospital information systems, Mediboard software was chosen for our study. To ensure the completeness of Mediboard in relation to the functionality required for a hospital information system, its features were compared to those of a well-defined comprehensive record management tool set up at the University Hospital "La Timone" of Marseilles in France. It was then installed on two Linux servers: a first server for testing and validation of different modules, and a second one for the deployed full implementation. After several months of use, we have evaluated the usability aspects of the system including feedback from end-users through a questionnaire. Initial results showed the potential of Open Source in the field of health IT for developing countries like Mali.Five main modules have been fully implemented: patient administrative and medical records management of hospital activities, tracking of practitioners' activities, infrastructure management and the billing system. This last component of the system has been fully developed by the local Mali team.The evaluation showed that the system is broadly accepted by all the users who participated in the study. 77% of the participants found the system useful; 85% found it easy; 100% of them believe the system increases the reliability of data. The same proportion encourages the continuation of the experiment and its expansion throughout the hospital. In light of the results, we can conclude that the objective of our study was reached. However, it is important to take into account the recommendations and the challenges discussed here to avoid several potential pitfalls specific to the context of Africa.Our future work will target the full integration of the billing module in Mediboard and an expanded implementation throughout the hospital.
2010-01-01
Background We are currently witnessing a significant increase in use of Open Source tools in the field of health. Our study aims to research the potential of these software packages for developing countries. Our experiment was conducted at the Centre Hospitalier Mere Enfant in Mali. Methods After reviewing several Open Source tools in the field of hospital information systems, Mediboard software was chosen for our study. To ensure the completeness of Mediboard in relation to the functionality required for a hospital information system, its features were compared to those of a well-defined comprehensive record management tool set up at the University Hospital "La Timone" of Marseilles in France. It was then installed on two Linux servers: a first server for testing and validation of different modules, and a second one for the deployed full implementation. After several months of use, we have evaluated the usability aspects of the system including feedback from end-users through a questionnaire. Results Initial results showed the potential of Open Source in the field of health IT for developing countries like Mali. Five main modules have been fully implemented: patient administrative and medical records management of hospital activities, tracking of practitioners' activities, infrastructure management and the billing system. This last component of the system has been fully developed by the local Mali team. The evaluation showed that the system is broadly accepted by all the users who participated in the study. 77% of the participants found the system useful; 85% found it easy; 100% of them believe the system increases the reliability of data. The same proportion encourages the continuation of the experiment and its expansion throughout the hospital. Conclusions In light of the results, we can conclude that the objective of our study was reached. However, it is important to take into account the recommendations and the challenges discussed here to avoid several potential pitfalls specific to the context of Africa. Our future work will target the full integration of the billing module in Mediboard and an expanded implementation throughout the hospital. PMID:20398366
Automated Transformation of CDISC ODM to OpenClinica.
Gessner, Sophia; Storck, Michael; Hegselmann, Stefan; Dugas, Martin; Soto-Rey, Iñaki
2017-01-01
Due to the increasing use of electronic data capture systems for clinical research, the interest in saving resources by automatically generating and reusing case report forms in clinical studies is growing. OpenClinica, an open-source electronic data capture system enables the reuse of metadata in its own Excel import template, hampering the reuse of metadata defined in other standard formats. One of these standard formats is the Operational Data Model for metadata, administrative and clinical data in clinical studies. This work suggests a mapping from Operational Data Model to OpenClinica and describes the implementation of a converter to automatically generate OpenClinica conform case report forms based upon metadata in the Operational Data Model.
Greenhouse gas and ammonia emissions from an open-freestall dairy in southern idaho.
Leytem, April B; Dungan, Robert S; Bjorneberg, David L; Koehn, Anita C
2013-01-01
Concentrated dairy operations emit trace gases such as ammonia (NH), methane (CH), and nitrous oxide (NO) to the atmosphere. The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. Our objective was to determine the emission rates of NH, CH, and NO from the open-freestall and wastewater pond source areas on a commercial dairy in southern Idaho using a flush system with anaerobic digestion. Gas concentrations and wind statistics were measured and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open-freestall source area were 0.08 kg NH, 0.41 kg CH, and 0.02 kg NO. Average emissions from the wastewater ponds (g m d) were 6.8 NH, 22 CH, and 0.2 NO. The combined emissions on a per cow per day basis from the open-freestall and wastewater pond areas averaged 0.20 kg NH and 0.75 kg CH. Combined NO emissions were not calculated due to limited available data. The wastewater ponds were the greatest source of total farm NH emissions (67%) in spring and summer. The emissions of CH were approximately equal from the two source areas in spring and summer. During the late fall and winter months, the open-freestall area constituted the greatest source area of NH and CH emissions. Data from this study can be used to develop trace gas emissions factors from open-freestall dairies in southern Idaho and other open-freestall production systems in similar climatic regions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Implementation Of The Configurable Fault Tolerant System Experiment On NPSAT 1
2016-03-01
REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPLEMENTATION OF THE CONFIGURABLE FAULT TOLERANT SYSTEM EXPERIMENT ON NPSAT...open-source microprocessor without interlocked pipeline stages (MIPS) based processor softcore, a cached memory structure capable of accessing double...data rate type three and secure digital card memories, an interface to the main satellite bus, and XILINX’s soft error mitigation softcore. The
Distributed Kernelized Locality-Sensitive Hashing for Faster Image Based Navigation
2015-03-26
Facebook, Google, and Yahoo !. Current methods for image retrieval become problematic when implemented on image datasets that can easily reach billions of...correlations. Tech industry leaders like Facebook, Google, and Yahoo ! sort and index even larger volumes of “big data” daily. When attempting to process...open source implementation of Google’s MapReduce programming paradigm [13] which has been used for many different things. Using Apache Hadoop, Yahoo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Gregory S.; Nickless, William K.; Thiede, David R.
Enterprise level cyber security requires the deployment, operation, and monitoring of many sensors across geographically dispersed sites. Communicating with the sensors to gather data and control behavior is a challenging task when the number of sensors is rapidly growing. This paper describes the system requirements, design, and implementation of T3, the third generation of our transport software that performs this task. T3 relies on open source software and open Internet standards. Data is encoded in MIME format messages and transported via NNTP, which provides scalability. OpenSSL and public key cryptography are used to secure the data. Robustness and ease ofmore » development are increased by defining an internal cryptographic API, implemented by modules in C, Perl, and Python. We are currently using T3 in a production environment. It is freely available to download and use for other projects.« less
An open source multivariate framework for n-tissue segmentation with evaluation on public data.
Avants, Brian B; Tustison, Nicholas J; Wu, Jue; Cook, Philip A; Gee, James C
2011-12-01
We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs ( http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.
An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data
Tustison, Nicholas J.; Wu, Jue; Cook, Philip A.; Gee, James C.
2012-01-01
We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs (http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool. PMID:21373993
NASA Astrophysics Data System (ADS)
Strassmann, Kuno M.; Joos, Fortunat
2018-05-01
The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.
Cloud-Based Distributed Control of Unmanned Systems
2015-04-01
during mission execution. At best, the data is saved onto hard-drives and is accessible only by the local team. Data history in a form available and...following open source technologies: GeoServer, OpenLayers, PostgreSQL , and PostGIS are chosen to implement the back-end database and server. A brief...geospatial map data. 3. PostgreSQL : An SQL-compliant object-relational database that easily scales to accommodate large amounts of data - upwards to
NASA Astrophysics Data System (ADS)
Buonanno, Sabatino; Fusco, Adele; Zeni, Giovanni; Manunta, Michele; Lanari, Riccardo
2017-04-01
This work describes the implementation of an efficient system for managing, viewing, analyzing and updating remotely sensed data, with special reference to Differential Interferometric Synthetic Aperture Radar (DInSAR) data. The DInSAR products measure Earth surface deformation both in space and time, producing deformation maps and time series[1,2]. The use of these data in research or operational contexts requires tools that have to handle temporal and spatial variability with high efficiency. For this aim we present an implementation based on Spatial Data Infrastructure (SDI) for data integration, management and interchange, by using standard protocols[3]. SDI tools provide access to static datasets that operate only with spatial variability . In this paper we use the open source project GeoNode as framework to extend SDI infrastructure functionalities to ingest very efficiently DInSAR deformation maps and deformation time series. GeoNode allows to realize comprehensive and distributed infrastructure, following the standards of the Open Geospatial Consortium, Inc. - OGC, for remote sensing data management, analysis and integration [4,5]. In the current paper we explain the methodology used for manage the data complexity and data integration using the opens source project GeoNode. The solution presented in this work for the ingestion of DinSAR products is a very promising starting point for future developments of the OGC compliant implementation of a semi-automatic remote sensing data processing chain . [1] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 11, pp. 2375-2383. [2] Lanari R., F. Casu, M. Manzo, G. Zeni,, P. Berardino, M. Manunta and A. Pepe (2007), An overview of the Small Baseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis, P. Appl. Geophys., 164, doi: 10.1007/s00024-007-0192-9. [3] Nebert, D.D. (ed). 2000. Developing Spatial data Infrastructures: The SDI Cookbook. [4] Geonode (www.geonode.org) [5] Kolodziej, k. (ed). 2004. OGC OpenGIS Web Map Server Cookbook. Open Geospatial Consortium, 1.0.2 edition.
NASA Astrophysics Data System (ADS)
Miles, B.; Chepudira, K.; LaBar, W.
2017-12-01
The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next-generation large-scale and high-resolution real-time environmental monitoring networks used in domains such as hydrology, geomorphology, and geophysics, as well as management applications such as flood early warning, and regulatory enforcement.
Falcon: a highly flexible open-source software for closed-loop neuroscience.
Ciliberti, Davide; Kloosterman, Fabian
2017-08-01
Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.
Falcon: a highly flexible open-source software for closed-loop neuroscience
NASA Astrophysics Data System (ADS)
Ciliberti, Davide; Kloosterman, Fabian
2017-08-01
Objective. Closed-loop experiments provide unique insights into brain dynamics and function. To facilitate a wide range of closed-loop experiments, we created an open-source software platform that enables high-performance real-time processing of streaming experimental data. Approach. We wrote Falcon, a C++ multi-threaded software in which the user can load and execute an arbitrary processing graph. Each node of a Falcon graph is mapped to a single thread and nodes communicate with each other through thread-safe buffers. The framework allows for easy implementation of new processing nodes and data types. Falcon was tested both on a 32-core and a 4-core workstation. Streaming data was read from either a commercial acquisition system (Neuralynx) or the open-source Open Ephys hardware, while closed-loop TTL pulses were generated with a USB module for digital output. We characterized the round-trip latency of our Falcon-based closed-loop system, as well as the specific latency contribution of the software architecture, by testing processing graphs with up to 32 parallel pipelines and eight serial stages. We finally deployed Falcon in a task of real-time detection of population bursts recorded live from the hippocampus of a freely moving rat. Main results. On Neuralynx hardware, round-trip latency was well below 1 ms and stable for at least 1 h, while on Open Ephys hardware latencies were below 15 ms. The latency contribution of the software was below 0.5 ms. Round-trip and software latencies were similar on both 32- and 4-core workstations. Falcon was used successfully to detect population bursts online with ~40 ms average latency. Significance. Falcon is a novel open-source software for closed-loop neuroscience. It has sub-millisecond intrinsic latency and gives the experimenter direct control of CPU resources. We envisage Falcon to be a useful tool to the neuroscientific community for implementing a wide variety of closed-loop experiments, including those requiring use of complex data structures and real-time execution of computationally intensive algorithms, such as population neural decoding/encoding from large cell assemblies.
Terra Harvest Open Source Environment (THOSE): a universal unattended ground sensor controller
NASA Astrophysics Data System (ADS)
Gold, Joshua; Klawon, Kevin; Humeniuk, David; Landoll, Darren
2011-06-01
Under the Terra Harvest Program, the Defense Intelligence Agency (DIA) has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future Unattended Ground Sensor System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n-play contributions that include various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute (UDRI), is developing the Terra Harvest Open Source Environment (THOSE), a Java based system running on an embedded Linux Operating System (OS). The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor evaluation platform that is both energyefficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the implementation strategy for some of the key software components. Preliminary integration/test results and the Team's approach for transitioning the THOSE design and source code to the Government are also presented.
Microbe-ID: An open source toolbox for microbial genotyping and species identification
USDA-ARS?s Scientific Manuscript database
Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user...
Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data
Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M.; Jerbi, Karim
2017-01-01
We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module. PMID:28983246
Sleep: An Open-Source Python Software for Visualization, Analysis, and Staging of Sleep Data.
Combrisson, Etienne; Vallat, Raphael; Eichenlaub, Jean-Baptiste; O'Reilly, Christian; Lajnef, Tarek; Guillot, Aymeric; Ruby, Perrine M; Jerbi, Karim
2017-01-01
We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of sleep features such as spindles, K-complexes, slow waves, and rapid eye movements (REM), (3) Implementation of practical signal processing tools such as re-referencing or filtering, and (4) Display of main descriptive statistics including publication-ready tables and figures. The software package supports loading and reading raw EEG data from standard file formats such as European Data Format, in addition to a range of commercial data formats. Most importantly, Sleep is built on top of the VisPy library, which provides GPU-based fast and high-level visualization. As a result, it is capable of efficiently handling and displaying large sleep datasets. Sleep is freely available (http://visbrain.org/sleep) and comes with sample datasets and an extensive documentation. Novel functionalities will continue to be added and open-science community efforts are expected to enhance the capacities of this module.
Explicit B-spline regularization in diffeomorphic image registration
Tustison, Nicholas J.; Avants, Brian B.
2013-01-01
Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140
Smokefree implementation in Colombia: Monitoring, outside funding, and business support.
Uang, Randy; Crosbie, Eric; Glantz, Stanton A
2017-01-01
To analyze successful national smokefree policy implementation in Colombia, a middle income country. Key informants at the national and local levels were interviewed and news sources and government ministry resolutions were reviewed. Colombia's Ministry of Health coordinated local implementation practices, which were strongest in larger cities with supportive leadership. Nongovernmental organizations provided technical assistance and highlighted noncompliance. Organizations outside Colombia funded some of these efforts. The bar owners' association provided concerted education campaigns. Tobacco interests did not openly challenge implementation. Health organization monitoring, external funding, and hospitality industry support contributed to effective implementation, and could be cultivated in other low and middle income countries.
Tuti, Timothy; Bitok, Michael; Paton, Chris; Makone, Boniface; Malla, Lucas; Muinga, Naomi; Gathara, David; English, Mike
2016-01-01
Objective To share approaches and innovations adopted to deliver a relatively inexpensive clinical data management (CDM) framework within a low-income setting that aims to deliver quality pediatric data useful for supporting research, strengthening the information culture and informing improvement efforts in local clinical practice. Materials and methods The authors implemented a CDM framework to support a Clinical Information Network (CIN) using Research Electronic Data Capture (REDCap), a noncommercial software solution designed for rapid development and deployment of electronic data capture tools. It was used for collection of standardized data from case records of multiple hospitals’ pediatric wards. R, an open-source statistical language, was used for data quality enhancement, analysis, and report generation for the hospitals. Results In the first year of CIN, the authors have developed innovative solutions to support the implementation of a secure, rapid pediatric data collection system spanning 14 hospital sites with stringent data quality checks. Data have been collated on over 37 000 admission episodes, with considerable improvement in clinical documentation of admissions observed. Using meta-programming techniques in R, coupled with branching logic, randomization, data lookup, and Application Programming Interface (API) features offered by REDCap, CDM tasks were configured and automated to ensure quality data was delivered for clinical improvement and research use. Conclusion A low-cost clinically focused but geographically dispersed quality CDM (Clinical Data Management) in a long-term, multi-site, and real world context can be achieved and sustained and challenges can be overcome through thoughtful design and implementation of open-source tools for handling data and supporting research. PMID:26063746
2011-01-01
Background Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. Results In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. Conclusions TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox. PMID:22098775
Tuti, Timothy; Bitok, Michael; Paton, Chris; Makone, Boniface; Malla, Lucas; Muinga, Naomi; Gathara, David; English, Mike
2016-01-01
To share approaches and innovations adopted to deliver a relatively inexpensive clinical data management (CDM) framework within a low-income setting that aims to deliver quality pediatric data useful for supporting research, strengthening the information culture and informing improvement efforts in local clinical practice. The authors implemented a CDM framework to support a Clinical Information Network (CIN) using Research Electronic Data Capture (REDCap), a noncommercial software solution designed for rapid development and deployment of electronic data capture tools. It was used for collection of standardized data from case records of multiple hospitals' pediatric wards. R, an open-source statistical language, was used for data quality enhancement, analysis, and report generation for the hospitals. In the first year of CIN, the authors have developed innovative solutions to support the implementation of a secure, rapid pediatric data collection system spanning 14 hospital sites with stringent data quality checks. Data have been collated on over 37 000 admission episodes, with considerable improvement in clinical documentation of admissions observed. Using meta-programming techniques in R, coupled with branching logic, randomization, data lookup, and Application Programming Interface (API) features offered by REDCap, CDM tasks were configured and automated to ensure quality data was delivered for clinical improvement and research use. A low-cost clinically focused but geographically dispersed quality CDM (Clinical Data Management) in a long-term, multi-site, and real world context can be achieved and sustained and challenges can be overcome through thoughtful design and implementation of open-source tools for handling data and supporting research. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Lindner, Michael; Vicente, Raul; Priesemann, Viola; Wibral, Michael
2011-11-18
Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.
Open-WiSe: A Solar Powered Wireless Sensor Network Platform
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396
Instrumentino: An Open-Source Software for Scientific Instruments.
Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C
2015-01-01
Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.
Clarity: An Open Source Manager for Laboratory Automation
Delaney, Nigel F.; Echenique, José Rojas; Marx, Christopher J.
2013-01-01
Software to manage automated laboratories interfaces with hardware instruments, gives users a way to specify experimental protocols, and schedules activities to avoid hardware conflicts. In addition to these basics, modern laboratories need software that can run multiple different protocols in parallel and that can be easily extended to interface with a constantly growing diversity of techniques and instruments. We present Clarity: a laboratory automation manager that is hardware agnostic, portable, extensible and open source. Clarity provides critical features including remote monitoring, robust error reporting by phone or email, and full state recovery in the event of a system crash. We discuss the basic organization of Clarity; demonstrate an example of its implementation for the automated analysis of bacterial growth; and describe how the program can be extended to manage new hardware. Clarity is mature; well documented; actively developed; written in C# for the Common Language Infrastructure; and is free and open source software. These advantages set Clarity apart from currently available laboratory automation programs. PMID:23032169
Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework
NASA Astrophysics Data System (ADS)
Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.
2015-12-01
Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, A. T.
2014-04-20
This code adds an implementation of PMIX_Ring to the existing PM12 Library in the SLURM open source software package (Simple Linux Utility for Resource Management). PMIX_Ring executes a particular communication pattern that is used to bootstrap connections between MPI processes in a parallel job.
2015-03-26
8 January 2015]. [34] M. Pursifull, " DIY Drones," 1 August 2012. [Online]. Available: http://diydrones.com/group/arducopterusergroup/forum/topics...Camp Atterbury Range Safety course and has his range control safety card . 2. GENERAL MINIMIZING CONDITIONS The following general minimizing
Maritime Threat Detection using Plan Recognition
2012-11-01
logic with a probabilistic interpretation to represent expert domain knowledge [13]. We used Alchemy [14] to implement MLN-BR. It interfaces with the...Domingos, P., & Lowd, D. (2009). Markov logic: An interface layer for AI. Morgan & Claypool. [14] Alchemy (2011). Alchemy ─ Open source AI. [http
SNPversity: A web-based tool for visualizing diversity
USDA-ARS?s Scientific Manuscript database
Background: Many stand-alone desktop software suites exist to visualize single nucleotide polymorphisms (SNP) diversity, but web-based software that can be easily implemented and used for biological databases is absent. SNPversity was created to answer this need by building an open-source visualizat...
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
ERIC Educational Resources Information Center
Burton, Bill; Ogden, Kate; Walker, Becky; Bledsoe, Leslie; Hardage, Lauren
2018-01-01
For the last several years, the authors have implemented an integrated Mars Colony project for their third-grade classes. Students explored several considerations related to colonizing and inhabiting a new world, including food sources, types of citizens, transportation, and housing design. Nearly everything about the project was open-ended, full…
Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy
Duwé, Sam; Neely, Robert K.; Zhang, Jin
2012-01-01
Abstract. We present Localizer, a freely available and open source software package that implements the computational data processing inherent to several types of superresolution fluorescence imaging, such as localization (PALM/STORM/GSDIM) and fluctuation imaging (SOFI/pcSOFI). Localizer delivers high accuracy and performance and comes with a fully featured and easy-to-use graphical user interface but is also designed to be integrated in higher-level analysis environments. Due to its modular design, Localizer can be readily extended with new algorithms as they become available, while maintaining the same interface and performance. We provide front-ends for running Localizer from Igor Pro, Matlab, or as a stand-alone program. We show that Localizer performs favorably when compared with two existing superresolution packages, and to our knowledge is the only freely available implementation of SOFI/pcSOFI microscopy. By dramatically improving the analysis performance and ensuring the easy addition of current and future enhancements, Localizer strongly improves the usability of superresolution imaging in a variety of biomedical studies. PMID:23208219
Uni10: an open-source library for tensor network algorithms
NASA Astrophysics Data System (ADS)
Kao, Ying-Jer; Hsieh, Yun-Da; Chen, Pochung
2015-09-01
We present an object-oriented open-source library for developing tensor network algorithms written in C++ called Uni10. With Uni10, users can build a symmetric tensor from a collection of bonds, while the bonds are constructed from a list of quantum numbers associated with different quantum states. It is easy to label and permute the indices of the tensors and access a block associated with a particular quantum number. Furthermore a network class is used to describe arbitrary tensor network structure and to perform network contractions efficiently. We give an overview of the basic structure of the library and the hierarchy of the classes. We present examples of the construction of a spin-1 Heisenberg Hamiltonian and the implementation of the tensor renormalization group algorithm to illustrate the basic usage of the library. The library described here is particularly well suited to explore and fast prototype novel tensor network algorithms and to implement highly efficient codes for existing algorithms.
An Open Source Tool for Game Theoretic Health Data De-Identification.
Prasser, Fabian; Gaupp, James; Wan, Zhiyu; Xia, Weiyi; Vorobeychik, Yevgeniy; Kantarcioglu, Murat; Kuhn, Klaus; Malin, Brad
2017-01-01
Biomedical data continues to grow in quantity and quality, creating new opportunities for research and data-driven applications. To realize these activities at scale, data must be shared beyond its initial point of collection. To maintain privacy, healthcare organizations often de-identify data, but they assume worst-case adversaries, inducing high levels of data corruption. Recently, game theory has been proposed to account for the incentives of data publishers and recipients (who attempt to re-identify patients), but this perspective has been more hypothetical than practical. In this paper, we report on a new game theoretic data publication strategy and its integration into the open source software ARX. We evaluate our implementation with an analysis on the relationship between data transformation, utility, and efficiency for over 30,000 demographic records drawn from the U.S. Census Bureau. The results indicate that our implementation is scalable and can be combined with various data privacy risk and quality measures.
Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno
2009-08-01
We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.; ...
2018-04-19
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongnim; Baczewski, Andrew T.; Beaudet, Todd D.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performancemore » computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org.« less
NASA Astrophysics Data System (ADS)
Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val
2018-04-01
The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.
The use of an active controlled enclosure to attenuate sound radiation from a heavy radiator
NASA Astrophysics Data System (ADS)
Sun, Yao; Yang, Tiejun; Zhu, Minggang; Pan, Jie
2017-03-01
Active structural acoustical control usually experiences difficulty in the control of heavy sources or sources where direct applications of control forces are not practical. To overcome this difficulty, an active controlled enclosure, which forms a cavity with both flexible and open boundary, is employed. This configuration permits indirect implementation of active control in which the control inputs can be applied to subsidiary structures other than the sources. To determine the control effectiveness of the configuration, the vibro-acoustic behavior of the system, which consists of a top plate with an open, a sound cavity and a source panel, is investigated in this paper. A complete mathematical model of the system is formulated involving modified Fourier series formulations and the governing equations are solved using the Rayleigh-Ritz method. The coupling mechanisms of a partly opened cavity and a plate are analysed in terms of modal responses and directivity patterns. Furthermore, to attenuate sound power radiated from both the top panel and the open, two strategies are studied: minimizing the total radiated power and the cancellation of volume velocity. Moreover, three control configurations are compared, using a point force on the control panel (structural control), using a sound source in the cavity (acoustical control) and applying hybrid structural-acoustical control. In addition, the effects of boundary condition of the control panel on the sound radiation and control performance are discussed.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.
Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W
2017-01-18
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy
Warren, Sean C.; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A.; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Tate, Edward W.; Dunsby, Christopher; French, Paul M. W.
2017-01-01
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set. PMID:28190060
Scalable Unix commands for parallel processors : a high-performance implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, E.; Lusk, E.; Gropp, W.
2001-06-22
We describe a family of MPI applications we call the Parallel Unix Commands. These commands are natural parallel versions of common Unix user commands such as ls, ps, and find, together with a few similar commands particular to the parallel environment. We describe the design and implementation of these programs and present some performance results on a 256-node Linux cluster. The Parallel Unix Commands are open source and freely available.
Krintz, Chandra
2013-01-01
AppScale is an open source distributed software system that implements a cloud platform as a service (PaaS). AppScale makes cloud applications easy to deploy and scale over disparate cloud fabrics, implementing a set of APIs and architecture that also makes apps portable across the services they employ. AppScale is API-compatible with Google App Engine (GAE) and thus executes GAE applications on-premise or over other cloud infrastructures, without modification. PMID:23828721
Implementation and use of a highly available and innovative IaaS solution: the Cloud Area Padovana
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Biasotto, M.; Dal Pra, S.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Frizziero, E.; Gulmini, M.; Michelotto, M.; Sgaravatto, M.; Traldi, S.; Venaruzzo, M.; Verlato, M.; Zangrando, L.
2015-12-01
While in the business world the cloud paradigm is typically implemented purchasing resources and services from third party providers (e.g. Amazon), in the scientific environment there's usually the need of on-premises IaaS infrastructures which allow efficient usage of the hardware distributed among (and owned by) different scientific administrative domains. In addition, the requirement of open source adoption has led to the choice of products like OpenStack by many organizations. We describe a use case of the Italian National Institute for Nuclear Physics (INFN) which resulted in the implementation of a unique cloud service, called ’Cloud Area Padovana’, which encompasses resources spread over two different sites: the INFN Legnaro National Laboratories and the INFN Padova division. We describe how this IaaS has been implemented, which technologies have been adopted and how services have been configured in high-availability (HA) mode. We also discuss how identity and authorization management were implemented, adopting a widely accepted standard architecture based on SAML2 and OpenID: by leveraging the versatility of those standards the integration with authentication federations like IDEM was implemented. We also discuss some other innovative developments, such as a pluggable scheduler, implemented as an extension of the native OpenStack scheduler, which allows the allocation of resources according to a fair-share based model and which provides a persistent queuing mechanism for handling user requests that can not be immediately served. Tools, technologies, procedures used to install, configure, monitor, operate this cloud service are also discussed. Finally we present some examples that show how this IaaS infrastructure is being used.
2017-06-01
for GIFT Cloud, the web -based application version of the Generalized Intelligent Framework for Tutoring (GIFT). GIFT is a modular, open-source...external applications. GIFT is available to users with a GIFT Account at no cost. GIFT Cloud is an implementation of GIFT. This web -based application...section. Approved for public release; distribution is unlimited. 3 3. Requirements for GIFT Cloud GIFT Cloud is accessed via a web browser
Doukas, Charalampos; Goudas, Theodosis; Fischer, Simon; Mierswa, Ingo; Chatziioannou, Aristotle; Maglogiannis, Ilias
2010-01-01
This paper presents an open image-mining framework that provides access to tools and methods for the characterization of medical images. Several image processing and feature extraction operators have been implemented and exposed through Web Services. Rapid-Miner, an open source data mining system has been utilized for applying classification operators and creating the essential processing workflows. The proposed framework has been applied for the detection of salient objects in Obstructive Nephropathy microscopy images. Initial classification results are quite promising demonstrating the feasibility of automated characterization of kidney biopsy images.
CosmoQuest: A Cyber-Infrastructure for Crowdsourcing Planetary Surface Mapping and More
NASA Astrophysics Data System (ADS)
Gay, P.; Lehan, C.; Moore, J.; Bracey, G.; Gugliucci, N.
2014-04-01
The design and implementation of programs to crowdsource science presents a unique set of challenges to system architects, programmers, and designers. The CosmoQuest Citizen Science Builder (CSB) is an open source platform designed to take advantage of crowd computing and open source platforms to solve crowdsourcing problems in Planetary Science. CSB combines a clean user interface with a powerful back end to allow the quick design and deployment of citizen science sites that meet the needs of both the random Joe Public, and the detail driven Albert Professional. In this talk, the software will be overviewed, and the results of usability testing and accuracy testing with both citizen and professional scientists will be discussed.
Open source cardiology electronic health record development for DIGICARDIAC implementation
NASA Astrophysics Data System (ADS)
Dugarte, Nelson; Medina, Rubén.; Huiracocha, Lourdes; Rojas, Rubén.
2015-12-01
This article presents the development of a Cardiology Electronic Health Record (CEHR) system. Software consists of a structured algorithm designed under Health Level-7 (HL7) international standards. Novelty of the system is the integration of high resolution ECG (HRECG) signal acquisition and processing tools, patient information management tools and telecardiology tools. Acquisition tools are for management and control of the DIGICARDIAC electrocardiograph functions. Processing tools allow management of HRECG signal analysis searching for indicative patterns of cardiovascular pathologies. Telecardiology tools incorporation allows system communication with other health care centers decreasing access time to the patient information. CEHR system was completely developed using open source software. Preliminary results of process validation showed the system efficiency.
VAGUE: a graphical user interface for the Velvet assembler.
Powell, David R; Seemann, Torsten
2013-01-15
Velvet is a popular open-source de novo genome assembly software tool, which is run from the Unix command line. Most of the problems experienced by new users of Velvet revolve around constructing syntactically and semantically correct command lines, getting input files into acceptable formats and assessing the output. Here, we present Velvet Assembler Graphical User Environment (VAGUE), a multi-platform graphical front-end for Velvet. VAGUE aims to make sequence assembly accessible to a wider audience and to facilitate better usage amongst existing users of Velvet. VAGUE is implemented in JRuby and targets the Java Virtual Machine. It is available under an open-source GPLv2 licence from http://www.vicbioinformatics.com/. torsten.seemann@monash.edu.
Development of Thread-compatible Open Source Stack
NASA Astrophysics Data System (ADS)
Zimmermann, Lukas; Mars, Nidhal; Schappacher, Manuel; Sikora, Axel
2017-07-01
The Thread protocol is a recent development based on 6LoWPAN (IPv6 over IEEE 802.15.4), but with extensions regarding a more media independent approach, which - additionally - also promises true interoperability. To evaluate and analyse the operation of a Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been extended in order to comply with the Thread specification. The implementation covers Mesh Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under routing mechanism based on MAC short addresses. The development has been verified on a virtualization platform and allows dynamical establishment of network topologies based on Thread’s partitioning algorithm.
Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN
NASA Astrophysics Data System (ADS)
Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.
2013-12-01
Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third-party library to provide hydrologic flow, energy transport, and biogeochemical capability to the community land model, CLM, part of the open-source community earth system model (CESM) for climate. In this presentation, the advantages and disadvantages of open source software development in support of geoscience research at government laboratories, universities, and the private sector are discussed. Since the code is open-source (i.e. it's transparent and readily available to competitors), the PFLOTRAN team's development strategy within a competitive research environment is presented. Finally, the developers discuss their approach to object-oriented programming and the leveraging of modern Fortran in support of collaborative geoscience research as the Fortran standard evolves among compiler vendors.
OpenElectrophy: An Electrophysiological Data- and Analysis-Sharing Framework
Garcia, Samuel; Fourcaud-Trocmé, Nicolas
2008-01-01
Progress in experimental tools and design is allowing the acquisition of increasingly large datasets. Storage, manipulation and efficient analyses of such large amounts of data is now a primary issue. We present OpenElectrophy, an electrophysiological data- and analysis-sharing framework developed to fill this niche. It stores all experiment data and meta-data in a single central MySQL database, and provides a graphic user interface to visualize and explore the data, and a library of functions for user analysis scripting in Python. It implements multiple spike-sorting methods, and oscillation detection based on the ridge extraction methods due to Roux et al. (2007). OpenElectrophy is open source and is freely available for download at http://neuralensemble.org/trac/OpenElectrophy. PMID:19521545
Support of Multidimensional Parallelism in the OpenMP Programming Model
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Jost, Gabriele
2003-01-01
OpenMP is the current standard for shared-memory programming. While providing ease of parallel programming, the OpenMP programming model also has limitations which often effect the scalability of applications. Examples for these limitations are work distribution and point-to-point synchronization among threads. We propose extensions to the OpenMP programming model which allow the user to easily distribute the work in multiple dimensions and synchronize the workflow among the threads. The proposed extensions include four new constructs and the associated runtime library. They do not require changes to the source code and can be implemented based on the existing OpenMP standard. We illustrate the concept in a prototype translator and test with benchmark codes and a cloud modeling code.
HYDRA Hyperspectral Data Research Application Tom Rink and Tom Whittaker
NASA Astrophysics Data System (ADS)
Rink, T.; Whittaker, T.
2005-12-01
HYDRA is a freely available, easy to install tool for visualization and analysis of large local or remote hyper/multi-spectral datasets. HYDRA is implemented on top of the open source VisAD Java library via Jython - the Java implementation of the user friendly Python programming language. VisAD provides data integration, through its generalized data model, user-display interaction and display rendering. Jython has an easy to read, concise, scripting-like, syntax which eases software development. HYDRA allows data sharing of large datasets through its support of the OpenDAP and OpenADDE server-client protocols. The users can explore and interrogate data, and subset in physical and/or spectral space to isolate key areas of interest for further analysis without having to download an entire dataset. It also has an extensible data input architecture to recognize new instruments and understand different local file formats, currently NetCDF and HDF4 are supported.
NASA Astrophysics Data System (ADS)
Girod, L.; Nuth, C.; Kääb, A.
2015-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.
WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves
NASA Astrophysics Data System (ADS)
Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise
2017-10-01
Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.
García-Rivera, Santiago; Lizaso, Jose Luis Sánchez; Millán, Jose María Bellido
2017-08-15
The composition, spatial distribution and source of marine litter in the Spanish Southeast Mediterranean were assessed. The data proceed from a marine litter retention programme implemented by commercial trawlers and were analysed by GIS. By weight, 75.9% was plastic, metal and glass. Glass and plastics were mainly found close to the coast. A high concentration of metal was observed in some isolated zones of both open and coastal waters. Fishing activity was the source of 29.16% of the macro-marine litter, almost 68.1% of the plastics, and 25.1% of the metal. The source of the other 60.84% could not be directly identified, revealing the high degree of uncertainty regarding its specific origin. Indirectly however, a qualitative analysis of marine traffic shows that the likely sources were merchant ships mainly in open waters and recreational and fishing vessels in coastal waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
CATCHING THE WIND: A LOW COST METHOD FOR WIND POWER SITE ASSESSMENT
Our Phase I successes involve the installation of a wind monitoring station in Humboldt County, the evaluation of four different measure-correlate-predict methods for wind site assessment, and the creation of SWEET, an open source software package implementing the prediction ...
75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... Technologies and Software Defined Radios AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY... concerning the use of open source software to implement security features in software defined radios (SDRs... ongoing technical developments in cognitive and software defined radio (SDR) technologies. 2. On April 20...
Cinfony – combining Open Source cheminformatics toolkits behind a common interface
O'Boyle, Noel M; Hutchison, Geoffrey R
2008-01-01
Background Open Source cheminformatics toolkits such as OpenBabel, the CDK and the RDKit share the same core functionality but support different sets of file formats and forcefields, and calculate different fingerprints and descriptors. Despite their complementary features, using these toolkits in the same program is difficult as they are implemented in different languages (C++ versus Java), have different underlying chemical models and have different application programming interfaces (APIs). Results We describe Cinfony, a Python module that presents a common interface to all three of these toolkits, allowing the user to easily combine methods and results from any of the toolkits. In general, the run time of the Cinfony modules is almost as fast as accessing the underlying toolkits directly from C++ or Java, but Cinfony makes it much easier to carry out common tasks in cheminformatics such as reading file formats and calculating descriptors. Conclusion By providing a simplified interface and improving interoperability, Cinfony makes it easy to combine complementary features of OpenBabel, the CDK and the RDKit. PMID:19055766
IGT-Open: An open-source, computerized version of the Iowa Gambling Task.
Dancy, Christopher L; Ritter, Frank E
2017-06-01
The Iowa Gambling Task (IGT) is commonly used to understand the processes involved in decision-making. Though the task was originally run without a computer, using a computerized version of the task has become typical. These computerized versions of the IGT are useful, because they can make the task more standardized across studies and allow for the task to be used in environments where a physical version of the task may be difficult or impossible to use (e.g., while collecting brain imaging data). Though these computerized versions of the IGT have been useful for experimentation, having multiple software implementations of the task could present reliability issues. We present an open-source software version of the Iowa Gambling Task (called IGT-Open) that allows for millisecond visual presentation accuracy and is freely available to be used and modified. This software has been used to collect data from human subjects and also has been used to run model-based simulations with computational process models developed to run in the ACT-R architecture.
Duregger, Katharina; Hayn, Dieter; Nitzlnader, Michael; Kropf, Martin; Falgenhauer, Markus; Ladenstein, Ruth; Schreier, Günter
2016-01-01
Electronic Patient Reported Outcomes (ePRO) gathered using telemonitoring solutions might be a valuable source of information in rare cancer research. The objective of this paper was to develop a concept and implement a prototype for introducing ePRO into the existing neuroblastoma research network by applying Near Field Communication and mobile technology. For physicians, an application was developed for registering patients within the research network and providing patients with an ID card and a PIN for authentication when transmitting telemonitoring data to the Electronic Data Capture system OpenClinica. For patients, a previously developed telemonitoring system was extended by a Simple Object Access Protocol (SOAP) interface for transmitting nine different health parameters and toxicities. The concept was fully implemented on the front-end side. The developed application for physicians was prototypically implemented and the mobile application of the telemonitoring system was successfully connected to OpenClinica. Future work will focus on the implementation of the back-end features.
IQM: An Extensible and Portable Open Source Application for Image and Signal Analysis in Java
Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2015-01-01
Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM’s image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis. PMID:25612319
IQM: an extensible and portable open source application for image and signal analysis in Java.
Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2015-01-01
Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM's image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis.
GRACKLE: a chemistry and cooling library for astrophysics
NASA Astrophysics Data System (ADS)
Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh
2017-04-01
We present the GRACKLE chemistry and cooling library for astrophysical simulations and models. GRACKLE provides a treatment of non-equilibrium primordial chemistry and cooling for H, D and He species, including H2 formation on dust grains; tabulated primordial and metal cooling; multiple ultraviolet background models; and support for radiation transfer and arbitrary heat sources. The library has an easily implementable interface for simulation codes written in C, C++ and FORTRAN as well as a PYTHON interface with added convenience functions for semi-analytical models. As an open-source project, GRACKLE provides a community resource for accessing and disseminating astrochemical data and numerical methods. We present the full details of the core functionality, the simulation and PYTHON interfaces, testing infrastructure, performance and range of applicability. GRACKLE is a fully open-source project and new contributions are welcome.
Source-separated urine opens golden opportunities for microbial electrochemical technologies.
Ledezma, Pablo; Kuntke, Philipp; Buisman, Cees J N; Keller, Jürg; Freguia, Stefano
2015-04-01
The food security of a booming global population demands a continuous and sustainable supply of fertilisers. Their current once-through use [especially of the macronutrients nitrogen (N), phosphorus (P), and potassium (K)] requires a paradigm shift towards recovery and reuse. In the case of source-separated urine, efficient recovery could supply 20% of current macronutrient usage and remove 50-80% of nutrients present in wastewater. However, suitable technology options are needed to allow nutrients to be separated from urine close to the source. Thus far none of the proposed solutions has been widely implemented due to intrinsic limitations. Microbial electrochemical technologies (METs) have proved to be technically and economically viable for N recovery from urine, opening the path for novel decentralised systems focused on nutrient recovery and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
The General Mission Analysis Tool (GMAT): Current Features And Adding Custom Functionality
NASA Technical Reports Server (NTRS)
Conway, Darrel J.; Hughes, Steven P.
2010-01-01
The General Mission Analysis Tool (GMAT) is a software system for trajectory optimization, mission analysis, trajectory estimation, and prediction developed by NASA, the Air Force Research Lab, and private industry. GMAT's design and implementation are based on four basic principles: open source visibility for both the source code and design documentation; platform independence; modular design; and user extensibility. The system, released under the NASA Open Source Agreement, runs on Windows, Mac and Linux. User extensions, loaded at run time, have been built for optimization, trajectory visualization, force model extension, and estimation, by parties outside of GMAT's development group. The system has been used to optimize maneuvers for the Lunar Crater Observation and Sensing Satellite (LCROSS) and ARTEMIS missions and is being used for formation design and analysis for the Magnetospheric Multiscale Mission (MMS).
PRISM: An open source framework for the interactive design of GPU volume rendering shaders.
Drouin, Simon; Collins, D Louis
2018-01-01
Direct volume rendering has become an essential tool to explore and analyse 3D medical images. Despite several advances in the field, it remains a challenge to produce an image that highlights the anatomy of interest, avoids occlusion of important structures, provides an intuitive perception of shape and depth while retaining sufficient contextual information. Although the computer graphics community has proposed several solutions to address specific visualization problems, the medical imaging community still lacks a general volume rendering implementation that can address a wide variety of visualization use cases while avoiding complexity. In this paper, we propose a new open source framework called the Programmable Ray Integration Shading Model, or PRISM, that implements a complete GPU ray-casting solution where critical parts of the ray integration algorithm can be replaced to produce new volume rendering effects. A graphical user interface allows clinical users to easily experiment with pre-existing rendering effect building blocks drawn from an open database. For programmers, the interface enables real-time editing of the code inside the blocks. We show that in its default mode, the PRISM framework produces images very similar to those produced by a widely-adopted direct volume rendering implementation in VTK at comparable frame rates. More importantly, we demonstrate the flexibility of the framework by showing how several volume rendering techniques can be implemented in PRISM with no more than a few lines of code. Finally, we demonstrate the simplicity of our system in a usability study with 5 medical imaging expert subjects who have none or little experience with volume rendering. The PRISM framework has the potential to greatly accelerate development of volume rendering for medical applications by promoting sharing and enabling faster development iterations and easier collaboration between engineers and clinical personnel.
PRISM: An open source framework for the interactive design of GPU volume rendering shaders
Collins, D. Louis
2018-01-01
Direct volume rendering has become an essential tool to explore and analyse 3D medical images. Despite several advances in the field, it remains a challenge to produce an image that highlights the anatomy of interest, avoids occlusion of important structures, provides an intuitive perception of shape and depth while retaining sufficient contextual information. Although the computer graphics community has proposed several solutions to address specific visualization problems, the medical imaging community still lacks a general volume rendering implementation that can address a wide variety of visualization use cases while avoiding complexity. In this paper, we propose a new open source framework called the Programmable Ray Integration Shading Model, or PRISM, that implements a complete GPU ray-casting solution where critical parts of the ray integration algorithm can be replaced to produce new volume rendering effects. A graphical user interface allows clinical users to easily experiment with pre-existing rendering effect building blocks drawn from an open database. For programmers, the interface enables real-time editing of the code inside the blocks. We show that in its default mode, the PRISM framework produces images very similar to those produced by a widely-adopted direct volume rendering implementation in VTK at comparable frame rates. More importantly, we demonstrate the flexibility of the framework by showing how several volume rendering techniques can be implemented in PRISM with no more than a few lines of code. Finally, we demonstrate the simplicity of our system in a usability study with 5 medical imaging expert subjects who have none or little experience with volume rendering. The PRISM framework has the potential to greatly accelerate development of volume rendering for medical applications by promoting sharing and enabling faster development iterations and easier collaboration between engineers and clinical personnel. PMID:29534069
Open-source LIMS in Vietnam: The path toward sustainability and host country ownership.
Landgraf, Kenneth M; Kakkar, Reshma; Meigs, Michelle; Jankauskas, Paul T; Phan, Thi Thu Huong; Nguyen, Viet Nga; Nguyen, Duy Thai; Duong, Thanh Tung; Nguyen, Thi Hoa; Bond, Kyle B
2016-09-01
The objectives of this case report are as follows: to describe the process of establishing a national laboratory information management system (LIMS) program for clinical and public health laboratories in Vietnam; to evaluate the outcomes and lessons learned; and to present a model for sustainability based on the program outcomes that could be applied to diverse laboratory programs. This case report comprises a review of program documentation and records, including planning and budgetary records of the donor, monthly reports from the implementer, direct observation, and ad-hoc field reports from technical advisors and governmental agencies. Additional data on program efficacy and user acceptance were collected from routine monitoring of laboratory policies and operational practices. LIMS software was implemented at 38 hospital, public health and HIV testing laboratories in Vietnam. This LIMS was accepted by users and program managers as a useful tool to support laboratory processes. Implementation cost per laboratory and average duration of deployment decreased over time, and project stakeholders initiated transition of financing (from the donor to local institutions) and of system maintenance functions (from the implementer to governmental and site-level staff). Collaboration between the implementer in Vietnam and the global LIMS user community was strongly established, and knowledge was successfully transferred to staff within Vietnam. Implementing open-sourced LIMS with local development and support was a feasible approach towards establishing a sustainable laboratory informatics program that met the needs of health laboratories in Vietnam. Further effort to institutionalize IT support capacity within key government agencies is ongoing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Smokefree implementation in Colombia: Monitoring, outside funding, and business support
Uang, Randy; Crosbie, Eric; Glantz, Stanton A
2017-01-01
Objective To analyze successful national smokefree policy implementation in Colombia, a middle income country. Materials and methods Key informants at the national and local levels were interviewed and news sources and government ministry resolutions were reviewed. Results Colombia’s Ministry of Health coordinated local implementation practices, which were strongest in larger cities with supportive leadership. Nongovernmental organizations provided technical assistance and highlighted noncompliance. Organizations outside Colombia funded some of these efforts. The bar owners’ association provided concerted education campaigns. Tobacco interests did not openly challenge implementation. Conclusions Health organization monitoring, external funding, and hospitality industry support contributed to effective implementation, and could be cultivated in other low and middle income countries. PMID:28562713
A non-invasive implementation of a mixed domain decomposition method for frictional contact problems
NASA Astrophysics Data System (ADS)
Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane
2017-11-01
A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.
NASA Astrophysics Data System (ADS)
Wu, Yanling
2018-05-01
In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.
Simulating large atmospheric phase screens using a woofer-tweeter algorithm.
Buscher, David F
2016-10-03
We describe an algorithm for simulating atmospheric wavefront perturbations over ranges of spatial and temporal scales spanning more than 4 orders of magnitude. An open-source implementation of the algorithm written in Python can simulate the evolution of the perturbations more than an order-of-magnitude faster than real time. Testing of the implementation using metrics appropriate to adaptive optics systems and long-baseline interferometers show accuracies at the few percent level or better.
Evaluation and Implementation of Media-Independent Handover in Hastily Formed Networks
2013-03-01
the Media Independent Handover ( MIH ) in HFNs can be an adequate solution for these problems. MIH could be the solution to not only the mobility...and roaming problems but also for other HFN problems due to the intelligent layer-two functions it offers. We tried to combine MIH and Session...showed the limitations of MIH and its open source implementation (ODTONE). We were also able to describe the steps needed for the integration of SIP
Large-scale virtual screening on public cloud resources with Apache Spark.
Capuccini, Marco; Ahmed, Laeeq; Schaal, Wesley; Laure, Erwin; Spjuth, Ola
2017-01-01
Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against [Formula: see text]2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries. Our implementation is named Spark-VS and it is freely available as open source from GitHub (https://github.com/mcapuccini/spark-vs).Graphical abstract.
Types for Correct Concurrent API Usage
2010-12-01
unique, full Here g is the state guarantee and A is the current abstract state of the object referenced by r. The ⊗ symbol is called the “ tensor ...to discover resources on a heterogeneous network. Votebox is an open-source implementation of software for voting machines. The Blocking queuemethod
2010-11-01
peer, racoon (IKE-daemon) will start authenticating using certificates. After a successful authentication, IPSec security associations will be set up...colour had credentials from one CA. Racoon and ipsec-tools are open-source software, implementing IKE and IPSec. Validation of the PCN Concept; Mobility
The Prodiguer Messaging Platform
NASA Astrophysics Data System (ADS)
Greenslade, Mark; Denvil, Sebastien; Raciazek, Jerome; Carenton, Nicolas; Levavasseur, Guillame
2014-05-01
CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output (data and meta-data) are just some of the complexities that CONVERGENCE aims to resolve. The Institut Pierre Simon Laplace (IPSL) is responsible for running climate simulations upon a set of heterogenous HPC environments within France. With heterogeneity comes added complexity in terms of simulation instrumentation and control. Obtaining a global perspective upon the state of all simulations running upon all HPC environments has hitherto been problematic. In this presentation we detail how, within the context of CONVERGENCE, the implementation of the Prodiguer messaging platform resolves complexity and permits the development of real-time applications such as: 1. a simulation monitoring dashboard; 2. a simulation metrics visualizer; 3. an automated simulation runtime notifier; 4. an automated output data & meta-data publishing pipeline; The Prodiguer messaging platform leverages a widely used open source message broker software called RabbitMQ. RabbitMQ itself implements the Advanced Message Queue Protocol (AMPQ). Hence it will be demonstrated that the Prodiguer messaging platform is built upon both open source and open standards.
Taylor, Philip D; Brzustowski, John M; Matkovich, Carolyn; Peckford, Michael L; Wilson, Dave
2010-10-26
Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.
2010-01-01
Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets. PMID:20977735
A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software
NASA Technical Reports Server (NTRS)
Boppana, Abhishektha; Sefcik, Ryan; Meyers, Jerry G.; Lewandowski, Beth E.
2016-01-01
This project, performed in support of the NASA GRC Space Academy summer program, sought to develop an open-source workflow methodology that segmented medical image data, created a 3D model from the segmented data, and prepared the model for finite-element analysis. In an initial step, a technological survey evaluated the performance of various existing open-source software that claim to perform these tasks. However, the survey concluded that no single software exhibited the wide array of functionality required for the potential NASA application in the area of bone, muscle and bio fluidic studies. As a result, development of a series of Python scripts provided the bridging mechanism to address the shortcomings of the available open source tools. The implementation of the VTK library provided the most quick and effective means of segmenting regions of interest from the medical images; it allowed for the export of a 3D model by using the marching cubes algorithm to build a surface mesh. To facilitate the development of the model domain from this extracted information required a surface mesh to be processed in the open-source software packages Blender and Gmsh. The Preview program of the FEBio suite proved to be sufficient for volume filling the model with an unstructured mesh and preparing boundaries specifications for finite element analysis. To fully allow FEM modeling, an in house developed Python script allowed assignment of material properties on an element by element basis by performing a weighted interpolation of voxel intensity of the parent medical image correlated to published information of image intensity to material properties, such as ash density. A graphical user interface combined the Python scripts and other software into a user friendly interface. The work using Python scripts provides a potential alternative to expensive commercial software and inadequate, limited open-source freeware programs for the creation of 3D computational models. More work will be needed to validate this approach in creating finite-element models.
GNU Data Language (GDL) - a free and open-source implementation of IDL
NASA Astrophysics Data System (ADS)
Arabas, Sylwester; Schellens, Marc; Coulais, Alain; Gales, Joel; Messmer, Peter
2010-05-01
GNU Data Language (GDL) is developed with the aim of providing an open-source drop-in replacement for the ITTVIS's Interactive Data Language (IDL). It is free software developed by an international team of volunteers led by Marc Schellens - the project's founder (a list of contributors is available on the project's website). The development is hosted on SourceForge where GDL continuously ranks in the 99th percentile of most active projects. GDL with its library routines is designed as a tool for numerical data analysis and visualisation. As its proprietary counterparts (IDL and PV-WAVE), GDL is used particularly in geosciences and astronomy. GDL is dynamically-typed, vectorized and has object-oriented programming capabilities. The library routines handle numerical calculations, data visualisation, signal/image processing, interaction with host OS and data input/output. GDL supports several data formats such as netCDF, HDF4, HDF5, GRIB, PNG, TIFF, DICOM, etc. Graphical output is handled by X11, PostScript, SVG or z-buffer terminals, the last one allowing output to be saved in a variety of raster graphics formats. GDL is an incremental compiler with integrated debugging facilities. It is written in C++ using the ANTLR language-recognition framework. Most of the library routines are implemented as interfaces to open-source packages such as GNU Scientific Library, PLPlot, FFTW, ImageMagick, and others. GDL features a Python bridge (Python code can be called from GDL; GDL can be compiled as a Python module). Extensions to GDL can be written in C++, GDL, and Python. A number of open software libraries written in IDL, such as the NASA Astronomy Library, MPFIT, CMSVLIB and TeXtoIDL are fully or partially functional under GDL. Packaged versions of GDL are available for several Linux distributions and Mac OS X. The source code compiles on some other UNIX systems, including BSD and OpenSolaris. The presentation will cover the current status of the project, the key accomplishments, and the weaknesses - areas where contributions and users' feedback are welcome! While still being in beta-stage of development, GDL proved to be a useful tool for classroom work on data analysis. Its usage for teaching meteorological-data processing at the University of Warsaw will serve as an example.
An Open Source modular platform for hydrological model implementation
NASA Astrophysics Data System (ADS)
Kolberg, Sjur; Bruland, Oddbjørn
2010-05-01
An implementation framework for setup and evaluation of spatio-temporal models is developed, forming a highly modularized distributed model system. The ENKI framework allows building space-time models for hydrological or other environmental purposes, from a suite of separately compiled subroutine modules. The approach makes it easy for students, researchers and other model developers to implement, exchange, and test single routines in a fixed framework. The open-source license and modular design of ENKI will also facilitate rapid dissemination of new methods to institutions engaged in operational hydropower forecasting or other water resource management. Written in C++, ENKI uses a plug-in structure to build a complete model from separately compiled subroutine implementations. These modules contain very little code apart from the core process simulation, and are compiled as dynamic-link libraries (dll). A narrow interface allows the main executable to recognise the number and type of the different variables in each routine. The framework then exposes these variables to the user within the proper context, ensuring that time series exist for input variables, initialisation for states, GIS data sets for static map data, manually or automatically calibrated values for parameters etc. ENKI is designed to meet three different levels of involvement in model construction: • Model application: Running and evaluating a given model. Regional calibration against arbitrary data using a rich suite of objective functions, including likelihood and Bayesian estimation. Uncertainty analysis directed towards input or parameter uncertainty. o Need not: Know the model's composition of subroutines, or the internal variables in the model, or the creation of method modules. • Model analysis: Link together different process methods, including parallel setup of alternative methods for solving the same task. Investigate the effect of different spatial discretization schemes. o Need not: Write or compile computer code, handle file IO for each modules, • Routine implementation and testing. Implementation of new process-simulating methods/equations, specialised objective functions or quality control routines, testing of these in an existing framework. o Need not: Implement user or model interface for the new routine, IO handling, administration of model setup and run, calibration and validation routines etc. From being developed for Norway's largest hydropower producer Statkraft, ENKI is now being turned into an Open Source project. At the time of writing, the licence and the project administration is not established. Also, it remains to port the application to other compilers and computer platforms. However, we hope that ENKI will prove useful for both academic and operational users.
KDEP: A resource for calculating particle deposition in the respiratory tract
Klumpp, John A.; Bertelli, Luiz
2017-08-01
This study presents KDEP, an open-source implementation of the ICRP lung deposition model developed by the authors. KDEP, which is freely available to the public, can be used to calculate lung deposition values under a variety of different conditions using the ICRP methodology. The paper describes how KDEP implements this model and discusses some key points of the implementation. The published lung deposition values for intakes by workers were reproduced, and new deposition values were calculated for intakes by members of the public. KDEP can be obtained for free at github.com or by emailing the authors directly.
Kudi: A free open-source python library for the analysis of properties along reaction paths.
Vogt-Geisse, Stefan
2016-05-01
With increasing computational capabilities, an ever growing amount of data is generated in computational chemistry that contains a vast amount of chemically relevant information. It is therefore imperative to create new computational tools in order to process and extract this data in a sensible way. Kudi is an open source library that aids in the extraction of chemical properties from reaction paths. The straightforward structure of Kudi makes it easy to use for users and allows for effortless implementation of new capabilities, and extension to any quantum chemistry package. A use case for Kudi is shown for the tautomerization reaction of formic acid. Kudi is available free of charge at www.github.com/stvogt/kudi.
NASA Astrophysics Data System (ADS)
Yoo, Kyung-Hyan; Gretzel, Ulrike
Whether users are likely to accept the recommendations provided by a recommender system is of utmost importance to system designers and the marketers who implement them. By conceptualizing the advice seeking and giving relationship as a fundamentally social process, important avenues for understanding the persuasiveness of recommender systems open up. Specifically, research regarding the influence of source characteristics, which is abundant in the context of humanhuman relationships, can provide an important framework for identifying potential influence factors. This chapter reviews the existing literature on source characteristics in the context of human-human, human-computer, and human-recommender system interactions. It concludes that many social cues that have been identified as influential in other contexts have yet to be implemented and tested with respect to recommender systems. Implications for recommender system research and design are discussed.
A generic open-source software framework supporting scenario simulations in bioterrorist crises.
Falenski, Alexander; Filter, Matthias; Thöns, Christian; Weiser, Armin A; Wigger, Jan-Frederik; Davis, Matthew; Douglas, Judith V; Edlund, Stefan; Hu, Kun; Kaufman, James H; Appel, Bernd; Käsbohrer, Annemarie
2013-09-01
Since the 2001 anthrax attack in the United States, awareness of threats originating from bioterrorism has grown. This led internationally to increased research efforts to improve knowledge of and approaches to protecting human and animal populations against the threat from such attacks. A collaborative effort in this context is the extension of the open-source Spatiotemporal Epidemiological Modeler (STEM) simulation and modeling software for agro- or bioterrorist crisis scenarios. STEM, originally designed to enable community-driven public health disease models and simulations, was extended with new features that enable integration of proprietary data as well as visualization of agent spread along supply and production chains. STEM now provides a fully developed open-source software infrastructure supporting critical modeling tasks such as ad hoc model generation, parameter estimation, simulation of scenario evolution, estimation of effects of mitigation or management measures, and documentation. This open-source software resource can be used free of charge. Additionally, STEM provides critical features like built-in worldwide data on administrative boundaries, transportation networks, or environmental conditions (eg, rainfall, temperature, elevation, vegetation). Users can easily combine their own confidential data with built-in public data to create customized models of desired resolution. STEM also supports collaborative and joint efforts in crisis situations by extended import and export functionalities. In this article we demonstrate specifically those new software features implemented to accomplish STEM application in agro- or bioterrorist crisis scenarios.
Open-source image registration for MRI-TRUS fusion-guided prostate interventions.
Fedorov, Andriy; Khallaghi, Siavash; Sánchez, C Antonio; Lasso, Andras; Fels, Sidney; Tuncali, Kemal; Sugar, Emily Neubauer; Kapur, Tina; Zhang, Chenxi; Wells, William; Nguyen, Paul L; Abolmaesumi, Purang; Tempany, Clare
2015-06-01
We propose two software tools for non-rigid registration of MRI and transrectal ultrasound (TRUS) images of the prostate. Our ultimate goal is to develop an open-source solution to support MRI-TRUS fusion image guidance of prostate interventions, such as targeted biopsy for prostate cancer detection and focal therapy. It is widely hypothesized that image registration is an essential component in such systems. The two non-rigid registration methods are: (1) a deformable registration of the prostate segmentation distance maps with B-spline regularization and (2) a finite element-based deformable registration of the segmentation surfaces in the presence of partial data. We evaluate the methods retrospectively using clinical patient image data collected during standard clinical procedures. Computation time and Target Registration Error (TRE) calculated at the expert-identified anatomical landmarks were used as quantitative measures for the evaluation. The presented image registration tools were capable of completing deformable registration computation within 5 min. Average TRE was approximately 3 mm for both methods, which is comparable with the slice thickness in our MRI data. Both tools are available under nonrestrictive open-source license. We release open-source tools that may be used for registration during MRI-TRUS-guided prostate interventions. Our tools implement novel registration approaches and produce acceptable registration results. We believe these tools will lower the barriers in development and deployment of interventional research solutions and facilitate comparison with similar tools.
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M
2009-09-30
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Building integrated business environments: analysing open-source ESB
NASA Astrophysics Data System (ADS)
Martínez-Carreras, M. A.; García Jimenez, F. J.; Gómez Skarmeta, A. F.
2015-05-01
Integration and interoperability are two concepts that have gained significant prominence in the business field, providing tools which enable enterprise application integration (EAI). In this sense, enterprise service bus (ESB) has played a crucial role as the underpinning technology for creating integrated environments in which companies may connect all their legacy-applications. However, the potential of these technologies remains unknown and some important features are not used to develop suitable business environments. The aim of this paper is to describe and detail the elements for building the next generation of integrated business environments (IBE) and to analyse the features of ESBs as the core of this infrastructure. For this purpose, we evaluate how well-known open-source ESB products fulfil these needs. Moreover, we introduce a scenario in which the collaborative system 'Alfresco' is integrated in the business infrastructure. Finally, we provide a comparison of the different open-source ESBs available for IBE requirements. According to this study, Fuse ESB provides the best results, considering features such as support for a wide variety of standards and specifications, documentation and implementation, security, advanced business trends, ease of integration and performance.
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Bowman, Matthew O.; Cubillos, Patricio E.; Stemm, Madison; Foster, Andrew
2014-11-01
We present a new, open-source, Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. TEA uses the Gibbs-free-energy minimization method with an iterative Lagrangian optimization scheme. It initializes the radiative-transfer calculation in our Bayesian Atmospheric Radiative Transfer (BART) code. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. The code is tested against the original method developed by White at al. (1958), the analytic method developed by Burrows and Sharp (1999), and the Newton-Raphson method implemented in the open-source Chemical Equilibrium with Applications (CEA) code. TEA is written in Python and is available to the community via the open-source development site GitHub.com. We also present BART applied to eclipse depths of WASP-43b exoplanet, constraining atmospheric thermal and chemical parameters. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Ibmdbpy-spatial : An Open-source implementation of in-database geospatial analytics in Python
NASA Astrophysics Data System (ADS)
Roy, Avipsa; Fouché, Edouard; Rodriguez Morales, Rafael; Moehler, Gregor
2017-04-01
As the amount of spatial data acquired from several geodetic sources has grown over the years and as data infrastructure has become more powerful, the need for adoption of in-database analytic technology within geosciences has grown rapidly. In-database analytics on spatial data stored in a traditional enterprise data warehouse enables much faster retrieval and analysis for making better predictions about risks and opportunities, identifying trends and spot anomalies. Although there are a number of open-source spatial analysis libraries like geopandas and shapely available today, most of them have been restricted to manipulation and analysis of geometric objects with a dependency on GEOS and similar libraries. We present an open-source software package, written in Python, to fill the gap between spatial analysis and in-database analytics. Ibmdbpy-spatial provides a geospatial extension to the ibmdbpy package, implemented in 2015. It provides an interface for spatial data manipulation and access to in-database algorithms in IBM dashDB, a data warehouse platform with a spatial extender that runs as a service on IBM's cloud platform called Bluemix. Working in-database reduces the network overload, as the complete data need not be replicated into the user's local system altogether and only a subset of the entire dataset can be fetched into memory in a single instance. Ibmdbpy-spatial accelerates Python analytics by seamlessly pushing operations written in Python into the underlying database for execution using the dashDB spatial extender, thereby benefiting from in-database performance-enhancing features, such as columnar storage and parallel processing. The package is currently supported on Python versions from 2.7 up to 3.4. The basic architecture of the package consists of three main components - 1) a connection to the dashDB represented by the instance IdaDataBase, which uses a middleware API namely - pypyodbc or jaydebeapi to establish the database connection via ODBC or JDBC respectively, 2) an instance to represent the spatial data stored in the database as a dataframe in Python, called the IdaGeoDataFrame, with a specific geometry attribute which recognises a planar geometry column in dashDB and 3) Python wrappers for spatial functions like within, distance, area, buffer} and more which dashDB currently supports to make the querying process from Python much simpler for the users. The spatial functions translate well-known geopandas-like syntax into SQL queries utilising the database connection to perform spatial operations in-database and can operate on single geometries as well two different geometries from different IdaGeoDataFrames. The in-database queries strictly follow the standards of OpenGIS Implementation Specification for Geographic information - Simple feature access for SQL. The results of the operations obtained can thereby be accessed dynamically via interactive Jupyter notebooks from any system which supports Python, without any additional dependencies and can also be combined with other open source libraries such as matplotlib and folium in-built within Jupyter notebooks for visualization purposes. We built a use case to analyse crime hotspots in New York city to validate our implementation and visualized the results as a choropleth map for each borough.
Rocca-Serra, Philippe; Brandizi, Marco; Maguire, Eamonn; Sklyar, Nataliya; Taylor, Chris; Begley, Kimberly; Field, Dawn; Harris, Stephen; Hide, Winston; Hofmann, Oliver; Neumann, Steffen; Sterk, Peter; Tong, Weida; Sansone, Susanna-Assunta
2010-01-01
Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories. Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org Contact: isatools@googlegroups.com PMID:20679334
NASA Astrophysics Data System (ADS)
Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.
2018-02-01
The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.
Kalpathy-Cramer, Jayashree; Awan, Musaddiq; Bedrick, Steven; Rasch, Coen R N; Rosenthal, David I; Fuller, Clifton D
2014-02-01
Modern radiotherapy requires accurate region of interest (ROI) inputs for plan optimization and delivery. Target delineation, however, remains operator-dependent and potentially serves as a major source of treatment delivery error. In order to optimize this critical, yet observer-driven process, a flexible web-based platform for individual and cooperative target delineation analysis and instruction was developed in order to meet the following unmet needs: (1) an open-source/open-access platform for automated/semiautomated quantitative interobserver and intraobserver ROI analysis and comparison, (2) a real-time interface for radiation oncology trainee online self-education in ROI definition, and (3) a source for pilot data to develop and validate quality metrics for institutional and cooperative group quality assurance efforts. The resultant software, Target Contour Testing/Instructional Computer Software (TaCTICS), developed using Ruby on Rails, has since been implemented and proven flexible, feasible, and useful in several distinct analytical and research applications.
KiT: a MATLAB package for kinetochore tracking.
Armond, Jonathan W; Vladimirou, Elina; McAinsh, Andrew D; Burroughs, Nigel J
2016-06-15
During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. Supplementary data are available at Bioinformatics online. jonathan.armond@warwick.ac.uk. © The Author 2016. Published by Oxford University Press.
Common Approach to Geoprocessing of Uav Data across Application Domains
NASA Astrophysics Data System (ADS)
Percivall, G. S.; Reichardt, M.; Taylor, T.
2015-08-01
UAVs are a disruptive technology bringing new geographic data and information to many application domains. UASs are similar to other geographic imagery systems so existing frameworks are applicable. But the diversity of UAVs as platforms along with the diversity of available sensors are presenting challenges in the processing and creation of geospatial products. Efficient processing and dissemination of the data is achieved using software and systems that implement open standards. The challenges identified point to the need for use of existing standards and extending standards. Results from the use of the OGC Sensor Web Enablement set of standards are presented. Next steps in the progress of UAVs and UASs may follow the path of open data, open source and open standards.
2011-01-01
Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025
Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott
2011-07-28
Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.
Holonomic quantum computation in the presence of decoherence.
Fuentes-Guridi, I; Girelli, F; Livine, E
2005-01-21
We present a scheme to study non-Abelian adiabatic holonomies for open Markovian systems. As an application of our framework, we analyze the robustness of holonomic quantum computation against decoherence. We pinpoint the sources of error that must be corrected to achieve a geometric implementation of quantum computation completely resilient to Markovian decoherence.
Integrating an Educational Game in Moodle LMS
ERIC Educational Resources Information Center
Minovic, Miroslav; Milovanovic, Milos; Minovic, Jelena; Starcevic, Dusan
2012-01-01
The authors present a learning platform based on a computer game. Learning games combine two industries: education and entertainment, which is often called "Edutainment." The game is realized as a strategic game (similar to Risk[TM]), implemented as a module for Moodle CMS, utilizing Java Applet technology. Moodle is an open-source course…
Implementing a Dynamic Database-Driven Course Using LAMP
ERIC Educational Resources Information Center
Laverty, Joseph Packy; Wood, David; Turchek, John
2011-01-01
This paper documents the formulation of a database driven open source architecture web development course. The design of a web-based curriculum faces many challenges: a) relative emphasis of client and server-side technologies, b) choice of a server-side language, and c) the cost and efficient delivery of a dynamic web development, database-driven…
Teacher's Corner: Structural Equation Modeling with the Sem Package in R
ERIC Educational Resources Information Center
Fox, John
2006-01-01
R is free, open-source, cooperatively developed software that implements the S statistical programming language and computing environment. The current capabilities of R are extensive, and it is in wide use, especially among statisticians. The sem package provides basic structural equation modeling facilities in R, including the ability to fit…
Online Grading of Calculations in General Chemistry Laboratory Write-Ups
ERIC Educational Resources Information Center
Silva, Alexsandra; Gonzales, Robert; Brennan, Daniel P.
2010-01-01
In the past, there were frequently complaints about the grading of laboratory reports in our laboratory chemistry courses. This article discussed the implementation of an online submission of laboratory acquired data using LON-CAPA (The Learning Online Network with Computer-Assisted Personalized Approach), which is an open source management and…
Context-Based Mobile Security Enclave
2012-09-01
29 c. Change IMSI .............................30 d. Change CellID ...........................31 e. Change Geolocation ...Assisted Global Positioning System ADB Android Debugger API Application Programming Interface APK Android Application Package BSC Base Station...Programming Interfaces ( APIs ), which use Java compatible libraries based on Apache Harmony (an open source Java implementation developed by the Apache
Mocking the weak lensing universe: The LensTools Python computing package
NASA Astrophysics Data System (ADS)
Petri, A.
2016-10-01
We present a newly developed software package which implements a wide range of routines frequently used in Weak Gravitational Lensing (WL). With the continuously increasing size of the WL scientific community we feel that easy to use Application Program Interfaces (APIs) for common calculations are a necessity to ensure efficiency and coordination across different working groups. Coupled with existing open source codes, such as CAMB (Lewis et al., 2000) and Gadget2 (Springel, 2005), LensTools brings together a cosmic shear simulation pipeline which, complemented with a variety of WL feature measurement tools and parameter sampling routines, provides easy access to the numerics for theoretical studies of WL as well as for experiment forecasts. Being implemented in PYTHON (Rossum, 1995), LensTools takes full advantage of a range of state-of-the art techniques developed by the large and growing open-source software community (Jones et al., 2001; McKinney, 2010; Astrophy Collaboration, 2013; Pedregosa et al., 2011; Foreman-Mackey et al., 2013). We made the LensTools code available on the Python Package Index and published its documentation on http://lenstools.readthedocs.io.
Pandolfe, Frank; Wright, Adam; Slack, Warner V; Safran, Charles
2018-05-17
Identify barriers impacting the time consuming and error fraught process of medication reconciliation. Design and implement an electronic medication management system where patient and trusted healthcare proxies can participate in establishing and maintaining an inclusive and up-to-date list of medications. A patient-facing electronic medication manager was deployed within an existing research project focused on elder care management funded by the AHRQ, InfoSAGE, allowing patients and patients' proxies the ability to build and maintain an accurate and up-to-date medication list. Free and open-source tools available from the U.S. government were used to embed the tenets of centralization, interoperability, data federation, and patient activation into the design. Using patient-centered design and free, open-source tools, we implemented a web and mobile enabled patient-facing medication manager for complex medication management. Patient and caregiver participation are essential to improve medication safety. Our medication manager is an early step towards a patient-facing medication manager that has been designed with data federation and interoperability in mind.
Sharp, Ian; Patton, James; Listenberger, Molly; Case, Emily
2011-08-08
Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.
Hyam, Roger; Hagedorn, Gregor; Chagnoux, Simon; Röpert, Dominik; Casino, Ana; Droege, Gabi; Glöckler, Falko; Gödderz, Karsten; Groom, Quentin; Hoffmann, Jana; Holleman, Ayco; Kempa, Matúš; Koivula, Hanna; Marhold, Karol; Nicolson, Nicky; Smith, Vincent S.; Triebel, Dagmar
2017-01-01
With biodiversity research activities being increasingly shifted to the web, the need for a system of persistent and stable identifiers for physical collection objects becomes increasingly pressing. The Consortium of European Taxonomic Facilities agreed on a common system of HTTP-URI-based stable identifiers which is now rolled out to its member organizations. The system follows Linked Open Data principles and implements redirection mechanisms to human-readable and machine-readable representations of specimens facilitating seamless integration into the growing semantic web. The implementation of stable identifiers across collection organizations is supported with open source provider software scripts, best practices documentations and recommendations for RDF metadata elements facilitating harmonized access to collection information in web portals. Database URL: http://cetaf.org/cetaf-stable-identifiers PMID:28365724
A Generic Software Architecture For Prognostics
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Daigle, Matthew J.; Sankararaman, Shankar; Goebel, Kai; Watkins, Jason
2017-01-01
Prognostics is a systems engineering discipline focused on predicting end-of-life of components and systems. As a relatively new and emerging technology, there are few fielded implementations of prognostics, due in part to practitioners perceiving a large hurdle in developing the models, algorithms, architecture, and integration pieces. As a result, no open software frameworks for applying prognostics currently exist. This paper introduces the Generic Software Architecture for Prognostics (GSAP), an open-source, cross-platform, object-oriented software framework and support library for creating prognostics applications. GSAP was designed to make prognostics more accessible and enable faster adoption and implementation by industry, by reducing the effort and investment required to develop, test, and deploy prognostics. This paper describes the requirements, design, and testing of GSAP. Additionally, a detailed case study involving battery prognostics demonstrates its use.
VIVO Open Source Software: Connecting Facilities to Promote Discovery and Further Research.
NASA Astrophysics Data System (ADS)
Gross, M. B.; Rowan, L. R.; Mayernik, M. S.; Daniels, M. D.; Stott, D.; Allison, J.; Maull, K. E.; Krafft, D. B.; Khan, H.
2016-12-01
EarthCollab (http://earthcube.org/group/earthcollab), a National Science Foundation (NSF) EarthCube Building Block project, has adapted an open source semantic web application, VIVO, for use within the earth science domain. EarthCollab is a partnership between UNAVCO, an NSF facility supporting research through geodetic services, the Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR), and Cornell University, where VIVO was created to highlight the scholarly output of researchers at universities. Two public sites have been released: Connect UNAVCO (connect.unavco.org) and Arctic Data Connects (vivo.eol.ucar.edu). The core VIVO software and ontology have been extended to work better with concepts necessary for capturing work within UNAVCO's and EOL's province such as principal investigators for continuous GPS/GNSS stations at UNAVCO and keywords describing cruise datasets at EOL. The sites increase discoverability of large and diverse data archives by linking data with people, research, and field projects. Disambiguation is a major challenge when using VIVO and open data when "anyone can say anything about anything." Concepts and controlled vocabularies help to build consistent and easily searchable connections within VIVO. We use aspects of subject heading services such as FAST and LOC, as well as AGU and GSA fields of research and subject areas to reveal connections, especially with VIVO instances at other institutions. VIVO works effectively with persistent IDs and the projects strive to utilize publication and data DOIs, ORCIDs for people, and ISNI and GRID for organizations. ORCID, an open source project, is very useful for disambiguation and unlike other identifier systems for people developed by publishers, makes public data available via an API. VIVO utilizes Solr and Freemarker, which are open source search engine and templating technologies, respectively. Additionally, a handful of popular open source libraries and applications are being used in the project such as D3.js, jQuery, Leaflet, and Elasticsearch. Our implementation of these open source projects within VIVO is available for adaptation by other institutions using VIVO via GitHub (git.io/vG9AJ).
Design and implementation of a risk assessment module in a spatial decision support system
NASA Astrophysics Data System (ADS)
Zhang, Kaixi; van Westen, Cees; Bakker, Wim
2014-05-01
The spatial decision support system named 'Changes SDSS' is currently under development. The goal of this system is to analyze changing hydro-meteorological hazards and the effect of risk reduction alternatives to support decision makers in choosing the best alternatives. The risk assessment module within the system is to assess the current risk, analyze the risk after implementations of risk reduction alternatives, and analyze the risk in different future years when considering scenarios such as climate change, land use change and population growth. The objective of this work is to present the detailed design and implementation plan of the risk assessment module. The main challenges faced consist of how to shift the risk assessment from traditional desktop software to an open source web-based platform, the availability of input data and the inclusion of uncertainties in the risk analysis. The risk assessment module is developed using Ext JS library for the implementation of user interface on the client side, using Python for scripting, as well as PostGIS spatial functions for complex computations on the server side. The comprehensive consideration of the underlying uncertainties in input data can lead to a better quantification of risk assessment and a more reliable Changes SDSS, since the outputs of risk assessment module are the basis for decision making module within the system. The implementation of this module will contribute to the development of open source web-based modules for multi-hazard risk assessment in the future. This work is part of the "CHANGES SDSS" project, funded by the European Community's 7th Framework Program.
2013-01-01
Background The openEHR project and the closely related ISO 13606 standard have defined structures supporting the content of Electronic Health Records (EHRs). However, there is not yet any finalized openEHR specification of a service interface to aid application developers in creating, accessing, and storing the EHR content. The aim of this paper is to explore how the Representational State Transfer (REST) architectural style can be used as a basis for a platform-independent, HTTP-based openEHR service interface. Associated benefits and tradeoffs of such a design are also explored. Results The main contribution is the formalization of the openEHR storage, retrieval, and version-handling semantics and related services into an implementable HTTP-based service interface. The modular design makes it possible to prototype, test, replicate, distribute, cache, and load-balance the system using ordinary web technology. Other contributions are approaches to query and retrieval of the EHR content that takes caching, logging, and distribution into account. Triggering on EHR change events is also explored. A final contribution is an open source openEHR implementation using the above-mentioned approaches to create LiU EEE, an educational EHR environment intended to help newcomers and developers experiment with and learn about the archetype-based EHR approach and enable rapid prototyping. Conclusions Using REST addressed many architectural concerns in a successful way, but an additional messaging component was needed to address some architectural aspects. Many of our approaches are likely of value to other archetype-based EHR implementations and may contribute to associated service model specifications. PMID:23656624
Sundvall, Erik; Nyström, Mikael; Karlsson, Daniel; Eneling, Martin; Chen, Rong; Örman, Håkan
2013-05-09
The openEHR project and the closely related ISO 13606 standard have defined structures supporting the content of Electronic Health Records (EHRs). However, there is not yet any finalized openEHR specification of a service interface to aid application developers in creating, accessing, and storing the EHR content.The aim of this paper is to explore how the Representational State Transfer (REST) architectural style can be used as a basis for a platform-independent, HTTP-based openEHR service interface. Associated benefits and tradeoffs of such a design are also explored. The main contribution is the formalization of the openEHR storage, retrieval, and version-handling semantics and related services into an implementable HTTP-based service interface. The modular design makes it possible to prototype, test, replicate, distribute, cache, and load-balance the system using ordinary web technology. Other contributions are approaches to query and retrieval of the EHR content that takes caching, logging, and distribution into account. Triggering on EHR change events is also explored.A final contribution is an open source openEHR implementation using the above-mentioned approaches to create LiU EEE, an educational EHR environment intended to help newcomers and developers experiment with and learn about the archetype-based EHR approach and enable rapid prototyping. Using REST addressed many architectural concerns in a successful way, but an additional messaging component was needed to address some architectural aspects. Many of our approaches are likely of value to other archetype-based EHR implementations and may contribute to associated service model specifications.
Evaluation of software maintain ability with open EHR - a comparison of architectures.
Atalag, Koray; Yang, Hong Yul; Tempero, Ewan; Warren, James R
2014-11-01
To assess whether it is easier to maintain a clinical information system developed using open EHR model driven development versus mainstream methods. A new open source application (GastrOS) has been developed following open EHR's multi-level modelling approach using .Net/C# based on the same requirements of an existing clinically used application developed using Microsoft Visual Basic and Access database. Almost all the domain knowledge was embedded into the software code and data model in the latter. The same domain knowledge has been expressed as a set of open EHR Archetypes in GastrOS. We then introduced eight real-world change requests that had accumulated during live clinical usage, and implemented these in both systems while measuring time for various development tasks and change in software size for each change request. Overall it took half the time to implement changes in GastrOS. However it was the more difficult application to modify for one change request, suggesting the nature of change is also important. It was not possible to implement changes by modelling only. Comparison of relative measures of time and software size change within each application highlights how architectural differences affected maintain ability across change requests. The use of open EHR model driven development can result in better software maintain ability. The degree to which open EHR affects software maintain ability depends on the extent and nature of domain knowledge involved in changes. Although we used relative measures for time and software size, confounding factors could not be totally excluded as a controlled study design was not feasible. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Efficient Scalable Median Filtering Using Histogram-Based Operations.
Green, Oded
2018-05-01
Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.
2014-09-01
college student alongside you, little sis! To Jes- xix sika Miller, Lauren Garcia and Caity White , my closest friends and confidants of ten years, who...arena corresponding coverage to the GUI is outlined in white 2.1.3 Challenges in the Model There are inherent challenges with any model that implements...source middleware originally maintained by Willow Garage [36] and now managed by the Open Source Robotics Foundation [37]. It provides a framework for
Fast Model Generalized Pseudopotential Theory Interatomic Potential Routine
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-03-18
MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.
Schuhmacher, Alexander; Gassmann, Oliver; McCracken, Nigel; Hinder, Markus
2018-05-08
Historically, research and development (R&D) in the pharmaceutical sector has predominantly been an in-house activity. To enable investments for game changing late-stage assets and to enable better and less costly go/no-go decisions, most companies have employed a fail early paradigm through the implementation of clinical proof-of-concept organizations. To fuel their pipelines, some pioneers started to complement their internal R&D efforts through collaborations as early as the 1990s. In recent years, multiple extrinsic and intrinsic factors induced an opening for external sources of innovation and resulted in new models for open innovation, such as open sourcing, crowdsourcing, public-private partnerships, innovations centres, and the virtualization of R&D. Three factors seem to determine the breadth and depth regarding how companies approach external innovation: (1) the company's legacy, (2) the company's willingness and ability to take risks and (3) the company's need to control IP and competitors. In addition, these factors often constitute the major hurdles to effectively leveraging external opportunities and assets. Conscious and differential choices of the R&D and business models for different companies and different divisions in the same company seem to best allow a company to fully exploit the potential of both internal and external innovations.
FREEWAT: an HORIZON 2020 project to build open source tools for water management.
NASA Astrophysics Data System (ADS)
Foglia, L.; Rossetto, R.; Borsi, I.; Mehl, S.; Velasco Mansilla, V.
2015-12-01
FREEWAT is an HORIZON 2020 EU project. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and related Directives. Specific objectives of the project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (policy and decision makers) in designing scenarios for application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum", as further institutions or developers may contribute to the development. Core of the platform is the SID&GRID framework (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) in its version ported to QGIS desktop. Activities are carried out on two lines: (i) integration of modules to fulfill the end-users requirements, including tools for producing feasibility and management plans; (ii) a set of activities to fix bugs and to provide a well-integrated interface for the different tools implemented. Further capabilities to be integrated are: - module for water management and planning; - calibration, uncertainty and sensitivity analysis; - module for solute transport in unsaturated zone; - module for crop growth and water requirements in agriculture; - tools for groundwater quality issues and for the analysis, interpretation and visualization of hydrogeological data. Through creating a common environment among water research/professionals, policy makers and implementers, FREEWAT main impact will be on enhancing science- and participatory approach and evidence-based decision making in water resource management, hence producing relevant and appropriate outcomes for policy implementation. Large stakeholders involvement is thought to guarantee results dissemination and exploitation.
EarthCollab, building geoscience-centric implementations of the VIVO semantic software suite
NASA Astrophysics Data System (ADS)
Rowan, L. R.; Gross, M. B.; Mayernik, M. S.; Daniels, M. D.; Krafft, D. B.; Kahn, H. J.; Allison, J.; Snyder, C. B.; Johns, E. M.; Stott, D.
2017-12-01
EarthCollab, an EarthCube Building Block project, is extending an existing open-source semantic web application, VIVO, to enable the exchange of information about scientific researchers and resources across institutions. EarthCollab is a collaboration between UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy, The Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory, and Cornell University. VIVO has been implemented by more than 100 universities and research institutions to highlight research and institutional achievements. This presentation will discuss benefits and drawbacks of working with and extending open source software. Some extensions include plotting georeferenced objects on a map, a mobile-friendly theme, integration of faceting via Elasticsearch, extending the VIVO ontology to capture geoscience-centric objects and relationships, and the ability to cross-link between VIVO instances. Most implementations of VIVO gather information about a single organization. The EarthCollab project created VIVO extensions to enable cross-linking of VIVO instances to reduce the amount of duplicate information about the same people and scientific resources and to enable dynamic linking of related information across VIVO installations. As the list of customizations grows, so does the effort required to maintain compatibility between the EarthCollab forks and the main VIVO code. For example, dozens of libraries and dependencies were updated prior to the VIVO v1.10 release, which introduced conflicts in the EarthCollab cross-linking code. The cross-linking code has been developed to enable sharing of data across different versions of VIVO, however, using a JSON output schema standardized across versions. We will outline lessons learned in working with VIVO and its open source dependencies, which include Jena, Solr, Freemarker, and jQuery and discuss future work by EarthCollab, which includes refining the cross-linking VIVO capabilities by continued integration of persistent and unique identifiers to enable automated lookup and matching across institutional VIVOs.
Open-source software for collision detection in external beam radiation therapy
NASA Astrophysics Data System (ADS)
Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor
2017-03-01
PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.
Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit
O'Boyle, Noel M; Morley, Chris; Hutchison, Geoffrey R
2008-01-01
Background Scripting languages such as Python are ideally suited to common programming tasks in cheminformatics such as data analysis and parsing information from files. However, for reasons of efficiency, cheminformatics toolkits such as the OpenBabel toolkit are often implemented in compiled languages such as C++. We describe Pybel, a Python module that provides access to the OpenBabel toolkit. Results Pybel wraps the direct toolkit bindings to simplify common tasks such as reading and writing molecular files and calculating fingerprints. Extensive use is made of Python iterators to simplify loops such as that over all the molecules in a file. A Pybel Molecule can be easily interconverted to an OpenBabel OBMol to access those methods or attributes not wrapped by Pybel. Conclusion Pybel allows cheminformaticians to rapidly develop Python scripts that manipulate chemical information. It is open source, available cross-platform, and offers the power of the OpenBabel toolkit to Python programmers. PMID:18328109
Pybel: a Python wrapper for the OpenBabel cheminformatics toolkit.
O'Boyle, Noel M; Morley, Chris; Hutchison, Geoffrey R
2008-03-09
Scripting languages such as Python are ideally suited to common programming tasks in cheminformatics such as data analysis and parsing information from files. However, for reasons of efficiency, cheminformatics toolkits such as the OpenBabel toolkit are often implemented in compiled languages such as C++. We describe Pybel, a Python module that provides access to the OpenBabel toolkit. Pybel wraps the direct toolkit bindings to simplify common tasks such as reading and writing molecular files and calculating fingerprints. Extensive use is made of Python iterators to simplify loops such as that over all the molecules in a file. A Pybel Molecule can be easily interconverted to an OpenBabel OBMol to access those methods or attributes not wrapped by Pybel. Pybel allows cheminformaticians to rapidly develop Python scripts that manipulate chemical information. It is open source, available cross-platform, and offers the power of the OpenBabel toolkit to Python programmers.
Deterministic Design Optimization of Structures in OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Coroneos, Rula M.; Pai, Shantaram S.
2012-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.
nSTAT: Open-Source Neural Spike Train Analysis Toolbox for Matlab
Cajigas, I.; Malik, W.Q.; Brown, E.N.
2012-01-01
Over the last decade there has been a tremendous advance in the analytical tools available to neuroscientists to understand and model neural function. In particular, the point process - Generalized Linear Model (PPGLM) framework has been applied successfully to problems ranging from neuro-endocrine physiology to neural decoding. However, the lack of freely distributed software implementations of published PP-GLM algorithms together with problem-specific modifications required for their use, limit wide application of these techniques. In an effort to make existing PP-GLM methods more accessible to the neuroscience community, we have developed nSTAT – an open source neural spike train analysis toolbox for Matlab®. By adopting an Object-Oriented Programming (OOP) approach, nSTAT allows users to easily manipulate data by performing operations on objects that have an intuitive connection to the experiment (spike trains, covariates, etc.), rather than by dealing with data in vector/matrix form. The algorithms implemented within nSTAT address a number of common problems including computation of peri-stimulus time histograms, quantification of the temporal response properties of neurons, and characterization of neural plasticity within and across trials. nSTAT provides a starting point for exploratory data analysis, allows for simple and systematic building and testing of point process models, and for decoding of stimulus variables based on point process models of neural function. By providing an open-source toolbox, we hope to establish a platform that can be easily used, modified, and extended by the scientific community to address limitations of current techniques and to extend available techniques to more complex problems. PMID:22981419
Gimli: open source and high-performance biomedical name recognition
2013-01-01
Background Automatic recognition of biomedical names is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. In recent years, various solutions have been implemented to tackle this problem. However, limitations regarding system characteristics, customization and usability still hinder their wider application outside text mining research. Results We present Gimli, an open-source, state-of-the-art tool for automatic recognition of biomedical names. Gimli includes an extended set of implemented and user-selectable features, such as orthographic, morphological, linguistic-based, conjunctions and dictionary-based. A simple and fast method to combine different trained models is also provided. Gimli achieves an F-measure of 87.17% on GENETAG and 72.23% on JNLPBA corpus, significantly outperforming existing open-source solutions. Conclusions Gimli is an off-the-shelf, ready to use tool for named-entity recognition, providing trained and optimized models for recognition of biomedical entities from scientific text. It can be used as a command line tool, offering full functionality, including training of new models and customization of the feature set and model parameters through a configuration file. Advanced users can integrate Gimli in their text mining workflows through the provided library, and extend or adapt its functionalities. Based on the underlying system characteristics and functionality, both for final users and developers, and on the reported performance results, we believe that Gimli is a state-of-the-art solution for biomedical NER, contributing to faster and better research in the field. Gimli is freely available at http://bioinformatics.ua.pt/gimli. PMID:23413997
FRED 2: an immunoinformatics framework for Python
Schubert, Benjamin; Walzer, Mathias; Brachvogel, Hans-Philipp; Szolek, András; Mohr, Christopher; Kohlbacher, Oliver
2016-01-01
Summary: Immunoinformatics approaches are widely used in a variety of applications from basic immunological to applied biomedical research. Complex data integration is inevitable in immunological research and usually requires comprehensive pipelines including multiple tools and data sources. Non-standard input and output formats of immunoinformatics tools make the development of such applications difficult. Here we present FRED 2, an open-source immunoinformatics framework offering easy and unified access to methods for epitope prediction and other immunoinformatics applications. FRED 2 is implemented in Python and designed to be extendable and flexible to allow rapid prototyping of complex applications. Availability and implementation: FRED 2 is available at http://fred-2.github.io Contact: schubert@informatik.uni-tuebingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153717
Online data analysis using Web GDL
NASA Astrophysics Data System (ADS)
Jaffey, A.; Cheung, M.; Kobashi, A.
2008-12-01
The ever improving capability of modern astronomical instruments to capture data at high spatial resolution and cadence is opening up unprecedented opportunities for scientific discovery. When data sets become so large that they cannot be easily transferred over the internet, the researcher must find alternative ways to perform data analysis. One strategy is to bring the data analysis code to where the data resides. We present Web GDL, an implementation of GDL (GNU Data Language, open source incremental compiler compatible with IDL) that allows users to perform interactive data analysis within a web browser.
The RAVE/VERTIGO vertex reconstruction toolkit and framework
NASA Astrophysics Data System (ADS)
Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.
2008-07-01
A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
NASA Astrophysics Data System (ADS)
D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato
2018-01-01
Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.
NASA Astrophysics Data System (ADS)
Vines, Aleksander; Hamre, Torill; Lygre, Kjetil
2014-05-01
The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. A main task has been to set up a data delivery and monitoring core service following the open and free data access policy implemented in the Global Monitoring for the Environment and Security (GMES) programme. The aim is to ensure open and free access to historical plankton data, new data (EO products and in situ measurements), model data (including estimates of simulation error) and biological, environmental and climatic indicators to a range of stakeholders, such as scientists, policy makers and environmental managers. To this end, we have developed a geo-spatial database of both historical and new in situ physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic, and organized related satellite-derived quantities and model forecasts in a joint geo-spatial repository. For easy access to these data, we have implemented a web-based GIS (Geographical Information Systems) where observed, derived and forcasted parameters can be searched, displayed, compared and exported. Model forecasts can also be uploaded dynamically to the system, to allow modelers to quickly compare their results with available in situ and satellite observations. We have implemented the web-based GIS(Geographical Information Systems) system based on free and open source technologies: Thredds Data Server, ncWMS, GeoServer, OpenLayers, PostGIS, Liferay, Apache Tomcat, PRTree, NetCDF-Java, json-simple, Geotoolkit, Highcharts, GeoExt, MapFish, FileSaver, jQuery, jstree and qUnit. We also wanted to used open standards to communicate between the different services and we use WMS, WFS, netCDF, GML, OPeNDAP, JSON, and SLD. The main advantage we got from using FOSS was that we did not have to invent the wheel all over again, but could use already existing code and functionalities on our software for free: Of course most the software did not have to be open source for this, but in some cases we had to do minor modifications to make the different technologies work together. We could extract the parts of the code that we needed for a specific task. One example of this was to use part of the code from ncWMS and Thredds to help our main application to both read netCDF files and present them in the browser. This presentation will focus on both difficulties we had with and advantages we got from developing this tool with FOSS.
Digital time stamping system based on open source technologies.
Miskinis, Rimantas; Smirnov, Dmitrij; Urba, Emilis; Burokas, Andrius; Malysko, Bogdan; Laud, Peeter; Zuliani, Francesco
2010-03-01
A digital time stamping system based on open source technologies (LINUX-UBUNTU, OpenTSA, OpenSSL, MySQL) is described in detail, including all important testing results. The system, called BALTICTIME, was developed under a project sponsored by the European Commission under the Program FP 6. It was designed to meet the requirements posed to the systems of legal and accountable time stamping and to be applicable to the hardware commonly used by the national time metrology laboratories. The BALTICTIME system is intended for the use of governmental and other institutions as well as personal bodies. Testing results demonstrate that the time stamps issued to the user by BALTICTIME and saved in BALTICTIME's archives (which implies that the time stamps are accountable) meet all the regulatory requirements. Moreover, the BALTICTIME in its present implementation is able to issue more than 10 digital time stamps per second. The system can be enhanced if needed. The test version of the BALTICTIME service is free and available at http://baltictime. pfi.lt:8080/btws/ and http://baltictime.lnmc.lv:8080/btws/.
GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations
NASA Astrophysics Data System (ADS)
Nguyen, Trung Dac
2017-03-01
The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.
OpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing
NASA Astrophysics Data System (ADS)
Wei, Shoulin; Wang, Feng; Deng, Hui; Liu, Cuiyin; Dai, Wei; Liang, Bo; Mei, Ying; Shi, Congming; Liu, Yingbo; Wu, Jingping
2017-02-01
The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developing high-performance processing pipelines of astronomical big data. We first detail the OpenCluster design principles and implementations and present the APIs facilitated by the framework. We then demonstrate a case in which OpenCluster is used to resolve complex data processing problems for developing a pipeline for the Mingantu Ultrawide Spectral Radioheliograph. Finally, we present our OpenCluster performance evaluation. Overall, OpenCluster provides not only high fault tolerance and simple programming interfaces, but also a flexible means of scaling up the number of interacting entities. OpenCluster thereby provides an easily integrated distributed computing framework for quickly developing a high-performance data processing system of astronomical telescopes and for significantly reducing software development expenses.
Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review
Zolfo, Maria; Diro, Ermias
2017-01-01
Background Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. Objective The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. Methods First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. Results The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code-based language, (17) development activity, (18) modularity, (19) user interface, (20) community support, and (21) customization. The quality of each feature is discussed for each of the evaluated solutions and a final comparison is presented. Conclusions There is a clear demand for open-source, reliable, and flexible EHR systems in low-resource settings. In this study, we have evaluated and compared five open-source EHR systems following a multidimensional methodology that can provide informed recommendations to other implementers, developers, and health care professionals. We hope that the results of this comparison can guide decision making when needing to adopt, install, and maintain an open-source EHR solution in low-resource settings. PMID:29133283
OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models
NASA Astrophysics Data System (ADS)
Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef
2017-04-01
Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).
NOAA's Data Catalog and the Federal Open Data Policy
NASA Astrophysics Data System (ADS)
Wengren, M. J.; de la Beaujardiere, J.
2014-12-01
The 2013 Open Data Policy Presidential Directive requires Federal agencies to create and maintain a 'public data listing' that includes all agency data that is currently or will be made publicly-available in the future. The directive requires the use of machine-readable and open formats that make use of 'common core' and extensible metadata formats according to the best practices published in an online repository called 'Project Open Data', to use open licenses where possible, and to adhere to existing metadata and other technology standards to promote interoperability. In order to meet the requirements of the Open Data Policy, the National Oceanic and Atmospheric Administration (NOAA) has implemented an online data catalog that combines metadata from all subsidiary NOAA metadata catalogs into a single master inventory. The NOAA Data Catalog is available to the public for search and discovery, providing access to the NOAA master data inventory through multiple means, including web-based text search, OGC CS-W endpoint, as well as a native Application Programming Interface (API) for programmatic query. It generates on a daily basis the Project Open Data JavaScript Object Notation (JSON) file required for compliance with the Presidential directive. The Data Catalog is based on the open source Comprehensive Knowledge Archive Network (CKAN) software and runs on the Amazon Federal GeoCloud. This presentation will cover topics including mappings of existing metadata in standard formats (FGDC-CSDGM and ISO 19115 XML ) to the Project Open Data JSON metadata schema, representation of metadata elements within the catalog, and compatible metadata sources used to feed the catalog to include Web Accessible Folder (WAF), Catalog Services for the Web (CS-W), and Esri ArcGIS.com. It will also discuss related open source technologies that can be used together to build a spatial data infrastructure compliant with the Open Data Policy.
Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide
NASA Astrophysics Data System (ADS)
KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter
2017-10-01
We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.
NASA Astrophysics Data System (ADS)
Lemmens, R.; Maathuis, B.; Mannaerts, C.; Foerster, T.; Schaeffer, B.; Wytzisk, A.
2009-12-01
This paper involves easy accessible integrated web-based analysis of satellite images with a plug-in based open source software. The paper is targeted to both users and developers of geospatial software. Guided by a use case scenario, we describe the ILWIS software and its toolbox to access satellite images through the GEONETCast broadcasting system. The last two decades have shown a major shift from stand-alone software systems to networked ones, often client/server applications using distributed geo-(web-)services. This allows organisations to combine without much effort their own data with remotely available data and processing functionality. Key to this integrated spatial data analysis is a low-cost access to data from within a user-friendly and flexible software. Web-based open source software solutions are more often a powerful option for developing countries. The Integrated Land and Water Information System (ILWIS) is a PC-based GIS & Remote Sensing software, comprising a complete package of image processing, spatial analysis and digital mapping and was developed as commercial software from the early nineties onwards. Recent project efforts have migrated ILWIS into a modular, plug-in-based open source software, and provide web-service support for OGC-based web mapping and processing. The core objective of the ILWIS Open source project is to provide a maintainable framework for researchers and software developers to implement training components, scientific toolboxes and (web-) services. The latest plug-ins have been developed for multi-criteria decision making, water resources analysis and spatial statistics analysis. The development of this framework is done since 2007 in the context of 52°North, which is an open initiative that advances the development of cutting edge open source geospatial software, using the GPL license. GEONETCast, as part of the emerging Global Earth Observation System of Systems (GEOSS), puts essential environmental data at the fingertips of users around the globe. This user-friendly and low-cost information dissemination provides global information as a basis for decision-making in a number of critical areas, including public health, energy, agriculture, weather, water, climate, natural disasters and ecosystems. GEONETCast makes available satellite images via Digital Video Broadcast (DVB) technology. An OGC WMS interface and plug-ins which convert GEONETCast data streams allow an ILWIS user to integrate various distributed data sources with data locally stored on his machine. Our paper describes a use case in which ILWIS is used with GEONETCast satellite imagery for decision making processes in Ghana. We also explain how the ILWIS software can be extended with additional functionality by means of building plug-ins and unfold our plans to implement other OGC standards, such as WCS and WPS in the same context. Especially, the latter one can be seen as a major step forward in terms of moving well-proven desktop based processing functionality to the web. This enables the embedding of ILWIS functionality in Spatial Data Infrastructures or even the execution in scalable and on-demand cloud computing environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seefeldt, Ben; Sondak, David; Hensinger, David M.
Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less
MARVIN: a medical research application framework based on open source software.
Rudolph, Tobias; Puls, Marc; Anderegg, Christoph; Ebert, Lars; Broehan, Martina; Rudin, Adrian; Kowal, Jens
2008-08-01
This paper describes the open source framework MARVIN for rapid application development in the field of biomedical and clinical research. MARVIN applications consist of modules that can be plugged together in order to provide the functionality required for a specific experimental scenario. Application modules work on a common patient database that is used to store and organize medical data as well as derived data. MARVIN provides a flexible input/output system with support for many file formats including DICOM, various 2D image formats and surface mesh data. Furthermore, it implements an advanced visualization system and interfaces to a wide range of 3D tracking hardware. Since it uses only highly portable libraries, MARVIN applications run on Unix/Linux, Mac OS X and Microsoft Windows.
Advanced capabilities for materials modelling with Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.
2017-11-01
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S
2017-10-24
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano
2017-09-27
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.
An efficient approach to the deployment of complex open source information systems
Cong, Truong Van Chi; Groeneveld, Eildert
2011-01-01
Complex open source information systems are usually implemented as component-based software to inherit the available functionality of existing software packages developed by third parties. Consequently, the deployment of these systems not only requires the installation of operating system, application framework and the configuration of services but also needs to resolve the dependencies among components. The problem becomes more challenging when the application must be installed and used on different platforms such as Linux and Windows. To address this, an efficient approach using the virtualization technology is suggested and discussed in this paper. The approach has been applied in our project to deploy a web-based integrated information system in molecular genetics labs. It is a low-cost solution to benefit both software developers and end-users. PMID:22102770
Do Open Source LMSs Support Personalization? A Comparative Evaluation
NASA Astrophysics Data System (ADS)
Kerkiri, Tania; Paleologou, Angela-Maria
A number of parameters that support the LMSs capabilities towards content personalization are presented and substantiated. These parameters constitute critical criteria for an exhaustive investigation of the personalization capabilities of the most popular open source LMSs. Results are comparatively shown and commented upon, thus highlighting a course of conduct for the implementation of new personalization methodologies for these LMSs, aligned at their existing infrastructure, to maintain support of the numerous educational institutions entrusting major part of their curricula to them. Meanwhile, new capabilities arise as drawn from a more efficient description of the existing resources -especially when organized into widely available repositories- that lead to qualitatively advanced learner-oriented courses which would ideally meet the challenge of combining personification of demand and personalization of thematic content at once.
Benchmarking Defmod, an open source FEM code for modeling episodic fault rupture
NASA Astrophysics Data System (ADS)
Meng, Chunfang
2017-03-01
We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015) combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the Defmod results against some establish results.
Coastal On-line Assessment and Synthesis Tool 2.0
NASA Technical Reports Server (NTRS)
Brown, Richard; Navard, Andrew; Nguyen, Beth
2011-01-01
COAST (Coastal On-line Assessment and Synthesis Tool) is a 3D, open-source Earth data browser developed by leveraging and enhancing previous NASA open-source tools. These tools use satellite imagery and elevation data in a way that allows any user to zoom from orbit view down into any place on Earth, and enables the user to experience Earth terrain in a visually rich 3D view. The benefits associated with taking advantage of an open-source geo-browser are that it is free, extensible, and offers a worldwide developer community that is available to provide additional development and improvement potential. What makes COAST unique is that it simplifies the process of locating and accessing data sources, and allows a user to combine them into a multi-layered and/or multi-temporal visual analytical look into possible data interrelationships and coeffectors for coastal environment phenomenology. COAST provides users with new data visual analytic capabilities. COAST has been upgraded to maximize use of open-source data access, viewing, and data manipulation software tools. The COAST 2.0 toolset has been developed to increase access to a larger realm of the most commonly implemented data formats used by the coastal science community. New and enhanced functionalities that upgrade COAST to COAST 2.0 include the development of the Temporal Visualization Tool (TVT) plug-in, the Recursive Online Remote Data-Data Mapper (RECORD-DM) utility, the Import Data Tool (IDT), and the Add Points Tool (APT). With these improvements, users can integrate their own data with other data sources, and visualize the resulting layers of different data types (such as spatial and spectral, for simultaneous visual analysis), and visualize temporal changes in areas of interest.
Implementation and performance test of cloud platform based on Hadoop
NASA Astrophysics Data System (ADS)
Xu, Jingxian; Guo, Jianhong; Ren, Chunlan
2018-01-01
Hadoop, as an open source project for the Apache foundation, is a distributed computing framework that deals with large amounts of data and has been widely used in the Internet industry. Therefore, it is meaningful to study the implementation of Hadoop platform and the performance of test platform. The purpose of this subject is to study the method of building Hadoop platform and to study the performance of test platform. This paper presents a method to implement Hadoop platform and a test platform performance method. Experimental results show that the proposed test performance method is effective and it can detect the performance of Hadoop platform.
An inexpensive Arduino-based LED stimulator system for vision research.
Teikari, Petteri; Najjar, Raymond P; Malkki, Hemi; Knoblauch, Kenneth; Dumortier, Dominique; Gronfier, Claude; Cooper, Howard M
2012-11-15
Light emitting diodes (LEDs) are being used increasingly as light sources in life sciences applications such as in vision research, fluorescence microscopy and in brain-computer interfacing. Here we present an inexpensive but effective visual stimulator based on light emitting diodes (LEDs) and open-source Arduino microcontroller prototyping platform. The main design goal of our system was to use off-the-shelf and open-source components as much as possible, and to reduce design complexity allowing use of the system to end-users without advanced electronics skills. The main core of the system is a USB-connected Arduino microcontroller platform designed initially with a specific emphasis on the ease-of-use creating interactive physical computing environments. The pulse-width modulation (PWM) signal of Arduino was used to drive LEDs allowing linear light intensity control. The visual stimulator was demonstrated in applications such as murine pupillometry, rodent models for cognitive research, and heterochromatic flicker photometry in human psychophysics. These examples illustrate some of the possible applications that can be easily implemented and that are advantageous for students, educational purposes and universities with limited resources. The LED stimulator system was developed as an open-source project. Software interface was developed using Python with simplified examples provided for Matlab and LabVIEW. Source code and hardware information are distributed under the GNU General Public Licence (GPL, version 3). Copyright © 2012 Elsevier B.V. All rights reserved.
myChEMBL: a virtual machine implementation of open data and cheminformatics tools.
Ochoa, Rodrigo; Davies, Mark; Papadatos, George; Atkinson, Francis; Overington, John P
2014-01-15
myChEMBL is a completely open platform, which combines public domain bioactivity data with open source database and cheminformatics technologies. myChEMBL consists of a Linux (Ubuntu) Virtual Machine featuring a PostgreSQL schema with the latest version of the ChEMBL database, as well as the latest RDKit cheminformatics libraries. In addition, a self-contained web interface is available, which can be modified and improved according to user specifications. The VM is available at: ftp://ftp.ebi.ac.uk/pub/databases/chembl/VM/myChEMBL/current. The web interface and web services code is available at: https://github.com/rochoa85/myChEMBL.
Open cyberGIS software for geospatial research and education in the big data era
NASA Astrophysics Data System (ADS)
Wang, Shaowen; Liu, Yan; Padmanabhan, Anand
CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.
Design and implementation of the standards-based personal intelligent self-management system (PICS).
von Bargen, Tobias; Gietzelt, Matthias; Britten, Matthias; Song, Bianying; Wolf, Klaus-Hendrik; Kohlmann, Martin; Marschollek, Michael; Haux, Reinhold
2013-01-01
Against the background of demographic change and a diminishing care workforce there is a growing need for personalized decision support. The aim of this paper is to describe the design and implementation of the standards-based personal intelligent care systems (PICS). PICS makes consistent use of internationally accepted standards such as the Health Level 7 (HL7) Arden syntax for the representation of the decision logic, HL7 Clinical Document Architecture for information representation and is based on a open-source service-oriented architecture framework and a business process management system. Its functionality is exemplified for the application scenario of a patient suffering from congestive heart failure. Several vital signs sensors provide data for the decision support system, and a number of flexible communication channels are available for interaction with patient or caregiver. PICS is a standards-based, open and flexible system enabling personalized decision support. Further development will include the implementation of components on small computers and sensor nodes.
I've Seen the Future, and It's Surprisingly Cheap!
ERIC Educational Resources Information Center
Reynolds, Veronica
2011-01-01
In these difficult economic times, everyone is on the lookout for savings. This author, an adult services librarian at New City Library in New York, has spent the last two years implementing small-scale open source and freeware replacements where proprietary or paper solutions once ruled. While none of these projects is individually revolutionary,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeGendre, M.
2012-04-01
We are seeking a code review of patches against DyninstAPI 8.0. DyninstAPI is an open source binary instrumentation library from the University of Wisconsin and University of Maryland. Our patches port DyninstAPI to the BlueGene/P and BlueGene/Q systems, as well as fix DyninstAPI bugs and implement minor new features in DyninstAPI.
Distance Learning Approaches in the Mathematical Training of Pedagogical Institutes's Students
ERIC Educational Resources Information Center
Fomina, Tatyana; Vorobjev, Grigory; Kalitvin, Vladimir
2016-01-01
Nowadays, the Information technologies are more and more widely used in the mathematical education system. The generalization of experience and its implementation by means of the open source software is of current interest. It is also important to address this problem due to the transfer to the new FSES (Federal State Education Standards) of high…
A Computer Simulation Using Spreadsheets for Learning Concept of Steady-State Equilibrium
ERIC Educational Resources Information Center
Sharda, Vandana; Sastri, O. S. K. S.; Bhardwaj, Jyoti; Jha, Arbind K.
2016-01-01
In this paper, we present a simple spreadsheet based simulation activity that can be performed by students at the undergraduate level. This simulation is implemented in free open source software (FOSS) LibreOffice Calc, which is available for both Windows and Linux platform. This activity aims at building the probability distribution for the…
I've Gathered a Basket of Communication and Collaboration Tools
ERIC Educational Resources Information Center
Chang, May
2004-01-01
In this article, the author, a Web development librarian at North Carolina State University (NCSU) Libraries, recounts how she initiated the implementation of a series of open source communication and collaboration applications for the Libraries' Web site and intranet, and how she gathered a number of tried and tested C&C tools that can…
An Unexpected Ally: Using Microsoft's SharePoint to Create a Departmental Intranet
ERIC Educational Resources Information Center
Dahl, David
2010-01-01
In September 2008, the Albert S. Cook Library at Towson University implemented an intranet to support the various functions of the library's Reference Department. This intranet is called the RefPortal. After exploring open source options and other Web 2.0 tools, the department (under the guidance of the library technology coordinator) chose…
FASTQ quality control dashboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-07-25
FQCDB builds up existing open source software, FastQC, implementing a modern web interface for across parsed output of FastQC. In addition, FQCDB is extensible as a web service to include additional plots of type line, boxplot, or heatmap, across data formatted according to guidelines. The interface is also configurable via more readable JSON format, enabling customization by non-web programmers.
Discovering Open Source Discovery: Using VuFind to Create MnPALS Plus
ERIC Educational Resources Information Center
Digby, Todd; Elfstrand, Stephen
2011-01-01
The goal of having a robust discovery system is a priority of the libraries the authors serve (both work at the Minnesota State Colleges and Universities). Given the current fiscal situation facing public higher education in their state, the current commercial systems were not affordable for most of their libraries. They decided to implement and…
Books from the Past: An E-Books Project at Culturenet Cymru
ERIC Educational Resources Information Center
Haarhoff, Leith
2005-01-01
Purpose: To describe the open-source solution developed by Culturenet Cymru, for the Welsh Books Council, for presenting digitised books and other printed material online. Design/methodology/approach: The challenges faced in the implementation of a pilot e-book collection of nine out-of-print books is described. Findings: The adoption of a number…
Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph
2018-06-01
Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.
Involvement of Family Members and Professionals in Older Women's Post-Fall Decision Making.
Bergeron, Caroline D; Hilfinger Messias, DeAnne K; Friedman, Daniela B; Spencer, S Melinda; Miller, Susan C
2018-03-01
This exploratory, descriptive study examined involvement of family members and professionals in older women's post-fall decision making. We conducted semistructured interviews with 17 older women who had recently fallen and 11 individuals these women identified as being engaged in their post-fall decision-making processes. Qualitative data analysis involved open and axial coding and development of themes. After experiencing a fall, these older women's openness to others' opinions and advice; their assessments of types and credibility of potential information sources; and the communication practices they established with these sources influenced how they accessed, accepted, or rejected information from family members and professionals. Increased awareness of the involvement of others in post-fall decision making could enhance communication with older women who fall. Developing and implementing practical strategies to help family members and professionals initiate and engage in conversations about falls and their consequences could lead to more open decision making and improved post-fall quality of life among older women.
Implementation of density-based solver for all speeds in the framework of OpenFOAM
NASA Astrophysics Data System (ADS)
Shen, Chun; Sun, Fengxian; Xia, Xinlin
2014-10-01
In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.
Di Tommaso, Paolo; Orobitg, Miquel; Guirado, Fernando; Cores, Fernado; Espinosa, Toni; Notredame, Cedric
2010-08-01
We present the first parallel implementation of the T-Coffee consistency-based multiple aligner. We benchmark it on the Amazon Elastic Cloud (EC2) and show that the parallelization procedure is reasonably effective. We also conclude that for a web server with moderate usage (10K hits/month) the cloud provides a cost-effective alternative to in-house deployment. T-Coffee is a freeware open source package available from http://www.tcoffee.org/homepage.html
Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Pelton, M.; Santori, C.; Solomon, G. S.
2002-10-01
Current quantum cryptography systems are limited by the Poissonian photon statistics of a standard light source: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. A single photon source is also essential to implement a linear optics quantum computer. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a hundred-fold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarizationentangled photon pairs.
Using SPARK as a Solver for Modelica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Wetter, Michael; Haves, Philip
Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulationmore » environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.« less
Implementation of highly parallel and large scale GW calculations within the OpenAtom software
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab
The need to describe electronic excitations with better accuracy than provided by band structures produced by Density Functional Theory (DFT) has been a long-term enterprise for the computational condensed matter and materials theory communities. In some cases, appropriate theoretical frameworks have existed for some time but have been difficult to apply widely due to computational cost. For example, the GW approximation incorporates a great deal of important non-local and dynamical electronic interaction effects but has been too computationally expensive for routine use in large materials simulations. OpenAtom is an open source massively parallel ab initiodensity functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/) that takes advantage of the Charm + + parallel framework. At present, it is developed via a three-way collaboration, funded by an NSF SI2-SSI grant (ACI-1339804), between Yale (Ismail-Beigi), IBM T. J. Watson (Glenn Martyna) and the University of Illinois at Urbana Champaign (Laxmikant Kale). We will describe the project and our current approach towards implementing large scale GW calculations with OpenAtom. Potential applications of large scale parallel GW software for problems involving electronic excitations in semiconductor and/or metal oxide systems will be also be pointed out.
OpenROCS: a software tool to control robotic observatories
NASA Astrophysics Data System (ADS)
Colomé, Josep; Sanz, Josep; Vilardell, Francesc; Ribas, Ignasi; Gil, Pere
2012-09-01
We present the Open Robotic Observatory Control System (OpenROCS), an open source software platform developed for the robotic control of telescopes. It acts as a software infrastructure that executes all the necessary processes to implement responses to the system events that appear in the routine and non-routine operations associated to data-flow and housekeeping control. The OpenROCS software design and implementation provides a high flexibility to be adapted to different observatory configurations and event-action specifications. It is based on an abstract model that is independent of the specific hardware or software and is highly configurable. Interfaces to the system components are defined in a simple manner to achieve this goal. We give a detailed description of the version 2.0 of this software, based on a modular architecture developed in PHP and XML configuration files, and using standard communication protocols to interface with applications for hardware monitoring and control, environment monitoring, scheduling of tasks, image processing and data quality control. We provide two examples of how it is used as the core element of the control system in two robotic observatories: the Joan Oró Telescope at the Montsec Astronomical Observatory (Catalonia, Spain) and the SuperWASP Qatar Telescope at the Roque de los Muchachos Observatory (Canary Islands, Spain).
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
Open source GIS for HIV/AIDS management
Vanmeulebrouk, Bas; Rivett, Ulrike; Ricketts, Adam; Loudon, Melissa
2008-01-01
Background Reliable access to basic services can improve a community's resilience to HIV/AIDS. Accordingly, work is being done to upgrade the physical infrastructure in affected areas, often employing a strategy of decentralised service provision. Spatial characteristics are one of the major determinants in implementing services, even in the smaller municipal areas, and good quality spatial information is needed to inform decision making processes. However, limited funds, technical infrastructure and human resource capacity result in little or no access to spatial information for crucial infrastructure development decisions at local level. This research investigated whether it would be possible to develop a GIS for basic infrastructure planning and management at local level. Given the resource constraints of the local government context, particularly in small municipalities, it was decided that open source software should be used for the prototype system. Results The design and development of a prototype system illustrated that it is possible to develop an open source GIS system that can be used within the context of local information management. Usability tests show a high degree of usability for the system, which is important considering the heavy workload and high staff turnover that characterises local government in South Africa. Local infrastructure management stakeholders interviewed in a case study of a South African municipality see the potential for the use of GIS as a communication tool and are generally positive about the use of GIS for these purposes. They note security issues that may arise through the sharing of information, lack of skills and resource constraints as the major barriers to adoption. Conclusion The case study shows that spatial information is an identified need at local level. Open source GIS software can be used to develop a system to provide local-level stakeholders with spatial information. However, the suitability of the technology is only a part of the system – there are wider information and management issues which need to be addressed before the implementation of a local-level GIS for infrastructure management can be successful. PMID:18945338
Doiron, Dany; Marcon, Yannick; Fortier, Isabel; Burton, Paul; Ferretti, Vincent
2017-01-01
Abstract Motivation Improving the dissemination of information on existing epidemiological studies and facilitating the interoperability of study databases are essential to maximizing the use of resources and accelerating improvements in health. To address this, Maelstrom Research proposes Opal and Mica, two inter-operable open-source software packages providing out-of-the-box solutions for epidemiological data management, harmonization and dissemination. Implementation Opal and Mica are two standalone but inter-operable web applications written in Java, JavaScript and PHP. They provide web services and modern user interfaces to access them. General features Opal allows users to import, manage, annotate and harmonize study data. Mica is used to build searchable web portals disseminating study and variable metadata. When used conjointly, Mica users can securely query and retrieve summary statistics on geographically dispersed Opal servers in real-time. Integration with the DataSHIELD approach allows conducting more complex federated analyses involving statistical models. Availability Opal and Mica are open-source and freely available at [www.obiba.org] under a General Public License (GPL) version 3, and the metadata models and taxonomies that accompany them are available under a Creative Commons licence. PMID:29025122
CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.
Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B
2011-08-15
Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.
Aerodynamics and Control of Quadrotors
NASA Astrophysics Data System (ADS)
Bangura, Moses
Quadrotors are aerial vehicles with a four motor-rotor assembly for generating lift and controllability. Their light weight, ease of design and simple dynamics have increased their use in aerial robotics research. There are many quadrotors that are commercially available or under development. Commercial off-the-shelf quadrotors usually lack the ability to be reprogrammed and are unsuitable for use as research platforms. The open-source code developed in this thesis differs from other open-source systems by focusing on the key performance road blocks in implementing high performance experimental quadrotor platforms for research: motor-rotor control for thrust regulation, velocity and attitude estimation, and control for position regulation and trajectory tracking. In all three of these fundamental subsystems, code sub modules for implementation on commonly available hardware are provided. In addition, the thesis provides guidance on scoping and commissioning open-source hardware components to build a custom quadrotor. A key contribution of the thesis is then a design methodology for the development of experimental quadrotor platforms from open-source or commercial off-the-shelf software and hardware components that have active community support. Quadrotors built following the methodology allows the user access to the operation of the subsystems and, in particular, the user can tune the gains of the observers and controllers in order to push the overall system to its performance limits. This enables the quadrotor framework to be used for a variety of applications such as heavy lifting and high performance aggressive manoeuvres by both the hobby and academic communities. To address the question of thrust control, momentum and blade element theories are used to develop aerodynamic models for rotor blades specific to quadrotors. With the aerodynamic models, a novel thrust estimation and control scheme that improves on existing RPM (revolutions per minute) control of rotors is proposed. The approach taken uses the measured electrical power into the rotors compensating for electrical loses, to estimate changing aerodynamic conditions around a rotor as well as the aerodynamic thrust force. The resulting control algorithms are implemented in real-time on the embedded electronic speed controller (ESC) hardware. Using the estimates of the aerodynamic conditions around the rotor at this level improves the dynamic response to gust as the low-level thrust control is the fastest dynamic level on the vehicle. The aerodynamic estimation scheme enables the vehicle to react almost instantaneously to aerodynamic changes in the environment without affecting the overall dynamic performance of the vehicle. (Abstract shortened by ProQuest.).
Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)
NASA Technical Reports Server (NTRS)
Reyes, Miguel A. De Jesus
2014-01-01
GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.
An Open Source Tool to Test Interoperability
NASA Astrophysics Data System (ADS)
Bermudez, L. E.
2012-12-01
Scientists interact with information at various levels from gathering of the raw observed data to accessing portrayed processed quality control data. Geoinformatics tools help scientist on the acquisition, storage, processing, dissemination and presentation of geospatial information. Most of the interactions occur in a distributed environment between software components that take the role of either client or server. The communication between components includes protocols, encodings of messages and managing of errors. Testing of these communication components is important to guarantee proper implementation of standards. The communication between clients and servers can be adhoc or follow standards. By following standards interoperability between components increase while reducing the time of developing new software. The Open Geospatial Consortium (OGC), not only coordinates the development of standards but also, within the Compliance Testing Program (CITE), provides a testing infrastructure to test clients and servers. The OGC Web-based Test Engine Facility, based on TEAM Engine, allows developers to test Web services and clients for correct implementation of OGC standards. TEAM Engine is a JAVA open source facility, available at Sourceforge that can be run via command line, deployed in a web servlet container or integrated in developer's environment via MAVEN. The TEAM Engine uses the Compliance Test Language (CTL) and TestNG to test HTTP requests, SOAP services and XML instances against Schemas and Schematron based assertions of any type of web service, not only OGC services. For example, the OGC Web Feature Service (WFS) 1.0.0 test has more than 400 test assertions. Some of these assertions includes conformance of HTTP responses, conformance of GML-encoded data; proper values for elements and attributes in the XML; and, correct error responses. This presentation will provide an overview of TEAM Engine, introduction of how to test via the OGC Testing web site and description of performing local tests. It will also provide information about how to participate in the open source code development of TEAM Engine.
Implementation of an open adoption research data management system for clinical studies.
Müller, Jan; Heiss, Kirsten Ingmar; Oberhoffer, Renate
2017-07-06
Research institutions need to manage multiple studies with individual data sets, processing rules and different permissions. So far, there is no standard technology that provides an easy to use environment to create databases and user interfaces for clinical trials or research studies. Therefore various software solutions are being used-from custom software, explicitly designed for a specific study, to cost intensive commercial Clinical Trial Management Systems (CTMS) up to very basic approaches with self-designed Microsoft ® databases. The technology applied to conduct those studies varies tremendously from study to study, making it difficult to evaluate data across various studies (meta-analysis) and keeping a defined level of quality in database design, data processing, displaying and exporting. Furthermore, the systems being used to collect study data are often operated redundantly to systems used in patient care. As a consequence the data collection in studies is inefficient and data quality may suffer from unsynchronized datasets, non-normalized database scenarios and manually executed data transfers. With OpenCampus Research we implemented an open adoption software (OAS) solution on an open source basis, which provides a standard environment for state-of-the-art research database management at low cost.
ESS++: a C++ objected-oriented algorithm for Bayesian stochastic search model exploration
Bottolo, Leonardo; Langley, Sarah R.; Petretto, Enrico; Tiret, Laurence; Tregouet, David; Richardson, Sylvia
2011-01-01
Summary: ESS++ is a C++ implementation of a fully Bayesian variable selection approach for single and multiple response linear regression. ESS++ works well both when the number of observations is larger than the number of predictors and in the ‘large p, small n’ case. In the current version, ESS++ can handle several hundred observations, thousands of predictors and a few responses simultaneously. The core engine of ESS++ for the selection of relevant predictors is based on Evolutionary Monte Carlo. Our implementation is open source, allowing community-based alterations and improvements. Availability: C++ source code and documentation including compilation instructions are available under GNU licence at http://bgx.org.uk/software/ESS.html. Contact: l.bottolo@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21233165
A robust scientific workflow for assessing fire danger levels using open-source software
NASA Astrophysics Data System (ADS)
Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul
2017-04-01
Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.
Nic Lochlainn, Laura M; Gayton, Ivan; Theocharopoulos, Georgios; Edwards, Robin; Danis, Kostas; Kremer, Ronald; Kleijer, Karline; Tejan, Sumaila M; Sankoh, Mohamed; Jimissa, Augustin; Greig, Jane; Caleo, Grazia
2018-01-01
During the 2014-16 Ebola virus disease (EVD) outbreak, the Magburaka Ebola Management Centre (EMC) operated by Médecins Sans Frontières (MSF) in Tonkolili District, Sierra Leone, identified that available district maps lacked up-to-date village information to facilitate timely implementation of EVD control strategies. In January 2015, we undertook a survey in chiefdoms within the MSF EMC catchment area to collect mapping and village data. We explore the feasibility and cost to mobilise a local community for this survey, describe validation against existing mapping sources and use of the data to prioritise areas for interventions, and lessons learned. We recruited local people with self-owned Android smartphones installed with open-source survey software (OpenDataKit (ODK)) and open-source navigation software (OpenStreetMap Automated Navigation Directions (OsmAnd)). Surveyors were paired with local motorbike drivers to travel to eligible villages. The collected mapping data were validated by checking for duplication and comparing the village names against a pre-existing village name and location list using a geographic distance and text string-matching algorithm. The survey teams gained sufficient familiarity with the ODK and OsmAnd software within 1-2 hours. Nine chiefdoms in Tonkolili District and three in Bombali District were surveyed within two weeks. Following de-duplication, the surveyors collected data from 891 villages with an estimated 127,021 households. The overall survey cost was €3,395; €3.80 per village surveyed. The MSF GIS team (MSF-OCG) created improved maps for the MSF Magburaka EMC team which were used to support surveillance, investigation of suspect EVD cases, hygiene-kit distribution and EVD survivor support. We shared the mapping data with OpenStreetMap, the local Ministry of Health and Sanitation and Sierra Leone District and National Ebola Response Centres. Involving local community and using accessible technology allowed rapid implementation, at moderate cost, of a survey to collect geographic and essential village information, and creation of updated maps. These methods could be used for future emergencies to facilitate response.
Gayton, Ivan; Theocharopoulos, Georgios; Edwards, Robin; Danis, Kostas; Kremer, Ronald; Kleijer, Karline; Tejan, Sumaila M.; Sankoh, Mohamed; Jimissa, Augustin; Greig, Jane; Caleo, Grazia
2018-01-01
Background During the 2014–16 Ebola virus disease (EVD) outbreak, the Magburaka Ebola Management Centre (EMC) operated by Médecins Sans Frontières (MSF) in Tonkolili District, Sierra Leone, identified that available district maps lacked up-to-date village information to facilitate timely implementation of EVD control strategies. In January 2015, we undertook a survey in chiefdoms within the MSF EMC catchment area to collect mapping and village data. We explore the feasibility and cost to mobilise a local community for this survey, describe validation against existing mapping sources and use of the data to prioritise areas for interventions, and lessons learned. Methods We recruited local people with self-owned Android smartphones installed with open-source survey software (OpenDataKit (ODK)) and open-source navigation software (OpenStreetMap Automated Navigation Directions (OsmAnd)). Surveyors were paired with local motorbike drivers to travel to eligible villages. The collected mapping data were validated by checking for duplication and comparing the village names against a pre-existing village name and location list using a geographic distance and text string-matching algorithm. Results The survey teams gained sufficient familiarity with the ODK and OsmAnd software within 1–2 hours. Nine chiefdoms in Tonkolili District and three in Bombali District were surveyed within two weeks. Following de-duplication, the surveyors collected data from 891 villages with an estimated 127,021 households. The overall survey cost was €3,395; €3.80 per village surveyed. The MSF GIS team (MSF-OCG) created improved maps for the MSF Magburaka EMC team which were used to support surveillance, investigation of suspect EVD cases, hygiene-kit distribution and EVD survivor support. We shared the mapping data with OpenStreetMap, the local Ministry of Health and Sanitation and Sierra Leone District and National Ebola Response Centres. Conclusions Involving local community and using accessible technology allowed rapid implementation, at moderate cost, of a survey to collect geographic and essential village information, and creation of updated maps. These methods could be used for future emergencies to facilitate response. PMID:29298314
Nmrglue: an open source Python package for the analysis of multidimensional NMR data.
Helmus, Jonathan J; Jaroniec, Christopher P
2013-04-01
Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license.
Nmrglue: An Open Source Python Package for the Analysis of Multidimensional NMR Data
Helmus, Jonathan J.; Jaroniec, Christopher P.
2013-01-01
Nmrglue, an open source Python package for working with multidimensional NMR data, is described. When used in combination with other Python scientific libraries, nmrglue provides a highly flexible and robust environment for spectral processing, analysis and visualization and includes a number of common utilities such as linear prediction, peak picking and lineshape fitting. The package also enables existing NMR software programs to be readily tied together, currently facilitating the reading, writing and conversion of data stored in Bruker, Agilent/Varian, NMRPipe, Sparky, SIMPSON, and Rowland NMR Toolkit file formats. In addition to standard applications, the versatility offered by nmrglue makes the package particularly suitable for tasks that include manipulating raw spectrometer data files, automated quantitative analysis of multidimensional NMR spectra with irregular lineshapes such as those frequently encountered in the context of biomacromolecular solid-state NMR, and rapid implementation and development of unconventional data processing methods such as covariance NMR and other non-Fourier approaches. Detailed documentation, install files and source code for nmrglue are freely available at http://nmrglue.com. The source code can be redistributed and modified under the New BSD license. PMID:23456039
Bagayoko, C O; Anne, A; Fieschi, M; Geissbuhler, A
2011-01-01
The aim of this study is to demonstrate from actual projects that ICT can contribute to the balance of health systems in developing countries and to equitable access to human resources and quality health care service. Our study is focused on two essential elements which are: i) Capacity building and support of health professionals, especially those in isolated areas using telemedicine tools; ii) Strengthening of hospital information systems by taking advantage of full potential offered by open-source software. Our research was performed on the activities carried out in Mali and in part through the RAFT (Réseau en Afrique Francophone pour la Télémédecine) Network. We focused mainly on the activities of e-learning, telemedicine, and hospital information systems. These include the use of platforms that work with low Internet connection bandwidth. With regard to information systems, our strategy is mainly focused on the improvement and implementation of open-source tools. Several telemedicine application projects were reviewed including continuing online medical education and the support of isolated health professionals through the usage of innovative tools. This review covers the RAFT project for continuing medical education in French-speaking Africa, the tele-radiology project in Mali, the "EQUI-ResHuS" project for equal access to health over ICT in Mali, The "Pact-e.Santé" project for community health workers in Mali. We also detailed a large-scale experience of an open-source hospital information system implemented in Mali: "Cinz@n". We report on successful experiences in the field of telemedicine and on the evaluation by the end-users of the Cinz@n project, a pilot hospital information system in Mali. These reflect the potential of healthcare-ICT for Sub-Saharan African countries.
PLOCAN glider portal: a gateway for useful data management and visualization system
NASA Astrophysics Data System (ADS)
Morales, Tania; Lorenzo, Alvaro; Viera, Josue; Barrera, Carlos; José Rueda, María
2014-05-01
Nowadays monitoring ocean behavior and its characteristics involves a wide range of sources able to gather and provide a vast amount of data in spatio-temporal scales. Multiplatform infrastructures, like PLOCAN, hold a variety of autonomous Lagrangian and Eulerian devices addressed to collect information then transferred to land in near-real time. Managing all this data collection in an efficient way is a major issue. Advances in ocean observation technologies, where underwater autonomous gliders play a key role, has brought as a consequence an improvement of spatio-temporal resolution which offers a deeper understanding of the ocean but requires a bigger effort in the data management process. There are general requirements in terms of data management in that kind of environments, such as processing raw data at different levels to obtain valuable information, storing data coherently and providing accurate products to final users according to their specific needs. Managing large amount of data can be certainly tedious and complex without having right tools and operational procedures; hence automating these tasks through software applications saves time and reduces errors. Moreover, data distribution is highly relevant since scientist tent to assimilate different sources for comparison and validation. The use of web applications has boosted the necessary scientific dissemination. Within this argument, PLOCAN has implemented a set of independent but compatible applications to process, store and disseminate information gathered through different oceanographic platforms. These applications have been implemented using open standards, such as HTML and CSS, and open source software, like python as programming language and Django as framework web. More specifically, a glider application has been developed within the framework of FP7-GROOM project. Regarding data management, this project focuses on collecting and making available consistent and quality controlled datasets as well as fostering open access to glider data.
Miles, Alistair; Zhao, Jun; Klyne, Graham; White-Cooper, Helen; Shotton, David
2010-10-01
Integrating heterogeneous data across distributed sources is a major requirement for in silico bioinformatics supporting translational research. For example, genome-scale data on patterns of gene expression in the fruit fly Drosophila melanogaster are widely used in functional genomic studies in many organisms to inform candidate gene selection and validate experimental results. However, current data integration solutions tend to be heavy weight, and require significant initial and ongoing investment of effort. Development of a common Web-based data integration infrastructure (a.k.a. data web), using Semantic Web standards, promises to alleviate these difficulties, but little is known about the feasibility, costs, risks or practical means of migrating to such an infrastructure. We describe the development of OpenFlyData, a proof-of-concept system integrating gene expression data on D. melanogaster, combining Semantic Web standards with light-weight approaches to Web programming based on Web 2.0 design patterns. To support researchers designing and validating functional genomic studies, OpenFlyData includes user-facing search applications providing intuitive access to and comparison of gene expression data from FlyAtlas, the BDGP in situ database, and FlyTED, using data from FlyBase to expand and disambiguate gene names. OpenFlyData's services are also openly accessible, and are available for reuse by other bioinformaticians and application developers. Semi-automated methods and tools were developed to support labour- and knowledge-intensive tasks involved in deploying SPARQL services. These include methods for generating ontologies and relational-to-RDF mappings for relational databases, which we illustrate using the FlyBase Chado database schema; and methods for mapping gene identifiers between databases. The advantages of using Semantic Web standards for biomedical data integration are discussed, as are open issues. In particular, although the performance of open source SPARQL implementations is sufficient to query gene expression data directly from user-facing applications such as Web-based data fusions (a.k.a. mashups), we found open SPARQL endpoints to be vulnerable to denial-of-service-type problems, which must be mitigated to ensure reliability of services based on this standard. These results are relevant to data integration activities in translational bioinformatics. The gene expression search applications and SPARQL endpoints developed for OpenFlyData are deployed at http://openflydata.org. FlyUI, a library of JavaScript widgets providing re-usable user-interface components for Drosophila gene expression data, is available at http://flyui.googlecode.com. Software and ontologies to support transformation of data from FlyBase, FlyAtlas, BDGP and FlyTED to RDF are available at http://openflydata.googlecode.com. SPARQLite, an implementation of the SPARQL protocol, is available at http://sparqlite.googlecode.com. All software is provided under the GPL version 3 open source license.
Cytoscape.js: a graph theory library for visualisation and analysis.
Franz, Max; Lopes, Christian T; Huck, Gerardo; Dong, Yue; Sumer, Onur; Bader, Gary D
2016-01-15
Cytoscape.js is an open-source JavaScript-based graph library. Its most common use case is as a visualization software component, so it can be used to render interactive graphs in a web browser. It also can be used in a headless manner, useful for graph operations on a server, such as Node.js. Cytoscape.js is implemented in JavaScript. Documentation, downloads and source code are available at http://js.cytoscape.org. gary.bader@utoronto.ca. © The Author 2015. Published by Oxford University Press.
Integrating new Storage Technologies into EOS
NASA Astrophysics Data System (ADS)
Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul
2015-12-01
The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.
RAVE—a Detector-independent vertex reconstruction toolkit
NASA Astrophysics Data System (ADS)
Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian
2007-10-01
A detector-independent toolkit for vertex reconstruction (RAVE ) is being developed, along with a standalone framework (VERTIGO ) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available. VERTIGO = "vertex reconstruction toolkit and interface to generic objects".
Hart, Reece K; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A
2015-01-15
Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
OPTiM: Optical projection tomography integrated microscope using open-source hardware and software
Andrews, Natalie; Davis, Samuel; Bugeon, Laurence; Dallman, Margaret D.; McGinty, James
2017-01-01
We describe the implementation of an OPT plate to perform optical projection tomography (OPT) on a commercial wide-field inverted microscope, using our open-source hardware and software. The OPT plate includes a tilt adjustment for alignment and a stepper motor for sample rotation as required by standard projection tomography. Depending on magnification requirements, three methods of performing OPT are detailed using this adaptor plate: a conventional direct OPT method requiring only the addition of a limiting aperture behind the objective lens; an external optical-relay method allowing conventional OPT to be performed at magnifications >4x; a remote focal scanning and region-of-interest method for improved spatial resolution OPT (up to ~1.6 μm). All three methods use the microscope’s existing incoherent light source (i.e. arc-lamp) and all of its inherent functionality is maintained for day-to-day use. OPT acquisitions are performed on in vivo zebrafish embryos to demonstrate the implementations’ viability. PMID:28700724
Continuous integration for concurrent MOOSE framework and application development on GitHub
Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.; ...
2015-11-20
For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less
Continuous integration for concurrent MOOSE framework and application development on GitHub
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.
For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., Journal of Open Research Software vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Severalmore » specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Furthermore, special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.« less
Open source clustering software.
de Hoon, M J L; Imoto, S; Nolan, J; Miyano, S
2004-06-12
We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we generated a Python and a Perl interface to the C Clustering Library, thereby combining the flexibility of a scripting language with the speed of C. The C Clustering Library and the corresponding Python C extension module Pycluster were released under the Python License, while the Perl module Algorithm::Cluster was released under the Artistic License. The GUI code Cluster 3.0 for Windows, Macintosh and Linux/Unix, as well as the corresponding command-line program, were released under the same license as the original Cluster code. The complete source code is available at http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster. Alternatively, Algorithm::Cluster can be downloaded from CPAN, while Pycluster is also available as part of the Biopython distribution.
An Interface Transformation Strategy for AF-IPPS
2012-12-01
Representational State Transfer (REST) and Java Enterprise Edition ( Java EE) to implement a reusable “translation service.” For SOAP and REST protocols, XML and...of best-of-breed open source software. The product baseline is summarized in the following table: Product Function Description Java Language...Compiler & Runtime JBoss Application Server Applications, Messaging, Translation Java EE Application Server Ruby on Rails Applications Ruby Web
ERIC Educational Resources Information Center
Premadasa, H. K. Salinda; Meegama, R. Gayan N.
2013-01-01
Purpose: The purpose of this paper is to discuss how to integrate secure, open-source and mobile-based system with the Moodle learning management system (MLMS) then describe the implementation of a campus-wide mobile learning environment with short messaging system (SMS) and how this platform is incorporated with the student's learning…
Shadow netWorkspace: An Open Source Intranet for Learning Communities
ERIC Educational Resources Information Center
Laffey, James M.; Musser, Dale
2006-01-01
Shadow netWorkspace (SNS) is a web application system that allows a school or any type of community to establish an intranet with network workspaces for all members and groups. The goal of SNS has been to make it easy for schools and other educational organizations to provide network services in support of implementing a learning community. SNS is…
DOT National Transportation Integrated Search
2016-10-12
This document offers a detailed discussion of the systems functionality that was planned to be implemented. However, following the Agile Development methodology, during the course of system development, diligent decisions were made based on the la...
ERIC Educational Resources Information Center
Meeus, Wil; Questier, Frederik; Derks, Thea
2006-01-01
This article provides a general overview of how portfolio is used in education and then goes on to discuss the development of a generic, institution-wide portfolio for students. We further provide a succinct summary and critical analysis of the educational principles underlying the use of portfolio in higher education. This is followed by an…
OpenDA Open Source Generic Data Assimilation Environment and its Application in Process Models
NASA Astrophysics Data System (ADS)
El Serafy, Ghada; Verlaan, Martin; Hummel, Stef; Weerts, Albrecht; Dhondia, Juzer
2010-05-01
Data Assimilation techniques are essential elements in state-of-the-art development of models and their optimization with data in the field of groundwater, surface water and soil systems. They are essential tools in calibration of complex modelling systems and improvement of model forecasts. The OpenDA is a new and generic open source data assimilation environment for application to a choice of physical process models, applied to case dependent domains. OpenDA was introduced recently when the developers of Costa, an open-source TU Delft project [http://www.costapse.org; Van Velzen and Verlaan; 2007] and those of the DATools from the former WL|Delft Hydraulics [El Serafy et al 2007; Weerts et al. 2009] decided to join forces. OpenDA makes use of a set of interfaces that describe the interaction between models, observations and data assimilation algorithms. It focuses on flexible applications in portable systems for modelling geophysical processes. It provides a generic interfacing protocol that allows combination of the implemented data assimilation techniques with, in principle, any time-stepping model duscribing a process(atmospheric processes, 3D circulation, 2D water level, sea surface temperature, soil systems, groundwater etc.). Presently, OpenDA features filtering techniques and calibration techniques. The presentation will give an overview of the OpenDA and the results of some of its practical applications. Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment, El Serafy G.Y., H. Gerritsen, S. Hummel, A. H. Weerts, A.E. Mynett and M. Tanaka (2007), Journal of Ocean Dynamics, DOI 10.1007/s10236-007-0124-3, pp.485-499. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Van Velzen and Verlaan (2007), Meteorologische Zeitschrift, Volume 16, Number 6, December 2007 , pp. 777-793(17). Application of generic data assimilation tools (DATools) for flood forecasting purposes, A.H. Weerts, G.Y.H. El Serafy, S. Hummel, J. Dhondia, and H. Gerritsen (2009), accepted by Geoscience & Computers.
Nektar++: An open-source spectral/ hp element framework
NASA Astrophysics Data System (ADS)
Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.-E.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J.
2015-07-01
Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/ hp element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/ hp element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.
Open source tools for standardized privacy protection of medical images
NASA Astrophysics Data System (ADS)
Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas
2011-03-01
In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.
PharmacoGx: an R package for analysis of large pharmacogenomic datasets.
Smirnov, Petr; Safikhani, Zhaleh; El-Hachem, Nehme; Wang, Dong; She, Adrian; Olsen, Catharina; Freeman, Mark; Selby, Heather; Gendoo, Deena M A; Grossmann, Patrick; Beck, Andrew H; Aerts, Hugo J W L; Lupien, Mathieu; Goldenberg, Anna; Haibe-Kains, Benjamin
2016-04-15
Pharmacogenomics holds great promise for the development of biomarkers of drug response and the design of new therapeutic options, which are key challenges in precision medicine. However, such data are scattered and lack standards for efficient access and analysis, consequently preventing the realization of the full potential of pharmacogenomics. To address these issues, we implemented PharmacoGx, an easy-to-use, open source package for integrative analysis of multiple pharmacogenomic datasets. We demonstrate the utility of our package in comparing large drug sensitivity datasets, such as the Genomics of Drug Sensitivity in Cancer and the Cancer Cell Line Encyclopedia. Moreover, we show how to use our package to easily perform Connectivity Map analysis. With increasing availability of drug-related data, our package will open new avenues of research for meta-analysis of pharmacogenomic data. PharmacoGx is implemented in R and can be easily installed on any system. The package is available from CRAN and its source code is available from GitHub. bhaibeka@uhnresearch.ca or benjamin.haibe.kains@utoronto.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
IPeak: An open source tool to combine results from multiple MS/MS search engines.
Wen, Bo; Du, Chaoqin; Li, Guilin; Ghali, Fawaz; Jones, Andrew R; Käll, Lukas; Xu, Shaohang; Zhou, Ruo; Ren, Zhe; Feng, Qiang; Xu, Xun; Wang, Jun
2015-09-01
Liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) is an important technique for detecting peptides in proteomics studies. Here, we present an open source software tool, termed IPeak, a peptide identification pipeline that is designed to combine the Percolator post-processing algorithm and multi-search strategy to enhance the sensitivity of peptide identifications without compromising accuracy. IPeak provides a graphical user interface (GUI) as well as a command-line interface, which is implemented in JAVA and can work on all three major operating system platforms: Windows, Linux/Unix and OS X. IPeak has been designed to work with the mzIdentML standard from the Proteomics Standards Initiative (PSI) as an input and output, and also been fully integrated into the associated mzidLibrary project, providing access to the overall pipeline, as well as modules for calling Percolator on individual search engine result files. The integration thus enables IPeak (and Percolator) to be used in conjunction with any software packages implementing the mzIdentML data standard. IPeak is freely available and can be downloaded under an Apache 2.0 license at https://code.google.com/p/mzidentml-lib/. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bratic, G.; Brovelli, M. A.; Molinari, M. E.
2018-04-01
The availability of thematic maps has significantly increased over the last few years. Validation of these maps is a key factor in assessing their suitability for different applications. The evaluation of the accuracy of classified data is carried out through a comparison with a reference dataset and the generation of a confusion matrix from which many quality indexes can be derived. In this work, an ad hoc free and open source Python tool was implemented to automatically compute all the matrix confusion-derived accuracy indexes proposed by literature. The tool was integrated into GRASS GIS environment and successfully applied to evaluate the quality of three high-resolution global datasets (GlobeLand30, Global Urban Footprint, Global Human Settlement Layer Built-Up Grid) in the Lombardy Region area (Italy). In addition to the most commonly used accuracy measures, e.g. overall accuracy and Kappa, the tool allowed to compute and investigate less known indexes such as the Ground Truth and the Classification Success Index. The promising tool will be further extended with spatial autocorrelation analysis functions and made available to researcher and user community.
OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments
NASA Astrophysics Data System (ADS)
Rebuffi, Luca; Sanchez del Rio, Manuel
2017-08-01
The evolution of the hardware platforms, the modernization of the software tools, the access to the codes of a large number of young people and the popularization of the open source software for scientific applications drove us to design OASYS (ORange SYnchrotron Suite), a completely new graphical environment for modelling X-ray experiments. The implemented software architecture allows to obtain not only an intuitive and very-easy-to-use graphical interface, but also provides high flexibility and rapidity for interactive simulations, making configuration changes to quickly compare multiple beamline configurations. Its purpose is to integrate in a synergetic way the most powerful calculation engines available. OASYS integrates different simulation strategies via the implementation of adequate simulation tools for X-ray Optics (e.g. ray tracing and wave optics packages). It provides a language to make them to communicate by sending and receiving encapsulated data. Python has been chosen as main programming language, because of its universality and popularity in scientific computing. The software Orange, developed at the University of Ljubljana (SLO), is the high level workflow engine that provides the interaction with the user and communication mechanisms.
Dalmaijer, Edwin S; Mathôt, Sebastiaan; Van der Stigchel, Stefan
2014-12-01
The PyGaze toolbox is an open-source software package for Python, a high-level programming language. It is designed for creating eyetracking experiments in Python syntax with the least possible effort, and it offers programming ease and script readability without constraining functionality and flexibility. PyGaze can be used for visual and auditory stimulus presentation; for response collection via keyboard, mouse, joystick, and other external hardware; and for the online detection of eye movements using a custom algorithm. A wide range of eyetrackers of different brands (EyeLink, SMI, and Tobii systems) are supported. The novelty of PyGaze lies in providing an easy-to-use layer on top of the many different software libraries that are required for implementing eyetracking experiments. Essentially, PyGaze is a software bridge for eyetracking research.
NASA Astrophysics Data System (ADS)
Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Isken, Marius; Vasyura-Bathke, Hannes
2017-04-01
In the last few years impressive achievements have been made in improving inferences about earthquake sources by using InSAR (Interferometric Synthetic Aperture Radar) data. Several factors aided these developments. The open data basis of earthquake observations has expanded vastly with the two powerful Sentinel-1 SAR sensors up in space. Increasing computer power allows processing of large data sets for more detailed source models. Moreover, data inversion approaches for earthquake source inferences are becoming more advanced. By now data error propagation is widely implemented and the estimation of model uncertainties is a regular feature of reported optimum earthquake source models. Also, more regularly InSAR-derived surface displacements and seismological waveforms are combined, which requires finite rupture models instead of point-source approximations and layered medium models instead of homogeneous half-spaces. In other words the disciplinary differences in geodetic and seismological earthquake source modelling shrink towards common source-medium descriptions and a source near-field/far-field data point of view. We explore and facilitate the combination of InSAR-derived near-field static surface displacement maps and dynamic far-field seismological waveform data for global earthquake source inferences. We join in the community efforts with the particular goal to improve crustal earthquake source inferences in generally not well instrumented areas, where often only the global backbone observations of earthquakes are available provided by seismological broadband sensor networks and, since recently, by Sentinel-1 SAR acquisitions. We present our work on modelling standards for the combination of static and dynamic surface displacements in the source's near-field and far-field, e.g. on data and prediction error estimations as well as model uncertainty estimation. Rectangular dislocations and moment-tensor point sources are exchanged by simple planar finite rupture models. 1d-layered medium models are implemented for both near- and far-field data predictions. A highlight of our approach is a weak dependence on earthquake bulletin information: hypocenter locations and source origin times are relatively free source model parameters. We present this harmonized source modelling environment based on example earthquake studies, e.g. the 2010 Haiti earthquake, the 2009 L'Aquila earthquake and others. We discuss the benefit of combined-data non-linear modelling on the resolution of first-order rupture parameters, e.g. location, size, orientation, mechanism, moment/slip and rupture propagation. The presented studies apply our newly developed software tools which build up on the open-source seismological software toolbox pyrocko (www.pyrocko.org) in the form of modules. We aim to facilitate a better exploitation of open global data sets for a wide community studying tectonics, but the tools are applicable also for a large range of regional to local earthquake studies. Our developments therefore ensure a large flexibility in the parametrization of medium models (e.g. 1d to 3d medium models), source models (e.g. explosion sources, full moment tensor sources, heterogeneous slip models, etc) and of the predicted data (e.g. (high-rate) GPS, strong motion, tilt). This work is conducted within the project "Bridging Geodesy and Seismology" (www.bridges.uni-kiel.de) funded by the German Research Foundation DFG through an Emmy-Noether grant.
OpenDanubia - An integrated, modular simulation system to support regional water resource management
NASA Astrophysics Data System (ADS)
Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.
2012-04-01
The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure and the generic core system (Core Framework, Actor Framework) allows the application in new regions and the selection of a reduced number of modules for simulation. As part of the Open Source Initiative in GLOWA-Danube (opendanubia.glowa-danube.de) a comprehensive documentation for the system installation was created and both the program code of the framework and of all major components is licensed under the GNU General Public License. In addition, some helpful programs and scripts necessary for the operation and processing of input and result data sets are provided.
Building Energy Management Open Source Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the repository for Building Energy Management Open Source Software (BEMOSS), which is an open source operating system that is engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. BEMOSS offers the following key features: (1) Open source, open architecture – BEMOSS is an open source operating system that is built upon VOLTTRON – a distributed agent platform developed by Pacific Northwest National Laboratory (PNNL). BEMOSS was designed to make it easy for hardware manufacturers to seamlessly interface their devices with BEMOSS. Software developers can also contribute to adding additional BEMOSS functionalities and applications.more » (2) Plug & play – BEMOSS was designed to automatically discover supported load controllers (including smart thermostats, VAV/RTUs, lighting load controllers and plug load controllers) in commercial buildings. (3) Interoperability – BEMOSS was designed to work with load control devices form different manufacturers that operate on different communication technologies and data exchange protocols. (4) Cost effectiveness – Implementation of BEMOSS deemed to be cost-effective as it was built upon a robust open source platform that can operate on a low-cost single-board computer, such as Odroid. This feature could contribute to its rapid deployment in small- or medium-sized commercial buildings. (5) Scalability and ease of deployment – With its multi-node architecture, BEMOSS provides a distributed architecture where load controllers in a multi-floor and high occupancy building could be monitored and controlled by multiple single-board computers hosting BEMOSS. This makes it possible for a building engineer to deploy BEMOSS in one zone of a building, be comfortable with its operation, and later on expand the deployment to the entire building to make it more energy efficient. (6) Ability to provide local and remote monitoring – BEMOSS provides both local and remote monitoring ability with role-based access control. (7) Security – In addition to built-in security features provided by VOLTTRON, BEMOSS provides enhanced security features, including BEMOSS discovery approval process, encrypted core-to-node communication, thermostat anti-tampering feature and many more. (8) Support from the Advisory Committee – BEMOSS was developed in consultation with an advisory committee from the beginning of the project. BEMOSS advisory committee comprises representatives from 22 organizations from government and industry.« less
Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review.
Syzdykova, Assel; Malta, André; Zolfo, Maria; Diro, Ermias; Oliveira, José Luis
2017-11-13
Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code-based language, (17) development activity, (18) modularity, (19) user interface, (20) community support, and (21) customization. The quality of each feature is discussed for each of the evaluated solutions and a final comparison is presented. There is a clear demand for open-source, reliable, and flexible EHR systems in low-resource settings. In this study, we have evaluated and compared five open-source EHR systems following a multidimensional methodology that can provide informed recommendations to other implementers, developers, and health care professionals. We hope that the results of this comparison can guide decision making when needing to adopt, install, and maintain an open-source EHR solution in low-resource settings. ©Assel Syzdykova, André Malta, Maria Zolfo, Ermias Diro, José Luis Oliveira. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.11.2017.
Rideout, Jai Ram; He, Yan; Navas-Molina, Jose A; Walters, William A; Ursell, Luke K; Gibbons, Sean M; Chase, John; McDonald, Daniel; Gonzalez, Antonio; Robbins-Pianka, Adam; Clemente, Jose C; Gilbert, Jack A; Huse, Susan M; Zhou, Hong-Wei; Knight, Rob; Caporaso, J Gregory
2014-01-01
We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to "classic" open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, "classic" open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of "classic" open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by "classic" open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME's uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME's OTU picking workflows and make recommendations on settings for these free parameters to optimize runtime without reducing the quality of the results. These optimized parameters can vastly decrease the runtime of uclust-based OTU picking in QIIME.
A Shared Infrastructure for Federated Search Across Distributed Scientific Metadata Catalogs
NASA Astrophysics Data System (ADS)
Reed, S. A.; Truslove, I.; Billingsley, B. W.; Grauch, A.; Harper, D.; Kovarik, J.; Lopez, L.; Liu, M.; Brandt, M.
2013-12-01
The vast amount of science metadata can be overwhelming and highly complex. Comprehensive analysis and sharing of metadata is difficult since institutions often publish to their own repositories. There are many disjoint standards used for publishing scientific data, making it difficult to discover and share information from different sources. Services that publish metadata catalogs often have different protocols, formats, and semantics. The research community is limited by the exclusivity of separate metadata catalogs and thus it is desirable to have federated search interfaces capable of unified search queries across multiple sources. Aggregation of metadata catalogs also enables users to critique metadata more rigorously. With these motivations in mind, the National Snow and Ice Data Center (NSIDC) and Advanced Cooperative Arctic Data and Information Service (ACADIS) implemented two search interfaces for the community. Both the NSIDC Search and ACADIS Arctic Data Explorer (ADE) use a common infrastructure which keeps maintenance costs low. The search clients are designed to make OpenSearch requests against Solr, an Open Source search platform. Solr applies indexes to specific fields of the metadata which in this instance optimizes queries containing keywords, spatial bounds and temporal ranges. NSIDC metadata is reused by both search interfaces but the ADE also brokers additional sources. Users can quickly find relevant metadata with minimal effort and ultimately lowers costs for research. This presentation will highlight the reuse of data and code between NSIDC and ACADIS, discuss challenges and milestones for each project, and will identify creation and use of Open Source libraries.
An Offline-Online Android Application for Hazard Event Mapping Using WebGIS Open Source Technologies
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya
2016-04-01
Nowadays, Free and Open Source Software (FOSS) plays an important role in better understanding and managing disaster risk reduction around the world. National and local government, NGOs and other stakeholders are increasingly seeking and producing data on hazards. Most of the hazard event inventories and land use mapping are based on remote sensing data, with little ground truthing, creating difficulties depending on the terrain and accessibility. Open Source WebGIS tools offer an opportunity for quicker and easier ground truthing of critical areas in order to analyse hazard patterns and triggering factors. This study presents a secure mobile-map application for hazard event mapping using Open Source WebGIS technologies such as Postgres database, Postgis, Leaflet, Cordova and Phonegap. The objectives of this prototype are: 1. An Offline-Online android mobile application with advanced Geospatial visualisation; 2. Easy Collection and storage of events information applied services; 3. Centralized data storage with accessibility by all the service (smartphone, standard web browser); 4. Improving data management by using active participation in hazard event mapping and storage. This application has been implemented as a low-cost, rapid and participatory method for recording impacts from hazard events and includes geolocation (GPS data and Internet), visualizing maps with overlay of satellite images, viewing uploaded images and events as cluster points, drawing and adding event information. The data can be recorded in offline (Android device) or online version (all browsers) and consequently uploaded through the server whenever internet is available. All the events and records can be visualized by an administrator and made public after approval. Different user levels can be defined to access the data for communicating the information. This application was tested for landslides in post-earthquake Nepal but can be used for any other type of hazards such as flood, avalanche, etc. Keywords: Offline, Online, WebGIS Open source, Android, Hazard Event Mapping
Architecture and Implementation of OpenPET Firmware and Embedded Software
Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; Peng, Qiyu; Choong, Woon-Seng
2016-01-01
OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics – a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures and implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration. PMID:27110034
Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.
Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi
2011-10-13
Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.
Genes2WordCloud: a quick way to identify biological themes from gene lists and free text
2011-01-01
Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications. PMID:21995939
My care pathways - creating open innovation in healthcare.
Lundberg, Nina; Koch, Sabine; Hägglund, Maria; Bolin, Peter; Davoody, Nadia; Eltes, Johan; Jarlman, Olof; Perlich, Anja; Vimarlund, Vivian; Winsnes, Casper
2013-01-01
In this paper we describe initial results from the Swedish innovation project "My Care Pathways" which envisions enabling citizens to track their own health by providing them with online access to their historical, current and prospective future events. We describe an information infrastructure and its base services as well as the use of this solution as an open source platform for open innovation in healthcare. This will facilitate the development of end-user e-services for citizens. We have technically enabled the information infrastructure in close collaboration with decision makers in three Swedish health care regions, and system vendors as well as with National eHealth projects. Close collaboration between heterogeneous actors made implementation in real practice possible. However, a number of challenges, mainly related to legal and business issues, persist when implementing our results. Future work should therefore target the development of business models for sustainable provision of end-user e-services in a public health care system such as the Swedish one. Also, a legal analysis of the development of third party provider (nonhealthcare based) personal health data e-services should be done.
Solving a Health Information Management Problem. An international success story.
Hannan, Terry J
2015-01-01
The management of health care delivery requires the availability of effective 'information management' tools based on e-technologies [eHealth]. In developed economies many of these 'tools' are readily available whereas in Low and Middle Income Countries (LMIC) there is limited access to eHealth technologies and this has been defined as the "digital divide". This paper provides a short introduction to the fundamental understanding of what is meant by information management in health care and how it applies to all social economies. The core of the paper describes the successful implementation of appropriate information management tools in a resource poor environment to manage the HIV/AIDS epidemic and other disease states, in sub-Saharan Africa and how the system has evolved to become the largest open source eHealth project in the world and become the health information infrastructure for several national eHealth economies. The system is known as Open MRS [www.openmrs.org). The continuing successful evolution of the OpenMRS project has permitted its key implementers to define core factors that are the foundations for successful eHealth projects.
Mathur, Gagan; Haugen, Thomas H; Davis, Scott L; Krasowski, Matthew D
2014-01-01
Interfacing of clinical laboratory instruments with the laboratory information system (LIS) via "middleware" software is increasingly common. Our clinical laboratory implemented capillary electrophoresis using a Sebia(®) Capillarys-2™ (Norcross, GA, USA) instrument for serum and urine protein electrophoresis. Using Data Innovations Instrument Manager, an interface was established with the LIS (Cerner) that allowed for bi-directional transmission of numeric data. However, the text of the interpretive pathology report was not properly transferred. To reduce manual effort and possibility for error in text data transfer, we developed scripts in AutoHotkey, a free, open-source macro-creation and automation software utility. Scripts were written to create macros that automated mouse and key strokes. The scripts retrieve the specimen accession number, capture user input text, and insert the text interpretation in the correct patient record in the desired format. The scripts accurately and precisely transfer narrative interpretation into the LIS. Combined with bar-code reading by the electrophoresis instrument, the scripts transfer data efficiently to the correct patient record. In addition, the AutoHotKey script automated repetitive key strokes required for manual entry into the LIS, making protein electrophoresis sign-out easier to learn and faster to use by the pathology residents. Scripts allow for either preliminary verification by residents or final sign-out by the attending pathologist. Using the open-source AutoHotKey software, we successfully improved the transfer of text data between capillary electrophoresis software and the LIS. The use of open-source software tools should not be overlooked as tools to improve interfacing of laboratory instruments.
OpenSQUID: A Flexible Open-Source Software Framework for the Control of SQUID Electronics
Jaeckel, Felix T.; Lafler, Randy J.; Boyd, S. T. P.
2013-02-06
We report commercially available computer-controlled SQUID electronics are usually delivered with software providing a basic user interface for adjustment of SQUID tuning parameters, such as bias current, flux offset, and feedback loop settings. However, in a research context it would often be useful to be able to modify this code and/or to have full control over all these parameters from researcher-written software. In the case of the STAR Cryoelectronics PCI/PFL family of SQUID control electronics, the supplied software contains modules for automatic tuning and noise characterization, but does not provide an interface for user code. On the other hand, themore » Magnicon SQUIDViewer software package includes a public application programming interface (API), but lacks auto-tuning and noise characterization features. To overcome these and other limitations, we are developing an "open-source" framework for controlling SQUID electronics which should provide maximal interoperability with user software, a unified user interface for electronics from different manufacturers, and a flexible platform for the rapid development of customized SQUID auto-tuning and other advanced features. Finally, we have completed a first implementation for the STAR Cryoelectronics hardware and have made the source code for this ongoing project available to the research community on SourceForge (http://opensquid.sourceforge.net) under the GNU public license.« less
Many-level multilevel structural equation modeling: An efficient evaluation strategy.
Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M
2017-01-01
Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.
Zhou, Lili; Clifford Chao, K S; Chang, Jenghwa
2012-11-01
Simulated projection images of digital phantoms constructed from CT scans have been widely used for clinical and research applications but their quality and computation speed are not optimal for real-time comparison with the radiography acquired with an x-ray source of different energies. In this paper, the authors performed polyenergetic forward projections using open computing language (OpenCL) in a parallel computing ecosystem consisting of CPU and general purpose graphics processing unit (GPGPU) for fast and realistic image formation. The proposed polyenergetic forward projection uses a lookup table containing the NIST published mass attenuation coefficients (μ∕ρ) for different tissue types and photon energies ranging from 1 keV to 20 MeV. The CT images of interested sites are first segmented into different tissue types based on the CT numbers and converted to a three-dimensional attenuation phantom by linking each voxel to the corresponding tissue type in the lookup table. The x-ray source can be a radioisotope or an x-ray generator with a known spectrum described as weight w(n) for energy bin E(n). The Siddon method is used to compute the x-ray transmission line integral for E(n) and the x-ray fluence is the weighted sum of the exponential of line integral for all energy bins with added Poisson noise. To validate this method, a digital head and neck phantom constructed from the CT scan of a Rando head phantom was segmented into three (air, gray∕white matter, and bone) regions for calculating the polyenergetic projection images for the Mohan 4 MV energy spectrum. To accelerate the calculation, the authors partitioned the workloads using the task parallelism and data parallelism and scheduled them in a parallel computing ecosystem consisting of CPU and GPGPU (NVIDIA Tesla C2050) using OpenCL only. The authors explored the task overlapping strategy and the sequential method for generating the first and subsequent DRRs. A dispatcher was designed to drive the high-degree parallelism of the task overlapping strategy. Numerical experiments were conducted to compare the performance of the OpenCL∕GPGPU-based implementation with the CPU-based implementation. The projection images were similar to typical portal images obtained with a 4 or 6 MV x-ray source. For a phantom size of 512 × 512 × 223, the time for calculating the line integrals for a 512 × 512 image panel was 16.2 ms on GPGPU for one energy bin in comparison to 8.83 s on CPU. The total computation time for generating one polyenergetic projection image of 512 × 512 was 0.3 s (141 s for CPU). The relative difference between the projection images obtained with the CPU-based and OpenCL∕GPGPU-based implementations was on the order of 10(-6) and was virtually indistinguishable. The task overlapping strategy was 5.84 and 1.16 times faster than the sequential method for the first and the subsequent digitally reconstruction radiographies, respectively. The authors have successfully built digital phantoms using anatomic CT images and NIST μ∕ρ tables for simulating realistic polyenergetic projection images and optimized the processing speed with parallel computing using GPGPU∕OpenCL-based implementation. The computation time was fast (0.3 s per projection image) enough for real-time IGRT (image-guided radiotherapy) applications.
The TENCompetence Infrastructure: A Learning Network Implementation
NASA Astrophysics Data System (ADS)
Vogten, Hubert; Martens, Harrie; Lemmers, Ruud
The TENCompetence project developed a first release of a Learning Network infrastructure to support individuals, groups and organisations in professional competence development. This infrastructure Learning Network infrastructure was released as open source to the community thereby allowing users and organisations to use and contribute to this development as they see fit. The infrastructure consists of client applications providing the user experience and server components that provide the services to these clients. These services implement the domain model (Koper 2006) by provisioning the entities of the domain model (see also Sect. 18.4) and henceforth will be referenced as domain entity services.
NASA Astrophysics Data System (ADS)
Lam, Ho-Pun; Governatori, Guido
We present the design and implementation of SPINdle - an open source Java based defeasible logic reasoner capable to perform efficient and scalable reasoning on defeasible logic theories (including theories with over 1 million rules). The implementation covers both the standard and modal extensions to defeasible logics. It can be used as a standalone theory prover and can be embedded into any applications as a defeasible logic rule engine. It allows users or agents to issues queries, on a given knowledge base or a theory generated on the fly by other applications, and automatically produces the conclusions of its consequences. The theory can also be represented using XML.
Precise calculation of the local pressure tensor in Cartesian and spherical coordinates in LAMMPS
NASA Astrophysics Data System (ADS)
Nakamura, Takenobu; Kawamoto, Shuhei; Shinoda, Wataru
2015-05-01
An accurate and efficient algorithm for calculating the 3D pressure field has been developed and implemented in the open-source molecular dynamics package, LAMMPS. Additionally, an algorithm to compute the pressure profile along the radial direction in spherical coordinates has also been implemented. The latter is particularly useful for systems showing a spherical symmetry such as micelles and vesicles. These methods yield precise pressure fields based on the Irving-Kirkwood contour integration and are particularly useful for biomolecular force fields. The present methods are applied to several systems including a buckled membrane and a vesicle.
A New Nightly Build System for LHCb
NASA Astrophysics Data System (ADS)
Clemencic, M.; Couturier, B.
2014-06-01
The nightly build system used so far by LHCb has been implemented as an extension of the system developed by CERN PH/SFT group (as presented at CHEP2010). Although this version has been working for many years, it has several limitations in terms of extensibility, management and ease of use, so that it was decided to develop a new version based on a continuous integration system. In this paper we describe a new implementation of the LHCb Nightly Build System based on the open source continuous integration system Jenkins and report on the experience of configuring a complex build workflow in Jenkins.
NASA Astrophysics Data System (ADS)
Pérez Peña, José Vicente; Baldó, Mane; Acosta, Yarci; Verschueren, Laurent; Thibaud, Kenmognie; Bilivogui, Pépé; Jean-Paul Ngandu, Alain; Beavogui, Maoro
2017-04-01
In the last decade the increasing interest for public health has promoted specific regulations for the transport, storage, transformation and/or elimination of potentially toxic waste. A special concern should focus on the effective management of biomedical waste, due to the environmental and health risk associated with them. The first stage for the effective management these waste includes the selection of the best sites for the location of facilities for its storage and/or elimination. Best-site selection is accomplished by means of multi-criteria decision analyses (MCDA) that aim to minimize the social and environmental impact, and to maximize management efficiency. In this work we presented a methodology that uses open-source software and data to analyze the best location for the implantation of a centralized waste management system in a developing country (Guinea, Conakry). We applied an analytical hierarchy process (AHP) using different thematic layers such as land use (derived from up-to-date Sentinel 2 remote sensing images), soil type, distance and type of roads, hydrography, distance to dense populated areas, etc. Land-use data were derived from up-to-date Sentinel 2 remote sensing images, whereas roads and hydrography were obtained from the Open Street Map database and latter validated with administrative data. We performed the AHP analysis with the aid of QGIS open-software Geospatial Information System. This methodology is very effective for developing countries as it uses open-source software and data for the MCDA analysis, thus reducing costs in these first stages of the integrated analysis.
Brokered virtual hubs for facilitating access and use of geospatial Open Data
NASA Astrophysics Data System (ADS)
Mazzetti, Paolo; Latre, Miguel; Kamali, Nargess; Brumana, Raffaella; Braumann, Stefan; Nativi, Stefano
2016-04-01
Open Data is a major trend in current information technology scenario and it is often publicised as one of the pillars of the information society in the near future. In particular, geospatial Open Data have a huge potential also for Earth Sciences, through the enablement of innovative applications and services integrating heterogeneous information. However, open does not mean usable. As it was recognized at the very beginning of the Web revolution, many different degrees of openness exist: from simple sharing in a proprietary format to advanced sharing in standard formats and including semantic information. Therefore, to fully unleash the potential of geospatial Open Data, advanced infrastructures are needed to increase the data openness degree, enhancing their usability. In October 2014, the ENERGIC OD (European NEtwork for Redistributing Geospatial Information to user Communities - Open Data) project, funded by the European Union under the Competitiveness and Innovation framework Programme (CIP), has started. In response to the EU call, the general objective of the project is to "facilitate the use of open (freely available) geographic data from different sources for the creation of innovative applications and services through the creation of Virtual Hubs". The ENERGIC OD Virtual Hubs aim to facilitate the use of geospatial Open Data by lowering and possibly removing the main barriers which hampers geo-information (GI) usage by end-users and application developers. Data and services heterogeneity is recognized as one of the major barriers to Open Data (re-)use. It imposes end-users and developers to spend a lot of effort in accessing different infrastructures and harmonizing datasets. Such heterogeneity cannot be completely removed through the adoption of standard specifications for service interfaces, metadata and data models, since different infrastructures adopt different standards to answer to specific challenges and to address specific use-cases. Thus, beyond a certain extent, heterogeneity is irreducible especially in interdisciplinary contexts. ENERGIC OD Virtual Hubs address heterogeneity adopting a mediation and brokering approach: specific components (brokers) are dedicated to harmonize service interfaces, metadata and data models, enabling seamless discovery and access to heterogeneous infrastructures and datasets. As an innovation project, ENERGIC OD integrates several existing technologies to implement Virtual Hubs as single points of access to geospatial datasets provided by new or existing platforms and infrastructures, including INSPIRE-compliant systems and Copernicus services. A first version of the ENERGIC OD brokers has been implemented based on the GI-Suite Brokering Framework developed by CNR-IIA, and complemented with other tools under integration and development. It already enables mediated discovery and harmonized access to different geospatial Open Data sources. It is accessible by users as Software-as-a-Service through a browser. Moreover, open APIs and a Javascript library are available for application developers. Six ENERGIC OD Virtual Hubs have been currently deployed: one at regional level (Berlin metropolitan area) and five at national-level (in France, Germany, Italy, Poland and Spain). Each Virtual Hub manager decided the deployment strategy (local infrastructure or commercial Infrastructure-as-a-Service cloud), and the list of connected Open Data sources. The ENERGIC OD Virtual Hubs are under test and validation through the development of ten different mobile and Web applications.
A Dashboard for the Italian Computing in ALICE
NASA Astrophysics Data System (ADS)
Elia, D.; Vino, G.; Bagnasco, S.; Crescente, A.; Donvito, G.; Franco, A.; Lusso, S.; Mura, D.; Piano, S.; Platania, G.; ALICE Collaboration
2017-10-01
A dashboard devoted to the computing in the Italian sites for the ALICE experiment at the LHC has been deployed. A combination of different complementary monitoring tools is typically used in most of the Tier-2 sites: this makes somewhat difficult to figure out at a glance the status of the site and to compare information extracted from different sources for debugging purposes. To overcome these limitations a dedicated ALICE dashboard has been designed and implemented in each of the ALICE Tier-2 sites in Italy: in particular, it provides a single, interactive and easily customizable graphical interface where heterogeneous data are presented. The dashboard is based on two main ingredients: an open source time-series database and a dashboard builder tool for visualizing time-series metrics. Various sensors, able to collect data from the multiple data sources, have been also written. A first version of a national computing dashboard has been implemented using a specific instance of the builder to gather data from all the local databases.
Resonator reset in circuit QED by optimal control for large open quantum systems
NASA Astrophysics Data System (ADS)
Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre
2017-10-01
We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.
Audio CAPTCHA for SIP-Based VoIP
NASA Astrophysics Data System (ADS)
Soupionis, Yannis; Tountas, George; Gritzalis, Dimitris
Voice over IP (VoIP) introduces new ways of communication, while utilizing existing data networks to provide inexpensive voice communications worldwide as a promising alternative to the traditional PSTN telephony. SPam over Internet Telephony (SPIT) is one potential source of future annoyance in VoIP. A common way to launch a SPIT attack is the use of an automated procedure (bot), which generates calls and produces audio advertisements. In this paper, our goal is to design appropriate CAPTCHA to fight such bots. We focus on and develop audio CAPTCHA, as the audio format is more suitable for VoIP environments and we implement it in a SIP-based VoIP environment. Furthermore, we suggest and evaluate the specific attributes that audio CAPTCHA should incorporate in order to be effective, and test it against an open source bot implementation.
Linux containers for fun and profit in HPC
Priedhorsky, Reid; Randles, Timothy C.
2017-10-01
This article outlines options for user-defined software stacks from an HPC perspective. Here, we argue that a lightweight approach based on Linux containers is most suitable for HPC centers because it provides the best balance between maximizing service of user needs and minimizing risks. We also discuss how containers work and several implementations, including Charliecloud, our own open-source solution developed at Los Alamos.
Linux containers for fun and profit in HPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priedhorsky, Reid; Randles, Timothy C.
This article outlines options for user-defined software stacks from an HPC perspective. Here, we argue that a lightweight approach based on Linux containers is most suitable for HPC centers because it provides the best balance between maximizing service of user needs and minimizing risks. We also discuss how containers work and several implementations, including Charliecloud, our own open-source solution developed at Los Alamos.
OTF CCSDS Mission Operations Prototype. Directory and Action Service. Phase I: Exit Presentation
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation describes the phase I directory and action service prototype for the CCSDS system. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement Directory and Action Services (2) Investigate Mission Operations language neutrality (3) Investigate C3I XML interoperability concepts (4) Integrate applicable open source technologies in a Service Oriented Architecture
Informatics Infrastructure for the Materials Genome Initiative
NASA Astrophysics Data System (ADS)
Dima, Alden; Bhaskarla, Sunil; Becker, Chandler; Brady, Mary; Campbell, Carelyn; Dessauw, Philippe; Hanisch, Robert; Kattner, Ursula; Kroenlein, Kenneth; Newrock, Marcus; Peskin, Adele; Plante, Raymond; Li, Sheng-Yen; Rigodiat, Pierre-François; Amaral, Guillaume Sousa; Trautt, Zachary; Schmitt, Xavier; Warren, James; Youssef, Sharief
2016-08-01
A materials data infrastructure that enables the sharing and transformation of a wide range of materials data is an essential part of achieving the goals of the Materials Genome Initiative. We describe two high-level requirements of such an infrastructure as well as an emerging open-source implementation consisting of the Materials Data Curation System and the National Institute of Standards and Technology Materials Resource Registry.
ERIC Educational Resources Information Center
Cereola, Sandra J.; Wier, Benson; Norman, Carolyn Strand
2012-01-01
Based on the large number of small and medium-sized enterprises (SMEs) in the United States, their increasing interest in enterprise-wide software systems and their impact on the US economy, it is important to understand the determinants that can facilitate the successful implementation and assimilation of such technology into these firms' daily…
Schwartz, Mathew; Dixon, Philippe C
2018-01-01
The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM.
Dixon, Philippe C.
2018-01-01
The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM. PMID:29293565
NASA Astrophysics Data System (ADS)
Moulds, S.; Buytaert, W.; Mijic, A.
2015-10-01
We present the lulcc software package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of alternative models; and (3) additional software is required because existing applications frequently perform only the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a data set included with the package. It is envisaged that lulcc will enable future model development and comparison within an open environment.
Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm
NASA Astrophysics Data System (ADS)
Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.
2016-08-01
Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.
WASS: an open-source stereo processing pipeline for sea waves 3D reconstruction
NASA Astrophysics Data System (ADS)
Bergamasco, Filippo; Benetazzo, Alvise; Torsello, Andrea; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro
2017-04-01
Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community. In fact, recent advances of both computer vision algorithms and CPU processing power can now allow the study of the spatio-temporal wave fields with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner so that the implementation of a 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well-tested software package that automates the steps from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS, a completely Open-Source stereo processing pipeline for sea waves 3D reconstruction, available at http://www.dais.unive.it/wass/. Our tool completely automates the recovery of dense point clouds from stereo images by providing three main functionalities. First, WASS can automatically recover the extrinsic parameters of the stereo rig (up to scale) so that no delicate calibration has to be performed on the field. Second, WASS implements a fast 3D dense stereo reconstruction procedure so that an accurate 3D point cloud can be computed from each stereo pair. We rely on the well-consolidated OpenCV library both for the image stereo rectification and disparity map recovery. Lastly, a set of 2D and 3D filtering techniques both on the disparity map and the produced point cloud are implemented to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface (examples are sun-glares, large white-capped areas, fog and water areosol, etc). Developed to be as fast as possible, WASS can process roughly four 5 MPixel stereo frames per minute (on a consumer i7 CPU) to produce a sequence of outlier-free point clouds with more than 3 million points each. Finally, it comes with an easy to use user interface and designed to be scalable on multiple parallel CPUs.
Evaluation metrics for bone segmentation in ultrasound
NASA Astrophysics Data System (ADS)
Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas
2015-03-01
Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.
An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets
NASA Astrophysics Data System (ADS)
Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.
2016-06-01
Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.
bnstruct: an R package for Bayesian Network structure learning in the presence of missing data.
Franzin, Alberto; Sambo, Francesco; Di Camillo, Barbara
2017-04-15
A Bayesian Network is a probabilistic graphical model that encodes probabilistic dependencies between a set of random variables. We introduce bnstruct, an open source R package to (i) learn the structure and the parameters of a Bayesian Network from data in the presence of missing values and (ii) perform reasoning and inference on the learned Bayesian Networks. To the best of our knowledge, there is no other open source software that provides methods for all of these tasks, particularly the manipulation of missing data, which is a common situation in practice. The software is implemented in R and C and is available on CRAN under a GPL licence. francesco.sambo@unipd.it. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Standards-Based Procedural Phenotyping: The Arden Syntax on i2b2.
Mate, Sebastian; Castellanos, Ixchel; Ganslandt, Thomas; Prokosch, Hans-Ulrich; Kraus, Stefan
2017-01-01
Phenotyping, or the identification of patient cohorts, is a recurring challenge in medical informatics. While there are open source tools such as i2b2 that address this problem by providing user-friendly querying interfaces, these platforms lack semantic expressiveness to model complex phenotyping algorithms. The Arden Syntax provides procedural programming language construct, designed specifically for medical decision support and knowledge transfer. In this work, we investigate how language constructs of the Arden Syntax can be used for generic phenotyping. We implemented a prototypical tool to integrate i2b2 with an open source Arden execution environment. To demonstrate the applicability of our approach, we used the tool together with an Arden-based phenotyping algorithm to derive statistics about ICU-acquired hypernatremia. Finally, we discuss how the combination of i2b2's user-friendly cohort pre-selection and Arden's procedural expressiveness could benefit phenotyping.
Methods for the behavioral, educational, and social sciences: an R package.
Kelley, Ken
2007-11-01
Methods for the Behavioral, Educational, and Social Sciences (MBESS; Kelley, 2007b) is an open source package for R (R Development Core Team, 2007b), an open source statistical programming language and environment. MBESS implements methods that are not widely available elsewhere, yet are especially helpful for the idiosyncratic techniques used within the behavioral, educational, and social sciences. The major categories of functions are those that relate to confidence interval formation for noncentral t, F, and chi2 parameters, confidence intervals for standardized effect sizes (which require noncentral distributions), and sample size planning issues from the power analytic and accuracy in parameter estimation perspectives. In addition, MBESS contains collections of other functions that should be helpful to substantive researchers and methodologists. MBESS is a long-term project that will continue to be updated and expanded so that important methods can continue to be made available to researchers in the behavioral, educational, and social sciences.
Young, Matthew M; Dubeau, Chad; Corazza, Ornella
2015-01-01
Objective To determine the feasibility and utility of using media reports and other open-source information collected by the Global Public Health Intelligence Network (GPHIN), an event-based surveillance system operated by the Public Health Agency of Canada, to rapidly detect clusters of adverse drug events associated with ‘novel psychoactive substances’ (NPS) at the international level. Methods and Results Researchers searched English media reports collected by the GPHIN between 1997 and 2013 for references to synthetic cannabinoids. They screened the resulting reports for relevance and content (i.e., reports of morbidity and arrest), plotted and compared with other available indicators (e.g., US poison control center exposures). The pattern of results from the analysis of GPHIN reports resembled the pattern seen from the other indicators. Conclusions The results of this study indicate that using media and other open-source information can help monitor the presence, usage, local policy, law enforcement responses, and spread of NPS in a rapid effective way. Further, modifying GPHIN to actively track NPS would be relatively inexpensive to implement and would be highly complementary to current national and international monitoring efforts. © 2015 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd. PMID:26216568
Open source database of images DEIMOS: extension for large-scale subjective image quality assessment
NASA Astrophysics Data System (ADS)
Vítek, Stanislav
2014-09-01
DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.
2015-03-31
The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less
Inexpensive Open-Source Data Logging in the Field
NASA Astrophysics Data System (ADS)
Wickert, A. D.
2013-12-01
I present a general-purpose open-source field-capable data logger, which provides a mechanism to develop dense networks of inexpensive environmental sensors. This data logger was developed as a low-power variant of the Arduino open-source development system, and is named the ALog ("Arduino Logger") BottleLogger (it is slim enough to fit inside a Nalgene water bottle) version 1.0. It features an integrated high-precision real-time clock, SD card slot for high-volume data storage, and integrated power switching. The ALog can interface with sensors via six analog/digital pins, two digital pins, and one digital interrupt pin that can read event-based inputs, such as those from a tipping-bucket rain gauge. We have successfully tested the ALog BottleLogger with ultrasonic rangefinders (for water stage and snow accumulation and melt), temperature sensors, tipping-bucket rain gauges, soil moisture and water potential sensors, resistance-based tools to measure frost heave, and cameras that it triggers based on events. The source code for the ALog, including functions to interface with a a range of commercially-available sensors, is provided as an Arduino C++ library with example implementations. All schematics, circuit board layouts, and source code files are open-source and freely available under GNU GPL v3.0 and Creative Commons Attribution-ShareAlike 3.0 Unported licenses. Through this work, we hope to foster a community-driven movement to collect field environmental data on a budget that permits citizen-scientists and researchers from low-income countries to collect the same high-quality data as researchers in wealthy countries. These data can provide information about global change to managers, governments, scientists, and interested citizens worldwide. Watertight box with ALog BottleLogger data logger on the left and battery pack with 3 D cells on the right. Data can be collected for 3-5 years on one set of batteries.
Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David
2018-06-11
Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites... Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.D. Stine
1996-01-23
The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.
Free open access medical education can help rural clinicians deliver 'quality care, out there'.
Leeuwenburg, Tim J; Parker, Casey
2015-01-01
Rural clinicians require expertise across a broad range of specialties, presenting difficulty in maintaining currency of knowledge and application of best practice. Free open access medical education is a new paradigm in continuing professional education. Use of the internet and social media allows a globally accessible crowd-sourced adjunct, providing inline (contextual) and offline (asynchronous) content to augment traditional educational principles and the availability of relevant resources for life-long learning. This markedly reduces knowledge translation (the delay from inception of a new idea to bedside implementation) and allows rural clinicians to further expertise by engaging in discussion of cutting edge concepts with peers worldwide.
Description of the U.S. Geological Survey Geo Data Portal data integration framework
Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Lucido, Jessica M.
2012-01-01
The U.S. Geological Survey has developed an open-standard data integration framework for working efficiently and effectively with large collections of climate and other geoscience data. A web interface accesses catalog datasets to find data services. Data resources can then be rendered for mapping and dataset metadata are derived directly from these web services. Algorithm configuration and information needed to retrieve data for processing are passed to a server where all large-volume data access and manipulation takes place. The data integration strategy described here was implemented by leveraging existing free and open source software. Details of the software used are omitted; rather, emphasis is placed on how open-standard web services and data encodings can be used in an architecture that integrates common geographic and atmospheric data.
PyPanda: a Python package for gene regulatory network reconstruction
van IJzendoorn, David G.P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L.
2016-01-01
Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda. Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl PMID:27402905
Evaluating a scalable model for implementing electronic health records in resource-limited settings.
Were, Martin C; Emenyonu, Nneka; Achieng, Marion; Shen, Changyu; Ssali, John; Masaba, John P M; Tierney, William M
2010-01-01
Current models for implementing electronic health records (EHRs) in resource-limited settings may not be scalable because they fail to address human-resource and cost constraints. This paper describes an implementation model which relies on shared responsibility between local sites and an external three-pronged support infrastructure consisting of: (1) a national technical expertise center, (2) an implementer's community, and (3) a developer's community. This model was used to implement an open-source EHR in three Ugandan HIV-clinics. Pre-post time-motion study at one site revealed that Primary Care Providers spent a third less time in direct and indirect care of patients (p<0.001) and 40% more time on personal activities (p=0.09) after EHRs implementation. Time spent by previously enrolled patients with non-clinician staff fell by half (p=0.004) and with pharmacy by 63% (p<0.001). Surveyed providers were highly satisfied with the EHRs and its support infrastructure. This model offers a viable approach for broadly implementing EHRs in resource-limited settings.
ROS-based ground stereo vision detection: implementation and experiments.
Hu, Tianjiang; Zhao, Boxin; Tang, Dengqing; Zhang, Daibing; Kong, Weiwei; Shen, Lincheng
This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of the published ROS-based detection algorithm.
A Simple Technique for Securing Data at Rest Stored in a Computing Cloud
NASA Astrophysics Data System (ADS)
Sedayao, Jeff; Su, Steven; Ma, Xiaohao; Jiang, Minghao; Miao, Kai
"Cloud Computing" offers many potential benefits, including cost savings, the ability to deploy applications and services quickly, and the ease of scaling those application and services once they are deployed. A key barrier for enterprise adoption is the confidentiality of data stored on Cloud Computing Infrastructure. Our simple technique implemented with Open Source software solves this problem by using public key encryption to render stored data at rest unreadable by unauthorized personnel, including system administrators of the cloud computing service on which the data is stored. We validate our approach on a network measurement system implemented on PlanetLab. We then use it on a service where confidentiality is critical - a scanning application that validates external firewall implementations.
Open Source Tools for Seismicity Analysis
NASA Astrophysics Data System (ADS)
Powers, P.
2010-12-01
The spatio-temporal analysis of seismicity plays an important role in earthquake forecasting and is integral to research on earthquake interactions and triggering. For instance, the third version of the Uniform California Earthquake Rupture Forecast (UCERF), currently under development, will use Epidemic Type Aftershock Sequences (ETAS) as a model for earthquake triggering. UCERF will be a "living" model and therefore requires robust, tested, and well-documented ETAS algorithms to ensure transparency and reproducibility. Likewise, as earthquake aftershock sequences unfold, real-time access to high quality hypocenter data makes it possible to monitor the temporal variability of statistical properties such as the parameters of the Omori Law and the Gutenberg Richter b-value. Such statistical properties are valuable as they provide a measure of how much a particular sequence deviates from expected behavior and can be used when assigning probabilities of aftershock occurrence. To address these demands and provide public access to standard methods employed in statistical seismology, we present well-documented, open-source JavaScript and Java software libraries for the on- and off-line analysis of seismicity. The Javascript classes facilitate web-based asynchronous access to earthquake catalog data and provide a framework for in-browser display, analysis, and manipulation of catalog statistics; implementations of this framework will be made available on the USGS Earthquake Hazards website. The Java classes, in addition to providing tools for seismicity analysis, provide tools for modeling seismicity and generating synthetic catalogs. These tools are extensible and will be released as part of the open-source OpenSHA Commons library.
Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald
2016-01-14
Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.
Implementation of an OAIS Repository Using Free, Open Source Software
NASA Astrophysics Data System (ADS)
Flathers, E.; Gessler, P. E.; Seamon, E.
2015-12-01
The Northwest Knowledge Network (NKN) is a regional data repository located at the University of Idaho that focuses on the collection, curation, and distribution of research data. To support our home institution and others in the region, we offer services to researchers at all stages of the data lifecycle—from grant application and data management planning to data distribution and archive. In this role, we recognize the need to work closely with other data management efforts at partner institutions and agencies, as well as with larger aggregation efforts such as our state geospatial data clearinghouses, data.gov, DataONE, and others. In the past, one of our challenges with monolithic, prepackaged data management solutions is that customization can be difficult to implement and maintain, especially as new versions of the software are released that are incompatible with our local codebase. Our solution is to break the monolith up into its constituent parts, which offers us several advantages. First, any customizations that we make are likely to fall into areas that can be accessed through Application Program Interfaces (API) that are likely to remain stable over time, so our code stays compatible. Second, as components become obsolete or insufficient to meet new demands that arise, we can replace the individual components with minimal effect on the rest of the infrastructure, causing less disruption to operations. Other advantages include increased system reliability, staggered rollout of new features, enhanced compatibility with legacy systems, reduced dependence on a single software company as a point of failure, and the separation of development into manageable tasks. In this presentation, we describe our application of the Service Oriented Architecture (SOA) design paradigm to assemble a data repository that conforms to the Open Archival Information System (OAIS) Reference Model primarily using a collection of free and open-source software. We detail the design of the repository, based upon open standards to support interoperability with other institutions' systems and with future versions of our own software components. We also describe the implementation process, including our use of GitHub as a collaboration tool and code repository.
The GenABEL Project for statistical genomics.
Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S
2016-01-01
Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.
Hunter, Lawrence; Lu, Zhiyong; Firby, James; Baumgartner, William A; Johnson, Helen L; Ogren, Philip V; Cohen, K Bretonnel
2008-01-01
Background Information extraction (IE) efforts are widely acknowledged to be important in harnessing the rapid advance of biomedical knowledge, particularly in areas where important factual information is published in a diverse literature. Here we report on the design, implementation and several evaluations of OpenDMAP, an ontology-driven, integrated concept analysis system. It significantly advances the state of the art in information extraction by leveraging knowledge in ontological resources, integrating diverse text processing applications, and using an expanded pattern language that allows the mixing of syntactic and semantic elements and variable ordering. Results OpenDMAP information extraction systems were produced for extracting protein transport assertions (transport), protein-protein interaction assertions (interaction) and assertions that a gene is expressed in a cell type (expression). Evaluations were performed on each system, resulting in F-scores ranging from .26 – .72 (precision .39 – .85, recall .16 – .85). Additionally, each of these systems was run over all abstracts in MEDLINE, producing a total of 72,460 transport instances, 265,795 interaction instances and 176,153 expression instances. Conclusion OpenDMAP advances the performance standards for extracting protein-protein interaction predications from the full texts of biomedical research articles. Furthermore, this level of performance appears to generalize to other information extraction tasks, including extracting information about predicates of more than two arguments. The output of the information extraction system is always constructed from elements of an ontology, ensuring that the knowledge representation is grounded with respect to a carefully constructed model of reality. The results of these efforts can be used to increase the efficiency of manual curation efforts and to provide additional features in systems that integrate multiple sources for information extraction. The open source OpenDMAP code library is freely available at PMID:18237434
Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.
2015-01-01
This NASA Engineering and Safety Center (NESC) assessment was established to develop a set of time histories for the flight behavior of increasingly complex example aerospacecraft that could be used to partially validate various simulation frameworks. The assessment was conducted by representatives from several NASA Centers and an open-source simulation project. This document contains details on models, implementation, and results.
CAGE IIIA Distributed Simulation Design Methodology
2014-05-01
2 VHF Very High Frequency VLC Video LAN Codec – an Open-source cross-platform multimedia player and framework VM Virtual Machine VOIP Voice Over...Implementing Defence Experimentation (GUIDEx). The key challenges for this methodology are with understanding how to: • design it o define the...operation and to be available in the other nation’s simulations. The challenge for the CAGE campaign of experiments is to continue to build upon this
ERIC Educational Resources Information Center
Huynh, Minh; Pinto, Ivan
2010-01-01
For years, there has been a need for teaching students about business process integration. The use of ERP systems has been proposed as a mechanism to meet this need. Yet, in the midst of a recent economic crisis, it is difficult to find funding for the acquisition and implementation of an ERP system for teaching purpose. While it is recognized…
ERIC Educational Resources Information Center
Hull, Michael Malvern
2013-01-01
In the 1980's and 1990's, results from flurries of standardized exams (particularly in 4th and 8th grade mathematics and science) reached the attention of ever-growing numbers of Americans with an alarming message: our children are not even close to keeping up with those in China, Japan, and Korea. As a step towards improving American classrooms,…
Learning Management Platform for CyberCIEGE
2011-12-01
developments were done using the NetBeans Integrated Development Environment (IDE) 7.0, which is a free and open source IDE. Some of these...developments could be implemented using the GUI design features of NetBeans . However, it was not done so because the existing Campaign Analyzer code base...directory through a dialog window. Also, the existing directory structures are not consistent with NetBeans project management assumptions and thus
NASA Astrophysics Data System (ADS)
Pispidikis, I.; Dimopoulou, E.
2016-10-01
CityGML is considered as an optimal standard for representing 3D city models. However, international experience has shown that visualization of the latter is quite difficult to be implemented on the web, due to the large size of data and the complexity of CityGML. As a result, in the context of this paper, a 3D WebGIS application is developed in order to successfully retrieve and visualize CityGML data in accordance with their respective geometric and semantic characteristics. Furthermore, the available web technologies and the architecture of WebGIS systems are investigated, as provided by international experience, in order to be utilized in the most appropriate way for the purposes of this paper. Specifically, a PostgreSQL/ PostGIS Database is used, in compliance with the 3DCityDB schema. At Server tier, Apache HTTP Server and GeoServer are utilized, while a Server Side programming language PHP is used. At Client tier, which implemented the interface of the application, the following technologies were used: JQuery, AJAX, JavaScript, HTML5, WebGL and Ol3-Cesium. Finally, it is worth mentioning that the application's primary objectives are a user-friendly interface and a fully open source development.
Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.
2016-01-01
Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.
Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2014-12-05
This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.
Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2014-01-01
This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595
Schrader, Ulrich
2006-01-01
At the university of applied sciences in Germany a learning management system has been implemented. The migration of classic courses to a web-enhances curriculum can be categorized into three phases independent of the technology used. The first two phases "dedicated website" and "database supported content management system" are mainly concerned with bringing the learning material and current information online and making it available to the students. The goal is here to make the maintenance of the learning material easier. The third phase characterized by the use of a learning management system offers the support of more modern didactic principles like social constructionism or problem-oriented learning. In this papers the phases as they occurred with the migration of a course of nursing informatics are described and experiences discussed.. The absence of institutional goals associated with the use of a learning management system led to a bottom-up approach triggered by faculty activities that can be described by a promoter model rather than by a process management model. The use of an open source learning management systems made this process easier to realize since no financial commitment is required up front.
Amanzi: An Open-Source Multi-process Simulator for Environmental Applications
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.
2014-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.
Echegaray, Sebastian; Bakr, Shaimaa; Rubin, Daniel L; Napel, Sandy
2017-10-06
The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.
Architecture and Implementation of OpenPET Firmware and Embedded Software
Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; ...
2016-01-11
OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the versatility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics-a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures andmore » implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration.« less
Alvarsson, Jonathan; Andersson, Claes; Spjuth, Ola; Larsson, Rolf; Wikberg, Jarl E S
2011-05-20
Compound profiling and drug screening generates large amounts of data and is generally based on microplate assays. Current information systems used for handling this are mainly commercial, closed source, expensive, and heavyweight and there is a need for a flexible lightweight open system for handling plate design, and validation and preparation of data. A Bioclipse plugin consisting of a client part and a relational database was constructed. A multiple-step plate layout point-and-click interface was implemented inside Bioclipse. The system contains a data validation step, where outliers can be removed, and finally a plate report with all relevant calculated data, including dose-response curves. Brunn is capable of handling the data from microplate assays. It can create dose-response curves and calculate IC50 values. Using a system of this sort facilitates work in the laboratory. Being able to reuse already constructed plates and plate layouts by starting out from an earlier step in the plate layout design process saves time and cuts down on error sources.
Combustion of Biofuel as a Renewable Energy Source in Sandia Flame Geometry
NASA Astrophysics Data System (ADS)
Rassoulinejad-Mousavi, Seyed Moein; Mao, Yijin; Zhang, Yuwen
Energy security and climate change are two important key causes of wide spread employment of biofuel notwithstanding of problems associated with its usage. In this research, combustion of biofuel as a renewable energy source was numerically investigated in the well-known and practical Sandia flame geometry. Combustion performance of the flame has been simulated by burning biodiesel (methyl decanoate, methyl 9-decenoate, and n-heptane) oxidation with 118 species reduced/skeletal mechanism. The open-source code OpenFoam was used for simulating turbulent biodiesel-air combustion in the cylindrical chamber using the standard k-epsilon model. To check the accuracy of numerical results, the system was initially validated with methane-air Sandia national laboratories flame D experimental results. Excellent agreements between numerical and experimental results were observed at different cross sections. After ignition, temperature distributions at different distances of axial and radial directions as well as species mass fraction were investigated. It is concluded that biofuel has the capability of implementation in the turbulent jet flame that is a step forward in promotion of sustainable energy technologies and applications.
The Emergence of Open-Source Software in China
ERIC Educational Resources Information Center
Pan, Guohua; Bonk, Curtis J.
2007-01-01
The open-source software movement is gaining increasing momentum in China. Of the limited numbers of open-source software in China, "Red Flag Linux" stands out most strikingly, commanding 30 percent share of Chinese software market. Unlike the spontaneity of open-source movement in North America, open-source software development in…
A Study of Clinically Related Open Source Software Projects
Hogarth, Michael A.; Turner, Stuart
2005-01-01
Open source software development has recently gained significant interest due to several successful mainstream open source projects. This methodology has been proposed as being similarly viable and beneficial in the clinical application domain as well. However, the clinical software development venue differs significantly from the mainstream software venue. Existing clinical open source projects have not been well characterized nor formally studied so the ‘fit’ of open source in this domain is largely unknown. In order to better understand the open source movement in the clinical application domain, we undertook a study of existing open source clinical projects. In this study we sought to characterize and classify existing clinical open source projects and to determine metrics for their viability. This study revealed several findings which we believe could guide the healthcare community in its quest for successful open source clinical software projects. PMID:16779056
ImgLib2--generic image processing in Java.
Pietzsch, Tobias; Preibisch, Stephan; Tomancák, Pavel; Saalfeld, Stephan
2012-11-15
ImgLib2 is an open-source Java library for n-dimensional data representation and manipulation with focus on image processing. It aims at minimizing code duplication by cleanly separating pixel-algebra, data access and data representation in memory. Algorithms can be implemented for classes of pixel types and generic access patterns by which they become independent of the specific dimensionality, pixel type and data representation. ImgLib2 illustrates that an elegant high-level programming interface can be achieved without sacrificing performance. It provides efficient implementations of common data types, storage layouts and algorithms. It is the data model underlying ImageJ2, the KNIME Image Processing toolbox and an increasing number of Fiji-Plugins. ImgLib2 is licensed under BSD. Documentation and source code are available at http://imglib2.net and in a public repository at https://github.com/imagej/imglib. Supplementary data are available at Bioinformatics Online. saalfeld@mpi-cbg.de
Innovation in engineering education through computer assisted learning and virtual university model
NASA Astrophysics Data System (ADS)
Raicu, A.; Raicu, G.
2015-11-01
The paper presents the most important aspects of innovation in Engineering Education using Computer Assisted Learning. The authors propose to increase the quality of Engineering Education programs of study at European standards. The use of computer assisted learning methodologies in all studies is becoming an important resource in Higher Education. We intend to improve the concept of e-Learning using virtual terminals, online support and assisting special training through live seminars and interactive labs to develop a virtual university model. We intend to encourage computer assisted learning and innovation as sources of competitive advantage, to permit vision and learning analysis, identifies new sources of technology and ideas. Our work is based on our university datasets collected during last fifteen years using several e-Learning systems. In Constanta Maritime University (CMU), using eLearning and Knowledge Management Services (KMS) is very important and we apply it effectively to achieve strategic objectives, such as collaboration, sharing and good practice. We have experience in this field since 2000 year using Moodle as KMS in our university. The term KMS can be associated to Open Source Software, Open Standards, Open Protocols and Open Knowledge licenses, initiatives and policies. In CMU Virtual Campus we have today over 12500 active users. Another experience of the authors is the implementation of MariTrainer Wiki educational platform based on Dokeos and DekiWiki under MARICOMP and MEP Leonardo da Vinci Project. We'll also present in this paper a case study under EU funded project POSDRU, where the authors implemented other educational platform in Technological High Schools from Romania used over 1000 teachers. Based on large datasets the study tries to improve the concept of e-Learning teaching using the revolutionary technologies. The new concept present in this paper is that the teaching and learning will be interactive and live. The new and modern techniques are the flexible learning courses, the production of learning demonstrators and testing. All the information from the virtual educational platform remain open space, communication between participants and continued after graduation, so we can talk about creating and maintaining a community of graduates, a partnership with them. Every European University must have a department which aims to provide computer assisted learning using knowledge creation through learning, capture and explication, sharing and collaborative communication, access, use and reuse and knowledge archiving.
Banos, Oresti; Villalonga, Claudia; Garcia, Rafael; Saez, Alejandro; Damas, Miguel; Holgado-Terriza, Juan A; Lee, Sungyong; Pomares, Hector; Rojas, Ignacio
2015-01-01
The delivery of healthcare services has experienced tremendous changes during the last years. Mobile health or mHealth is a key engine of advance in the forefront of this revolution. Although there exists a growing development of mobile health applications, there is a lack of tools specifically devised for their implementation. This work presents mHealthDroid, an open source Android implementation of a mHealth Framework designed to facilitate the rapid and easy development of mHealth and biomedical apps. The framework is particularly planned to leverage the potential of mobile devices such as smartphones or tablets, wearable sensors and portable biomedical systems. These devices are increasingly used for the monitoring and delivery of personal health care and wellbeing. The framework implements several functionalities to support resource and communication abstraction, biomedical data acquisition, health knowledge extraction, persistent data storage, adaptive visualization, system management and value-added services such as intelligent alerts, recommendations and guidelines. An exemplary application is also presented along this work to demonstrate the potential of mHealthDroid. This app is used to investigate on the analysis of human behavior, which is considered to be one of the most prominent areas in mHealth. An accurate activity recognition model is developed and successfully validated in both offline and online conditions.