Science.gov

Sample records for open-top chamber experiment

  1. Effects of open-top chambers on 'Valencia' orange trees

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Kats, G.; Dawson, P.J.; Morrison, C.L.

    1992-01-01

    Young 'Valencia' orange trees (Citrus sinensis(L) Osbeck) were grown for four years in large open-top chambers with ambient (nonfiltered) air or in outside air to determine any effects of the chambers on the air pollutant susceptibility of the trees. Long-term ozone average concentrations (12 hours, growing season) were 8% lower, and cumulative ozone dose (hourly values >0.1 microL/L) was 29% lower in ambient chambers compared to outside air. Fruit yields were much higher (>39%) for ambient chamber trees than for outside trees over three harvests, due at least partly to less fruit drop during the growing season for ambient chamber trees. Ambient chamber trees were much larger than outside trees and produced over twice as much leaf material over four years of study. Leaves on ambient chamber trees were larger and less dense than on outside trees. Leaves on ambient chamber trees were under more stress than leaves on outside trees during summer months; with lower stomatal conductances (14% average) and transpiration rates (12%), and more negative leaf water pressure potentials (28%). In contrast, leaves on ambient chamber trees had higher net photosynthetic rates (13%) and higher leaf starch concentrations prior to tree flowering (31%), than leaves on outside trees. While these results indicated large long-term impacts on tree growth which must be considered when using open-top chambers, they did not indicate any net effect of chambers on the air pollutant susceptibility of trees which would limit the usefulness of chamber tree data for air quality impact assessment purposes.

  2. Response of potato to discontinuous exposures of atmospheric ethylene: results of a long-term experiment in open-top chambers and crop growth modelling

    NASA Astrophysics Data System (ADS)

    Dueck, Th. A.; Van Dijk, C. J.; Grashoff, C.; Groenwold, J.; Schapendonk, A. H. C. M.; Tonneijck, A. E. G.

    A field experiment in open-top chambers (OTCs) was performed to quantitatively assess the growth and yield response of potato to discontinuous exposures to atmospheric ethylene (200, 400 and 800 ppb, applied twice weekly and 200 and 400 ppb applied 4 times weekly, each for 3 h/event). To evaluate the effect of ethylene on potato tuber yield, a module was developed for an existing crop growth simulation model by incorporating the effects of ethylene on epinasty and photosynthesis. Explorations with the model showed that in a worst case scenario, ethylene-induced epinasty had only a marginal effect on tuber yield. Short-term exposures to ethylene under laboratory conditions inhibited photosynthesis, but it recovered within 48 h. When exposed to ethylene for longer than 12 h, irreversible damage of the photosynthesis apparatus occurred. Exposure to ethylene in the OTCs resulted in epinasty and reduced flowering. The number of flowers on potato decreased with increasing concentrations of ethylene, irrespective of the exposure frequency. Calculations showed that the number of flowers was significantly reduced at ca. 170 ppb ethylene, averaged over the hours of exposure. Ethylene concentrations up to 800 ppb, administered 4 times weekly for 3 h during the growing season, did not affect vegetative growth and yield in fumigated potatoes. Under these experimental conditions, the modified simulation model incorporating the effects of ethylene on epinasty and photosynthesis forecasts a 5% effect on tuber yield at concentrations of 1600 ppb. All results indicate that ethylene concentrations higher than 800 ppb are required to adversely affect tuber yield of potato.

  3. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increasing demand for agricultural products, more confidence is needed concerning impacts of rising atmospheric CO2 on crop yields. Despite debate about the merits of free-air CO2 enrichment (FACE) and open top chamber (OTC) systems, there has been only one reported experiment directly compari...

  4. Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine environmental conditions.

    PubMed

    Gerosa, G; Marzuoli, R; Desotgiu, R; Bussotti, F; Ballarin-Denti, A

    2008-03-01

    An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmolO3 m(-2). In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately.

  5. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  6. Sampling open-top chambers and plantations for live fine-root biomass of loblolly pine. Forest Service research note

    SciTech Connect

    Zarnoch, S.J.; Marx, D.H.; Ruehle, J.L.; Baldwin, V.C.

    1993-09-08

    A soil-core sampling protocol was developed for estimating the standing crop of live fine-root biomass in young loblolly pines (Pinus taeda L.). Some of the pines were in ozone experiments in open-top chambers. Others were in young plantations. Attempts were made to find strata that would reduce the variability of estimates. With the pilot study estimates of variability, sampling designs were developed to meet specified criteria of precision. Estimates of fine-root biomass based on three soil-core sizes increased monotonically with core size.

  7. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).

  8. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI). PMID:24483064

  9. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth.

    PubMed

    Bokhorst, Stef; Huiskes, Ad; Aerts, Rien; Convey, Peter; Cooper, Elisabeth J; Dalen, Linda; Erschbamer, Brigitta; Gudmundsson, Jón; Hofgaard, Annika; Hollister, Robert D; Johnstone, Jill; Jónsdóttir, Ingibjörg S; Lebouvier, Marc; Van de Vijver, Bart; Wahren, Carl-Henrik; Dorrepaal, Ellen

    2013-01-01

    Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year-round. In addition, their effects on temperature extremes and freeze-thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (-0.9 to 2.1 °C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R(2)  = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC-induced changes in the frequency of freeze-thaw events included an increase in autumn and decreases in spring and summer. Frequency of high-temperature events in OTCs increased in spring, summer and autumn compared with non-manipulated control plots. Frequency of low-temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress

  10. Ozone deposition to an oat crop ( Avena sativa L.) grown in open-top chambers and in the ambient air

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skarby, L.; Sellden, G.

    Fluxes and deposition velocities for ozone were determined for open-top chambers with and without an oat crop, and for the adjacent field, using a resistance analogue model and the aerodynamic wind-profile method, respectively. During a period when the canopy was green and the ambient wind speeds modest, the fluxes and deposition velocities were higher in the chamber with plants than in the field crop. The deposition to chamber walls and soil in the chamber only accounted for part of that difference. The deposition velocity for ozone to the crop was light-dependent both in the chamber with plants and in the ambient air. With increasing plant senescence, the deposition velocity declined and the light dependence disappeared. Fluctuations in deposition velocity superimposed on the overall declining trend followed the same temporal pattern in the chambers with and without plants. These fluctuations in deposition velocity may partly be explained by variations in surface wetness. Differences in boundary layer conductance between chamber and ambient, which under certain conditions may significantly influence the validity of the chamber as a test system, were observed.

  11. Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chambers.

    PubMed

    Tiwari, S; Agrawal, M; Marshall, F M

    2006-08-01

    The present experiment was done to evaluate the impact of ambient air pollution on carrot (Dacus carota var. Pusa Kesar) plants using open top chambers (OTCs) ventilated with ambient (NFCs) or charcoal filtered air (FCs) at a suburban site of Varanasi, India. Various morphological, physiological and biochemical characteristics of the plants were studied at different growth stages. Air monitoring data clearly showed high concentrations of SO2, NO2 and O3 in the ambient air of study site. SO2 and NO2 concentrations were higher during early growth stages of carrot, whereas O3 concentration was highest during later growth stages. Filtration of air has caused significant reductions in all the three pollutant concentrations in FCs as compared to NFCs. Plants growing in FCs showed significantly higher photosynthetic rate, stomatal conductance, water use efficiency and variable fluorescence as compared to plants growing in NFCs. Protein content also showed a similar pattern, however, lipid peroxidation, ascorbic acid content and peroxidase activity were higher in plants growing in NFCs as compared to FCs. Shoot length, number of leaves per plant, leaf area and root and shoot weight increased significantly upon filtration of ambient air. Total nitrogen decreased significantly in root, but increased significantly in shoot of plants grown in NFCs. Total P, Mg, Ca and K contents decreased significantly in plants grown in NFCs as compared to FCs. The individual pollutant concentrations were below threshold for plant injury, but the combined effect of all the three seems to act synergistically in causing greater adverse impact on dry weight and physiology of carrot plants. The study clearly indicates that air pollutants are high enough in the ambient air to cause significant unfavorable impact on carrot plants. The work further supports the usefulness of OTCs for assessing air pollution damage under field conditions in developing countries.

  12. The open-top chamber impact on vapour pressure deficit and its consequences for stomatal ozone uptake

    NASA Astrophysics Data System (ADS)

    Piikki, K.; De Temmerman, L.; Högy, P.; Pleijel, H.

    The vapour pressure deficit (VPD) in open-top chambers (OTCs) was analysed in relation to time of day and ambient meteorology. Effects of observed VPD differences (ΔVPD) between OTCs and the ambient air (AA) on stomatal conductance ( gs) were simulated using 10 model functions from the literature. The dataset originated from 17 OTC crop experiments performed in Belgium, Germany and Sweden. ΔVPD is the resulting difference between the OTC effect on es( T), which is the temperature-dependent saturation pressure of water vapour and the OTC effect on ea, which is the prevailing partial pressure of water vapour in the air (ΔVPD = Δ es( T) - Δ ea). Both Δ es( T) and Δ ea were positive during daylight hours. ΔVPD was small in comparison and sensitive to changes in Δ es( T) or Δ ea. ΔVPD was negative between 07:30 and 10:30 and positive thereafter with a maximum at 20:30 (local time). The positive afternoon ΔVPD was due to an early decrease in Δ ea, probably caused by ceased transpiration, while the positive Δ es( T) persisted throughout the evening, most likely because of restrained cooling in the OTCs. Both the negative morning ΔVPD and the positive evening ΔVPD were more pronounced during clear, warm and dry weather. Circumstances when VPD had a stronger limiting effect on gs inside the OTCs compared to in the ambient air coincided with high ambient ozone concentrations ([O 3]). Calculated wheat O 3 uptake over an [O 3] threshold of 40 nmol mol -1 was reduced by 8.7% in OTCs, assuming that VPD was the only factor limiting gs and that gs was the only resistance for O 3 uptake. VPD is one factor of considerable importance for gs and the OTC impact on VPD may contribute to an underestimation of O 3 effects expressed in relation to the external O 3 exposure.

  13. Effects of ozone on managed pasture: I. Effects of open-top chambers on microclimate, ozone flux, and plant growth.

    PubMed

    Fuhrer, J

    1994-01-01

    Open-top chambers (OTC) were established in a field of managed pasture, and environmental parameters were recorded inside and outside to study the influence of OTCs on radiation, air temperature (T(air)), saturation vapour pressure deficit (svpd), and soil water content in relationship to plant growth and yield. Canopy development in OTCs supplied with non-filtered air (NF) and in ambient (AA) plots was followed by measuring leaf area index (LAI). The dry matter yield was determined after three growth periods in each of two consecutive seasons. Boundary layer conductance (g(bw)) and wind speed (u) were measured along a vertical profile, and day-time flux were measured along a vertical profile, and day-time flux of O(3) was estimated throughout the experiment on the basis of a mass balance. The vertical profile of u showed values in the range 1-1.2 m s(-1) at the top of the canopy, and maximum g(bw) was 20-25 mm s(-1). Average reduction in global radiation in OTCs was 25%, and volumetric soil water content was reduced by about 5%. Daily mean T(air) was increased by 1.3 degrees C, mean daily maximum svpd by 0.08 kPa, and the temperature sum (degree days with base temperature of +5 degrees C) by 12%. Fluctuations in the difference in daily mean T(air) and svpd during the daytime between OTCs and ambient air were related to canopy structure. Differences were largest after each cut and declined with increasing LAI. A small effect of changes in LAI on T(air) and svpd occurred during periods with low soil water content. The flux of O(3) in OTCs was largest (>100 microg m(-2) min(-1)) before and smallest (<20 microg m(-2) min(-1)) after each cut. Calculated deposition velocities for O(3) (nu(d)) in the range 0-3 cm s(-1) were generally higher than those measured under most field conditions. Overall, in OTCs the deficit in soil and atmospheric moisture was larger than in the open field, and the increase in daily mean T(air) was strongly influenced by the stage of canopy

  14. Whole System Carbon Exchange of Small Stands of Pinus Ponderosa Growing at Different CO{sub 2} concentrations in open top chambers

    SciTech Connect

    Ball, J. Timothy; Ross, Peter D.; Picone, John B.; Eichelmann, Hillar Y.; Ross, Gregory N.

    1996-12-01

    Functional understanding of the carbon cycle from the molecular to the global level is a high scientific priority requiring explanation of the relationship between fluxes at different spatial and temporal scales. We describe methods used to convert an open top chamber into both closed and open flow gas exchange systems utilized to measure such fluxes. The systems described consist of temporary modifications to an open top chamber, and are put in place for several days on one or several open top chambers. In the closed system approach, a chamber is quickly sealed for a short, predetermined time interval, the change in gas concentrations is measured, then the chamber is unsealed and ventilated. In the open flow system approach, airflow into the open top chamber is measured by trace gas injection, and the air stream concentration of CO{sub 2} and water vapor is measured before and after injection into the chamber. The closed chamber approach can resolve smaller fluxes, but causes transient increases in chamber air temperature, and has a high labor requirement. The open flow approach reduces the deviation of measuring conditions from ambient, may be semi-automated (requiring less labor), allows a more frequent sampling interval, but cannot resolve low fluxes well. Data demonstrating the capabilities of these systems show that, in open canopies of ponderosa pine, scaling fluxes from leaves to whole canopies is well approximated from summation of leaf P{sub s} rates. Flux measurements obtained from these systems can be a valuable contribution to our understanding whole system material fluxes, and challenge our understanding of ecosystem carbon budgets.

  15. Effect of elevated atmospheric carbon dioxide and open-top chambers on transpiration in a tallgrass prairie

    SciTech Connect

    Bremer, D.J.; Ham, J.M.; Owensby, C.E.

    1996-07-01

    Increasing concentrations of atmospheric carbon dioxide (CO{sub 2}) may influence plant-water relations in natural and agricultural ecosystems. A tallgrass prairie near Manhattan, KS, was exposed to elevated atmospheric CO{sub 2} using open-top chambers (OTCs). Heat balance sap flow gauges were used to measure transpiration in ironweed [Vernonia baldwini var. interior (Small) Schub.], aC{sub 3}forb, and on individual grass culms of big bluestem (Andropogan geradii Vitman) and indiangrass [Sorghastrum nutans (L>) Nash], both C{sub 4} grasses, in each of three treatments: (1) CE (chamber enriched, 2x ambient CO{sub 2}); (2) CA (chamber ambient, no CO{sub 2} enrichment); and (3) NC (no chamber, no CO{sub 2} enrichment). Sap flow data were coupled with measurements of stomatal conductance, plant/canopy resistance, and whole-chamber evapotranspiration (ET) to determine the effect of elevated CO{sub 2} on water use at different scales. Because of frequent rainfall during the study, all data were collected under well-watered conditions. Comparisons of CE and CA showed that sap flow was reduced by 33% in ironweed, 18% in big bluestem, and 22% in indiangrass under CO{sub 2} enrichment. Whole-chamber ET was reduced by 23 to 27% under CO{sub 2} enrichment. Comparisons of CA and NC showed that the environmental effect of the OTCs caused a 21 to 24% reduction in transpiration. Stomatal conductance decreased from 7.9 to 3.6 mm s{sup {minus}1} in big bluestem and from 5.3 to 3.2 mm s{sup {minus}1} in indiangrass under CO{sub 2} enrichment. Soil water was consistently highest under elevated CO{sub 2}, reflecting the large reductions in transpiration. During sap flow measurements, whole-plant stomatal resistance to water vapor flux in big bluestem increased from 103 to 194 s m{sup {minus}1} under elevated CO{sub 2}. 23 refs., 7 figs., 4 tabs.

  16. Flower evolution of alpine forbs in the open top chambers (OTCs) from the Qinghai-Tibet Plateau.

    PubMed

    Zhang, Chan; Wang, Lin-Lin; Yang, Yong-Ping; Duan, Yuan-Wen

    2015-01-01

    Effects of global changes on biodiversity have been paid more and more attention world widely, and the open top chambers (OTCs) are the most common tools to study the effects of climatic warming on plant diversity. However, it remains unclear how flowers evolve under environmental changes, which could help us to understand the changes of plant diversity in the OTCs. We compared the insect diversity and pollen:ovule (P/O) ratio of eight outcrossing species with different life histories inside and outside the OTCs on the Qinghai-Tibet Plateau, to examine the effects induced by OTCs on the evolution of floral traits. In the OTCs, P/O ratio decreased in annuals, but increased in perennials, indicating an overall trend toward selfing in annuals. We found that the insect diversity differed significantly inside and outside the OTCS, with decreases of dipteran insects and bees. We concluded that changes of P/O ratio in the studied plant species might result from pollination failure, which might be the results of mismatch between flowering time and pollinator activities. We also suggested annuals might be in a more extinction risk than perennials in OTCs, if strong inbreeding depression occurs in these annual outcrossing plants.

  17. Limitations to soybean photosynthesis at elevated carbon dioxide in free-air enrichment and open top chamber systems.

    PubMed

    Bunce, James A

    2014-09-01

    It has been suggested that the stimulation of soybean photosynthesis by elevated CO2 was less in free-air carbon dioxide enrichment (FACE) systems than in open top chambers (OTC), which might explain smaller yield increases at elevated CO2 in FACE systems. However, this has not been tested using the same cultivars grown in the same location. I tested whether soybean photosynthesis at high light and elevated CO2 (ambient+180 μmol mol(-1)) was limited by electron transport (J) in FACE systems but by ribulose-bisphosphate carboxylation capacity (VCmax) in OTC. FACE systems with daytime and continuous CO2 enrichment were also compared. The results indicated that in both cultivars examined, midday photosynthesis at high light was always limited by VCmax, both in the FACE and in the OTC systems. Daytime only CO2 enrichment did not affect photosynthetic parameters or limitations, but did result in significantly smaller yields in both cultivars than continuous elevation. Photosynthesis measured at low photosynthetic photon flux density (PPFD) was not higher at elevated than at ambient CO2, because of an acclimation to elevated CO2 which was only evident at low measurement PPFDs.

  18. Populations of Bemisia tabaci (Homoptera: Aleyrodidae) on cotton grown in open-top field chambers enriched with CO/sub 2/

    SciTech Connect

    Butler, G.D. Jr.; Kimball, B.A.; Mauney, J.R.

    1985-02-01

    Atmospheric CO/sub 2/ levels are anticipated to rise from the current ambient level of ca. 350 ..mu..l/liter to 500-600 ..mu..l/liter in the next 50 to 75 years. Plant scientists are artificially enhancing the CO/sub 2/ environment of crop plants to increase photosynthesis, which is currently limited by inadequate levels of CO/sub 2/. It is not known how increases of CO/sub 2/ might affect consumers in the food chain. Population levels of sweet potato whitefly (SPWF), Bermisiaa tabaci (Gennadius), were assessed with sticky traps placed in a field experiment wherein cotton was grown in open-top field chambers that were enriched with CO/sub 2/ at levels approaching 200% ambient concentration levels. Although trapping started at the first of June, only an occasional SPWF was caught until early August. At that time populations began to increase at an exponential rate similar to that observed in commercial cotton fields in Arizona and California in previous years. There was no difference in rate of buildup of SPWF in ambient and CO/sub 2/-enriched chambers in either wet or dry irrigation treatment. Thus, it seems that raised CO/sub 2/ levels, either natural or artificial, do not affect SPWF populations.

  19. Investigation on High Performance of 10m Semi Anechoic Chamber by using Open-Top Hollow Pyramidal Hybrid EM Wave Absorber

    NASA Astrophysics Data System (ADS)

    Kurihara, Hiroshi; Saito, Toshifumi; Suzuki, Yoshikazu; Nishikata, Atsuhiro; Hashimoto, Osamu

    The emission radiated from electric and electronic equipments is evaluated through OATS. Recently, it is not fully prepared the environment for OATS because of a variety of communication radiation sources (e.g., digital television broadcast and cellular phone station). Therefore, the EM anechoic chambers are becoming more and more important as EMI test site. On the other hand, the EM anechoic chambers are needed high performance in order to cut down EMI countermeasure cost and calculate the antenna factor. The objective of this paper is mainly to present the EM wave absorber design in order to obtain within ±2dB against the theoretical site attenuation values in the 10m semi anechoic chamber at 30MHz to 300MHz. We get the necessary reflectivity of EM wave absorber by the basic site attenuation equation. We design the open-top hollow pyramidal new hybrid EM wave absorber consisted of 180cm long dielectric loss foam and ferrite tiles. Then, we design the 10m semi anechoic chamber by using the ray-tracing simulation and construct it in the size of L24m×W15.2m×H11.2m. More over, we measure the site attenuation of the constructed 10m semi anechoic chamber by using the broadband calculable dipole antennas. As the result, we confirm the validity of the designed open-top hollow pyramidal new hybrid EM wave absorber.

  20. [Open-top Chamber for in situ Research on Response of Mercury Enrichment in Rice to the Rising Gaseous Elemental Mercury in the Atmosphere].

    PubMed

    Chen, Jian; Wang, Zhang-wei; Zhang, Xiao-shan; Qin, Pu-feng; Lu, Hai-jun

    2015-08-01

    In situ research was conducted on the response of mercury enrichment in rice organs to elevated gaseous elemental mercury (GEM) with open-top chambers (OTCs) fumigation experiment and soil Hg enriched experiment. The results showed that Hg concentrations in roots were generally correlated with soil Hg concentrations (R = 0.9988, P < 0.05) but insignificantly correlated with air Hg concentrations (P > 0.05), indicating that Hg in rice roots was mainly from soil. Hg concentrations in stems increased linearly (R(B) = 0.9646, R(U) = 0.9831, P < 0.05) with elevated GEM, and Hg concentrations in upper stems were usually higher than those in bottom stems in OTCs experiment. Hg concentrations in bottom stems were generally correlated with soil Hg concentrations (R = 0.9901, P < 0.05) and second-order polynomial (R = 0.9989, P < 0.05) was fitted for Hg concentrations in upper stems to soil Hg concentrations, and Hg concentrations in bottom stems were usually higher than those in upper stems in soil Hg enriched experiment, indicating the combining impact of Hg from air and soil on the accumulation of mercury in stems. Hg concentrations in foliage were significantly correlated (P < 0.05) with air Hg and linearly correlated with soil Hg (R = 0.9983, P = 0.0585), implying that mercury in foliage was mainly from air and some of Hg in root from soil was transferred to foliage through stem. Based on the function in these filed experiments, it was estimated that at least 60%-94% and 56%-77% of mercury in foliage and upper-stem of rice was from the atmosphere respectively, and yet only 8%-56% of mercury in bottom-stem was attributed to air. Therefore, mercury in rice aboveground biomass was mainly from the atmosphere, and these results will provide theoretical basis for the regional atmospheric mercury budgets and the model of mercury cycling.

  1. Effects of Tree Canopy Structure and Understory Vegetation on the Effectiveness of Open-Top-Chamber in Manipulating Boreal Forest Microclimate

    NASA Astrophysics Data System (ADS)

    Teuber, L. M.; Nilsson, M. C.; Wardle, D.; Dorrepaal, E.

    2014-12-01

    Open-top chambers (OTCs) are widely used to passively increase soil and air temperature in various open habitats, such as alpine and arctic tundra, and temperate grasslands. Several studies report warming effects of 1-2 °C in arctic and alpine tundra, and up to 6 °C in temperate grasslands. The variation between studies can be mostly attributed to differences in the abiotic environment, such as snow cover and solar irradiance. Vegetation height and openness affects the amount of irradiance that reaches the ground and may therefore indirectly impact the effectiveness of OTCs. The use of OTCs in forested ecosystems might therefore be limited by reduced canopy openness, while their effect on changes in soil temperature and soil moisture content might additionally be affected by the understory vegetation type and cover. Nevertheless, OTC's are an immensely useful tool in climate-change studies, and could benefit research in forest ecosystems. In this study we therefore investigated whether OTCs can be used to manipulate microclimate in the northern boreal forest and how tree canopy cover and understory vegetation influence OTC effects on air and soil temperature and on soil moisture content.We compared OTC effects at ten sites that were situated along a fire chronosequence in the northern boreal forest in Sweden. Sites were dominated by Pinus sylvestris and Picea abies, and time since the last fire ranged from 47-367 years, resulting in varying degrees of tree canopy openness. We applied full factorial combinations of OTC warming and dwarf shrub removal and moss removal at each site. We measured canopy cover using hemispherical photography; air and soil temperature as well as soil moisture were measured hourly from June until September. Preliminary analyses indicate that OTCs increased monthly mean air temperatures by up to 0.9 °C across all treatments and forest stands. However, the degree of warming showed clear relations with the presence or absence of the

  2. Variation of gas exchange within native plant species of Switzerland and relationships with ozone injury: an open-top experiment.

    PubMed

    Zhang, J; Ferdinand, J A; Vanderheyden, D J; Skelly, J M; Innes, J L

    2001-01-01

    Gas exchange and ozone-induced foliar injury were intensively measured during a 6-day period in mid-August 1998 on leaves of Acer pseudoplatanus, Betula pendula, Corylus avellana, Fagus sylvatica, Fraxinus excelsior, Morus nigra, Prunus avium, Prunus serotina, Rhamnus cathartica, and Viburnum lantana at a forest nursery site in Canton Ticino, Switzerland. Plants were grown in four open plots (AA), four open-top chambers receiving carbon-filtered (CF) air, and four receiving non-filtered (NF) air. Significant variation in gas exchange (F > 12.7, P < 0.001) was detected among species with average net photosynthesis and average stomatal conductance differing by a factor of two. Species also varied significantly in foliar injury for those leaves for which we measured gas exchange (F = 39.6, P < 0.001). Fraxinus excelsior, M. nigra, P. avium, P. serotina, R. cathartica, and V. lantana showed more injury than A. pseudoplatanus, B. pendula, C. avellana, and Fagus sylvatica. Plants grown in CF chambers had significantly higher net photosynthesis (A) and stomatal conductance to water vapor (gwv), and lower foliar injury than plants grown in NF chambers and AA plots; interactions between species and ozone treatments were significant for all variables (F > or = 2.2, P < 0.05) except gwv (F = 0.7, P > 0.1). Although A and gwv decreased and foliar injury increased with leaf age, the magnitude of these changes was lower for plants grown in CF chambers than for plants grown in NF chambers and AA plots. Neither ozone uptake threshold (r = 0.26, P > 0.20) nor whole-plant injury (r = -0.15, P > 0.41) was significantly correlated with stomatal conductance across these species. It appears that the relationships between stomatal conductance and foliar injury are species-specific and interactions between physiology and environments and leaf biochemical processes must be considered in determining species sensitivity to ambient ozone exposures. PMID:11383335

  3. Effects of open-top chamber fumigations with ozone on three fungal leaf diseases of wheat and the mycoflora of the phyllosphere.

    PubMed

    von Tiedemann, A; Weigel, H J; Jäger, H J

    1991-01-01

    Spring wheat (Triticum aestivum L. cv. Turbo) was exposed in open-top chambers to six different ozone levels (8-h daily means from 12.4 to 122 microg m(-3)), to non-filtered air and to chamberless field conditions for 31 days from seedling stage through ear emergence. Powdery mildew (Erysiphe graminis DC. f.sp. tritici Marchal) which developed during the exposure period was significantly enhanced from 0.3/0.6% (two chamber replicates), 1.2/2.1%, 0.9/2.2% in charcoal-filtered air (CF) to 1.5/1.6%, 3.7/4.3%, 4.4/4.6% at the highest level of ozone, on the flag leaf, second and third leaf position, respectively. Post-exposure inoculation with Septoria nodorum Berk. led to increases of disease severity on the flag leaf from 40.9/43.6% in CF to 66.3/70.6% at the highest ozone concentration and on the ears from 15.7/16.5% to 26.3/26.6%. In the same comparison, severity of spot blotch following inoculation with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke) was increased on the flag leaf from 3.6/8.9% to 12.3/23.4%. The three diseases examined correlated significantly with the ozone treatments in fumigated chambers. Disease severity was enhanced even on undamaged plant tissue (flag leaves). Infections of the two facultative pathogens on lower leaf positions started only in part from visible ozone lesions, mildew did not start from such lesions. No significant effects of ozone in the chambers on the saprobial colonization of the phyllosphere were detected, whereas there were marked differences in this respect between plants from the field and the chambers. At the highest ozone treatment, contents of chlorophyll a and carotenoids on the second leaf position declined significantly, which was associated with symptoms of premature senescence. Senescing effects of ozone are therefore assumed to be one major factor in predisposing wheat for necrotrophic leaf pathogens. Surprisingly, injurious and predisposing effects of ozone were

  4. Assessment of the interactive effects of ambient O₃ and NPK levels on two tropical mustard varieties (Brassica campestris L.) using open-top chambers.

    PubMed

    Singh, Poonam; Singh, Shalini; Agrawal, S B; Agrawal, Madhoolika

    2012-10-01

    Rising O(3) concentrations in agricultural areas have been identified as a significant threat to crop production in Asia including India. The present work reports the results of a field study conducted to assess the usefulness of higher than recommended NPK dose in modifying the physiological, growth, yield, and seed quality responses of two mustard (Brassica campestris L. var. Vardan and Aashirwad) varieties under ambient ozone level at a rural site of India, using open-top chambers. Twelve hourly mean O(3) concentrations ranged between 27.7 and 59.04 ppb during the growth period. Plants in nonfiltered chambers (NFCs) showed reductions in photosynthetic rate, stomatal conductance, and growth parameters compared to the plants in filtered chambers (FCs), but reductions were of lower magnitude at 1.5 times recommended dose of NPK (1.5 RNPK) compared to recommended (RNPK). Yield and seed quality reduced significantly in plants of NFCs compared to FCs at RNPK, but no significant differences were recorded at 1.5 RNPK. There were higher N uptake and N uptake efficiency of plants in FCs compared to NFCs. Nitrogen utilization efficiency increased in Vardan, but decreased in Aashirwad in NFCs compared to FCs suggesting higher capability of N acquisition and utilization under ambient O(3), which led to a less pronounced reduction in the yield of the former than the latter variety. The differential nitrogen utilization efficiency in these varieties may be potentially used as measure of sensitivity characteristics in breeding programs for yield improvement in mustard under the present trend of increase in O(3) concentrations. PMID:22072445

  5. A new Open Top Chamber designed to test in situ effects of climatic and atmospheric changes on nitrogen fixation in boreal forest floor mosses

    NASA Astrophysics Data System (ADS)

    Bringuier, Charline; Bradley, Robert; Bellenger, Jean-Philippe; Morin, Hubert; Lindo, Zoë

    2014-05-01

    Biological nitrogen fixation (BNF) by cyanobacteria dwelling in forest floor moss layers is an important determinant of boreal black spruce forest productivity. Recent studies have suggested that these BNF rates may increase with increasing atmospheric CO2 and increasing temperature, as predicted by current weather models. This potential increase in BNF may be offset, however, by increasing atmospheric deposition of nitrogen, or by increasing demands for phosphorus (i.e. driving nodular ATP content) and for micronutrients such as Mo, Va and Fe (i.e. co-factors of nitrogenase enzyme). In order to study the relative and interactive effects of these factors controlling in situ BNF rates in boreal forest floor moss layers, a new Open Top Chamber (OTC) was developed in summer of 2013. The chambers measure 1.60 cm dia. × 60 cm height, and are equipped with an automated CO2 delivery system designed to maintain atmospheric daytime CO2 concentrations at 800 ppm, as well as buried heating coils that increase soil temperature by 4 ° C for 3 weeks in springtime. These 2 experimental factors are crossed in a full factorial (2 × 2) design that is replicated in 4 complete blocks. Each of the 16 OTCs is divided into 4 compartments, each of which are assigned 1 of 4 sub-plot factors. These include chronic additions of either atmospheric nitrogen, phosphorus, micronutrients or a non-amended control. Staring in summer 2014, a series of measurements will be made to assess the effects of treatments on BNF rates, cyanobacterial colonization and soil nitrogen cycling. Our poster will describe in detail the design and operation of the OTCs, as well as their construction and maintenance costs.

  6. CO[sub 2] exchange and growth of the Crassulacean acid metabolism plant opuntia ficus-indica under elevated CO[sub 2] in open-top chambers

    SciTech Connect

    Cui, M.; Miller, P.M.; Nobel, P.S. )

    1993-10-01

    CO[sub 2] uptake, water vapor conductance, and biomass production of Opuntia ficus-indica, a Crassulacean acid metabolism species, were studied at CO[sub 2] concentrations of 370, 520, and 720 [mu]L L[sup [minus]1] in open-top chambers during a 23-week period. Nine weeks after planting, daily net CO[sub 2] uptake for basal cladodes at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 76 and 98% higher, respectively, than at 370 [mu]L L[sup [minus]1]. Eight weeks after daughter cladodes emerged, their daily net CO[sub 2] uptake was 35 and 49% higher at 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, than at 370 L L[sup [minus]1]. Daily water-use efficiency was 88% higher under elevated CO[sub 2] for basal cladodes and 57% higher for daughter cladodes. The daily net CO[sub 2] uptake capacity for basal cladodes increased for 4 weeks after planting and then remained fairly constant, whereas for daughter cladodes, it increased with cladode age, became maximal at 8 to 14 weeks, and then declined. The percentage enhancement in daily net CO[sub 2] uptake caused by elevated CO[sub 2] was greatest initially for basal cladodes and at 8 to 14 weeks for daughter cladodes. The chlorophyll content per unit fresh weight of chlorenchyma for daughter cladodes at 8 weeks was 19 and 62% lower in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2], respectively, compared with 370 [mu]L L[sup [minus]1]. Despite the reduced chlorophyll content, plant biomass production during 23 weeks in 520 and 720 [mu]L L[sup [minus]1] of CO[sub 2] was 21 and 55% higher, respectively, than at 370 [mu]L L[sup [minus]1]. The root dry weight nearly tripled as the CO[sub 2] concentration was doubled, causing the root/shoot ratio to increase with CO[sub 2] concentration. During the 23-week period, elevated CO[sub 2] significantly increased CO[sub 2] uptake and biomass production of O. 35 refs., 4 figs., 1 tab.

  7. Drift Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Walenta, A. H.; ćonka Nurdan, T.

    2003-07-01

    This paper describes a laboratory course held at ICFA 2002 Regional Instrumentation School in Morelia, Mexico. This course intends to introduce drift chambers, which play an important role in particle physics experiments as tracking detectors. The experimental setup consists of a single-sided, single-cell drift chamber, a plastic scintillator detector and a collimated 90Sr source. The measurements on the drift velocity of electrons, its change as a function of a drift field, gas gain and diffusion are performed at this laboratory course.

  8. A flux-based assessment of the effects of ozone on foliar injury, photosynthesis, and yield of bean (Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) in open-top chambers.

    PubMed

    Gerosa, Giacomo; Marzuoli, Riccardo; Rossini, Micol; Panigada, Cinzia; Meroni, Michele; Colombo, Roberto; Faoro, Franco; Iriti, Marcello

    2009-05-01

    Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O(3) exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H(2)O(2) accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O(3) m(-2). Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, DeltaF/F'(m)). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.

  9. Effect of canopy structure and open-top chamber techniques on micrometeorological parameters and the gradients and transport of water vapor, carbon dioxide and ozone in the canopies of plum trees (`prunus salicina`) in the San Joaquin valley. Final report

    SciTech Connect

    Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.; Malkus, P.; Wosnik, K.

    1995-03-15

    Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients were diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.

  10. Effects of air filtration on spring wheat grown in open-top field chambers at a rural site. II. Effects on mineral partitioning, sulphur and nitrogen metabolism and on grain quality.

    PubMed

    Vandermeiren, K; De Temmerman, L; Staquet, A; Baeten, H

    1992-01-01

    In 1988 the effect of ambient levels of air pollutants on the nutrients status and grain quality of spring wheat (Triticum aestivum cv. Pelican) was investigated by comparing plants grown in open-top chambers (OTC) ventilated with ambient air (NF treatments) and charcoal-filtered air (CF treatments) at a rural site (Tervuren, Belgium). Spring wheat cultivated in NF OTC showed only minor differences in the P, K, Ca, Mg, Mn and Na concentrations of the different plant parts at final harvest, as well as organic and inorganic S fractions, compared to those of the plants grown in CF air. The plants' total P content was reduced, as well as the P and K concentration of the flour. The total S concentration of the flour was increased by 4%. Effects on N concentrations and grain quality were much more pronounced. At final harvest the N concentrations of straw and flour of the NF air treated plants were much higher compared to CF air. However, the N content of the aerial biomass and the grain N yield were not significantly affected, implying a reduction of other structual compounds. Nitrogen harvest index (NHI) and the ratio of NHI over grain harvest index (GHI), indicated a significant reduction of N translocation from the above-ground biomass to the grain. Changes in the N status and partitioning of spring wheat had an effect on the baking quality of wheat flour. Several parameters that are commonly used as an indication of baking quality have been significantly increased in the NF treatment: total protein concentration, Zeleny value, dry and wet gluten concentration. A slightly increased Hagberg value indicated a reduced alpha-amylase activity. The possibility of foliar N uptake as an additional N source, especially after anthesis and implications of increased protein production instead of carbohydrate synthesis are discussed.

  11. Effects of air filtration on spring wheat grown in open-top field chambers at a rural site. II. Effects on mineral partitioning, sulphur and nitrogen metabolism and on grain quality.

    PubMed

    Vandermeiren, K; De Temmerman, L; Staquet, A; Baeten, H

    1992-01-01

    In 1988 the effect of ambient levels of air pollutants on the nutrients status and grain quality of spring wheat (Triticum aestivum cv. Pelican) was investigated by comparing plants grown in open-top chambers (OTC) ventilated with ambient air (NF treatments) and charcoal-filtered air (CF treatments) at a rural site (Tervuren, Belgium). Spring wheat cultivated in NF OTC showed only minor differences in the P, K, Ca, Mg, Mn and Na concentrations of the different plant parts at final harvest, as well as organic and inorganic S fractions, compared to those of the plants grown in CF air. The plants' total P content was reduced, as well as the P and K concentration of the flour. The total S concentration of the flour was increased by 4%. Effects on N concentrations and grain quality were much more pronounced. At final harvest the N concentrations of straw and flour of the NF air treated plants were much higher compared to CF air. However, the N content of the aerial biomass and the grain N yield were not significantly affected, implying a reduction of other structual compounds. Nitrogen harvest index (NHI) and the ratio of NHI over grain harvest index (GHI), indicated a significant reduction of N translocation from the above-ground biomass to the grain. Changes in the N status and partitioning of spring wheat had an effect on the baking quality of wheat flour. Several parameters that are commonly used as an indication of baking quality have been significantly increased in the NF treatment: total protein concentration, Zeleny value, dry and wet gluten concentration. A slightly increased Hagberg value indicated a reduced alpha-amylase activity. The possibility of foliar N uptake as an additional N source, especially after anthesis and implications of increased protein production instead of carbohydrate synthesis are discussed. PMID:15091972

  12. Open-top wood gasifiers

    SciTech Connect

    Mukunda, H.S.; Dasappa, S.; Shrinivasa, U.

    1993-12-31

    The technology and economics of a new class of open-top gasifiers for use with diesel engines in dual-fuel mode are described. The performance of systems that range in capacity from 3.7 to 100 kilowatts are discussed, with special emphasis placed on gasifiers at extreme ends of the capacity range. The essential differences and benefits of the new technology are compared with World War 2 closed-top models. Studies indicate that the open-top design achieves diesel replacement values greater than 80 percent and is less dependent on feedstock quality, moisture content, and density. The amount of diesel fuel saved per system among motivated users (mostly small farmers) exceeds 70 percent. A comparative analysis of two gasifier systems: a 5 kilowatt system that runs the village power station in Hosahalli, Karnatka (India), and a 100 kilowatt system that powers a sawmill on the remote island of Port Blair in the Andaman and Nicobar archipelago was undertaken. The cost of installing the larger system, including computerized data acquisition and control systems, was US $625 (Rs 12,500) per kilowatt, with an energy cost of $0.074 (Rs 1.60) per kWh (the cost of energy subsidized by the state is RS 1.25 per kWh).

  13. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  14. Effectiveness of Chamber Music Ensemble Experience

    ERIC Educational Resources Information Center

    Zorn, Jay D.

    1973-01-01

    This investigation was concerned with the effectiveness of chamber music ensemble experience for certain members of a ninth grade band and the evaluation of the effectiveness in terms of performing abilities, cognitive learnings, and attitude changes. (Author)

  15. Experience with the jet chamber of the JADE-experiment

    SciTech Connect

    Heuer, R.D.

    1984-01-01

    The jet chamber, a pictorial drift chamber used as the central track detector of the JADE experiment at PETRA, is briefly described. The present status of the spatial and dE/dx resolutions and the experience during 4 years of operation is reported. Improvement plans for the readout electronics are described and a short review of the jet chamber designed for the proposed LEP experiment OPAL is given.

  16. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  17. A COMBINED USE OF EDDY-COVARIANCE AND OPEN-TOP CHAMBERS FOR THE IDENTIFICATION OF DOSE-EFFECT RELATIONSHIPS FOR OZONE ON CROPS. A CASE STUDY AND PERSPECTIVES

    NASA Astrophysics Data System (ADS)

    Gerosa, G.; Finco, A.; Marzuoli, R.; Migliorati, L.; Cieslik, S.; Ballarin-Denti, A.

    2009-12-01

    In the latter years a flux-based approach for ozone risk assessment on crops was strongly supported by the scientific community. Nevertheless, the amount of ozone absorbed by plants through stomata is hardly measurable and very few dose-response relationships are available in the literature. Field experiments are usually performed in OTC (or Free Air Ozone Enrichment Systems, where available) and ozone dose is calculated (not measured) by stomatal conductance models fed with climatic parameters measured in the OTCs. At the moment OTCs are the only affordable system able to remove ozone molecules in field conditions and able to provide a “control” treatment for the validation of the ozone effects. At the same time the only way to measure ozone fluxes on vegetation is the Eddy Covariance (EC), a micrometeorological technique that, unfortunately, cannot be applied inside OTCs. These two techniques were combined and simultaneously used to study the effects of the ozone uptake by alfalfa fields in a two years pilot experiment in Italy. An EC tower mounted in the middle of the field and three OTC were placed randomly on a side of the field, two of them flushed with charcoal-filtered air (ozone-free) and one with ambient air only. The plant productivity within the OTCs and in the open field, as well as the forage quality, were compared at the end of each growing cycle. With the total ozone fluxes and water and heat ones obtained from the EC measurements, a resistive analysis was conducted in order to get the stomatal resistance of plants in the open field and thus their ozone uptake. Then, the ozone uptake by the plants inside the OTCs was calculated by assuming the same stomatal resistance obtained in the open field but applying an atmospheric Ra and sub-laminar Rb resistances fit on the OTC geometry and fan system flow. The results show that a considerably amount of the ozone deposited on the field was absorbed by plants through the stomata, with values between 66

  18. Insights on carbon budgets for Ponderosa pine systems growing at three levels of CO[sub 2] and of nitrogen from leaf to whole open-top chamber flux measurements

    SciTech Connect

    Ball, J.T.; Picone, J.B.; Ross, P.D.; Ross, G.N.; Johnson, D.W. )

    1994-06-01

    At any scale of integration carbon accumulation in the biosphere is a small difference between large input and output terms and is proportional to resource levels. This can result in the impression that growth and carbon accumulation have little to do with either the input or output rates. Our measurements show that rising concentration of CO[sub 2] in the atmosphere results in biospheric influx and efflux of carbon increasing and the proportionality between carbon left and nitrogen in the system changing. A gap exists between the carbon balance inferred from gas-exchange and measured changes in pool sizes. The rhizosphere is the likely harbor for much of this [open quotes]missing carbon[close quotes]. These measurements were made on ponderosa pine saplings growing near Placerville, California USA. The chambers are set at ambient, 525 ppm, 700 ppm CO[sub 2]. Soil nitrogen levels are at the background level, plus 10 g/m[sup [minus]2] or plus 20 g/m[sup [minus]2].

  19. Bubble chambers for experiments in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Raut, R.; Rehm, K. E.; Robinson, A.; Sonnenschein, A.; Rusev, G.; Tonchev, A. P.; Ugalde, C.

    2015-05-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with γ-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross-sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross-sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the γ-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.

  20. Coating experiment with 1.6-m vacuum evaporation chamber

    NASA Astrophysics Data System (ADS)

    Kamata, Yukiko; Hayashi, Saeko S.; Noguchi, Takeshi; Kanzawa, Tomio; Sasaki, Goro; Torii, Yasuo; Yutani, Masami; Ishikawa, Tsuyoshi

    1998-08-01

    We have conducted a series of coating experiments using the newly installed 1.6 m evaporation chamber at the Advanced Technology Center (ATC) of the National Astronomical Observatory of Japan. The main task of this chamber is to re-aluminize the 1.6 m mirror of the Infrared Simulator at the ATC. The design concept of the 1.6 m chamber is basically the same with the 8.3 m coating facility for Subaru Telescope. Therefore, we could utilize this chamber to evaluate the fundamental performance of the larger chamber. The extensive coating experiments were done in the spring, autumn of 1996, and autumn of 1997. Reduction of the number of the filaments has lead to the increase in their size, which caused difficulty in the annealing process. Attempts are focused on securing the sufficient metal loads on the filaments. Then the filaments are fired to measure the spray pattern of a single filament exposure, or the uniformity pattern resulted from the full setup of filament arrays. Using small slide glasses, the important parameters of the resultant reflecting film that are the thickness, the uniformity of the thickness, and the spectroscopic reflectance are measured. The absolute value of the reflectivity is estimated to be around 91% immediately after opening the chamber. In order to cover a wide range of observing wavelengths for the Infrared Simulator, and eventually for the optical-IR Subaru Telescope, it is necessary to seek after a higher evaporation rate with these chambers.

  1. A new cylindrical drift chamber for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    Baldini, A. M.; Baracchini, E.; Berretta, L.; Bianucci, S.; Cavoto, G.; Chiarello, G.; Chiri, C.; Cei, F.; Corvaglia, A.; Dussoni, S.; Fahrni, D.; Galli, L.; Grancagnolo, F.; Grassi, M.; Hofer, A.; Hildebrandt, M.; Ignatov, F.; Miccoli, A.; Nicolò, D.; Orsini, A.; Panareo, M.; Pepino, A.; Pinto, C.; Piredda, G.; Signorelli, G.; Raffaelli, F.; Recchia, L.; Renga, F.; Ripiccini, E.; Tassielli, G.; Tazzioli, A.; Tenchini, F.; Venturini, M.; Voena, C.; Zullo, A.

    2016-07-01

    A new cylindrical drift chamber is currently under construction for the MEG II experiment. The chamber is meant to track low momentum positrons from μ+ decays to search for μ+ →e+ γ events. The detector is segmented in very small drift cells, placed in stereo configuration and operated in a helium-isobutane gas mixture. The use of thin aluminium wires and light gas mixture set the total radiation length of the chamber to only 1.6 ×10-3X0 per track turn allowing for a momentum resolution of ~120 keV/c.

  2. Japan - USSR joint emulsion chamber experiment at Pamir

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The results are presented for the systematic measurement of cosmic ray showers in the first carbon chamber of Japan-USSR joint experiment at Pamir Plateau. The intensity and the energy distribution of electromagnetic particles, of hadrons and of families are in good agreement with the results of other mountain experiment if the relative error in energy estimation is taken into consideration.

  3. Overview of the ICF 1000 MJ experiment chamber design

    SciTech Connect

    Slaughter, D.

    1988-09-23

    A conceptual design of an experiment chamber for a high gain ICF facility (1000 MJ) is being developed. Performance goals have been established. Several design approaches are being evaluated through computer simulation, engineering analysis, and experimental testing of candidate first wall components. 10 refs., 3 figs.

  4. Dedicated contamination experiments in the Orion laser target chamber

    NASA Astrophysics Data System (ADS)

    Andrew, J.; Chevalier, J.-M.; Egan, D.; Geille, A.; Jadaud, J.-P.; Quessada, J.-H.; Raffestin, D.; Rubery, M.; Treadwell, P.; Videau, L.

    2015-11-01

    The use of solid targets irradiated in a vacuum target chamber by focussed high energy, high power laser beams to study the properties of matter at high densities, pressures and temperatures are well known. An undesirable side effect of these interactions is the generation of plumes of solid, liquid and gaseous matter which move away from the target and coat or physically damage surfaces within the target chamber. The largest aperture surfaces in these chambers are usually the large, high specification optical components used to produce the extreme conditions being studied [e.g. large aperture off axis parabolas, aspheric lenses, X ray optics and planar debris shields]. In order to study these plumes and the effects that they produce a set of dedicated experiments were performed to evaluate target by product coating distributions and particle velocities by a combined diagnostic instrument that utilised metal witness plates, polymer witness plates, fibre velocimetry and low density foam particle catchers.

  5. Outdoor smog-chamber experiments: reactivity of methanol exhaust

    SciTech Connect

    Jeffries, H.E.; Sexton, K.G.; Holleman, M.S.

    1985-09-01

    The purpose of the report was to provide an experimental smog-chamber database especially designed to test photochemical kinetics mechanisms that would be used to assess the effects of methanol fuel use in automobiles. The mechanisms would be used in urban air-quality control models to investigate the advantages of large-scale use of methanol fuel in automobiles. The smog-chamber experiments were performed during three summer months. They have been added to the existing UNC database for photochemical mechanism validation and testing, bringing the total number of dual experiments in the database to over 400. Three different hydrocarbon mixtures were used: a 13-component mixture representing synthetic automobile exhaust; an 18-component mixture representing synthetic urban ambient hydrocarbons; and a 14-component mixture derived from the synthetic automobile exhaust by the addition of n-butane. Three different synthetic methanol-exhaust mixtures were used: 80% methanol/10% formaldehyde; and 100% methanol.

  6. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field

  7. [Characterization of photochemical smog chamber and initial experiments].

    PubMed

    Jia, Long; Xu, Yong-Fu; Shi, Yu-Zhen

    2011-02-01

    A self-made new indoor environmental chamber facility for the study of atmospheric processes leading to the formation of ozone and secondary organic aerosols has been introduced and characterized. The characterization experiments include the measurements of wall effects for reactive species and the determination of chamber dependent * OH radical sources by CO-NO(x) irradiation experiments. Preliminary ethene-NO(x) and benzene-NO(x) experiments were conducted as well. The results of characterization experiments show that the wall effects for O3 and NO2 in a new reactor are not obvious. Relative humidity has a great effect on the wall losses in the old reactor, especially for O3. In the old reactor, the rate constant for O3 wall losses is obtained to be 1.0 x 10(-5) s(-1) (RH = 5%) and 4.0 x10(-5) s(-1) (RH = 91%), whereas for NO2, it is 1.0 x 10(-6) s(-1) (RH = 5%) and 0.6 x 10(-6) s(-1) (RH = 75%). The value for k(NO2 --> HONO) determined by CO-NO(x) irradiation experiments is (4.2-5.2) x 10(-5) s(-1) and (2.3-2.5) x 10(-5) s(-1) at RH = 5% and RH 75% -77%, respectively. The average *OH concentration is estimated to be (2.1 +/- 0.4) x 10(6) molecules/cm3 by using a reaction rate coefficient of CO and * OH. The sensitivity of chamber dependent auxiliary reactions to the O3 formation is discussed. Results show that NO2 --> HONO has the greatest impact on the O3 formation during the initial stage, N2O5 + H2O --> 2HNO3 has a minus effect to maximum O3 concentration, and that the wall losses of both O3 and NO2 have little impact on the O3 formation. The results from the ethene-NO(x) and benzene-NO(x) experiments are in good agreement with those from the MCM simulation, which reflects that the facility for the study of the formation of secondary pollution of ozone and secondary organic aerosols is reliable. This demonstrates that our facility can be further used in the deep-going study of chemical processes in the atmosphere.

  8. Advanced photon source experience with vacuum chambers for insertion devices

    SciTech Connect

    Hartog, P.D.; Grimmer, J.; Xu, S.; Trakhtenberg, E.; Wiemerslage, G.

    1997-08-01

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured.

  9. Convective melting in a magma chamber: theory and numerical experiment.

    NASA Astrophysics Data System (ADS)

    Simakin, A.

    2012-04-01

    We present results of the numerical modeling of convective melting in a magma chamber in 2D. Model was pointed on the silicic system approximated with Qz-Fsp binary undersaturated with water. Viscosity was calculated as a function of the melt composition, temperature and crystal content and comprises for the pure melt 104.5-105.5 Pas. Lower boundary was taken thermally insulated in majority of the runs. Size of FEM (bilinear elements) grid for velocity is 25x25 cm and for the integration of the density term 8x8 cm. Melting of the chamber roof proceeds with the heat supply due to the chaotic thermo-compositional convection and conductive heat loose into melted substrate. We compare our numerical data with existing semi-analytical models. Theoretical studies of the assimilation rates in the magma chambers usually use theoretical semi-analytical model by Huppert and Sparks (1988) (e.g., Snyder, 2000). We find that this model has strong points: 1) Independence of the melting rate on the sill thickness (Ra>>Rac) 2) Independence of the convective heat transfer on the roof temperature 3) Determination of the exponential thermal boundary layer ahead of the melting front and weak points: 1) Ignoring the possibility of the crystallization without melting regime for narrow sills and dykes. 2)Neglecting of two-phase character of convection. 3)Ignoring of the strong viscosity variation near the melting front. Independence of convective flux from the sill size (at Ra>>Rac) allows reducing of computational domain to the geologically small size (10-15 m). Concept of exponential thermal boundary layer is also rather important. Length scale (L0) of this layer is related to the melting rate and thermal diffusivity coefficient kT as L0=kT/um and at the melting rate 10 m/yr becomes about 2 m. Such small scale implies that convective melting is very effective (small conductive heat loss) and part of the numerical domain filled with roof rocks can be taken small. In the H&S model

  10. Studies of particle interactions in bubble chamber, spark chambers and counter experiments. Annual progress report

    SciTech Connect

    Holloway, L.E.; O'Halloran, T.A. Jr.; Simmons, R.O.

    1983-07-01

    During the past six years we have carried out and planned experiments which predominantly studied the production and decay of particles containing charmed quarks. A series of photoproduction and neutron production experiments started with the very early observation of the production of J/psi by neutrons and by photons at Fermilab. From subsequent experiments using these neutral beams and the basic detecting system, we have reported results on the photoproduction of the ..lambda../sub c/ charmed baryon and the D and D* charmed mesons. More recent runs are studying the high energy photoproduction of vector mesons including the psi'. The present experiment in this sequence is using neutrons to produce a large number of D mesons. Another series of experiments at Fermilab set out to study the hadronic production of charmed mesons. The Chicago Cyclotron facility was modified with a detector sensitive to various possible production mechanisms. The experiments were a success; clean signals of D mesons were observed to be produced by pions, and also the production of chi/sub c/ with the subsequent decay via a ..gamma..-ray to psi was observed. The charmonium experiments run this year have better photon resolution for measuring the decays of chi/sub c/ to psi. We are part of a collaboration which is working on the Collider Detector Facility for Fermilab. The CDF at Fermilab is a possible source of (weak) intermediate vector bosons from the collisions of protons and anti-protons. Our responsibilities in the CDF include both the construction of the muon detector and the designing, planning, and testing of the FASTBUS electronics. The second part of our weak interaction program is the Neutrino Oscillation experiment which is now under construction at Brookhaven.

  11. Experience with the BaBar Resistive Plate Chambers

    SciTech Connect

    Band, H.

    2005-04-06

    The BaBar detector has operated over 2000 m{sup 2} of Resistive Plates Chambers (RPCs) as muon and neutral hadron detectors since 1999. Most of the original RPC production have lost significant efficiency and many are now completely inefficient. Both the linseed oil used to coat the inner surfaces and the graphite coating on the outer surfaces are implicated as contributors to the efficiency loss which was accelerated by the operation of the RPCs at 29 to 34 C during the first summer. RPCs from 2 more recent production runs have been installed and tested. The most recent RPCs have exhibited stable efficiencies and high voltage plateaus during the first 8 months of service. Some have shown increased dark currents and noise rates.

  12. Development of glass resistive plate chambers for INO experiment

    NASA Astrophysics Data System (ADS)

    Datar, V. M.; Jena, Satyajit; Kalmani, S. D.; Mondal, N. K.; Nagaraj, P.; Reddy, L. V.; Saraf, M.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2009-05-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a massive 50 kton magnetised Iron Calorimeter (ICAL) detector, to study atmospheric neutrinos and to make precision measurements of the parameters related to neutrino oscillations. Glass Resistive Plate Chambers (RPCs) of about 2 m×2 m in size are going to be used as active elements for the ICAL detector. We have fabricated a large number of glass RPC prototypes of 1 m×1 m in size and have studied their performance and long term stability. In the process, we have developed and produced a number of materials and components required for fabrication of RPCs. We have also designed and optimised a number of fabrication and quality control procedures for assembling the gas gaps. In this paper we will review our various activities towards development of glass RPCs for the INO ICAL detector. We will present results of the characterisation studies of the RPCs and discuss our plans to prototype 2 m×2 m sized RPCs.

  13. Smog chamber experiments to test oxidant related control strategy issues. Final report 1978-81

    SciTech Connect

    Kamens, R.M.; Jeffries, H.E.; Sexton, K.G.; Gerhardt, A.A.

    1982-03-01

    Outdoor smog chamber experiments were performed to address various issues relating to ozone (O3) production and oxidant control strategies. Temperature effects on single hydrocarbon-NOx systems were studied. Propylene-NOx systems were modeled with particular attention to peroxynitric acid chemistry. Mechanisms were developed to model the O3 reactions with the two major isoprene daughter products, methylvinylketone and methacrolein. Chamber systems with isoprene and O3 were also modeled.

  14. Experience With the Resistive Plate Chamber in the BaBar Experiment

    SciTech Connect

    Bellini, F.; /Rome U. /INFN, Rome

    2006-11-15

    The BABAR detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years. The RPCs experience widely different background and luminosity-driven singles rates (0.01-10 Hz/cm{sup 2}) depending on position within the endcap. Some regions have integrated over 0.3 C/cm{sup 2}. RPC efficiency measured with cosmic rays and beam is high and stable. However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%. Although constructed with improved techniques many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current.

  15. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  16. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  17. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments. PMID:18593229

  18. Single Particle Laser Mass Spectrometry Applied to Differential Ice Nucleation Experiments at the AIDA Chamber

    SciTech Connect

    Gallavardin, S. J.; Froyd, Karl D.; Lohmann, U.; Moehler, Ottmar; Murphy, Daniel M.; Cziczo, Dan

    2008-08-26

    Experiments conducted at the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) chamber located in Karlsruhe, Germany permit investigation of particle properties that affect the nucleation of ice at temperature and water vapor conditions relevant to cloud microphysics and climate issues. Ice clouds were generated by heterogeneous nucleation of Arizona test dust (ATD), illite, and hematite and homogeneous nucleation of sulfuric acid. Ice crystals formed in the chamber were inertially separated from unactivated, or ‘interstitial’ aerosol particles with a pumped counterflow virtual impactor (PCVI), then evaporated. The ice residue (i.e., the aerosol which initiated ice nucleation plus any material which was scavenged from the gas- and/or particle-phase), was chemically characterized at the single particle level using a laser ionization mass spectrometer. In this manner the species that first nucleated ice could be identified out of a mixed aerosol population in the chamber. Bare mineral dust particles were more effective ice nuclei (IN) than similar particles with a coating. Metallic particles from contamination in the chamber initiated ice nucleation before other species but there were few enough that they did not compromise the experiments. Nitrate, sulfate, and organics were often detected on particles and ice residue, evidently from scavenging of trace gas-phase species in the chamber. Hematite was a more effective ice nucleus than illite. Ice residue was frequently larger than unactivated test aerosol due to the formation of aggregates due to scavenging, condensation of contaminant gases, and the predominance of larger aerosol in nucleation.

  19. Outdoor smog chamber experiments to test photochemical models. Final report May 78-May 81

    SciTech Connect

    Feffries, H.E.; Kamens, R.M.; Sexron, K.G.; Gerhardt, A.A.

    1982-04-01

    The smog chamber facility of the University of North Carolina was used in a study to provide experimental data for developing and testing kinetic mechanisms of photochemical smog formation. The smog chamber, located outdoors in rural North Carolina, is an A-frame structure covered with Teflon film. Because the chamber is partitioned into two sections, each with a volume of 156 cu m, two experiments can be conducted simultaneously. The dual chamber is operated under natural conditions of solar radiation, temperature, and relative humidity. In this study, 115 dual all-day experiments were conducted using NOx and a variety of organic species. The organic compounds investigated included various paraffins, olefins, aromatics and oxygenates, both singly and in mixtures of two or more components. In this report the data collected over the three-year period of the study are described. The experimental procedures and analytical methods used in this study and the limitations and uncertainties of the data are discussed. Guidance for modeling of the data is also given, including a detailed discussion of how to estimate photolytic rate constants from the available UV and total solar radiation data and how to treat such chamber artifacts as dilution, wall sources and losses of pollutants, and reactivity of the background air.

  20. Early steps towards quarks and their interactions using neutrino beams in CERN bubble chamber experiments

    NASA Astrophysics Data System (ADS)

    Perkins, Don H.

    2016-06-01

    Results from neutrino experiments at CERN in the1970's, using bubble chamber detectors filled with heavy liquids, gave early evidence for the existence of quarks and gluons as real dynamical objects. In detail, the measured moments of the non-singlet structure functions provided crucial support for the validity of the present theory of the strong inter-quark interactions, quantum chromodynamics.

  1. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  2. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  3. MicroBooNE: A New Liquid Argon Time Projection Chamber Experiment

    SciTech Connect

    Soderberg, M.

    2009-10-01

    Liquid Argon Time Projection Chamber detectors are well suited to study neutrino interactions, and are an intriguing option for future massive detectors capable of measuring the parameters that characterize neutrino oscillations. These detectors combine fine-grained tracking with calorimetry, allowing for excellent imaging and particle identification ability. In this talk the details of the MicroBooNE experiment, a 175 ton LArTPC which will be exposed to Fermilab's Booster Neutrino Beamline starting in 2011, will be presented. The ability of MicroBooNE to differentiate electrons from photons gives the experiment unique capabilities in low energy neutrino interaction measurements.

  4. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; Zihlmann, Benedikt

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features is 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.

  5. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    DOE PAGES

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; Zihlmann, Benedikt

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features ismore » 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.« less

  6. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  7. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  8. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments.

    PubMed

    Ghilea, M C; Meyerhofer, D D; Sangster, T C

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10(13) emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  9. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments.

    PubMed

    Ghilea, M C; Meyerhofer, D D; Sangster, T C

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10(13) emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility. PMID:21456730

  10. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 1013 emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  11. [A dust generator for inhalation experiments in a high-pressure chamber].

    PubMed

    Friedrichs, K H; Bergmann, K H

    1984-03-01

    The health effect of inhalable dust particles at working places is predominantly related to "normal" conditions (i.e. temperature = 20 degrees C, atmospheric pressure = 1013 mbar). A probable risk for humans, working in pressurized places (tunnels) raises from modified respiration conditions. An inhalation experiment with rats was performed in a pressurized exposure chamber (1,5 bar). The dust generator was placed in the chamber and consisted of an endless ball-chain, which was lead through a glass-funnel as a dust-store. The average dust concentration ranged between 10 and 14 mg/m3 air. Short-time variations in case of the quartz dust DQ 12 were unavoidable.

  12. Open top culverts as an alternative drainage system to minimize ecological effects in earth roads.

    NASA Astrophysics Data System (ADS)

    García, Jose L.; Elorrieta, Jose; Robredo, Jose C.; García, Ricardo; García, Fernando; Gimenez, Martin C.

    2013-04-01

    During the last fifteen years a research team from School of Forestry at the Technical University of Madrid (Spain) has developed several competitive research projects regarding forest roads and open top culverts. A first approach was established with a prototype of 7 meters length in a hydraulic channel at the laboratory determining main parameters of different open top culverts in relation to different sizes of gravels and the self washing properties relationship with different slopes up to 8 %. The curves obtained may help to properly install these drainage systems avoiding maintenance costs. In addition more targeted pilot studies were developed in different forest earth roads in center and north Spain. The construction of the stations under study was financed by the U.P.M and the R&D National Plan. The main outcomes relates the low variation of humidity in a 20 m. wide range at both sides of the open top culverts and several considerations relating the angle of installation, the spacing of such drainage systems and the benefits against rilling along the roads. Also the erosion produced downhill was established and some construction methods to avoid adverse ecological effects. The diffusion of results includes congresses and a small booklet with a great acceptance in forestry services. Also a patent (ES 2 262 437) of an advanced model has been registered.

  13. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  14. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    SciTech Connect

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1997-01-01

    We propose a new {open_quotes}threshold{close_quotes} bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and {rho}R measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor and National Ignition Facility experiments will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  15. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    SciTech Connect

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1996-07-01

    We propose a new {open_quotes}threshold{close_quotes} bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and {rho}R measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed.

  16. Report of the Next Generation TRIUMF-MTV Experiment Run-IV Using Cylindrical Drift Chamber

    NASA Astrophysics Data System (ADS)

    Tanuma, R.; Seitaibashi, E.; Baba, H.; Kawamura, H.; Behr, J. A.; Onishi, J.; Ninomiya, K.; Pearson, M.; Ikeda, M.; Levy, P.; Narikawa, R.; Openshaw, R.; Tanaka, S.; Saiba, S.; Iguri, T.; Totsuka, Y.; Nakaya, Y.; Murata, J.

    The MTV (Mott polarimetry for T-Violation) experiment is running from 2009 at TRIUMF, which aims to search a large non-standard T-Violation in polarized nuclear beta decay. Existence of a large transverse polarization of electrons emitted from polarized Li-8 nuclei, which are produced at TRIUMF-ISAC and stopped inside an aluminum stopper, is investigated. We utilize a Mott polarimeter consists of a CDC (Cylindrical Drift Chamber), measuring backward scattering left-right asymmetry from a thin lead analyzer foil. In this paper, results from the final performance test run using CDC performed in 2012 are described.

  17. Multiwire proportional chambers in M1 and M3 spectrometers of charmed baryon experiment (E781) at Fermilab

    SciTech Connect

    Kaya, Mithat; /Iowa U.

    1997-08-01

    The status of the multiwire proportional chambers in the FERMILAB E781 experiment and a general description of the readout system are given. This essay will describe the system of multiwire proportional chambers (MWPC) that are part of the Fermilab experiment E781 setup. Multiwire proportional chambers are often used in particle physics experiments because they can determine the position of charged particles very accurately (less than a millimeter). The E781 experiment which is also called SELEX (SEgmented LargE-X) is a spectrometer designed to study the production and decay of charmed baryons. MWPCs are part of the 3-stage charged particle spectrometer (Figure 1). Each spectrometer stage includes a bending magnet and chambers. More information about E781 experiment is given in the Appendix. In the following, some basic concepts of MWPCs will be given briefly. After that the multiwire proportional chambers (M1PWC and M3PWC) that are used in the E781 fixed target experiment will be described. Then a general description of the readout system for both M1PWC and M3PWC setups will follow. Finally the tests done on both sets of chambers will be explained in detail.

  18. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    Hydrogen uptake in soil is the largest single component of the global budget of atmospheric H2, and is the most important parameter for predicting changes in atmospheric concentration with future changing sources (anthropogenic and otherwise). The rate of hydrogen uptake rate by soil is highly uncertain [1]. As a component of the global budget, it is simply estimated as the difference among estimates for other recognized sources and sinks, assuming the atmosphere is presently in steady state. Previous field chamber experiments [2] show that H2 deposition velocity varies complexly with soil moisture level, and possibly with soil organic content and temperature. We present here results of controlled soil chamber experiments on 3 different soil blocks (each ~20 x ~20 x ~21 cm) with a controlled range of moisture contents. All three soils are arid to semi arid, fine grained, and have organic contents of 10-15%. A positive air pressure (slightly higher than atmospheric pressure) and constant temperature and relative humidity was maintained inside the 10.7 liter, leak-tight plexiglass chamber, and a stream of synthetic air with known H2 concentration was continuously bled into the chamber through a needle valve and mass flow meter. H2, CO and CO2 concentrations were continuously analyzed in the stream of gas exiting the chamber, using a TA 3000 automated Hg-HgO reduced gas analyzer and a LI-820 CO2 gas analyzer. Our experimental protocol involved waiting until concentrations of analyte gases in the exiting gas stream reached a steady state, and documenting how that steady state varied with various soil properties and the rate at which gases were delivered to the chamber. The rate constants for H2 and CO consumption in the chamber were measured at several soil moisture contents. The calculated deposition velocities of H2 and CO into the soil are positively correlated with steady-state concentrations, with slopes and curvatures that vary with soil type and moisture level

  19. Open-top selective plane illumination microscope for conventionally mounted specimens.

    PubMed

    McGorty, Ryan; Liu, Harrison; Kamiyama, Daichi; Dong, Zhiqiang; Guo, Su; Huang, Bo

    2015-06-15

    We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips. PMID:26193587

  20. Open-top selective plane illumination microscope for conventionally mounted specimens

    PubMed Central

    McGorty, Ryan; Liu, Harrison; Kamiyama, Daichi; Dong, Zhiqiang; Guo, Su; Huang, Bo

    2015-01-01

    We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips. PMID:26193587

  1. [Metabolism, intensity of lipid peroxidation and the antioxidant defense system in humans during chamber experiments with long-term isolation].

    PubMed

    Markin, A A; Stroganova, L B; Vostrikova, L V; Balashov, O I; Nichiporuk, I A

    1997-01-01

    Blood biochemical parameters of lipid, protein, carbohydrate and energy metabolism were measured in a 135-day chamber experiment. Also, dynamics of the intensity of lipid peroxidation and status of the antioxidant defence system were evaluated. Results of the investigation showed that extended chamber isolation led to modifications of several biochemical parameters including hemoglobin, bilirubin, cholesterol and its fractions, elevated transaminase activity which are typical for long-term space mission. However, these were not accompanied by substantive changes in protein, energy and carbohydrate metabolisms, or intensity of free radical processes. Effects of prolonged stay in chamber was successfully counterbalanced by organism.

  2. Two Years of Industrial Experience in the Use of a Small, Direct Field Acoustic Chamber

    NASA Astrophysics Data System (ADS)

    Saggini, Nicola; Di Pietro, Vincenzo; Poulain, Nicolas; Herzog, Philippe

    2012-07-01

    Within Thales Alenia Space - Italy small satellite Assembly Integration and Test (AIT) plant, the need to develop a suitable facility for spacecraft acoustic noise test has arisen, with additional constraints posed by the necessity of a low impact on the existing building layout, low cost of procurement and operations, while maintaining a high reliability of the system for a theoretical maximum throughput of one test per week over an extended period of time, e.g. six months. The needs have been answered by developing a small (~40 m3 test volume), direct field (DF A T) acoustic test chamber, christened “Alpha Cabin”, where noise generation is achieved by means of commercial audio drivers equipped with custom enclosures. The paper starts with a brief presentation of the main characteristics of the system, but then concentrates on the lessons learnt and return of experience from the tests conducted in more than two years of continuous use. Starting from test article structural responses and their comparison with reverberant chambers, properties of the acoustic field and their implications on the former are analyzed.

  3. Small-strip Thin Gap Chambers for the muon spectrometer upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Perez Codina, E.

    2016-07-01

    The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so-called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with a fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 45 μm for a perpendicular incident angle, and the transition region between pads has been measured to be about 4 mm.

  4. Web-based monitoring tools for Resistive Plate Chambers in the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Ban, Y.; Cai, J.; Li, Q.; Liu, S.; Qian, S.; Wang, D.; Xu, Z.; Zhang, F.; Choi, Y.; Kim, D.; Goh, J.; Choi, S.; Hong, B.; Kang, J. W.; Kang, M.; Kwon, J. H.; Lee, K. S.; Lee, S. K.; Park, S. K.; Pant, L. M.; Mohanty, A. K.; Chudasama, R.; Singh, J. B.; Bhatnagar, V.; Mehta, A.; Kumar, R.; Cauwenbergh, S.; Costantini, S.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Ocampo, A.; Poyraz, D.; Salva, S.; Thyssen, F.; Tytgat, M.; Zaganidis, N.; Doninck, W. V.; Cabrera, A.; Chaparro, L.; Gomez, J. P.; Gomez, B.; Sanabria, J. C.; Avila, C.; Ahmad, A.; Muhammad, S.; Shoaib, M.; Hoorani, H.; Awan, I.; Ali, I.; Ahmed, W.; Asghar, M. I.; Shahzad, H.; Sayed, A.; Ibrahim, A.; Aly, S.; Assran, Y.; Radi, A.; Elkafrawy, T.; Sharma, A.; Colafranceschi, S.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Nuzzo, S.; Pugliese, G.; Radogna, R.; Venditti, R.; Verwilligen, P.; Benussi, L.; Bianco, S.; Piccolo, D.; Paolucci, P.; Buontempo, S.; Cavallo, N.; Merola, M.; Fabozzi, F.; Iorio, O. M.; Braghieri, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Vai, I.; Magnani, A.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Rodozov, M.; Sultanov, G.; Vutova, M.; Stoykova, S.; Hadjiiska, R.; Ibargüen, H. S.; Morales, M. I. P.; Bernardino, S. C.; Bagaturia, I.; Tsamalaidze, Z.; Crotty, I.

    2014-10-01

    The Resistive Plate Chambers (RPC) are used in the CMS experiment at the trigger level and also in the standard offline muon reconstruction. In order to guarantee the quality of the data collected and to monitor online the detector performance, a set of tools has been developed in CMS which is heavily used in the RPC system. The Web-based monitoring (WBM) is a set of java servlets that allows users to check the performance of the hardware during data taking, providing distributions and history plots of all the parameters. The functionalities of the RPC WBM monitoring tools are presented along with studies of the detector performance as a function of growing luminosity and environmental conditions that are tracked over time.

  5. Chamber experiments to investigate the release of fungal IN into the atmosphere

    NASA Astrophysics Data System (ADS)

    Kunert, Anna Theresa; Krüger, Mira; Scheel, Jan Frederik; Helleis, Frank; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Biological aerosol particles are ubiquitous in the atmosphere. Several types of microorganisms like bacteria, fungi and lichen have been identified as sources of biological ice nuclei (IN). They are a potentially strong source of atmospheric IN, as some of them are able to catalyze ice formation at relatively warm subfreezing temperatures. Common plant-associated bacteria are the best-known biological IN but recently ice nucleation activity in a variety of fungal species such as Mortierella alpina, Isaria farinosa, Acremonium implicatum was found. These fungal species are widely spread throughout the world and are present in soil and air. Their IN seem to be proteins, which are not anchored in the fungal cell wall. To which extent these small, cell-free IN are emitted directly into the atmosphere remains unexplored just as other processes, which probably indirectly release fungal IN e.g. absorbed onto soil dust particles. To analyze the release of fungal IN into the air, we designed a chamber, whose main principle is based on the emission of particles into a closed gas compartment and the subsequent collection of these particles in water. The concentration of the collected IN in the water is determined by droplet freezing assays. For a proof of principles, fungal washing water containing cell-free IN was atomized by an aerosol generator and the produced gas stream was lead through a water trap filled with pure water. Preliminary results show a successful proof of principles. The chamber design is capable of collecting aerosolic IN produced by an aerosol generator with fungal washing water. In ongoing experiments, alive or dead fungal cultures are placed into the chamber and a gentle, particle free air stream is directed over the fungi surface. This gas stream is also lead through water to collect particles, which might be emitted either actively or passively by the fungi. Further experiments will be e.g. conducted under different relative humidities. Results

  6. Evaluation of different SOA schemes using experiments in two outdoor chambers

    NASA Astrophysics Data System (ADS)

    Vivanco, Marta G.; Couvidat, Florian; Santiago, Manuel; Seignuer, Christian; Jang, Myoseon; Barron, Henderson; Bertrand, Bessagnet

    2014-05-01

    Secondary organic aerosols (SOA) constitute a significant fraction of the atmospheric particulate matter. These particles are formed as a consequence of the oxidation reaction of certain organic gases that leads to the formation of low-volatility compounds. Much research has been done during the last years regarding SOA modelling. Since the initial one-step oxidation reaction included in most regional models more complex schemes taking into account the NOx regime have been proposed. In these schemes the intermediate specie formed from the oxidation of SOA precursors can continue reacting through different pathways depending on the atmospheric chemical conditions. Basically based on chamber experiments, the second-step reaction pathways involve radicals such as HO2, CH3COO or CH3O2 in low NOx conditions. In this study we present an intercomparison of different SOA mechanism (Couvidat et al. 2012, Kim et al. 2011, 1-step scheme currently included in the CHIMERE model) for anthropogenic SOA precursors, and their sensibility to different chemical mechanisms. A comparison of model results against two sets of experiments, performed in two outdoor chambers, EUPHORE (Ceam, Valencia, Spain; Vivanco et al., 2013), and UF (University of Florida, USA) is also included. Experiments in UF were performed for individual VOCs (toluene and 1,3,5 trimethylbenzene), whereas experiments in EUPHORE were focused on a mixture of four anthropogenic VOCs (toluene, 1,3,5 trimethylbenzene, o-xylene and octane). Regarding the gas phase, a comparison of radical concentration for different chemical mechanisms has been done. Modeled radical concentration was evaluated for one experiment measuring OH and HO2 concentration. References: Couvidat, F., Debry, ' E., Sartelet, K., and Seigneur, C (2012) .: A hydrophilic/hydrophobic organic (H2O) model: Model development,evaluation and sensitivity analysis, J. Geophys. Res., 117, D10304, doi:10.1029/2011JD017214, 2012. Y. Kim, K. Sartelet, and C

  7. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants

    NASA Astrophysics Data System (ADS)

    Rauert, Cassandra; Lazarov, Borislav; Harrad, Stuart; Covaci, Adrian; Stranger, Marianne

    2014-01-01

    The widespread use of flame retardants (FRs) in indoor products has led to their ubiquitous distribution within indoor microenvironments with many studies reporting concentrations in indoor air and dust. Little information is available however on emission of these compounds to air, particularly the measurement of specific emission rates (SERs), or the migration pathways leading to dust contamination. Such knowledge gaps hamper efforts to develop understanding of human exposure. This review summarizes published data on SERs of the following FRs released from treated products: polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), tetrabromobisphenol-A (TBBPA), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (PFRs), including a brief discussion of the methods used to derive these SERs. Also reviewed are published studies that utilize emission chambers for investigations/measurements of mass transfer of FRs to dust, discussing the chamber configurations and methods used for these experiments. A brief review of studies investigating correlations between concentrations detected in indoor air/dust and possible sources in the microenvironment is included along with efforts to model contamination of indoor environments. Critical analysis of the literature reveals that the major limitations with utilizing chambers to derive SERs for FRs arise due to the physicochemical properties of FRs. In particular, increased partitioning to chamber surfaces, airborne particles and dust, causes loss through “sink” effects and results in long times to reach steady state conditions inside the chamber. The limitations of chamber experiments are discussed as well as their potential for filling gaps in knowledge in this area.

  8. Assessment of SAPRC07 with updated isoprene chemistry against outdoor chamber experiments

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Sexton, Kenneth G.; Jerry, Roger E.; Surratt, Jason D.; Vizuete, William

    2015-03-01

    Isoprene, the most emitted non-methane hydrocarbon, is known to influence ozone (O3) formation in urban areas rich with biogenic emissions. To keep up with the recent advance on isoprene oxidation chemistry including the identification of isoprene epoxydiols (IEPOX) as a precursor to secondary organic aerosol (SOA), Xie et al. (2013) updated the SAPRC (Statewide Air Pollution Research Center)-07 chemical mechanism. It is currently unknown how the Xie modification of SAPRC07 impacts the ability of the model to predict O3. In this study we will evaluate the Xie mechanism with simulations of 24 isoprene experiments from the UNC Dual Gas-phase Chamber. Our results suggest that the new mechanism increases NOx (nitrogen oxides) inter-conversion and produces more O3 than SAPRC07 for all experiments. In lower-NOx experiments, the new mechanism worsens O3 performance in the wrong direction, increasing bias from 4.92% to 9.44%. We found increased NOx recycling from PANs accounts for that. This could be explained by more PANs made due to increased first generation volatile organic compound (VOC) products and hydroxyl radical (OH) production.

  9. Performance of the Cylindrical Drift Chamber and the Inner Plastic Scintillator in the BGOegg experiment

    NASA Astrophysics Data System (ADS)

    Shibukawa, Takuya; Masumoto, Shinichi; Ozawa, Kyoichiro; Ohnishi, Hiroaki; Muramatsu, Norihito; Ishikawa, Takatsugu; Miyabe, Manabu; Tsuchikawa, Yusuke; Yamazaki, Ryuji; Matsumura, Yuji; Mizutani, Keigo; Hashimoto, Toshikazu; Hamano, Hirotomo; LEPS2/BGOegg Collaboration

    2014-09-01

    Properties of vector mesons, such as ω mesons, in nucleus are intensively measured to study interactions between mesons and nuclear medium. To study ω meson properties in nuclei, we search for the nuclear ω bound states in the LEPS2/BGOegg experiment at SPring-8. If a strongly bounded ω state exists and binding energy is measured, it gives a phenomenological information about interactions between ω meson and nuclei. ω meson is produced using the GeV γ rays at SPring-8/LEPS2 beamline. The ω bound state is searched from the missing mass measurements of forward going protons. ω meson production is identified by detecting γ and proton from ωN --> N* --> γp or ωN --> γΔ --> γπ p reaction. In the BGOegg experiment, charged particles are detected by Cylindrical Drift Chamber(CDC) and Inner Plastic Scintillators (IPS) around the target. CDC has 4 layers of stereo wires and each layer has 72 sense wires. IPS consists of 30 plastic scintillators. In this talk, the performance of CDC and IPS are described in detail. Properties of vector mesons, such as ω mesons, in nucleus are intensively measured to study interactions between mesons and nuclear medium. To study ω meson properties in nuclei, we search for the nuclear ω bound states in the LEPS2/BGOegg experiment at SPring-8. If a strongly bounded ω state exists and binding energy is measured, it gives a phenomenological information about interactions between ω meson and nuclei. ω meson is produced using the GeV γ rays at SPring-8/LEPS2 beamline. The ω bound state is searched from the missing mass measurements of forward going protons. ω meson production is identified by detecting γ and proton from ωN --> N* --> γp or ωN --> γΔ --> γπ p reaction. In the BGOegg experiment, charged particles are detected by Cylindrical Drift Chamber(CDC) and Inner Plastic Scintillators (IPS) around the target. CDC has 4 layers of stereo wires and each layer has 72 sense wires. IPS consists of 30 plastic

  10. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

    NASA Astrophysics Data System (ADS)

    Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2014-03-01

    Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene, and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1-0.2 ppb) and high-NO conditions (typically 7-8 ppb), and starting concentrations of 6-250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied where OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH / POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH / POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1-1.6 under low-NO conditions and 0.9-1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

  11. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

    NASA Astrophysics Data System (ADS)

    Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2014-07-01

    Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1-0.2 ppb) and high-NO conditions (typically 7-8 ppb), and starting concentrations of 6-250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied in which OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH/POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH/POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1-1.6 under low-NO conditions and 0.9-1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

  12. The central drift chamber for the D0 experiment: Design, construction and test

    SciTech Connect

    Behnke, T.

    1989-08-01

    A cylindrical drift chamber has been designed and built at the State University of New York at Stony Brook. This chamber is to be installed in the D0 detector which is being completed at the Fermi National Accelerator. In this dissertation the design, construction and testing of this chamber are described. The characteristic features of this chamber are cells formed by solid walls and a modular structure. Much discussion is given to the performance of and results from a chamber made from three final modules which was installed in the D0 interaction region during the 1988/1989 collider run. Using this chamber proton anti-proton interactions were measured at the D0 interaction point.

  13. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    SciTech Connect

    Rickards, J.; Golzarri, J. I.; Espinosa, G.; Vázquez-López, C.

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  14. The Resistive Plate Chambers of the ATLAS experiment:. performance studies on Calibration Stream

    NASA Astrophysics Data System (ADS)

    Mazzaferro, Luca

    2012-08-01

    ATLAS (A Toroidal LHC ApparatuS) is one of the four experiments installed on the hadron-hadron collider LHC at CERN. It is a general purpose experiment, with a physics program which spans from the search for the Higgs Boson to the search of physics Beyond the Standard Model (BSM). An integrated luminosity of about 5 fb-1 is expected to be reached by the end of 2011. The Resistive Plate Chambers, installed in the barrel region, are used to provide the first muon level trigger, and cover an area of 16000 m2, readout by about 350000 electronic channels. To ensure optimal trigger performance, the RPC operational parameters like cluster size, efficiency and spatial resolution are constantly monitored. In order to achieve the desired precision, the data used for the analysis are extracted directly from the second level of the trigger, hence assuring very high statistics. This dedicated event stream, called Calibration Stream, is sent automatically to the RPC Calibration Center in Naples. Here the analysis is performed using an automatic tool tightly integrated in the ATLAS GRID environment, the Local Calibration Data Splitter (LCDS), which configures and manages all the operations required by the analysis (e.g. software environment initialization, grid jobs configuration and submission, data saving and retrieval, etc). The monitored RPC operational parameters, the performance analysis and the LCDS will be presented.

  15. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  16. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    NASA Astrophysics Data System (ADS)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate

  17. Utilizing ARC EMCS Seedling Cassettes as Highly Versatile Miniature Growth Chambers for Model Organism Experiments

    NASA Technical Reports Server (NTRS)

    Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David; Reinsch, S.; DeSimone, Julia C.; Myers, Zachary A.

    2014-01-01

    The aim of our ground testing was to demonstrate the capability of safely putting specific model organisms into dehydrated stasis, and to later rehydrate and successfully grow them inside flight proven ARC EMCS seedling cassettes. The ARC EMCS seedling cassettes were originally developed to support seedling growth during space flight. The seeds are attached to a solid substrate, launched dry, and then rehydrated in a small volume of media on orbit to initiate the experiment. We hypothesized that the same seedling cassettes should be capable of acting as culture chambers for a wide range of organisms with minimal or no modification. The ability to safely preserve live organisms in a dehydrated state allows for on orbit experiments to be conducted at the best time for crew operations and more importantly provides a tightly controlled physiologically relevant growth experiment with specific environmental parameters. Thus, we performed a series of ground tests that involved growing the organisms, preparing them for dehydration on gridded Polyether Sulfone (PES) membranes, dry storage at ambient temperatures for varying periods of time, followed by rehydration. Inside the culture cassettes, the PES membranes were mounted above blotters containing dehydrated growth media. These were mounted on stainless steel bases and sealed with plastic covers that have permeable membrane covered ports for gas exchange. The results showed we were able to demonstrate acceptable normal growth of C.elegans (nematodes), E.coli (bacteria), S.cerevisiae (yeast), Polytrichum (moss) spores and protonemata, C.thalictroides (fern), D.discoideum (amoeba), and H.dujardini (tardigrades). All organisms showed acceptable growth and rehydration in both petri dishes and culture cassettes initially, and after various time lengths of dehydration. At the end of on orbit ISS European Modular Cultivation System experiments the cassettes could be frozen at ultra-low temperatures, refrigerated, or chemically

  18. Radon emanation chamber: High sensitivity measurements for the SuperNEMO experiment

    SciTech Connect

    Soulé, B.; Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    Radon is a well-known source of background in ββ0ν experiments due to the high Q{sub β} value of one of its daughter nucleus, {sup 214}Bi. The SuperNEMO collaboration requires a maximum radon contamination of 0.1 mBq/m{sup 3} inside its next-generation double beta decay detector. To reach such a low activity, a drastic screening process has been set for the selection of the detector's materials. In addition to a good radiopurity, a low emanation rate is required. To test this parameter, a Radon Emanation Setup is running at CENBG. It consists in a large emanation chamber connected to an electrostatic detector. By measuring large samples and having a low background level, this setup reaches a sensitivity of a few μ Bq. m{sup −2}. d{sup −1} and is able to qualify materials used in the construction of the SuperNEMO detector.

  19. The analog Resistive Plate Chamber detector of the ARGO-YBJ experiment

    NASA Astrophysics Data System (ADS)

    Bartoli, B.; Bernardini, P.; Bi, X. J.; Branchini, P.; Budano, A.; Camarri, P.; Cao, Z.; Cardarelli, R.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Creti, P.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liguori, G.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Martello, D.; Mastroianni, S.; Montini, P.; Ning, C. C.; Panareo, M.; Perrone, L.; Pistilli, P.; Ruggieri, F.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; Zizzi, G.

    2015-07-01

    The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) (6700 m2) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space-time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1-10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume. Since December 2009 the RPC charge readout has been in operation on the entire central carpet (∼5800 m2). In this configuration the detector is able to measure the particle density at the core position where it ranges from tens to many thousands of particles per m2. Thus ARGO-YBJ provides a highly detailed image of the charge component at the core of air showers. In this paper we describe the analog readout of RPCs in ARGO-YBJ and discuss both the performance of the system and the physical impact on the EAS measurements.

  20. Design of Drift Chamber 5 for the COMPASS II polarized Drell-Yan experiment

    NASA Astrophysics Data System (ADS)

    Mallon, James; Compass Dc5 Team

    2014-09-01

    The COMPASS project is a fixed-target nuclear physics experiment at CERN which explores the internal structure of the proton, and COMPASS ll's polarized Drell-Yan experiments will be exploring the quark angular momentum contribution to the spin of the proton through Semi-Inclusive Deep Inelastic Scattering. As a part of this process, Drift Chamber 5 (DC5), based on DC4 built by CEA-Saclay, must be constructed to replace a faulty straw chamber. The 23 total frames of DC5 have an outside measurement of 2.94 m by 2.54 m, with the 8 anode frames having a total of 4616 >2 m-long wires, giving a detection region of 4.19 m2 with a resolution of 200 microns. These wire planes are orientated with the x- and x'-frames in the vertical x-direction, the y- & y'-frames in the horizontal y-direction, the u- & u'- frames offset +10 deg from the vertical x-direction, and the v- &v'-frames offset -10 deg from the vertical x-direction, and are strung with Ø100 micron field wires and Ø20 micron sense wires. In order to solve left-right ambiguity, x', y', u', and v' are shifted by 4mm, or one drift cell. The x- and y-frames have 513 wires strung across them, with the field wires at 400 g of tension, the sense wires at 55 g on the x-frames, and 70 g on the y-frames. The u- and v-frames will have 641 wires, with the field wires at 400 g, and the sense wires at 55 g. DC5 will also have an updated front end electronics setup, using a new pre-amplifier-discriminator chip, in order to allow the recording of more events per second. The COMPASS project is a fixed-target nuclear physics experiment at CERN which explores the internal structure of the proton, and COMPASS ll's polarized Drell-Yan experiments will be exploring the quark angular momentum contribution to the spin of the proton through Semi-Inclusive Deep Inelastic Scattering. As a part of this process, Drift Chamber 5 (DC5), based on DC4 built by CEA-Saclay, must be constructed to replace a faulty straw chamber. The 23 total frames

  1. Supervised Self-Organizing Classification of Superresolution ISAR Images: An Anechoic Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Radoi, Emanuel; Quinquis, André; Totir, Felix

    2006-12-01

    The problem of the automatic classification of superresolution ISAR images is addressed in the paper. We describe an anechoic chamber experiment involving ten-scale-reduced aircraft models. The radar images of these targets are reconstructed using MUSIC-2D (multiple signal classification) method coupled with two additional processing steps: phase unwrapping and symmetry enhancement. A feature vector is then proposed including Fourier descriptors and moment invariants, which are calculated from the target shape and the scattering center distribution extracted from each reconstructed image. The classification is finally performed by a new self-organizing neural network called SART (supervised ART), which is compared to two standard classifiers, MLP (multilayer perceptron) and fuzzy KNN ([InlineEquation not available: see fulltext.] nearest neighbors). While the classification accuracy is similar, SART is shown to outperform the two other classifiers in terms of training speed and classification speed, especially for large databases. It is also easier to use since it does not require any input parameter related to its structure.

  2. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, Martin; Järvinen, Emma; Vochezer, Paul; Abdelmonem, Ahmed; Wagner, Robert; Jourdan, Olivier; Mioche, Guillaume; Shcherbakov, Valery N.; Schmitt, Carl G.; Tricoli, Ugo; Ulanowski, Zbigniew; Heymsfield, Andrew J.

    2016-04-01

    This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN) probe of Laboratoire de Métérologie et Physique (LaMP) and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  3. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    NASA Astrophysics Data System (ADS)

    Schnaiter, M.; Järvinen, E.; Vochezer, P.; Abdelmonem, A.; Wagner, R.; Jourdan, O.; Mioche, G.; Shcherbakov, V. N.; Schmitt, C. G.; Tricoli, U.; Ulanowski, Z.; Heymsfield, A. J.

    2015-11-01

    This study reports on the origin of ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3). It was found that a high ice crystal complexity is dominating the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapour during the crystal growth. Indications were found that the crystal complexity is influenced by unfrozen H2SO4/H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers; the Polar Nephelometer (PN) probe of LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO) probe of KIT. The measured scattering functions are featureless and flat in the side- and backward scattering directions resulting in low asymmetry parameters g around 0.78. It was found that these functions have a rather low sensitivity to the crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  4. Ageing and performance studies of drift chamber prototypes for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    Venturini, Marco; MEG Collaboration

    2015-01-01

    We present the tests aimed at verifying the proper functioning of the tracking systems of MEG II on small prototypes, estimating the achievable resolutions and evaluating the gain loss experienced by the chamber during its operation.

  5. A high performance Front End Electronics for drift chamber readout in MEG experiment upgrade

    NASA Astrophysics Data System (ADS)

    Chiarello, G.; Chiri, C.; Corvaglia, A.; Grancagnolo, F.; Panareo, M.; Pepino, A.; Pinto, C.; Tassielli, G.

    2016-07-01

    Front End (FE) Electronics plays an essential role in Drift Chambers (DC) for time resolution and, therefore, spatial resolution. The use of cluster timing techniques, by measuring the timing of all the individual ionization clusters after the first one, may enable to reach resolutions even below 100 μm in the measurement of the impact parameter. To this purpose, a Front End Electronics with a wide bandwidth and low noise is mandatory in order to acquire and amplify the drift chamber signals.

  6. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-06-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand

  7. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-10-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand

  8. The FLAME Deluge: organic aerosol emission ratios from combustion chamber experiments

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin; Lee, Taehyoung; Sullivan, Amy; Kreidenweis, Sonia; Collett, Jeff

    2014-05-01

    A high level of variability has been identified amongst organic aerosol (OA) emission ratios (ER) from biomass burning (BB) under ambient conditions. However, it is difficult to assess the influences of potential drivers for this variability, given the wide range of conditions associated with wildfire measurements. Chamber experiments performed under controlled conditions provide a means of examining the effects of different fuel types and combustion conditions on OA emissions from biomass fuels. ERs have been characterised for 67 burns during the second Fire Laboratory at Missoula Experiment (FLAME II), involving 19 different species from 6 fuel types widely consumed in BB events in the US each year. Average normalised dOA/dCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding variability between separate plumes in ambient measurements. Relationships with source conditions were found to be complex, with little consistent influence from fuel properties and combustion conditions for the entire range of experiments. No strong correlation across all fires was observed between dOA/dCO and modified combustion efficiency (MCE), which is used as an indicator of the proportional contributions of flaming and smouldering combustion phases throughout each burn. However, a negative correlation exists between dOA/dCO and MCE for some coniferous species, most notably Douglas fir, for which there is also an apparent influence from fuel moisture content. Significant contrasts were also identified between combustion emissions from different fuel components of additional coniferous species. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as

  9. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Van Auwegem, P.; Benussi, L.; Bianco, S.; Cauwenbergh, S.; Ferrini, M.; Muhammad, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Saviano, G.; Tytgat, M.

    2016-09-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  10. Cooling Properties of the Shuttle Advanced Crew Escape Spacesuit: Results of an Environmental Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim

    2008-01-01

    The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.

  11. Scintillation counter and wire chamber front end modules for high energy physics experiments

    SciTech Connect

    Baldin, Boris; DalMonte, Lou; /Fermilab

    2011-01-01

    This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of {approx}20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with {approx}100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of {approx}4 {micro}s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of {approx}0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

  12. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments.

    PubMed

    Tonks, James P; Galloway, Ewan C; King, Martin O; Kerherve, Gwilherm; Watts, John F

    2016-08-01

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  13. Micromegas chambers for the experiment ATLAS at the LHC (A Brief Overview)

    NASA Astrophysics Data System (ADS)

    Gongadze, A. L.

    2016-03-01

    The increase in luminosity and energy of the Large hadron collider (LHC) in the next upgrade (Phase-1) in 2018-2019 will lead to a significant increase in radiation load on the ATLAS detector, primarily in the areas close to the interaction point of the LHC proton beams. One of these regions is the Small Wheel of the ATLAS Muon Spectrometer. It is planned to be replaced with the New Small Wheel that will have Micromegas chambers as main coordinate detectors. The paper gives an overview of all existing types of Micromegas detectors with special focus on the Micromegas chambers for the ATLAS detector upgrade.

  14. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    NASA Astrophysics Data System (ADS)

    Tonks, James P.; Galloway, Ewan C.; King, Martin O.; Kerherve, Gwilherm; Watts, John F.

    2016-08-01

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques.

  15. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments.

    PubMed

    Tonks, James P; Galloway, Ewan C; King, Martin O; Kerherve, Gwilherm; Watts, John F

    2016-08-01

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systems designed for only one of these techniques. PMID:27587173

  16. Unusual interactions above 100 TeV: A review of cosmic ray experiments with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Yodh, D. B.

    1977-01-01

    A method is given for analyzing the space correlated collection of jets (gamma ray families) with energies greater than 100 TeV in Pb or Fe absorber sampled by photosensitive layers in an emulsion chamber. Events analyzed indicate large multiplicities of particles in the primary hadron-air interaction, and a marked absence of neutral pions.

  17. Proton decay and solar neutrino experiment with a liquid argon Time Projection Chamber

    SciTech Connect

    Chen, H.H.; Doe, P.J.; Mahler, H.I.

    1983-01-01

    Recent progress in development of the liquid argon Time Projection Chamber is reviewed. Application of this technique to a search for proton decay and /sup 8/B solar neutrinos with directional sensitivity is considered. The steps necessary for a large scale application of this technique deep underground are described.

  18. Experiences with large-area frisch grid chambers in low-level alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Hötzl, H.; Winkler, R.

    1984-06-01

    The properties of parallel-palte gridded ionization chambers with areas of 300 cm 2, developed by us for alpha spectrometry of samples with low specific alpha activity are reported. Several practical hints for optimum operating conditions are presented. The chambers can be operated routinely at atmospheric pressure for several days, without the need for purification of the gas filling (P10). The minimum detectable activity at 5 MeV is 0.01 pCi, based on 4.65 standard deviations of background and 1000 min counting time. At the GSF Research Center ionization chambers of this type are used for the analysis of natural alpha emitters, as well as of transuranium nuclides in environmental samples by: (a) direct alpha spectrometry without any previous treatment of the sample, (b) semi-direct spectrometry after removal of organic matter by low-temperature ashing and (c) spectrometry after chemical separation. Some typical examples of application are given. Furthermore the range of application of the chambers in comparison to semiconductor detectors in the field of low-level alpha spectrometry is discussed.

  19. Utilizing Chamber Data for Developing and Validating Climate Change Models

    NASA Technical Reports Server (NTRS)

    Monje, Oscar

    2012-01-01

    Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.

  20. A new construction technique of high granularity and high transparency drift chambers for modern high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Chiarello, G.; Chiri, C.; Corvaglia, A.; Grancagnolo, F.; Miccoli, A.; Panareo, M.; Pepino, A.; Pinto, C.; Primiceri, P.; Spedicato, M.; Tassielli, G. F.

    2016-07-01

    Modern experiments for the search of extremely rare processes require high resolutions (order of 50-200 keV/c) tracking systems for particle momenta in the range of 50-300 MeV/c, dominated by multiple scattering contributions. We will present a newly developed construction technique for ultra-low mass Drift Chambers fulfilling this goal. It consists of (1) a semiautomatic wiring machine with a high degree of control over wire mechanical tensioning (better than 0.2 g) and over wire positioning (of the order of 20 μm) for simultaneous wiring of multi-wire layers; (2) a contact-less IR laser soldering tool designed for a feed-through-less wire anchoring system; (3) an automatic handling system for storing and transporting the multi-wire layers to be placed over the drift chamber end-plates. These techniques have been successfully implemented at INFN-Lecce and University of Salento and are currently being used for the construction of Drift Chamber of the MEG (μ → eγ) upgrade experiment.

  1. Search for anomalous C-jets in Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Kumano, H.

    1985-01-01

    Anomalous C-jets were measured in Chacaltaya emulsion chamber No.17. Measurement of 150 C-jets nuclear interactions occured in the target layer in the chamber itself with total visible energy greater than 5 TeV was completed. they are recorded in area of 11 sq m, corresponding to 17.1 sq m year exposure. Among them, seven events have no pinaught and two events are peculiar in that three showers out of four show abnormal cascade development. Two show remarkable characteristics indicating that they are coming from exotic interactions in the target layer. Illustrations of these events are presented and the thresholds of this type of event are discussed.

  2. IFE Final Optics and Chamber Dynamics Modeling and Experiments Final Technical Report

    SciTech Connect

    F. Najmabadi; M. S. Tillack

    2006-01-11

    Our OFES-sponsored research on IFE technology originally focused on studies of grazing-incidence metal mirrors (GIMM's). After the addition of GIMM research to the High Average Power Laser (HAPL) program, our OFES-sponsored research evolved to include laser propagation studies, surface material evolution in IFE wetted-wall chambers, and magnetic intervention. In 2003, the OFES IFE Technology program was terminated. We continued to expend resources on a no-cost extension in order to complete student research projects in an orderly way and to help us explore new research directions. Those explorations led to funding in the field of extreme ultraviolet lithography, which shares many issues in common with inertial fusion chambers, and the field of radiative properties of laser-produced plasma.

  3. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  4. Forward Drift Chamber for the GlueX experiment at the 12 GeV CEBAF machine

    SciTech Connect

    Lubomir Pentchev, Benedikt Zihlmann

    2011-06-01

    The GlueX experiment will search for exotic mesons produced by 9 GeV linearly polarized photons from the upgraded CEBAF machine. It is critical to detect and measure the four-momenta of all the charged particles and photons resulting from the decays of the mesons. The solenoid-based detector system includes tracking detectors and calorimeters. The Forward Drift Chamber, FDC, consists of 24 circular planar drift chambers of 1m diameter. Additional cathode readout is required to achieve efficient pattern recognition. The detection of low energy photons by the electromagnetic calorimeters imposes constraints on the amount of material used in the FDC. The specific features of the detector and the readout electronics will be described. Results from the tests of the full scale prototype will be presented, as well.

  5. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  6. Determination of longevities, chamber building rates and growth functions for Operculina complanata from long term cultivation experiments

    NASA Astrophysics Data System (ADS)

    Woeger, Julia; Kinoshita, Shunichi; Wolfgang, Eder; Briguglio, Antonino; Hohenegger, Johann

    2016-04-01

    Operculina complanata was collected in 20 and 50 m depth around the Island of Sesoko belonging to Japans southernmost prefecture Okinawa in a series of monthly sampling over a period of 16 months (Apr.2014-July2015). A minimum of 8 specimens (4 among the smallest and 4 among the largest) per sampling were cultured in a long term experiment that was set up to approximate conditions in the field as closely as possible. A set up allowing recognition of individual specimens enabled consistent documentation of chamber formation, which in combination with μ-CT-scanning after the investigation period permitted the assignment of growth steps to specific time periods. These data were used to fit various mathematical models to describe growth (exponential-, logistic-, generalized logistic-, Gompertz-function) and chamber building rate (Michaelis-Menten-, Bertalanffy- function) of Operculina complanata. The mathematically retrieved maximum lifespan and mean chamber building rate found in cultured Operculina complanata were further compared to first results obtained by the simultaneously conducted "natural laboratory approach". Even though these comparisons hint at a somewhat stunted growth and truncated life spans of Operculina complanata in culture, they represent a possibility to assess and improve the quality of further cultivation set ups, opening new prospects to a better understanding of the their theoretical niches.

  7. Observation of Hadronic Charm Production in a High Resolution Streamer Chamber Experiment

    SciTech Connect

    Sandweiss, J.; et al.

    1980-01-01

    Short-lived particles produced in association with muons have been observed in the interactions of 350-GeV/c protons with neon in a high-resolution streamer chamber. The characteristics of these events are consistent with the expected properties of charmed particles if the average lifetime lies between 10/sup -13/ and 2 x 10/sup -12/ sec. With the assumption that the observed events are mainly D/sup + -/ mesons with lieftimes of approximately 10/sup -12/ sec, the production cross section is estimated to lie between 20 and 50 ..mu..b per nucleon.

  8. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver-Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-03-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier Transform Infrared (FTIR) spectroscopy and Cavity Ring Down Spectroscopy (CRDS) instruments. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the chamber measurements, provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10% of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant represents a small part (about 1.5%) of the methane emissions of the city of Valence and its surroundings, which is lower than the national inventories.

  9. Coastal iodine emissions. 1. Release of I₂ by Laminaria digitata in chamber experiments.

    PubMed

    Ashu-Ayem, Enowmbi R; Nitschke, Udo; Monahan, Ciaran; Chen, Jun; Darby, Steven B; Smith, Paul D; O'Dowd, Colin D; Stengel, Dagmar B; Venables, Dean S

    2012-10-01

    Tidally exposed macroalgae emit large amounts of I(2) and iodocarbons that produce hotspots of iodine chemistry and intense particle nucleation events in the coastal marine boundary layer. Current emission rates are poorly characterized, however, with reported emission rates varying by 3 orders of magnitude. In this study, I(2) emissions from 25 Laminaria digitata samples were investigated in a simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). The chamber design allowed gradual extraction of seawater to simulate tidal emersion of algae. Samples were exposed to air with or without O(3) and to varying irradiances. Emission of I(2) occurred in four distinct stages: (1) moderate emissions from partially submerged samples; (2) a strong release by fully emerged samples; (3) slowing or stopping of I(2) release; and (4) later pulses of I(2) evident in some samples. Emission rates were highly variable and ranged from 7 to 616 pmol min(-1) gFW(-1) in ozone-free air, with a median value of 55 pmol min(-1) gFW(-1) for 20 samples.

  10. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  11. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2014-05-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols such as ammonium sulfate, sodium chloride and sodium nitrate. The aim of this campaign was to investigate Henry's law constants for different seed aerosols. During the campaign filter samples were taken to investigate the amount of glyoxal in the particle phase. After filter extraction, the analyte was derivatized and measured using UHPLC

  12. Development of a Novel Contamination Resistant Ion Chamber for Process Tritium Measurement and Use in the JET First Trace Tritium Experiment

    SciTech Connect

    Worth, L.B.C.; Pearce, R.J.H.; Bruce, J.; Banks, J.; Scales, S.

    2005-07-15

    The accuracy of process measurements of tritium with conventional ion chambers is often affected by surface tritium contamination. The measurement of tritium in the exhaust of the JET torus is particularly difficult due to surface contamination with highly tritiated hydrocarbons. JET's first unsuccessful attempt to overcome the contamination problem was to use an ion chamber, with a heating element as the chamber wall so that it could be periodically decontaminated by baking. The newly developed ion chamber works on the principle of minimising the surface area within the boundary of the anode and cathode.This paper details the design of the ion chamber, which utilises a grid of 50-micron tungsten wire to define the ion chamber wall and the collector electrode. The effective surface area which, by contamination, is able to effect the measurement of tritium within the process gas has been reduced by a factor of {approx}200 over a conventional ion chamber. It is concluded that the new process ion chamber enables sensitive accurate tritium measurements free from contamination issues. It will be a powerful new tool for future tritium experiments both to improve tritium tracking and to help in the understanding of tritium retention issues.

  13. Preliminary Experiments Using a Passive Detector for Measuring Indoor 220Rn Progeny Concentrations with an Aerosol Chamber.

    PubMed

    Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo

    2015-06-01

    This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.

  14. Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    NASA Astrophysics Data System (ADS)

    Nichman, Leonid; Fuchs, Claudia; Järvinen, Emma; Ignatius, Karoliina; Florian Höppel, Niko; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Bjerring Kristensen, Thomas; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-03-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary organic aerosol (SOA) are presented. We report observations of significant liquid-viscous SOA particle polarization transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarization ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulfate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentrations and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to tropical troposphere layer analysis.

  15. Scaled impulse loading for liquid hydraulic response in IFE thick-liquid chamber experiments

    NASA Astrophysics Data System (ADS)

    Jantzen, C.; Peterson, P. F.

    2001-05-01

    In an inertial fusion energy (IFE) target chamber using thick-liquid protection, placing liquid surfaces close to the fusion target helps to reduce pumping cost and final-focus stand-off distance. The impulse loading generated by the target on the adjacent jet surfaces provides the most important boundary condition for the subsequent liquid hydraulic response, pocket disruption, droplet generation, and pocket clearing and regeneration. However, liquid jets are difficult to use in current X-ray facilities that can simulate the X-ray ablation process. Instead, it is desirable to study liquid hydraulic response using water jets, employing scaled impulse loads delivered by chemical detonations or shock tubes. Because the pressure load generated by IFE targets is extremely short compared to the time required for significant liquid motion, only the time integrated impulse load is important to the liquid motion, not the detailed pressure history from ablation and venting. In this work, this impulse loading is determined using the 2-D gas dynamic code, TSUNAMI, and a comparison made between the impulse loads generated by IFE targets and by scaled chemical detonations.

  16. Atmospheric turbulence chamber for optical transmission experiment: characterization by thermal method.

    PubMed

    Gamo, H; Majumdar, A K

    1978-12-01

    A turbulence chamber (0.78 x 0.23 x 2.59 m(3)) consisting of ten small electric heater/blowers with an aluminum foil screen and three screens of 2-mm aluminum wire meshes can generate the nearly homogeneous isotropic turbulence within the 0.5 x 0.05 x 2-m(3) region at the 0.11-m height of optical measurements. The temperature structure constant squared C(2)(T) = 52.9 K(2) m(-?) was obtained from the temperature structure function measurements measured by using a differential microthermocouple system. The refractive-index structure constant squared C(2)nat the 632.8-nm wavelength was calculated from C(2)(T):C(2)(n) = 3.00 x 10(-11)m(-?). The average wind velocity and temperature were 0.41 m/sec and 53 degrees C, respectively. From the power spectrum of temperature fluctuations, the inner and outer scales of turbulence are determined: l(o) = 5.0 mm and L(0) = 6.5 cm. The measured temperature structure function and power spectrum of temperature fluctuations satisfy the ? and -5/3 power similarity laws in the inertial subrange, respectively.

  17. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  18. Complete fabrication of target experimental chamber and implement initial target diagnostics to be used for the first target experiments in NDCX-1

    SciTech Connect

    Bieniosek, F.M.; Bieniosek, F.M.; Dickinson, M.R.; Henestroza, E.; Katayanagi, T.; Jung, J.Y.; Lee, C.W.; Leitner, M.; Ni, P.; Roy, P.; Seidl, P.; Waldron, W.; Welch, D.

    2008-06-09

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has completed the fabrication of a new experimental target chamber facility for future Warm Dense Matter (WDM) experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. This achievement provides to the HIFS-VNL unique and state-of-the-art experimental capabilities in preparation for the planned target heating experiments using intense heavy ion beams.

  19. Choice chamber experiments to test the attraction of postflexion Rhabdosargus holubi larvae to water of estuarine and riverine origin

    NASA Astrophysics Data System (ADS)

    James, Nicola C.; Cowley, Paul D.; Whitfield, Alan K.; Kaiser, Horst

    2008-03-01

    Although the recruitment of larvae and juveniles of marine fishes into estuaries has been well documented, little is known about the factors governing the immigration of estuary-associated marine fishes into estuaries. Fishes have a well-developed sense of smell and it has been suggested by several workers that olfactory cues of freshwater or estuarine origin serve as stimuli, attracting larvae and juveniles of estuary-associated species into estuaries. Attraction of postflexion Rhabdosargus holubi larvae to estuary and river water from the Kowie estuarine system, South Africa, was measured using a rectangular choice chamber. In experiments, conducted during peak recruitment periods, larvae selected estuary and river water with a significantly higher frequency than sea water. This study, the first to assess the possible role of olfaction in the recruitment process of an estuary-associated marine fish species, demonstrates that larvae are able to recognise water from different origins, probably based on odour.

  20. C{sub 5}{sup A} axial form factor from bubble chamber experiments

    SciTech Connect

    Graczyk, K. M.; Sobczyk, J. T.; Kielczewska, D.; Przewlocki, P.

    2009-11-01

    A careful reanalysis of both Argonne National Laboratory and Brookhaven National Laboratory data for weak single pion production is done. We consider deuteron nuclear effects and normalization (flux) uncertainties in both experiments. We demonstrate that these two sets of data are in good agreement. For the dipole parametrization of C{sub 5}{sup A}(Q{sup 2}), we obtain C{sub 5}{sup A}(0)=1.19{+-}0.08, M{sub A}=0.94{+-}0.03 GeV. As an application we present the discussion of the uncertainty of the neutral current 1{pi}{sup 0} production cross section, important for the T2K neutrino oscillation experiment.

  1. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  2. A small-sized MWPC with 1 mm wire spacing as a beam/target chamber for nuclear experiments

    NASA Astrophysics Data System (ADS)

    Ninomiya, M.; Arai, I.; Manabe, A.; Nunokawa, H.; Tanaka, M.; Tomizawa, K.; Yagi, K.; Kobayashi, T.; Chiba, J.; Nakai, K.; Sano, H.; Sasaki, S.; Nagae, T.; Tokushuku, K.; Sekimoto, M.

    1988-11-01

    We developed a small-sized multiwire proportional chamber with 1 mm wire spacing for a study of backward Λ production in high energy hadron-nucleus reactions. Two chambers were installed in a cylindrical drift chamber of the large aperture spectrometer FANCY in order to determine beam trajectories precisely. A position resolution of about 0.6 mm was obtained with a counting efficiency of 97%.

  3. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  4. Comparison of batch, stirred flow chamber, and column experiments to study adsorption, desorption and transport of carbofuran within two acidic soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2012-06-01

    Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.

  5. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  6. Paragenesis of Diamond and Minerals of Peridotites and Carbonatites in the Mantle Magma Chambers Based on Experiments Data

    NASA Astrophysics Data System (ADS)

    Kuzyura, Anastasia; Simonova, Dariya; Litvin, Yury

    2014-05-01

    It is considered that role of carbonate melts is important in processes of mantle metasomatism; according to other representations, it is also assumed that they could be formed at partial melting of carbonated peridotite. Dissolving of peridotite minerals and carbon in carbonate melts are responsible for formation of completely miscible carbonate-silicate-carbon magmas parental for diamonds. It can be expected that such carbonate magmas are capable to assimilate an form parental magama "chambers" within the hosting mantle peridotite. While natural cooling of the chambers dissolved in carbonate melts components of the peridotite crystallize forming minerals similar to these of the host mantle peridotite. The recrystallized peridotite minerals are fragmentarily included hermetically within growing diamonds and occur as syngenetic inclusions in them. Therefore experimental modeling of origin of the upper mantle carbonate-silicate diamond-forming melts, their consolidations in the magmatic chambers and evolutions at conditions of equilibrium and fractional crystallization are especially significant for understanding of processes of deep magmatic petrology and genetic mineralogy, including genesis of diamond. In the study at 6 GPa model approximations of mineral phases, significant in compositions of probable metasomatic agents, the upper mantle peridotites, and also syngenetic inclusions in diamonds were used: starting mixtures were model peridotite with composition Ol48Opx16Cpx16Grt20, close to model compositions of the primitive mantle and real mantle xenolithes, as well as multicomponent carbonate (CaCO3)20(Na2CO3)20(FeCO3)20(Na2CO3)20(K2CO3)20 modeling carbonatite inclusions in natural diamonds. Spectral pure graphite was used as a source of carbon in the system. Pressure and temperature were reached using apparatus of toroidal type 'anvil-with-hole'. Electron microprobe and SEM researches were carried out on the polished surfaces with carbon covering at IEM RAS

  7. [Proposal of a cloud chamber experiment using diagnostic X-ray apparatus and an analysis assisted by a simulation code].

    PubMed

    Hayashi, Hiroaki; Hanamitsu, Hiroki; Nishihara, Sadamitsu; Ueno, Junji; Miyoshi, Hirokazu

    2013-04-01

    A cloud chamber is a radiation detector that can visualize the tracks of charged particles. In this study, we developed a middle-type cloud chamber for use in practical training using a diagnostic X-ray apparatus. Because our cloud chamber has a heater to vaporize ethanol and features antifogging glass, it is possible to observe the vapor trails for a long time without the need for fine adjustments. X-rays with a tube voltage of 40 kV or of 120 kV (with a 21-mm aluminum filter) were irradiated at the chamber and the various phenomena were observed. We explain these phenomena in terms of the range of electrons and/or interactions between X-rays and matter and conclude that our analysis is consistent with analysis using the Monte Carlo simulation code EGS5.

  8. [Proposal of a cloud chamber experiment using diagnostic X-ray apparatus and an analysis assisted by a simulation code].

    PubMed

    Hayashi, Hiroaki; Hanamitsu, Hiroki; Nishihara, Sadamitsu; Ueno, Junji; Miyoshi, Hirokazu

    2013-04-01

    A cloud chamber is a radiation detector that can visualize the tracks of charged particles. In this study, we developed a middle-type cloud chamber for use in practical training using a diagnostic X-ray apparatus. Because our cloud chamber has a heater to vaporize ethanol and features antifogging glass, it is possible to observe the vapor trails for a long time without the need for fine adjustments. X-rays with a tube voltage of 40 kV or of 120 kV (with a 21-mm aluminum filter) were irradiated at the chamber and the various phenomena were observed. We explain these phenomena in terms of the range of electrons and/or interactions between X-rays and matter and conclude that our analysis is consistent with analysis using the Monte Carlo simulation code EGS5. PMID:23609860

  9. Bromine Explosions In Smog Chamber Experiments: A comparison of Cavity-Enhanced (CE) and White-cell DOAS

    NASA Astrophysics Data System (ADS)

    Buxmann, J.; Hoch, D. J.; Sihler, H.; Pöhler, D.; Platt, U.; Bleicher, S.; Balzer, N.; Zetzsch, C.

    2011-12-01

    Reactive halogen species (RHS), such as Cl, Br or BrO, can significantly influence chemical processes in the troposphere, including the destruction of ozone, change in the chemical balance of hydrogen radicals (OH, HO2), increased deposition of toxic compounds (like mercury) with potential consequences for the global climate. Previous studies have shown that salt lakes can be significant sources for gaseous RHS. Environmental conditions such as salt composition, relative humidity (RH), pH, and temperature (T) can strongly influence reactive bromine levels, but are difficult to quantify in the field. Therefore, we conducted laboratory experiments by exposing NaCl salt containing 0.33% (by weight) NaBr to simulated sunlight in a Teflon smog-chamber under various conditions of RH and ozone concentrations. BrO levels were observed by a Differential-Optical-Absorption-Spectrometer (DOAS) in combination with a multi-reflection cell (White-cell). The concentrations of OH- and Cl- radicals were quantified by the radical clock method. We present the first direct observation of BrO from the "Bromine Explosion" (auto catalytic release of reactive bromine from salt surfaces - key to ozone destruction) in the laboratory above a simulated salt pan. The maximum BrO mixing ratio of 6419±71 ppt at 60% RH was observed to be one order of magnitude higher than at 37% RH and 2% RH. The release of RHS from the salt pan is possibly controlled by the thickness of the quasi liquid layer, covering the reactive surface of the halide crystals, as the layer thickness strongly depends on RH. Furthermore, a new cavity enhanced DOAS (CE-DOAS) instrument was designed and successfully used in chamber experiments. For the first time, such an instrument uses a spectral interval in the UV - wavelength range (325-365 nm) to identify BrO. We show a comparison of the CE-DOAS and White-cell DOAS instrument in a series of experiments, where e.g. a peak BrO mixing ratio up to 380 ppt within the first

  10. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  11. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  12. Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming

    2015-02-17

    We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer.

  13. Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming

    2015-02-17

    We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer. PMID:25581402

  14. An ultra-high vacuum chamber for scattering experiments featuring in-vacuum continuous in-plane variation of the angle between entrance and exit vacuum ports

    SciTech Connect

    Englund, Carl-Johan; Agåker, Marcus Fredriksson, Pierre; Olsson, Anders; Johansson, Niklas; Rubensson, Jan-Erik; Nordgren, Joseph

    2015-09-15

    A concept that enables in-vacuum continuous variation of the angle between two ports in one plane has been developed and implemented. The vacuum chamber allows for measuring scattering cross sections as a function of scattering angle and is intended for resonant inelastic X-ray scattering experiments. The angle between the ports can be varied in the range of 30°-150°, while the pressure change is less than 2 × 10{sup −10} mbars.

  15. Simulation of SOA formation and composition from oxidation of toluene and m-xylene in chamber experiments

    NASA Astrophysics Data System (ADS)

    Xu, J.; Liu, Y.; Nakao, S.; Cocker, D.; Griffin, R. J.

    2013-12-01

    Aromatic hydrocarbons contribute an important fraction of anthropogenic reactive volatile organic compounds (VOCs) in the urban atmosphere. Photo-oxidation of aromatic hydrocarbons leads to secondary organic products that have decreased volatilities or increased solubilities and can form secondary organic aerosol (SOA). Despite the crucial role of aromatic-derived SOA in deteriorating air quality and harming human health, its formation mechanism is not well understood and model simulation of SOA formation still remains difficult. The dependence of aromatic SOA formation on nitrogen oxides (NOx) is not captured fully by most SOA formation models. Most models predict SOA formation under high NOx levels well but underestimate SOA formation under low NOx levels more representative of the ambient atmosphere. Thus, it is crucial to investigate the NOx-dependent chemistry in aromatic photo-oxidation systems and correspondingly update SOA formation models. In this study, NOx-dependent mechanisms of toluene and m-xylene SOA formation are updated using the gas-phase Caltech Atmospheric Chemistry Mechanism (CACM) coupled to a gas/aerosol partitioning model. The updated models were optimized by comparing to eighteen University of California, Riverside United States Environmental Protection Agency (EPA) chamber experiment runs under both high and low NOx conditions. Correction factors for vapor pressures imply uncharacterized aerosol-phase association chemistry. Simulated SOA speciation implies the importance of ring-opening products in governing SOA formation (up to 40%~60% for both aromatics). The newly developed model can predict strong decreases of m-xylene SOA yield with increasing NOx. Speciation distributions under varied NOx levels implies that the well-known competition between RO2 + HO2 and RO2 + NO (RO2 = peroxide bicyclic radical) may not be the only factor influencing SOA formation. The reaction of aromatic peroxy radicals with NO competing with its self

  16. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  17. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  18. Overview of the Focused Isoprene eXperiments at California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    DOE PAGES

    Nguyen, T. B.; Crounse, J. D.; Schwantes, R. H.; Teng, A. P.; Bates, K. H.; Zhang, X.; St. Clair, J. M.; Brune, W. H.; Tyndall, G. S.; Keutsch, F. N.; et al

    2014-08-25

    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT was the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the Southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech.more » During the four-week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly-controlled and atmospherically-relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. Insights from FIXCIT are anticipated to significantly aid in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models.« less

  19. Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    DOE PAGES

    Nguyen, T. B.; Crounse, J. D.; Schwantes, R. H.; Teng, A. P.; Bates, K. H.; Zhang, X.; St. Clair, J. M.; Brune, W. H.; Tyndall, G. S.; Keutsch, F. N.; et al

    2014-12-19

    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT is the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech.more » During the 4 week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly controlled and atmospherically relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. This work provides context for forthcoming publications affiliated with the FIXCIT campaign. Insights from FIXCIT are anticipated to aid significantly in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models.« less

  20. Processing of very high energy proton events with using new method of searching for primary cosmic rays in Emulsion Chamber (on RUNJOB experiment data)

    NASA Astrophysics Data System (ADS)

    Zayarnaya, I. S.

    2013-02-01

    The primary proton tracks are identified in about half of events referred to proton ones in the Russian-Japanese balloon-born emulsion chamber RUNJOB experiment. Reprocessing of experimental data obtained in long-term exposure of RUNJOB-3B, 6A, 11A, 11B emulsion chambers (EC) with new method for searching of the primary cosmic particles leads to confirm that as well as earlier single charged primary tracks are not found in about half of events referred to the proton ones with energy E0 > 20 TeV and zenith angle tg(θ) <= 5. In this paper the new method for searching and tracing of the primary cosmic particles in EC's and characteristics of studied events (energy, angle, pass length of the primary particles until their interaction in EC) are presented.

  1. Automated microbial metabolism laboratory. [design of advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into test chambers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and rationale of an advanced labeled release experiment based on single addition of soil and multiple sequential additions of media into each of four test chambers are outlined. The feasibility for multiple addition tests was established and various details of the methodology were studied. The four chamber battery of tests include: (1) determination of the effect of various atmospheric gases and selection of that gas which produces an optimum response; (2) determination of the effect of incubation temperature and selection of the optimum temperature for performing Martian biochemical tests; (3) sterile soil is dosed with a battery of C-14 labeled substrates and subjected to experimental temperature range; and (4) determination of the possible inhibitory effects of water on Martian organisms is performed initially by dosing with 0.01 ml and 0.5 ml of medium, respectively. A series of specifically labeled substrates are then added to obtain patterns in metabolic 14CO2 (C-14)O2 evolution.

  2. Outdoor smog chamber experiments: reactivity of methanol exhaust. Part 2. Quality assurance and data processing system description

    SciTech Connect

    Jeffries, H.E.; Sexton, K.G.; Kamens, R.M.; Holleman, M.S.

    1985-09-01

    The report describes the Quality Assurance and Data Processing procedures and systems used at the UNC Outdoor Smog Chamber Facility. The primary product of research conducted at this facility is information in the form of measurements of reactants and products in photochemical systems and measurements of the critical parameters that influence the chemical transformations system. Generating useful data begins with understanding the goals of the project and the special needs and concerns of conducting a successful smog-chamber operation. The system components are designed to collect, transfer, process, and report accurate, high-resolution data without loss or distortion. The system components in the Quality Assurance and Data Processing system are: people, hardware, software, checklists, and data bases. Quality-assurance checks are made at every level of the program. Pressurized gas-tank and liquid mixtures were used to establish experimental conditions of HC assuring consistency throughout the program. Several NBS traceable standards and liquid injections into the chamber used for calibration have been intercompared and show good agreement.

  3. Review of straw chambers

    SciTech Connect

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e{sup +}e{sup {minus}} experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed.

  4. Solar thermal plasma chamber

    NASA Astrophysics Data System (ADS)

    Bonometti, Joseph; Buchele, Donald R.; Castle, Charles H.; Gregory, Don A.

    2001-11-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and highest temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 Kelvin. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlining theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74-meter (9 foot) focal length. A quartz lens focuses a smaller sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole, and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is 'suspended in space' 7.1cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  5. The U.S. Lab is lifted and placed in vacuum chamber in O&C

    NASA Technical Reports Server (NTRS)

    2000-01-01

    CO2 study site manager and plant physiologist Graham Hymus (left) examines scrub oak foliage while project engineer David Johnson (right) looks on. The life sciences study is showing that rising levels of carbon dioxide in our atmosphere, caused by the burning of fossil fuels, could spur plant growth globally. The site of KSC's study is a natural scrub oak area near the Vehicle Assembly Building. Twelve-foot areas of scrub oak have been enclosed in 16 open-top test chambers into which CO2 has been blown. Five scientists from NASA and the Smithsonian Environmental Research Center in Edgewater, Md., work at the site to monitor experiments and keep the site running. Scientists hope to continue the study another five to 10 years. More information on this study can be found in Release No. 57- 00. Additional photos can be found at: www- pao.ksc.nasa.gov/captions/subjects/co2study.htm

  6. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-09-01

    The objective of this work was to study the competitive adsorption/desorption of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) on two acid soils. We used the stirred flow chamber technique to obtain experimental data on rapid kinetic processes affecting the retention/release of the antibiotics. Both adsorption and desorption were higher on soil 1 (which showed the highest carbon, clay and Al and Fe oxides content) than on soil 2. Moreover, hysteresis affected the adsorption/desorption processes. Experimental data were fitted to a pseudo-first order equation, resulting qamax (adsorption maximum) values that were higher for soil 1 than for soil 2, and indicating that CTC competed with TC more intensely than OTC in soil 1. Regarding soil 2, the values corresponding to the adsorption kinetics constants (ka) and desorption kinetics constants for fast sites (kd1), followed a trend inverse to qamax and qdmax respectively. In conclusion, competition affected adsorption/desorption kinetics for the three antibiotics assayed, and thus retention/release and subsequent transport processes in soil and water environments.

  7. Investigation of effects of Giardia duodenalis on transcellular and paracellular transport in enterocytes using in vitro Ussing chamber experiments.

    PubMed

    Tysnes, Kristoffer R; Robertson, Lucy J

    2015-04-01

    The mechanisms by which different genotypes of Giardia duodenalis result in different symptoms remain unresolved. In particular, we lack detailed knowledge on which transport mechanisms (transcellular or paracellular) are affected by different Giardia isolates. Using horse radish peroxidase (HRP) and creatinine as transcellular and paracellular probes, respectively, we developed a robust assay that can be used with an Ussing chamber to investigate epithelial transport, as well as short-circuit current as an indicator of net ion transport. We investigated 2 Giardia isolates, both Assemblage A, one a lab-adapted strain and the other a field isolate. Results indicate that products from sonicated Giardia trophozoites increase both transcellular and paracellular transport. A non-significant increase in transepithelial electrical resistance (TEER) and short-circuit current were also noted. The paracellular transport was increased significantly more in the field isolate than in the lab-adapted strain. Our results indicate that while both transcellular and paracellular transport mechanisms may be increased following exposure of cells to Giardia trophozoite sonicate, perhaps by inducing non-specific increases in cellular traffic, it is important that in vitro studies of Giardia pathophysiology are conducted with different Giardia isolates, not just lab-attenuated strains. PMID:25395017

  8. Chamber propagation

    SciTech Connect

    Langdon, B.

    1991-01-16

    Propagation of a heavy ion beam to the target appears possible under conditions thought to be realizable by several reactor designs. Beam quality at the lens is believed to provide adequate intensity at the target -- but the beam must pass through chamber debris and its self fields along the way. This paper reviews present consensus on propagation modes and presents recent results on the effects of photoionization of the beam ions by thermal x-rays from the heated target. Ballistic propagation through very low densities is a conservative mode. The more-speculative self-pinched mode, at 1 to 10 Torr, offers reactor advantages and is being re-examined by others. 13 refs.

  9. Multidimensional analysis of data obtained in experiments with X-ray emulsion chambers and extensive air showers

    NASA Technical Reports Server (NTRS)

    Chilingaryan, A. A.; Galfayan, S. K.; Zazyan, M. Z.; Dunaevsky, A. M.

    1985-01-01

    Nonparametric statistical methods are used to carry out the quantitative comparison of the model and the experimental data. The same methods enable one to select the events initiated by the heavy nuclei and to calculate the portion of the corresponding events. For this purpose it is necessary to have the data on artificial events describing the experiment sufficiently well established. At present, the model with the small scaling violation in the fragmentation region is the closest to the experiments. Therefore, the treatment of gamma families obtained in the Pamir' experiment is being carried out at present with the application of these models.

  10. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  11. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  12. Hydrolysis and gas-particle partitioning of organic nitrates formed from the oxidation of α-pinene in environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Bean, J. K.; Hildebrandt Ruiz, L.

    2015-07-01

    Gas-particle partitioning and hydrolysis of organic nitrates (ON) influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol (OA). Organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments under varying conditions. A hydrolysis rate of 2 day-1 was found for particle-phase ONs at a relative humidity of 22 % or higher; no significant ON hydrolysis was observed at lower relative humidity. The ON gas-particle partitioning is dependent on total OA concentration and temperature, consistent with absorptive partitioning theory. In a volatility basis set the ON partitioning is consistent with mass fractions of [0 0.19 0.29 0.52] at saturations mass concentrations (C*) of [1 10 100 1000] μg m-3.

  13. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  14. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  15. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  16. Inactivation of enterococci and fecal coliforms from sewage and meatworks effluents in seawater chambers.

    PubMed Central

    Sinton, L W; Davies-Colley, R J; Bell, R G

    1994-01-01

    Inactivation in sunlight of fecal coliforms (FC) and enterococci (Ent) from sewage and meatworks effluents was measured in 300-liter effluent-seawater mixtures (2% vol/vol) held in open-topped chambers. Dark inactivation rates (kDs) were measured (from log-linear survival curves) in enclosed chambers and 6-liter pots. The kD for FC was 2 to 4 times that for Ent, and inactivation was generally slower at lower temperatures. Sunlight inactivation was described in terms of shoulder size (n) and the slope (k) of the log-linear portion of the survival curve as a function of global solar insolation and UV-B fluence. The n values tended to be larger for Ent than for FC, and the k values for FC were around twice those for Ent in both effluent-seawater mixtures. The combined sunlight data showed a general inactivation rate (k) ranking in effluent-seawater mixtures of meatworks FC > sewage FC > meatworks Ent > sewage Ent. Describing 90% inactivation in terms of insolation (S90) gave far less seasonal variation than T90 (time-dependent) values. However, there were significant differences in inactivation rates between experiments, indicating the contribution to inactivation of factors other than insolation. Inactivation rates under different long-pass optical filters decreased with the increase in the spectral cutoff wavelength (lambda 50) of the filters and indicated little contribution by UV-B to total inactivation. Most inactivation appeared to be caused by two main regions of the solar spectrum--between 318 and 340 nm in the UV region and > 400 nm in the visible region. PMID:8031097

  17. Large outdoor chamber experiments and computer simulations: (I) Secondary organic aerosol formation from the oxidation of a mixture of d-limonene and α-pinene

    NASA Astrophysics Data System (ADS)

    Li, Qianfeng; Hu, Di; Leungsakul, Sirakarn; Kamens, Richard M.

    This work merges kinetic models for α-pinene and d-limonene which were individually developed to predict secondary organic aerosol (SOA) formation from these compounds. Three major changes in the d-limonene and α-pinene combined mechanism were made. First, radical-radical reactions were integrated so that radicals formed from both individual mechanisms all reacted with each other. Second, all SOA model species from both compounds were used to calculate semi-volatile partitioning for new semi-volatiles formed in the gas phase. Third particle phase reactions for particle phase α-pinene and d-limonene aldehydes, carboxylic acids, etc. were integrated. Experiments with mixtures of α-pinene and d-limonene, nitric oxide (NO), nitrogen dioxide (NO 2), and diurnal natural sunlight were carried out in a dual 270 m 3 outdoor Teflon film chamber located in Pittsboro, NC. The model closely simulated the behavior and timing for α-pinene, d-limonene, NO, NO 2, O 3 and SOA. Model sensitivities were tested with respect to effects of d-limonene/α-pinene ratios, initial hydrocarbon to NO x (HC 0/NO x) ratios, temperature, and light intensity. The results showed that SOA yield ( YSOA) was very sensitive to initial d-limonene/α-pinene ratio and temperature. The model was also used to simulate remote atmospheric SOA conditions that hypothetically could result from diurnal emissions of α-pinene, d-limonene and NO x. We observed that the volatility of the simulated SOA material on the aging aerosol decreased with time, and this was consistent with chamber observations. Of additional importance was that our simulation did not show a loss of SOA during the daytime and this was consistent with observed measurements.

  18. Coastal iodine emissions: part 2. Chamber experiments of particle formation from Laminaria digitata-derived and laboratory-generated I₂.

    PubMed

    Monahan, Ciaran; Ashu-Ayem, Enowmbi R; Nitschke, Udo; Darby, Steven B; Smith, Paul D; Stengel, Dagmar B; Venables, Dean S; O'Dowd, Colin D

    2012-10-01

    Laboratory studies into particle formation from Laminaria digitata macroalgae were undertaken to elucidate aerosol formation for a range of I(2) (0.3-76 ppb(v)) and O(3) (<3-96 ppb(v)) mixing ratios and light levels (E(PAR) = 15, 100, and 235 μmol photons m(-2) s(-1)). No clear pattern was observed for I(2) or aerosol parameters as a function of light levels. Aerosol mass fluxes and particle number concentrations, were, however, correlated with I(2) mixing ratios for low O(3) mixing ratios of <3 ppb(v) (R(2) = 0.7 and 0.83, respectively for low light levels, and R(2) = 0.95 and 0.98, respectively for medium light levels). Additional experiments into particle production as a function of laboratory-generated I(2), over a mixing ratio range of 1-8 ppb(v), were conducted under moderate O(3) mixing ratios (∼24 ppb(v)) where a clear, 100-fold or greater, increase in the aerosol number concentrations and mass fluxes was observed compared to the low O(3) experiments. A linear relationship between particle concentration and I(2) was found, in reasonable agreement with previous studies. Scaling the laboratory relationship to aerosol concentrations typical of the coastal boundary layer suggests a I(2) mixing ratio range of 6-93 ppt(v) can account for the observed particle production events. Aerosol number concentration produced from I(2) is more than a factor of 10 higher than that produced from CH(2)I(2) for the same mixing ratios.

  19. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  20. Understanding Isoprene Photo-oxidation from Continuous-Flow Chamber Experiments: Unexpectedly High SOA Yields and New Insights into Isoprene Oxidation Pathways

    NASA Astrophysics Data System (ADS)

    Liu, J.; D'Ambro, E.; Lee, B. H.; Zaveri, R. A.; Thornton, J. A.; Shilling, J.

    2014-12-01

    Secondary organic aerosol (SOA) accounts for a substantial fraction of tropospheric aerosol and has significant impacts on climate and human health. Results from the CARES (Carbonaceous Aerosol and Radiative Effects Study) field mission suggested that isoprene oxidation moderated by anthropogenic emissions plays a dominant role in SOA formation, but current literature isoprene yields and oxidation mechanisms are unable to explain the CARES observations. In this study, we conducted a series of continuous-flow chamber experiments to investigate the yield and chemical composition of SOA formed from isoprene photo-oxidation as a function of NOx concentration. Under low-NOx (< 1ppbv) conditions, we measure SOA mass yields that are significantly larger than previously reported, reaching up to 20%, and the yields are strongly dependent on H2O2 concentrations. The higher yields are likely a result of differences between batch mode and continuous-flow experiments and the photochemical fate of the ISOPOOH intermediate under the high HO2 conditions of the chamber experiments. Online analysis of the SOA using the University of Washington FIGAERO HR-ToF-CIMS instrument shows that a C5H12O6 compound can explain a significant fraction of the mass measured by the AMS. We tentatively identify this compound as a dihydroxy dihydroperoxide produced from the oxidation of ISOPOOH. To our knowledge, we believe this represents the most direct confirmation that such dihydroperoxides form during isoprene oxidation and contribute to SOA. A van Krevelen analysis of HR-AMS data is consistent with hydroperoxide species forming the majority of the SOA. As progressively more NO was added to the system, yields initially increase to a maximum at an NO:isoprene ratio of ~1, and then rapidly decrease, to 3.6% at an NO:isoprene ratio of 4. As NO concentrations increased, alkyl nitrates accounts for an increasing portion of the SOA mass, though hydroperoxides remain significant. These observations of

  1. Gas-particle partitioning and hydrolysis of organic nitrates formed from the oxidation of α-pinene in environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Bean, Jeffrey K.; Hildebrandt Ruiz, Lea

    2016-02-01

    Gas-particle partitioning and hydrolysis of organic nitrates (ON) influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol (OA). In this work, organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments under different conditions. Particle-phase ON hydrolysis rates, consistent with observed ON decay, exhibited a nonlinear dependence on relative humidity (RH): an ON decay rate of 2 day-1 was observed when the RH ranged between 20 and 60 %, and no significant ON decay was observed at RH lower than 20 %. In experiments when the highest observed RH exceeded the deliquescence RH of the ammonium sulfate seed aerosol, the particle-phase ON decay rate was as high as 7 day-1 and more variable. The ON gas-particle partitioning was dependent on total OA concentration and temperature, consistent with absorptive partitioning theory. In a volatility basis set, the ON partitioning was consistent with mass fractions of [0 0.11 0.03 0.86] at saturation mass concentrations (C*) of [1 10 100 1000] µg m-3.

  2. Field controlled experiments of mercury accumulation in crops from air and soil.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2011-10-01

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation.

  3. SU-E-T-448: On the Perturbation Factor P-cav of the Markus Parallel Plate Ion Chambers in Clinical Electron Beams, Monte Carlo Based Reintegration of An Historical Experiment

    SciTech Connect

    Voigts-Rhetz, P von; Zink, K

    2014-06-01

    Purpose: All present dosimetry protocols recommend well-guarded parallel-plate ion chambers for electron dosimetry. For the guard-less Markus chamber an energy dependent fluence perturbation correction pcav is given. This perturbation correction was experimentally determined by van der Plaetsen by comparison of the read-out of a Markus and a NACP chamber, which was assumed to be “perturbation-free”. Aim of the present study is a Monte Carlo based reiteration of this experiment. Methods: Detailed models of four parallel-plate chambers (Roos, Markus, NACP and Advanced Markus) were designed using the Monte Carlo code EGSnrc and placed in a water phantom. For all chambers the dose to the active volume filled with low density water was calculated for 13 clinical electron spectra (E{sub 0}=6-21 MeV) at the depth of maximum and at the reference depth under reference conditions. In all cases the chamber's reference point was positioned at the depth of measurement. Moreover, the dose to water DW was calculated in a small water voxel positioned at the same depth. Results: The calculated dose ratio D{sub NACP}/D{sub Markus}, which according to van der Plaetsen reflects the fluence perturbation correction of the Markus chamber, deviates less from unity than the values given by van der Plaetsen's but exhibits a similar energy dependence. The same holds for the dose ratios of the other well guarded chambers. But, in comparison to water, the Markus chamber reveals the smallest overall perturbation correction which is nearly energy independent at both investigated depths. Conclusion: The simulations principally confirm the energy dependence of the dose ratio D{sub NACP}/D{sub Markus} as published by van der Plaetsen. But, as shown by our simulations of the ratio D{sub W}/D{sub Markus}, the conclusion drawn in all dosimetry protocols is questionable: in contrast to all well-guarded chambers the guard-less Markus chamber reveals the smallest overall perturbation correction and

  4. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  5. The Mark III vertex chamber and prototype test results

    SciTech Connect

    Grab, C.

    1987-07-01

    A vertex chamber has been constructed for use in the Mark III experiment. The chamber is positioned inside the current main drift chamber and will be used to trigger data collection, to aid in vertex reconstruction, and to improve the momentum resolution. This paper discusses the chamber's construction and performance and tests of the prototype.

  6. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Dorn, H.-P.; Bachner, M.; Bohn, B.; Brauers, T.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Nehr, S.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-07-01

    During recent field campaigns, hydroxyl radical (OH) concentrations that were measured by laser-induced fluorescence (LIF) were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK), methacrolein (MACR) and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD), China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS). Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s-1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points) yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03) × 106 cm-3 and a linear correlation coefficient of R2 = 0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30-40% (median) larger than those by DOAS after MVK (20 ppbv) and toluene (90 ppbv) had been added. However, this discrepancy has a

  7. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Dorn, H.-P.; Bachner, M.; Bohn, B.; Brauers, T.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Nehr, S.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2012-03-01

    During recent field campaigns, hydroxyl radical (OH) concentrations that were measured by laser-induced fluorescence (LIF) were up to a factor of ten larger than predicted by current chemical models for conditions of high OH reactivity and low NO concentration. These discrepancies, which were observed in forests and urban-influenced rural environments, are so far not entirely understood. In summer 2011, a series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, in order to investigate the photochemical degradation of isoprene, methyl-vinyl ketone (MVK), methacrolein (MACR) and aromatic compounds by OH. Conditions were similar to those experienced during the PRIDE-PRD2006 campaign in the Pearl River Delta (PRD), China, in 2006, where a large difference between OH measurements and model predictions was found. During experiments in SAPHIR, OH was simultaneously detected by two independent instruments: LIF and differential optical absorption spectroscopy (DOAS). Because DOAS is an inherently calibration-free technique, DOAS measurements are regarded as a reference standard. The comparison of the two techniques was used to investigate potential artifacts in the LIF measurements for PRD-like conditions of OH reactivities of 10 to 30 s-1 and NO mixing ratios of 0.1 to 0.3 ppbv. The analysis of twenty experiment days shows good agreement. The linear regression of the combined data set (averaged to the DOAS time resolution, 2495 data points) yields a slope of 1.02 ± 0.01 with an intercept of (0.10 ± 0.03) ×106 cm-3 and a linear correlation coefficient of R2=0.86. This indicates that the sensitivity of the LIF instrument is well-defined by its calibration procedure. No hints for artifacts are observed for isoprene, MACR, and different aromatic compounds. LIF measurements were approximately 30-40% (median) larger than those by DOAS after MVK and toluene had been added. However, this discrepancy has a large uncertainty and

  8. Tests of anechoic chamber for aeroacoustics investigations

    NASA Astrophysics Data System (ADS)

    Palchikovskiy, V. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Belyaev, I. V.; Korin, I. A.; Sorokin, E. V.; Khramtsov, I. V.; Kustov, O. Yu.

    2016-10-01

    The paper presents the results of qualification tests in the new anechoic chamber of Perm National Research Polytechnic University (PNRPU) built in 2014-2015 and evaluation of the chamber quality in aeroacoustic experiments. It describes design features of the chamber and its sound-absorption lining. The qualification tests were carried out with tonal and broadband noise sources in the frequency range 100 Hz - 20 kHz for two different cases of the source arrangement. In every case, measurements were performed in three directions by traverse microphones. Qualification tests have determined that in the chamber there is a free acoustic field within radius of 2 m for tonal noise and 3 m for broadband noise. There was also evaluated acoustic quality of the chamber by measurements of the jet noise and vortex ring noise. The results of the experiments demonstrate that PNRPU anechoic chamber allows the aeroacoustic measurements to be performed to obtain quantitative results.

  9. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  10. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  11. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  12. Laboratory Course on Drift Chambers

    NASA Astrophysics Data System (ADS)

    García-Ferreira, Ix-B.; García-Herrera, J.; Villaseñor, L.

    2006-09-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas.

  13. Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy.

    PubMed

    Gerosa, G; Marzuoli, R; Desotgiu, R; Bussotti, F; Ballarin-Denti, A

    2009-05-01

    This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated. The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O(3) m(-2)). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification.

  14. Creating Chamber Music Enthusiasts in High School.

    ERIC Educational Resources Information Center

    Cummiskey, Cynthia

    1999-01-01

    Describes the Fairfield High School Chamber Music Honors Program for students in grades nine through twelve in Fairfield (Connecticut). Explains that the program's goal is to provide students with a positive experience in chamber music. Highlights the creation and the first two years of the program. (CMK)

  15. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prévôt, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-12-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0

  16. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation potential from in-use diesel vehicles: results from smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prevot, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.

    2010-06-01

    Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the final vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC<0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, primary particles with a mobility diameter above 5 nm were 300±19 cm-3, and only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.097 to 0

  17. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  18. Stove with multiple chambers

    SciTech Connect

    Black, A.

    1987-04-21

    A stove is described for burning a solid fuel such as wood. The wall means defines a main air inlet, a combustion gas outlet, and four chambers through which gas passes sequentially from the main air inlet to the combustion gas outlet. The chambers comprises a pre-heat plenum chamber into which the main air inlet opens. A main combustion chamber contains solid fuel to be burned into which gas passes from the pre-heat plenum chamber, a second combustion chamber which is downstream of the main combustion chamber with respect to the flow of gas from the main air inlet to the combustion gas outlet, and a third combustion chamber from which the combustion gas outlet opens. The stove also comprises a plate having a restricted opening for providing communication between the second and third combustion chambers. And a catalytic converter comprises a body of solid material formed with passageways, the body of solid material being fitted in the restricted opening so that gas passes from the second combustion chamber to the third combustion chamber by way of the passageways in the body.

  19. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  20. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  1. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno

    2014-02-01

    The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate research. However, its application to sedimentary archives is challenging due to extraction and purification of cellulose. Here we present compound-specific δ18O results of hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned analytical challenges. The biomarkers were extracted from stem material of different plants (Eucalyptus globulus, Vicia faba and Brassica oleracea) grown in climate chamber experiments under different climatic conditions. The δ18O values of arabinose and xylose range from 31.4‰ to 45.9‰ and from 28.7‰ to 40.8‰, respectively, and correlate highly significantly with each other (R = 0.91, p < 0.001). Furthermore, δ18Ohemicellulose (mean of arabinose and xylose) correlate highly significantly with δ18Oleaf water (R = 0.66, p < 0.001) and significantly with modeled δ18Ocellulose (R = 0.42, p < 0.038), as well as with relative air humidity (R = -0.79, p < 0.001) and temperature (R = -0.66, p < 0.001). These findings confirm that the hemicellulose-derived sugar biomarkers, like cellulose, reflect the oxygen isotopic composition of plant source water altered by climatically controlled evapotranspirative 18O enrichment of leaf water. While relative air humidity controls most rigorously the evapotranspirative 18O enrichment, the direct temperature effect is less important. However, temperature can indirectly exert influence via plant physiological reactions, namely by influencing the transpiration rate which affects δ18Oleaf water due to the Péclet effect. In a companion paper (Tuthorn et al., this issue) we demonstrate the applicability of the hemicellulose-derived sugar biomarker δ18O method to soils and provide evidence from a climate transect study confirming that relative air humidity exerts the dominant control on evapotranspirative 18O

  2. MPS II drift chamber system

    SciTech Connect

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed.

  3. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  4. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  5. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  6. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  7. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  8. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  9. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P. Chergui, Majed; Agarwal, Rachna; Cramer, William A.

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  10. Gas Electron Multiplier (GEM) Chamber Characteristics Test

    SciTech Connect

    Yu, Jaehoon; White, Andy; Park, Seongtae; Hahn, Changhie; Baldeloma, Edwin; Tran, Nam; McIntire, Austin; Soha, Aria; /Fermilab

    2011-01-11

    Gas Electron Multipliers (GEMs) have been used in many HEP experiments as tracking detectors. They are sensitive to X-rays which allows use beyond that of HEP. The UTA High Energy group has been working on using GEMs as the sensitive gap detector in a DHCAL for the ILC. The physics goals at the ILC put a stringent requirement on detector performance. Especially the precision required for jet mass and positions demands an unprecedented jet energy resolution to hadronic calorimeters. A solution to meet this requirement is using the Particle Flow Algorithm (PFA). In order for PFA to work well, high calorimeter granularity is necessary. Previous studies based on GEANT simulations using GEM DHCAL gave confidence on the performance of GEM in the sensitive gap in a sampling calorimeter and its use as a DHCAL in PFA. The UTA HEP team has built several GEM prototype chambers, including the current 30cm x 30cm chamber integrated with the SLAC-developed 64 channel kPiX analog readout chip. This chamber has been tested on the bench using radioactive sources and cosmic ray muons. In order to have fuller understanding of various chamber characteristics, the experiments plan to expose 1-3 GEM chambers of dimension 35cm x 35cm x 5cm with 1cm x 1cm pad granularity with 64 channel 2-D simultaneous readout using the kPiX chip. In this experiment the experiments pan to measure MiP signal height, chamber absolute efficiencies, chamber gain versus high voltage across the GEM gap, the uniformity of the chamber across the 8cm x 8cm area, cross talk and its distance dependence to the triggered pad, chamber rate capabilities, and the maximum pad occupancy rate.

  11. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  12. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  13. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    PubMed Central

    2011-01-01

    Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification

  14. Investigating 14CO2 chamber methodologies

    NASA Astrophysics Data System (ADS)

    Egan, J. E.; Phillips, C. L.; Nickerson, N. R.; Risk, D. A.

    2012-12-01

    The radiogenic isotope of carbon (14C) is an exceptionally useful tool in studying soil respired CO2, providing information about soil turnover rates, depths of production and the biological sources of production through partitioning. Unfortunately, little work has been done to thoroughly investigate the possibility of inherent biases in the current measurement techniques for 14CO2, caused by disturbances to the soil's natural diffusive regime, because of high costs and sampling logistics. Our aim in this study is to investigate the degree of bias present in the current sampling methodologies using a numerical model and laboratory calibration device. Four chamber techniques were tested numerically with varying fraction modern of production, δ13C of production, collar lengths, flux rates and diffusivities. Two of the chambers were then tested on the lab calibration device. One of these chambers, Iso-FD, has recently been tested for its use as a 13CO2 chamber and it does not induce gas transport fractionation biases present in other 13CO2 sampling methodologies. We then implemented it in the field to test its application as a 14CO2 chamber because of its excellent performance as a 13CO2chamber. Presented here are the results from the numerical modeling experiment, the laboratory calibration experiment and preliminary field results from the Iso-FD chamber.

  15. APS Storage Ring vacuum chamber fabrication

    SciTech Connect

    Goeppner, G.A.

    1990-01-01

    The 1104-m circumference Advanced Photon Source Storage Ring Vacuum System is composed of 240 individual sections, which are fabricated from a combination of aluminum extrusions and machined components. The vacuum chambers will have 3800 weld joints, each subject to strict vacuum requirements, as well as a variety of related design criteria. The vacuum criteria and chamber design are reviewed, including a discussion of the weld joint geometries. The critical fabrication process parameters for meeting the design requirements are discussed. The experiences of the prototype chamber fabrication program are presented. Finally, the required facilities preparation for construction activity is briefly described. 6 refs., 6 figs., 1 tab.

  16. Simple cloud chambers using gel ice packs

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Kubota, Miki

    2012-07-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry ice or liquid nitrogen. The gel can be frozen in normal domestic freezers, and can be used repeatedly by re-freezing. The tracks of alpha-ray particles can be observed continuously for about 20 min, and the operation is simple and easy.

  17. Formaldehyde vapor produced from hexamethylenetetramine and pesticide: Simultaneous monitoring of formaldehyde and ozone in chamber experiments by flow-based hybrid micro-gas analyzer.

    PubMed

    Yanaga, Akira; Hozumi, Naruto; Ohira, Shin-Ichi; Hasegawa, Asako; Toda, Kei

    2016-02-01

    Simultaneous analysis of HCHO and O3 was performed by the developed flow analysis system to prove that HCHO vapor is produced from solid pesticide in the presence of O3. HCHO is produced in many ways, including as primary emissions from fuel combustion and in secondary production from anthropogenic and biogenic volatile organic compounds by photochemical reactions. In this work, HCHO production from pesticides was investigated for the first time. Commonly pesticide contains surfactant such as hexamethylenetetramine (HMT), which is a heterocyclic compound formed from six molecules of HCHO and four molecules of NH3. HMT can react with gaseous oxidants such as ozone (O3) to produce HCHO. In the present study, a flow analysis system was developed for simultaneous analysis of HCHO and O3, and this system was used to determine if solid pesticides produced HCHO vapor in the presence of O3. HMT or the pesticide jimandaisen, which contains mancozeb as the active ingradient and HMT as a stabilizer was placed at the bottom of a 20-L stainless steel chamber. Air in the chamber was monitored using the developed flow system. Analyte gases were collected into an absorbing solution by a honeycomb-patterned microchannel scrubber that was previously developed for a micro gas analysis system (μGAS). Subsequently, indigotrisulfonate, a blue dye, was added to the absorbing solution to detect O3, which discolored the solution. HCHO was detected after mixing with the Hantzsch reaction reagent. Both gases could be detected at concentrations ranging from parts per billion by volume (ppbv) to 1000 ppbv with good linearity. Both HMT and jimandaisen emitted large amount of HCHO in the presence of O3. PMID:26653496

  18. How does a bubble chamber work?

    SciTech Connect

    Konstantinov, D.; Homsi, W.; Luzuriaga, J.; Su, C.K.; Weilert, M.A.; Maris, H.J.

    1998-11-01

    A charged particle passing through a bubble chamber produces a track of bubbles. The way in which these bubbles are produced has been a matter of some controversy. The authors consider the possibility that in helium and hydrogen bubble chambers the production of bubbles is primarily a mechanical process, rather than a thermal process as has often been assumed. The model the authors propose gives results which are in excellent agreement with experiment.

  19. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  20. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  1. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  2. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  3. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  4. Smog chamber experiments to investigate Henry's law constants of glyoxal using different seed aerosols as well as imidazole formation in the presence of ammonia

    NASA Astrophysics Data System (ADS)

    Jakob, Ronit

    2015-04-01

    Aerosols play an important role in the chemistry and physics of the atmosphere. Hence, they have a direct as well as an indirect impact on the earth's climate. Depending on their formation, one distinguishes between primary and secondary aerosols[1]. Important groups within the secondary aerosols are the secondary organic aerosols (SOAs). In order to improve predictions about these impacts on the earth's climate the existing models need to be optimized, because they still underestimate SOA formation[2]. Glyoxal, the smallest α-dicarbonyl, not only acts as a tracer for SOA formation but also as a direct contributor to SOA. Because glyoxal has such a high vapour pressure, it was common knowledge that it does not take part in gas-particle partitioning and therefore has no impact on direct SOA formation. However, the Henry's law constant for glyoxal is surprisingly high. This has been explained by the hydration of the aldehyde groups, which means that a species with a lower vapour pressure is produced. Therefore the distribution of glyoxal between gas- and particle phase is atmospherically relevant and the direct contribution of glyoxal to SOA can no longer be neglected[3]. Besides this particulate glyoxal is able to undergo heterogeneous chemistry with gaseous ammonia to form imidazoles. This plays an important role for regions with aerosols exhibiting alkaline pH values for example from lifestock or soil dust because imidazoles as nitrogen containing compounds change the optical properties of aerosols[4]. A high salt concentration present in chamber seed aerosols leads to an enhanced glyoxal uptake into the particle. This effect is called "salting-in". The salting effect depends on the composition of the seed aerosol as well as the soluble compound. For very polar compounds, like glyoxal, a "salting-in" is observed[3]. Glyoxal particle formation during a smog chamber campaign at Paul-Scherrer-Institut (PSI) in Switzerland was examined using different seed aerosols

  5. Posterior chamber collagen copolymer phakic intraocular lens with a central hole for moderate-to-high myopia: First experience in China.

    PubMed

    Cao, Xinfang; Wu, Weiliang; Wang, Yang; Xie, Chen; Tong, Jianping; Shen, Ye

    2016-09-01

    The purpose of this article is to evaluate the clinical outcomes of a posterior chamber phakic intraocular lens (pIOL) (Visian Implantable Collamer Lens V4c) for the correction of moderate to high myopia in Chinese eyes.The article is designed as a retrospective case series.This study included the first consecutive eyes that had implantation of a new pIOL design with a central hole, at our department by the same surgeon. The safety, efficacy, predictability, stability, and adverse events of the surgery were evaluated over 6 months.The study enrolled 63 eyes (32 patients). The mean spherical equivalent decreased from -12.81 ± 3.11 diopters (D) preoperatively to -0.05 ± 0.27 D 6 months postoperatively; 96.8% of eyes were within ±0.50 D of the target and 100% of eyes were within ±1.00 D. All eyes had a decimal uncorrected distance visual acuity of 0.5 (20/40) or better at every follow-up visit. The safety and efficacy indices were 1.42 ± 0.34 and 1.11 ± 0.19, respectively. Postoperatively, the intraocular pressure (IOP) remained stable over time. No significant rises in IOP (including pupillary block) and no secondary cataract were found. After 6 months, the mean vault was 505.2 ± 258.9 μm (range 120-990 μm), and the mean endothelial cell loss was 2.0%.Implantation of the pIOL was safe, effective, predictable, and stable in the correction of moderate-to-high myopia in Han Chinese patients, even without peripheral iridectomy.

  6. Posterior chamber collagen copolymer phakic intraocular lens with a central hole for moderate-to-high myopia: First experience in China.

    PubMed

    Cao, Xinfang; Wu, Weiliang; Wang, Yang; Xie, Chen; Tong, Jianping; Shen, Ye

    2016-09-01

    The purpose of this article is to evaluate the clinical outcomes of a posterior chamber phakic intraocular lens (pIOL) (Visian Implantable Collamer Lens V4c) for the correction of moderate to high myopia in Chinese eyes.The article is designed as a retrospective case series.This study included the first consecutive eyes that had implantation of a new pIOL design with a central hole, at our department by the same surgeon. The safety, efficacy, predictability, stability, and adverse events of the surgery were evaluated over 6 months.The study enrolled 63 eyes (32 patients). The mean spherical equivalent decreased from -12.81 ± 3.11 diopters (D) preoperatively to -0.05 ± 0.27 D 6 months postoperatively; 96.8% of eyes were within ±0.50 D of the target and 100% of eyes were within ±1.00 D. All eyes had a decimal uncorrected distance visual acuity of 0.5 (20/40) or better at every follow-up visit. The safety and efficacy indices were 1.42 ± 0.34 and 1.11 ± 0.19, respectively. Postoperatively, the intraocular pressure (IOP) remained stable over time. No significant rises in IOP (including pupillary block) and no secondary cataract were found. After 6 months, the mean vault was 505.2 ± 258.9 μm (range 120-990 μm), and the mean endothelial cell loss was 2.0%.Implantation of the pIOL was safe, effective, predictable, and stable in the correction of moderate-to-high myopia in Han Chinese patients, even without peripheral iridectomy. PMID:27603356

  7. Optimization of a closed-loop gas system for the operation of Resistive Plate Chambers at the Large Hadron Collider experiments

    NASA Astrophysics Data System (ADS)

    Capeans, M.; Glushkov, I.; Guida, R.; Hahn, F.; Haider, S.

    2012-01-01

    Resistive Plate Chambers (RPCs), thanks to their fast time resolution (˜1 ns), suitable space resolution (˜1 cm) and low production cost (˜50 €/m2), are widely employed for the muon trigger systems at the Large Hadron Collider (LHC). Their large detector volume (they cover a surface of about 4000 m2 equivalent to 16 m3 of gas volume both in ATLAS and CMS) and the use of a relatively expensive Freon-based gas mixture make a closed-loop gas circulation unavoidable. It has been observed that the return gas of RPCs operated in conditions similar to the difficult experimental background foreseen at LHC contains a large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents are currently in use in order to avoid accumulation of impurities in the closed-loop circuits. We present the results of a systematic study characterizing each of these cleaning agents. During the test, several RPCs were operated at the CERN Gamma Irradiation Facility (GIF) in a high radiation environment in order to observe the production of typical impurities: mainly fluoride ions, molecules of the Freon group and hydrocarbons. The polluted return gas was sent to several cartridges, each containing a different cleaning agent. The effectiveness of each material was studied using gas chromatography and mass-spectrometry techniques. Results of this test have revealed an optimized configuration of filters that is now under long-term validation.Gas optimization studies are complemented with a finite element simulation of gas flow distribution in the RPCs, aiming at its eventual optimization in terms of distribution and flow rate.

  8. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2014-10-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be substantially underestimated owing to deposition of SOA-forming compounds to chamber walls. We present here an experimental protocol to constrain the nature of wall deposition of organic vapors in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. The dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (αw,i), which can be correlated through its volatility (Ci*) with the number of carbons (nC) and oxygens (nO) in the molecule. Among the 25 compounds studied, the maximum wall deposition rate is approached by the most highly oxygenated and least volatile compounds. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and chamber walls. Gas-particle equilibrium partitioning is established relatively rapidly in the presence of perfect accommodation of organic vapors onto particles or when a sufficiently large concentration of suspended particles is present. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of αw,i. For volatile and intermediate volatility organic compounds (small αw,i), gas-particle partitioning will be dominant for typical particle number concentrations in chamber experiments. For large αw,i, vapor transport to particles is suppressed by competition with the chamber walls even with perfect particle accommodation.

  9. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2015-04-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor-wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (αwi), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of αw,i. For volatile and intermediate volatility organic compounds (small αw,i), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large αw,i, vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation.

  10. A Muon Exposure in the Tohoku High Resolution Bubble Chamber

    SciTech Connect

    Chen, A.; Shapire, A.; Widgoff, M.; Childress, S.; Murphy, T.; Alyea, E.D.; Mao, C.; Tai, Y.; Wang, S.; Wu, Y.; Xu, S.W.; /IHEP /MIT /Tohoku U. /Tohoku Gakuin U.

    1986-01-01

    The authors would like to propose an experiment to investigate muon induced interactions in the Tohoku freon bubble chamber, a high resolution 4{pi} detector. The Tohoku bubble chamber is located in Lab F on the neutrino beam line. The NT test beam line, which passes 4.5 meters east of the bubble chamber, has carried a muon beam to Lab F in the past. it appears possible to bend this beam to the west sufficiently to send muons of approximately 200 GeV to the present position of the Tohoku chamber. A bubble chamber experiment will have better systematics than a comparable muons cattering experiment using counters, but will have lower statistics. With the chamber, direct observation of neutral strange particle and charm particle production will make possible a unique clean study of the virtual photon interactions involved.

  11. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  12. Internal combustion chamber

    SciTech Connect

    Schmitz, D.L.

    1988-03-08

    In combination with a high-powered reciprocating piston internal combustion engine, an internal combustion cylinder assembly is described comprising: a cylinder head made of weldable material; a cylinder liner for containing and guiding a reciprocating piston of the engine, a coolant jacket adapted to receive a cooling fluid, mounted on and surrounding the cylinder liner, the jacket being attached to the cylinder head and detachably supported by the cylinder liner, and forming a cooling chamber around the cylinder liner; means to supply the cooling fluid to the cooling chamber and to discharge the cooling fluid therefrom.

  13. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  14. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  15. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  16. Flame-Test Chamber

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.

    1984-01-01

    Experimental chamber provides controlled environment for observation and measurement of flames propagating in expanding plume of flammable air/fuel mixture under atmospheric conditions. Designed to evaluate quenching capability of screen-type flame arresters in atmospheric vents of fuel cargo tanks aboard marine cargo vessels.

  17. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  18. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  19. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  20. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  1. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  2. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  3. 61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION PPP) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  4. 41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING NORTHEAST FROM SOUTHWEST CORNER (LOCATION AAA) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  5. 50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ENCLOSURE (LOCATION III) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  6. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  7. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  8. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  9. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  10. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. Electrostatic Levitator Vaccum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), positioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  12. SEPAC system test in NASDA space chamber

    NASA Astrophysics Data System (ADS)

    Obayashi, T.; Kuriki, K.; Kawashima, N.; Nagatomo, M.; Kudo, I.; Ninomiya, K.; Ushirokawa, A.; Ejiri, M.; Sasaki, S.

    1980-01-01

    Test results of the second NASDA space chamber test using SEPAC (Space Experiment with Particle Acceleration) prototype models are reviewed. A safety level of electrical charge is determined, the electromagnetic interference effect caused by an electron beam and MPD arcjet firing is evaluated, and beam spread for EBA software mask design is measured.

  13. Warmer temperatures stimulate respiration and reduce net ecosystem productivity in a northern Great Plains grassland: Analysis of CO2 exchange in automatic chambers

    NASA Astrophysics Data System (ADS)

    Flanagan, L. B.

    2013-12-01

    The interacting effects of altered temperature and precipitation are expected to have significant consequences for ecosystem net carbon storage. Here I report the results of an experiment that evaluated the effects of elevated temperature and altered precipitation on ecosystem CO2 exchange in a northern Great Plains grassland, near Lethbridge, Alberta Canada. Open-top chambers were used to establish an experiment in 2012 with three treatments (control, warmed, warmed plus 50% of normal precipitation input). A smaller experiment with only the two temperature treatments (control and warmed) was conducted in 2013. Continuous half-hourly net CO2 exchange measurements were made using nine automatic chambers during May-October in both years. My objectives were to determine the sensitivity of the ecosystem carbon budget to temperature and moisture manipulations, and to test for direct and indirect effects of the environmental changes on ecosystem CO2 exchange. The experimental manipulations resulted primarily in a significant increase in air temperature in the warmed treatment plots. A cumulative net loss of carbon or negative net ecosystem productivity (NEP) occurred during May through September in the warmed treatment (NEP = -659 g C m-2), while in the control treatment there was a cumulative net gain of carbon (NEP = +50 g C m-2). An eddy covariance system that operated at the site, over a footprint region that was not influenced by the experimental treatments, also showed a net gain of carbon by the ecosystem. The reduced NEP was due to higher plant and soil respiration rates in the warmed treatment that appeared to be caused by a combination of: (i) higher carbon substrate availability indirectly stimulating soil respiration in the warmed relative to the control treatment, and (ii) a strong increase in leaf respiration likely caused by a shift in electron partitioning to the alternative pathway respiration in the warmed treatment, particularly when exposed to high

  14. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  15. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  16. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  17. Vibrating-chamber levitation systems

    NASA Astrophysics Data System (ADS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1985-10-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  18. Chamber transport for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  19. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  20. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  1. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  2. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  3. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  4. A combination drift chamber/pad chamber for very high readout rates

    SciTech Connect

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. ); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. ); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. Istituto Nazionale di Fisica Nucleare, Rome ); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  5. The membrane chamber: a new type of in vitro recording chamber.

    PubMed

    Hill, M R H; Greenfield, S A

    2011-01-30

    In vitro brain slice electrophysiology is a powerful and highly successful technique where a thin slice is cut from the brain and kept alive artificially in a recording chamber. The design of this recording chamber is pivotal to the success and the quality of such experiments. Most often one of two types of chambers is used today, the interface chamber or the submerged chamber. These chambers, however, have the disadvantage that they are limited in either their experimental or their physiological properties respectively. Here we present a new working principle for an in vitro chamber design which aims at combining the advantages of the classical designs whilst overcoming their disadvantages. This is achieved by using a semipermeable membrane on which the slice is placed. The membrane allows for a fast flow of artificial cerebrospinal fluid of up to at least 17 ml/min. Due to a Bernoulli effect, this high speed flow also causes a 64% increase in flow of solution across the membrane on which the slice rests. The fact that the membrane is transparent introduces the possibility of wide field inverted optical imaging to brain slice electrophysiology. The utility of this setup was demonstrated in the recording of local field potential, single cell and voltage sensitive dye imaging data simultaneously from an area smaller then 1/8mm(2). The combination of all these features in the membrane chamber make it a versatile and promising device for many current and future in vitro applications, especially in the regard to optical imaging. PMID:21075142

  6. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  7. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  8. Environmental calibration chamber operations

    NASA Technical Reports Server (NTRS)

    Lester, D. L.

    1988-01-01

    Thermal vacuum capabilities are provided for the development, calibration, and functional operation checks of flight sensors, sources, and laboratory and field instruments. Two systems are available. The first is a 46 cm diameter diffusion pumped vacuum chambler of the bell jar variety. It has an internal thermal shroud, LN2 old trap, two viewing ports, and various electrical and fluid feedthroughs. The other, also an oil diffusion pumped system, consists of a 1.8 m diameter by 2.5 m long stainless steel vacuum tank, associated pumping and control equipment, a liquid nitrogen storage and transfer system and internal IR/visible calibration sources. This is a two story system with the chamber located on one floor and the pumping/cryogenic systems located on the floor below.

  9. Diogene pictorial drift chamber

    NASA Astrophysics Data System (ADS)

    Gosset, J.

    1984-02-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  10. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. Costs and Benefits of Underground Pupal Chambers Constructed by Insects: A Test Using Manduca sexta.

    PubMed

    Sprague, Jonathan C; Woods, H Arthur

    2015-01-01

    Many holometabolous insects metamorphose in belowground pupal chambers. Although the chambers may be elaborate and their construction costly, their functions are unknown. Using laboratory and field experiments, we examined the costs and functions of chambers made by the hawk moth Manduca sexta (Sphingidae). Costs were large in some circumstances; prepupal larvae lost up to 60% of their body mass when constructing chambers in dry soils. We tested three alternative hypotheses about what, if anything, chambers do for the individuals that make them: (1) chambers provide critical open space underground, allowing room for ecdysis and preventing soil from deforming the metamorphosing individual; (2) chambers raise the local relative humidity, so that cuticular and respiratory water losses are minimized; and (3) chamber walls prevent predators and pathogens from attacking. The data support the first hypothesis (about open space) and largely exclude the other two. These results provide a simple and potentially broad explanation for the evolution of chamber building in metamorphosing insects. PMID:26658249

  12. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  13. Dependency of nitrogen dioxide (NO 2) fluxes to wheat ( Triticum aestivum L.) leaves from NO 2 concentration, light intensity, temperature and relative humidity determined from controlled dynamic chamber experiments

    NASA Astrophysics Data System (ADS)

    Weber, P.; Rennenberg, H.

    The dynamic chamber technique was applied to investigate the dependency of nitrogen dioxide fluxes to wheat leaves from atmospheric NO 2 concentration, light intensity, air temperature and relative humidity. Experiments were performed with 4- to 5-weeks-old wheat plants under controlled environmental conditions. When exposed to NO 2-free air wheat leaves emitted 3.7 ng N m -2 s -1into the atmosphere. With increasing NO 2 concentrations the flux of NO 2 changed from emission to deposition. Up to NO 2 concentrations of 60 nl ℓ -1 the NO 2 flux increased linearly; at higher concentrations of NO 2 the NO 2 flux further increased, but the increment declined. In the range of NO 2 concentrations studied (0-90 nl ℓ -1) neither transpiration nor photosynthesis was affected by the NO 2 exposure. With increasing light intensity NO 2 deposition increased from 29 ng N m -2 s -1 in the dark to 120 ng N m -2 s -1 at 510 μmol m -2 s -1 PAR, when wheat plants were exposed to 30 nl ℓ -1 NO 2. This effect could be attributed to the light dependent increase in stomatal aperture. With increasing air temperature from 17 to 40°C NO 2 deposition decreased, most likely due to decreasing solubility of NO 2 in the aqueous phase of the apoplastic space. NO 2 deposition also increased with increasing relative humidity. This increase could not be explained by changes in stomatal aperture, but may at least partially be due to the formation of ultra thin water films on the surface of the wheat leaves, and the solubilization of atmospheric NO 2 within these water films.

  14. Characteristics of a large system of pad readout wire proportional chambers for the HPC calorimeter

    SciTech Connect

    Camporesi, T.; Cavallo, F.R.; Giordano, V.; Laurenti, G.; Molinari, G.; Navarria, F.L.; Privitera, P.; Rovelli, T.; Valenti, G.; Zucchini, A.

    1989-02-01

    A large system of wire proportional chambers is being constructed for the readout of the High-Density Projection Chamber (HPC) of the DELPHI experiment at the Large Electron-Positron storage ring. The system consists of 144 chambers, each 0.3 m/sup 2/ wide and read out via cathode pads, located at the end of the HPC drift volume.

  15. On Orbit Daytime Solar Heating Effects: A Comparison of Ground Chamber Arcing Results

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2004-01-01

    The purpose of the current experiment is to make direct comparisons between the arcing results obtained from the diffusion pumped vertical chamber and our newly renovated Teney vacuum chamber which is equipped with a cryogenic pump. Recall that the prior reported results obtained for the Vertical chamber were nominal at best, showing only a slight reduction in the arc rate after 5 heating cycles at the lower bias potentials and virtually no changes at high potential biases. It was concluded that the vertical chamber was unable to remove enough water vapor from the chamber to adequately test the arcing criterion. Because the cryo-pumped Teney chamber has a ten times better pumping speed, (40,000 liters per sec compared to 4,000 liters per sec for the diffusion pumped vertical chamber), a decision was made to retest that experiment in both the Teney and Vertical vacuum chambers. A comparison of the various data is presented with encouraging results.

  16. On-Orbit Daytime Solar Heating Effects: A Comparison of Ground Chamber Arcing Results

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2004-01-01

    The purpose of the current experiment is to make direct comparisons between the arcing results obtained from the diffusion pumped vertical chamber and our newly renovated Teney vacuum chamber which is equipped with a cryogenic pump. Recall that the prior reported results obtained for the Vertical chamber were nominal at best, showing only a slight reduction in the arc rate after five heating cycles at the lower bias potentials and virtually no changes at high potential biases. It was concluded that the vertical chamber was unable to remove enough water vapor from the chamber to adequately test the arcing criterion. Because the cryo-pumped Teney chamber has a ten times better pumping speed, (40,000 liters per sec compared to 4,000 liters per sec for the diffusion pumped vertical chamber), a decision was made to retest that experiment in both the Teney and Vertical vacuum chambers. A comparison of the various data is presented with encouraging results.

  17. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  18. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  19. Chamber Music: Skills and Teamwork.

    ERIC Educational Resources Information Center

    Villarrubia, Charles

    2000-01-01

    Focuses on the benefits of participating in chamber music ensembles, such as the development of a heightened level of awareness, and considers the role of the music educator/conductor. Provides tools and exercises that teachers can introduce to chamber music players to improve their rehearsals and performances. (CMK)

  20. Calibration of PICO Bubble Chamber Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Jin, Miaotianzi; PICO Collaboration

    2016-03-01

    The PICO Collaboration builds bubble chambers for the direct detection of WIMP dark matter. I will present the suite of calibration experiments performed to measure the sensitivity of these chambers to nuclear recoils (the expected WIMP signal) and to gamma rays (a common background to the WIMP signal). These calibrations include measurements with a 10-ml C3F8 bubble chamber at Northwestern University and with a 30-ml C3F8 bubble chamber deployed in the University of Montreal's tandem Van de Graaf facility, giving the bubble chamber response to a variety of gamma rays, broad-spectrum neutron sources, and mono-energetic low energy neutrons. I will compare our measured sensitivities to those predicted by a simple thermodynamic model and will show how the results impact our ability to detect dark matter, with a focus on light WIMP searches. Supported by DOE Grant: DE-SC0012161.

  1. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  2. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  3. High-energy Physics with Hydrogen Bubble Chambers

    DOE R&D Accomplishments Database

    Alvarez, L. W.

    1958-03-07

    Recent experience with liquid hydrogen bubble chambers of 25 and 40 cm dia. in high-energy physics experiments is discussed. Experiments described are: interactions of K{sup -} mesons with protons, interactions of antiprotons with protons, catalysis of nuclear fusion reactions by muons, and production and decay of hyperons from negative pions. (W.D.M.)

  4. Telerobotic Tending of Space Based Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Backes, P. G.; Long, M. K.; Das, H.

    1994-01-01

    The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.

  5. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources

    NASA Astrophysics Data System (ADS)

    Strüder, Lothar; Epp, Sascha; Rolles, Daniel; Hartmann, Robert; Holl, Peter; Lutz, Gerhard; Soltau, Heike; Eckart, Rouven; Reich, Christian; Heinzinger, Klaus; Thamm, Christian; Rudenko, Artem; Krasniqi, Faton; Kühnel, Kai-Uwe; Bauer, Christian; Schröter, Claus-Dieter; Moshammer, Robert; Techert, Simone; Miessner, Danilo; Porro, Matteo; Hälker, Olaf; Meidinger, Norbert; Kimmel, Nils; Andritschke, Robert; Schopper, Florian; Weidenspointner, Georg; Ziegler, Alexander; Pietschner, Daniel; Herrmann, Sven; Pietsch, Ullrich; Walenta, Albert; Leitenberger, Wolfram; Bostedt, Christoph; Möller, Thomas; Rupp, Daniela; Adolph, Marcus; Graafsma, Heinz; Hirsemann, Helmut; Gärtner, Klaus; Richter, Rainer; Foucar, Lutz; Shoeman, Robert L.; Schlichting, Ilme; Ullrich, Joachim

    2010-03-01

    Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant (˜10 12-10 13 photons per bunch) coherent radiation in femtosecond (˜10-100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection devices, existing (FLASH, Hamburg) and future FELs (LCLS, Menlo Park; SCSS, Hyogo and the European XFEL, Hamburg) cover a broad range of photon energies from the EUV to the X-ray regime with significantly different bandwidths and pulse structures reaching up to MHz micro-bunch repetition rates. Moreover, hundreds up to trillions of fragment particles, ions, electrons or scattered photons can emerge when a single light flash impinges on matter with intensities up to 10 22 W/cm 2. In order to meet these challenges, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber. It is equipped with specially developed photon and charged particle detection devices dedicated to cover large solid-angles. A variety of different targets are supported, such as atomic, (aligned) molecular and cluster jets, particle injectors for bio-samples or fixed target arrangements. CAMP houses 4π solid-angle ion and electron momentum imaging spectrometers ("reaction microscope", REMI, or "velocity map imaging", VMI) in a unique combination with novel, large-area, broadband (50 eV-25 keV), high-dynamic-range, single-photon-counting and imaging X-ray detectors based on the pnCCDs. This instrumentation allows a new class of coherent diffraction experiments in which both electron and ion emission from the target may be simultaneously monitored. This permits the investigation of dynamic processes in this new regime of ultra-intense, high-energy radiation—matter interaction. After an introduction into the salient features of the CAMP chamber and

  6. Assessing model sensitivity and uncertainty across multiple Free-Air CO2 Enrichment experiments.

    NASA Astrophysics Data System (ADS)

    Cowdery, E.; Dietze, M.

    2015-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentrations are highly variable and contain a considerable amount of uncertainty. It is necessary that we understand which factors are driving this uncertainty. The Free-Air CO2 Enrichment (FACE) experiments have equipped us with a rich data source that can be used to calibrate and validate these model predictions. To identify and evaluate the assumptions causing inter-model differences we performed model sensitivity and uncertainty analysis across ambient and elevated CO2 treatments using the Data Assimilation Linked Ecosystem Carbon (DALEC) model and the Ecosystem Demography Model (ED2), two process-based models ranging from low to high complexity respectively. These modeled process responses were compared to experimental data from the Kennedy Space Center Open Top Chamber Experiment, the Nevada Desert Free Air CO2 Enrichment Facility, the Rhinelander FACE experiment, the Wyoming Prairie Heating and CO2 Enrichment Experiment, the Duke Forest Face experiment and the Oak Ridge Experiment on CO2 Enrichment. By leveraging data access proxy and data tilling services provided by the BrownDog data curation project alongside analysis modules available in the Predictive Ecosystem Analyzer (PEcAn), we produced automated, repeatable benchmarking workflows that are generalized to incorporate different sites and ecological models. Combining the observed patterns of uncertainty between the two models with results of the recent FACE-model data synthesis project (FACE-MDS) can help identify which processes need further study and additional data constraints. These findings can be used to inform future experimental design and in turn can provide informative starting point for data assimilation.

  7. Starting a High School Chamber Music Group.

    ERIC Educational Resources Information Center

    Rutkowski, Joseph

    2000-01-01

    Presents ideas on how to begin a chamber music ensemble. Discusses how to find time to accomplish chamber music playing in and around the school day. Presents short descriptions of chamber music that can be used with ensembles. Includes chamber music resources and additional chamber works. (CMK)

  8. Gas and aerosol wall losses in Teflon film smog chambers

    SciTech Connect

    McMurry, P.H.; Grosjean, D.

    1985-12-01

    Large smog chambers (approx.60 m/sup 3/) constructed of FEP Teflon film are frequently used to study photochemistry and aerosol formation in model chemical systems. In a previous paper a theory for aerosol wall loss rates in Teflon film smog chambers was developed; predicted particle loss rates were in good agreement with measured rates. In the present paper, measurements of wall deposition rates and the effects of wall losses on measurements of gas-to-particle conversion in smog chambers are discussed. Calculations indicate that a large fraction of the aerosol formed in several smog chamber experiments was on the chamber walls at the end of the experiment. Estimated values for particulate organic carbon yield for several precursor hydrocarbons increased by factors of 1.3-6.0 when wall deposition was taken into account. The theory is also extended to loss rates of gaseous species. Such loss rates are either limited by diffusion through a concentration boundary layer near the surface or by uptake at the surface. It is shown that for a typical 60-m/sup 3/ Teflon film smog chamber, gas loss rates are limited by surface reaction rates if mass accommodation coefficients are less than 6 x 10/sup -6/. It follows that previously reported loss rates of several gases in a chamber of this type were limited by surface reactions.

  9. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  10. Environmental chamber studies of atmospheric reactivities of volatile organic compounds: Effects of varying chamber and light source

    SciTech Connect

    Carter, W.; Luo, D.; Malkina, I.; Pierce, J.

    1995-05-01

    Photochemical oxidant models are essential tools for assessing effects of emissions changes on ground-level ozone formation. Such models are needed for predicting the ozone impacts of increased alternative fuel use. The gas-phase photochemical mechanism is an important component of these models because ozone is not emitted directly, but is formed from the gas-phase photochemical reactions of the emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO{sub x}) in air. The chemistry of ground level ozone formation is complex; hundreds of types of VOCs being emitted into the atmosphere, and most of their atmospheric reactions are not completely understood. Because of this, no chemical model can be relied upon to give even approximately accurate predictions unless it has been evaluated by comparing its predictions with experimental data. Therefore an experimental and modeling study was conducted to assess how chemical mechanism evaluations using environmental chamber data are affected by the light source and other chamber characteristics. Xenon arc lights appear to give the best artificial representation of sunlight currently available, and experiments were conducted in a new Teflon chamber constructed using such a light source. Experiments were also conducted in an outdoor Teflon Chamber using new procedures to improve the light characterization, and in Teflon chambers using blacklights. These results, and results of previous runs other chambers, were compared with model predictions using an updated detailed chemical mechanism. The magnitude of the chamber radical source assumed when modeling the previous runs were found to be too high; this has implications in previous mechanism evaluations. Temperature dependencies of chamber effects can explain temperature dependencies in chamber experiments when Ta-300{degree}K, but not at temperatures below that.

  11. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    The LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, compared the response of a set of laboratory ionization chambers to beams of 26Fe, 36Kr, 54Xe, 67 Ho, and 79Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z sq scaling.

  12. The HARP Time Projection Chamber: Characteristics and physics performance

    NASA Astrophysics Data System (ADS)

    Ammosov, V.; Bolshakova, A.; Boyko, I.; Chelkov, G.; Dedovitch, D.; Dydak, F.; Elagin, A.; Gapienko, V.; Gostkin, M.; Guskov, A.; Kroumchtein, Z.; Koreshev, V.; Linssen, L.; De Min, A.; Nefedov, Yu.; Nikolaev, K.; Semak, A.; Sviridov, Yu.; Usenko, E.; Wotschack, J.; Zaets, V.; Zhemchugov, A.

    2008-04-01

    The HARP spectrometer that took data at the CERN Proton Synchrotron in 2001 and 2002 had as large-angle detector system a Time Projection Chamber (TPC) surrounded by Resistive Plate Chambers. The design of the TPC, experience with its operation, and its good physics performance are described. The successful recovery from track distortions arising from inhomogeneities of the electric and magnetic fields in the TPC volume is discussed.

  13. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  14. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  15. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  16. A microperfusion chamber for study of mammalian spermatozoa.

    PubMed

    Burkman, L J

    1988-01-01

    The design of a microperfusion chamber is presented for use with spermatozoa or other cell suspensions. This chamber allows perfusion of a small number of spermatozoa during simultaneous observation of cell behavior at the microscope. The chamber is made from a flat glass capillary tube that is fitted at both ends with a filter unit containing Millipore filter discs. The entire assembly is designed to fit the stage of an inverted microscope. A population containing as few as several hundred sperm cells may be observed in the chamber during successive changes of the suspending medium as controlled by a perfusion pump. Several experiments are presented demonstrating sperm survival in the sealed chamber and the response of rabbit and human sperm motility after the washing process. For these manipulations, the percentage of motile cells, linear swimming speed and incidence of hyperactivated motility are reported. Simple incubation in the chamber for 1 hour was not deleterious to the motility of rabbit spermatozoa. Human seminal spermatozoa showed no decline in vigorous motility after the washing procedure. Compared with in vitro capacitated spermatozoa, however, washing of rabbit seminal spermatozoa showed a variable response. Finally, partially capacitated human spermatozoa were examined for any alteration of motility during chamber incubation with a subsequent wash. When small numbers of spermatozoa or other cell types must be manipulated, the methodology can be effectively substituted for the standard washing procedure that uses repeated centrifugation and resuspension.

  17. SONTRAC: A solar neutron track chamber detector

    NASA Technical Reports Server (NTRS)

    Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.

    1985-01-01

    The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.

  18. Free Air CO2 Enrichment (FACE) Research Data from the Aspen FACE Experiment (FACTS II)

    DOE Data Explorer

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOE’s Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. FACTS II, the Aspen FACE Experiment is a multidisciplinary study to assess the effects of increasing tropospheric ozone and carbon dioxide levels on the structure and function of northern forest ecosystems. The Aspen FACE facility is located at the Harshaw Experimental Forest near Rhinelander, Wisconsin. It consists of twelve 30m rings in which the concentrations of carbon dioxide and tropospheric ozone can be controlled. The design provides the ability to assess the effects of these gasses alone, and in combination, on many ecosystem attributes, including growth, leaf development, root characteristics, and soil carbon. Each ring consists of a series of vertical ventpipes which disperse carbon dioxide, ozone or normal air into the center of the ring. This computer controlled system uses signal feedback technology to adjust gas release each second in order to maintain a stable, elevated concentration of carbon dioxide and/or ozone throughout the experimental plot. Because there is no confinement, there is no significant change in the natural, ambient environment other than elevating these trace gas concentrations. [copied from http://aspenface.mtu.edu/index.html] Ring maps, lists of publications, data from the experiments, newsletters, protocol and performance

  19. The Analysis of Ionization Chambers Used for Detecting Smoke Particles

    NASA Astrophysics Data System (ADS)

    Turlej, Z. (Bish).

    Ionization type cells using a radioactive source of primary ions have been used as fire detectors for many years. They have proven sufficiently sensitive to give an alarm when exposed to the relatively small concentration of smoke particles that occur during the early stages of combustion when control of a fire is still possible. In this work the charging of smoke particles in ionization chambers such as typically employed in ionization smoke detectors are investigated theoretically and experimentally. The ionization chambers investigated in this work have parallel plate and spherical electrode geometries. In the absence of smoke particles, the ionization chambers were operated at some ambient electrode current, which depends upon the ion generation rate, the electrode geometries, the potential difference between the electrodes, and the thermodynamic properties of the gas within the chamber volume. When smoke particles are introduced into the ionization chamber they act as an additional sink for the ions, so that the ion current is reduced. The smoke particles in the experiment performed in this work were transferred from the particle generator to the volume surrounding the ionization chamber and allowed to diffuse inside the ionization chamber. An Aitken nuclei counter was employed to measure the concentration of smoke particles inside the ionization chamber. The electric current flowing through the ionization chamber was recorded as a function of time and concentration of the smoke particles inside the chamber. The current loss due to the particles present inside the chamber was calculated and compared with the experimental results. It was found that at the certain level of ambient electrode current, the current loss due to the smoke particles assumes a maximum value. This optimum operating electrode current was predicted by the mathematical model employed in this work. In the light of this model experimental ionization chambers of both parallel and spherical

  20. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  2. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  3. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  4. The CLAS drift chamber system

    SciTech Connect

    Mestayer, M.D.; Carman, D.S.; Asavaphibhop, B.

    1999-04-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on a toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  5. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  6. Open-chamber combustion study

    NASA Astrophysics Data System (ADS)

    Meyers, D. P.; Meyer, R. C.

    1994-04-01

    The test program was undertaken to research trade-offs between engine design and operational parameters on open-chamber, premixed spark-ignited gas engines, with a primary focus on combustion effects. This included combustion chamber designs which are conceptually diametrically opposed -- a high squish design typical of diesel engines and a virtually quiescent design. The reader should note that these data are somewhat abstract compared to conventional engines, because the Labeco test engine has exceptionally high friction and the lean-burn data were run unboosted.

  7. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  8. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  9. SPRUCE experiment data infrastructure

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Hanson, P. J.; Boden, T.; Riggs, J.; Nettles, W. R.; Hook, L. A.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data activities CDIAC performs are design and implementation of the data systems. One current example is the data system and network for SPRUCE experiment. The SPRUCE experiment (http://mnspruce.ornl.gov) is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. Experimental work in the 8.1-ha S1 bog will be a climate change manipulation focusing on the combined responses to multiple levels of warming at ambient or elevated CO2 (eCO2) levels. The experiment provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The manipulation will evaluate the response of the existing biological communities to a range of warming levels from ambient to +9°C, provided via large, modified open-top chambers. The ambient and +9°C warming treatments will also be conducted at eCO2 (in the range of 800 to 900 ppm). Both direct and indirect effects of these experimental perturbations will be analyzed to develop and refine models needed for full Earth system analyses. SPRUCE provides wide range continuous and discrete measurements. To successfully manage SPRUCE data flow

  10. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  11. Lightweight Chambers for Thrust Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Lee, Jonathan; Holmes, Richard; Zimmerman, Frank; Effinger, Mike; Turner, James E. (Technical Monitor)

    2001-01-01

    The Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) has successfully applied new materials and fabrication techniques to create actively cooled thrust chambers that operate 200-400 degrees hotter and weigh 50% lighter than conventional designs. In some vehicles, thrust assemblies account for as much as 20% of the engine weight. So, reducing the weight of these components and increasing their operating range will benefit many engines and vehicle designs, including Reusable Launch Vehicle (RLV) concepts. Obviously, copper and steel alloys have been used successfully for many years in the chamber components of thrust assemblies. Yet, by replacing the steel alloys with Polymer Matrix Composite (PMC) and/or Metal Matrix Composite (MMC) materials, design weights can be drastically reduced. In addition, replacing the traditional copper alloys with a Ceramic Matrix Composite (CMC) or an advanced copper alloy (Cu-8Cr-4Nb, also known as GRCop-84) significantly increases allowable operating temperatures. Several small MMC and PMC demonstration chambers have recently been fabricated with promising results. Each of these designs included GRCop-84 for the cooled chamber liner. These units successfully verified that designs over 50% lighter are feasible. New fabrication processes, including advanced casting technology and a low cost vacuum plasma spray (VPS) process, were also demonstrated with these units. Hot-fire testing at MSFC is currently being conducted on the chambers to verify increased operating temperatures available with the GRCop-84 liner. Unique CMC chamber liners were also successfully fabricated and prepared for hot-fire testing. Yet, early results indicate these CMC liners need significantly more development in order to use them in required chamber designs. Based on the successful efforts with the MMC and PMC concepts, two full size "lightweight" chambers are currently being designed and fabricated for hot

  12. Characterization and testing of a new environmental chamber

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2015-06-01

    A 29 m3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from 0 to 0.62 min-1. The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m-2, which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25±1 °C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42%, depending on the initial conditions, such as NOx concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5% and 5.8-19.5% were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  13. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  14. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  15. Chamber Music for Every Instrumentalist.

    ERIC Educational Resources Information Center

    Latten, James E.

    2001-01-01

    Discusses why students who play musical instruments should participate in a chamber music ensemble. Provides rationale for using small ensembles in the high school band curriculum. Focuses on the topic of scheduling, illustrating how to insert small ensembles into the lesson schedule, and how to set up a new schedule. (CMK)

  16. Chamber Music for Better Bands.

    ERIC Educational Resources Information Center

    Brown, Michael R.

    1998-01-01

    Considers why students should participate in a chamber music ensemble: (1) students develop a sense of collegiality and self-worth; (2) ensembles encourage practice time; and (3) ensembles provide flexible performance opportunities. Highlights the different aspects of creating an ensemble from the availability of faculty to selecting challenging…

  17. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  18. An Improved Chamber for Direct Visualisation of Chemotaxis

    PubMed Central

    Muinonen-Martin, Andrew J.; Veltman, Douwe M.; Kalna, Gabriela; Insall, Robert H.

    2010-01-01

    There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key attributes that a chemotaxis chamber should have for investigating cancer cell chemotaxis. These include (1) compatibility with thin cover slips for optimal optical properties and to allow use of high numerical aperture (NA) oil immersion objectives; (2) gradients that are relatively stable for at least 24 hours due to the slow migration of cancer cells; (3) gradients of different steepnesses in a single experiment, with defined, consistent directions to avoid the need for complicated analysis; and (4) simple handling and disposability for use with medical samples. Here we describe and characterise the Insall chamber, a novel direct visualisation chamber. We use it to show GFP-lifeact transfected MV3 melanoma cells chemotaxing using a 60x high NA oil immersion objective, which cannot usually be done with other chemotaxis chambers. Linear gradients gave very efficient chemotaxis, contradicting earlier results suggesting that only polynomial gradients were effective. In conclusion, the chamber satisfies our design criteria, most importantly allowing high NA oil immersion microscopy to track chemotaxing cancer cells in detail over 24 hours. PMID:21179457

  19. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1992-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5-s duration that corresponded to the experiments, and an extended loading cycle of 485.1 s duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location of failure in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  20. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1991-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  1. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  2. Emulsion chamber observations and interpretation (HE 3)

    NASA Technical Reports Server (NTRS)

    Shibata, M.

    1986-01-01

    Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.

  3. Dark matter limits froma 15 kg windowless bubble chamber

    SciTech Connect

    Szydagis, Matthew Mark

    2011-03-01

    The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

  4. Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1982-01-01

    The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.

  5. A new fission chamber dedicated to Prompt Fission Neutron Spectra measurements

    NASA Astrophysics Data System (ADS)

    Taieb, J.; Laurent, B.; Bélier, G.; Sardet, A.; Varignon, C.

    2016-10-01

    New fission chambers dedicated to Prompt Fission Neutron Spectra measurements with the time-of-flight technique have been developed. The actinide mass embedded in the chamber was maximized, while the alpha-fission discrimination and the time resolution were optimized. Moreover, to reduce the neutron background and spectra distortions, neutron scattering with the materials were minimized by the choice of material and structure. These chambers were then tested and validated during tests and in-beam experiments.

  6. Initial Back-to-Back Fission Chamber Testing in ATRC

    SciTech Connect

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

  7. A recording chamber for small volume slice electrophysiology.

    PubMed

    Dondzillo, Anna; Quinn, Kevin D; Cruickshank-Quinn, Charmion I; Reisdorph, Nichole; Lei, Tim C; Klug, Achim

    2015-09-01

    Electrophysiological recordings from brain slices are typically performed in small recording chambers that allow for the superfusion of the tissue with artificial extracellular solution (ECS), while the chamber holding the tissue is mounted in the optical path of a microscope to image neurons in the tissue. ECS itself is inexpensive, and thus superfusion rates and volumes of ECS consumed during an experiment using standard ECS are not critical. However, some experiments require the addition of expensive pharmacological agents or other chemical compounds to the ECS, creating a need to build superfusion systems that operate on small volumes while still delivering appropriate amounts of oxygen and other nutrients to the tissue. We developed a closed circulation tissue chamber for slice recordings that operates with small volumes of bath solution in the range of 1.0 to 2.6 ml and a constant oxygen/carbon dioxide delivery to the solution in the bath. In our chamber, the ECS is oxygenated and recirculated directly in the recording chamber, eliminating the need for tubes and external bottles/containers to recirculate and bubble ECS and greatly reducing the total ECS volume required for superfusion. At the same time, the efficiency of tissue oxygenation and health of the section are comparable to standard superfusion methods. We also determined that the small volume of ECS contains a sufficient amount of nutrients to support the health of a standard brain slice for several hours without concern for either depletion of nutrients or accumulation of waste products. PMID:26203105

  8. A recording chamber for small volume slice electrophysiology.

    PubMed

    Dondzillo, Anna; Quinn, Kevin D; Cruickshank-Quinn, Charmion I; Reisdorph, Nichole; Lei, Tim C; Klug, Achim

    2015-09-01

    Electrophysiological recordings from brain slices are typically performed in small recording chambers that allow for the superfusion of the tissue with artificial extracellular solution (ECS), while the chamber holding the tissue is mounted in the optical path of a microscope to image neurons in the tissue. ECS itself is inexpensive, and thus superfusion rates and volumes of ECS consumed during an experiment using standard ECS are not critical. However, some experiments require the addition of expensive pharmacological agents or other chemical compounds to the ECS, creating a need to build superfusion systems that operate on small volumes while still delivering appropriate amounts of oxygen and other nutrients to the tissue. We developed a closed circulation tissue chamber for slice recordings that operates with small volumes of bath solution in the range of 1.0 to 2.6 ml and a constant oxygen/carbon dioxide delivery to the solution in the bath. In our chamber, the ECS is oxygenated and recirculated directly in the recording chamber, eliminating the need for tubes and external bottles/containers to recirculate and bubble ECS and greatly reducing the total ECS volume required for superfusion. At the same time, the efficiency of tissue oxygenation and health of the section are comparable to standard superfusion methods. We also determined that the small volume of ECS contains a sufficient amount of nutrients to support the health of a standard brain slice for several hours without concern for either depletion of nutrients or accumulation of waste products.

  9. Photochemistry of Glyoxal in Wet Aerosols: Smog Chamber Study

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Kim, H.; Turpin, B. J.

    2015-12-01

    Aqueous chemistry is an important pathway for the formation of secondary organic aerosol (SOA). Reaction vessel studies provide evidence that in the aqueous phase photooxidation of water soluble organic compounds (e.g., glyoxal, methylglyoxal) form multifunctional organic products and oligomers. In this work, we extend this bulk-phase chemistry to the condensed-phase chemistry that occurs in/on aerosols by conducting smog chamber experiments — photooxidation of ammonium sulfate and sulfuric acid aerosols containing glyoxal and hydrogen peroxide in the presence of NOx under dry/humid conditions. Particles were analyzed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In the irradiated chamber, photooxidation products of glyoxal as seen in reaction vessel experiments (e.g., oxalic acids and tartaric acids) were also formed in both ammonium sulfate aerosols and sulfuric acid aerosols at humid and even dry conditions. However, the major products were organosulfurs (CHOS), organonitrogens (CHON), and nitrooxy-organosulfates (CHONS), which were also dominantly formed in the dark chamber. These products were formed via non-radical reactions, which depend on acidity and humidity. However, the real-time profiles in the dark chamber and the irradiated chamber were very different, suggesting photochemistry substantially affects non-radical formation in the condensed phase.

  10. A recording chamber for small volume slice electrophysiology

    PubMed Central

    Quinn, Kevin D.; Cruickshank-Quinn, Charmion I.; Reisdorph, Nichole; Lei, Tim C.; Klug, Achim

    2015-01-01

    Electrophysiological recordings from brain slices are typically performed in small recording chambers that allow for the superfusion of the tissue with artificial extracellular solution (ECS), while the chamber holding the tissue is mounted in the optical path of a microscope to image neurons in the tissue. ECS itself is inexpensive, and thus superfusion rates and volumes of ECS consumed during an experiment using standard ECS are not critical. However, some experiments require the addition of expensive pharmacological agents or other chemical compounds to the ECS, creating a need to build superfusion systems that operate on small volumes while still delivering appropriate amounts of oxygen and other nutrients to the tissue. We developed a closed circulation tissue chamber for slice recordings that operates with small volumes of bath solution in the range of 1.0 to 2.6 ml and a constant oxygen/carbon dioxide delivery to the solution in the bath. In our chamber, the ECS is oxygenated and recirculated directly in the recording chamber, eliminating the need for tubes and external bottles/containers to recirculate and bubble ECS and greatly reducing the total ECS volume required for superfusion. At the same time, the efficiency of tissue oxygenation and health of the section are comparable to standard superfusion methods. We also determined that the small volume of ECS contains a sufficient amount of nutrients to support the health of a standard brain slice for several hours without concern for either depletion of nutrients or accumulation of waste products. PMID:26203105

  11. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  12. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  13. The STAR Time Projection Chamber

    SciTech Connect

    Retiere, F.; STAR Collaboration

    2002-01-11

    The STAR Time Projection Chamber was successfully operated during the first RHIC run in 2000. Most of the STAR contributions reported in these proceedings are based on the analysis of data from the TPC. In this article, we show that the performance achieved by the TPC, in terms of track reconstruction, position resolution, and particle identification are well suited for measuring precise and reliable physics observables.

  14. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  15. A compact Time Projection Chamber for the Crystal Ball

    NASA Astrophysics Data System (ADS)

    Steffen, O.; Wolfes, M.; Gradl, W.

    2016-07-01

    We report on a development of a compact Time Projection Chamber with triple Gas Electron Multiplier readout to replace the current tracking detector in the Crystal Ball/TAPS Experiment at the A2 Tagged Photon Facility at MAMI in Mainz, Germany. Challenges are the limitations in size and the absence of a longitudinal magnetic flied.

  16. Hadrons registration in emulsion chamber with carbon block

    NASA Technical Reports Server (NTRS)

    Tomaszewski, A.; Wlodarczyk, Z.

    1985-01-01

    Nuclear-electro-magnetic cascade (NEC) in X-ray emulsion chambers with carbon block, which are usually used in the Pamir experiment, was Monte-Carlo simulated. Going over from optical density to Summary E sub gamma is discussed. The hole of NEC in the interpretation of energy spectra is analyzed.

  17. Drift chamber vertex detectors for SLC/LEP

    SciTech Connect

    Hayes, K.G.

    1987-03-01

    The short but measurable lifetimes of the b and c quarks and the tau lepton have motivated the development of high precision tracking detectors capable of providing information on the decay vertex topology of events containing these particles. This paper reviews the OPAL, L3, and MARK II experiments vertex drift chambers.

  18. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  19. Sensorineural deafness due to compression chamber noise.

    PubMed

    Hughes, K B

    1976-05-01

    A case of unilateral sensorineural deafness following exposure to compression chamber noise is described. A review of the current literature concerning the otological hazards of compression chambers is made. The possible pathological basis is discussed.

  20. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Bullard, Brad; Kopicz, Charles; Michaels, Scott

    2002-01-01

    for the liquid oxygen (LOX) hydrocarbon fuel (RP-1) system has been derived from the one for the gel propellant. An unlike impinging injector was employed to deliver the propellants to the chamber. MSFC is also conducting an alternative injection scheme, called the chasing injector, associated with this vortex chamber concept. In this injection technique, both propellant jets and their impingement point are in the same chamber cross-sectional plane. Long duration tests (approximately up to 15 seconds) will be conducted on the ISVC to study the thermal effects. This paper will report the progress of the subject efforts at NASA Marshall Space Flight Center. Thrust chamber performance and thermal wall compatibility will be evaluated. The chamber pressures, wall temperatures, and thrust will be measured as appropriate. The test data will be used to validate CFD models, which, in turn, will be used to design the optimum vortex chambers. Measurements in the previous tests showed that the chamber pressures vary significantly with radius. This is due to the existence of the vortices in the chamber flow field. Hence, the combustion efficiency may not be easily determined from chamber pressure. For this project, measured thrust data will be collected. The performance comparison will be in terms of specific impulse efficiencies. In addition to the thrust measurements, several pressure and temperature readings at various locations on the chamber head faceplate and the chamber wall will be made. The first injector and chamber were designed and fabricated based on the available data and experience gained during gel propellant system tests by the U.S. Army. The alternate injector for the ISVC was also fabricated. Hot-fire tests of the vortex chamber are about to start and are expected to complete in February of 2003 at the TS115 facility of MSFC.

  1. Experimental warming delays autumn senescence in a boreal spruce bog: Initial results from the SPRUCE experiment

    NASA Astrophysics Data System (ADS)

    Richardson, Andrew; Furze, Morgan; Aubrecht, Donald; Milliman, Thomas; Nettles, Robert; Krassovski, Misha; Hanson, Paul

    2016-04-01

    Phenology is considered one of the most robust indicators of the biological impacts of global change. In temperate and boreal regions, long-term data show that rising temperatures are advancing spring onset (e.g. budburst and flowering) and delaying autumn senescence (e.g. leaf coloration and leaf fall) in a wide range of ecosystems. While warm and cold temperatures, day length and insolation, precipitation and water availability, and other factors, have all been shown to influence plant phenology, the future response of phenology to rising temperatures and elevated CO2 still remains highly uncertain because of the challenges associated with conducting realistic manipulative experiments to simulate future environmental conditions. At the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) experiment in the north-central United States, experimental temperature (0 to +9° C above ambient) and CO2 (ambient and elevated) treatments are being applied to mature, and intact, Picea mariana-Sphagnum spp. bog communities in their native habitat through the use of ten large (approximately 12 m wide, 10 m high) open-topped enclosures. We are tracking vegetation green-up and senescence in these chambers, at both the individual and whole-community level, using repeat digital photography. Within each chamber, digital camera images are recorded every 30 minutes and uploaded to the PhenoCam (http://phenocam.sr.unh.edu) project web page, where they are displayed in near-real-time. Image processing is conducted nightly to extract quantitative measures of canopy color, which we characterize using Gcc, the green chromatic coordinate. Data from a camera mounted outside the chambers (since November 2014) indicate strong seasonal variation in Gcc for both evergreen shrubs and trees. Shrub Gcc rises steeply in May and June, and declines steeply in September and October. By comparison, tree Gcc rises gradually from March through June, and declines gradually from

  2. Making a fish tank cloud chamber

    NASA Astrophysics Data System (ADS)

    Green, Frances

    2012-05-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and construction are given.

  3. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  4. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  5. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  6. Explosion-induced combustion of hydrocarbon clouds in a chamber

    SciTech Connect

    Neuwald, P; Reichenbach, H; Kuhl, A L

    2001-02-06

    The interaction of the detonation of a solid HE-charge with a non-premixed cloud of hydro-carbon fuel in a chamber was studied in laboratory experiments. Soap bubbles filled with a flammable gas were subjected to the blast wave created by the detonation of PETN-charges (0.2 g < mass < 0.5 g). The dynamics of the combustion system were investigated by means of high-speed photography and measurement of the quasi-static chamber pressure.

  7. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, the response of a set of laboratory ionization chambers were compared to beams of 26Fe, 36 Kr, 54Xe, 67 Ho, and 79 Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z squared scaling.

  8. Smog chamber simulation of Los Angeles pollutant transport

    SciTech Connect

    Glasson, W.A.

    1981-06-01

    A smog chamber study simulated pollutant transport from Los Angeles to downwind areas by irradiating a typical Los Angeles hydrocarbon/nitrogen oxides mixture for extended periods of time. Smog chamber experiments were extended to 22 hr to obtain an integrated light intensity equal to that which occurs in this city. Results show that downwind oxidant levels are only slightly affected by large changes in emissions of nitrogen oxides. However, it is clear that reduced emissions will lead to an increase in oxidant in downtown Los Angeles. (6 graphs, 9 references, 1 table)

  9. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  10. Design and Construction of an Inexpensive Homemade Plant Growth Chamber

    PubMed Central

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K.; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140–250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  11. Design and construction of an inexpensive homemade plant growth chamber.

    PubMed

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  12. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. The system of forward-backward drift chambers in the UA2 detector

    NASA Astrophysics Data System (ADS)

    Conta, C.; Fraternali, M.; Fumagalli, G.; Gildemeister, O.; Goggi, V. G.; Hansen, J. D.; Hansen, P.; Impellizzeri, F.; Iuvino, G.; Kofoed-Hansen, O.; Livan, M.; Madsen, B.; Mantovani, G. C.; Mapelli, L.; Möllerud, R.; Pastore, F.; Rimoldi, A.; Rossini, B.; Vicini, A.

    1984-07-01

    The system of multiplane drift chambers for the forward-backward toroidal spectrometers of the UA2 experiment at the SPS pp¯ collider is described. Details about mechanical design and construction techniques are given. Results on the performance of the chambers are reported.

  14. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Technical Reports Server (NTRS)

    Parneil, T. A.; Derrickson, J. H.; Fountain, W. F.; Roberts, F. E.; Tabuki, T.; Watts, J. W.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Fuki, M.

    1990-01-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  15. Standing wave pressure fields generated in an acoustic levitation chamber

    NASA Astrophysics Data System (ADS)

    Hancock, Andrew; Allen, John S.; Kruse, Dustin E.; Dayton, Paul A.; Kargel, Christian M.; Insana, Michael F.

    2001-05-01

    We are developing an acoustic levitation chamber for measuring adhesion force strengths among biological cells. Our research has four phases. Phase I, presented here, is concerned with the design and construction of a chamber for trapping cell-sized microbubbles with known properties in acoustic standing waves, and examines the theory that describes the standing wave field. A cylindrical chamber has been developed to generate a stable acoustic standing wave field. The pressure field was mapped using a 0.4-mm needle hydrophone, and experiments were performed using 100 micron diameter unencapsulated air bubbles, 9 micron diameter isobutane-filled microbubbles, and 3 micron diameter decafluorobutane (C4F10)-filled microbubbles, confirming that the net radiation force from the standing wave pressure field tends to band the microbubbles at pressure antinodes, in accordance with theory.

  16. Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose

    NASA Technical Reports Server (NTRS)

    Plank, L. D.

    1985-01-01

    One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.

  17. Resistive Plate Chambers: electron transport and modeling

    NASA Astrophysics Data System (ADS)

    Bošnjaković, D.; Petrović, Z. Lj; Dujko, S.

    2014-12-01

    We study the electron transport in gas mixtures used by Resistive Plate Chambers (RPCs) in high energy physics experiments at CERN. Calculations are performed using a multi term theory for solving the Boltzmann equation. We identify the effects induced by non-conservative nature of electron attachment, including attachment heating of electrons and negative differential conductivity (NDC). NDC was observed only in the bulk component of drift velocity. Using our Monte Carlo technique, we calculate the spatially resolved transport properties in order to investigate the origin of these effects. We also present our microscopic approach to modeling of RPCs which is based on Monte Carlo method. Calculated results for a timing RPC show good agreement with an analytical model and experimental data. Different cross section sets for electron scattering in C2H2F4 are used for comparison and analysis.

  18. Atmosphere contamination following repainting of a human hyperbaric chamber complex.

    PubMed

    Lillo, R S; Morris, J W; Caldwell, J M; Balk, D M; Flynn, E T

    1990-09-01

    The Naval Medical Research Institute currently conducts hyperbaric research in a Man-Rated Chamber Complex (MRCC) originally installed in 1977. Significant engineering alterations to the MRCC and rusting of some of its interior sections necessitated repainting, which was completed in 1988. Great care was taken in selecting an appropriate paint (polyamide epoxy) and in ensuring correct application and curing procedures. Only very low levels of hydrocarbons were found in the MRCC atmosphere before initial pressurization after painting and curing. After pressurization, however, significant chemical contamination was found. The primary contaminants were aromatic hydrocarbons: xylenes (which were a major component of both the primer and topcoat paint) and ethyl benzene. The role that pressure played in stimulating off-gassing from the paint is not clear; the off-gassing rate was observed to be similar over a large range in chamber pressures from 1.6 to 31.0 atm abs. Scrubbing the chamber atmosphere with the chemical absorbent Purafil was effective in removing the contaminants. Contamination has been observed to slowly decline with chamber use and is expected to continue to improve with time. However, this contamination experience emphasizes the need for a high precision gas analysis program at any diving facility to ensure the safety of the breathing gas and chamber atmosphere.

  19. Method to calibrate fission chambers in Campbelling mode

    SciTech Connect

    Benoit Geslot; Troy C. Unruh; Philippe Filliatre; Christian Jammes; Jacques Di Salvo; Stéphane Bréaud; Jean-François Villard

    2011-06-01

    Fission chambers are neutron detectors which are widely used to instrument experimental reactors such as material testing reactors or zero power reactors. In the presence of a high level mixed gamma and neutron flux, fission chambers can be operated in Campbelling mode (also known as 'fluctuation mode' or 'mean square voltage mode') to provide reliable and precise neutron related measurements. Fission chamber calibration in Campbelling mode (in terms of neutron flux) is usually done empirically using a calibrated reference detector. A major drawback of this method is that calibration measurements have to be performed in a neutron environment very similar to the one in which the calibrated detector will be used afterwards. What we propose here is a different approach based on characterizing the fission chamber response in terms of fission rate. This way, the detector calibration coefficient is independent from the neutron spectrum and can be determined prior to the experiment. The fissile deposit response to the neutron spectrum can then be assessed independently by other means (experimental or numerical). In this paper, the response of CEA made miniature fission chambers in Campbelling mode is studied. We use a theoretical model of the signal to calculate the calibration coefficient. Input parameters of the model come from statistical distribution of individual pulses. Supporting measurements have been made in the CEA Cadarache zero power reactor MINERVE. Results are compared to an empirical Campbelling mode calibration.

  20. Development of a supercritical fluid extraction-gas chromatography-mass spectrometry method for the identification of highly polar compounds in secondary organic aerosols formed from biogenic hydrocarbons in smog chamber experiments.

    PubMed

    Chiappini, L; Perraudin, E; Durand-Jolibois, R; Doussin, J F

    2006-11-01

    A new one-step method for the analysis of highly polar components of secondary organic aerosols (SOA) has been developed. This method should lead to a better understanding of SOA formation and evolution since it enables the compounds responsible for SOA formation to be identified. Since it is based on supercritical fluid extraction coupled to gas chromatography-mass spectrometry, it minimizes the analysis time and significantly enhances sensitivity, which makes it suitable for trace-level compounds, which are constituents of SOA. One of the key features of this method is the in situ derivatisation step: an online silylation allowing the measurement of highly polar, polyfunctional compounds, which is a prerequisite for the elucidation of chemical mechanisms. This paper presents the development of this analytical method and highlights its ability to address this major atmospheric issue through the analysis of SOA formed from the ozonolysis of a biogenic hydrocarbon (sabinene). Ozonolysis of sabinene was performed in a 6 m3 Teflon chamber. The aerosol components were derivatised in situ. More than thirty products, such as sabinaketone, sabinic acid and other multifunctional compounds including dicarboxylic acids and oxoacids, were measured. Nine of them were identified and quantified. The sensitivity and the linearity (0.91

  1. Main Chamber and Preburner Injector Technology

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Merkle, Charles L.

    1999-01-01

    This document reports the experimental and analytical research carried out at the Penn State Propulsion Engineering Research Center in support of NASA's plan to develop advanced technologies for future single stage to orbit (SSTO) propulsion systems. The focus of the work is on understanding specific technical issues related to bi-propellant and tri-propellant thrusters. The experiments concentrate on both cold flow demonstrations and hot-fire uni-element tests to demonstrate concepts that can be incorporated into hardware design and development. The analysis is CFD-based and is intended to support the design and interpretation of the experiments and to extrapolate findings to full-scale designs. The research is divided into five main categories that impact various SSTO development scenarios. The first category focuses on RP-1/gaseous hydrogen (GH2)/gaseous oxygen (GO2) tri-propellant combustion with specific emphasis on understanding the benefits of hydrogen addition to RP-1/oxygen combustion and in developing innovative injector technology. The second category investigates liquid oxygen (LOX)/GH2 combustion at main chamber near stoichiometric conditions to improve understanding of existing LOX/GH2 rocket systems. The third and fourth categories investigate the technical issues related with oxidizer-rich and fuel-rich propulsive concepts, issues that are necessary for developing the full-flow engine cycle. Here, injector technology issues for both LOX/GH2 and LOX/RP-1 propellants are examined. The last category, also related to the full-flow engine cycle, examines injector technology needs for GO2/GH2 propellant combustion at near-stoichiometric conditions for main chamber application.

  2. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  3. Chamber propagation physics for heavy ion fusion

    SciTech Connect

    Callahan, D.A.

    1995-09-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime ({approx_lt}0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime ({approx_gt}.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius ({approx} 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity.

  4. Thrust chamber material technology program

    NASA Astrophysics Data System (ADS)

    Andrus, J. S.; Bordeau, R. G.

    1989-03-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  5. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  6. Chamber leakage effects on measured gas concentrations during contained demilitarization tests at NTS X-Tunnel

    SciTech Connect

    Christopher R. Shadix; Joel Lipkin

    1999-11-01

    A series of contained explosive detonation and propellant burn experiments was conducted during 1996 and 1997 using a specially constructed, large, underground chamber located in the X-tunnel complex at Area 25 of the Nevada Test Site (NTS).

  7. Neutron-chamber detectors and applications

    SciTech Connect

    Fehlau, P.E.; Atwater, H.F.; Coop, K.L.

    1990-01-01

    Detector applications in Nuclear Safeguards and Waste Management have included measuring neutrons from fission and (alpha,n) reactions with well-moderated neutron proportional counters, often embedded in a slab of polyethylene. Other less-moderated geometries are useful for detecting both bare and moderated fission-source neutrons with good efficiency. The neutron chamber is an undermoderated detector design comprising a large, hollow, polyethylene-walled chamber containing one or more proportional counters. Neutron-chamber detectors are relatively inexpensive; can have large apertures, usually through a thin chamber wall; and offer very good detection efficiency per dollar. Neutron-chamber detectors have also been used for monitoring vehicles and for assaying large crates of transuranic waste. Our Monte Carlo calculations for a new application (monitoring low-density waste for concealed plutonium) illustrate the advantages of the hollow-chamber design for detecting moderated fission sources. 9 refs., 6 figs., 2 tabs.

  8. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  9. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  10. Construction and Commissioning of a New Scattering Chamber at the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Turley, Colin; Moore, Robert; Johnson, Christopher; Battaglia, Maria; Vineyard, Michael; Labrake, Scott

    2011-10-01

    We have constructed a new scattering chamber in the Union College Ion Beam Analysis Laboratory to improve our experimental capabilities. The new chamber was constructed from a ten-inch, conflat, multi-way cross. We fitted the chamber with an eight-inch, Leybold turbomolecular pump so that it can be evacuated quickly. A target manipulator with stepper motors that provide x, y, and z-positioning of the target with micron precision is mounted atop the chamber. A target ladder was constructed for the manipulator that allows us to analyze multiple samples without breaking the vacuum. The chamber has a door with an O-ring seal mounted on one of the ten-inch ports that provides easy access to the interior of the chamber. An Amptek silicon-drift X-ray detector is mounted close to the target ladder, inside the vacuum so that low-energy X-rays can be detected. A new Faraday cup was also installed to provide more accurate current measurements. Finally, a new collimator system was developed and installed in the beam-line to the scattering chamber to provide a well-defined beam spot. A proton induced X-ray emission analysis of aerosol samples has been performed as the commissioning experiment for the chamber. Here, we report on the construction and commissioning of this new chamber.

  11. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  12. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W R; Raffrary, A R; Abdel-Khalik, S; Kulcinski, G; Latkowski, J F; Najmabadi, F; Olson, C L; Peterson, P F; Ying, A; Yoda, M

    2002-11-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry-wall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall favored by heavy ion and z-pinch drivers. Recent progress and remaining challenges in developing IFE chambers are reviewed.

  13. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  14. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  15. D0 central tracking chamber performance studies

    SciTech Connect

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an R{Phi} tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against {gamma} {yields} e {sup +} e{sup {minus}} events.

  16. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  17. Methyl bromide emissions from a covered field: III. Correcting chamber flux for temperature

    SciTech Connect

    Yates, S.R.; Gan, J.; Ernst, F.F.; Wang, D.

    1996-07-01

    An experiment was conducted to investigate the environmental fate and transport of methyl bromide (MeBr) in agricultural systems. Part of this experiment involved the use of three flow-through chambers to estimate the MeBr flux through a sheet of clear polyethylene plastic covering the field. Using the chamber data, the total mass lost to the atmosphere was estimated to be 96% of the applied mass, and the results were highly variable between chambers (i.e., standard deviation of 298 kg or 35%). The air temperature inside the chamber was found to be much higher than the air temperature outside and was highly correlated with the diurnal variation in incoming solar radiation. Since the diffusion through polyethylene film was found to be strongly dependent on the temperature, a method was developed to correct the chamber flux density data for enhanced diffusion caused by increases in the temperature inside the chamber. After correcting for temperature, the estimated total MeBr emission was reduced to approximately 59% (21% standard deviation) of the applied amount, which is about 5% less than was measured using other methods. When chambers are used to measure volatilization of MeBr or other fumigants from fields covered with a sheet of polyethylene plastic, the chambers should be designed to minimize internal heating or some method should be used to correct the volatilization rate for the effects of temperature. 16 refs., 5 figs., 1 tab.

  18. Investigation of background radical sources in a teflon-film irradiation chamber

    SciTech Connect

    Glasson, W.A.; Dunker, A.M. )

    1988-09-01

    In attempts to model hydrocarbon/NOx irradiations carried out in smog chambers, workers have found it necessary to postulate background free radical sources. Without such radical sources, it has not been possible to obtain agreement between the predictions of chemical mechanisms and the chamber data. The background radical sources appear to be specific to chambers and are not used when applying chemical mechanisms to simulate the atmosphere. Until recently, there were no experimental measurements of the radical sources, and as a result assumptions on the nature and magnitude of the sources varied. Differences in these assumptions are responsible for some of the differences in the predictions of chemical mechanisms in atmospheric simulations. Experimental determinations of the background radical sources in different chambers are, therefore, imperative for the effective use of chamber experiments in developing and evaluating chemical mechanisms for smog formation. In this work, they have conducted a detailed study of the background radical sources in a small Teflon-film chamber. The purpose was to determine the usefulness of such chambers for quantitative studies of smog formation. Values for the background radical sources were derived from the experimental data by simulations with a detailed chemical mechanism, and the uncertainties in these values were estimated as well. The effects of various parameters, such as light intensity and NO and NO{sub 2} concentrations, on the radical sources were studied to provide the necessary information for taking these sources into account in modeling future chamber experiments.

  19. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1994-01-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  20. Evaluation of oxide-coated iridium-rhenium chambers

    NASA Astrophysics Data System (ADS)

    Reed, Brian D.

    1994-03-01

    Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide

  1. Chamber and target technology development for inertial fusion energy

    SciTech Connect

    Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

    1999-04-07

    Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology

  2. Spin-dependent WIMP limits from a bubble chamber.

    PubMed

    Behnke, E; Collar, J I; Cooper, P S; Crum, K; Crisler, M; Hu, M; Levine, I; Nakazawa, D; Nguyen, H; Odom, B; Ramberg, E; Rasmussen, J; Riley, N; Sonnenschein, A; Szydagis, M; Tschirhart, R

    2008-02-15

    Bubble chambers were the dominant technology used for particle detection in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on a new application for these devices. We operated an ultraclean, room-temperature bubble chamber containing 1.5 kilograms of superheated CF3I, a target maximally sensitive to spin-dependent and -independent weakly interacting massive particle (WIMP) couplings. An extreme intrinsic insensitivity to the backgrounds that commonly limit direct searches for dark matter was measured in this device under operating conditions leading to the detection of low-energy nuclear recoils like those expected from WIMPs. Improved limits on the spin-dependent WIMP-proton scattering cross section were extracted during our experiments, excluding this type of coupling as a possible explanation for a recent claim of particle dark-matter detection.

  3. Management of fluorescent lamps in controlled environment chambers

    NASA Technical Reports Server (NTRS)

    Romer, Mark

    1994-01-01

    Management of fluorescent lights is recommended to (1) maintain uniformity of light intensity over time and (2) permit reproducibility of lighting conditions during experimental replications. At the McGill Phytotron, the lighting intensity can be controlled to desired level because any individual pair of the 40 lamps in each chamber can be set to be 'on' at any particular time. A lamp canopy service history is maintained for each experiment permitting accurate replication of lighting conditions for subsequent replicate trials.

  4. Nonlinear saturation of thermoacoustic oscillations in annular combustion chambers

    NASA Astrophysics Data System (ADS)

    Ghirardo, Giulio; Juniper, Matthew

    2014-11-01

    Continuous combustion systems such as aeroplane engines can experience self-sustained pressure oscillations, called thermoacoustic oscillations. Quite often the combustion chamber is rotationally symmetric and confined between inner and outer walls, with a fixed number of burners equispaced along the annulus, at the chamber inlet. We focus on thermoacoustic oscillations in the azimuthal direction, and discuss the nonlinear saturation of the system towards 2 types of solutions: standing waves (with velocity and pressure nodes fixed in time and in space) and spinning waves (rotating waves, in clockwise or anti-clockwise direction). We neglect the effect of the transverse velocity oscillating in the azimuthal direction in the combustion chamber, and focus the model on the nonlinear effect that the longitudinal velocity, just upstream of each burner, has on the fluctuating heat-release response in the chamber. We present a low-order analytical framework to discuss the stability of the 2 types of solutions. We discuss how the stability and amplitudes of the 2 solutions depend on: 1) the acoustic damping in the system; 2) the number of injectors equispaced in the annulus; 3) the nonlinear response of the flames.

  5. Experimental hyperthyroidism stimulates axonal growth in mesothelial chambers.

    PubMed

    Danielsen, N; Dahlin, L B; Ericson, L E; Crenshaw, A; Lundborg, G

    1986-10-01

    An experimental model is presented for studying axonal growth after experimental hyperthyroidism and hypothyroidism. The left sciatic nerve of the rat was transected and transposed to the back. The proximal nerve stump was inserted into a 50-mm-long mesothelial chamber leaving the distal end of the chamber open. Different groups of young adult rats were given daily injections of thyroxine (10 micrograms/100 g body weight) or the goitrogen, thiamazol, in the drinking water (0.125 g/liter) for 12 weeks. Thyroxine treatment increased significantly the extent of axonal outgrowth from the proximal nerve stump compared with untreated rats. Experimental hypothyroidism (thiamazol treatment), evidenced by a retarded body growth, did not affect the extent of axonal outgrowth. In other experiments the left proximal nerve stump was cross-anastomosed with the right distal nerve stump. The two nerve stumps were bridged with a mesothelial chamber leaving a 15-mm gap. This gap distance is known from our previous studies to inhibit axonal overgrowth to the distal nerve stump. As evidenced by histological evaluation, in three of six thyroxine-treated rats, axons had bridged the 15-mm gap. We conclude that experimentally induced hyperthyroidism enhances axonal growth in mesothelial chambers.

  6. Studying Phototropism Using a Small Growth Chamber.

    ERIC Educational Resources Information Center

    Fisher, Maryanna, F.; Llewellyn, Gerald C.

    1978-01-01

    Describes a simple and inexpensive way to construct two small growth chambers for studying phototropism in the science classroom. One chamber is designed to illustrate how plants grow around obstacles to reach light and the other to illustrate directional light responses. (HM)

  7. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  8. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  9. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  10. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hyperbaric chamber. 868.5470 Section 868.5470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5470 Hyperbaric chamber. (a) Identification....

  11. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  12. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  13. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  14. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  15. 21 CFR 866.2120 - Anaerobic chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anaerobic chamber. 866.2120 Section 866.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2120 Anaerobic chamber....

  16. Space Power Facility Reverberation Chamber Calibration Report

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Dolesh, Robert J.; Garrett, Michael J.

    2014-01-01

    This document describes the process and results of calibrating the Space Environmental Test EMI Test facility at NASA Plum Brook Space Power Facility according to the specifications of IEC61000-4-21 for susceptibility testing from 100 MHz to 40 GHz. The chamber passed the field uniformity test, in both the empty and loaded conditions, making it the world's largest Reverberation Chamber.

  17. Chamber Music's Lesson in Performing Confidence.

    ERIC Educational Resources Information Center

    Stubbs, Darrel W.

    1983-01-01

    Chamber music has the advantage of offering the student maximum exposure as an individual performer. The absence of a conductor means that the student assumes the role of interpreter, thereby gaining musical maturity. For these reasons, curriculum hours should be more evenly divided between chamber music and larger ensembles. (CS)

  18. Promoting "Minds-on" Chamber Music Rehearsals

    ERIC Educational Resources Information Center

    Berg, Margaret H.

    2008-01-01

    Chamber music provides myriad opportunities to develop students' ability to think like professional musicians while engaged in the authentic task of working closely with and learning from peers. However, the potential for musical growth inherent in chamber music participation is often unrealized due to either a lack of teacher guidance and support…

  19. Incinerator system arrangement with dual scrubbing chambers

    SciTech Connect

    Domnitch, I.

    1987-01-13

    An incinerator arrangement is described comprising: an incinerator housing located near the lowest point in a building, the housing containing incinerator elements therein; a chute-flue having a first end in communication with the incinerator housing, a second end at the top of the building for evacuation of combustion gases to the atmosphere therethrough, and at least one intermediately located waste disposal opening through which waste is dropped into the incinerator housing; the incinerator elements including: a main combustion chamber, an opening between the main combustion chamber and the first end of the chute-flue and a flue-damper covering the opening. The flue-damper is biased in a closed position and being operable by the weight of waste to admit the waste into the combustion chamber; a scrubbing chamber located exteriorly along the top of the combustion chamber and having a first opening into the combustion chamber and a second opening into the chute-flue; and water spraying means in the scrubbing chamber for directing a water spray at the combustion gases to wash particulate matter from the gases before the gases enter the chute-flue whereby the water spraying means which are located adjacent the combustion chamber are protected against freezing and the elements.

  20. Application of an Electron-Tube Technique to the VENUS Vertex Chamber

    NASA Astrophysics Data System (ADS)

    Ohama, Taro

    2001-09-01

    This paper presents a new method to design and analyze drift chambers which are commonly used in high-energy physics experiments. The method is based on an analogy of the electron-tube theory; in particular, it treats the drift chamber with a grid wire plane as a “triode ion tube” filled with a gas. This method provides an analytical way in which to calculate the potential and/or charge of electrodes (wires) and the electric fields between them. The method also gives a semianalytic means to derive “X-T” relations in a chamber, and to calculate expected signal forms. This method has been developed specifically for designing a vertex chamber installed in the VENUS detector at the TRISTAN e+e- collider. The anode signal forms actually obtained by the VENUS vertex chamber are found to agree well with the predictions by this method.

  1. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  2. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  3. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  4. Discussion of thermal extraction chamber concepts for Lunar ISRU

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Matthias; Hager, Philipp; Parzinger, Stephan; Dirlich, Thomas; Spinnler, Markus; Sattelmayer, Thomas; Walter, Ulrich

    The Exploration group of the Institute of Astronautics (LRT) of the Technische Universitüt a München focuses on long-term scenarios and sustainable human presence in space. One of the enabling technologies in this long-term perspective is in-situ resource utilization (ISRU). When dealing with the prospect of future manned missions to Moon and Mars the use of ISRU seems useful and intended. The activities presented in this paper focus on Lunar ISRU. This basically incorporates both the exploitation of Lunar oxygen from natural rock and the extraction of solar wind implanted particles (SWIP) from regolith dust. Presently the group at the LRT is examining possibilities for the extraction of SWIPs, which may provide several gaseous components (such as H2 and N2) valuable to a human presence on the Moon. As a major stepping stone in the near future a Lunar demonstrator/ verification experiment payload is being designed. This experiment, LUISE (LUnar ISru Experiment), will comprise a thermal process chamber for heating regolith dust (grain size below 500m), a solar thermal power supply, a sample distribution unit and a trace gas analysis. The first project stage includes the detailed design and analysis of the extraction chamber concepts and the thermal process involved in the removal of SWIP from Lunar Regolith dust. The technique of extracting Solar Wind volatiles from Regolith has been outlined by several sources. Heating the material to a threshold value seems to be the most reasonable approach. The present paper will give an overview over concepts for thermal extraction chambers to be used in the LUISE project and evaluate in detail the pros and cons of each concept. The special boundary conditions set by solar thermal heating of the chambers as well as the material properties of Regolith in a Lunar environment will be discussed. Both greatly influence the design of the extraction chamber. The performance of the chamber concepts is discussed with respect to the

  5. Ensuring Wire Alignment for the New COMPASS Drift Chamber

    NASA Astrophysics Data System (ADS)

    Cromis, Megan; Compass Dc5 Team

    2014-09-01

    COMPASS is a fixed-target experiment at CERN investigating the internal structure of the proton. Polarized Drell-Yan measurements at COMPASS will explore how the quark orbital angular momentum contributes to the spin of the proton. To enable this measurement, several straw tube chambers need to be replaced due to long term wear. One of the replacement chambers, drift chamber DC5, is being built at Old Dominion University based on a prototype from UIUC and existing COMPASS drift chambers. DC5 consists of 4 wire planes with 513 wires (256 [20 μm] sense wires and 257 [100 μm] field wires alternating) and 4 wire planes at a 10 degree offset with 641 wires each. Each of these 4616 wires need to be aligned within either 100 μm (sense wire) or 200 μm (field wire) of the center of the solder pad to ensure the accuracy of the drift chamber. Problems that arose during stringing include initial alignment of the wire and efficient soldering techniques. Also, because the field wires charged at -1750 volts will be 4 mm from the sense wires, there should be no gaps or points in the solder to prevent arcing. This poster will discuss the alignment techniques, soldering methods, testing, and repair process for the wires. COMPASS is a fixed-target experiment at CERN investigating the internal structure of the proton. Polarized Drell-Yan measurements at COMPASS will explore how the quark orbital angular momentum contributes to the spin of the proton. To enable this measurement, several straw tube chambers need to be replaced due to long term wear. One of the replacement chambers, drift chamber DC5, is being built at Old Dominion University based on a prototype from UIUC and existing COMPASS drift chambers. DC5 consists of 4 wire planes with 513 wires (256 [20 μm] sense wires and 257 [100 μm] field wires alternating) and 4 wire planes at a 10 degree offset with 641 wires each. Each of these 4616 wires need to be aligned within either 100 μm (sense wire) or 200 μm (field wire

  6. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  7. Evaluation of newly developed nose-only inhalation exposure chamber for nanoparticles.

    PubMed

    Jeon, KiSoo; Yu, Il Je; Ahn, Kang-Ho

    2012-08-01

    In this study, a direct-flow-type nose-only exposure chamber developed for inhalation toxicity experiments using a numerical analysis and experiments is evaluated. Maintaining a uniform flow rate and test article concentration are the critical factors when designing an inhalation exposure chamber. Therefore, this study evaluated whether the flow rate and particle size distribution at the injection nozzles at each port could be maintained with a deviation below 10%. To achieve this requirement, a nose-only exposure chamber flow field was simulated using a numerical analysis method, i.e. computational fluid dynamics (CFD) code FLUENT 6.3.26. Based on the simulation results, a test chamber was built and tested. The flow velocity was measured at the injection nozzle of the chamber and the aerosol particle size distribution was also measured at each port while inserting the test material into the exposure chamber. The results indicated that a uniform flow field distribution at each stage and port, the deviation of the flow velocity, and particle size distribution were all within 10%. Thus, the resulting nose-only exposure chamber could be described as well-designed.

  8. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  9. A dual-respiration chamber system with automated calibration.

    PubMed

    Schoffelen, P F; Westerterp, K R; Saris, W H; Ten Hoor, F

    1997-12-01

    This study characterizes respiration chambers with fully automated calibration. The system consists of two 14-m3 pull-type chambers. Care was taken to provide a friendly environment for the subjects, with the possibility of social contact during the experiment. Gas analysis was automated to correct for analyzer drift and barometric pressure variations and to provide ease of use. Methods used for checking the system's performance are described. The gas-analysis repeatability was within 0.002%. Results of alcohol combustion (50-350 ml/min CO2) show an accuracy of 0.5 +/- 2.0 (SD) % for O2 consumption and -0.3 +/- 1.6% for CO2 production for 2- to 24-h experiments. It is concluded that response time is not the main factor with respect to the smallest practical measurement interval (duration); volume, mixing, gas-analysis accuracy, and levels of O2 consumption and CO2 production are at least equally important. The smallest practical interval was 15-25 min, as also found with most chamber systems described in the literature. We chose to standardize 0.5 h as the minimum measurement interval. PMID:9390982

  10. The Japanese Radon and Thoron Reference Chambers

    SciTech Connect

    Tokonami, Shinji; Ishikawa, Tetsuo; Sorimachi, Atsuyuki; Takahashi, Hiroyuki; Miyahara, Nobuyuki

    2008-08-07

    Passive detectors used for large-scale and long-term surveys are generally calibrated in a well-controlled environment such as a radon chamber. It has been also pointed out that some of them are sensitive to thoron. Thus it is necessary to check the thoron contribution to the detector response with the proposed or similar test before practical use. The NIRS accommodates radon/aerosol and thoron chambers for quality assurance and quality control of radon measurements. Thus both chambers work so well that they can supply us with the calibration technique and consequently, a good level of knowledge of the radon and thoron issue.

  11. Performance of NIRS Thoron Chamber System

    NASA Astrophysics Data System (ADS)

    Sorimachi, Atsuyuki; Tokonami, Shinji; Takahashi, Hiroyuki; Kobayashi, Yosuke

    2008-08-01

    In order to carry out thoron sensitivity test for passive radon detectors, a thoron chamber system has been set up at NIRS, Japan. The thoron chamber system consists of four components: the exposure, monitoring, calibration, and humidity control systems, which was mounted in this study due to humidity dependence on the thoron concentration emanated from lantern mantles as the thoron source. The thoron concentration in the thoron chamber is controlled by humidity passed through the thoron source and the weight of the lantern mantle.

  12. Experimental study of the performance of a siphon sediment cleansing set in a CSO chamber.

    PubMed

    Zhou, Yongchao; Zhang, Yiping; Tang, Ping; Chen, Yongmin; Zhu, David Z

    2013-01-01

    Model experiments were conducted to investigate the performance of a siphon sediment cleansing set (SSCS) for preventing sediment deposition on the combined sewer overflow (CSO) chamber bottom. The results confirmed the effectiveness of siphon suction in sediment removal in the chamber. The sediment scour test revealed that the equilibrium scour depth correlated significantly with the siphon-lift capacity of the SSCS, which was a function of the initial siphon head and the cross-sectional area ratio between the CSO chamber and the siphon.

  13. Enclosed chambers for humidity control and sample containment in fiber diffraction

    SciTech Connect

    McDonald, M.; Kendall, A.; Tanaka, M.; Weissman, J.S.; Stubbs, G.

    2008-11-03

    A chamber and stretch frame for making fibers for diffraction is described. The chamber is made from a simple plastic cuvette with silicon nitride windows. It is suitable for maintaining constant humidity during fiber drying and data collection, and allows stretching of the fiber and exposure to magnetic fields during sample preparation. If necessary, it provides primary containment for toxic and infectious biological materials. The chamber has been used in fiber diffraction experiments with filamentous plant viruses and a yeast prion protein, and is shown to produce excellent orientation and to maintain hydration and order at the molecular level.

  14. Enclosed Chambers for Humidity Control And Sample Containment in Fiber Diffraction

    SciTech Connect

    McDonald, M.; Kendall, A.; Tanaka, M.; Weissman, J.S.; Stubbs, G.

    2009-05-26

    A chamber and stretch frame for making fibers for diffraction is described. The chamber is made from a simple plastic cuvette with silicon nitride windows. It is suitable for maintaining constant humidity during fiber drying and data collection, and allows stretching of the fiber and exposure to magnetic fields during sample preparation. If necessary, it provides primary containment for toxic and infectious biological materials. The chamber has been used in fiber diffraction experiments with filamentous plant viruses and a yeast prion protein, and is shown to produce excellent orientation and to maintain hydration and order at the molecular level.

  15. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator.

    PubMed

    Kim, Y; Choi, S; Hong, I S

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  16. Theoretical prediction of stationary positions in the rectangular chamber during asymmetric electroosmotic flow

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Most microscopic cell electrophoretic work depends on the theortical prediction of stationary positions by Smoluchowski and Komagata. Their theoretical solutions are based on the assumption that the electroosmotic flow in a chamber is symmetric. Because experiences with the rectangular chamber indicate that symmetric flow occurs during less than 8% of the experiments, the existing theory for stationary position determination is expanded to include the more general case of asymmetric flow. Smoluchowski's equation for symmetric electroosmotic flow in a rectangular chamber having a width much smaller than its height or length is examined. Smoluchowski's approach is used to approximate stationary positions in rectangular chambers with height/width ratios greater than 40. Support for the theoretical prediction of stationary positions using is given by three types of experimental evidence.

  17. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers,...

  18. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers,...

  19. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  20. Finite difference seismic modeling of axial magma chambers

    SciTech Connect

    Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )

    1990-11-01

    The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.

  1. ASPIRE - Cloud Chambers as an Introduction to Cosmic Ray Observation

    NASA Astrophysics Data System (ADS)

    Callahan, Julie; Matthews, John; Jui, Charles

    2012-03-01

    ASPIRE is the K12 - Education & Public Outreach program for the Telescope Array ultra-high energy cosmic ray research project in Utah. The Telescope Array experiment studies ultra-high energy cosmic rays with an array of ˜500 surface scintillator detectors and three fluorescence telescope stations observing over 300 square miles in the West Desert of Utah. Telescope Array is a collaboration of international institutions from the United States, Japan, Korea, Russia and Belgium. Cloud chambers are an inexpensive and easy demonstration to visually observe evidence of charged particles and cosmic ray activity both for informal events as well as for K12 classroom activities. Join us in building a cloud chamber and observe cosmic rays with these table-top demonstrations. A brief overview of the Telescope Array project in Millard County, Utah will also be presented.

  2. Modified MEE Industries static thermal gradient diffusion cloud chamber

    NASA Technical Reports Server (NTRS)

    Borys, R. D.

    1981-01-01

    The experiments performed at the Workshop were undertaken to confirm the calculated sample volume, determine the usable range of supersaturation, and minimum detectable size. Comparison of absolute CCN concentrations with other state-of-the-art continuous flow diffusion chambers at supersaturations near 1 percent indicated that the volume used produced CCN concentrations well within the range of CCN concentrations determined at the workshop. This agreement is interpreted to mean the sample volume was correct. Direct measurements of the beam geometry done in the laboratory indicated a factor of 4-5 error. This error is apparently due to the larger apparent visible beam diameter versus the actual usable beam diameter given the droplet illumination, chamber optical geometry, microscope optics and film characteristics.

  3. Xenon bubble chambers for direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Levy, C.; Fallon, S.; Genovesi, J.; Khaitan, D.; Klimov, K.; Mock, J.; Szydagis, M.

    2016-03-01

    The search for dark matter is one of today's most exciting fields. As bigger detectors are being built to increase their sensitivity, background reduction is an ever more challenging issue. To this end, a new type of dark matter detector is proposed, a xenon bubble chamber, which would combine the strengths of liquid xenon TPCs, namely event by event energy resolution, with those of a bubble chamber, namely insensitivity to electronic recoils. In addition, it would be the first time ever that a dark matter detector is active on all three detection channels, ionization and scintillation characteristic of xenon detectors, and heat through bubble formation in superheated fluids. Preliminary simulations show that, depending on threshold, a discrimination of 99.99% to 99.9999+% can be achieved, which is on par or better than many current experiments. A prototype is being built at the University at Albany, SUNY. The prototype is currently undergoing seals, thermal, and compression testing.

  4. Prediction for vented explosions in chambers with multiple obstacles.

    PubMed

    Park, Dal Jae; Lee, Young Soon; Green, Anthony Roland

    2008-06-30

    The predictive ability between existing models on explosion venting, such as the NFPA, Molkov and Yao equations, was examined against experimental data of peak pressures obtained in various chambers with internal obstacles. The NFPA equation yielded the highest overpressures in most cases. The Molkov and Yao equations obtained much better agreement with experiments. However, the statistical diagnosis of the data showed an underprediction of the pressures. This is undesirable for designing calculations where some margin of safety is preferable. A new empirical model derived for characterising chambers with internal obstacles correlated well with the data. In addition the new equation was further validated against a dataset published from the literature and also gave a good correlation. PMID:18162292

  5. Assembly and Positioning of Microtubule Asters in Microfabricated Chambers

    NASA Astrophysics Data System (ADS)

    Holy, Timothy E.; Dogterom, Marileen; Yurke, Bernard; Leibler, Stanislas

    1997-06-01

    Intracellular organization depends on a variety of molecular assembly processes; while some of these have been studied in simplified cell-free systems, others depend on the confined geometry of cells and cannot be reconstructed using bulk techniques. To study the latter processes in vitro, we fabricated microscopic chambers that simulate the closed environment of cells. We used these chambers to study the positioning of microtubule asters. Microtubule assembly alone, without the action of molecular motors, is sufficient to position asters. Asters with short microtubules move toward the position expected from symmetry; however, once the microtubules become long enough to buckle, symmetry is broken. Calculations and experiments show that the bending-energy landscape has multiple minima. Microtubule dynamic instability modifies the landscape over time and allows asters to explore otherwise inaccessible configurations.

  6. Chamber for the optical manipulation of microscopic particles

    DOEpatents

    Buican, Tudor N.; Upham, Bryan D.

    1992-01-01

    A particle control chamber enables experiments to be carried out on biological cells and the like using a laser system to trap and manipulate the particles. A manipulation chamber provides a plurality of inlet and outlet ports for the particles and for fluids used to control or to contact the particles. A central manipulation area is optically accessible by the laser and includes first enlarged volumes for containing a selected number of particles for experimentation. A number of first enlarged volumes are connected by flow channels through second enlarged volumes. The second enlarged volumes act as bubble valves for controlling the interconnections between the first enlarged volumes. Electrode surfaces may be applied above the first enlarged volumes to enable experimentation using the application of electric fields within the first enlarged volumes. A variety of chemical and environmental conditions may be established within individual first enlarged volumes to enable experimental conditions for small scale cellular interactions.

  7. Implementing a New Ion Chamber Design for Neutron Spin Rotation

    NASA Astrophysics Data System (ADS)

    Gardiner, Hannah; Anderson, Eamon; Fry, Jason; Holley, Adam; Snow, Mike

    2012-10-01

    The quark-quark weak interaction is difficult to measure due to the presence of the strong force. However, low energy neutrons passing through liquid Helium-4 can be used to probe the nucleon-nucleon weak interaction, which is induced by the quark-quark weak interaction. The neutron spin rotation experiment seeks to measure the spin rotation angle of neutrons due to their weak interaction with Helium-4 nuclei. This rotation angle is translated into a neutron flux asymmetry with a neutron polarizer/analyzer pair. A segmented Helium-3 gas ionization chamber was developed to measure the resultant neutron flux. We report on the design and initial tests of that ionization chamber. This work is supported by the National Science Foundation REU program and NSF grant #PHY-0969490.

  8. 11. Detail view west from airlock chamber of typical refrigerator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Detail view west from airlock chamber of typical refrigerator door into Trophic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  9. DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER SHELL, ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  10. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    SciTech Connect

    Bellwied, R.; Bennett, M.J.; Bernardo, V.; Caines, H.; Christie, W.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Debbe, R.; Dinnwiddie, R.; Engelage, J.; Flores, I.; Fuzesy, R.; Greiner, L.; Hallman, T.; Hoffmann, G.; Huang, H.Z.; Jensen, P.; Judd, E.G.; Kainz, K.; Kaplan, M.; Kelly, S.; Lindstrom, P.J; Llope, W.J.; LoCurto, G.; Longacre, R.; Milosevich, Z.; Mitchell, J.T.; Mitchell, J.W.; Mogavero, E.; Mutchler, G.; Paganis, S.; Platner, E.; Potenza, R.; Rotondo, F.; Russ, D.; Sakrejda, I.; Saulys, A.; Schambach, J.; Sheen, J.; Smirnoff, N.; Stokeley, C.; Tang, J.; Trattner, A.L.; Trentalange, S.; Visser, G.; Whitfield, J.P.; Witharm, F.; Witharm, R.; Wright, M.

    2001-10-02

    This report describes a multi-plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGSE896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 Tesla magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10**6 Au ions per second.

  11. The SPHINX code for simulation of processes in X-ray emulsion chambers

    NASA Astrophysics Data System (ADS)

    Mukhamedshin, R. A.

    A three-dimensional Monte Carlo program is elaborated for simulations of processes in X-ray emulsion chambers and measurement procedures used in experiments both aboard stratospheric balloons and at mountain altitudes. The code is applicable from ˜ 1 GeV to extremely high energies (˜ 10 PeV) for arbitrary type of chamber design including lead, carbon, rubber, air, e.g. The code is easy in use and of access for all the persons via Internet.

  12. Pressure Transients for Boron-Potassium Nitrate Igniters in Inert, Vented Chambers

    NASA Technical Reports Server (NTRS)

    Scheier, W.

    1960-01-01

    Equations which will describe the pressure-time curves for the ignition of cylindrical, boron-potassium nitrate, igniter pellets in vented, inert chambers are derived on the assumption that the burning rate is independent of pressure. This assumption is justified on the basis of closed chamber experiments. Experimental firings were conducted over a considerable range of igniter weights and nozzle throat sizes. Smooth, reproducible pressure- time histories were obtained which showed excellent agreement with the analytically predicted curves.

  13. LDCM TIRS: Cracking open the chamber

    NASA Video Gallery

    Engineers at Goddard Space Flight Center inspect and move the Thermal Infrared Sensor (TIRS) after two months of testing in the thermal vacuum chamber. TIRS completed its first round of thermal vac...

  14. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  15. Internal combustion engine with multiple combustion chambers

    SciTech Connect

    Gruenwald, D.J.

    1992-05-26

    This patent describes a two-cycle compression ignition engine. It comprises one cylinder, a reciprocable piston moveable in the cylinder, a piston connecting rod, a crankshaft for operation of the piston connecting rod, a cylinder head enclosing the cylinder, the upper surface of the piston and the enclosing surface of the cylinder head defining a cylinder clearance volume, a first combustion chamber and a second combustion chamber located in the cylinder head. This patent describes improvement in means for isolating the combustion process for one full 360{degrees} rotation of the crankshaft; wherein the combustion chambers alternatively provide for expansion of combustion products in the respective chambers into the cylinder volume near top dead center upon each revolution of the crankshaft.

  16. HYLIFE-II reactor chamber design refinements

    SciTech Connect

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li{sub 2}BeF{sub 4}) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented.

  17. Developing Cloud Chambers with High School Students

    NASA Astrophysics Data System (ADS)

    Ishizuka, Ryo; Tan, Nobuaki; Sato, Shoma; Zeze, Syoji

    The result and outcome of the cloud chamber project, which aims to develop a cloud chamber useful for science education is reported in detail. A project includes both three high school students and a teacher as a part of Super Science High School (SSH) program in our school. We develop a dry-ice-free cloud chamber using salt and ice (or snow). Technical details of the chamber are described. We also argue how the project have affected student's cognition, motivation, academic skills and behavior. The research project has taken steps of professional researchers, i.e., in planning research, applying fund, writing a paper and giving a talk in conferences. From interviews with students, we have learnt that such style of scientific activity is very effective in promoting student's motivation for learning science.

  18. Rocket Combustion Chambers Resist Thermal Fatigue

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1995-01-01

    Improved design concept developed for combustion chambers for rocket engines, described in three reports. Provides compliance allowing unrestrained thermal expansion in circumferential direction. Compliance lengthens life of rocket engine by reducing amount of thermal deformation caused by repeated firings.

  19. The role of the heating of the vacuum chamber on the water content in plasma and gas

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Bafoev, R. N.

    2016-09-01

    The behavior of the H2O concentration in stainless steel chamber is compared for the cases of gas with and without plasma discharge at different temperatures of chamber wall. The experiments were performed with the use of mixtures of rare gases and water vapor. In absence of plasma discharge the dynamics of the density of the water molecules was determined by their interaction with the surface. In the presence of a gas discharge the concentration of water molecules in the volume of the chamber was determined by optical actinometry method. The role of the chamber wall temperature is discussed.

  20. On the possibility of obtaining non-diffused proximity functions from cloud-chamber data: I. Fourier deconvolution.

    PubMed

    Zaider, M; Minerbo, G N

    1988-11-01

    A mathematical procedure, using Fourier deconvolution, is described whereby diffusion-free proximity functions can be obtained from cloud-chamber data. Such non-diffused distributions can be used to obtain further microdosimetric and nanodosimetric quantities hitherto not available from experiments, thus making the cloud chamber an almost ideal nanodosimeter.

  1. Tracking with wire chambers at the SSC

    SciTech Connect

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab.

  2. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  3. A model to forecast magma chamber rupture

    NASA Astrophysics Data System (ADS)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2016-04-01

    An understanding of the amount of magma available to supply any given eruption is useful for determining the potential eruption magnitude and duration. Geodetic measurements and inversion techniques are often used to constrain volume changes within magma chambers, as well as constrain location and depth, but such models are incapable of calculating total magma storage. For example, during the 2012 unrest period at Santorini volcano, approximately 0.021 km3 of new magma entered a shallow chamber residing at around 4 km below the surface. This type of event is not unusual, and is in fact a necessary condition for the formation of a long-lived shallow chamber. The period of unrest ended without culminating in eruption, i.e the amount of magma which entered the chamber was insufficient to break the chamber and force magma further towards the surface. Using continuum-mechanics and fracture-mechanics principles, we present a model to calculate the amount of magma contained at shallow depth beneath active volcanoes. Here we discuss our model in the context of Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  4. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  5. Engine Knock and Combustion Chamber Form

    NASA Technical Reports Server (NTRS)

    Zinner, Karl

    1939-01-01

    The present report is confined to the effect of the combustion chamber shape on engine knock from three angles, namely: 1) The uniformity of flame-front movement as affected by chamber design and position of the spark plug; 2) The speed of advance of the flame as affected by turbulence and vibrations; 3) The reaction processes in the residual charge as affected by the walls.

  6. Tracking with wire chambers at high luminosities

    SciTech Connect

    Hanson, G.G. Stanford Linear Accelerator Center, Menlo Park, CA )

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs.

  7. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  8. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  9. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Hecht, R. J.; Schmid, T. E.; Torrey, C. T.

    1975-01-01

    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed.

  10. Chamber for Growing and Observing Fungi

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Molina, Thomas C.

    2005-01-01

    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

  11. Expandable Purge Chambers Would Protect Cryogenic Fittings

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  12. The PEP Quark Search Proportional Chambers

    NASA Astrophysics Data System (ADS)

    Parker, S. I.; Harris, F.; Karliner, I.; Yount, D.; Ely, R.; Hamilton, R.; Pun, T.; Guryn, W.; Miller, D.; Fries, R.

    1981-04-01

    Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (λi) and is followed in both arms (each with 45° <= θ <= 135°. Δphi = 90°) by 5 proportional chambers, each 0.0008 λi thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 λi thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH4 gas in a test chamber indicate that the chamber efficiencies should be > 98% for q = 1/3. The Landau spread measured in the test was equal to that observed for normal q = 1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.

  13. Upright imaging of Drosophila egg chambers.

    PubMed

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-03-13

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.

  14. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  15. 12. View north of Tropic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. View north of Tropic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  16. 13. View south of Arctic Chamber. Natick Research & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View south of Arctic Chamber. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  17. Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Sen; Zeng, Ming; Wang, Zhangwei; Zhang, Yi; Ci, Zhijia

    2014-01-01

    Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m(-3)) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p > 0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m(-3) air Hg were significantly lower than those exposed to 2 ng m(-3) air Hg in late morning (p < 0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m(-3) air Hg were significantly higher than those exposed to 2 ng m(-3) air Hg (p < 0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g(-1)) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p > 0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.

  18. Experimental investigations into secondary electron-electron emission from the surface of vacuum chambers

    NASA Astrophysics Data System (ADS)

    Meshkov, I. N.; Rudakov, A. Yu.

    2012-07-01

    An experiment on measuring the secondary electron yield (SEY) of samples coated with titanium nitride (TiN2) is in progress at the Recuperator test bench at the Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research. This work is related the problem of electron-cloud formation in the vacuum chambers of accelerators and is of practical importance for the NICA project. The results of the experiment on the SEY measurement will make it possible to choose the most appropriate material for coating the vacuum chamber. In this experiment samples of stainless steel with titanium nitride coating and without any coating are compared.

  19. An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Pape, L.; Ammann, C.; Nyfeler-Brunner, A.; Spirig, C.; Hens, K.; Meixner, F. X.

    2009-03-01

    We present an automated dynamic chamber system which is optimised for continuous unattended flux measurements of multiple non-reactive and reactive trace gases on grassland ecosystems. Main design features of our system are (a) highly transparent chamber walls consisting of chemically inert material, (b) individual purging flow units for each chamber, and (c) a movable lid for automated opening and closing of the chamber. The purging flow rate was chosen high enough to keep the mean residence time of the chamber air below one minute. This guarantees a proven efficient mixing of the chamber volume and a fast equilibration after lid closing. The dynamic chamber system is able to measure emission as well as deposition fluxes of trace gases. For the latter case, the modification of the turbulent transport by the chamber (compared to undisturbed ambient conditions) is quantitatively described by a bulk resistance concept. Beside a detailed description of the design and functioning of the system, results of field applications at two grassland sites are presented. In the first experiment, fluxes of five trace gases (CO2, H2O, NO, NO2, O3) were measured simultaneously on small grassland plots. It showed that the dynamic chamber system is able to detect the characteristic diurnal cycles with a sufficient temporal resolution. The results also demonstrated the importance of considering the chemical source/sink in the chamber due to gas phase reactions for the reactive compounds of the NO-NO2-O3 triad. In a second field experiment, chamber flux measurements of CO2 and methanol were compared to simultaneous independent eddy covariance flux measurements on the field scale. The fluxes obtained with the two methods showed a very good agreement indicating a minimal disturbance of the chambers on the physiological activity of the enclosed vegetation.

  20. An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Pape, L.; Ammann, C.; Nyfeler-Brunner, A.; Spirig, C.; Hens, K.; Meixner, F. X.

    2008-08-01

    We present an automated dynamic chamber system which is optimised for continuous unattended flux measurements of multiple non-reactive and reactive trace gases on grassland ecosystems. Main design features of our system are (a) highly transparent chamber walls consisting of chemically inert material, (b) individual purging flow units for each chamber, and (c) a movable lid for automated opening and closing of the chamber. The purging flow rate was chosen high enough to keep the mean residence time of the chamber air below one minute. This guarantees a proven efficient mixing of the chamber volume and a fast equilibration after lid closing. The dynamic chamber system is able to measure emission as well as deposition fluxes of trace gases. For the latter case, the modification of the turbulent transport by the chamber (compared to undisturbed ambient conditions) is quantitatively described by a bulk resistance concept. Beside a detailed description of the design and functioning of the system, results of field applications at two grassland sites are presented. In the first experiment, fluxes of five trace gases (CO2, H2O, NO, NO2, O3) were measured simultaneously on small grassland plots. It showed that the dynamic chamber system is able to detect the characteristic diurnal cycles with a sufficient temporal resolution. The results also demonstrated the importance of considering the chemical source/sink in the chamber due to gas phase reactions for the reactive compounds of the NO-NO2-O3 triad. In a second field experiment, chamber flux measurements of CO2 and methanol were compared to simultaneous independent eddy covariance flux measurements on the field scale. The fluxes obtained with the two methods showed a very good agreement indicating a minimal disturbance of the chambers on the physiological activity of the enclosed vegetation.

  1. Polarity effect of the thimble-type ionization chamber at a low dose rate

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Kyun; Park, Se-Hwan; Kim, Han-Soo; Kang, Sang-Mook; Ha, Jang-Ho; Chung, Chong-Eun; Cho, Seung-Yeon; Kim, J. K.

    2005-11-01

    It is known that the current collected from an ionization chamber exposed to a constant radiation intensity changes in magnitude when the polarity of the collecting potential is reversed. It is called the polarity effect of the ionization chamber. There are many possible causes that induce the polarity effect and one of them can be a field distortion due to a potential difference between the guard electrode and the collector. We studied how much the polarity effect depends on the design of the electrodes in the thimble-type ionization chamber. Two thimble-type ionization chambers, which had different electrode structures, were designed and fabricated at KAERI. We calculated the field distortions due to the potential difference between the guard electrode and the collector for the two ionization chambers. MAXWELL and Garfield were employed to calculate the electron drift lines inside the chamber. The polarity effects of the two ionization chambers were measured, and they were consistent with the field calculation. We could conclude that the polarity effect is mostly induced from the field distortion due to the potential difference between the guard electrode and the collector in our experiment and it depends significantly on the design of the electrodes.

  2. On mini-cluster observed by Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Tati, T.

    1985-01-01

    Bundles of electromagnetic showers with very small tranverse momenta (approx. 10 MeV) accompanied by decay products of Chiron-type fireballs, have been observed. These bundles are called Miniclusters. This phenomenon supports the picture of fireballs made up of hadronic matter and based on the theory of the finite degree of freedom.

  3. Commissioning of a large segmented ion chamber for the FMA

    SciTech Connect

    Lister, C.J.; Davids, C.N.; Blumenthal, D.J.

    1995-08-01

    A large-area sectored ion chamber was built by a Yale-Daresbury (U.K.) - ANL collaboration to allow extensions of studies of N = Z (T = 0) nuclei. The ion chamber is a conventional DE-DE-E detector which is 20-cm deep, but each anode is segmented into eight pads to allow high count-rate capability and ray-trace reconstruction. With suitable electronics, the detector can become eight close-packed ion chambers, considerably reducing the count rate in each. A position-wire plane allows further raytracing which should permit the rejection of anomalous trajectories and improve Z-separation. A brief test run was scheduled shortly after delivery. Performance appeared promising, but issues of gain matching and cross talk need further exploration. We will study these features {open_quotes}off line{close_quotes} and hope to perform a full experiment on selenium isotopes in the summer. This detector appears to have many uses and is potentially more useful than previous detectors of its type. Similar detectors are being built for the HHRF at Oak Ridge and for Texas A&M University.

  4. Space-charge effects in liquid argon ionization chambers

    NASA Astrophysics Data System (ADS)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  5. Parallel plate ionization chamber in low pressure helium gas

    NASA Astrophysics Data System (ADS)

    Frank, D.; Heinz, A.; Winkler, R.; Qian, J.; Casperson, R. J.; Terry, J. R.

    2007-10-01

    A parallel plate ionization chamber was constructed for beam intensity monitoring. The chamber is placed in a gas-filled volume 1.5m upstream from the gas-filled separator SASSYER. Its output current will be used to determine absolute reaction cross sections. In a dedicated test experiment with a 100 MeV ^32S beam and an applied potential of 300V, the signal current had an average standard deviation of 0.4%, and demonstrated a linear relationship (R^2 = 0.9894) with the beam intensity. Also, at an intensity of 6 particle nanoamperes, the current exhibited a linear dependence (R^2 = 0.9813) on voltage, indicating that the chamber was operating in the proportional counter region. Our results agreed well with predictions made using extrapolated Townsend coefficients, though we observed a constant systematic and constant deviation between these estimates and our output current. This work was supported under US DOE grant number DE-FG0291ER-40609 and the Yale College Dean's Fellowship for Research in the Sciences.

  6. Implementation of Autonomous Control Technology for Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.; Sager, John C.; Krumins, Valdis; Wheeler, Raymond M.

    2002-01-01

    The Kennedy Space Center has significant infrastructure for research using controlled environment plant growth chambers. Such research supports development of bioregenerative life support technology for long-term space missions. Most of the existing chambers in Hangar L and Little L will be moved to the new Space Experiment Research and Processing Laboratory (SERPL) in the summer of 2003. The impending move has created an opportunity to update the control system technologies to allow for greater flexibility, less labor for set-up and maintenance, better diagnostics, better reliability and easier data retrieval. Part of these improvements can be realized using hardware which communicates through an ethernet connection to a central computer for supervisory control but can be operated independently of the computer during routine run-time. Both the hardware and software functionality of an envisioned system were tested on a prototype plant growth chamber (CEC-4) in Hangar L. Based upon these tests, recommendations for hardware and software selection and system design for implementation in SERPL are included.

  7. Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Wang, Lilie

    In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those

  8. Spectra, composition, and interactions of nuclei above 10 TeV using magnet-interferometric chambers

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Takahashi, Y.

    1991-01-01

    Although the SCIN-MAGIC experiment has, like all ASTROMAG and most other Attached Payload experiments, been 'deselected' from Space Station, it is expected that ultimately such emulsion chambers will be flown on the Station. Some brief studies are described which were made in support of the design efforts for such a program being conducted at NASA Marshall.

  9. Characterisation of organic contaminants in the CLOUD chamber at CERN

    NASA Astrophysics Data System (ADS)

    Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.; Jud, W.; Heinritzi, M.; de Menezes, L.-P.; Duplissy, J.; Guida, R.; Haider, S.; Kirkby, J.; Mathot, S.; Minginette, P.; Onnela, A.; Walther, H.; Wasem, A.; Hansel, A.; The Cloud Team

    2014-07-01

    The CLOUD experiment (Cosmics Leaving OUtdoor Droplets) investigates the nucleation of new particles and how this process is influenced by galactic cosmic rays in an electropolished, stainless-steel environmental chamber at CERN (European Organization for Nuclear Research). Since volatile organic compounds (VOCs) can act as precursor gases for nucleation and growth of particles, great efforts have been made to keep their unwanted background levels as low as possible and to quantify them. In order to be able to measure a great set of VOCs simultaneously in the low parts per trillion (pptv) range, proton-transfer-reaction mass spectrometry (PTR-MS) was used. Initially the total VOC background concentration strongly correlated with ozone in the chamber and ranged from 0.1 to 7 parts per billion (ppbv). Plastic used as sealing material in the ozone generator was found to be a major VOC source. Especially oxygen-containing VOCs were generated together with ozone. These parts were replaced by stainless steel after CLOUD3, which strongly reduced the total VOC background. An additional ozone-induced VOC source is surface-assisted reactions at the electropolished stainless steel walls. The change in relative humidity (RH) from very dry to humid conditions increases background VOCs released from the chamber walls. This effect is especially pronounced when the RH is increased for the first time in a campaign. Also the dead volume of inlet tubes for trace gases that were not continuously flushed was found to be a short but strong VOC contamination source. For lower ozone levels (below 100 ppbv) the total VOC contamination was usually below 1 ppbv and therewith considerably cleaner than a comparable Teflon chamber. On average about 75% of the total VOCs come from only five exact masses (tentatively assigned as formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid), which have a rather high vapour pressure and are therefore not important for nucleation and growth of

  10. Combustion of Shock-Dispersed Fuels in a Chamber

    SciTech Connect

    Neuwald, P; Reichenbach, H; Kuhl, A L

    2003-04-23

    In previous studies we have investigated after-burning effects of a fuel-rich explosive (TNT). In that case the detonation only releases about 30 % of the available energy, but generates a hot cloud of fuel that can burn in the ambient air, thus evoking an additional energy release that is distributed in space and time. The current series of small-scale experiments can be looked upon as a natural generalization of this mechanism: a booster charge disperses a (non-explosive) fuel, provides mixing with air and - by means of the hot detonation products - energy to ignite the fuel. The current version of our miniature Shock-Dispersed-Fuel (SDF) charges consists of a spherical booster charge of 0.5 g PETN, embedded in a paper cylinder of approximately 2.2 cm3, which is filled with powdered fuel compositions. The main compositions studied up to now contain aluminum powder, hydrocarbon powders like polyethylene or sucrose and/or carbon particles. These charges were studied in three different chambers of 4-1, 6.6-1 and 40.5-1 volume. In general, the booster charge was sufficient to initiate burning of the fuel. This modifies the pressure signatures measured with a number of wall gages and increases the quasi-static overpressure level obtained in the chambers. On the one hand the time-scale and the yield of the pressure rise depend on the fuel and its characteristics. On the other hand they also depend on the flow dynamics in the chamber, which is dominated by shock reverberations, and thus on the chamber geometry and volume. The paper gives a survey of the experimental results and discusses the possible influences of some basic parameters.

  11. Development and characterization of a chamber gram estimator

    SciTech Connect

    Dulco, G.B.; Gupta, V.P.; Balmer, D.K.

    1995-07-01

    The Chamber Gram Estimator (CGE), Model SAM-1B is a small article gamma monitor originally designed to screen items for radioactive contamination that may be placed into its chamber. Four plastic scintillator detectors detect photons emitted from bulk quantities of fissile materials in line generated waste and provide a fissile mass content estimate of waste packages. With the present CGE, a few grams of {sup 239}Pu could be distinguished above background in light matrix samples. It is controlled by a personal computer that uses a menu driven operating program. The program is designed to reduce the potential for operator error while obtaining a fissile material gram estimate of a line generated waste package prior to placement in a drum. This report describes the work performed to characterize the counting chamber for fissile material estimation. The operating features of the CGE, the results and conclusions drawn from the experiments, and the future work recommended for the next generation CGEs are also described. The CGE provides advantages over hand-held Ludlum 12-12 survey-type instruments presently in use. The CGE is easy to operate, does not require manual manipulation to measure the total surf ace of the sample, and provides a display free of rate meter response-time effects or the need for visual averaging. Moreover, the response variations due to sample geometry are significantly less than with a hand-held arrangement, particularly, for the low density matrix samples appropriate for estimation. The waste packages are placed inside the instrument`s shielded chamber which effectively eliminates gamma exposure to operators from waste packages.

  12. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  13. [Inhospital thrombolism of right cardiac chambers].

    PubMed

    Vasil'tseva, O Ia; Vorozhtsova, I N; Karpov, R S

    2013-01-01

    Veins of lower extremities are classic sources of pulmonary artery thromboembolism (PATE). But one should not underestimate presence of thrombi in other potential sources - veins of small pelvis, superior vena cava, and chambers of the heart. We analyzed 652 case histories and autopsy data of patients in whom PATE had been revealed at pathological anatomical investigation and selected 157 cases in which right heart chambers were sources of emboli (right atrium in 83.5% and right ventricle - in 13.7% of cases). According to autopsy data average mass of the heart was 512.5+/-36.1 g. In most patients it exceeded norm. Thrombi in both right and left cardiac chambers were found in 52.3% of cases. Eighty three patients had history of myocardial infarction or were treated for MI during last hospitalization; 52.3% of patients had atrial fibrillation. After detailed study of all anamnestic, clinical, instrumental, and pathologic-anatomic data we selected 69 factors which according to contemporary views could facilitate formation of thrombus in the right cardiac chambers. Using these factors and method of logistic regression we created a mathematical model for assessment of probability of the presence of thrombi in right cardiac chambers.

  14. Chamber, Target and Final Focus Integrated Design

    SciTech Connect

    Moir, R.W

    2000-03-22

    Liquid wall protection, which challenges chamber clearing, has such advantages it's Heavy Ion Fusion's (HIF) main line chamber design. Thin liquid protection from x rays is necessary to avoid erosion of structural surfaces and thick liquid makes structures behind 0.5 m of Flibe (7 mean free paths for 14 MeV neutrons), last the life of the plant. Liquid wall protection holds the promise of greatly increased economic competitiveness. Driver designers require {approx}200 beams to illuminate recent target designs from two sides. The illumination must be compatible with liquid wall protection. The ''best'' values for driver energy, gain, yield and pulse rate comes out of well-known trade-off studies. An integrated chamber design, yet to be made, depends on several key assumptions, which are to be proven before HIF can be shown to be feasible. The chamber R&D needed to reduce the unknowns and risks depend on resolving a few technical issues such as jet surface smoothness and rapid chamber clearing.

  15. Chamber, Target and Final Focus Integrated Design

    SciTech Connect

    Moir, R.W.

    2000-03-03

    Liquid wall protection, which challenges chamber clearing, has such advantages it's Heavy Ion Fusion's (HIF) main line chamber design. Thin liquid protection from x rays is necessary to avoid erosion of structural surfaces and thick liquid makes structures behind 0.5 m of Flibe (7 mean free paths for 14 MeV neutrons), last the life of the plant. Liquid wall protection holds the promise of greatly increased economic competitiveness. Driver designers require {approx}200 beams to illuminate recent target designs from two sides. The illumination must be compatible with liquid wall protection. The ''best'' values for driver energy, gain, yield and pulse rate comes out of well-known trade-off studies. The chamber design is based on several key assumptions, which are to be proven before HIF can be shown to be feasible. The chamber R&D needed to reduce the unknowns and risks depend on resolving a few technical issues such as jet surface smoothness and rapid chamber clearing.

  16. Aging effect in the BESIII drift chamber

    NASA Astrophysics Data System (ADS)

    Dong, Ming-Yi; Xiu, Qing-Lei; Wu, Ling-Hui; Wu, Zhi; Qin, Zhong-Hua; Shen, Pin; An, Fen-Fen; Ju, Xu-Dong; Liu, Yi; Zhu, Kai; Qun, Ou-Yang; Chen, Yuan-Bo

    2016-01-01

    As the main tracking detector of BESIII, the drift chamber provides accurate measurements of the position and the momentum of the charged particles produced in e+e- collisions at BEPCII. After six years of operation, the drift chamber is suffering from aging problems due to huge beam-related background. The gains of the cells in the first ten layers show an obvious decrease, reaching a maximum decrease of about 29% for the first layer cells. Two calculation methods for the gain change (Bhabha events and accumulated charges with 0.3% aging ratio for inner chamber cells) give almost the same results. For the Malter effect encountered by the inner drift chamber in January 2012, about 0.2% water vapor was added to the MDC gas mixture to solve this cathode aging problem. These results provide an important reference for MDC operating high voltage settings and the upgrade of the inner drift chamber. Supported by the CAS Center for Excellence in Particle Physics (CCEPP)

  17. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  18. Fast Neutron Detection with the Double Chooz Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Moulai, Marjon

    2014-03-01

    The Double Chooz Time Projection Chamber (DCTPC) is a directional fast neutron detector that measures background neutron production at the Double Chooz reactor-based neutrino oscillation experiment's near (120 mwe) and far (300 mwe) halls. DCTPC will provide data at modest depths, tying near-surface measurements to those from deep underground laboratories. DCTPC will be used to search for a correlation between fast neutron production and rainfall and will provide valuable neutron measurements as a function of depth, direction, and energy. Calibration data will be presented, as well as preliminary findings from operation at Double Chooz.

  19. Two-chamber model for divertors with plasma recycling

    SciTech Connect

    Langer, W.D.; Singer, C.E.

    1985-06-01

    To model particle and heat-loss terms at the edge of a tokamak with a divertor or pumped limiter, a simple two-chamber formuluation of the scrapeoff has been constructed by integrating the fluid equations, including sources, along open field lines. The model is then solved for a wide range of density and temperature conditions in the scrapeoff, using geometrical parameters typical of the poloidal divertor in the poloidal divertor experiment (PDX). The solutions characterize four divertor operating conditions for beam-heated plasmas: plugged, unplugged, blowthrough, and blowback.

  20. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  1. Multigas Leakage Correction in Static Environmental Chambers Using Sulfur Hexafluoride and Raman Spectroscopy.

    PubMed

    Jochum, Tobias; von Fischer, Joseph C; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten

    2015-11-01

    In static environmental chamber experiments, the precision of gas flux measurements can be significantly improved by a thorough gas leakage correction to avoid under- or overestimation of biological activity such as respiration or photosynthesis. Especially in the case of small biological net gas exchange rates or gas accumulation phases during long environmental monitoring experiments, gas leakage fluxes could distort the analysis of the biogenic gas kinetics. Here we propose and demonstrate a general protocol for online correction of diffusion-driven gas leakage in plant chambers by simultaneous quantification of the inert tracer sulfur hexafluoride (SF6) and the investigated biogenic gases using enhanced Raman spectroscopy. By quantifying the leakage rates of carbon dioxide (CO2), methane (CH4), and hydrogen (H2) simultaneously with SF6 in the test chamber, their effective diffusivity ratios of approximately 1.60, 1.96, and 5.65 were determined, each related to SF6. Because our experiments suggest that the effective diffusivity ratios are reproducible for an individual static environmental chamber, even under varying concentration gradients and slight changes of the chamber sealing, an experimental method to quantify gas leakage fluxes by using effective diffusivity ratios and SF6 leakage fluxes is proposed. The method is demonstrated by quantifying the CO2 net exchange rate of a plant-soil ecosystem (Mirabilis jalapa). By knowing the effective chamber diffusivity ratio CO2/SF6 and the measured SF6 leakage rate during the experiment, the leakage contribution to the total CO2 exchange rate could be calculated and the biological net CO2 concentration change within the chamber atmosphere determined. PMID:26492154

  2. Multigas Leakage Correction in Static Environmental Chambers Using Sulfur Hexafluoride and Raman Spectroscopy.

    PubMed

    Jochum, Tobias; von Fischer, Joseph C; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten

    2015-11-01

    In static environmental chamber experiments, the precision of gas flux measurements can be significantly improved by a thorough gas leakage correction to avoid under- or overestimation of biological activity such as respiration or photosynthesis. Especially in the case of small biological net gas exchange rates or gas accumulation phases during long environmental monitoring experiments, gas leakage fluxes could distort the analysis of the biogenic gas kinetics. Here we propose and demonstrate a general protocol for online correction of diffusion-driven gas leakage in plant chambers by simultaneous quantification of the inert tracer sulfur hexafluoride (SF6) and the investigated biogenic gases using enhanced Raman spectroscopy. By quantifying the leakage rates of carbon dioxide (CO2), methane (CH4), and hydrogen (H2) simultaneously with SF6 in the test chamber, their effective diffusivity ratios of approximately 1.60, 1.96, and 5.65 were determined, each related to SF6. Because our experiments suggest that the effective diffusivity ratios are reproducible for an individual static environmental chamber, even under varying concentration gradients and slight changes of the chamber sealing, an experimental method to quantify gas leakage fluxes by using effective diffusivity ratios and SF6 leakage fluxes is proposed. The method is demonstrated by quantifying the CO2 net exchange rate of a plant-soil ecosystem (Mirabilis jalapa). By knowing the effective chamber diffusivity ratio CO2/SF6 and the measured SF6 leakage rate during the experiment, the leakage contribution to the total CO2 exchange rate could be calculated and the biological net CO2 concentration change within the chamber atmosphere determined.

  3. Chamber LIDAR measurements of aerosolized biological simulants

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Thrush, Evan P.; Thomas, Michael E.; Siegrist, Karen M.; Baldwin, Kevin; Quizon, Jason; Carter, Christopher C.

    2009-05-01

    A chamber aerosol LIDAR is being developed to perform well-controlled tests of optical scattering characteristics of biological aerosols, including Bacillus atrophaeus (BG) and Bacillus thuringiensis (BT), for validation of optical scattering models. The 1.064 μm, sub-nanosecond pulse LIDAR allows sub-meter measurement resolution of particle depolarization ratio or backscattering cross-section at a 1 kHz repetition rate. Automated data acquisition provides the capability for real-time analysis or recording. Tests administered within the refereed 1 cubic meter chamber can provide high quality near-field backscatter measurements devoid of interference from entrance and exit window reflections. Initial chamber measurements of BG depolarization ratio are presented.

  4. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  5. Thermal Vacuum Chamber Repressurization with Instrument Purging

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2014-01-01

    At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.

  6. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  7. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    NASA Astrophysics Data System (ADS)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  8. Soil experiment

    NASA Technical Reports Server (NTRS)

    Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim

    1987-01-01

    An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.

  9. Simulation of BaBar Drift Chamber

    SciTech Connect

    Anderson, Rachel; /Wisconsin U., Eau Claire /SLAC

    2006-09-27

    The BaBar drift chamber (DCH) is used to measure the properties of charged particles created from e{sup +}e{sup -} collisions in the PEP-II asymmetric-energy storage rings by making precise measurements of position, momentum and ionization energy loss (dE/dx). In October of 2005, the PEP-II storage rings operated with a luminosity of 10 x 10{sup 33} cm{sup -2}s{sup -1}; the goal for 2007 is a luminosity of 20 x 10{sup 33} cm{sup -2}s{sup -1}, which will increase the readout dead time, causing uncertainty in drift chamber measurements to become more significant in physics results. The research described in this paper aims to reduce position and dE/dx uncertainties by improving our understanding of the BaBar drift chamber performance. A simulation program--called GARFIELD--is used to model the behavior of the drift chamber with adjustable parameters such as gas mixture, wire diameter, voltage, and magnetic field. By exploring the simulation options offered in GARFIELD, we successfully produced a simulation model of the BaBar drift chamber. We compared the time-to-distance calibration from BaBar to that calculated by GARFIELD to validate our model as well as check for discrepancies between the simulated and calibrated time-to-distance functions, and found that for a 0{sup o} entrance angle there is a very good match between calibrations, but at an entrance angle of 90{sup o} the calibration breaks down. Using this model, we also systematically varied the gas mixture to find one that would optimize chamber operation, which showed that the gas mixture of 80:20 Helium:isobutane is a good operating point, though more calculations need to be done to confirm that it is the optimal mixture.

  10. Lightweight Chambers for Thrust Cell Applications

    NASA Technical Reports Server (NTRS)

    Elam, S.; Effinger, M.; Holmes, R.; Lee, J.; Jaskowiak, M.

    2000-01-01

    Traditional metals like steel and copper alloys have been used for many years to fabricate injector and chamber components of thruster assemblies. While the materials perform well, reducing engine weights would help existing and future vehicles gain performance and payload capability. It may now be possible to reduce current thruster weights up to 50% by applying composite materials. In this task, these materials are being applied to an existing thrust cell design to demonstrate new fabrication processes and potential weight savings. Two ceramic matrix composite (CMC) designs, three polymer matrix composite (PMC) designs, and two metal matrix composite (MMC) designs are being fabricated as small chamber demonstration units. In addition, a new alloy of copper, chrome, and niobium (Cu-8Cr-4Nb) is being investigated for thrust chamber liners since it offers higher strength and increased cycle life over traditional alloys. This new alloy is being used for the liner in each MMC and PMC demonstration unit. During June-August of 2000, hot-fire testing of each unit is planned to validate designs in an oxygen/hydrogen environment at chamber pressures around 850 psi. Although the weight savings using CMC materials is expected to be high, they have proven to be much harder to incorporate into chamber designs based on current fabrication efforts. However, the PMC & MMC concepts using the Cu-8Cr-4Nb liner are nearly complete and ready for testing. Additional efforts intend to use the PMC & MMC materials to fabricate a full size thrust chamber (60K lb(sub f) thrust class). The fabrication of this full size unit is expected to be complete by October 2000, followed by hot-fire testing in November-December 2000.

  11. Sealed Plant-Growth Chamber For Clinostat

    NASA Technical Reports Server (NTRS)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  12. Almond test body. [for microwave anechoic chambers

    NASA Technical Reports Server (NTRS)

    Dominek, Allen K. (Inventor); Wood, Richard M. (Inventor); Gilreath, Melvin C. (Inventor)

    1989-01-01

    The invention is an almond shaped test body for use in measuring the performance characteristics of microwave anechoic chambers and for use as a support for components undergoing radar cross-section measurements. The novel aspect of this invention is its shape, which produces a large dynamic scattered field over large angular regions making the almond valuable for verifying the performance of microwave anechoic chambers. As a component mount, the almond exhibits a low return that does not perturb the measurement of the component and it simulates the backscatter characteristics of the component as if over an infinite ground plane.

  13. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  14. Investigation of Monoterpene Degradation in the Atmospheric Simulation Chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Kaminski, Martin; Acir, Ismail-Hakki; Bohn, Birger; Brauers, Theo; Dorn, Hans-Peter; Fuchs, Hendrik; Haeseler, Rolf; Hofzumahaus, Andreas; Li, Xin; Lutz, Anna; Nehr, Sascha; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Wahner, Andreas

    2013-04-01

    Monoterpenes are the volatile organic compound (VOC) species with the highest emission rates on a global scale beside isoprene. In the atmosphere these compounds are rapidly oxidized. Due to their high reactivity towards hydroxyl radicals (OH) they determine the radical chemistry under biogenic conditions if monoterpene concentration is higher than isoprene concentration. Recent field campaigns showed large discrepancies between measured and modeled OH concentration at low NOx conditions together with high reactivity of VOC towards OH (Hofzumahaus et al. 2009) especially in tropical forest areas (Lelieveld et al. 2008). These discrepancies were partly explained by new reaction pathways in the isoprene degradation mechanism (Whalley et al 2011). However, even an additional recycling rate of 2.7 was insufficient to explain the measured OH concentration. So other VOC species could be involved in a nonclassical OH recycling. Since the discrepancies in OH also occurred in the morning hours when the OH chemistry was mainly dominated by monoterpenes, it was assumed that also the degradation of monoterpenes may lead to OH recycling in the absence of NO. (Whalley et al 2011). The photochemical degradation of four monoterpene species was studied under high VOC reactivity and low NOx conditions in a dedicated series of experiments in the atmospheric simulation chamber SAPHIR from August to September 2012 to overcome the lack of mechanistic information for monoterpene degradation schemes. α-Pinene, β-pinene and limonene were chosen as most prominent representatives of this substance class. Moreover the degradation of myrcene was investigated due to its structural analogy to isoprene. The SAPHIR chamber was equipped with instrumentation to measure all important OH precursors (O3, HONO, HCHO), the parent VOC and their main oxidation products, radicals (OH, HO2, RO2), the total OH reactivity, and photolysis frequencies to investigate the degradation mechanism of monoterpenes in

  15. Neutron imaging with bubble chambers for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Ghilea, Marian C.

    One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated by heating and compressing a fuel target, typically in the form of a pellet that contains deuterium and tritium, relying on the inertia of the fuel mass to provide confinement. In inertial confinement fusion experiments, it is important to distinguish failure mechanisms of the imploding capsule and unambiguously diagnose compression and hot spot formation in the fuel. Neutron imaging provides such a technique and bubble chambers are capable of generating higher resolution images than other types of neutron detectors. This thesis explores the use of a liquid bubble chamber to record high yield 14.1 MeV neutrons resulting from deuterium-tritium fusion reactions on ICF experiments. A design tool to deconvolve and reconstruct penumbral and pinhole neutron images was created, using an original ray tracing concept to simulate the neutron images. The design tool proved that misalignment and aperture fabrication errors can significantly decrease the resolution of the reconstructed neutron image. A theoretical model to describe the mechanism of bubble formation was developed. A bubble chamber for neutron imaging with Freon 115 as active medium was designed and implemented for the OMEGA laser system. High neutron yields resulting from deuterium-tritium capsule implosions were recorded. The bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The research done in here shows that bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility (NIF).

  16. The cathode strip chamber data acquisition electronics for CMS

    NASA Astrophysics Data System (ADS)

    Bylsma, B. G.; Durkin, L. S.; Gilmore, J.; Gu, J.; Ling, T. Y.; Rush, C.

    2009-03-01

    Data Acquisition (DAQ) electronics for Cathode Strip Chambers (CSC) [CMS Collaboration, The Muon Project Technical Design Report, CERN/LHCC 97-32, CMS TDR3, 1997] in the Compact Muon Solenoid (CMS) [CMS Collaboration, The Compact Muon Solenoid Technical Proposal, CERN/LHCC 94-38, 1994] experiment at the Large Hadron Collider (LHC) [The LHC study group, The Large Hadron Collider: Conceptual Design, CERN/AC 1995-05, 1995] is described. The CSC DAQ system [B. Bylsma, et al., in: Proceedings of the Topical Workshop on Electronics for Particle Physics, Prague, Czech Republic, CERN-2007-007, 2007, pp. 195-198] includes on-detector and off-detector electronics, encompassing five different types of custom circuit boards designed to handle the high event rate at the LHC. The on-detector electronics includes Cathode Front End Boards (CFEB) [R. Breedon, et al., Nucl. Instr. and Meth. A 471 (2001) 340], which amplify, shape, store, and digitize chamber cathode signals; Anode Front End Boards (AFEB) [T. Ferguson, et al., Nucl. Instr. and Meth. A 539 (2005) 386], which amplify, shape and discriminate chamber anode signals; and Data Acquisition Motherboards (DAQMB), which controls the on-chamber electronics and the readout of the chamber. The off-detector electronics, located in the underground service cavern, includes Detector Dependent Unit (DDU) boards, which perform real time data error checking, electronics reset requests and data concentration; and Data Concentrator Card (DCC) boards, which further compact the data and send it to the CMS DAQ System [CMS Collaboration, The TriDAS Project Technical Design Report, Volume 2: Data Acquisition and High-level Trigger, CERN/LHCC 2002-26, 2002], and serve as an interface to the CMS Trigger Timing Control (TTC) [TTC system ] system. Application Specific Integrated Circuits (ASIC) are utilized for analogous signal processing on front end boards. Field Programmable Gate Arrays (FPGA) are utilized

  17. An EGSnrc investigation of correction factors for ion chamber dosimetry

    NASA Astrophysics Data System (ADS)

    Buckley, Lesley A.

    Radiation dosimetry is used to quantify the dose delivered during radiation therapy by using ionization chambers with several correction factors. Knowledge of these factors is needed at well below the 1% level in order to maintain the overall uncertainty on the reference dosimetry near 1-2%. The small magnitude of the corrections renders measurements very difficult. Monte Carlo calculations are widely used for this purpose, however they require very low statistical uncertainties. A new user-code, CSnrc, for the EGSnrc Monte Carlo system is described. CSnrc uses a correlated sampling variance reduction technique to reduce the uncertainty for dose ratio calculations. Compared to an existing EGSnrc user-code from which it was developed, CSnrc shows gains in efficiency of up to a factor of 64 and achieves much lower statistical uncertainties on correction factors than previously published. CSnrc is used to compute the central electrode correction factor, Pcel, in a broader range of beams than previously used and at the depths relevant to modern protocols. For photon beams, the CSnrc values compare well with the values used in dosimetry protocols whereas for electron beams, CSnrc shows up to a 0.2% correction for a graphite electrode, a correction currently ignored by dosimetry protocols. The difference from currently used values is slightly less for an aluminum electrode. CSnrc is also used to compute the wall correction factor, P wall. For cylindrical chambers in photon beams, the CSnrc calculations are compared to the currently used Almond-Svensson formalism and differ from this formalism by as much as 0.8%. The CSnrc values are used to explain some previously published experiments showing problems with Pwall . For electron beams, where dosimetry protocols assume a Pwall of unity, CSnrc calculations show a correction as large as 0.6%. For parallel-plate chambers, there is little information available regarding Pwall in photon beams. CSnrc shows corrections of over 2

  18. Organic Aerosol Nucleation and Growth at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Tröstl, Jasmin; Lethipalo, Katrianne; Bianchi, Federico; Sipilä, Mikko; Nieminen, Tuomo; Wagner, Robert; Frege, Carla; Simon, Mario; Weingartner, Ernest; Gysel, Martin; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    It is well known that atmospheric aerosols influence the climate by changing Earth's radiation balance (IPCC 2007 and 2013). Recent models have shown (Merikanto et al. 2009) that aerosol nucleation is one of the biggest sources of low level cloud condensation nuclei. Still, aerosol nucleation and growth are not fully understood. The driving force of nucleation and growth is sulfuric acid. However ambient nucleation and growth rates cannot be explained by solely sulfuric acid as precursor. Recent studies have shown that only traces of precursors like ammonia and dimethylamine enhance the nucleation rates dramatically (Kirkby et al. 2011, Almeida et al., 2013). Thus the role of different aerosol precursor needs to be studied not only in ambient but also in very well controlled chamber experiments. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment enables conducting experiments very close to atmospheric conditions and with a very low contaminant background. The latest CLOUD experiments focus on the role of organics in aerosol nucleation and growth. For this purpose, numerous experiments with alpha-pinene have been conducted at the CERN CLOUD chamber. Several state-of-the-art instruments were used to cover the whole complexity of the experiment. Chamber conditions were set to 40% relative humidity and 5° C. Atmospheric concentrations of SO2, O3, HONO, H2O and alpha-pinene were injected to the chamber. Different oxidation conditions were used, yielding different levels of oxidized organics: (1) OH radicals, (2) Ozone with the OH scavenger H2 (pure ozonolysis) and (3) both. SO2 was injected to allow for sulfuric acid production. Optical UV fibers were used to enable photochemical reactions. A high field cage (30 kV) can be turned on to remove all charged particles in the chamber to enable completely neutral conditions. Comparing neutral conditions to the beam conditions using CERN's proton synchrotron, the fraction of ion-induced nucleation can be studied. Using

  19. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  20. Lifetime tests for MAC vertex chamber

    SciTech Connect

    Nelson, H.N.

    1986-07-01

    A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)