Operant Conditioning: A Tool for Special Physical Educators in the 1980s.
ERIC Educational Resources Information Center
Dunn, John M.; French, Ron
1982-01-01
The usefulness of operant conditioning for the special physical educator in managing behavior problems is pointed out, and steps to follow in applying operant conditioning techniques are outlined. (SB)
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
A review on prognostic techniques for non-stationary and non-linear rotating systems
NASA Astrophysics Data System (ADS)
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Teaching Operant Conditioning at the Zoo.
ERIC Educational Resources Information Center
Lukas, Kristen E.; Marr, M. Jackson; Maple, Terry L.
1998-01-01
Describes a partnership between Zoo Atlanta and the Georgia Institute of Technology in teaching the principles of operant conditioning to students in an experimental psychology class. Maintains that the positive training techniques used in zoos are models of applied operant conditioning. Includes a discussion of zoo training goals. (MJP)
NASA Astrophysics Data System (ADS)
Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.
2016-01-01
The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.
Employing lighting techniques during on-orbit operations
NASA Technical Reports Server (NTRS)
Wheelwright, Charles D.; Toole, Jennifer R.
1991-01-01
As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.
Employing lighting techniques during on-orbit operations
NASA Astrophysics Data System (ADS)
Wheelwright, Charles D.; Toole, Jennifer R.
As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.
Hise, Adam M; Characklis, Gregory W; Kern, Jordan; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D; Vadlamani, Agasteswar
2016-11-01
Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production facility into which novel techniques are incorporated. Two such techniques, related to algal growth and dewatering, are evaluated in representative operating and financing scenarios using an integrated techno-economic model. Results suggest that these techniques can be valuable under specified conditions, but also that investment subsidies influence cost competitive facility design by incentivizing development of more capital intensive facilities (e.g., favoring hydrothermal liquefaction over transesterification-based facilities). Evaluating novel techniques under a variety of operational and financial scenarios highlights the set of site-specific conditions in which technical advances are most valuable, while also demonstrating the influence of subsidies linked to capital intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waller, M.A.
Under given circumstances, a person will tend to operate in one of four dominant orientations: (1) to perform tasks; (2) to achieve consensus; (3) to achieve understanding, or (4) to maintain structure. Historically, personality survey techniques, such as the Myers-Briggs type indicator, have been used to determine these tendencies. While these techniques can accurately reflect a person's orientation under normal social situations, under different sets of conditions, the same person may exhibit other tendencies, displaying a similar or entirely different orientation. While most do not exhibit extreme tendencies or changes of orientation, the shift in personality from normal to stressfulmore » conditions can be rather dramatic, depending on the individual. Structured personality survey techniques have been used to indicate operator response to stressful situations. These techniques have been extended to indicate the balance between orientations that the control room team has through the various levels of cognizance.« less
Wide range operation of advanced low NOx aircraft gas turbine combustors
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.; Butze, H. F.
1978-01-01
The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.
Site remediation techniques in India: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anomitra Banerjee; Miller Jothi
India is one of the developing countries operating site remediation techniques for the entire nuclear fuel cycle waste for the last three decades. In this paper we intend to provide an overview of remediation methods currently utilized at various hazardous waste sites in India, their advantages and disadvantages. Over the years the site remediation techniques have been well characterized and different processes for treatment, conditioning and disposal are being practiced. Remediation Methods categorized as biological, chemical or physical are summarized for contaminated soils and environmental waters. This paper covers the site remediation techniques implemented for treatment and conditioning of wastelandsmore » arising from the operation of nuclear power plant, research reactors and fuel reprocessing units. (authors)« less
The Gerbil Jar: A Basic Home Experience in Operant Conditioning.
ERIC Educational Resources Information Center
Plant, L.
1980-01-01
Explains how a teaching method such as allowing students to raise gerbils at home can encourage students to gain experience with the fundamental techniques of operant conditioning which are otherwise generally unavailable to students in large introductory psychology courses. (DB)
Surface acoustical intensity measurements on a diesel engine
NASA Technical Reports Server (NTRS)
Mcgary, M. C.; Crocker, M. J.
1980-01-01
The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.
Weiss, Emily; Wilson, Sandra
2003-01-01
A variety of nonhuman animals in zoo and research settings have been the subjects of classical and operant conditioning techniques. Much of the published work has focused on mammals, husbandry training, and veterinary issues. However, several zoos are training reptiles and birds for similar procedures, but there has been little of this work published. Using positive reinforcement techniques enabled the training of 2 male and 2 female Aldabra tortoises (Geochelone gigantea) to approach a target, hold steady on target, and stretch and hold for venipuncture. This article discusses training techniques, venipuncture sight, and future training.
NASA Astrophysics Data System (ADS)
Schmidt, S.; Heyns, P. S.; de Villiers, J. P.
2018-02-01
In this paper, a fault diagnostic methodology is developed which is able to detect, locate and trend gear faults under fluctuating operating conditions when only vibration data from a single transducer, measured on a healthy gearbox are available. A two-phase feature extraction and modelling process is proposed to infer the operating condition and based on the operating condition, to detect changes in the machine condition. Information from optimised machine and operating condition hidden Markov models are statistically combined to generate a discrepancy signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is processed and combined with statistical methods for automatic fault detection and localisation and to perform fault trending over time. The proposed methodology is validated on experimental data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the diagnostic methodology.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Novel method to avoid the open-sky condition in penetrating keratoplasty: covered cornea technique.
Arslan, Osman S; Unal, Mustafa; Arici, Ceyhun; Cicik, Erdoğan; Mangan, Serhat; Atalay, Eray
2014-09-01
The aim of this study was to present a novel technique to avoid the open-sky condition in pediatric and adult penetrating keratoplasty (PK). Seventy-two eyes of 65 infants and children and 44 eyes of 44 adult patients were operated on using this technique. After trephining the recipient cornea up to a depth of 50% to 70%, the anterior chamber was entered at 1 point. Then, only a 2 clock hour segment of the recipient button was incised, and this segment was sutured to the recipient rim with a single tight suture. The procedure was repeated until the entire recipient button was excised and resutured. The donor corneal button was sutured to the recipient corneal rim. The sutures between the recipient button and the rim were then cut off, and the recipient button was drawn out. None of the patients operated on with this technique developed complications related to the open-sky condition. Visual acuities, graft failure rates, and endothelial cell loss were comparable with the findings of studies performed for conventional PK. The technique described avoids the open-sky condition during the entire PK procedure. Endothelial cell loss rates are acceptable.
Guidelines for selecting matching techniques for ride sharing.
DOT National Transportation Integrated Search
1982-01-01
Several matching techniques for ride sharing are available to serve a wide range of operating conditions. There is a need for guidelines to aid ride-sharing agencies in Virginia in selecting the most appropriate matching technique. The objective of t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ihme, Matthias; Driscoll, James
2015-08-31
The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controllingmore » unstable flame regimes in HHC-combustion.« less
Lingua, Andrea; Marenchino, Davide; Nex, Francesco
2009-01-01
In the photogrammetry field, interest in region detectors, which are widely used in Computer Vision, is quickly increasing due to the availability of new techniques. Images acquired by Mobile Mapping Technology, Oblique Photogrammetric Cameras or Unmanned Aerial Vehicles do not observe normal acquisition conditions. Feature extraction and matching techniques, which are traditionally used in photogrammetry, are usually inefficient for these applications as they are unable to provide reliable results under extreme geometrical conditions (convergent taking geometry, strong affine transformations, etc.) and for bad-textured images. A performance analysis of the SIFT technique in aerial and close-range photogrammetric applications is presented in this paper. The goal is to establish the suitability of the SIFT technique for automatic tie point extraction and approximate DSM (Digital Surface Model) generation. First, the performances of the SIFT operator have been compared with those provided by feature extraction and matching techniques used in photogrammetry. All these techniques have been implemented by the authors and validated on aerial and terrestrial images. Moreover, an auto-adaptive version of the SIFT operator has been developed, in order to improve the performances of the SIFT detector in relation to the texture of the images. The Auto-Adaptive SIFT operator (A(2) SIFT) has been validated on several aerial images, with particular attention to large scale aerial images acquired using mini-UAV systems.
Multisensor fusion for the detection of mines and minelike targets
NASA Astrophysics Data System (ADS)
Hanshaw, Terilee
1995-06-01
The US Army's Communications and Electronics Command through the auspices of its Night Vision and Electronics Sensors Directorate (CECOM-NVESD) is actively applying multisensor techniques to the detection of mine targets. This multisensor research results from the 'detection activity' with its broad range of operational conditions and targets. Multisensor operation justifies significant attention by yielding high target detection and low false alarm statistics. Furthermore, recent advances in sensor and computing technologies make its practical application realistic and affordable. The mine detection field-of-endeavor has since its WWI baptismal investigated the known spectra for applicable mine observation phenomena. Countless sensors, algorithms, processors, networks, and other techniques have been investigated to determine candidacy for mine detection. CECOM-NVESD efforts have addressed a wide range of sensors spanning the spectrum from gravity field perturbations, magentic field disturbances, seismic sounding, electromagnetic fields, earth penetrating radar imagery, and infrared/visible/ultraviolet surface imaging technologies. Supplementary analysis has considered sensor candidate applicability by testing under field conditions (versus laboratory), in determination of fieldability. As these field conditions directly effect the probability of detection and false alarms, sensor employment and design must be considered. Consequently, as a given sensor's performance is influenced directly by the operational conditions, tradeoffs are necessary. At present, mass produced and fielded mine detection techniques are limited to those incorporating a single sensor/processor methodology such as, pulse induction and megnetometry, as found in hand held detectors. The most sensitive fielded systems can detect minute metal components in small mine targets but result in very high false alarm rates reducing velocity in operation environments. Furthermore, the actual speed of advance for the entire mission (convoy, movement to engagement, etc.) is determined by the level of difficulty presented in clearance or avoidance activities required in response to the potential 'targets' marked throughout a detection activity. Therefore the application of fielded hand held systems to convoy operations in clearly impractical. CECOM-NVESD efforts are presently seeking to overcome these operational limitations by substantially increasing speed of detection while reducing the false alarm rate through the application of multisensor techniques. The CECOM-NVESD application of multisensor techniques through integration/fusion methods will be defined in this paper.
Differential thermal voltammetry for tracking of degradation in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wu, Billy; Yufit, Vladimir; Merla, Yu; Martinez-Botas, Ricardo F.; Brandon, Nigel P.; Offer, Gregory J.
2015-01-01
Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.
Decomposition Technique for Remaining Useful Life Prediction
NASA Technical Reports Server (NTRS)
Saha, Bhaskar (Inventor); Goebel, Kai F. (Inventor); Saxena, Abhinav (Inventor); Celaya, Jose R. (Inventor)
2014-01-01
The prognostic tool disclosed here decomposes the problem of estimating the remaining useful life (RUL) of a component or sub-system into two separate regression problems: the feature-to-damage mapping and the operational conditions-to-damage-rate mapping. These maps are initially generated in off-line mode. One or more regression algorithms are used to generate each of these maps from measurements (and features derived from these), operational conditions, and ground truth information. This decomposition technique allows for the explicit quantification and management of different sources of uncertainty present in the process. Next, the maps are used in an on-line mode where run-time data (sensor measurements and operational conditions) are used in conjunction with the maps generated in off-line mode to estimate both current damage state as well as future damage accumulation. Remaining life is computed by subtracting the instance when the extrapolated damage reaches the failure threshold from the instance when the prediction is made.
Experimental investigations of helium cryotrapping by argon frost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, A.; Perinic, D.; Murdoch, D.
1992-03-01
At the Karlsruhe Nuclear Research Centre (KfK) cryopumping techniques are being investigated by which the gaseous exhausts from the NET/ITER reactor can be pumped out during the burn-and dwell-times. Cryosorption and cryotrapping are techniques which are suitable for this task. It is the target of the investigations to test the techniques under NET/ITER conditions and to determine optimum design data for a prototype. They involve measurement of the pumping speed as a function of the gas composition, gas flow and loading condition of the pump surfaces. The following parameters are subjected to variations: Ar/He ratio, specific helium volume flow rate,more » cryosurface temperature, process gas composition, impurities in argon trapping gas, three-stage operation and two-stage operation. This paper is a description of the experiments on argon trapping techniques started in 1990. Eleven tests as well as the results derived from them are described.« less
[Plastic surgery treatment techniques for interdisciplinary therapy of pressure sores].
Müller, Karin; Becker, Frederic; Pfau, Matthias; Werdin, Frank
2017-06-01
Pressure sores in geriatric patients represent a challenge for all disciplines involved in the treatment process; however, the prerequisite for successful treatment is the elaboration of an interdisciplinary treatment concept. The treatment goals should be adapted to the individual needs of the patients including the life situation, general condition and local findings. In addition to general basic operative techniques, such as wound cleansing and conditioning, plastic and reconstructive surgery provides a wide range of highly specialized operative techniques for the treatment of these patients by which a definitive defect coverage can be achieved. The aim of this article is to raise awareness for these complex and highly specialized procedures for all disciplines participating in the treatment in order to improve the interdisciplinary cooperation and ultimately the quality of treatment.
Tapper, Anna-Maija; Hannola, Mikko; Zeitlin, Rainer; Isojärvi, Jaana; Sintonen, Harri; Ikonen, Tuija S
2014-06-01
In order to assess the effectiveness and costs of robot-assisted hysterectomy compared with conventional techniques we reviewed the literature separately for benign and malignant conditions, and conducted a cost analysis for different techniques of hysterectomy from a hospital economic database. Unlimited systematic literature search of Medline, Cochrane and CRD databases produced only two randomized trials, both for benign conditions. For the outcome assessment, data from two HTA reports, one systematic review, and 16 original articles were extracted and analyzed. Furthermore, one cost modelling and 13 original cost studies were analyzed. In malignant conditions, less blood loss, fewer complications and a shorter hospital stay were considered as the main advantages of robot-assisted surgery, like any mini-invasive technique when compared to open surgery. There were no significant differences between the techniques regarding oncological outcomes. When compared to laparoscopic hysterectomy, the main benefit of robot-assistance was a shorter learning curve associated with fewer conversions but the length of robotic operation was often longer. In benign conditions, no clinically significant differences were reported and vaginal hysterectomy was considered the optimal choice when feasible. According to Finnish data, the costs of robot-assisted hysterectomies were 1.5-3 times higher than the costs of conventional techniques. In benign conditions the difference in cost was highest. Because of expensive disposable supplies, unit costs were high regardless of the annual number of robotic operations. Hence, in the current distribution of cost pattern, economical effectiveness cannot be markedly improved by increasing the volume of robotic surgery. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
25 CFR 142.6 - How are the rates and conditions for the Alaska Resupply Operation established?
Code of Federal Regulations, 2010 CFR
2010-04-01
... Resupply Operation established? The Manager must develop tariff rates using the best modeling techniques available to ensure the most economical service to the Alaska Natives, Indian or Native owned businesses...
Qiu, Hongyan; Li, Li; Wu, Shangchun; Liang, Hong; Yuan, Wei; He, Yingqin
2011-03-01
To compare the specific effects of 2 female sterilization methods: the modified Uchida technique and the application of silver clips. A total of 2198 women living in rural areas who were still of reproductive age but opting for sterilization were enrolled. The participants were randomly divided into 2 groups, and underwent sterilization by either modified Uchida technique or silver clips. Information on acceptability, operation conditions, effectiveness, adverse effects, and complaints was collected 3, 6, and 12 months after the procedure. No significant difference in effectiveness, adverse effects or chief complaints between the 2 procedures was found. Differences in operative outcome, bleeding volume during the procedure, and operation time were found. A shorter operation time and less bleeding for the silver clip method indicated that female sterilization by this technique was as safe as that by modified Uchida technique. Copyright © 2010 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Validation of Aircraft Noise Prediction Models at Low Levels of Exposure
NASA Technical Reports Server (NTRS)
Page, Juliet A.; Hobbs, Christopher M.; Plotkin, Kenneth J.; Stusnick, Eric; Shepherd, Kevin P. (Technical Monitor)
2000-01-01
Aircraft noise measurements were made at Denver International Airport for a period of four weeks. Detailed operational information was provided by airline operators which enabled noise levels to be predicted using the FAA's Integrated Noise Model. Several thrust prediction techniques were evaluated. Measured sound exposure levels for departure operations were found to be 4 to 10 dB higher than predicted, depending on the thrust prediction technique employed. Differences between measured and predicted levels are shown to be related to atmospheric conditions present at the aircraft altitude.
Free-piston driver performance characterisation using experimental shock speeds through helium
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; James, C. M.; Morgan, R. G.
2015-03-01
Tuned free-piston driver operation involves configuring the driver to produce a relatively steady blast of driver gas over the critical time scales of the experiment. For the purposes of flow condition development and parametric studies, it is useful to establish some average working values of the driver pressure and temperature for a given driver operating condition. However, in practise, these averaged values need to produce sufficiently accurate estimates of performance. In this study, two tuned driver conditions in the X2 expansion tube have been used to generate shock waves through a helium test gas. The measured shock speeds have then been used to calculate the effective driver gas pressure and temperature after diaphragm rupture. Since the driver gas is typically helium, or a mixture of helium and argon, and the test gas is also helium, ideal gas assumptions can be made without significant loss of accuracy. The technique is applicable to tuned free-piston drivers with a simple area change, as well as those using orifice plates. It is shown that this technique can be quickly used to establish average working driver gas properties which produce very good estimates of actual driven shock speed, across a wide range of operating conditions. The use of orifice plates to control piston dynamics at high driver gas sound speeds is also discussed in the paper, and a simple technique for calculating the restriction required to modify an established safe condition for use with lighter gases, such as pure helium, is presented.
Method for assessing motor insulation on operating motors
Kueck, John D.; Otaduy, Pedro J.
1997-01-01
A method for monitoring the condition of electrical-motor-driven devices. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques.
NASA Astrophysics Data System (ADS)
Delvecchio, S.; Bonfiglio, P.; Pompoli, F.
2018-01-01
This paper deals with the state-of-the-art strategies and techniques based on vibro-acoustic signals that can monitor and diagnose malfunctions in Internal Combustion Engines (ICEs) under both test bench and vehicle operating conditions. Over recent years, several authors have summarized what is known in critical reviews mainly focused on reciprocating machines in general or on specific signal processing techniques: no attempts to deal with IC engine condition monitoring have been made. This paper first gives a brief summary of the generation of sound and vibration in ICEs in order to place further discussion on fault vibro-acoustic diagnosis in context. An overview of the monitoring and diagnostic techniques described in literature using both vibration and acoustic signals is also provided. Different faulty conditions are described which affect combustion, mechanics and the aerodynamics of ICEs. The importance of measuring acoustic signals, as opposed to vibration signals, is due since the former seem to be more suitable for implementation on on-board monitoring systems in view of their non-intrusive behaviour, capability in simultaneously capturing signatures from several mechanical components and because of the possibility of detecting faults affecting airborne transmission paths. In view of the recent needs of the industry to (-) optimize component structural durability adopting long-life cycles, (-) verify the engine final status at the end of the assembly line and (-) reduce the maintenance costs monitoring the ICE life during vehicle operations, monitoring and diagnosing system requests are continuously growing up. The present review can be considered a useful guideline for test engineers in understanding which types of fault can be diagnosed by using vibro-acoustic signals in sufficient time in both test bench and operating conditions and which transducer and signal processing technique (of which the essential background theory is here reported) could be considered the most reliable and informative to be implemented for the fault in question.
Value centric approaches to the design, operations and maintenance of wind turbines
NASA Astrophysics Data System (ADS)
Khadabadi, Madhur Aravind
Wind turbine maintenance is emerging as an unexpectedly high component of turbine operating cost, and there is an increasing interest in managing this cost. This thesis presents an alternative view of maintenance as a value-driver, and develops an optimization algorithm to evaluate the value delivered by different maintenance techniques. I view maintenance as an operation that moves the turbine to an improved state in which it can generate more power and, thus, earn more revenue. To implement this approach, I model the stochastic deterioration of the turbine in two dimensions: the deterioration rate, and the extent of deterioration, and then use maintenance to improve the state of the turbine. The value of the turbine is the difference between the revenue from to the power generation and the costs incurred in operation and maintenance. With a focus on blade deterioration, I evaluate the value delivered by implementing two different maintenance schemes, predictive maintenance and scheduled maintenance. An example of predictive maintenance technique is the use of Condition Monitoring Systems to precisely detect deterioration. I model Condition Monitoring System (CMS) of different degrees of fidelity, where a higher fidelity CMS would allow the blade state to be determined with a higher precision. The same model is then applied for the scheduled maintenance technique. The improved state information obtained from these techniques is then used to derive an optimal maintenance strategy. The difference between the value of the turbine with and without the inspection type can be interpreted as the value of the inspection. The results indicate that a higher fidelity (and more expensive) inspection method does not necessarily yield the highest value, and, that there is an optimal level of fidelity that results in maximum value. The results also aim to inform the operator of the impact of regional parameters such as wind speed, variance and maintenance costs to the optimal maintenance strategy. The contributions of this work are twofold. First, I present a practical approach to wind turbine valuation that takes operating and market conditions into account. This work should therefore be useful to wind farm operators, investors and decision makers. Second, I show how the value of a maintenance scheme can be explicitly assessed for different conditions.
Self-Modification Technique for the Control of Eating Behavior for the Visually Handicapped.
ERIC Educational Resources Information Center
Snoy, Mary T.; van Benten, Letitia
1978-01-01
A ten-week study was done of four visually handicapped overweight adolescents (ages 15-19 years) in a residential school to evaluate the efficacy of an operant conditioning technique designed to promote weight loss by altering eating habits. (Author/DLS)
Finding Mutual Exclusion Invariants in Temporal Planning Domains
NASA Technical Reports Server (NTRS)
Bernardini, Sara; Smith, David E.
2011-01-01
We present a technique for automatically extracting temporal mutual exclusion invariants from PDDL2.2 planning instances. We first identify a set of invariant candidates by inspecting the domain and then check these candidates against properties that assure invariance. If these properties are violated, we show that it is sometimes possible to refine a candidate by adding additional propositions and turn it into a real invariant. Our technique builds on other approaches to invariant synthesis presented in the literature, but departs from their limited focus on instantaneous discrete actions by addressing temporal and numeric domains. To deal with time, we formulate invariance conditions that account for both the entire structure of the operators (including the conditions, rather than just the effects) and the possible interactions between operators. As a result, we construct a technique that is not only capable of identifying invariants for temporal domains, but is also able to find a broader set of invariants for non-temporal domains than the previous techniques.
The optimization problems of CP operation
NASA Astrophysics Data System (ADS)
Kler, A. M.; Stepanova, E. L.; Maximov, A. S.
2017-11-01
The problem of enhancing energy and economic efficiency of CP is urgent indeed. One of the main methods for solving it is optimization of CP operation. To solve the optimization problems of CP operation, Energy Systems Institute, SB of RAS, has developed a software. The software makes it possible to make optimization calculations of CP operation. The software is based on the techniques and software tools of mathematical modeling and optimization of heat and power installations. Detailed mathematical models of new equipment have been developed in the work. They describe sufficiently accurately the processes that occur in the installations. The developed models include steam turbine models (based on the checking calculation) which take account of all steam turbine compartments and regeneration system. They also enable one to make calculations with regenerative heaters disconnected. The software for mathematical modeling of equipment and optimization of CP operation has been developed. It is based on the technique for optimization of CP operating conditions in the form of software tools and integrates them in the common user interface. The optimization of CP operation often generates the need to determine the minimum and maximum possible total useful electricity capacity of the plant at set heat loads of consumers, i.e. it is necessary to determine the interval on which the CP capacity may vary. The software has been applied to optimize the operating conditions of the Novo-Irkutskaya CP of JSC “Irkutskenergo”. The efficiency of operating condition optimization and the possibility for determination of CP energy characteristics that are necessary for optimization of power system operation are shown.
Review of jet engine emissions
NASA Technical Reports Server (NTRS)
Grobman, J. S.
1972-01-01
A review of the emission characteristics of jet engines is presented. The sources and concentrations of the various constituents in the engine exhaust and the influence of engine operating conditions on emissions are discussed. Cruise emissions to be expected from supersonic engines are compared with emissions from subsonic engines. The basic operating principles of the gas turbine combustor are reviewed together with the effects of combustor operating conditions on emissions. The performance criteria that determine the design of gas turbine combustors are discussed. Combustor design techniques are considered that may be used to reduce emissions.
Method for assessing motor insulation on operating motors
Kueck, J.D.; Otaduy, P.J.
1997-03-18
A method for monitoring the condition of electrical-motor-driven devices is disclosed. The method is achieved by monitoring electrical variables associated with the functioning of an operating motor, applying these electrical variables to a three phase equivalent circuit and determining non-symmetrical faults in the operating motor based upon symmetrical components analysis techniques. 15 figs.
NASA Technical Reports Server (NTRS)
Polk, James D.; Parazynski, Scott; Kelly, Scott; Hurst, Victor, IV; Doerr, Harold K.
2007-01-01
Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present themselves in an ideal manner.
AGARD Flight Test Techniques Series. Volume 8. Flight Testing under Extreme Environmental Conditions
1988-01-01
gravity control system operation. The overall objective of fuel system tests is to determine whether the system functions properly at all conditions both... gravity . 3.3.4 Hydraulic System The functional adequacy of the hydraulic system should be evaluated by monitoring operating system temperatures and...mechanical or gravity function of the crew ladder should be evaluated. The ladder should be exposed to freasing rain and icing to evaluate the non
Application of AI techniques to blast furnace operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro
1995-10-01
It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination ofmore » fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.« less
Operator Workload: Comprehensive Review and Evaluation of Operator Workload Methodologies
1989-06-01
chocking for system failures or emergency conditions. It seems fair to characterize the changes In operator functions as more mental or cognitive In nature ...that the operator, the system hardware, and the evMronment all interact in affecting performance and this Interaction can change the nature of the task...a) classifying the nature of the operator tasks and (b) classifying workload assessment techniques. Task taxonomies are useful because some workload
Space Shuttle Program: STS-1 Medical Report
NASA Technical Reports Server (NTRS)
1981-01-01
The necessity for developing medical standards addressing individual classes of Shuttle crew positions is discussed. For the U.S. manned program the conclusion of the Apollo era heralded the end of water recovery operations and the introduction of land-based medical operations. This procedural change marked a significant departure from the accepted postflight medical recovery and evaluation techniques. All phases of the missions required careful re-evaluation, identification of potential impact on preexisting medical operational techniques, and development of new methodologies which were carefully evaluated and tested under simulated conditions. Significant coordination was required between the different teams involved in medical operations. Additional dimensions were added to the concepts of medical operations, by the introduction of different toxic substances utilized by the Space Transportation Systems especially during ground operations.
NASA Astrophysics Data System (ADS)
Sait, Abdulrahman S.
This dissertation presents a reliable technique for monitoring the condition of rotating machinery by applying instantaneous angular speed (IAS) analysis. A new analysis of the effects of changes in the orientation of the line of action and the pressure angle of the resultant force acting on gear tooth profile of spur gear under different levels of tooth damage is utilized. The analysis and experimental work discussed in this dissertation provide a clear understating of the effects of damage on the IAS by analyzing the digital signals output of rotary incremental optical encoder. A comprehensive literature review of state of the knowledge in condition monitoring and fault diagnostics of rotating machinery, including gearbox system is presented. Progress and new developments over the past 30 years in failure detection techniques of rotating machinery including engines, bearings and gearboxes are thoroughly reviewed. This work is limited to the analysis of a gear train system with gear tooth surface faults utilizing angular motion analysis technique. Angular motion data were acquired using an incremental optical encoder. Results are compared to a vibration-based technique. The vibration data were acquired using an accelerometer. The signals were obtained and analyzed in the phase domains using signal averaging to determine the existence and position of faults on the gear train system. Forces between the mating teeth surfaces are analyzed and simulated to validate the influence of the presence of damage on the pressure angle and the IAS. National Instruments hardware is used and NI LabVIEW software code is developed for real-time, online condition monitoring systems and fault detection techniques. The sensitivity of optical encoders to gear fault detection techniques is experimentally investigated by applying IAS analysis under different gear damage levels and different operating conditions. A reliable methodology is developed for selecting appropriate testing/operating conditions of a rotating system to generate an alarm system for damage detection.
Stochastic subspace identification for operational modal analysis of an arch bridge
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien
2012-04-01
In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.
NASA Astrophysics Data System (ADS)
Bermúdez, Vicente; Pastor, José V.; López, J. Javier; Campos, Daniel
2014-06-01
A study of soot measurement deviation using a diffusion charger sensor with three dilution ratios was conducted in order to obtain an optimum setting that can be used to obtain accurate measurements in terms of soot mass emitted by a light-duty diesel engine under transient operating conditions. The paper includes three experimental phases: an experimental validation of the measurement settings in steady-state operating conditions; evaluation of the proposed setting under the New European Driving Cycle; and a study of correlations for different measurement techniques. These correlations provide a reliable tool for estimating soot emission from light extinction measurement or from accumulation particle mode concentration. There are several methods and correlations to estimate soot concentration in the literature but most of them were assessed for steady-state operating points. In this case, the correlations are obtained by more than 4000 points measured in transient conditions. The results of the new two correlations, with less than 4% deviation from the reference measurement, are presented in this paper.
NASA Astrophysics Data System (ADS)
Lobanov, D. S.; Slovikov, S. V.
2017-01-01
The results of experimental investigations of unidirectional composites based on basalt fibers and different marks of epoxy resins are presented. Uniaxial tensile tests were carried out using a specimen fixation technique simulating the operation conditions of structures. The mechanical properties of the basalt-fiber-reinforced plastics (BFRPs) were determined. The diagrams of loading and deformation of BFRP specimens were obtain. The formulations of the composites with the highest mechanical properties were revealed.
NASA Technical Reports Server (NTRS)
Silsby, Norman S
1955-01-01
Statistical measurements of contact conditions have been obtained, by means of a special photographic technique, of 478 landings of present-day transport airplanes made during routine daylight operations in clear air at the Washington National Airport. From the measurements, sinking speeds, rolling velocities, bank angles, and horizontal speeds at the instant before contact have been evaluated and a limited statistical analysis of the results has been made and is reported in this report.
Role of failure-mechanism identification in accelerated testing
NASA Technical Reports Server (NTRS)
Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.
1993-01-01
Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.
Planning and supervision of reactor defueling using discrete event techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, H.E.; Imel, G.R.; Houshyar, A.
1995-12-31
New fuel handling and conditioning activities for the defueling of the Experimental Breeder Reactor II are being performed at Argonne National Laboratory. Research is being conducted to investigate the use of discrete event simulation, analysis, and optimization techniques to plan, supervise, and perform these activities in such a way that productivity can be improved. The central idea is to characterize this defueling operation as a collection of interconnected serving cells, and then apply operational research techniques to identify appropriate planning schedules for given scenarios. In addition, a supervisory system is being developed to provide personnel with on-line information on themore » progress of fueling tasks and to suggest courses of action to accommodate changing operational conditions. This paper provides an introduction to the research in progress at ANL. In particular, it briefly describes the fuel handling configuration for reactor defueling at ANL, presenting the flow of material from the reactor grid to the interim storage location, and the expected contributions of this work. As an example of the studies being conducted for planning and supervision of fuel handling activities at ANL, an application of discrete event simulation techniques to evaluate different fuel cask transfer strategies is given at the end of the paper.« less
Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation
NASA Technical Reports Server (NTRS)
Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani
2012-01-01
Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.
Comparison Tools for Assessing the Microgravity Environment of Missions, Carriers and Conditions
NASA Technical Reports Server (NTRS)
DeLombard, Richard; McPherson, Kevin; Moskowitz, Milton; Hrovat, Ken
1997-01-01
The Principal Component Spectral Analysis and the Quasi-steady Three-dimensional Histogram techniques provide the means to describe the microgravity acceleration environment of an entire mission on a single plot. This allows a straight forward comparison of the microgravity environment between missions, carriers, and conditions. As shown in this report, the PCSA and QTH techniques bring both the range and median of the microgravity environment onto a single page for an entire mission or another time period or condition of interest. These single pages may then be used to compare similar analyses of other missions, time periods or conditions. The PCSA plot is based on the frequency distribution of the vibrational energy and is normally used for an acceleration data set containing frequencies above the lowest natural frequencies of the vehicle. The QTH plot is based on the direction and magnitude of the acceleration and is normally used for acceleration data sets with frequency content less than 0.1 Hz. Various operating conditions are made evident by using PCSA and QTH plots. Equipment operating either full or part time with sufficient magnitude to be considered a disturbance is very evident as well as equipment contributing to the background acceleration environment. A source's magnitude and/or frequency variability is also evident by the source's appearance on a PCSA plot. The PCSA and QTH techniques are valuable tools for extracting useful information from acceleration data taken over large spans of time. This report shows that these techniques provide a tool for comparison between different sets of microgravity acceleration data, for example different missions, different activities within a mission, and/or different attitudes within a mission. These techniques, as well as others, may be employed in order to derive useful information from acceleration data.
Robust Fault Diagnosis in Electric Drives Using Machine Learning
2004-09-08
detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.
Validation of helicopter noise prediction techniques
NASA Technical Reports Server (NTRS)
Succi, G. P.
1981-01-01
The current techniques of helicopter rotor noise prediction attempt to describe the details of the noise field precisely and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The purpose of this paper is to review those techniques in general and the Farassat/Nystrom analysis in particular. The predictions of the Farassat/Nystrom noise computer program, using both measured and calculated blade surface pressure data, are compared to measured noise level data. This study is based on a contract from NASA to Bolt Beranek and Newman Inc. with measured data from the AH-1G Helicopter Operational Loads Survey flight test program supplied by Bell Helicopter Textron.
A Comparison of Several Techniques to Assign Heights to Cloud Tracers.
NASA Astrophysics Data System (ADS)
Nieman, Steven J.; Schmetz, Johannes; Menzel, W. Paul
1993-09-01
Satellite-derived cloud-motion vector (CMV) production has been troubled by inaccurate height assignment of cloud tracers, especially in thin semitransparent clouds. This paper presents the results of an intercomparison of current operational height assignment techniques. Currently, heights are assigned by one of three techniques when the appropriate spectral radiance measurements are available. The infrared window (IRW) technique compares measured brightness temperatures to forecast temperature profiles and thus infers opaque cloud levels. In semitransparent or small subpixel clouds, the carbon dioxide (CO2) technique uses the ratio of radiances from different layers of the atmosphere to infer the correct cloud height. In the water vapor (H2O) technique, radiances influenced by upper-tropospheric moisture and IRW radiances are measured for several pixels viewing different cloud amounts, and their linear relationship is used to extrapolate the correct cloud height. The results presented in this paper suggest that the H2O technique is a viable alternative to the CO2 technique for inferring the heights of semitransparent cloud elements. This is important since future National Environmental Satellite, Data, and Information Service (NESDIS) operations will have to rely on H20-derived cloud-height assignments in the wind field determinations with the next operational geostationary satellite. On a given day, the heights from the two approaches compare to within 60 110 hPa rms; drier atmospheric conditions tend to reduce the effectiveness of the H2O technique. By inference one can conclude that the present height algorithms used operationally at NESDIS (with the C02 technique) and at the European Satellite Operations Center (ESOC) (with their version of the H20 technique) are providing similar results. Sample wind fields produced with the ESOC and NESDIS algorithms using Meteosat-4 data show good agreement.
Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2014-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
Decision support systems and methods for complex networks
Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA
2012-02-28
Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.
2009-09-01
this information supports the decison - making process as it is applied to the management of risk. 2. Operational Risk Operational risk is the threat... reasonability . However, to make a software system fault tolerant, the system needs to recognize and fix a system state condition. To detect a fault, a fault...Tracking ..........................................51 C. DECISION- MAKING PROCESS................................................................51 1. Risk
Chen, Yu-Cheng; Tsai, Perng-Jy; Mou, Jin-Luh; Kuo, Yu-Chieh; Wang, Shih-Min; Young, Li-Hao; Wang, Ya-Fen
2012-09-01
In this study, the cost-benefit analysis technique was developed and incorporated into the Taguchi experimental design to determine the optimal operation combination for the purpose of providing a technique solution for controlling both emissions of PCDD/Fs and PAHs, and increasing both the sinter productivity (SP) and sinter strength (SS) simultaneously. Four operating parameters, including the water content, suction pressure, bed height, and type of hearth layer, were selected and all experimental campaigns were conducted on a pilot-scale sinter pot to simulate various sintering operating conditions of a real-scale sinter plant. The resultant optimal combination could reduce the total carcinogenic emissions arising from both emissions of PCDD/Fs and PAHs by 49.8%, and increase the sinter benefit associated with the increase in both SP and SS by 10.1%, as in comparison with the operation condition currently used in the real plant. The ANOVA results indicate that the suction pressure was the most dominant parameter in determining the optimal operation combination. The above result was theoretically plausible since the higher suction pressure provided more oxygen contents leading to the decrease in both PCDD/F and PAH emissions. But it should be noted that the results obtained from the present study were based on pilot scale experiments, conducting confirmation tests in a real scale plant are still necessary in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Forecasting of the electrical actuators condition using stator’s current signals
NASA Astrophysics Data System (ADS)
Kruglova, T. N.; Yaroshenko, I. V.; Rabotalov, N. N.; Melnikov, M. A.
2017-02-01
This article describes a forecasting method for electrical actuators realized through the combination of Fourier transformation and neural network techniques. The method allows finding the value of diagnostic functions in the iterating operating cycle and the number of operational cycles in time before the BLDC actuator fails. For forecasting of the condition of the actuator, we propose a hierarchical structure of the neural network aiming to reduce the training time of the neural network and improve estimation accuracy.
LOCSET Phase Locking: Operation, Diagnostics, and Applications
NASA Astrophysics Data System (ADS)
Pulford, Benjamin N.
The aim of this dissertation is to discuss the theoretical and experimental work recently done with the Locking of Optical Coherence via Single-detector Electronic-frequency Tagging (LOCSET) phase locking technique developed and employed here are AFRL. The primary objectives of this effort are to detail the fundamental operation of the LOCSET phase locking technique, recognize the conditions in which the LOCSET control electronics optimally operate, demonstrate LOCSET phase locking with higher channel counts than ever before, and extend the LOCSET technique to correct for low order, atmospherically induced, phase aberrations introduced to the output of a tiled array of coherently combinable beams. The experimental work performed for this effort resulted in the coherent combination of 32 low power optical beams operating with unprecedented LOCSET phase error performance of lambda/71 RMS in a local loop beam combination configuration. The LOCSET phase locking technique was also successfully extended, for the first time, into an Object In the Loop (OIL) configuration by utilizing light scattered off of a remote object as the optical return signal for the LOCSET phase control electronics. Said LOCSET-OIL technique is capable of correcting for low order phase aberrations caused by atmospheric turbulence disturbances applied across a tiled array output.
Classification of air quality using fuzzy synthetic multiplication.
Abdullah, Lazim; Khalid, Noor Dalina
2012-11-01
Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
NASA Astrophysics Data System (ADS)
Kim, S.; Adams, D. E.; Sohn, H.
2013-01-01
As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.
Risk Management Technique for design and operation of facilities and equipment
NASA Technical Reports Server (NTRS)
Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.
1975-01-01
The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.
Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions
NASA Technical Reports Server (NTRS)
Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.
1995-01-01
The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.
2000-01-01
Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.
Design study for a high reliability five-year spacecraft tape transport
NASA Technical Reports Server (NTRS)
Benn, G. S. L.; Eshleman, R. L.
1971-01-01
Following the establishment of the overall transport concept, a study of all of the life limiting constraints associated with the transport were analyzed using modeling techniques. These design techniques included: (1) a response analysis from which the performance of the transport could be determined under operating conditions for a variety of conceptual variations both in a new and aged condition; (2) an analysis of a double cone guidance technique which yielded an optimum design for maximum guidance with minimum tape degradation; (3) an analysis of the tape pack design to eliminate spoking caused by negative tangential stress within the pack; (4) an evaluation of the stress levels experienced by the magnetic tape throughout the system; (5) a general review of the bearing and lubrication technology as applied to satellite recorders and hence the recommendation for using standard load carrying antifriction ball bearings; and (6) a kinetic analysis to determine the change in kinetic properties of the transport during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delpassand, M.S.
The power section of a mud driven progressing cavity drill motors consists of a steel rotor shaped with an external helix rotating within a stationary tube with a molded helical elastomeric lining (stator). Operating temperature of the elastomer lining is an important parameter that affects the stator life. Motor operating conditions such as down hole temperature, torque, differential pressure, and speed determine the elastomer temperature. This paper presents an analysis technique to predict stator elastomer temperature as a function of the motor`s operating parameters. A non-linear finite element analysis technique is used to predict the stator temperature. Physical and mechanicalmore » properties of the elastomer are measured, using laboratory equipment such as Monsanto`s RPA2000 dynamic analyzer and BFGoodrich model (II) flexometer. Boundary conditions of the finite element model are defined based on the down hole temperature, differential pressure, and the motor`s speed. Results of the finite element analysis are compared with laboratory test data to verify the accuracy of the analysis.« less
Elawwad, Abdelsalam; Sandner, Hendrik; Kappelmeyer, Uwe; Koeser, Heinz
2013-01-01
The effectiveness of three operational strategies for maintaining nitrifiers in bench-scale, aerated, submerged fixed-bed biofilm reactors (SFBBRs) during long-term starvation at 20 degrees C were evaluated. The operational strategies were characterized by the resulting oxidation-reduction potential (ORP) in the SFBBRs. The activity rates of the nitrifiers were measured and the activity decay was expressed by half-life times. It was found that anoxic and alternating anoxic/aerobic conditions were the best ways to preserve ammonia-oxidizing bacteria (AOB) during long starvation periods and resulted in half-life times of up to 34 and 28 days, respectively. Extended anaerobic conditions caused the half-life for AOB to decrease to 21 days. In comparison, the activity decay of nitrite-oxidizing bacteria (NOB) tended to be slightly faster. The activity of AOB biofilms that were kept for 97 days under anoxic conditions could be completely recovered in less than one week, while over 4 weeks was needed for AOB kept under anaerobic conditions. NOB were more sensitive to starvation and required longer recovery periods than AOB. For complete recovery, NOB needed approximately 7 weeks, regardless of the starvation conditions applied. Using the fluorescence in situ hybridization (FISH) technique, Nitrospira was detected as the dominant NOB genus. Among the AOB, the terminal restriction fragment length polymorphism (TRFLP) technique showed that during starvation and recovery periods, the relative frequency of species shifted to Nitrosomonas europaea/eutropha, regardless of the starvation condition. The consequences of these findings for the operation of SFBBRs under low-load and starvation conditions are discussed.
CERTS Microgrid Laboratory Test Bed - PIER Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph H.; Eto, Joseph H.; Lasseter, Robert
2008-07-25
The objective of the CERTS Microgrid Laboratory Test Bed project was to enhance the ease of integrating small energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of small generating sources. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation; 2) an approach to electrical protection within the microgrid that does not depend on highmore » fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications. The techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers 1547 and power quality requirements. The electrical protections system was able to distinguish between normal and faulted operation. The controls were found to be robust and under all conditions, including difficult motor starts. The results from these test are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations involving microgrids that involve one or mroe of the CERTS Microgrid concepts.« less
Workload: Measurement and Management
NASA Technical Reports Server (NTRS)
Gore, Brian Francis; Casner, Stephen
2010-01-01
Poster: The workload research project has as its task to survey the available literature on: (1) workload measurement techniques; and (2) the effects of workload on operator performance. The first set of findings provides practitioners with a collection of simple-to-use workload measurement techniques along with characterizations of the kinds of tasks each technique has been shown reliably address. This allows design practitioners to select and use the most appropriate techniques for the task(s) at hand. The second set of findings provides practitioners with the guidance they need to design for appropriate kinds and amounts of workload across all tasks for which the operator is responsible. This guidance helps practitioners design systems and procedures that ensure appropriate levels of engagement across all tasks, and avoid designs and procedures that result in operator boredom, complacency, loss of awareness, undue levels of stress, or skill atrophy that can result from workload that distracts operators from the tasks they perform and monitor, workload levels that are too low, too high, or too consistent or predictable. Only those articles that were peer reviewed, long standing and generally accepted in the field, and applicable to a relevant range of conditions in a select domain of interest, in analogous "extreme" environments to those in space were included. In addition, all articles were reviewed and evaluated on uni-dimensional and multi-dimensional considerations. Casner & Gore also examined the notion of thresholds and the conditions that may benefit mostly from the various methodological approaches. Other considerations included whether the tools would be suitable for guiding a requirement-related and design-related question. An initial review of over 225 articles was conducted and entered into an EndNote database. The reference list included a range of conditions in the domain of interest (subjective/objective measures), the seminal works in workload, as well as summary works
Effects of Reinforcement Schedule on Facilitation of Operant Extinction by Chlordiazepoxide
ERIC Educational Resources Information Center
Leslie, Julian C.; Shaw, David; Gregg, Gillian; McCormick, Nichola; Reynolds, David S.; Dawson, Gerard R.
2005-01-01
Learning and memory are central topics in behavioral neuroscience, and inbred mice strains are widely investigated. However, operant conditioning techniques are not as extensively used in this field as they should be, given the effectiveness of the methodology of the experimental analysis of behavior. In the present study, male C57Bl/6 mice,…
NASA Astrophysics Data System (ADS)
Lucifredi, A.; Mazzieri, C.; Rossi, M.
2000-05-01
Since the operational conditions of a hydroelectric unit can vary within a wide range, the monitoring system must be able to distinguish between the variations of the monitored variable caused by variations of the operation conditions and those due to arising and progressing of failures and misoperations. The paper aims to identify the best technique to be adopted for the monitoring system. Three different methods have been implemented and compared. Two of them use statistical techniques: the first, the linear multiple regression, expresses the monitored variable as a linear function of the process parameters (independent variables), while the second, the dynamic kriging technique, is a modified technique of multiple linear regression representing the monitored variable as a linear combination of the process variables in such a way as to minimize the variance of the estimate error. The third is based on neural networks. Tests have shown that the monitoring system based on the kriging technique is not affected by some problems common to the other two models e.g. the requirement of a large amount of data for their tuning, both for training the neural network and defining the optimum plane for the multiple regression, not only in the system starting phase but also after a trivial operation of maintenance involving the substitution of machinery components having a direct impact on the observed variable. Or, in addition, the necessity of different models to describe in a satisfactory way the different ranges of operation of the plant. The monitoring system based on the kriging statistical technique overrides the previous difficulties: it does not require a large amount of data to be tuned and is immediately operational: given two points, the third can be immediately estimated; in addition the model follows the system without adapting itself to it. The results of the experimentation performed seem to indicate that a model based on a neural network or on a linear multiple regression is not optimal, and that a different approach is necessary to reduce the amount of work during the learning phase using, when available, all the information stored during the initial phase of the plant to build the reference baseline, elaborating, if it is the case, the raw information available. A mixed approach using the kriging statistical technique and neural network techniques could optimise the result.
Cheema, Jitender Jit Singh; Sankpal, Narendra V; Tambe, Sanjeev S; Kulkarni, Bhaskar D
2002-01-01
This article presents two hybrid strategies for the modeling and optimization of the glucose to gluconic acid batch bioprocess. In the hybrid approaches, first a novel artificial intelligence formalism, namely, genetic programming (GP), is used to develop a process model solely from the historic process input-output data. In the next step, the input space of the GP-based model, representing process operating conditions, is optimized using two stochastic optimization (SO) formalisms, viz., genetic algorithms (GAs) and simultaneous perturbation stochastic approximation (SPSA). These SO formalisms possess certain unique advantages over the commonly used gradient-based optimization techniques. The principal advantage of the GP-GA and GP-SPSA hybrid techniques is that process modeling and optimization can be performed exclusively from the process input-output data without invoking the detailed knowledge of the process phenomenology. The GP-GA and GP-SPSA techniques have been employed for modeling and optimization of the glucose to gluconic acid bioprocess, and the optimized process operating conditions obtained thereby have been compared with those obtained using two other hybrid modeling-optimization paradigms integrating artificial neural networks (ANNs) and GA/SPSA formalisms. Finally, the overall optimized operating conditions given by the GP-GA method, when verified experimentally resulted in a significant improvement in the gluconic acid yield. The hybrid strategies presented here are generic in nature and can be employed for modeling and optimization of a wide variety of batch and continuous bioprocesses.
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
Surgical Management of Hemorrhoids
Agbo, S. P.
2011-01-01
Hemorrhoids are common human afflictions known since the dawn of history. Surgical management of this condition has made tremendous progress from complex ligation and excision procedures in the past to simpler techniques that allow the patient to return to normal life within a short period. Newer techniques try to improve on the post-operative complications of older ones. The surgical options for the management of hemorrhoids today are many. Capturing all in a single article may be difficult if not impossible. The aim of this study therefore is to present in a concise form some of the common surgical options in current literature, highlighting some important post operative complications. Current literature is searched using MEDLINE, EMBASE and the Cochrane library. The conclusion is that even though there are many surgical options in the management of hemorrhoids today, most employ the ligature and excision technique with newer ones having reduced post operative pain and bleeding. PMID:22413048
Comparison of four MPPT techniques for PV systems
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.
2016-07-01
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.
Kalogianni, E P; Savopoulos, T; Karapantsios, T D; Raphaelides, S N
2004-06-01
A dynamic wicking technique is employed for the first time for the determination of the effective mean pore radius of a thin-layer porous food: drum dried pregelatinized starch sheets. The technique consists of measuring the penetration rate of various n-alkanes in the porous matrix of the starch sheets and using this data to calculate the effective pore radius via the Washburn equation. Pore sizes in the order of a few nanometers have been determined in the starch sheets depending on the drum dryer's operating variables (drum rotation speed, steam pressure and starch feed concentration). The conditions for the application of the technique in porous foods are discussed as compared to the conditions for single capillaries and inorganic porous material measured in other studies.
An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth
NASA Astrophysics Data System (ADS)
Barraza-Barraza, Diana; Tercero-Gómez, Víctor G.; Beruvides, Mario G.; Limón-Robles, Jorge
2017-01-01
A wide variety of Condition-Based Maintenance (CBM) techniques deal with the problem of predicting the time for an asset fault. Most statistical approaches rely on historical failure data that might not be available in several practical situations. To address this issue, practitioners might require the use of self-starting approaches that consider only the available knowledge about the current degradation process and the asset operating context to update the prognostic model. Some authors use Autoregressive (AR) models for this purpose that are adequate when the asset operating context is constant, however, if it is variable, the accuracy of the models can be affected. In this paper, three autoregressive models with exogenous variables (ARX) were constructed, and their capability to estimate the remaining useful life (RUL) of a process was evaluated following the case of the aluminum crack growth problem. An existing stochastic model of aluminum crack growth was implemented and used to assess RUL estimation performance of the proposed ARX models through extensive Monte Carlo simulations. Point and interval estimations were made based only on individual history, behavior, operating conditions and failure thresholds. Both analytic and bootstrapping techniques were used in the estimation process. Finally, by including recursive parameter estimation and a forgetting factor, the ARX methodology adapts to changing operating conditions and maintain the focus on the current degradation level of an asset.
[Results of the Misgav Ladach caesarean section].
Heidenreich, W; Borgmann, U
2001-11-01
At the Department of Obstetrics and Gynecology, Allgemeines Krankenhaus Celle, 224 caesarean sections according to the Misgav Ladach technique were performed from 01. 05. 1998 to 30. 04. 1999. Anamnestic findings, intraoperative conditions, and postoperative course were compared to 125 conventionel caesarean deliveries. The Misgav Ladach technique resulted in notably shorter operative time, fewer complications of wound healing and reduced hospital stay. No further significant differences were observed in both groups. - The question of postoperative adhesions still remains to be answered. According to our experience the Misgav Ladach operation shows some advantages as compared to the usual method.
Phase shift method to estimate solids circulation rate in circulating fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludlow, James Christopher; Panday, Rupen; Shadle, Lawrence J.
2013-01-01
While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in themore » return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.« less
NASA Technical Reports Server (NTRS)
1972-01-01
The experimental determination of purge bag materials properties, development of purge bag manufacturing techniques, experimental evaluation of a subscale purge bag under simulated operating conditions and the experimental evaluation of the purge pin concept for MLI purging are discussed. The basic purge bag material, epoxy fiberglass bounded by skins of FEP Teflon, showed no significant permeability to helium flow under normal operating conditions. Purge bag small scale manufacturing tests were conducted to develop tooling and fabrication techniques for use in full scale bag manufacture. A purge bag material layup technique was developed whereby the two plys of epoxy fiberglass enclosed between skins of FEP Teflon are vacuum bag cured in an oven in a single operation. The material is cured on a tool with the shape of a purge bag half. Plastic tooling was selected for use in bag fabrication. A model purge bag 0.6 m in diameter was fabricated and subjected to a series of structural and environmental tests simulating various flight type environments. Pressure cycling tests at high (450 K) and low (200 K) temperature as well as acoustic loading tests were performed. The purge bag concept proved to be structurally sound and was used for the full scale bag detailed design model.
Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.
1999-01-01
A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.
A real time study on condition monitoring of distribution transformer using thermal imager
NASA Astrophysics Data System (ADS)
Mariprasath, T.; Kirubakaran, V.
2018-05-01
The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.
[Enterostomy post emergency enterectomy].
Gavrilescu, S; Velicu, D; Gheorghiu, L; Duţescu, S
2002-01-01
This is a clinical approach regarding 43 resection of intestine, performed in emergency condition, terminated as enterostomy, with represent 20% of enterectomyes performed in emergency condition and 1.6% of urgent operations. The decision of enterostomy has been taken in the conditions of peritoneal sepsis, occlusion or the association of the two circumstances. The results are comparatively analyzed between the cases with enterostomy that has been made from the beginning (66% success, 33% gone wrong), and those with enterostomy made at the second intervention (14% success, 86% gone wrong). One discusses problems of leading, technique and post-operating nursing. The intestinal reintegration has been made possible at 16 patients after a timing of three of four weeks.
NASA Astrophysics Data System (ADS)
Liska, Sebastian; Colonius, Tim
2017-02-01
A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... condition that is a hazard to life, property or the environment. Affected Public: Operators of pipeline... automated, electronic, mechanical, or other technological collection techniques. A comment to OMB is most...
ERIC Educational Resources Information Center
Galst, Joann Paley; White, Mary Alice
1976-01-01
This study collected behavioral data on the relationship between children's attentiveness to television commercials and their product requests, using the techniques of operant conditioning and direct observation. (SB)
MEASUREMENT OF BEHAVIORAL THERMOREGULATION
The measurement of thermoregulatory behavior by the techniques of thermal gradient and operant conditioning allows the study of many parameters of the behavioral control of body temperature in particular species as well as the comparative study of thermo- regulatory capabilities ...
Analysis of combustion spectra containing organ pipe tone by cepstral techniques
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.
1982-01-01
Signal reinforcements and cancellations due to standing waves may distort constant bandwidth combustion spectra. Cepstral techniques previously applied to the ground reflection echo problem are used to obtain smooth broadband data and information on combustion noise propagation. Internal fluctuating pressure measurements made using a J47 combustor attached to a 6.44 m long duct are analyzed. Measurements made with Jet A and hydrogen fuels are compared. The acoustic power levels inferred from the measurements are presented for a range of low heat release rate operating conditions near atmospheric pressure. For these cases, the variation with operating condition of the overall acoustic broadband power level for both hydrogen and Jet A fuels is consistent with previous results showing it was proportional to the square of the heat release rate. However, the overall acoustic broadband power level generally is greater for hydrogen than for Jet A.
Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, kai
2007-01-01
Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.
Stochastic Feedforward Control Technique
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1990-01-01
Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.
NASA Technical Reports Server (NTRS)
Hess, J. L.; Friedman, D. M.; Clark, R. W.
1985-01-01
An efficient and user oriented method was constructed for calculating flow in and about complex inlet configurations. Efficiency is attained by: (1) the use of a panel method; (2) a technique of superposition for obtaining solutions at any inlet operating condition; and (3) employment of an advanced matrix iteration technique for solving large full systems of equations, including the nonlinear equations for the Kutta condition. User concerns are addressed by the provision of several novel graphical output options that yield a more complete comprehension of the flowfield than was possible previously.
NASA Astrophysics Data System (ADS)
Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin
2018-02-01
Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
NASA Technical Reports Server (NTRS)
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1974-01-01
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.
1977-01-01
An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.
ERIC Educational Resources Information Center
Charconnet, Marie-George
This study describes various patterns of peer tutoring and is based on the use of cultural traditions and endogenous methods, on techniques and equipment acquired from other cultures, on problems presented by the adoption of educational technologies, and on methods needing little sophisticated equipment. A dozen peer tutoring systems are…
ERIC Educational Resources Information Center
Hotchkiss, James M.
The use of operant conditioning techniques in a classroom for educationally handicapped children was studied to determine if it would result in a reduction of maladaptive behavior. The subjects consisted of an experimental and a control group of elementary school children, with an IQ range in the experimental class of 88 to 119. The experimental…
A methodology for probabilistic remaining creep life assessment of gas turbine components
NASA Astrophysics Data System (ADS)
Liu, Zhimin
Certain gas turbine components operate in harsh environments and various mechanisms may lead to component failure. It is common practice to use remaining life assessments to help operators schedule maintenance and component replacements. Creep is a major failure mechanisms that affect the remaining life assessment, and the resulting life consumption of a component is highly sensitive to variations in the material stresses and temperatures, which fluctuate significantly due to the changes in real operating conditions. In addition, variations in material properties and geometry will result in changes in creep life consumption rate. The traditional method used for remaining life assessment assumes a set of fixed operating conditions at all times, and it fails to capture the variations in operating conditions. This translates into a significant loss of accuracy and unnecessary high maintenance and replacement cost. A new method that captures these variations described above and improves the prediction accuracy of remaining life is developed. First, a metamodel is built to approximate the relationship between variables (operating conditions, material properties, geometry, etc.) and a creep response. The metamodel is developed using Response Surface Method/Design of Experiments methodology. Design of Experiments is an efficient sampling method, and for each sampling point a set of finite element analyses are used to compute the corresponding response value. Next, a low order polynomial Response Surface Equation (RSE) is used to fit these values. Four techniques are suggested to dramatically reduce computational effort, and to increase the accuracy of the RSE: smart meshing technique, automatic geometry parameterization, screening test and regional RSE refinement. The RSEs, along with a probabilistic method and a life fraction model are used to compute current damage accumulation and remaining life. By capturing the variations mentioned above, the new method results in much better accuracy than that available using the traditional method. After further development and proper verification the method should bring significant savings by reducing the number of inspections and deferring part replacement.
NASA Astrophysics Data System (ADS)
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
Comparison of four MPPT techniques for PV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz
2016-07-25
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less
Laparoscopic revolution in bariatric surgery
Sundbom, Magnus
2014-01-01
The history of bariatric surgery is investigational. Dedicated surgeons have continuously sought for an ideal procedure to relieve morbidly obese patients from their burden of comorbid conditions, reduced life expectancy and low quality of life. The ideal procedure must have low complication risk, both in short- and long term, as well as minimal impact on daily life. The revolution of laparoscopic techniques in bariatric surgery is described in this summary. Advances in minimal invasive techniques have contributed to reduced operative time, length of stay, and complications. The development in bariatric surgery has been exceptional, resulting in a dramatic increase of the number of procedures performed world wide during the last decades. Although, a complex bariatric procedure can be performed with operative mortality no greater than cholecystectomy, specific procedure-related complications and other drawbacks must be taken into account. The evolution of laparoscopy will be the legacy of the 21st century and at present, day-care surgery and further reduction of the operative trauma is in focus. The impressive effects on comorbid conditions have prompted the adoption of minimal invasive bariatric procedures into the field of metabolic surgery. PMID:25386062
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.
2005-01-01
An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.
Motor current signature analysis method for diagnosing motor operated devices
Haynes, Howard D.; Eissenberg, David M.
1990-01-01
A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.
NASA Astrophysics Data System (ADS)
Adler, Ronald S.; Swanson, Scott D.; Yeung, Hong N.
1996-01-01
A projection-operator technique is applied to a general three-component model for magnetization transfer, extending our previous two-component model [R. S. Adler and H. N. Yeung,J. Magn. Reson. A104,321 (1993), and H. N. Yeung, R. S. Adler, and S. D. Swanson,J. Magn. Reson. A106,37 (1994)]. The PO technique provides an elegant means of deriving a simple, effective rate equation in which there is natural separation of relaxation and source terms and allows incorporation of Redfield-Provotorov theory without any additional assumptions or restrictive conditions. The PO technique is extended to incorporate more general, multicomponent models. The three-component model is used to fit experimental data from samples of human hyaline cartilage and fibrocartilage. The fits of the three-component model are compared to the fits of the two-component model.
Scheduling Operational Operational-Level Courses of Action
2003-10-01
Process modelling and analysis – process synchronisation techniques Information and knowledge management – Collaborative planning systems – Workflow...logistics – Some tasks may consume resources The military user may wish to impose synchronisation constraints among tasks A military end state can be...effects, – constrained with resource and synchronisation considerations, and – lead to the achievement of conditions set in the end state. The COA is
Modelling the complete operation of a free-piston shock tunnel for a low enthalpy condition
NASA Astrophysics Data System (ADS)
McGilvray, M.; Dann, A. G.; Jacobs, P. A.
2013-07-01
Only a limited number of free-stream flow properties can be measured in hypersonic impulse facilities at the nozzle exit. This poses challenges for experimenters when subsequently analysing experimental data obtained from these facilities. Typically in a reflected shock tunnel, a simple analysis that requires small amounts of computational resources is used to calculate quasi-steady gas properties. This simple analysis requires initial fill conditions and experimental measurements in analytical calculations of each major flow process, using forward coupling with minor corrections to include processes that are not directly modeled. However, this simplistic approach leads to an unknown level of discrepancy to the true flow properties. To explore the simple modelling techniques accuracy, this paper details the use of transient one and two-dimensional numerical simulations of a complete facility to obtain more refined free-stream flow properties from a free-piston reflected shock tunnel operating at low-enthalpy conditions. These calculations were verified by comparison to experimental data obtained from the facility. For the condition and facility investigated, the test conditions at nozzle exit produced with the simple modelling technique agree with the time and space averaged results from the complete facility calculations to within the accuracy of the experimental measurements.
NASA Astrophysics Data System (ADS)
Schmid, David; Spekkens, Robert W.; Wolfe, Elie
2018-06-01
Within the framework of generalized noncontextuality, we introduce a general technique for systematically deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many measurements, each of which has a finite number of outcomes. Given any fixed sets of operational equivalences among the preparations and among the measurements as input, the algorithm returns a set of noncontextuality inequalities whose satisfaction is necessary and sufficient for a set of operational data to admit of a noncontextual model. Additionally, we show that the space of noncontextual data tables always defines a polytope. Finally, we provide a computationally efficient means for testing whether any set of numerical data admits of a noncontextual model, with respect to any fixed operational equivalences. Together, these techniques provide complete methods for characterizing arbitrary noncontextuality scenarios, both in theory and in practice. Because a quantum prepare-and-measure experiment admits of a noncontextual model if and only if it admits of a positive quasiprobability representation, our techniques also determine the necessary and sufficient conditions for the existence of such a representation.
Virtual reality on mobile phones to reduce anxiety in outpatient surgery.
Mosso, José L; Gorini, Alessandra; De La Cerda, Gustavo; Obrador, Tomas; Almazan, Andrew; Mosso, Dejanira; Nieto, Jesus J; Riva, Giuseppe
2009-01-01
When undergo ambulatory surgical operations, the majority of patients experience high level of anxiety. Different experimental studies have shown that distraction techniques are effective in reducing pain and related anxiety. Since Virtual reality (VR) has been demonstrated a good distraction technique, it has been repeatedly used in hospital contexts for reducing pain in burned patients, but it has never been used during surgical operations. With the present randomized controlled study we intended to verify the effectiveness of VR in reducing anxiety in patients undergoing ambulatory operations under local or regional anaesthesia. In particular, we measured the degree to which anxiety associated with surgical intervention was reduced by distracting patients with immersive VR provided through a cell phone connected to an HMD compared to a no-distraction control condition. A significant reduction of anxiety was obtained after 45 minutes of operation in the VR group, but not in the control group and, after 90 minutes, the reduction was larger in the experimental group than in other one. In conclusion, this study presents an innovative promising technique to reduce anxiety during surgical interventions, even if more studies are necessary to investigate its effectiveness in other kinds of operations and in larger numbers of patients.
Image masking using polygon fills and morphological transformations
NASA Technical Reports Server (NTRS)
Simpson, James J.
1992-01-01
Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.
[Shoulder surgery using only regional anaesthesia].
Tilbury, Claire; van Kampen, Paulien M; Offenberg, Tom A M M; Hogervorst, Tom; Huijsmans, Pol E
2011-01-01
Effective intra-operative anaesthesia and peri-operative analgesia are important aspects of patient care in orthopaedic surgery. The interscalene regional anaesthetic block technique, performed with the patient lying in a lateral decubitus position, is new for arthroscopic shoulder surgery conducted in the Netherlands. The combination of the interscalene block (without general anaesthesia) and the lateral decubitus position results in better peri-operative conditions for the patient. Better analgesia, increased patient satisfaction and fewer complications in comparison to general anaesthesia have been reported for these types of surgery.
Development and Calibration of Highway Safety Manual Equations for Florida Conditions
DOT National Transportation Integrated Search
2011-08-31
The Highway Safety Manual (HSM) provides statistically-valid analytical tools and techniques for quantifying the potential effects on crashes as a result of decisions made in planning, design, operations, and maintenance. Implementation of the new te...
Development and calibration of highway safety manual equations for Florida conditions.
DOT National Transportation Integrated Search
2011-08-31
The Highway Safety Manual (HSM) provides statistically-valid analytical tools and techniques for : quantifying the potential effects on crashes as a result of decisions made in planning, design, : operations, and maintenance. Implementation of the ne...
Sjöstrand, Henrik; Andersson Sundén, E; Conroy, S; Ericsson, G; Gatu Johnson, M; Giacomelli, L; Gorini, G; Hellesen, C; Hjalmarsson, A; Popovichev, S; Ronchi, E; Tardocchi, M; Weiszflog, M
2009-06-01
Burning plasma experiments such as ITER and DEMO require diagnostics capable of withstanding the harsh environment generated by the intense neutron flux and to maintain stable operating conditions for times longer than present day systems. For these reasons, advanced control and monitoring (CM) systems will be necessary for the reliable operation of diagnostics. This paper describes the CM system of the upgraded magnetic proton recoil neutron spectrometer installed at the Joint European Torus focusing in particular on a technique for the stabilization of the gain of the photomultipliers coupled to the neutron detectors. The results presented here show that this technique provides good results over long time scales. The technique is of general interest for all diagnostics that employ scintillators coupled to photomultiplier tubes.
Bridge scour monitoring methods at three sites in Wisconsin
Walker, John F.; Hughes, Peter E.
2005-01-01
Of the nearly 11,500 bridges in Wisconsin, 89 have been assessed with critical scour conditions. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Transportation, the Marathon County Highway Department, and the Jefferson County Highway Department, performed routine monitoring of streambed elevations for three bridges. Two monitoring approaches were employed: (1) manual monitoring using moderately simple equipment, and (2) automated monitoring, using moderately sophisticated electronic equipment. The results from all three sites demonstrate that both techniques can produce reasonable measurements of streambed elevation. The manual technique has a lower annual operating cost, and is useful for cases where documentation of long-term trends is desired. The automated technique has a higher annual operating cost and is useful for real-time monitoring of episodic events with short time durations.
Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia
2012-01-01
The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Hrovat, Kenneth; Moskowitz, Milton; McPherson, Kevin M.
1998-01-01
The microgravity environment of the NASA Shuttles and Russia's Mir space station have been measured by specially designed accelerometer systems. The need for comparisons between different missions, vehicles, conditions, etc. has been addressed by the two new processes described in this paper. The Principal Component Spectral Analysis (PCSA) and Quasi-steady Three-dimensional Histogram QTH techniques provide the means to describe the microgravity acceleration environment of a long time span of data on a single plot. As described in this paper, the PCSA and QTH techniques allow both the range and the median of the microgravity environment to be represented graphically on a single page. A variety of operating conditions may be made evident by using PCSA or QTH plots. The PCSA plot can help to distinguish between equipment operating full time or part time, as well as show the variability of the magnitude and/or frequency of an acceleration source. A QTH plot summarizes the magnitude and orientation of the low-frequency acceleration vector. This type of plot can show the microgravity effects of attitude, altitude, venting, etc.
Calderón, Kadiya; Martín-Pascual, Jaime; Poyatos, José Manuel; Rodelas, Belén; González-Martínez, Alejandro; González-López, Jesús
2012-10-01
Different types of carriers were tested as support material in a lab-scale moving bed biofilm reactor (MBBR) used to treat urban wastewater under three different conditions of hydraulic retention time (HRT) and carrier filling ratios (FR). The bacterial diversity developed on the biofilms responsible of the treatment was studied using a cultivation-independent approach based on the polymerase chain reaction-temperature gradient gel electrophoresis technique (PCR-TGGE). Cluster analysis of TGGE fingerprints showed significant differences of community structure dependent upon the different operational conditions applied. Redundancy analysis (RDA) was used to determine the relationship between the operational conditions (type of carrier, HRT, FR) and bacterial biofilm diversity, demonstrating a significant effect of FR=50%. Phylogenetic analysis of PCR-reamplified and sequenced TGGE bands revealed that the prevalent Bacteria populations in the biofilm were related to Betaproteobacteria (46%), Firmicutes (34%),Alphaproteobacteria (14%) and Gammaproteobacteria (9%). Copyright © 2012 Elsevier Ltd. All rights reserved.
Minimally Invasive Surgery (MIS) Approaches to Thoracolumbar Trauma.
Kaye, Ian David; Passias, Peter
2018-03-01
Minimally invasive surgical (MIS) techniques offer promising improvements in the management of thoracolumbar trauma. Recent advances in MIS techniques and instrumentation for degenerative conditions have heralded a growing interest in employing these techniques for thoracolumbar trauma. Specifically, surgeons have applied these techniques to help manage flexion- and extension-distraction injuries, neurologically intact burst fractures, and cases of damage control. Minimally invasive surgical techniques offer a means to decrease blood loss, shorten operative time, reduce infection risk, and shorten hospital stays. Herein, we review thoracolumbar minimally invasive surgery with an emphasis on thoracolumbar trauma classification, minimally invasive spinal stabilization, surgical indications, patient outcomes, technical considerations, and potential complications.
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load
NASA Technical Reports Server (NTRS)
Kankam, M. David; Rauch, Jeffrey S.
1994-01-01
This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.
NASA Astrophysics Data System (ADS)
Crane, D. T.
2011-05-01
High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.
Preliminary measurements on heat balance in pneumatic tires
NASA Technical Reports Server (NTRS)
Nybakken, G. H.; Collart, D. Y.; Staples, R. J.; Lackey, J. I.; Clark, S. K.; Dodge, R. N.
1973-01-01
A variety of tests was undertaken to determine the nature of heat generation associated with a pneumatic tire operating under various conditions. Tests were conducted to determine the magnitude and distribution of internally generated heat caused by hysteresis in the rubber and ply fabric in an automobile tire operating under conditions of load, pressure, and velocity representative of normal operating conditions. These included tests at various yaw angles and tests with braking applied. In other tests, temperature sensors were mounted on a road to measure the effect of a tire rolling over and an attempt was made to deduce the magnitude and nature of interfacial friction from the resulting information. In addition, tests were performed using the scratch plate technique to determine the nature of the motion between the tire and road. Finally, a model tire was tested on a roadwheel, the surface covering which could be changed, and an optical pyrometer was used to measure rubber surface temperatures.
Resurfacing the Jodrell Bank Mk II radio telescope
NASA Astrophysics Data System (ADS)
Spencer, R. E.; Haggis, J. S.; Morrison, I.; Davis, R. J.; Melling, R. J.
The improvement of the short-wavelength performance of the Jodrell Bank Mk II radio telescope is described. A final rms profile error of 0.6 mm was achieved due to the invention of an inexpensive technique of panel construction and measurement combined with the use of radio-astronomical holographic techniques to measure the telescope under actual operating conditions. Some further improvements to extend the short wavelength performance are suggested.
Tools and Techniques for Basin-Scale Climate Change Assessment
NASA Astrophysics Data System (ADS)
Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.
2012-12-01
The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other options. The over-arching Study Manager provides a graphical tool to create combinations of future supply scenarios, demand scenarios, infrastructure and operating policy alternatives; each scenario is executed as an ensemble of RiverWare runs, driven by the hydrologic supply. The Study Manager sets up and manages multiple executions on multi-core hardware. The sizeable are typically direct model outputs, or post-processed indicators of performance based on model outputs. Post processing statistical analysis of the outputs are possible using the Graphical Policy Analysis Tool or other statistical packages. Several Basin Studies undertaken have used RiverWare to evaluate future scenarios. The Colorado River Basin Study, the most complex and extensive to date, has taken advantage of these tools and techniques to generate supply scenarios, produce alternative demand scenarios and to set up and execute the many combinations of supplies, demands, policies, and infrastructure alternatives. The tools and techniques will be described with example applications.
Ship Trim Optimization: Assessment of Influence of Trim on Resistance of MOERI Container Ship
Duan, Wenyang
2014-01-01
Environmental issues and rising fuel prices necessitate better energy efficiency in all sectors. Shipping industry is a stakeholder in environmental issues. Shipping industry is responsible for approximately 3% of global CO2 emissions, 14-15% of global NOX emissions, and 16% of global SOX emissions. Ship trim optimization has gained enormous momentum in recent years being an effective operational measure for better energy efficiency to reduce emissions. Ship trim optimization analysis has traditionally been done through tow-tank testing for a specific hullform. Computational techniques are increasingly popular in ship hydrodynamics applications. The purpose of this study is to present MOERI container ship (KCS) hull trim optimization by employing computational methods. KCS hull total resistances and trim and sinkage computed values, in even keel condition, are compared with experimental values and found in reasonable agreement. The agreement validates that mesh, boundary conditions, and solution techniques are correct. The same mesh, boundary conditions, and solution techniques are used to obtain resistance values in different trim conditions at Fn = 0.2274. Based on attained results, optimum trim is suggested. This research serves as foundation for employing computational techniques for ship trim optimization. PMID:24578649
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Russo, Juan; Zhang, Deming; Gordon, Michael; Kostuk, Raymond
2012-10-01
In this work, a concentrating photovoltaic (CPV) design methodology is proposed which aims to maximize system efficiency for a given irradiance condition. In this technique, the acceptance angle of the system is radiometrically matched to the angular spread of the site's average irradiance conditions using a simple geometric ratio. The optical efficiency of CPV systems from flat-plate to high-concentration is plotted at all irradiance conditions. Concentrator systems are measured outdoors in various irradiance conditions to test the methodology. This modeling technique is valuable at the design stage to determine the ideal level of concentration for a CPV module. It requires only two inputs: the acceptance angle profile of the system and the site's average direct and diffuse irradiance fractions. Acceptance angle can be determined by raytracing or testing a fabricated prototype in the lab with a solar simulator. The average irradiance conditions can be found in the Typical Metrological Year (TMY3) database. Additionally, the information gained from this technique can be used to determine tracking tolerance, quantify power loss during an isolated weather event, and do more sophisticated analysis such as I-V curve simulation.
Overview and highlights of Early Warning and Crop Condition Assessment project
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1985-01-01
Work of the Early Warning and Crop Condition Assessment (EW/CCA) project, one of eight projects in the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS), is reviewed. Its mission, to develop and test remote sensing techniques that enhance operational methodologies for crop condition assessment, was in response to initiatives issued by the Secretary of Agriculture. Meteorologically driven crop stress indicator models have been developed or modified for wheat, maize, grain sorghum, and soybeans. These models provide early warning alerts of potential or actual crop stresses due to water deficits, adverse temperatures, and water excess that could delay planting or harvesting operations. Recommendations are given for future research involving vegetative index numbers and the NOAA and Landsat satellites.
Anomaly Detection Techniques with Real Test Data from a Spinning Turbine Engine-Like Rotor
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj C.; Matthews, Bryan L.
2012-01-01
Online detection techniques to monitor the health of rotating engine components are becoming increasingly attractive to aircraft engine manufacturers in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenge to easily implement, especially in the presence of scattered loading conditions, crack size, component geometry, and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini-cracks before any catastrophic event occurs. These techniques go further to evaluate material discontinuities and other anomalies that have grown to the level of critical defects that can lead to failure. Generally, health monitoring is highly dependent on sensor systems capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system.
Flow interaction and noise from a counter rotating propeller
NASA Technical Reports Server (NTRS)
Chung, Jin-Deog; Walls, James L.; Nagel, Robert T.
1991-01-01
The aerodynamic interaction between the forward and rear rotors in a counter rotating propeller (CRP) system, has been examined using a conditional sampling technique applied to three-dimensional thermal anemometer data. The technique effectively freezes the rotors in any desired relative position and provides the inter-rotor flow field. Axial, radial and circumferential mean flow between rotors is shown relative to the 'fixed' forward rotor for various 'fixed' aft rotor positions. Acoustic far field noise data have also been collected for the same operating conditions. The acoustic results are presented with emphasis on the blade passing frequencies and interaction tone of the CRP.
Control designs for low-loss active magnetic bearings: Theory and implementation
NASA Astrophysics Data System (ADS)
Wilson, Brian Christopher David
Active Magnetic Bearings (AMB) have been proposed for use in Electromechanical Flywheel Batteries. In these devices, kinetic energy is stored in a magnetically levitated flywheel which spins in a vacuum. The AMB eliminates all mechanical losses, however, electrical loss, which is proportional to the square of the magnetic flux, is still significant. For efficient operation, the flux bias, which is typically introduced into the electromagnets to improve the AMB stiffness, must be reduced, preferably to zero. This zero-bias (ZB) mode of operation cripples the classical control techniques which are customarily used and nonlinear control is required. As a compromise between AMB stiffness and efficiency, a new flux bias scheme is proposed called the generalized complementary flux condition (gcfc). A flux-bias dependent trade-off exists between AMB stiffness, power consumption, and power loss. This work theoretically develops and experimentally verifies new low-loss AMB control designs which employ the gcfc condition. Particular attention is paid to the removal of the singularity present in the standard nonlinear control techniques when operating in ZB. Experimental verification is conduced on a 6-DOF AMB reaction wheel. Practical aspects of the gcfc implementation such as flux measurement and flux-bias implementation with voltage mode amplifiers using IR compensation are investigated. Comparisons are made between the gcfc bias technique and the standard constant-flux-sum (cfs) bias method. Under typical operating circumstances, theoretical analysis and experimental data show that the new gcfc bias scheme is more efficient in producing the control flux required for rotor stabilization than the ordinary cfs bias strategy.
TIGER TM : Intelligent continuous monitoring of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, I.; Hibbert, J.; Milne, R.
1998-07-01
The field of condition monitoring has been an area of rapid growth, with many specialized techniques being developed to measure or predict the health of a particular item of plant. Much of the most recent work has gone into the diagnosis of problems on rotating machines through the application of vibration analysis techniques. These techniques though useful can have a number of limiting factors, such as the need to install specialized sensors and measurement equipment, or the limited scope of the type of data measured. It was recognized in 1992, that the surveillance and condition monitoring procedures available for criticalmore » plant, such as gas turbines, were not as comprehensive as they might be and that a novel approach was required to give the operator the necessary holistic view of the health of the plant. This would naturally provide an assessment of the maintenance practices required to yield the highest possible availability without the need to install extensive new instrumentation. From the above objective, the TIGER system was designed which utilizes available data from the gas turbine control system or additionally the plant DCS to measure the behavior of the gas turbine and its associated sub systems. These measured parameters are then compared with an internal model of the turbine system and used to diagnose incorrect responses and therefore the item that is at fault, allowing the operator to quickly restart the turbine after a trip or perform condition based maintenance at the next scheduled outage. This philosophy has been built into the TIGER system and the purpose of this paper is to illustrate its functionality and some of the innovative techniques used in the diagnosis of real gas turbine problems. This is achieved by discussing three case studies where TIGER was integral in returning the plant to operation more quickly than can normally be expected.« less
Improvements to the Total Temperature Calibration of the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Gonsalez, Jose C.
2005-01-01
The ability to accurately set repeatable total temperature conditions is critical for collecting quality icing condition data, particularly near freezing conditions. As part of efforts to continually improve data quality in the NASA Glenn Icing Research Tunnel (IRT), new facility instrumentation and new calibration hardware for total temperature measurement were installed and new operational techniques were developed and implemented. This paper focuses on the improvements made in the calibration of total temperature in the IRT.
Factoring uncertainty into restoration modeling of in-situ leach uranium mines
Johnson, Raymond H.; Friedel, Michael J.
2009-01-01
Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.
Behavior Modification with an Aphasic Man
ERIC Educational Resources Information Center
Ince, Laurence P.
1973-01-01
Techniques based upon operant conditioning were employed with a male patient who had sustained a cerebrovascular accident with consequent right hemiplegia and expressive asphasia. A combination of positive verbal reinforcement and feedback of progress were utilized to improve language fluency and speed of typing. (Author)
DOT National Transportation Integrated Search
2017-08-01
Highway networks in the United States have been suffering from poor operational and structural condition states for the past decades. The consequent congestion problems often result in major delays, safety issues, and large amounts of additional fuel...
Choi, Ung-Kyu; Kim, Mi-Hyang; Lee, Nan-Hee
2007-11-01
This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature (R2 = -0.79) and in a longer extraction time (R2 = -0.71). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent (R2 = -0.12). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at 80 degrees C extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.
Psychosocial interventions in attention-deficit/hyperactivity disorder: update.
Antshel, Kevin M
2015-01-01
Attention-deficit/hyperactivity disorder (ADHD) is the most common reason for referral to child and adolescent psychiatry clinics. Although stimulant medications represent an evidence-based approach to managing ADHD, psychosocial interventions for child/adolescent ADHD target functional impairments as the intervention goal, and rely heavily on behavioral therapy techniques and operant conditioning principles. Evidence-based psychosocial interventions for managing pediatric ADHD include behavioral parent training, school-based interventions relying on behavioral modification, teaching skills, and operant conditioning principles, and intensive summer treatment programs. The use of conjoint psychosocial treatments with ADHD medications may enable lower doses of each form of treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Seasholtz, R. G.; Mclallin, K. L.
1976-01-01
A laser Doppler velocimeter (LDV) was used to determine the flow conditions downstream of an annular cascade of stator blades operating at an exit critical velocity ratio of 0.87. Two modes of LDV operation (continuous scan and discrete point) were investigated. Conventional pressure probe measurements were also made for comparison with the LDV results. Biasing errors that occur in the LDV measurement of velocity components were also studied. In addition, the effect of pressure probe blockage on the flow conditions was determined with the LDV. Photographs and descriptions of the test equipment used are given.
Using operant conditioning and desensitization to facilitate veterinary care with captive reptiles.
Hellmuth, Heidi; Augustine, Lauren; Watkins, Barbara; Hope, Katharine
2012-09-01
In addition to being a large component of most zoological collections, reptile species are becoming more popular as family pets. Reptiles have the cognitive ability to be trained to facilitate daily husbandry and veterinary care. Desensitization and operant conditioning can alleviate some of the behavioral and physiological challenges of treating these species. A survey of reptile training programs at zoos in the United States and worldwide reveals that there are many successful training programs to facilitate veterinary care and minimize stress to the animal. Many of the techniques being used to train reptiles in zoological settings are transferable to the exotic pet clinician. Published by Elsevier Inc.
Quantifying photometric observing conditions on Paranal using an IR camera
NASA Astrophysics Data System (ADS)
Kerber, Florian; Querel, Richard R.; Hanuschik, Reinhard
2014-08-01
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. In addition to measuring precipitable water vapour (PWV) the instrument also contains an IR camera measuring sky brightness temperature at 10.5 μm. Due to its extended operating range down to -100 °C it is capable of detecting very cold and very thin, even sub-visual, cirrus clouds. We present a set of instrument flux calibration values as compared with a detrended fluctuation analysis (DFA) of the IR camera zenith-looking sky brightness data measured above Paranal taken over the past two years. We show that it is possible to quantify photometric observing conditions and that the method is highly sensitive to the presence of even very thin clouds but robust against variations of sky brightness caused by effects other than clouds such as variations of precipitable water vapour. Hence it can be used to determine photometric conditions for science operations. About 60 % of nights are free of clouds on Paranal. More work will be required to classify the clouds using this technique. For the future this approach might become part of VLT science operations for evaluating nightly sky conditions.
Infrared thermography for condition monitoring - A review
NASA Astrophysics Data System (ADS)
Bagavathiappan, S.; Lahiri, B. B.; Saravanan, T.; Philip, John; Jayakumar, T.
2013-09-01
Temperature is one of the most common indicators of the structural health of equipment and components. Faulty machineries, corroded electrical connections, damaged material components, etc., can cause abnormal temperature distribution. By now, infrared thermography (IRT) has become a matured and widely accepted condition monitoring tool where the temperature is measured in real time in a non-contact manner. IRT enables early detection of equipment flaws and faulty industrial processes under operating condition thereby, reducing system down time, catastrophic breakdown and maintenance cost. Last three decades witnessed a steady growth in the use of IRT as a condition monitoring technique in civil structures, electrical installations, machineries and equipment, material deformation under various loading conditions, corrosion damages and welding processes. IRT has also found its application in nuclear, aerospace, food, paper, wood and plastic industries. With the advent of newer generations of infrared camera, IRT is becoming a more accurate, reliable and cost effective technique. This review focuses on the advances of IRT as a non-contact and non-invasive condition monitoring tool for machineries, equipment and processes. Various conditions monitoring applications are discussed in details, along with some basics of IRT, experimental procedures and data analysis techniques. Sufficient background information is also provided for the beginners and non-experts for easy understanding of the subject.
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; ...
2014-11-01
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G
Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less
Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response.
Abramson, Charles I; Dinges, Christopher W; Wells, Harrington
2016-01-01
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees' learning did not carry over to the covered-well test treatments.
Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response
Abramson, Charles I.; Dinges, Christopher W.; Wells, Harrington
2016-01-01
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees’ learning did not carry over to the covered-well test treatments. PMID:27626797
NASA Technical Reports Server (NTRS)
Thau, F. E.; Montgomery, R. C.
1980-01-01
Techniques developed for the control of aircraft under changing operating conditions are used to develop a learning control system structure for a multi-configuration, flexible space vehicle. A configuration identification subsystem that is to be used with a learning algorithm and a memory and control process subsystem is developed. Adaptive gain adjustments can be achieved by this learning approach without prestoring of large blocks of parameter data and without dither signal inputs which will be suppressed during operations for which they are not compatible. The Space Shuttle Solar Electric Propulsion (SEP) experiment is used as a sample problem for the testing of adaptive/learning control system algorithms.
Synthesis of multifilament silicon carbide fibers by chemical vapor deposition
NASA Technical Reports Server (NTRS)
Revankar, Vithal; Hlavacek, Vladimir
1991-01-01
A process for development of clean silicon carbide fiber with a small diameter and high reliability is presented. An experimental evaluation of operating conditions for SiC fibers of good mechanical properties and devising an efficient technique which will prevent welding together of individual filaments are discussed. The thermodynamic analysis of a different precursor system was analyzed vigorously. Thermodynamically optimum conditions for stoichiometric SiC deposit were obtained.
Investigations into the Properties, Conditions, and Effects of the Ionosphere.
1988-01-15
Innovative Approaches to Direct Measurement of N e 28 ]- J FEASIBILITY OF RADIO BLACKOUT MITIGATION IN THE BRAKING PHASE 28 OF AOTV OPERATIONS 1. Brief...Cell could be tested under simulated flight conditions in the SAIC plasma laboratory facility. AJ. FEASIBILITY OF RADIO BLACKOUT MITIGATION IN THE...enable calculation of chemical modification techniques ,. on phenomena of radio blackout during re-entry of orbiting spacecraft . * ,1. Brief
Determination of battery stability with advanced diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, Joshua; Torres-Castro, Loraine; Orendorff, Christopher
Lithium ion batteries for use in battery electric vehicles (BEVs) has seen considerable expansion over the last several years. It is expected that market share and the total number of BEVs will continue to increase over coming years and that there will be changes in the environmental and use conditions for BEV batteries. Specifically aging of the batteries and exposure to an increased number of crash conditions presents a distinct possibility that batteries may be in an unknown state posing danger to the operator, emergency response personnel and other support personnel. The present work expands on earlier efforts to exploremore » the ability to rapidly monitor using impedance spectroscopy techniques and characterize the state of different battery systems during both typical operations and under abusive conditions. The work has found that it is possible to detect key changes in performance for strings of up to four cells in both series and parallel configurations for both typical and abusive response. As a method the sensitivity for detecting change is enhanced for series configurations. For parallel configurations distinct changes are more difficult to ascertain, but under abusive conditions and for key frequencies it is feasible to use current rapid impedance techniques to identify change. The work has also found it feasible to use rapid impedance as an evaluation method for underload conditions, especially for series strings of cells.« less
NASA Technical Reports Server (NTRS)
Corker, K.; Bejczy, A. K.
1984-01-01
The effect of weightlessness on the human operator's performance in force reflecting position control of remote manipulators was investigated. A gravity compensation system was developed to simulate the effect of weightlessness on the operator's arm. A universal force reflecting hand controller (FRHC) and task simulation software were employed. Two experiments were performed because of anticipated disturbances in neuromotor control specification on the human operator in an orbital control environment to investigate: (1) the effect of controller stiffness on the attainment of a learned terminal position in the three dimensional controller space, and (2) the effect of controller stiffness and damping on force tracking of the contour of a simulated three dimensional cube using the part simulation of weightless conditions. The results support the extension of neuromotor control models, which postulate a stiffness balance encoding of terminal position, to three dimensional motion of a multilink system, confirm the existence of a disturbance in human manual control performance under gravity compensated conditions, and suggest techniques for compensation of weightlessness induced performance decrement through appropriate specification of hand controller response characteristics. These techniques are based on the human control model.
Electrophysiological CNS-processes related to associative learning in humans.
Christoffersen, Gert R J; Schachtman, Todd R
2016-01-01
The neurophysiology of human associative memory has been studied with electroencephalographic techniques since the 1930s. This research has revealed that different types of electrophysiological processes in the human brain can be modified by conditioning: sensory evoked potentials, sensory induced gamma-band activity, periods of frequency-specific waves (alpha and beta waves, the sensorimotor rhythm and the mu-rhythm) and slow cortical potentials. Conditioning of these processes has been studied in experiments that either use operant conditioning or repeated contingent pairings of conditioned and unconditioned stimuli (classical conditioning). In operant conditioning, the appearance of a specific brain process is paired with an external stimulus (neurofeedback) and the feedback enables subjects to obtain varying degrees of control of the CNS-process. Such acquired self-regulation of brain activity has found practical uses for instance in the amelioration of epileptic seizures, Autism Spectrum Disorders (ASD) and Attention Deficit Hyperactivity Disorder (ADHD). It has also provided communicative means of assistance for tetraplegic patients through the use of brain computer interfaces. Both extra and intracortically recorded signals have been coupled with contingent external feedback. It is the aim for this review to summarize essential results on all types of electromagnetic brain processes that have been modified by classical or operant conditioning. The results are organized according to type of conditioned EEG-process, type of conditioning, and sensory modalities of the conditioning stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.
Hazard Analysis of Pollution Abatement Techniques. Volume I
1974-06-01
present hazards during startup/shutdown operations when filling or emptying the diatomaceous earth filters, or when filling or emptying the carbon...columns. Frictional initi- I ation modes can occur in the filter due to movement of diatomaceous earth 1< over a sufficiently dry TN~T layer. nie b...said operation. .,I addition, contaminaited diatomaceous earth should not be handled in a dry condition. Spent carbon, as well as spent earth , should be
Daylight operation of a free space, entanglement-based quantum key distribution system
NASA Astrophysics Data System (ADS)
Peloso, Matthew P.; Gerhardt, Ilja; Ho, Caleb; Lamas-Linares, Antía; Kurtsiefer, Christian
2009-04-01
Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from the background light. Here, we present a lean entanglement-based QKD system overcoming that limitation. By implementing spectral, spatial and temporal filtering techniques, we establish a secure key continuously over several days under varying light and weather conditions.
The impact of working technique on physical loads - an exposure profile among newspaper editors.
Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E
2003-05-15
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows
NASA Astrophysics Data System (ADS)
Garicano-Mena, Jesús; Lani, Andrea; Degrez, Gérard
2018-06-01
In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum-energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions.
Review of PWR fuel rod waterside corrosion behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzarolli, F.; Jorde, D.; Manzel, R.
Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less
NASA Astrophysics Data System (ADS)
Brown, James; Seo, Dong-Jun
2010-05-01
Operational forecasts of hydrometeorological and hydrologic variables often contain large uncertainties, for which ensemble techniques are increasingly used. However, the utility of ensemble forecasts depends on the unbiasedness of the forecast probabilities. We describe a technique for quantifying and removing biases from ensemble forecasts of hydrometeorological and hydrologic variables, intended for use in operational forecasting. The technique makes no a priori assumptions about the distributional form of the variables, which is often unknown or difficult to model parametrically. The aim is to estimate the conditional cumulative distribution function (ccdf) of the observed variable given a (possibly biased) real-time ensemble forecast from one or several forecasting systems (multi-model ensembles). The technique is based on Bayesian optimal linear estimation of indicator variables, and is analogous to indicator cokriging (ICK) in geostatistics. By developing linear estimators for the conditional expectation of the observed variable at many thresholds, ICK provides a discrete approximation of the full ccdf. Since ICK minimizes the conditional error variance of the indicator expectation at each threshold, it effectively minimizes the Continuous Ranked Probability Score (CRPS) when infinitely many thresholds are employed. However, the ensemble members used as predictors in ICK, and other bias-correction techniques, are often highly cross-correlated, both within and between models. Thus, we propose an orthogonal transform of the predictors used in ICK, which is analogous to using their principal components in the linear system of equations. This leads to a well-posed problem in which a minimum number of predictors are used to provide maximum information content in terms of the total variance explained. The technique is used to bias-correct precipitation ensemble forecasts from the NCEP Global Ensemble Forecast System (GEFS), for which independent validation results are presented. Extension to multimodel ensembles from the NCEP GFS and Short Range Ensemble Forecast (SREF) systems is also proposed.
Prognostics Applied to Electric Propulsion UAV
NASA Technical Reports Server (NTRS)
Goebel, Kai; Saha, Bhaskar
2013-01-01
Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.
NASA Astrophysics Data System (ADS)
Pacheco-Vega, Arturo
2016-09-01
In this work a new set of correlation equations is developed and introduced to accurately describe the thermal performance of compact heat exchangers with possible condensation. The feasible operating conditions for the thermal system correspond to dry- surface, dropwise condensation, and film condensation. Using a prescribed form for each condition, a global regression analysis for the best-fit correlation to experimental data is carried out with a simulated annealing optimization technique. The experimental data were taken from the literature and algorithmically classified into three groups -related to the possible operating conditions- with a previously-introduced Gaussian-mixture-based methodology. Prior to their use in the analysis, the correct data classification was assessed and confirmed via artificial neural networks. Predictions from the correlations obtained for the different conditions are within the uncertainty of the experiments and substantially more accurate than those commonly used.
Haricharan, Ramanath N; Georgeson, Keith E
2008-11-01
Hirschsprung disease is a relatively common condition managed by pediatric surgeons. Significant advances have been made in understanding its etiologies in the last decade, especially with the explosion of molecular genetic techniques and early diagnosis. The surgical management has progressed from a two- or three-stage procedure to a primary operation. More recently, definitive surgery for Hirschsprung disease through minimally invasive techniques has gained popularity. In neonates, the advancement of treatment strategies for Hirschsprung disease continues with reduced patient morbidity and improved outcomes.
Protecting Against Faults in JPL Spacecraft
NASA Technical Reports Server (NTRS)
Morgan, Paula
2007-01-01
A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.
Navigation and guidance requirements for commercial VTOL operations
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.; Howell, J. D.
1974-01-01
The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.
Design studies for a technology assessment receiver for global positioning system
NASA Technical Reports Server (NTRS)
Painter, J. H.
1981-01-01
The operational conditions of a radio receiver - microprocessor for the global positioning system are studied. Navigation fundamentals and orbit characterization are reviewed. The global positioning system is described with emphasis upon signal structure and satellite positioning. Ranging and receiver processing techniques are discussed.
NASA Technical Reports Server (NTRS)
Hovel, H.; Woodall, J. M.
1976-01-01
Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.
ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K
NASA Astrophysics Data System (ADS)
Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2018-01-01
Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.
1974-01-01
An inviscid technique for designing forebodies which produce uniformly precompressed flows at the inlet entrance for bottom-mounted scramjets has been developed so that geometric constraints resulting from design trade-offs can be effectively evaluated. The flow fields resulting from several forebody designs generated in support of a hypersonic research airplane conceptual design study have been analyzed in detail with three-dimensional characteristics calculations to verify the uniform flow conditions. For the designs analyzed, uniform flow is maintained over a wide range of flight conditions (Mach number equals 4 to 10; angle of attack equals 6 deg to 10 deg) corresponding to scramjet operation flight envelope of the research airplane.
NASA Astrophysics Data System (ADS)
Khayamy, Mehdy; Ojo, Olorunfemi
2015-04-01
A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.
A photovoltaic-powered water electrolyzer - Its performance and economics
NASA Technical Reports Server (NTRS)
Hancock, O. G., Jr.
1986-01-01
A prototype water electrolyzer designed to operate from a solar photovoltaic (PV) array without power conditioning was operated for three months at the Florida Solar Energy Center. A 1 kWpk PV array was used to operate the electrolyzer at internal gas pressure from 0 to 40 psig. Performance of the elecrolyzer/PV array was measured and characterized in terms of charge efficiency and power efficiency calculated from the operation data. The economics of residential production of hydrogen for energy purposes were calculated and summarized. While the near-term outlook for this energy storage technique was not found to be favorable, the long-term outlook was encouraging.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant.
Gender classification from video under challenging operating conditions
NASA Astrophysics Data System (ADS)
Mendoza-Schrock, Olga; Dong, Guozhu
2014-06-01
The literature is abundant with papers on gender classification research. However the majority of such research is based on the assumption that there is enough resolution so that the subject's face can be resolved. Hence the majority of the research is actually in the face recognition and facial feature area. A gap exists for gender classification under challenging operating conditions—different seasonal conditions, different clothing, etc.—and when the subject's face cannot be resolved due to lack of resolution. The Seasonal Weather and Gender (SWAG) Database is a novel database that contains subjects walking through a scene under operating conditions that span a calendar year. This paper exploits a subset of that database—the SWAG One dataset—using data mining techniques, traditional classifiers (ex. Naïve Bayes, Support Vector Machine, etc.) and traditional (canny edge detection, etc.) and non-traditional (height/width ratios, etc.) feature extractors to achieve high correct gender classification rates (greater than 85%). Another novelty includes exploiting frame differentials.
Numerical investigation of solid mixing in a fluidized bed coating process
NASA Astrophysics Data System (ADS)
Kenche, Venkatakrishna; Feng, Yuqing; Ying, Danyang; Solnordal, Chris; Lim, Seng; Witt, Peter J.
2013-06-01
Fluidized beds are widely used in many process industries including the food and pharmaceutical sectors. Despite being an intensive research area, there are no design rules or correlations that can be used to quantitatively predict the solid mixing in a specific system for a given set of operating conditions. This paper presents a numerical study of the gas and solid dynamics in a laboratory scale fluidized bed coating process used for food and pharmaceutical industries. An Eulerian-Eulerian model (EEM) with kinetic theory of granular flow is selected as the modeling technique, with the commercial computational fluid dynamics (CFD) software package ANSYS/Fluent being the numerical platform. The flow structure is investigated in terms of the spatial distribution of gas and solid flow. The solid mixing has been evaluated under different operating conditions. It was found that the solid mixing rate in the horizontal direction is similar to that in the vertical direction under the current design and operating conditions. It takes about 5 s to achieve good mixing.
Comprehensive review on endonasal endoscopic sinus surgery
Weber, Rainer K.; Hosemann, Werner
2015-01-01
Endonasal endoscopic sinus surgery is the standard procedure for surgery of most paranasal sinus diseases. Appropriate frame conditions provided, the respective procedures are safe and successful. These prerequisites encompass appropriate technical equipment, anatomical oriented surgical technique, proper patient selection, and individually adapted extent of surgery. The range of endonasal sinus operations has dramatically increased during the last 20 years and reaches from partial uncinectomy to pansinus surgery with extended surgery of the frontal (Draf type III), maxillary (grade 3–4, medial maxillectomy, prelacrimal approach) and sphenoid sinus. In addition there are operations outside and beyond the paranasal sinuses. The development of surgical technique is still constantly evolving. This article gives a comprehensive review on the most recent state of the art in endoscopic sinus surgery according to the literature with the following aspects: principles and fundamentals, surgical techniques, indications, outcome, postoperative care, nasal packing and stents, technical equipment. PMID:26770282
System performance enhancement with pre-distorted OOFDM signal waveforms in DM/DD systems.
Sánchez, C; Ortega, B; Capmany, J
2014-03-24
In this work we propose a pre-distortion technique for the mitigation of the nonlinear distortion present in directly modulated/detected OOFDM systems and explore the system performance achieved under varying system parameters. Simulation results show that the proposed pre-distortion technique efficiently mitigates the nonlinear distortion, achieving transmission information rates around 40 Gbits/s and 18.5 Gbits/s over 40 km and 100 km of single mode fiber links, respectively, under optimum operating conditions. Moreover, the proposed pre-distortion technique can potentially provide higher system performance to that obtained with nonlinear equalization at the receiver.
Soft X-ray characterization technique for Li batteries under operating conditions.
Petersburg, Cole F; Daniel, Robert C; Jaye, Cherno; Fischer, Daniel A; Alamgir, Faisal M
2009-09-01
O K-edge and Co L-edge near-edge X-ray absorption fine structure has been used to examine the cathode of an intact solid-state lithium ion battery. The novel technique allowed for the simultaneous acquisition of partial electron yield and fluorescence yield data during the first charge cycle of a LiCoO(2)-based battery below the intercalation voltage. The chemical environments of oxygen and cobalt at the surface are shown to differ chemically from those in the bulk. The present design enables a wide variety of in situ spectroscopies, microscopies and scattering techniques.
Chohnabayashi, Naohiko
2008-01-01
Recently, pulmonary rehabilitation program is widely considered one of the most effective and evidence-based treatment for not only chronic obstructive pulmonary disease (COPD) but many clinical situations including neuro-muscular disease, post-operative status and weaning period from the ventilator, etc. The essential components of a pulmonary rehabilitation program are team assessment, patient training, psycho-social intervention, exercise, and follow-up. In 2003, Japanese medical societies (J. Thoracic Society, J. Pul. Rehabilitation Society and J. Physiotherapist Society) made a new guideline for pulmonary rehabilitation, especially how to aproach the execise training. As for the duration after surgical operation, airway cleaning is the important technique to prevent post-operative complications including pneumonia. Postural dranage technique is well known for such condition, at the same time, several instruments (flutter vulve, positive expiratory mask, high frequecy oscillation, etc) were also used for the patient to expectrate airway mucus easier. Lung transplantation is a new method of treatment for the critically-ill patients with chronic respiratoy failure. Several techniques of physical therapy are must be needed before and after lung transplantation to prevent both pulmonary infection and osteoporosis.
A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors
Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ
2011-01-01
The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228
An extended transfer operator approach to identify separatrices in open flows
NASA Astrophysics Data System (ADS)
Lünsmann, Benedict; Kantz, Holger
2018-05-01
Vortices of coherent fluid volume are considered to have a substantial impact on transport processes in turbulent media. Yet, due to their Lagrangian nature, detecting these structures is highly nontrivial. In this respect, transfer operator approaches have been proven to provide useful tools: Approximating a possibly time-dependent flow as a discrete Markov process in space and time, information about coherent structures is contained in the operator's eigenvectors, which is usually extracted by employing clustering methods. Here, we propose an extended approach that couples surrounding filaments using "mixing boundary conditions" and focuses on the separation of the inner coherent set and embedding outer flow. The approach refrains from using unsupervised machine learning techniques such as clustering and uses physical arguments by maximizing a coherence ratio instead. We show that this technique improves the reconstruction of separatrices in stationary open flows and succeeds in finding almost-invariant sets in periodically perturbed flows.
Technique for temperature compensation of eddy-current proximity probes
NASA Technical Reports Server (NTRS)
Masters, Robert M.
1989-01-01
Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.
NASA Technical Reports Server (NTRS)
Greenwood, Eric, II; Schmitz, Fredric H.
2010-01-01
A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.
Characterization of Stereo Vision Performance for Roving at the Lunar Poles
NASA Technical Reports Server (NTRS)
Wong, Uland; Nefian, Ara; Edwards, Larry; Furlong, Michael; Bouyssounouse, Xavier; To, Vinh; Deans, Matthew; Cannon, Howard; Fong, Terry
2016-01-01
Surface rover operations at the polar regions of airless bodies, particularly the Moon, are of particular interest to future NASA science missions such as Resource Prospector (RP). Polar optical conditions present challenges to conventional imaging techniques, with repercussions to driving, safeguarding and science. High dynamic range, long cast shadows, opposition and white out conditions are all significant factors in appearance. RP is currently undertaking an effort to characterize stereo vision performance in polar conditions through physical laboratory experimentation with regolith simulants, obstacle distributions and oblique lighting.
Time-frequency analysis of pediatric murmurs
NASA Astrophysics Data System (ADS)
Lombardo, Joseph S.; Blodgett, Lisa A.; Rosen, Ron S.; Najmi, Amir-Homayoon; Thompson, W. Reid
1998-05-01
Technology has provided many new tools to assist in the diagnosis of pathologic conditions of the heart. Echocardiography, Ultrafast CT, and MRI are just a few. While these tools are a valuable resource, they are typically too expensive, large and complex in operation for use in rural, homecare, and physician's office settings. Recent advances in computer performance, miniaturization, and acoustic signal processing, have yielded new technologies that when applied to heart sounds can provide low cost screening for pathologic conditions. The short duration and transient nature of these signals requires processing techniques that provide high resolution in both time and frequency. Short-time Fourier transforms, Wigner distributions, and wavelet transforms have been applied to signals form hearts with various pathologic conditions. While no single technique provides the ideal solution, the combination of tools provides a good representation of the acoustic features of the pathologies selected.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
NASA Astrophysics Data System (ADS)
Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.
2017-02-01
Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.
Ruiz, J; Kaiser, A S; Lucas, M
2017-11-01
Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Watanabe, O.; Tanaka, M.
A technique of controlling the extent of the freezing zone created by in ground liquefied natural gas storage tanks by installing a heat barrier is described. The freezing conditions around three representative tanks after operating the system were compared.
Aerodynamic beam generator for large particles
Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.
2002-01-01
A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.
Turbulence management: Application aspects
NASA Astrophysics Data System (ADS)
Hirschel, E. H.; Thiede, P.; Monnoyer, F.
1989-04-01
Turbulence management for the reduction of turbulent friction drag is an important topic. Numerous research programs in this field have demonstrated that valuable net drag reduction is obtainable by techniques which do not involve substantial, expensive modifications or redesign of existing aircraft. Hence, large projects aiming at short term introduction of turbulence management technology into airline service are presently under development. The various points that have to be investigated for this purpose are presented. Both design and operational aspects are considered, the first dealing with optimizing of turbulence management techniques at operating conditions, and the latter defining the technical problems involved by application of turbulence management to in-service aircraft. The cooperative activities of Airbus Industrie and its partners are cited as an example.
Mirror ear: a reconstructive technique for substantial tragal anomalies or polyotia.
Gore, Sinclair M; Myers, Simon R; Gault, David
2006-01-01
Polyotia (mirror ear) is an extremely rarely reported congenital anomaly of the external ear. The aetiology of this condition is unclear, and there are few descriptions of surgical techniques used. We aimed to review our experience with this condition by performing a retrospective review of the cases treated in our unit. Eight cases of polyotia treated at a referral centre for ear reconstruction in a 12 year period (1992-2004) were reviewed. Patient demographic data and associated syndromes were recorded. Operative techniques used in the cases were studied. There was an equal number of males and females. Four patients had abnormal contralateral ears and two patients were formally diagnosed as suffering from a congenital developmental syndrome. Five main components of surgical technique were found to be particularly relevant to these cases. These relate to deconstruction of the defect, management of extra cartilage, management of skin, proximity of the facial nerve and the timing of surgery. The authors conclude that a structured surgical approach can lead to successful reconstruction of these difficult abnormalities.
Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions
NASA Astrophysics Data System (ADS)
Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.
2016-05-01
This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.
Next generation initiation techniques
NASA Technical Reports Server (NTRS)
Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans
1993-01-01
Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The third kind of next-generation technique involves strategies to initialize convective scale (non-hydrostatic) models.
NASA Astrophysics Data System (ADS)
Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H.
2014-06-01
Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (VLL) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the VLL within TBRs.
NASA Technical Reports Server (NTRS)
Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.
1996-01-01
The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FIS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques.
Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H
2014-06-01
Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.
Theorems on symmetries and flux conservation in radiative transfer using the matrix operator theory.
NASA Technical Reports Server (NTRS)
Kattawar, G. W.
1973-01-01
The matrix operator approach to radiative transfer is shown to be a very powerful technique in establishing symmetry relations for multiple scattering in inhomogeneous atmospheres. Symmetries are derived for the reflection and transmission operators using only the symmetry of the phase function. These results will mean large savings in computer time and storage for performing calculations for realistic planetary atmospheres using this method. The results have also been extended to establish a condition on the reflection matrix of a boundary in order to preserve reciprocity. Finally energy conservation is rigorously proven for conservative scattering in inhomogeneous atmospheres.
Propeller flow visualization techniques
NASA Technical Reports Server (NTRS)
Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.
1982-01-01
Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.
Gravimetric capillary method for kinematic viscosity measurements
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing
1992-01-01
A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.
[Combined spinal and epidural anaesthesia in abdominal delivery].
Matlubov, M M; Rakhimov, A U; Semenikhin, A A
2010-01-01
The purpose of this work is to estimate the efficacy and safety of balanced two-segmental spinal-epidural anaesthesia (SEA) as well as application of this technique in conditions of extended operative delivery. The method has been used in 69 pregnant patients aged 23-42 years, with gestation period ranging from 36 to 40 weeks. It was found out that SEA is highly effective and safe technique, therefore it can be recommended as suitable method of anaesthesia in surgery with an extension possibility.
Microseismic techniques for avoiding induced seismicity during fluid injection
Matzel, Eric; White, Joshua; Templeton, Dennise; ...
2014-01-01
The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srutarshi; Rajan, Rehim N.; Singh, Sandeep K.
2014-07-01
DC Accelerators undergoes different types of discharges during its operation. A model depicting the discharges has been simulated to study the different transient conditions. The paper presents a Physics based approach of developing a compact circuit model of the DC Accelerator using Partial Element Equivalent Circuit (PEEC) technique. The equivalent RLC model aids in analyzing the transient behavior of the system and predicting anomalies in the system. The electrical discharges and its properties prevailing in the accelerator can be evaluated by this equivalent model. A parallel coupled voltage multiplier structure is simulated in small scale using few stages of coronamore » guards and the theoretical and practical results are compared. The PEEC technique leads to a simple model for studying the fault conditions in accelerator systems. Compared to the Finite Element Techniques, this technique gives the circuital representation. The lumped components of the PEEC are used to obtain the input impedance and the result is also compared to that of the FEM technique for a frequency range of (0-200) MHz. (author)« less
Integer programming model for optimizing bus timetable using genetic algorithm
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Buono, A.; Silalahi, B. P.
2017-01-01
Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.
High-precision buffer circuit for suppression of regenerative oscillation
NASA Technical Reports Server (NTRS)
Tripp, John S.; Hare, David A.; Tcheng, Ping
1995-01-01
Precision analog signal conditioning electronics have been developed for wind tunnel model attitude inertial sensors. This application requires low-noise, stable, microvolt-level DC performance and a high-precision buffered output. Capacitive loading of the operational amplifier output stages due to the wind tunnel analog signal distribution facilities caused regenerative oscillation and consequent rectification bias errors. Oscillation suppression techniques commonly used in audio applications were inadequate to maintain the performance requirements for the measurement of attitude for wind tunnel models. Feedback control theory is applied to develop a suppression technique based on a known compensation (snubber) circuit, which provides superior oscillation suppression with high output isolation and preserves the low-noise low-offset performance of the signal conditioning electronics. A practical design technique is developed to select the parameters for the compensation circuit to suppress regenerative oscillation occurring when typical shielded cable loads are driven.
The measurement of the heat-transfer coefficient between high-temperature liquids and solid surfaces
NASA Astrophysics Data System (ADS)
Utigard, T. A.; Warczok, A.; Desclaux, P.
1994-01-01
Two experimental techniques were developed for the purpose of measuring the heat-transfer coefficient between liquid slags/salts and solid surfaces. This was carried out because the heat-transfer coefficient is important for the design and operation of metallurgical reactors. A “cold-finger” technique was developed for the purpose of carrying out heat-transfer measurements during steady-state conditions simulating heat fluxes through furnace sidewalls. A lump capacitance method was developed and tested for the purpose of simulating transient conditions. To determine the effect of fluid flow on the heat-transfer coefficient, nitrogen gas stirring was used. The two techniques were tested in molten (1) and NaNO3, (2) NaCl, (3) Na3AlF6, and (4) 2FeO·SiO2, giving consistent results. It was found that the heat-transfer coefficient increases with increasing bath superheat and stirring.
A model-based 3D template matching technique for pose acquisition of an uncooperative space object.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2015-03-16
This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented.
1966-01-01
simulating zero-gravity performance of an astronaut in a pressurized spacesuit by complete water immersion has been developed and inves- tigated. The...critical operational characteristics relating to space- craft and spacesuit design under conditions of zero gravity. In addition, the physical...the legs of the suit and are contained by insulated flight boots . The Mark IV suit used in the tests is shown in figure 1. 3 Pressure-Suit
Simulation of solidification in a Bridgman cell
NASA Technical Reports Server (NTRS)
Dakhoul, Y. M.; Farmer, R. C.
1984-01-01
Bridgman-type crystal growth techniques are attractive methods for producing homogeneous, high-quality infrared detector and junction device materials. However, crystal imperfections and interface shapes still must be controlled through modification of the temperature and concentration gradients created during solidification. The objective of this investigation was to study the temperature fields generated by various cell and heatpipe configurations and operating conditions. Continuum's numerical model of the temperature, species concentrations, and velocity fields was used to describe the thermal characteristics of Bridgman cell operation.
Isotope Exchange in Oxide Catalyst
NASA Technical Reports Server (NTRS)
Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.
1987-01-01
Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.
Ennker, I C; Pietrowski, D; Ennker, J
2006-01-01
Dextrocardia associated with situs inversus totalis is a rare condition and there are few reports of myocardial revascularisation in such patients. An 82-year-old woman with dextrocardia and situs inversus totalis underwent successful off-pump coronary artery bypass grafting using internal mammary arteries. The operative technique was similar to that of off-pump coronary artery bypass grafting for situs solitus. However, for a right-handed surgeon the operation was easier standing on the left side of the patient.
Gligorijevic, Jovan; Gajic, Dragoljub; Brkovic, Aleksandar; Savic-Gajic, Ivana; Georgieva, Olga; Di Gennaro, Stefano
2016-03-01
The packaging materials industry has already recognized the importance of Total Productive Maintenance as a system of proactive techniques for improving equipment reliability. Bearing faults, which often occur gradually, represent one of the foremost causes of failures in the industry. Therefore, detection of their faults in an early stage is quite important to assure reliable and efficient operation. We present a new automated technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis. Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the standard deviation of obtained wavelet coefficients is extracted as a representative feature. Then, the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is carried out by quadratic classifiers. Accuracy of the technique has been tested on four classes of the recorded vibrations signals, i.e., normal, with the fault of inner race, outer race, and ball operation. The overall accuracy of 98.9% has been achieved. The new technique can be used to support maintenance decision-making processes and, thus, to increase reliability and efficiency in the industry by preventing unexpected faulty operation of bearings.
Gligorijevic, Jovan; Gajic, Dragoljub; Brkovic, Aleksandar; Savic-Gajic, Ivana; Georgieva, Olga; Di Gennaro, Stefano
2016-01-01
The packaging materials industry has already recognized the importance of Total Productive Maintenance as a system of proactive techniques for improving equipment reliability. Bearing faults, which often occur gradually, represent one of the foremost causes of failures in the industry. Therefore, detection of their faults in an early stage is quite important to assure reliable and efficient operation. We present a new automated technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis. Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the standard deviation of obtained wavelet coefficients is extracted as a representative feature. Then, the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is carried out by quadratic classifiers. Accuracy of the technique has been tested on four classes of the recorded vibrations signals, i.e., normal, with the fault of inner race, outer race, and ball operation. The overall accuracy of 98.9% has been achieved. The new technique can be used to support maintenance decision-making processes and, thus, to increase reliability and efficiency in the industry by preventing unexpected faulty operation of bearings. PMID:26938541
NASA Astrophysics Data System (ADS)
Ginting, E.; Tambunanand, M. M.; Syahputri, K.
2018-02-01
Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.
Development of wear resistant ceramic coatings for diesel engine components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haselkorn, M.H.
1992-04-01
Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less
Development of wear resistant ceramic coatings for diesel engine components. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haselkorn, M.H.
1992-04-01
Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less
Does arousal interfere with operant conditioning of spike-wave discharges in genetic epileptic rats?
Osterhagen, Lasse; Breteler, Marinus; van Luijtelaar, Gilles
2010-06-01
One of the ways in which brain computer interfaces can be used is neurofeedback (NF). Subjects use their brain activation to control an external device, and with this technique it is also possible to learn to control aspects of the brain activity by operant conditioning. Beneficial effects of NF training on seizure occurrence have been described in epileptic patients. Little research has been done about differentiating NF effectiveness by type of epilepsy, particularly, whether idiopathic generalized seizures are susceptible to NF. In this experiment, seizures that manifest themselves as spike-wave discharges (SWDs) in the EEG were reinforced during 10 sessions in 6 rats of the WAG/Rij strain, an animal model for absence epilepsy. EEG's were recorded before and after the training sessions. Reinforcing SWDs let to decreased SWD occurrences during training; however, the changes during training were not persistent in the post-training sessions. Because behavioural states are known to have an influence on the occurrence of SWDs, it is proposed that the reinforcement situation increased arousal which resulted in fewer SWDs. Additional tests supported this hypothesis. The outcomes have implications for the possibility to train SWDs with operant learning techniques. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Coherent interaction with two-level fluctuators using near field scanning microwave microscopy.
de Graaf, S E; Danilov, A V; Kubatkin, S E
2015-11-24
Near field Scanning Microwave Microscopy (NSMM) is a scanning probe technique that non-invasively can obtain material properties on the nano-scale at microwave frequencies. While focus has been on developing room-temperature systems it was recently shown that this technique can potentially reach the quantum regime, opening up for applications in materials science and device characterization in solid state quantum information processing. In this paper we theoretically investigate this new regime of NSMM. Specifically we show that interaction between a resonant NSMM probe and certain types of two-level systems become possible when the NSMM probe operates in the (sub-) single photon regime, and we expect a high signal-to-noise ratio if operated under the right conditions. This would allow to detect single atomic material defects with energy splittings in the GHz range with nano-scale resolution, provided that individual defects in the material under study are well enough separated. We estimate that this condition is fulfilled for materials with loss tangents below tan δ ∼ 10(-3) which holds for materials used in today's quantum circuits and devices where typically tan δ < 10(-5). We also propose several extensions to a resonant NSMM that could improve sensitivity and functionality also for microscopes operating in a high power regime.
Multispectral system analysis through modeling and simulation
NASA Technical Reports Server (NTRS)
Malila, W. A.; Gleason, J. M.; Cicone, R. C.
1977-01-01
The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in Landsat data, examining system design and operational configuration, and development of information extraction techniques.
Multispectral system analysis through modeling and simulation
NASA Technical Reports Server (NTRS)
Malila, W. A.; Gleason, J. M.; Cicone, R. C.
1977-01-01
The design and development of multispectral remote sensor systems and associated information extraction techniques should be optimized under the physical and economic constraints encountered and yet be effective over a wide range of scene and environmental conditions. Direct measurement of the full range of conditions to be encountered can be difficult, time consuming, and costly. Simulation of multispectral data by modeling scene, atmosphere, sensor, and data classifier characteristics is set forth as a viable alternative, particularly when coupled with limited sets of empirical measurements. A multispectral system modeling capability is described. Use of the model is illustrated for several applications - interpretation of remotely sensed data from agricultural and forest scenes, evaluating atmospheric effects in LANDSAT data, examining system design and operational configuration, and development of information extraction techniques.
Safety of elective hand surgery following axillary lymph node dissection for breast cancer.
Hershko, Dan D; Stahl, Shalom
2007-01-01
The development of lymphedema is the most feared complication shared by breast cancer survivors undergoing hand surgery after prior axillary lymph node dissection (ALND). Traditionally, these patients are advised to avoid any interventional procedures in the ipsilateral upper extremity. However, the appropriateness of some of these precautions was recently challenged by some surgeons claiming that elective hand operations can be safely performed in these patients. The purpose of this study was to evaluate our experience and determine the safety of elective hand operations in breast cancer survivors. The medical records of patients operated for different hand conditions after prior breast surgery and ALND at our institution between 1983 and 2002 were reviewed. The techniques and preventive measures performed, use of antibiotics, and upper extremity complications associated with the operations were analyzed. Overall, we operated on 27 patients after prior ALND performed for breast cancer. Follow-up was available for 25 patients. Four patients had pre-existing lymphedema. The surgical technique used was similar to that performed in patients without prior ALND and antibiotic prophylaxis was not given. Delayed wound healing was observed in one patient and finger joint stiffness in another. Two patients with pre-existing lymphedema developed temporary worsening of their condition. None of the patients developed new lymphedema. The results of the present study support the few previous studies, suggesting that hand surgery can be safely performed in patients with prior ALND. Based on these findings, the appropriateness of the rigorous precautions and prohibitions regarding the care and use of the ipsilateral upper extremity may need to be reconsidered.
An Overview of Dynamic Contact Resistance Measurement of HV Circuit Breakers
NASA Astrophysics Data System (ADS)
Bhole, A. A.; Gandhare, W. Z.
2016-06-01
With the deregulation of the electrical power industry, utilities and service companies are operating in a changing business environment. High voltage circuit breakers are extremely important for the function of modern electric power supply systems. The need to predict the proper function of circuit breaker grew over the years as the transmission networks expanded. The maintenance of circuit breakers deserves special consideration because of their importance for routine switching and for protection of other equipments. Electric transmission system breakups and equipment destruction can occur if a circuit breaker fails to operate because of a lack of preventive maintenance. Dynamic Contact Resistance Measurement (DCRM) is known as an effective technique for assessing the condition of power circuit breakers contacts and operating mechanism. This paper gives a general review about DCRM. It discusses the practical case studies on use of DCRM for condition assessment of high voltage circuit breakers.
NASA Technical Reports Server (NTRS)
Zaychik, Kirill B.; Cardullo, Frank M.
2012-01-01
Results have been obtained using conventional techniques to model the generic human operator?s control behavior, however little research has been done to identify an individual based on control behavior. The hypothesis investigated is that different operators exhibit different control behavior when performing a given control task. Two enhancements to existing human operator models, which allow personalization of the modeled control behavior, are presented. One enhancement accounts for the testing control signals, which are introduced by an operator for more accurate control of the system and/or to adjust the control strategy. This uses the Artificial Neural Network which can be fine-tuned to model the testing control. Another enhancement takes the form of an equiripple filter which conditions the control system power spectrum. A novel automated parameter identification technique was developed to facilitate the identification process of the parameters of the selected models. This utilizes a Genetic Algorithm based optimization engine called the Bit-Climbing Algorithm. Enhancements were validated using experimental data obtained from three different sources: the Manual Control Laboratory software experiments, Unmanned Aerial Vehicle simulation, and NASA Langley Research Center Visual Motion Simulator studies. This manuscript also addresses applying human operator models to evaluate the effectiveness of motion feedback when simulating actual pilot control behavior in a flight simulator.
Expert systems and advanced automation for space missions operations
NASA Technical Reports Server (NTRS)
Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas
1990-01-01
Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.
ACUTE HYDRONEPHROSIS MIMICKING RENAL COLIC
Martin, Donald C.; Kaufman, Joseph J.
1964-01-01
Hydronephrosis may be acute, recurrent and related to ingestion of fluid. Frequently a lower polar vessel is an etiological factor. The condition is amenable to corrective operation by a variety of surgical techniques, as in the six cases here reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:14154288
The Use of Models in a Desensitization Procedure.
ERIC Educational Resources Information Center
Leventhal, Allan M.
The author describes a counseling technique which: (1) is based upon behavior theory and treats acts and thoughts as operants, and anxiety as a respondent controlled by classical conditioning; (2) entails in vivo desensitization, requiring the construction of a hierarchy of anxiety-producing situations which can be enacted; (3) uses peer- or…
Mapping of submerged vegetation using remote sensing technology
NASA Technical Reports Server (NTRS)
Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.
1981-01-01
Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.
Ban the sunset? Nonpropositional content and regulation of pharmaceutical advertising.
Biegler, Paul; Vargas, Patrick
2013-01-01
The risk that direct-to-consumer advertising of prescription pharmaceuticals (DTCA) may increase inappropriate medicine use is well recognized. The U.S. Food and Drug Administration addresses this concern by subjecting DTCA content to strict scrutiny. Its strictures are, however, heavily focused on the explicit claims made in commercials, what we term their "propositional content." Yet research in social psychology suggests advertising employs techniques to influence viewers via nonpropositional content, for example, images and music. We argue that one such technique, evaluative conditioning, is operative in DTCA. We further argue that evaluative conditioning fosters unjustified beliefs about drug safety and efficacy, antagonising the autonomy of viewers' choices about advertised medicines. We conclude that current guidelines are deficient in failing to account for evaluative conditioning, and that more research and debate are needed to determine the permissibility of this and other forms of nonpropositional persuasion.
Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.
2005-01-01
A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.
Nanoliter-Scale Protein Crystallization and Screening with a Microfluidic Droplet Robot
Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun
2014-01-01
Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35–96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4–8 nL. The protein consumption significantly reduces 50–500 fold compared with current crystallization stations. PMID:24854085
Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.
Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun
2014-05-23
Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8 nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.
Design and flight testing of a nullable compressor face rake
NASA Technical Reports Server (NTRS)
Holzman, J. K.; Payne, G. A.
1973-01-01
A compressor face rake with an internal valve arrangement to permit nulling was designed, constructed, and tested in the laboratory and in flight at the NASA Flight Research Center. When actuated by the pilot in flight, the nullable rake allowed the transducer zero shifts to be determined and then subsequently removed during data reduction. Design details, the fabrication technique, the principle of operation, brief descriptions of associated digital zero-correction programs and the qualification tests, and test results are included. Sample flight data show that the zero shifts were large and unpredictable but could be measured in flight with the rake. The rake functioned reliably and as expected during 25 hours of operation under flight environmental conditions and temperatures from 230 K (-46 F) to greater than 430 K (314 F). The rake was nulled approximately 1000 times. The in-flight zero-shift measurement technique, as well as the rake design, was successful and should be useful in future applications, particularly where accurate measurements of both steady-state and dynamic pressures are required under adverse environmental conditions.
Whole cell entrapment techniques.
Trelles, Jorge A; Rivero, Cintia W
2013-01-01
Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).
A technique for measuring hypersonic flow velocity profiles
NASA Technical Reports Server (NTRS)
Gartrell, L. R.
1973-01-01
A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.
NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2017-01-01
The identification of a single global model for a stochastic dynamical system operating under various conditions is considered. Each operating condition is assumed to have a pseudo-static effect on the dynamics and be characterized by a single measurable scheduling variable. Identification is accomplished within a recently introduced Functionally Pooled (FP) framework, which offers a number of advantages over Linear Parameter Varying (LPV) identification techniques. The focus of the work is on the extension of the framework to include the important FP-ARMAX model case. Compared to their simpler FP-ARX counterparts, FP-ARMAX models are much more general and offer improved flexibility in describing various types of stochastic noise, but at the same time lead to a more complicated, non-quadratic, estimation problem. Prediction Error (PE), Maximum Likelihood (ML), and multi-stage estimation methods are postulated, and the PE estimator optimality, in terms of consistency and asymptotic efficiency, is analytically established. The postulated estimators are numerically assessed via Monte Carlo experiments, while the effectiveness of the approach and its superiority over its FP-ARX counterpart are demonstrated via an application case study pertaining to simulated railway vehicle suspension dynamics under various mass loading conditions.
NASA Astrophysics Data System (ADS)
Munshi, Soumika; Datta, A. K.
2003-03-01
A technique of optically detecting the edge and skeleton of an image by defining shift operations for morphological transformation is described. A (2 × 2) source array, which acts as the structuring element of morphological operations, casts four angularly shifted optical projections of the input image. The resulting dilated image, when superimposed with the complementary input image, produces the edge image. For skeletonization, the source array casts four partially overlapped output images of the inverted input image, which is negated, and the resultant image is recorded in a CCD camera. This overlapped eroded image is again eroded and then dilated, producing an opened image. The difference between the eroded and opened image is then computed, resulting in a thinner image. This procedure of obtaining a thinned image is iterated until the difference image becomes zero, maintaining the connectivity conditions. The technique has been optically implemented using a single spatial modulator and has the advantage of single-instruction parallel processing of the image. The techniques have been tested both for binary and grey images.
Well-posedness for a class of doubly nonlinear stochastic PDEs of divergence type
NASA Astrophysics Data System (ADS)
Scarpa, Luca
2017-08-01
We prove well-posedness for doubly nonlinear parabolic stochastic partial differential equations of the form dXt - div γ (∇Xt) dt + β (Xt) dt ∋ B (t ,Xt) dWt, where γ and β are the two nonlinearities, assumed to be multivalued maximal monotone operators everywhere defined on Rd and R respectively, and W is a cylindrical Wiener process. Using variational techniques, suitable uniform estimates (both pathwise and in expectation) and some compactness results, well-posedness is proved under the classical Leray-Lions conditions on γ and with no restrictive smoothness or growth assumptions on β. The operator B is assumed to be Hilbert-Schmidt and to satisfy some classical Lipschitz conditions in the second variable.
NASA Technical Reports Server (NTRS)
Smith, R. A.
1977-01-01
Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.
Volterra model of the parametric array loudspeaker operating at ultrasonic frequencies.
Shi, Chuang; Kajikawa, Yoshinobu
2016-11-01
The parametric array loudspeaker (PAL) is an application of the parametric acoustic array in air, which can be applied to transmit a narrow audio beam from an ultrasonic emitter. However, nonlinear distortion is very perceptible in the audio beam. Modulation methods to reduce the nonlinear distortion are available for on-axis far-field applications. For other applications, preprocessing techniques are wanting. In order to develop a preprocessing technique with general applicability to a wide range of operating conditions, the Volterra filter is investigated as a nonlinear model of the PAL in this paper. Limitations of the standard audio-to-audio Volterra filter are elaborated. An improved ultrasound-to-ultrasound Volterra filter is proposed and empirically demonstrated to be a more generic Volterra model of the PAL.
Beam tuning and bunch length measurement in the bunch compression operation at the cERL
NASA Astrophysics Data System (ADS)
Honda, Y.; Shimada, M.; Miyajima, T.; Hotei, T.; Nakamura, N.; Kato, R.; Obina, T.; Takai, R.; Harada, K.; Ueda, A.
2017-12-01
Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest acceleration is a widely used technique. The technique was applied in a compact test accelerator of an energy-recovery linac scheme for compressing the bunch length at the return loop. A diagnostic system utilizing coherent transition radiation was developed for the beam tuning and for estimating the bunch length. By scanning the beam parameters, we experimentally found the best condition for the bunch compression. The RMS bunch length of 250 ±50 fs was obtained at a bunch charge of 2 pC. This result confirmed the design and the tuning procedure of the bunch compression operation for the future energy-recovery linac (ERL).
1986-04-01
these conditions and the sublimation product (IrO 2 ) contaminates the melt and resultant crystal. The goal of this program is to explore the...element; if the skull-melting operation is carried out under oxidizing conditions, the combustion products of high-purity graphite (CO 2 and CO) do not...polycrstalline ingots. Subsequent annealing of 16 S’ .1i" these 0 2 -defficient ingots in air at 1200 degrees C resulted in powdering and disintergration
Variation of fan tone steadiness for several inflow conditions
NASA Technical Reports Server (NTRS)
Balombin, J. R.
1978-01-01
An amplitude probability density function analysis technique for quantifying the degree of fan noise tone steadiness has been applied to data from a fan tested under a variety of inflow conditions. The test conditions included typical static operation, inflow control by a honeycomb/screen device and forward velocity in a wind tunnel simulating flight. The ratio of mean square sinusoidal-to-random signal content in the fundamental and second harmonic tones was found to vary by more than an order-of-magnitude. Some implications of these results concerning the nature of fan noise generation mechanisms are discussed.
Determining the Compositions of Extraterrestrial Lava Flows
NASA Technical Reports Server (NTRS)
Fink, Jonathan H.
2002-01-01
The primary purpose of this research project has been to develop techniques that allow the emplacement conditions of volcanic landforms on other planets to be related to attributes that can be remotely detected with available instrumentation. The underlying assumption of our work is that the appearance of a volcano, lava flow, debris avalanche, or exhumed magmatic intrusion can provide clues about the conditions operating when that feature was first emplaced. Magma composition, amount of crustal heat flow, state of tectonic stress, and climatic conditions are among the important variables that can be inferred from the morphology and texture of an igneous body.
XV-15 Low-Noise Terminal Area Operations Testing
NASA Technical Reports Server (NTRS)
Edwards, B. D.
1998-01-01
Test procedures related to XV-15 noise tests conducted by NASA-Langley and Bell Helicopter Textron, Inc. are discussed. The tests. which took place during October and November 1995, near Waxahachie, Texas, documented the noise signature of the XV-15 tilt-rotor aircraft at a wide variety of flight conditions. The stated objectives were to: -provide a comprehensive acoustic database for NASA and U.S. Industry -validate noise prediction methodologies, and -develop and demonstrate low-noise flight profiles. The test consisted of two distinct phases. Phase 1 provided an acoustic database for validating analytical noise prediction techniques; Phase 2 directly measured noise contour information at a broad range of operating profiles, with emphasis on minimizing 'approach' noise. This report is limited to a documentation of the test procedures, flight conditions, microphone locations, meteorological conditions, and test personnel used in the test. The acoustic results are not included.
Hybrid Laminates for Application in North Conditions
NASA Astrophysics Data System (ADS)
Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.
2016-11-01
A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.
NASA Technical Reports Server (NTRS)
Wolf, J. A.
1978-01-01
The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.
Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E.; Spear, Norman E.
2014-01-01
Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low ethanol doses during late gestation. On a single occasion during each of gestational days 17–20, pregnant rats were intragastrically administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin, 3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session was given in which operant behavior had no consequence. Pups were positioned on a smooth surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A Yoked control animal evaluated at the same time received the reinforcer when its corresponding Paired pup touched the sensor. Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not affected by prenatal ethanol exposure. These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates operant learning reinforced by intraoral administration of a low-concentration ethanol solution. This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to drug reinforcement. The present operant conditioning technique represents an alternative tool to assess self-administration and seeking behavior during early stages of development. PMID:24355072
Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Spear, Norman E
2014-02-01
Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low ethanol doses during late gestation. On a single occasion during each of gestational days 17-20, pregnant rats were intragastrically administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin, 3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session was given in which operant behavior had no consequence. Pups were positioned on a smooth surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A Yoked control animal evaluated at the same time received the reinforcer when its corresponding Paired pup touched the sensor. Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not affected by prenatal ethanol exposure. These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates operant learning reinforced by intraoral administration of a low-concentration ethanol solution. This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to drug reinforcement. The present operant conditioning technique represents an alternative tool to assess self-administration and seeking behavior during early stages of development. Published by Elsevier Inc.
HIGH POWER BEAM DUMP AND TARGET / ACCELERATOR INTERFACE PROCEDURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Plum, Michael A; Peters, Charles C
Satisfying operational procedures and limits for the beam target interface is a critical concern for high power operation at spallation neutron sources. At the Oak Ridge Spallation Neutron Source (SNS) a number of protective measures are instituted to ensure that the beam position, beam size and peak intensity are within acceptable limits at the target and high power Ring Injection Dump (RID). The high power beam dump typically handles up to 50 100 kW of beam power and its setup is complicated by the fact that there are two separate beam components simultaneously directed to the dump. The beam onmore » target is typically in the 800-1000 kW average power level, delivered in sub- s 60 Hz pulses. Setup techniques using beam measurements to quantify the beam parameters at the target and dump will be described. However, not all the instrumentation used for the setup and initial qualification is available during high power operation. Additional techniques are used to monitor the beam during high power operation to ensure the setup conditions are maintained, and these are also described.« less
Choobineh, A R; Daneshmandi, H; Aghabeigi, M; Haghayegh, A
2013-10-01
Work-related musculoskeletal disorders (WMSDs) are a common health problem throughout the world and a major cause of disability in the workplace. To determine the prevalence rate of MSDs, assessment of ergonomics working conditions and identification of major risk factors associated with MSDs symptoms among employees of Iranian petrochemical industries between October 2009 and December 2012. In this study, we studied 1184 randomly selected employees of 4 Iranian petrochemical companies with at least one year of work experience in office or operational units. For those with office jobs, data were collected using Nordic Musculoskeletal disorders Questionnaire (NMQ) and ergonomics checklist for the assessment of working conditions. For those with operational jobs, NMQ and Quick Exposure Check (QEC) method were used for data collection. The most prevalent MSD symptoms were reported in lower back (41.5%) and neck (36.5%). The prevalence of MSDs in all body regions but elbows and thighs of the office staff was significantly higher than that of operational workers. Assessment of working conditions in office staff revealed that the lowest index was attributed to workstation. QEC technique among operational workers showed that in 73.8% of the workers studied, the level of exposure to musculoskeletal risks was "high" or "very high." MSDs were associated with type of job, age, body mass index, work experience, gender, marital status, educational level and type of employment. The prevalence of MSDs in the office staff was higher than that of operational workers. Level of exposure to MSDs risk was high in operational workers. Corrective measures are thus necessary for improving working conditions for both office and operational units.
Investigation of piezoelectric impedance-based health monitoring of structure interface debonding
NASA Astrophysics Data System (ADS)
Xiao, Li; Chen, Guofeng; Chen, Xiaoming; Qu, Wenzhong
2016-04-01
Various damages might occur during the solid rocket motor (SRM) manufacturing/operational phase, and the debonding of propellant/insulator/composite case interfaces is one of damage types which determine the life of a motor. The detection of such interface debonding damage will be beneficial for developing techniques for reliable nondestructive evaluation (NDE) and structural health monitoring (SHM). Piezoelectric sensors are widely used for structural health monitoring technique. In particular, electromechanical impedance (EMI) techniques give simple and low-cost solutions for detecting damage in various structures. In this work, piezoelectric EMI structural health monitoring technique is applied to identify the debonding condition of propellant/insulator interface structure using finite element method and experimental investigation. A three-dimensional coupled field finite element model is developed using the software ANSYS and the harmonic analysis is conducted for high-frequency impedance analysis procedure. In the experimental study, the impedance signals were measured from PZT and MFC sensors outside attached to composite case monitoring the different debonding conditions between the propellant and insulator. Root mean square deviation (RMSD) based damage index is conducted to quantify the changes i n impedance for different de bonding conditions and frequency range. Simulation and experimental results confirmed that the EMI technique can be used effectively for detecting the debonding damage in SRM and is expected to be useful for future application of real SRM's SHM.
Physiological assessment of task underload
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Harris, Randall L., Sr.; Pope, Alan T.
1988-01-01
The ultimate goal of research efforts directed at underload, boredom, or complacency in high-technology work environments is to detect conditions or states of the operator that can be demonstrated to lead to performance degradation, and then to intervene in the environment to restore acceptable system performance. Physiological measures may provide indices of changes in condition or state of the operator that may be of value in high-technology work environments. The focus of the present study was on the use of physiological measures in the assessment of operator condition or state in a task underload scenario. A fault acknowledgement task characterized by simple repetitive responses with minimal novelty, complexity, and uncertainty was employed to place subjects in a task underload situation. Physiological measures (electrocardiogram (ECG), electroencephalogram (EEG), and pupil diameter) were monitored during task performance over a one-hour test session for 12 subjects. Each of the physiological measures exhibited changes over the test session indicative of decrements in subject arousal level. While high correlations between physiological measures were found across subjects, individual differences between subjects support the use of profiling techniques to establish baselines unique to each subject.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
Parenreng, Jumadi Mabe; Kitagawa, Akio
2018-05-17
Wireless Sensor Networks (WSNs) with limited battery, central processing units (CPUs), and memory resources are a widely implemented technology for early warning detection systems. The main advantage of WSNs is their ability to be deployed in areas that are difficult to access by humans. In such areas, regular maintenance may be impossible; therefore, WSN devices must utilize their limited resources to operate for as long as possible, but longer operations require maintenance. One method of maintenance is to apply a resource adaptation policy when a system reaches a critical threshold. This study discusses the application of a security level adaptation model, such as an ARSy Framework, for using resources more efficiently. A single node comprising a Raspberry Pi 3 Model B and a DS18B20 temperature sensor were tested in a laboratory under normal and stressful conditions. The result shows that under normal conditions, the system operates approximately three times longer than under stressful conditions. Maintaining the stability of the resources also enables the security level of a network's data output to stay at a high or medium level.
Kitagawa, Akio
2018-01-01
Wireless Sensor Networks (WSNs) with limited battery, central processing units (CPUs), and memory resources are a widely implemented technology for early warning detection systems. The main advantage of WSNs is their ability to be deployed in areas that are difficult to access by humans. In such areas, regular maintenance may be impossible; therefore, WSN devices must utilize their limited resources to operate for as long as possible, but longer operations require maintenance. One method of maintenance is to apply a resource adaptation policy when a system reaches a critical threshold. This study discusses the application of a security level adaptation model, such as an ARSy Framework, for using resources more efficiently. A single node comprising a Raspberry Pi 3 Model B and a DS18B20 temperature sensor were tested in a laboratory under normal and stressful conditions. The result shows that under normal conditions, the system operates approximately three times longer than under stressful conditions. Maintaining the stability of the resources also enables the security level of a network’s data output to stay at a high or medium level. PMID:29772773
Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong
2014-09-01
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; Park, Hee-Deung; Kim, Taek-Seung; Baquero-Rodriguez, G Andres; Olson, Betty H; Rosso, Diego
2018-10-15
Biofilm formation influences the most energy-demanding process in the waste water treatment cycle. Biofilm growth on the surface of wastewater aeration diffusers in water resource recovery facilities (WRRFs) can increase the energy requirements up to 50% in less than 2 years. The impact of biofilms in aeration diffusers was quantified and assessed for first time using molecular tools (i.e., Energy-dispersive X-ray, Ra and RMS and Pyrosequencing) and state-of-the-art techniques (i.e., EPS quantification, Hydrophobicity and DNA quantification). To provide a better understanding and quantitative connections between biological activity and aeration energy efficiency, two replicates of the most common diffusers were installed and tested in two different operational conditions (higher and lower organic loading rate processes) during 15 months. Different scenarios and conditions provided for first time comprehensive understanding of the major factors contributing to diffuser fouling. The array of analysis suggested that higher loading conditions can promote specialized microbial populations to halve aeration efficiency parameters (i.e., αF) in comparison to lower loading conditions. Biofilms adapted to certain operational conditions can trigger changes in diffuser membrane properties (i.e., biological enhanced roughness and hydrophobicity) and enhance EPS growth rates. Improved understanding of the effects of scaling, biofouling, aging and microbial population shifts on the decrease in aeration efficiency is provided. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam
2013-01-01
The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the receiver under test is subjected to conditions where its performance degrades to high error rates (30 percent or beyond). The design incorporates a number of features, such as watchdog triggers that permit the SDA system to recover from large receiver upsets automatically and continue accumulating performance analysis unaided by operator intervention. This accommodates tests that can last in the order of days in order to gain statistical confidence in results and is also useful for capturing snapshots of rare events.
van Bijsterveldt, Chantal; Willemsen, Wim
2009-06-01
The aim of this study is to describe the different modalities of congenital obstructing vaginal malformations and the evaluation of techniques to solve the problem. A retrospective study. The University Hospital Nijmegen, the Netherlands. The medical records of 18 patients with congenital obstructive malformations of the vagina operated on by one gynecologist were retrospectively reviewed. The conditions were classified in three groups: group I with one uterus and vagina and with a transverse vaginal septum, group II with a partial vaginal agenesis and group III with a double genital system and a septum with occlusion of one vagina. Operating technique used, mold treatment after surgery, menstruation outflow, the possibility of having intercourse and the need for additional surgery. 18 patients were evaluated. Of 10 patients in group I, 8 patients were treated with the pull-through technique and 2 patients with the push-through technique. Four of the patients with a pull-through operation did not get mold treatment; of these patients, 3 needed repeat surgery because of the tendency for constriction. Of 4 patients in group II, 1 patient was treated with the pull-through technique and 3 with the push-through technique. The patient with the pull-through technique needed repeat surgery because of constriction. There was no mold treatment after the first procedure. Group III were 4 patients all treated with the pull-through technique. None of them received mold treatment, and none of these patients needed repeat surgery. The push-through method is a good surgical technique for the patients in whom problems of constriction after surgery are expected and for patients with difficulties during surgery. Mold treatment is recommended after surgery in patients with a thick transversal vaginal septum or a partial vaginal aplasia.
An electrooptic probe to determine internal electric fields in a piezoelectric transformer.
Norgard, Peter; Kovaleski, Scott
2012-02-01
A technique using the electrooptic effect to determine the output voltage of an optically clear LiNbO(3) piezoelectric transformer was developed and explored. A brief mathematical description of the solution is provided, as well as experimental data demonstrating a linear response under ac resonant operating conditions. A technique to calibrate the diagnostic was developed and is described. Finally, a sensitivity analysis of the electrooptic response to variations in angular alignment between the LiNbO(3) transformer and the laser probe are discussed.
Three examples of applied remote sensing of vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.
1975-01-01
Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.
NASA Technical Reports Server (NTRS)
1979-01-01
At Valley Forge, Pennsylvania, General Electric Company's Space Division has a large environmental chamber for simulating the conditions under which an orbiting spacecraft operates. Normally it is used to test company-built space systems, such as NASA's Landsat and Nimbus satellites. It is also being used in a novel spinoff application-restoring water-damaged books and other paper products and textiles.
Pediatric Audiometry: The Relative Success of Toy and Video Reinforcers.
ERIC Educational Resources Information Center
Doggett, Sheryl; Gans, Donald P.; Stein, Ramona
2000-01-01
An operate conditional technique was used to determine the relative success of toys and video shows as reinforcers for testing the hearing of 28 younger (30-month-old) and 28 older (45-month old) children. Animated toys and video shows for children were equally effective as reinforcers for both age groups. (Contains references.) (Author/CR)
Remote sensing in operational range management programs in Western Canada
NASA Technical Reports Server (NTRS)
Thompson, M. D.
1977-01-01
A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.
Adaptive Behavior for Mobile Robots
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2009-01-01
The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.
Signature extension: An approach to operational multispectral surveys
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Morgenstern, J. P.
1973-01-01
Two data processing techniques were suggested as applicable to the large area survey problem. One approach was to use unsupervised classification (clustering) techniques. Investigation of this method showed that since the method did nothing to reduce the signal variability, the use of this method would be very time consuming and possibly inaccurate as well. The conclusion is that unsupervised classification techniques of themselves are not a solution to the large area survey problem. The other method investigated was the use of signature extension techniques. Such techniques function by normalizing the data to some reference condition. Thus signatures from an isolated area could be used to process large quantities of data. In this manner, ground information requirements and computer training are minimized. Several signature extension techniques were tested. The best of these allowed signatures to be extended between data sets collected four days and 80 miles apart with an average accuracy of better than 90%.
Patient Populations, Clinical Associations, and System Efficiency in Healthcare Delivery System
NASA Astrophysics Data System (ADS)
Liu, Yazhuo
The efforts to improve health care delivery usually involve studies and analysis of patient populations and healthcare systems. In this dissertation, I present the research conducted in the following areas: identifying patient groups, improving treatments for specific conditions by using statistical as well as data mining techniques, and developing new operation research models to increase system efficiency from the health institutes' perspective. The results provide better understanding of high risk patient groups, more accuracy in detecting disease' correlations and practical scheduling tools that consider uncertain operation durations and real-life constraints.
Development of a support software system for real-time HAL/S applications
NASA Technical Reports Server (NTRS)
Smith, R. S.
1984-01-01
Methodologies employed in defining and implementing a software support system for the HAL/S computer language for real-time operations on the Shuttle are detailed. Attention is also given to the management and validation techniques used during software development and software maintenance. Utilities developed to support the real-time operating conditions are described. With the support system being produced on Cyber computers and executable code then processed through Cyber or PDP machines, the support system has a production level status and can serve as a model for other software development projects.
System safety management: A new discipline
NASA Technical Reports Server (NTRS)
Pope, W. C.
1971-01-01
The systems theory is discussed in relation to safety management. It is suggested that systems safety management, as a new discipline, holds great promise for reducing operating errors, conserving labor resources, avoiding operating costs due to mistakes, and for improving managerial techniques. It is pointed out that managerial failures or system breakdowns are the basic reasons for human errors and condition defects. In this respect, a recommendation is made that safety engineers stop visualizing the problem only with the individual (supervisor or employee) and see the problem from the systems point of view.
Diagnosis and Management of Distal Clavicle Osteolysis.
DeFroda, Steven F; Nacca, Christopher; Waryasz, Gregory R; Owens, Brett D
2017-03-01
Distal clavicle osteolysis is an uncommon condition that most commonly affects weight lifters and other athletes who perform repetitive overhead activity. Although this condition most commonly presents in young active men, it is becoming increasing more common in women with the rise in popularity of body building and extreme athletics. Distal clavicle osteolysis can be debilitating, especially in those with rigorous training regimens, preventing exercise because of pain with activities such as bench presses and chest flies. Aside from a careful history and physical examination, radiographic evaluation is essential in distinguishing isolated distal clavicle osteolysis from acromioclavicular joint pathology, despite a potentially similar presentation of the 2 conditions. Nonoperative therapy that includes activity modification, nonsteroidal anti-inflammatory drugs, and cortisone injections is the first-line management for this condition. Patients whose conditions are refractory to nonoperative modalities may benefit from distal clavicle resection via either open or arthroscopic techniques. Arthroscopic techniques typically are favored because of improved cosmesis and the added benefit of the ability to assess the glenohumeral joint during surgery to rule out concomitant pathology. There are varying operative techniques even within arthroscopic management, with pros and cons of a direct and an indirect surgical approach. Patients often do well after such procedures and are able to return to their preinjury level of participation in a relatively short period. [Orthopedics. 2017; 40(2):119-124.]. Copyright 2016, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis
Hong, Y.-S.T.; Rosen, Michael R.; Bhamidimarri, R.
2003-01-01
This paper addresses the problem of how to capture the complex relationships that exist between process variables and to diagnose the dynamic behaviour of a municipal wastewater treatment plant (WTP). Due to the complex biological reaction mechanisms, the highly time-varying, and multivariable aspects of the real WTP, the diagnosis of the WTP are still difficult in practice. The application of intelligent techniques, which can analyse the multi-dimensional process data using a sophisticated visualisation technique, can be useful for analysing and diagnosing the activated-sludge WTP. In this paper, the Kohonen Self-Organising Feature Maps (KSOFM) neural network is applied to analyse the multi-dimensional process data, and to diagnose the inter-relationship of the process variables in a real activated-sludge WTP. By using component planes, some detailed local relationships between the process variables, e.g., responses of the process variables under different operating conditions, as well as the global information is discovered. The operating condition and the inter-relationship among the process variables in the WTP have been diagnosed and extracted by the information obtained from the clustering analysis of the maps. It is concluded that the KSOFM technique provides an effective analysing and diagnosing tool to understand the system behaviour and to extract knowledge contained in multi-dimensional data of a large-scale WTP. ?? 2003 Elsevier Science Ltd. All rights reserved.
Geometric Representations of Condition Queries on Three-Dimensional Vector Fields
NASA Technical Reports Server (NTRS)
Henze, Chris
1999-01-01
Condition queries on distributed data ask where particular conditions are satisfied. It is possible to represent condition queries as geometric objects by plotting field data in various spaces derived from the data, and by selecting loci within these derived spaces which signify the desired conditions. Rather simple geometric partitions of derived spaces can represent complex condition queries because much complexity can be encapsulated in the derived space mapping itself A geometric view of condition queries provides a useful conceptual unification, allowing one to intuitively understand many existing vector field feature detection algorithms -- and to design new ones -- as variations on a common theme. A geometric representation of condition queries also provides a simple and coherent basis for computer implementation, reducing a wide variety of existing and potential vector field feature detection techniques to a few simple geometric operations.
Four Operational Strategies For The Tower of Pisa
NASA Astrophysics Data System (ADS)
Bartolozzi, F.
The operational strategies proposed for safeguarding the Leaning Tower all agree on the urgent need to lay a sub-foundation for guaranteeing the stability of the foundation soil, considerably decreasing the current pressure to a value compatible with its resistance characteristics. Their second common property is the creation of a static beneficial effect on the material forming the monument. This effect may be achieved by reducing the pressure in the material forming the Tower, by making the present inclination decrease considerably, or by means of a reinforcement ring on the most stressed parts of the Tower - if the present inclination is to remain unchanged - or with the combined action of both the inclination decrease and the reinforcement ring. Clearly, the choice of each operation must be made within the framework of the present and particular resistance conditions of the material. On the other hand, the four techniques differ structurally and operationally. The former aspects refer to laying structural elements, all equally effective, but different in conception and function - such as pillars, beams, hinges and tubular devices to be laid in order to integrate the common sub-foundation and to be utilised with respect to each operational technique. The operational differences mainly depend on the different executive needs with respect to the structural elements to be laid. The operational aspect of the fourth technique is very simple, but particularly delicate, as are all techniques concerning the Tower. In relation to this, the operation must clearly be managed by a highly qualified and professional group of technicians and workers using the most appropriate and modern technological apparatus. I believe that the considerable delicacy of the operational stage does not obstruct the application of the proposed techniques, both because of the precarious safety conditions of the building (requiring a radical solution), and because the operations put into practice by the various Experts Committees for safeguarding the Tower have always been palliatives, sometimes even harmful, intended to maintain the state of permanent instability of the Tower. On 15 June 2001, Italian television announced that, at last, the Tower was operational. This is what they said. My opinion is that, after eleven years (from 1990 to 2001), the Experts Committee woke up from a deep "coma" and gave birth an "abortion", and I use this term to indicate the characteristics of incompleteness and unreliability inherent in the operation. Eleven interminable and very expensive years of waiting had to pass for the Committee to decide to remove a little earth from under the Tower, thus executing an operational strategy of such extreme banality that it could be performed in two, or at most three, months. It was said that this operation had "restored the Tower to youth" by two or three hundred years; in fact, the Committee should know that removing a very few centimetres from the initial huge eccentricity load did not restore the monument because this operation did not decrease in any significant manner the pressures in either the soil or in the material forming the Tower. In short: the Tower has always been unstable and it still is. Having said this, and without any wish to take a polemic stance, I nevertheless wish the Committee, and particularly the Italian taxpayers, full success in the operation. It should be said that the applicability of my proposed methods must be evaluated paying close attention to the basis of the current geo-technical features of the soil, of which I have only a superficial knowledge due to the following reasons: 1. lack of information in the technical literature I have consulted; 2. indifference from or refusal by cultural foundations including the Engineering and Architecture Faculties of some Italian Universities to view favourably my request for information. In any case, the operational strategies proposed in this study allow the present inclination of the Tower to be maintained, its verticality to be restored, and in some cases also for the counter-inclination to be executed. They are contributions for safeguarding the Tower, but like any other idea, they may be refined, modified or ignored. Readers are invited to inform me of any impressions, criticisms and consequently also of any specific suggestions aimed at improving the techniques proposed.
Development of a method for the characterization and operation of UV-LED for water treatment.
Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz
2017-10-01
Tremendous improvements in semiconductor technology have made ultraviolet light-emitting diodes (UV-LEDs) a viable alternative to conventional UV sources for water treatment. A robust and validated experimental protocol for studying the kinetics of microorganism inactivation is key to the further development of UV-LEDs for water treatment. This study proposes a protocol to operate UV-LEDs and control their output as a polychromatic radiation source. In order to systematically develop this protocol, the results of spectral power distribution, radiation profile, and radiant power measurements of a variety of UV-LEDs are presented. A wide range of UV-LEDs was selected for this study, covering various UVA, UVB, and UVC wavelengths, viewing angles from 3.5° to 135°, and a variety of output powers. The effects of operational conditions and measurement techniques were investigated on these UV-LEDs using a specially designed and fabricated setup. Operating conditions, such as the UV-LED electrical current and solder temperature, were found to significantly affect the power and peak wavelength output. The measurement techniques and equipment, including the detector size, detector distance from the UV-LED, and potential reflection from the environment, were shown to influence the results for many of the UV-LEDs. The results obtained from these studies were analyzed and applied to the development of a protocol for UV-LED characterization. This protocol is presented as a guideline that allows the operation and control of UV-LEDs in any structure, as well as accurately measuring the UV-LED output. Such information is essential for performing a reliable UV-LED assessment for the inactivation of microorganisms and for obtaining precise kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of complete interconnect reliability for a GaAs MMIC power amplifier
NASA Astrophysics Data System (ADS)
Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao
2018-05-01
By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.
Theoretical and Experimental Particle Velocity in Cold Spray
NASA Astrophysics Data System (ADS)
Champagne, Victor K.; Helfritch, Dennis J.; Dinavahi, Surya P. G.; Leyman, Phillip F.
2011-03-01
In an effort to corroborate theoretical and experimental techniques used for cold spray particle velocity analysis, two theoretical and one experimental methods were used to analyze the operation of a nozzle accelerating aluminum particles in nitrogen gas. Two-dimensional (2D) axi-symmetric computations of the flow through the nozzle were performed using the Reynolds averaged Navier-Stokes code in a computational fluid dynamics platform. 1D, isentropic, gas-dynamic equations were solved for the same nozzle geometry and initial conditions. Finally, the velocities of particles exiting a nozzle of the same geometry and operated at the same initial conditions were measured by a dual-slit velocimeter. Exit plume particle velocities as determined by the three methods compared reasonably well, and differences could be attributed to frictional and particle distribution effects.
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
NASA Astrophysics Data System (ADS)
Slabaugh, Carson Daniel
In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the two-dimensional, two-component velocity field measurements is discussed. The effects of high flame luminosity and particle defocusing on the signal-to-noise ratio are discussed. Laser sheet absorption effects, which have been reported to be severe in many previous high pressure OH-PLIF attempts, were not observed to be significant in this work. The time-averaged peak and (spatial) mean signal to noise ratios were 12.7 and 6.3, respectively, at the flame B operating condition; 550 kW total thermal power and 1.0 MPa combustion chamber pressure. Simultaneous 5 kHz PIV and OH-PLIF measurements showed good agreement between single-shot flow-flame interactions, but unresolved, out-of-plane velocity components restricted the interpretation of the temporal context. At a 5 kHz interrogation frequency, the temporal resolution of the measurements was found to be sufficient for only the largest scales within the turbulent flame. The development of an analysis library for the extraction of physical data from highly-resolved planar measurements is also described. The resolution of the measurements, in space and time, is described with respect to the integral scales of the flow. The mean flow structure and its resultant effect on flame behavior is discussed. A method to perform mass-weighted averaging of flow variables was developed for direct comparison of turbulent flow properties between experimental measurements and computations. Conditional statistical sampling and length-scale filtering were used to elucidate details of flow-flame interactions as they pertain to sub-grid modeling in large-eddy simulations.
NASA Astrophysics Data System (ADS)
Zakirnichnaya, M. M.; Kulsharipov, I. M.
2017-10-01
Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.
Redlich, A; Köppe, I
2001-11-01
A new technical variant of caesarean section was described a few years ago, which is characterised by blunt surgical preparation and simplified seam technique. A prospective investigation compared the differences in the surgery and postoperative process as well as the rate of complications between this Misgav Ladach method and the conventional technique of Sectio. The individual postoperative well-being of the women was recorded by visual analog scales. - Women, whom realize the including criterias (first caesarean section, >/= 32. week of pregnancy, one baby), were examined in this study over one year: 105 patients operated with the Misgav Ladach method and 67 conventionally operated patients. The patients were randomized in a function of the first letter of the surname (A-K: Misgav-Ladach method; L-Z: classical technique). - The surgical time from the cut to the seam was significantly shorter (29.8 vs. 49.3 min; p < 0,001) in the Misgav Ladach group. There were no differences between the two methods in the rate of postoperative complications. The febrile morbidity was equivalent in both groups (7.6 % vs. 9 %), likewise the frequency of postoperative hematomas (3.8 % vs. 3 %). The postoperative period with consumption of analgetics was significantly longer in the group of conventionally operated patients (1.9 d vs. 2.4 d; p < 0.01). The postoperative presentness was estimated significantly better (p < 0,.01) by the patients of the Misgav ladach group - probably caused by the significantly earlier mobilization (p < 0.05). - The surgical technique described by Misgav and Ladach allows a safe execution of the caesarean section and represents an alternative to the conventional method. The duration of operation (cut-seam-time) was significantly shorter. The technique of less traumatising of tissue caused a significantly earlier mobilisation and a significantly shorter requirement of analgetics. The women estimated her postoperative physical condition as better.
NASA Astrophysics Data System (ADS)
Araújo, Iván Gómez; Sánchez, Jesús Antonio García; Andersen, Palle
2018-05-01
Transmissibility-based operational modal analysis is a recent and alternative approach used to identify the modal parameters of structures under operational conditions. This approach is advantageous compared with traditional operational modal analysis because it does not make any assumptions about the excitation spectrum (i.e., white noise with a flat spectrum). However, common methodologies do not include a procedure to extract closely spaced modes with low signal-to-noise ratios. This issue is relevant when considering that engineering structures generally have closely spaced modes and that their measured responses present high levels of noise. Therefore, to overcome these problems, a new combined method for modal parameter identification is proposed in this work. The proposed method combines blind source separation (BSS) techniques and transmissibility-based methods. Here, BSS techniques were used to recover source signals, and transmissibility-based methods were applied to estimate modal information from the recovered source signals. To achieve this combination, a new method to define a transmissibility function was proposed. The suggested transmissibility function is based on the relationship between the power spectral density (PSD) of mixed signals and the PSD of signals from a single source. The numerical responses of a truss structure with high levels of added noise and very closely spaced modes were processed using the proposed combined method to evaluate its ability to identify modal parameters in these conditions. Colored and white noise excitations were used for the numerical example. The proposed combined method was also used to evaluate the modal parameters of an experimental test on a structure containing closely spaced modes. The results showed that the proposed combined method is capable of identifying very closely spaced modes in the presence of noise and, thus, may be potentially applied to improve the identification of damping ratios.
NASA Astrophysics Data System (ADS)
Ganesan, Nandhini; Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Yeo, Taejung; Sohn, Dong Kee; Doo, Seokgwang
2016-08-01
Lithium-Ion batteries used for electric vehicle applications are subject to large currents and various operation conditions, making battery pack design and life extension a challenging problem. With increase in complexity, modeling and simulation can lead to insights that ensure optimal performance and life extension. In this manuscript, an electrochemical-thermal (ECT) coupled model for a 6 series × 5 parallel pack is developed for Li ion cells with NCA/C electrodes and validated against experimental data. Contribution of the cathode to overall degradation at various operating conditions is assessed. Pack asymmetry is analyzed from a design and an operational perspective. Design based asymmetry leads to a new approach of obtaining the individual cell responses of the pack from an average ECT output. Operational asymmetry is demonstrated in terms of effects of thermal gradients on cycle life, and an efficient model predictive control technique is developed. Concept of reconfigurable battery pack is studied using detailed simulations that can be used for effective monitoring and extension of battery pack life.
Harvey Cushing's Treatment of Skull Base Infections: The Johns Hopkins Experience
Somasundaram, Aravind; Pendleton, Courtney; Raza, Shaan M.; Boahene, Kofi; Quinones-Hinojosa, Alfredo
2012-01-01
Objectives In this report, we review Dr. Cushing's early surgical cases at the Johns Hopkins Hospital, revealing details of his early operative approaches to infections of the skull base. Design Following institutional review board (IRB) approval, and through the courtesy of the Alan Mason Chesney Archives, we reviewed the Johns Hopkins Hospital surgical files from 1896 to 1912. Setting The Johns Hopkins Hospital, 1896 to 1912. Participants Eleven patients underwent operative treatment for suspected infections of the skull base. Main Outcome Measures The main outcome measure was operative approach, postoperative mortality, and condition recorded at the time of discharge. Results Eleven patients underwent operative intervention for infections of the skull base. The mean age was 30 years (range: 9 to 63). Of these patients, seven (64%) were female. The mean length of stay was 16.5 days (range: 4 to 34). Postoperatively eight patients were discharged in “well” or “good” condition, one patient remained “unimproved,” and two patients died during their admission. Conclusion Cushing's careful preoperative observation of patients, meticulous operative technique, and judicious use of postoperative drainage catheters contributed to a remarkably low mortality rate in his series of skull base infections. PMID:24083129
Morgan, Simeon J; Paolini, Antonio G
2012-06-06
Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.
Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2
2014-01-01
Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 by a range of different chemical, structural, and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy, and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T ≥ 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results, therefore, indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. Moreover, by comparing the three oxides, we could elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents. PMID:24587591
NASA Technical Reports Server (NTRS)
Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.
2007-01-01
The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.
2016-10-01
We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.
Separation of heavy metals: Removal from industrial wastewaters and contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1993-01-01
This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less
Separation of heavy metals: Removal from industrial wastewaters and contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, R.W.; Shem, L.
1993-03-01
This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needsmore » in the field.« less
Application of redundancy in the Saturn 5 guidance and control system
NASA Technical Reports Server (NTRS)
Moore, F. B.; White, J. B.
1976-01-01
The Saturn launch vehicle's guidance and control system is so complex that the reliability of a simplex system is not adequate to fulfill mission requirements. Thus, to achieve the desired reliability, redundancy encompassing a wide range of types and levels was employed. At one extreme, the lowest level, basic components (resistors, capacitors, relays, etc.) are employed in series, parallel, or quadruplex arrangements to insure continued system operation in the presence of possible failure conditions. At the other extreme, the highest level, complete subsystem duplication is provided so that a backup subsystem can be employed in case the primary system malfunctions. In between these two extremes, many other redundancy schemes and techniques are employed at various levels. Basic redundancy concepts are covered to gain insight into the advantages obtained with various techniques. Points and methods of application of these techniques are included. The theoretical gain in reliability resulting from redundancy is assessed and compared to a simplex system. Problems and limitations encountered in the practical application of redundancy are discussed as well as techniques verifying proper operation of the redundant channels. As background for the redundancy application discussion, a basic description of the guidance and control system is included.
Development of a New Time-Resolved Laser-Induced Fluorescence Technique
NASA Astrophysics Data System (ADS)
Durot, Christopher; Gallimore, Alec
2012-10-01
We are developing a time-resolved laser-induced fluorescence (LIF) technique to interrogate the ion velocity distribution function (VDF) of EP thruster plumes down to the microsecond time scale. Better measurements of dynamic plasma processes will lead to improvements in simulation and prediction of thruster operation and erosion. We present the development of the new technique and results of initial tests. Signal-to-noise ratio (SNR) is often a challenge for LIF studies, and it is only more challenging for time-resolved measurements since a lock-in amplifier cannot be used with a long time constant. The new system uses laser modulation on the order of MHz, which enables the use of electronic filtering and phase-sensitive detection to improve SNR while preserving time-resolved information. Statistical averaging over many cycles to further improve SNR is done in the frequency domain. This technique can have significant advantages, including (1) larger spatial maps enabled by shorter data acquisition time and (2) the ability to average data without creating a phase reference by modifying the thruster operating condition with a periodic cutoff in discharge current, which can modify the ion velocity distribution.
Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation
Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.
2014-01-01
Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow which provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation has become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465076
Leading Counterinsurgency Effectively
2011-04-01
culture plays in COIN but also his willingness to use innovative techniques. Another example of symbology is his use of the “ The Mesopotamian ...vary depending on the culture of insurgents they oppose and the local population they are trying to influence. This has two implications. First...However, it is particularly important for COIN leaders who routinely face changing conditions in the midst of culturally influenced operations and
NASA Technical Reports Server (NTRS)
1984-01-01
Systems Technology, Inc. developed a technique to study/measure behavioral changes brought on by long term isolation is now being used in a system for determining whether a driver is too drunk to drive. Device is intended to discourage intoxicated drivers from taking to the road by advising them they are in no condition to operate a vehicle. System is being tested experimentally in California.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Miniaturized photoacoustic spectrometer
Okandan, Murat; Robinson, Alex; Nielson, Gregory N.; Resnick, Paul J.
2016-08-09
A low-power miniaturized photoacoustic sensor uses an optical microphone made by semiconductor fabrication techniques, and optionally allows for all-optical communication to and from the sensor. This allows integration of the photoacoustic sensor into systems with special requirements, such as those that would be reactive in an electrical discharge condition. The photoacoustic sensor can also be operated in various other modes with wide application flexibility.
Single-shot Ellipsometry of Shocked Iron to 275 GPa
NASA Astrophysics Data System (ADS)
Grant, Sean; Ao, Tommy; Bernstein, Aaron; Davis, Jean-Paul; Ditmire, Todd; Dolan, Daniel; Lin, Jung-Fu; Porwitzky, Andrew; Seagle, Christopher
2017-06-01
We have studied the properties of iron under shock conditions using time-resolved ellipsometry, a technique that probes the dielectric value of materials under dynamic conditions, on the STAR gas gun facility at Sandia National Laboratories. We performed experiments on a two-stage gas gun ranging from the α - ɛ transition (75 GPa) to the solid-liquid transition (275 GPa). For the first time, we report the dielectric results of shocked iron at those conditions. In addition, the time-resolved ellipsometry diagnostic is being implemented on the Sandia pulsed power Z-machine. The goal of upcoming Z experiments will be to employ the ``shock-ramp'' technique to reach pressure and temperature conditions relevant to the Earth core, and to use ellipsometry to obtain the iron electric conductivities needed for benchmarking material models. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-1952 A.
Delayed reconstruction of lateral complex structures of the ankle
Slater, Gordon L; Pino, Alejandro E; O’Malley, Martin
2011-01-01
Lateral ankle instability is one of the most common and well-recognized conditions presenting to foot and ankle surgeons. It may exist as an isolated entity or in conjunction with other concomitant pathology, making it important to appropriately diagnose and identify other conditions that may need to be addressed as part of treatment. These associated conditions may be a source of chronic pain, even when the instability has been appropriately treated, or may lead to failure of treatment by predisposing the patient to ankle inversion injuries. The primary goal of this editorial is to provide a brief summary of the common techniques used in the delayed reconstruction of lateral ankle ligamentous injuries and present a method we have successfully employed for over 15 years. We will also briefly discuss the diagnosis and treatment of the more common associated conditions, which are important to identify to achieve satisfactory results for the patient. We present the outcomes of 250 consecutive reconstructions performed over the last 10 years and describe our operative technique for addressing lateral ankle ligamentous injuries. PMID:22474633
Women's Health Issues in the Space Environment
NASA Technical Reports Server (NTRS)
Jennings, Richard T.
1999-01-01
Women have been an integral part of US space crews since Sally Ride's mission in 1983, and a total of 40 women have been selected as US astronauts. The first Russian female cosmonaut flew in 1963. This presentation examines the health care and reproductive aspects of flying women in space. In addition, the reproductive implications of delaying one's childbearing for an astronaut career and the impact of new technology such as assisted reproductive techniques are examined. The reproductive outcomes of the US female astronauts who have become pregnant following space flight exposure are also presented. Since women have gained considerable operational experience on the Shuttle, Mir and during EVA, the unique operational considerations for preflight certification, menstruation control and hygiene, contraception, and urination are discussed. Medical and surgical implications for women on long-duration missions to remote locations are still evolving, and enabling technologies for health care delivery are being developed. There has been considerable progress in the development of microgravity surgical techniques, including laparoscopy, thoracoscopy, and laparotomy. The concepts of prevention of illness, conversion of surgical conditions to medically treatable conditions and surgical intervention for women on long duration space flights are considered.
Comparison of turbulence mitigation algorithms
NASA Astrophysics Data System (ADS)
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
Characterization of Titanium Oxide Layers Formation Produced by Nanosecond Laser Coloration
NASA Astrophysics Data System (ADS)
Brihmat-Hamadi, F.; Amara, E. H.; Kellou, H.
2017-06-01
Laser marking technique is used to produce colors on titanium while scanning a metallic sample under normal atmospheric conditions. To proceed with different operating conditions related to the laser beam, the parameters of a Q-switched diode-pumped Nd:YAG ( λ = 532 nm) laser, with a pulse duration of τ = 5 ns, are varied. The effect on the resulting mark quality is the aim of the present study which is developed to determine the influence of the operating parameters ( i.e., pulse frequency, beam scanning speed, and pumping intensity) and furthermore their combination, such as the accumulated fluences and the overlapping rate of laser impacts. From the obtained experimental results, it is noted that the accumulated fluences and the scanning speed are the most influential operating parameters during laser marking, since they have a strong effect on the surface roughness and reflectance, and the occurrence of many oxide phases such as TiO, Ti2O3, TiO2 ( γ- phase, anatase, and rutile).
Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1975-01-01
Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.
Overview of KSTAR initial operation
NASA Astrophysics Data System (ADS)
Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Ahn, J. W.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chang, C. S.; Chang, D. H.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Cho, M. H.; Choe, W.; Choi, J. H.; Chu, Y.; Chung, K. S.; Diamond, P.; Do, H. J.; Eidietis, N.; England, A. C.; Grisham, L.; Hahm, T. S.; Hahn, S. H.; Han, W. S.; Hatae, T.; Hillis, D.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Humphrey, D.; Hwang, Y. S.; Hyatt, A.; In, Y. K.; Jackson, G. L.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jeong, S. H.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kawahata, K.; Kim, C. H.; Kim, D. H.; Kim, Hee-Su; Kim, H. S.; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. M.; Kim, K. P.; Kim, M. K.; Kim, S. H.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. K.; Kim, Y. O.; Ko, W. H.; Kogi, Y.; Kong, J. D.; Kubo, S.; Kumazawa, R.; Kwak, S. W.; Kwon, J. M.; Kwon, O. J.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. H.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. C.; Lee, W. L.; Leur, J.; Lim, D. S.; Lohr, J.; Mase, A.; Mueller, D.; Moon, K. M.; Mutoh, T.; Na, Y. S.; Nagayama, Y.; Nam, Y. U.; Namkung, W.; Oh, B. H.; Oh, S. G.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H.; Park, H. T.; Park, J. K.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Park, Y. S.; Patterson, B.; Sabbagh, S.; Saito, K.; Sajjad, S.; Sakamoto, K.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Shi, Y.; Song, N. H.; Sun, H. J.; Terzolo, L.; Walker, M.; Wang, S. J.; Watanabe, K.; Welander, A. S.; Woo, H. J.; Woo, I. S.; Yagi, M.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, G. S.; Yoon, S. W.; KSTAR Team
2011-09-01
Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Müller, A.; Favrel, A.; Avellan, F.
2017-10-01
Francis turbines are subject to various types of cavitation flow depending on the operating condition. To enable a smooth integration of the renewable energy sources, hydraulic machines are now increasingly required to extend their operating range, especially down to extremely low discharge conditions called deep part load operation. The inter-blade cavitation vortex is a typical cavitation phenomenon observed at deep part load operation. However, its dynamic characteristics are insufficiently understood today. In an objective of revealing its characteristics, the present study introduces a novel visualization technique with instrumented guide vanes embedding the visualization devices, providing unprecedented views on the inter-blade cavitation vortex. The binary image processing technique enables the successful evaluation of the inter-blade cavitation vortex in the images. As a result, it is shown that the probability of the inter-blade cavitation development is significantly high close to the runner hub. Furthermore, the mean vortex line is calculated and the vortex region is estimated in the three-dimensional domain for the comparison with numerical simulation results. In addition, the on-board pressure measurements on a runner blade is conducted, and the influence of the inter-blade vortex on the pressure field is investigated. The analysis suggests that the presence of the inter-blade vortex can magnify the amplitude of pressure fluctuations especially on the blade suction side. Furthermore, the wall pressure difference between pressure and suction sides of the blade features partially low or negative values near the hub at the discharge region where the inter-blade vortex develops. This negative pressure difference on the blade wall suggests the development of a backflow region caused by the flow separation near the hub, which is closely related to the development of the inter-blade vortex. The development of the backflow region is confirmed by the numerical simulation, and the physical mechanisms of the inter-blade vortex development is, furthermore, discussed.
Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.
2012-01-01
This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.
Fabiansen, Christian; Yaméogo, Charles W; Devi, Sarita; Friis, Henrik; Kurpad, Anura; Wells, Jonathan C
2017-08-01
Childhood malnutrition is highly prevalent and associated with high mortality risk. In observational and interventional studies among malnourished children, body composition is increasingly recognised as a key outcome. The deuterium dilution technique has generated high-quality data on body composition in studies of infants and young children in several settings, but its feasibility and accuracy in children suffering from moderate acute malnutrition requires further study. Prior to a large nutritional intervention trial among children with moderate acute malnutrition, we conducted pilot work to develop and adapt the deuterium dilution technique. We refined procedures for administration of isotope doses and collection of saliva. Furthermore, we established that equilibration time in local context is 3 h. These findings and the resulting standard operating procedures are important to improve data quality when using the deuterium dilution technique in malnutrition studies in field conditions, and may encourage a wider use of isotope techniques.
Stable operation of a Secure QKD system in the real-world setting
NASA Astrophysics Data System (ADS)
Tomita, Akihisa
2007-06-01
Quantum Key Distribution (QKD) now steps forward from the proof of principle to the validation of the practical feasibility. Nevertheless, the QKD technology should respond to the challenges from the real-world such as stable operation against the fluctuating environment, and security proof under the practical setting. We report our recent progress on stable operation of a QKD system, and key generation with security assurance. A QKD system should robust to temperature fluctuation in a common office environment. We developed a loop-mirror, a substitution of a Faraday mirror, to allow easy compensation for the temperature dependence of the device. Phase locking technique was also employed to synchronize the system clock to the quantum signals. This technique is indispensable for the transmission system based on the installed fiber cables, which stretch and shrink due to the temperature change. The security proof of QKD, however, has assumed the ideal conditions, such as the use of a genuine single photon source and/or unlimited computational resources. It has been highly desirable to give an assurance of security for practical systems, where the ideal conditions are no longer satisfied. We have constructed a theory to estimate the leakage information on the transmitted key under the practically attainable conditions, and have developed a QKD system equipped with software for secure key distillation. The QKD system generates the final key at the rate of 2000 bps after 20 km fiber transmission. Eavesdropper's information on the final key is guaranteed to be less than 2-7 per bit. This is the first successful generation of the secure key with quantitative assurance of the upper bound of the leakage information. It will put forth the realization of highly secure metropolitan optical communication network against any types of eavesdropping.
Carbon Dioxide Separation Using Thermally Optimized Membranes
NASA Astrophysics Data System (ADS)
Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.
2002-05-01
The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique approach to the optimization of long-term membrane performance under challenging operating conditions.
The generalised isodamping approach for robust fractional PID controllers design
NASA Astrophysics Data System (ADS)
Beschi, M.; Padula, F.; Visioli, A.
2017-06-01
In this paper, we present a novel methodology to design fractional-order proportional-integral-derivative controllers. Based on the description of the controlled system by means of a family of linear models parameterised with respect to a free variable that describes the real process operating point, we design the controller by solving a constrained min-max optimisation problem where the maximum sensitivity has to be minimised. Among the imposed constraints, the most important one is the new generalised isodamping condition, that defines the invariancy of the phase margin with respect to the free parameter variations. It is also shown that the well-known classical isodamping condition is a special case of the new technique proposed in this paper. Simulation results show the effectiveness of the proposed technique and the superiority of the fractional-order controller compared to its integer counterpart.
NASA Technical Reports Server (NTRS)
Patel, Bhogila M.; Hoge, Peter A.; Nagpal, Vinod K.; Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2004-01-01
This paper describes the methods employed to apply probabilistic modeling techniques to the International Space Station (ISS) power system. These techniques were used to quantify the probabilistic variation in the power output, also called the response variable, due to variations (uncertainties) associated with knowledge of the influencing factors called the random variables. These uncertainties can be due to unknown environmental conditions, variation in the performance of electrical power system components or sensor tolerances. Uncertainties in these variables, cause corresponding variations in the power output, but the magnitude of that effect varies with the ISS operating conditions, e.g. whether or not the solar panels are actively tracking the sun. Therefore, it is important to quantify the influence of these uncertainties on the power output for optimizing the power available for experiments.
Space Shuttle stability and control flight test techniques
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1980-01-01
A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyubinetsky, Igor
2015-02-15
In this contribution I briefly describe my joint efforts and experiences with M.G. Nakhodkin in the field of scanning tunneling microscopy (STM) including a construction of the home-built microscopes, application of this technique in various scientific endevours, as well as fruitfull and enlightening discusions. Our co-operation was focused on the novel aspects of STM probes preparation and conditioning, coupling the STM junction with laser irradiation, STM-based nanolithography, and also on collaboration at the international scale with M.G. Nakhodkin and members of his scientific group.
Study to design and develop remote manipulator system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.
NASA Technical Reports Server (NTRS)
Degnan, J. J.; Walker, H. E.; Peruso, C. J.; Johnson, E. H.; Klein, B. J.; Mcelroy, J. H.
1972-01-01
The systems and techniques which were utilized in the experiment to establish an air-to-ground CO2 laser heterodyne link are described along with the successes and problems encountered when the heterodyne receiver and laser transmitter package were removed from the controlled environment of the laboratory. Major topics discussed include: existing systems and the underlying principles involved in their operation; experimental techniques and optical alignment methods which were found to be useful; theoretical calculations of signal strengths expected under a variety of test conditions and in actual flight; and the experimental results including problems encountered and their possible solutions.
Photobiomolecular deposition of metallic particles and films
Hu, Zhong-Cheng
2005-02-08
The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
Photobiomolecular metallic particles and films
Hu, Zhong-Cheng
2003-05-06
The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
O’Rourke, Timothy K.; Erbella, Alexander; Zhang, Yu
2017-01-01
Penile prosthesis implant surgery is an effective management approach for a number of urological conditions, including medication refractory erectile dysfunction (ED). Complications encountered post-operatively include infection, bleeding/hematoma, and device malfunction. Since the 1970s, modifications to these devices have reduced complication rates through improvement in antisepsis and design using antibiotic coatings, kink-resistant tubing, lock-out valves to prevent autoinflation, and modified reservoir shapes. Device survival and complication rates have been investigated predominately by retrospective database-derived studies. This review article focuses on the identification and management of post-operative complications following penile prosthetic and implant surgery. Etiology for ED, surgical technique, and prosthesis type are variable among studies. The most common post-operative complications of infection, bleeding, and device malfunction may be minimized by adherence to consistent technique and standard protocol. Novel antibiotic coatings and standard antibiotic regimen may reduce infection rates. Meticulous hemostasis and intraoperative testing of devices may further reduce need for revision surgery. Additional prospective studies with consistent reporting of outcomes and comparison of surgical approach and prosthesis type in patients with variable ED etiology would be beneficial. PMID:29238663
NASA Astrophysics Data System (ADS)
Suder, Kenneth L.; Celestina, Mark L.
1995-06-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
In-situ measurement of residence time distributions in a turbulent oxy-fuel gas-flame combustor
NASA Astrophysics Data System (ADS)
Bürkle, Sebastian; Becker, Lukas G.; Agizza, Maria Angela; Dreizler, Andreas; Ebert, Volker; Wagner, Steven
2017-07-01
For improving the design of combustors, the knowledge of residence-time distributions (RTD) is important as they influence exhaust gas compositions. Measuring RTDs in combustors is challenging, due to high temperatures, chemical reactions, the presence of particles or corrosive species as well as high turbulence levels. This paper presents a technique for the in situ measurement of RTDs in combustors. Based on tunable diode laser absorption spectroscopy (TDLAS), the temporal evolution of the concentration of tracers is tracked simultaneously at the combustion chamber inlet and outlet. Using either air or mixtures of oxygen and carbon dioxide (oxy-fuel atmosphere) as oxidants, the method is applied to reacting and non-reacting operating conditions in a 20-kWth methane combustor. For reacting conditions, hydrogen chloride is used as a tracer, whereas for non-reacting conditions methane was chosen. Depending on the tracer, for a repetition rate of approximately 2 kHz detection limits of 16-40 ppmV are achieved. For deriving RTDs, low-pass filtering is compared to reactor network modeling. Different RTDs observed for varying operating conditions are discussed.
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.; Celestina, Mark L.
1995-01-01
Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2002-01-01
A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.
Tacholess order-tracking approach for wind turbine gearbox fault detection
NASA Astrophysics Data System (ADS)
Wang, Yi; Xie, Yong; Xu, Guanghua; Zhang, Sicong; Hou, Chenggang
2017-09-01
Monitoring of wind turbines under variable-speed operating conditions has become an important issue in recent years. The gearbox of a wind turbine is the most important transmission unit; it generally exhibits complex vibration signatures due to random variations in operating conditions. Spectral analysis is one of the main approaches in vibration signal processing. However, spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions. This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications. Although order-tracking methods have been proposed for wind turbine fault detection in recent years, current methods are only applicable to cases in which the instantaneous shaft phase is available. For wind turbines with limited structural spaces, collecting phase signals with tachometers or encoders is difficult. In this study, a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques. The proposed method extracts the instantaneous phase from the vibration signal, resamples the signal at equiangular increments, and calculates the order spectrum for wind turbine fault identification. The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.
Owen, Yvonne; Amory, Jonathan R
2011-01-01
Traditional techniques used to capture New World monkeys, such as net capture, can induce high levels of acute stress detrimental to welfare. Alternatively, training nonhuman animals via operant conditioning to voluntarily participate in husbandry and/or veterinary practices is accepted as a humane process that can reduce stress and improve welfare. This study details the use of operant conditioning using positive reinforcement training (PRT) and target training to train a family of 5 captive red-bellied tamarins (Saguinus labiatus) in a wildlife park to voluntarily enter a transportation box and remain calm for 1 min after 54 training sessions. Observations of 2 unrelated net-capture processes provided measures of locomotion and vocalizations as indicators of stress behavior that were compared with those of the trained tamarins. Net-captured monkeys exhibited rapid erratic locomotion and emitted long, high-frequency vocalizations during capture whereas the trained tamarins exhibited minimal locomotion and emitted only 4 brief vocalizations (root mean square 35 dB) during capture. This indicates that the use of PRT considerably reduced potential for stress and improved welfare during the capture and containment of the tamarins. Copyright © Taylor & Francis Group, LLC
Overview of Mount Washington Icing Sensors Project
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.
2003-01-01
NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.
[Modified Misgav-Labach at a tertiary hospital].
Martínez Ceccopieri, David Alejandro; Barrios Prieto, Ernesto; Martínez Ríos, David
2012-08-01
According to several studies from around the globe, the modified Misgav Ladach technique simplifies the surgical procedure for cesarean section, reduces operation time, costs, and complications, and optimizes obstetric and perinatal outcomes. Compare obstetric outcomes between patients operated on using traditional cesarean section technique and those operated on using modified Misgav Ladach technique. The study included 49 patients operated on using traditional cesarean section technique and 47 patients operated on using modified Misgav Ladach technique to compare the outcomes in both surgical techniques. The modified Misgav Ladach technique was associated with more benefits than those of the traditional technique: less surgical bleeding, less operation time, less analgesic total doses, less rescue analgesic doses and less need of more than one analgesic drug. The modified Misgav Ladach surgical technique was associated with better obstetric results than those of the traditional surgical technique; this concurs with the results reported by other national and international studies.
Lean, premixed, prevaporized fuel combustor conceptual design study
NASA Technical Reports Server (NTRS)
Fiorentino, A. J.; Greene, W.; Kim, J.
1979-01-01
Four combustor concepts, designed for the energy efficient engine, utilize variable geometry or other flow modulation techniques to control the equivalence ratio of the initial burning zone. Lean conditions are maintained at high power to control oxides of nitrogen while near stoichometric conditions are maintained at low power for low CO and THC emissions. Each concept was analyzed and ranked for its potential in meeting the goals of the program. Although the primary goal of the program is a low level of nitric oxide emissions at stratospheric cruise conditions, both the ground level EPA emission standards and combustor performance and operational requirements typical of advanced subsonic aircraft engines are retained as goals as well. Based on the analytical projections made, two of the concepts offer the potential of achieving the emission goals; however, the projected operational characteristics and reliability of any concept to perform satisfactorily over an entire aircraft flight envelope would require extensive experimental substantiation before engine adaptation can be considered.
Enhanced Flight Vision Systems Operational Feasibility Study Using Radar and Infrared Sensors
NASA Technical Reports Server (NTRS)
Etherington, Timothy J.; Kramer, Lynda J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.
2015-01-01
Approach and landing operations during periods of reduced visibility have plagued aircraft pilots since the beginning of aviation. Although techniques are currently available to mitigate some of the visibility conditions, these operations are still ultimately limited by the pilot's ability to "see" required visual landing references (e.g., markings and/or lights of threshold and touchdown zone) and require significant and costly ground infrastructure. Certified Enhanced Flight Vision Systems (EFVS) have shown promise to lift the obscuration veil. They allow the pilot to operate with enhanced vision, in lieu of natural vision, in the visual segment to enable equivalent visual operations (EVO). An aviation standards document was developed with industry and government consensus for using an EFVS for approach, landing, and rollout to a safe taxi speed in visibilities as low as 300 feet runway visual range (RVR). These new standards establish performance, integrity, availability, and safety requirements to operate in this regime without reliance on a pilot's or flight crew's natural vision by use of a fail-operational EFVS. A pilot-in-the-loop high-fidelity motion simulation study was conducted at NASA Langley Research Center to evaluate the operational feasibility, pilot workload, and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 feet RVR by use of vision system technologies on a head-up display (HUD) without need or reliance on natural vision. Twelve crews flew various landing and departure scenarios in 1800, 1000, 700, and 300 RVR. This paper details the non-normal results of the study including objective and subjective measures of performance and acceptability. The study validated the operational feasibility of approach and departure operations and success was independent of visibility conditions. Failures were handled within the lateral confines of the runway for all conditions tested. The fail-operational concept with pilot in the loop needs further study.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Wong, Edmond; Simon, Donald L.
1994-01-01
A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system development is presented. The Graphical User Interface executes alongside a test system in laboratory conditions to permit observation of the closed loop operation through animation, graphics, and text. Since it must perform interactive graphics while updating the screen in real time, techniques are discussed which allow quick, efficient data processing and animation. Examples from an implementation are included to demonstrate some typical functionalities which allow the user to follow the control system's operation.
Mathematical modeling of solid oxide fuel cells
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Maloney, Thomas M.
1988-01-01
Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.
Block-Module Electric Machines of Alternating Current
NASA Astrophysics Data System (ADS)
Zabora, I.
2018-03-01
The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).
Automated novel high-accuracy miniaturized positioning system for use in analytical instrumentation
NASA Astrophysics Data System (ADS)
Siomos, Konstadinos; Kaliakatsos, John; Apostolakis, Manolis; Lianakis, John; Duenow, Peter
1996-01-01
The development of three-dimensional automotive devices (micro-robots) for applications in analytical instrumentation, clinical chemical diagnostics and advanced laser optics, depends strongly on the ability of such a device: firstly to be positioned with high accuracy, reliability, and automatically, by means of user friendly interface techniques; secondly to be compact; and thirdly to operate under vacuum conditions, free of most of the problems connected with conventional micropositioners using stepping-motor gear techniques. The objective of this paper is to develop and construct a mechanically compact computer-based micropositioning system for coordinated motion in the X-Y-Z directions with: (1) a positioning accuracy of less than 1 micrometer, (the accuracy of the end-position of the system is controlled by a hard/software assembly using a self-constructed optical encoder); (2) a heat-free propulsion mechanism for vacuum operation; and (3) synchronized X-Y motion.
Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.
Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír
2016-01-01
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.
Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells
Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír
2016-01-01
The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492
Radon dynamics and reduction in an underground mine in Brazil. Implications for workers' exposure.
Evangelista, H; Pereira, E B; Fernandes, H M; Sampaio, M
2002-01-01
This work was aimed at studying the behaviour of 222Rn in an experimental underground copper mine in Brazil with a single entrance. The 222Rn concentrations, meaured by using a dynamic radon measuring technique. varied between 30.5 Bq.m(-3), during ventilated conditions applied to the mine galleries, and 19.4 x 10(3) Bq.(-3) for non-ventilated conditions and when operational mining activities were conducted inside. High radon concentration surges were observed after blasting and drilling activities. In the cases of inadequate ventilation, it was estimated that workers could be subjected to exposures as high as 10 microSv.h(-1), only due to 222Rn and its short-lived progeny. The results show the importance of real-time measurements to evaluate radon dynamics during mining operations.
Electric arc discharge damage to ion thruster grids
NASA Technical Reports Server (NTRS)
Beebe, D. D.; Nakanishi, S.; Finke, R. C.
1974-01-01
Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.
Robotics in general surgery: A systematic cost assessment
Gkegkes, Ioannis D.; Mamais, Ioannis A.; Iavazzo, Christos
2017-01-01
The utilisation of robotic-assisted techniques is a novelty in the field of general surgery. Our intention was to examine the up to date available literature on the cost assessment of robotic surgery of diverse operations in general surgery. PubMed and Scopus databases were searched in a systematic way to retrieve the included studies in our review. Thirty-one studies were retrieved, referring on a vast range of surgical operations. The mean cost for robotic, open and laparoscopic ranged from 2539 to 57,002, 7888 to 16,851 and 1799 to 50,408 Euros, respectively. The mean operative charges ranged from 273.74 to 13,670 Euros. More specifically, for the robotic and laparoscopic gastric fundoplication, the cost ranged from 1534 to 2257 and 657 to 763 Euros, respectively. For the robotic and laparoscopic colectomy, it ranged from 3739 to 17,080 and 3109 to 33,865 Euros, respectively. For the robotic and laparoscopic cholecystectomy, ranged from 1163.75 to 1291 and from 273.74 to 1223 Euros, respectively. The mean non-operative costs ranged from 900 to 48,796 from 8347 to 8800 and from 870 to 42,055 Euros, for robotic, open and laparoscopic technique, respectively. Conversions to laparotomy were present in 34/18,620 (0.18%) cases of laparoscopic and in 22/1488 (1.5%) cases of robotic technique. Duration of surgery robotic, open and laparoscopic ranged from 54.6 to 328.7, 129 to 234, and from 50.2 to 260 min, respectively. The present evidence reveals that robotic surgery, under specific conditions, has the potential to become cost-effective. Large number of cases, presence of industry competition and multidisciplinary team utilisation are some of the factors that could make more reasonable and cost-effective the robotic-assisted technique. PMID:28000648
Robotics in general surgery: A systematic cost assessment.
Gkegkes, Ioannis D; Mamais, Ioannis A; Iavazzo, Christos
2017-01-01
The utilisation of robotic-assisted techniques is a novelty in the field of general surgery. Our intention was to examine the up to date available literature on the cost assessment of robotic surgery of diverse operations in general surgery. PubMed and Scopus databases were searched in a systematic way to retrieve the included studies in our review. Thirty-one studies were retrieved, referring on a vast range of surgical operations. The mean cost for robotic, open and laparoscopic ranged from 2539 to 57,002, 7888 to 16,851 and 1799 to 50,408 Euros, respectively. The mean operative charges ranged from 273.74 to 13,670 Euros. More specifically, for the robotic and laparoscopic gastric fundoplication, the cost ranged from 1534 to 2257 and 657 to 763 Euros, respectively. For the robotic and laparoscopic colectomy, it ranged from 3739 to 17,080 and 3109 to 33,865 Euros, respectively. For the robotic and laparoscopic cholecystectomy, ranged from 1163.75 to 1291 and from 273.74 to 1223 Euros, respectively. The mean non-operative costs ranged from 900 to 48,796 from 8347 to 8800 and from 870 to 42,055 Euros, for robotic, open and laparoscopic technique, respectively. Conversions to laparotomy were present in 34/18,620 (0.18%) cases of laparoscopic and in 22/1488 (1.5%) cases of robotic technique. Duration of surgery robotic, open and laparoscopic ranged from 54.6 to 328.7, 129 to 234, and from 50.2 to 260 min, respectively. The present evidence reveals that robotic surgery, under specific conditions, has the potential to become cost-effective. Large number of cases, presence of industry competition and multidisciplinary team utilisation are some of the factors that could make more reasonable and cost-effective the robotic-assisted technique.
Maylard incision in gynecologic surgery: 4-year experience in Thammasat University Hospital.
Manusook, Sakol; Suwannarurk, Komsun; Pongrojpaw, Densak; Bhamarapravatana, Kornkarn
2014-08-01
To present the results of Maylard incisionfor gynecologic surgery in Thammasat University Hospital during the past four years. A retrospective study of gynecologic surgery performed via the Maylard muscle cutting incision compare to Pfannenstiel muscle splitting and midline incision. Data came from subjects who underwent gynecologic surgey at Thammasat University Hospital, Pathumthani, Thailand friom January 2010 to December 2013. In the period of 4 years, there were 283 cases of elective surgery that performed via Maylard, Pfannenstiel and midline incision by the single experience gynecologic surgeon team. One hundred and six cases were performed via Maylard incision technique. The remaining 59 and 118 cases were performed via Pfannenstiel and midline incision technique, respectively. Two-thirds and one-thirds of cases underwent hysterectomy and conservative surgery, respectively. Benign conditions were the major indicationfor surgery at the percentage of 83.4. Operative results were not significantly different from well-known midline and Pfannenstiel incision in terms of blood loss, time to first meal and postoperative pain. Operative time in Maylard incision was longer than in Pfannenstiel incision. Length of stay in Maylard incision was longer than Pfannenstiel but shorter than midline incision. Overall complications (eoperation, bowel injuries, urinary bladder injuries and blood transfusion rate) were not significantly different. Maylard incision provides similar operative results with midline and Pfannenstiel technique. Even though it takes more time for abdominal entry but it gives more operative exposure than Pfannenstiel incision. In the woman with previous low transverse scar and gynaecologic surgery is needed, Maylard incision could be an optional technique that provides cosmetic and successfud results. Hand on training for Maylard incision from their mentors should be encouraged to more practice.
Decoupling pipeline influences in soil resistivity measurements with finite element techniques
NASA Astrophysics Data System (ADS)
Deo, R. N.; Azoor, R. M.; Zhang, C.; Kodikara, J. K.
2018-03-01
Periodic inspection of pipeline conditions is an important asset management strategy conducted by water and sewer utilities for efficient and economical operations of their assets in field. The Level 1 pipeline condition assessment involving resistivity profiling along the pipeline right-of-way is a common technique for delineating pipe sections that might be installed in highly corrosive soil environment. However, the technique can suffer from significant perturbations arising from the buried pipe itself, resulting in errors in native soil characterisation. To address this problem, a finite element model was developed to investigate the degree to which pipes of different a) diameters, b) burial depths, and c) surface conditions (bare or coated) can influence in-situ soil resistivity measurements using Wenner methods. It was found that the greatest errors can arise when conducting measurements over a bare pipe with the array aligned parallel to the pipe. Depending upon the pipe surface conditions, in-situ resistivity measurements can either be underestimated or overestimated from true soil resistivities. Following results based on simulations and decoupling equations, a guiding framework for removing pipe influences in soil resistivity measurements were developed that can be easily used to perform corrections on measurements. The equations require simple a-prior information on the pipe diameter, burial depth, surface condition, and the array length and orientation used. Findings from this study have immediate application and is envisaged to be useful for critical civil infrastructure monitoring and assessment.
NASA Astrophysics Data System (ADS)
Trujillo Bueno, J.; Fabiani Bendicho, P.
1995-12-01
Iterative schemes based on Gauss-Seidel (G-S) and optimal successive over-relaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only √n/2√2. This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.
[Nuclear medicine diagnosis of pulmonary capillary protein leakage].
Creutzig, H; Sturm, J A; Schober, O; Nerlich, M L; Kant, C J
1984-10-01
Pulmonary extravascular albumin extravasation in patients with adult respiratory distress syndrome can be quantified with radionuclide techniques. While imaging procedures with a computerized gamma camera will allow reproducible ROIs, this will be the main limitation in nonimaging measurements with small scintillation probes. Repeated positioning by one operator results in a mean spatial variation of position of about 2 cm and a variation in count rate of 25%. For the estimation of PCPL the small probes must be positioned under scintigraphic control. Under these conditions the results of both techniques are identical. The upper limit of normal was estimated to be 1 x E-5/sec. The standard deviation of abnormal measurements was about 10%. The pulmonary capillary protein leakage can be quantified by radionuclide techniques with good accuracy, using the combination of imaging and nonimaging techniques.
Fundamental considerations in dynamic fracture in nuclear materials
NASA Astrophysics Data System (ADS)
Cady, Carl; Eastwood, David; Bourne, Neil; Pei, Ruizhi; Mummery, Paul; Rau, Christoph
2017-06-01
The structural integrity of components used in nuclear power plants is the biggest concern of operators. A diverse range of materials, loading, prior histories and environmental conditions, leads to a complex operating environment. An experimental technique has been developed to characterize brittle materials and using linear elastic fracture mechanics, has given accurate measurements of the fracture toughness of materials. X-ray measurements were used to track the crack front as a function of loading parameters as well as determine the crack surface area as loads increased. This X-ray tomographic study of dynamic fracture in beryllium indicates the onset of damage within the target as load is increased. Similarly, measurements on nuclear graphite were conducted to evaluate the technique. This new, quantitative information obtained using the X-ray techniques has shown application in other materials. These materials exhibited a range of brittle and ductile responses that will test our modelling schemes for fracture. Further visualization of crack front advance and the correlated strain fields that are generated during the experiment for the two distinct deformation processes provide a vital step in validating new multiscale predicative modelling.
A modification of incisionless otoplasty for correcting the prominent ear deformity.
Haytoglu, Suheyl; Haytoglu, Tahir Gokhan; Yildirim, Ilhami; Arikan, Osman Kursat
2015-11-01
This article describes a modification of the incisionless otoplasty. We investigated the complication rates, recurrence risks, and patient satisfaction with this modified procedure. In total, 26 patients (49 ears) complaining of prominent ear were operated on. Auriculocephalic distances were measured at three different levels, pre-operatively, at the end of the surgery, and at 4 weeks and 6 months after surgery to evaluate the efficacy of the technique. Patient satisfaction was evaluated using a visual analog scale and the global aesthetic improvement scale was applied by an independent non-participating plastic surgeon at 6 months after the surgery. The mean loss of medialization was ~1 mm at 4 weeks after surgery and 2 mm at 6 months after surgery for all levels. According to visual analog scale, patient or parent satisfaction increased significantly. The global aesthetic improvement scale rated the patients as 93.9% "improved" and 6.1% as "no change." No rating was "worse." There are many advantages of this technique. The operation is not time-consuming, does not require a dressing, and it can be performed in adults with local anesthesia under office conditions, with no need for hospitalization. After the operation, patients can return to their daily activities immediately. It is associated with a low complication rate and high patient satisfaction. This technique is a good option for otoplasty in patients with isolated, inadequate development of anti-helical ridge, and with soft auricular cartilage.
NASA Astrophysics Data System (ADS)
Uysal, Selcuk Can
In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi
2013-01-01
An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.
Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.
2013-10-01
Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflectsmore » the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7 percent after implementing the demand control technique, 2 percent after implementing temperature modulation, and 15 percent after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8 percent, 1 percent, and 14 percent for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Dentz; E. Ansanelli, H. Henderson, Jr.; K. Varshney
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less
Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh
Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less
Risk management in the North sea offshore industry: History, status and challenges
NASA Astrophysics Data System (ADS)
Smith, E. J.
1995-10-01
There have been major changes in the UK and Norwegian offshore safety regimes in the last decade. On the basis of accumulated experience (including some major accidents), there has been a move away from a rigid, prescriptive approach to setting safety standards; it is now recognised that a more flexible, "goal-setting" approach is more suited to achieving cost-effective solutions to offshore safety. In order to adapt to this approach, offshore operators are increasingly using Quantitative Risk Assessment (QRA) techniques as part of their risk management programmes. Structured risk assessment can be used at all stages of a project life-cycle. In the design stages (concept and detailed design), these techniques are valuable tools in ensuring that money is wisely spent on safety-related systems. In the operational stage, QRA can aid the development of procedures. High quality Safety Management Systems (SMSs), covering issues such as training, inspection, and emergency planning, are crucial to maintain "asdesigned" levels of safety and reliability. Audits of SMSs should be carried out all through the operational phase to ensure that risky conditions do not accumulate.
NASA Technical Reports Server (NTRS)
Czaja, Wojciech; Le Moigne-Stewart, Jacqueline
2014-01-01
In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.
Solar thematic maps for space weather operations
Rigler, E. Joshua; Hill, Steven M.; Reinard, Alysha A.; Steenburgh, Robert A.
2012-01-01
Thematic maps are arrays of labels, or "themes", associated with discrete locations in space and time. Borrowing heavily from the terrestrial remote sensing discipline, a numerical technique based on Bayes' theorem captures operational expertise in the form of trained theme statistics, then uses this to automatically assign labels to solar image pixels. Ultimately, regular thematic maps of the solar corona will be generated from high-cadence, high-resolution SUVI images, the solar ultraviolet imager slated to fly on NOAA's next-generation GOES-R series of satellites starting ~2016. These thematic maps will not only provide quicker, more consistent synoptic views of the sun for space weather forecasters, but digital thematic pixel masks (e.g., coronal hole, active region, flare, etc.), necessary for a new generation of operational solar data products, will be generated. This paper presents the mathematical underpinnings of our thematic mapper, as well as some practical algorithmic considerations. Then, using images from the Solar Dynamics Observatory (SDO) Advanced Imaging Array (AIA) as test data, it presents results from validation experiments designed to ascertain the robustness of the technique with respect to differing expert opinions and changing solar conditions.
Phase editing as a signal pre-processing step for automated bearing fault detection
NASA Astrophysics Data System (ADS)
Barbini, L.; Ompusunggu, A. P.; Hillis, A. J.; du Bois, J. L.; Bartic, A.
2017-07-01
Scheduled maintenance and inspection of bearing elements in industrial machinery contributes significantly to the operating costs. Savings can be made through automatic vibration-based damage detection and prognostics, to permit condition-based maintenance. However automation of the detection process is difficult due to the complexity of vibration signals in realistic operating environments. The sensitivity of existing methods to the choice of parameters imposes a requirement for oversight from a skilled operator. This paper presents a novel approach to the removal of unwanted vibrational components from the signal: phase editing. The approach uses a computationally-efficient full-band demodulation and requires very little oversight. Its effectiveness is tested on experimental data sets from three different test-rigs, and comparisons are made with two state-of-the-art processing techniques: spectral kurtosis and cepstral pre- whitening. The results from the phase editing technique show a 10% improvement in damage detection rates compared to the state-of-the-art while simultaneously improving on the degree of automation. This outcome represents a significant contribution in the pursuit of fully automatic fault detection.
Quantum Computing Using Superconducting Qubits
2006-04-01
see the right fig.), and (iii) dynamically modifying ( pulsating ) this potential by controlling the motion of the A particles. This allows easy...superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N- and S...efficient (i.e., using one two-bit operation) QC circuits using modern microfabrication techniques. scheme for this design [1,3] to achieve conditional
ERIC Educational Resources Information Center
MCKEE, ROBERT L.; RIDLEY, KATHRYN J.
TO ESTABLISH A COLLEGE IN 100 DAYS PRESENTED AN OPPORTUNITY TO TEST THE VALUE OF PROGRAMED ORGANIZATIONAL PROCEDURES USING PROGRAM PERFORMANCE EVALUATION AND REVIEW TECHNIQUE (PERT) UNDER ACTUAL OPERATIONAL CONDITIONS, NOT IN A SIMULATED THEORETICAL SITUATION. THROUGH THE AID OF THE PERT PLANNING SYSTEM, IT WAS DETERMINED THAT THERE WERE NINE…
A failure recovery planning prototype for Space Station Freedom
NASA Technical Reports Server (NTRS)
Hammen, David G.; Kelly, Christine M.
1991-01-01
NASA is investigating the use of advanced automation to enhance crew productivity for Space Station Freedom in numerous areas, including failure management. A prototype is described that uses various advanced automation techniques to generate courses of action whose intents are to recover from a diagnosed failure, and to do so within the constraints levied by the failure and by Freedom's configuration and operating conditions.
Application of split window technique to TIMS data
NASA Technical Reports Server (NTRS)
Matsunaga, Tsuneo; Rokugawa, Shuichi; Ishii, Yoshinori
1992-01-01
Absorptions by the atmosphere in thermal infrared region are mainly due to water vapor, carbon dioxide, and ozone. As the content of water vapor in the atmosphere greatly changes according to weather conditions, it is important to know its amount between the sensor and the ground for atmospheric corrections of thermal Infrared Multispectral Scanner (TIMS) data (i.e. radiosonde). On the other hand, various atmospheric correction techniques were already developed for sea surface temperature estimations from satellites. Among such techniques, Split Window technique, now widely used for AVHRR (Advanced Very High Resolution Radiometer), uses no radiosonde or any kind of supplementary data but a difference between observed brightness temperatures in two channels for estimating atmospheric effects. Applications of Split Window technique to TIMS data are discussed because availability of atmospheric profile data is not clear when ASTER operates. After these theoretical discussions, the technique is experimentally applied to TIMS data at three ground targets and results are compared with atmospherically corrected data using LOWTRAN 7 with radiosonde data.
Coulomb branch operators and mirror symmetry in three dimensions
NASA Astrophysics Data System (ADS)
Dedushenko, Mykola; Fan, Yale; Pufu, Silviu S.; Yacoby, Ran
2018-04-01
We develop new techniques for computing exact correlation functions of a class of local operators, including certain monopole operators, in three-dimensional N=4 abelian gauge theories that have superconformal infrared limits. These operators are position-dependent linear combinations of Coulomb branch operators. They form a one-dimensional topological sector that encodes a deformation quantization of the Coulomb branch chiral ring, and their correlation functions completely fix the ( n ≤ 3)-point functions of all half-BPS Coulomb branch operators. Using these results, we provide new derivations of the conformal dimension of half-BPS monopole operators as well as new and detailed tests of mirror symmetry. Our main approach involves supersymmetric localization on a hemisphere HS 3 with half-BPS boundary conditions, where operator insertions within the hemisphere are represented by certain shift operators acting on the HS 3 wavefunction. By gluing a pair of such wavefunctions, we obtain correlators on S 3 with an arbitrary number of operator insertions. Finally, we show that our results can be recovered by dimensionally reducing the Schur index of 4D N=2 theories decorated by BPS 't Hooft-Wilson loops.
Packing properties of starch-based powders under mild mechanical stress.
Zanardi, I; Gabbrielli, A; Travagli, V
2009-07-01
This study reports the ability to settle of commercial pharmaceutical grade starch samples, both native and pregelatinized. The experiments were carried out under different relative humidity (RH%) conditions and the packing properties were evaluated using both official pharmacopoeial monograph conditions and also modified conditions in order to give a deeper knowledge of tapping under mild mechanical stress. The technique adopted, simulating common pharmaceutical operating practices, appears to be useful to estimate some technologically relevant features of diluent powder materials. Moreover, a general mathematical function has been applied to the experimental data; this could be appropriate for adequately describing material settling patterns and offers practical parameters for characterizing starch powders within the context of a pharmaceutical quality system.
Diatomaceous Earth Project put on standby by Texaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
Texaco has placed its Diatomite Project, located at McKittrick in California's Kern County, in a standby condition. The Project will be reactivated when conditions in the industry dictate. Texaco stressed that the Project is not being abandoned, but is being put on hold due to the current worldwide energy supply picture. The Lurgi pilot unit is being maintained in condition for future operations. Texaco estimates that the Project could yield in excess of 300 million barrels of 21 to 23 API oil from the oil-bearing diatomite deposits which lie at depths up to 1200 feet. The deposits will be recoveredmore » by open pit mining and back filling techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Specialized data analysis of SSME and advanced propulsion system vibration measurements
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi
1993-01-01
The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.
Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.
Combustion interaction with radiation-cooled chambers
NASA Technical Reports Server (NTRS)
Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.
1990-01-01
Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.
Crew and Display Concepts Evaluation for Synthetic / Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III
2006-01-01
NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that strive to eliminate low-visibility conditions as a causal factor to civil aircraft accidents and replicate the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Enhanced Vision System (EVS) technologies are analogous and complementary in many respects to SVS, with the principle difference being that EVS is an imaging sensor presentation, as opposed to a database-derived image. The use of EVS in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting operations to civil airports. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved EVS that shows the required visual references on the pilot s Head-Up Display. An experiment was conducted to evaluate the complementary use of SVS and EVS technologies, specifically focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under the newly adopted FAA rules which provide operating credit for EVS. Overall, the experimental data showed that significant improvements in SA without concomitant increases in workload and display clutter could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying.
A Sensor System for Detection of Hull Surface Defects
Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan
2010-01-01
This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590
Coal thickness guage using RRAS techniques, parts 2 and 3
NASA Technical Reports Server (NTRS)
King, J. D.; Rollwitz, W. L.
1980-01-01
Electron magnetic resonance was investigated as a sensing technique for use in measuring the thickness of the layer of coal overlying the rock substrate. The goal is development of a thickness gauge which will be usable for control of mining machinery to maintain the coal thickness within selected bounds. A sensor must be noncontracting, have a measurement range of 6 inches or more, and an accuracy of 1/2 inch or better. The sensor should be insensitive to variations in spacing between the sensor and the surface, the response speed should be adequate to permit use on continuous mining equipment, and the device should be rugged and otherwise suited for operation under conditions of high vibration, moisture, and dust. Finally, the sensor measurement must not be adversely affected by the natural effects occurring in coal such as impurities, voids, cracks, layering, high moisture level, and other conditions that are likely to be encountered.
The SeaHorn Verification Framework
NASA Technical Reports Server (NTRS)
Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.
2015-01-01
In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.
Measuring the uncertainties of discharge measurements: interlaboratory experiments in hydrometry
NASA Astrophysics Data System (ADS)
Le Coz, Jérôme; Blanquart, Bertrand; Pobanz, Karine; Dramais, Guillaume; Pierrefeu, Gilles; Hauet, Alexandre; Despax, Aurélien
2015-04-01
Quantifying the uncertainty of streamflow data is key for hydrological sciences. The conventional uncertainty analysis based on error propagation techniques is restricted by the absence of traceable discharge standards and by the weight of difficult-to-predict errors related to the operator, procedure and measurement environment. Field interlaboratory experiments recently emerged as an efficient, standardized method to 'measure' the uncertainties of a given streamgauging technique in given measurement conditions. Both uncertainty approaches are compatible and should be developed jointly in the field of hydrometry. In the recent years, several interlaboratory experiments have been reported by different hydrological services. They involved different streamgauging techniques, including acoustic profilers (ADCP), current-meters and handheld radars (SVR). Uncertainty analysis was not always their primary goal: most often, testing the proficiency and homogeneity of instruments, makes and models, procedures and operators was the original motivation. When interlaboratory experiments are processed for uncertainty analysis, once outliers have been discarded all participants are assumed to be equally skilled and to apply the same streamgauging technique in equivalent conditions. A universal requirement is that all participants simultaneously measure the same discharge, which shall be kept constant within negligible variations. To our best knowledge, we were the first to apply the interlaboratory method for computing the uncertainties of streamgauging techniques, according to the authoritative international documents (ISO standards). Several specific issues arise due to the measurements conditions in outdoor canals and rivers. The main limitation is that the best available river discharge references are usually too uncertain to quantify the bias of the streamgauging technique, i.e. the systematic errors that are common to all participants in the experiment. A reference or a sensitivity analysis to the fixed parameters of the streamgauging technique remain very useful for estimating the uncertainty related to the (non quantified) bias correction. In the absence of a reference, the uncertainty estimate is referenced to the average of all discharge measurements in the interlaboratory experiment, ignoring the technique bias. Simple equations can be used to assess the uncertainty of the uncertainty results, as a function of the number of participants and of repeated measurements. The interlaboratory method was applied to several interlaboratory experiments on ADCPs and currentmeters mounted on wading rods, in streams of different sizes and aspects, with 10 to 30 instruments, typically. The uncertainty results were consistent with the usual expert judgment and highly depended on the measurement environment. Approximately, the expanded uncertainties (within the 95% probability interval) were ±5% to ±10% for ADCPs in good or poor conditions, and ±10% to ±15% for currentmeters in shallow creeks. Due to the specific limitations related to a slow measurement process and to small, natural streams, uncertainty results for currentmeters were more uncertain than for ADCPs, for which the site-specific errors were significantly evidenced. The proposed method can be applied to a wide range of interlaboratory experiments conducted in contrasted environments for different streamgauging techniques, in a standardized way. Ideally, an international open database would enhance the investigation of hydrological data uncertainties, according to the characteristics of the measurement conditions and procedures. Such a dataset could be used for implementing and validating uncertainty propagation methods in hydrometry.
A Systematic Approach for Real-Time Operator Functional State Assessment
NASA Technical Reports Server (NTRS)
Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean; Li, Jiang; Li, Feng; McKenzie, Frederick
2012-01-01
A task overload condition often leads to high stress for an operator, causing performance degradation and possibly disastrous consequences. Just as dangerous, with automated flight systems, an operator may experience a task underload condition (during the en-route flight phase, for example), becoming easily bored and finding it difficult to maintain sustained attention. When an unexpected event occurs, either internal or external to the automated system, the disengaged operator may neglect, misunderstand, or respond slowly/inappropriately to the situation. In this paper, we discuss an approach for Operator Functional State (OFS) monitoring in a typical aviation environment. A systematic ground truth finding procedure has been designed based on subjective evaluations, performance measures, and strong physiological indicators. The derived OFS ground truth is continuous in time compared to a very sparse estimation of OFS based on an expert review or subjective evaluations. It can capture the variations of OFS during a mission to better guide through the training process of the OFS assessment model. Furthermore, an OFS assessment model framework based on advanced machine learning techniques was designed and the systematic approach was then verified and validated with experimental data collected in a high fidelity Boeing 737 simulator. Preliminary results show highly accurate engagement/disengagement detection making it suitable for real-time applications to assess pilot engagement.
NASA Astrophysics Data System (ADS)
Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze
2017-09-01
Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.
Wills, C A; Beaupre, S J
2000-01-01
Most reptiles maintain their body temperatures within normal functional ranges through behavioral thermoregulation. Under some circumstances, thermoregulation may be a time-consuming activity, and thermoregulatory needs may impose significant constraints on the activities of ectotherms. A necessary (but not sufficient) condition for demonstrating thermoregulation is a difference between observed body temperature distributions and available operative temperature distributions. We examined operative and body temperature distributions of the timber rattlesnake (Crotalus horridus) for evidence of thermoregulation. Specifically, we compared the distribution of available operative temperatures in the environment to snake body temperatures during August and September. Operative temperatures were measured using 48 physical models that were randomly deployed in the environment and connected to a Campbell CR-21X data logger. Body temperatures (n=1,803) were recorded from 12 radiotagged snakes using temperature-sensitive telemetry. Separate randomization tests were conducted for each hour of day within each month. Actual body temperature distributions differed significantly from operative temperature distributions at most time points considered. Thus, C. horridus exhibits a necessary (but not sufficient) condition for demonstrating thermoregulation. However, unlike some desert ectotherms, we found no compelling evidence for thermal constraints on surface activity. Randomization may prove to be a powerful technique for drawing inferences about thermoregulation without reliance on studies of laboratory thermal preference.
Sanyal, Oishi; Lee, Ilsoon
2014-03-01
Reverse osmosis (RO) and nanofiltration (NF) are the two dominant membrane separation processes responsible for ion rejection. While RO is highly efficient in removal of ions it needs a high operating pressure and offers very low selectivity between ions. Nanofiltration on the other hand has a comparatively low operating pressure and most commercial membranes offer selectivity in terms of ion rejection. However in many nanofiltration operations rejection of monovalent ions is not appreciable. Therefore a high flux high rejection membrane is needed that can be applied to water purification systems. One such alternative is the usage of polyelectrolyte multilayer membranes that are prepared by the deposition of alternately charged polyelectrolytes via layer-by-layer (LbL) assembly method. LbL is one of the most common self-assembly techniques and finds application in various areas. It has a number of tunable parameters like deposition conditions, number of bilayers deposited etc. which can be manipulated as per the type of application. This technique can be applied to make a nanothin membrane skin which gives high rejection and at the same time allow a high water flux across it. Several research groups have applied this highly versatile technique to prepare membranes that can be employed for water purification. Some of these membranes have shown better performance than the commercial nanofiltration and reverse osmosis membranes. These membranes have the potential to be applied to various different aspects of water treatment like water softening, desalination and recovery of certain ions. Besides the conventional method of LbL technique other alternative methods have also been suggested that can make the technique fast, more efficient and thereby make it more commercially acceptable.
[Endoscopic follow-up of translaryngeal Fantoni tracheostomy].
Succo, G; Crosetti, E; Mattalia, P; Voltolina, M; Bramardi, F; Di Lisi, D; Riva, F; Sartoris, A
2002-08-01
Dilatational tracheotomy techniques are widely used in the long-term management of the respiratory tract in patients in intensive care units (ICU). The translaryngeal tracheotomy technique (TLT) was first described by Fantoni in 1993 and rapidly asserted itself, especially in Europe. This technique basically differs from the other percutaneous techniques in that it involves a progressive, retrograde, dilatation of the trachea in a single session conducted from inside the trachea, working outward, simultaneously exerting a counter-pressure on the pre-tracheal soft tissues with the fingers. The present study involves an endoscopy follow-up of 130 patients who had undergone TLT at the Intensive Care Unit of our Hospital between November 2000 and May 2001. The pre-operative oro-tracheal intubation time varied from 1 to 42 days. All patients filled out a brief questionnaire containing validated questions on their general health and quality of life with particular attention focused on respiratory conditions. Then, after receiving informed consent, the patients underwent laryngo-tracheoscopy with local anesthetic using a flexible tracheobronchoscope. All tests were recorded and viewed later by two operators in order to identify and divide the patients according to the level of execution of the tracheotomy and the presence of sequelae. The results obtained have shown that, like other percutaneous tracheotomy techniques, TLT provides some benefits including the fact that procedure can be performed at the bedside in a short time, with few post-operative complications, simpler nursing and fewer sequelae in time. Analysis of data concerning time of tracheostomy execution, tracheal level of stomia and nursing times has revealed three factors that determine severe sequelae: delay in tracheostomy execution, high level of execution with cricoid involvement and onset of problems during first tracheal cannula change.
Power degradation and reliability study of high-power laser bars at quasi-CW operation
NASA Astrophysics Data System (ADS)
Zhang, Haoyu; Fan, Yong; Liu, Hui; Wang, Jingwei; Zah, Chungen; Liu, Xingsheng
2017-02-01
The solid state laser relies on the laser diode (LD) pumping array. Typically for high peak power quasi-CW (QCW) operation, both energy output per pulse and long term reliability are critical. With the improved bonding technique, specially Indium-free bonded diode laser bars, most of the device failures were caused by failure within laser diode itself (wearout failure), which are induced from dark line defect (DLD), bulk failure, point defect generation, facet mirror damage and etc. Measuring the reliability of LD under QCW condition will take a rather long time. Alternatively, an accelerating model could be a quicker way to estimate the LD life time under QCW operation. In this report, diode laser bars were mounted on micro channel cooler (MCC) and operated under QCW condition with different current densities and junction temperature (Tj ). The junction temperature is varied by modulating pulse width and repetition frequency. The major concern here is the power degradation due to the facet failure. Reliability models of QCW and its corresponding failures are studied. In conclusion, QCW accelerated life-time model is discussed, with a few variable parameters. The model is compared with CW model to find their relationship.
Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Passaro, Andrea; LaGraff, John E.; Oldfield, Martin L. G.; Biagioni, Leonardo; Moss, Roger W.; Battelle, Ryan T.; Povinelli, Louis A. (Technical Monitor)
2003-01-01
The present research concerns the development of high-frequency pressure and temperature probes and related instrumentation capable of performing spectral characterization of unsteady pressure and temperature fluctuations over the 0.05 20 kHz range, at the exit of a gas turbine combustor operating at conditions close to nominal ones for large power generation turbomachinery. The probes used a transient technique pioneered at Oxford University; in order to withstand exposure to the harsh environment the probes were fitted on a rapid injection and cooling system jointly developed by Centrospazio CPR and Syracuse University. The experimental runs were performed on a large industrial test rig being operated by ENEL Produzione. The achieved results clearly show the satisfactory performance provided by this diagnostic tool, even though the poor location of the injection port prevented the tests from yielding more insight of the core flow turbulence characteristics. The pressure and temperature probes survived several dozen injections in the combustor hot jet, while consistently providing the intended high frequency performance. The apparatus was kept connected to the combustor during long duration firings, operating as an unobtrusive, self contained, piggy-back experiment: high frequency flow samplings were remotely recorded at selected moments corresponding to different combustor operating conditions.
DE-FG02-08ER64658 (OASIS) - Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharman, Jonathan
Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performancemore » under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop events are experienced. These catalysts were contrasted with more conventional materials in the design of catalyst layers and novel microporous layers (MPLs) and gas diffusion layer (GDL) combinations were also explored. Early on in the work it was shown how much more aggressive high temperature operation is than dry operation. At the same humidity, tests at 110?C caused much more dehydration than tests at 80?C and the high temperature condition was much more revealing of improvements made to MEA design. Alloy catalysts were introduced and compared with Pt catalysts with a range of particle sizes. It was apparent that the larger particle sizes of the alloy catalysts led to a reduction in performance that offset much of their kinetic advantage. The Pt-only materials clearly showed that small particles are beneficial to good performance under hot/dry conditions, because of their higher surface area, although they are known to be less stable to cyclic operation. An ex-situ water vapour sorption technique was developed that showed a very clear correlation with in-cell performance: catalyst powders that absorbed more water gave better performance in-cell. It was shown that alloy catalysts could give a 25 mV advantage over Pt-only at 1 Acm-2. GDL design was also shown to influence performance and more permeable GDLs on the anode allowed better membrane hydration and therefore conductivity. A very impermeable GDL on the cathode caused cathode flooding even under dry conditions, but a novel cathode MPL incorporating ionomer and operating at 110?C, 33/17% RH showed a 150 mV gain at 800 mAcm-2 over the conventional MPL. This project has increased the understanding of the factors that influence performance loss under dry conditions, including the development of an insightful ex-situ characterisation technique (Dynamic Vapour Sorption). All the approaches investigated can be readily implemented in state-of the-art MEAs, although optimisation would be needed to integrate the new designs with existing MEA types and to tune to the exact range of operating conditions. The work is thus expected to benefit the public by feeding through more condition-tolerant production MEAs to a range of applications and thereby accelerate the commercialisation of fuel cell technology. In summary, a number of specific catalyst, catalyst layer, MPL and GDL improvements were made during this project. Often the best designs under dry conditions translated to some performance loss under wet conditions, but compromise situations were also found where dry performance was improved with no loss of wet performance.« less
Lübken, M; Wichern, M; Letsiou, I; Kehl, O; Bischof, F; Horn, H
2007-01-01
Thermophilic anaerobic digestion in compact systems can be an economical and ecological reasonable decentralised process technique, especially for rural areas. Thermophilic process conditions are important for a sufficient removal of pathogens. The high energy demand, however, can make such systems unfavourable in terms of energy costs. This is the case when low concentrated wastewater is treated or the system is operated at low ambient temperatures. In this paper we present experimental results of a compact thermophilic anaerobic system obtained with fluorescent in situ hybridisation (FISH) analysis and mathematical simulation. The system was operated with faecal sludge for a period of 135 days and with a model substrate consisting of forage and cellulose for a period of 60 days. The change in the microbial community due to the two different substrates treated could be well observed by the FISH analysis. The Anaerobic Digestion Model no. 1 (ADM1) was used to evaluate system performance at different temperature conditions. The model was extended to contribute to decreased methanogenic activity at lower temperatures and was used to calculate energy production. A model was developed to calculate the major parts of energy consumed by the digester itself at different temperature conditions. It was demonstrated by the simulation study that a reduction of the process temperature can lead to higher net energy yield. The simulation study additionally showed that the effect of temperature on the energy yield is higher when a substrate is treated with high protein content.
Knapsack - TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay. PMID:26237221
Knapsack--TOPSIS Technique for Vertical Handover in Heterogeneous Wireless Network.
Malathy, E M; Muthuswamy, Vijayalakshmi
2015-01-01
In a heterogeneous wireless network, handover techniques are designed to facilitate anywhere/anytime service continuity for mobile users. Consistent best-possible access to a network with widely varying network characteristics requires seamless mobility management techniques. Hence, the vertical handover process imposes important technical challenges. Handover decisions are triggered for continuous connectivity of mobile terminals. However, bad network selection and overload conditions in the chosen network can cause fallout in the form of handover failure. In order to maintain the required Quality of Service during the handover process, decision algorithms should incorporate intelligent techniques. In this paper, a new and efficient vertical handover mechanism is implemented using a dynamic programming method from the operation research discipline. This dynamic programming approach, which is integrated with the Technique to Order Preference by Similarity to Ideal Solution (TOPSIS) method, provides the mobile user with the best handover decisions. Moreover, in this proposed handover algorithm a deterministic approach which divides the network into zones is incorporated into the network server in order to derive an optimal solution. The study revealed that this method is found to achieve better performance and QoS support to users and greatly reduce the handover failures when compared to the traditional TOPSIS method. The decision arrived at the zone gateway using this operational research analytical method (known as the dynamic programming knapsack approach together with Technique to Order Preference by Similarity to Ideal Solution) yields remarkably better results in terms of the network performance measures such as throughput and delay.
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
Performance optimization of a photovoltaic chain conversion by the PWM control
NASA Astrophysics Data System (ADS)
Rezoug, M. R.; Chenni, R.
2017-02-01
The interest of the research technique of maximum power point tracking, exposed by this article, lays in the fact of work instantly on the real characteristic of the photovoltaic module. This work is based on instantaneous measurements of its terminals' current & voltage as well as the exploitation of the characteristic "Power - Duty Cycle" to define rapidly the Duty cycle in which power reaches its maximum value. To ensure instantaneous tracking of the point of maximum power, we use "DC/DC Converter" based on "Pulse Wave Modulation's (PWM) Command" controlled by an algorithm implanted in a microcontroller's memory. This algorithm responds to the quick changes in climate (sunlight and temperature). To identify the control parameters "VPV & IPV" at any change in operating conditions, sensors are projected. this algorithm applied to the Duty cycle of the static converter enables the control of power supplied by the photovoltaic generator thanks to oscillatory movement around the MPP. Our article highlights the importance of this technique which lays in its simplicity and performance in changing climatic conditions. This efficiency is confirmed by experimental tests and this technique will improve its predecessors.
Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel
2015-01-01
Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452
Electrochemical degradation, kinetics & performance studies of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Das, Debanjan
Linear and Non-linear electrochemical characterization techniques and equivalent circuit modelling were carried out on miniature and sub-commercial Solid Oxide Fuel Cell (SOFC) stacks as an in-situ diagnostic approach to evaluate and analyze their performance under the presence of simulated alternative fuel conditions. The main focus of the study was to track the change in cell behavior and response live, as the cell was generating power. Electrochemical Impedance Spectroscopy (EIS) was the most important linear AC technique used for the study. The distinct effects of inorganic components usually present in hydrocarbon fuel reformates on SOFC behavior have been determined, allowing identification of possible "fingerprint" impedance behavior corresponding to specific fuel conditions and reaction mechanisms. Critical electrochemical processes and degradation mechanisms which might affect cell performance were identified and quantified. Sulfur and siloxane cause the most prominent degradation and the associated electrochemical cell parameters such as Gerisher and Warburg elements are applied respectively for better understanding of the degradation processes. Electrochemical Frequency Modulation (EFM) was applied for kinetic studies in SOFCs for the very first time for estimating the exchange current density and transfer coefficients. EFM is a non-linear in-situ electrochemical technique conceptually different from EIS and is used extensively in corrosion work, but rarely used on fuel cells till now. EFM is based on exploring information obtained from non-linear higher harmonic contributions from potential perturbations of electrochemical systems, otherwise not obtained by EIS. The baseline fuel used was 3 % humidified hydrogen with a 5-cell SOFC sub-commercial planar stack to perform the analysis. Traditional methods such as EIS and Tafel analysis were carried out at similar operating conditions to verify and correlate with the EFM data and ensure the validity of the obtained information. The obtained values closely range from around 11 mA cm-2 - 16 mA cm -2 with reasonable repeatability and excellent accuracy. The potential advantages of EFM compared to traditional methods were realized and our primary aim at demonstrating this technique on a SOFC system are presented which can act as a starting point for future research efforts in this area. Finally, an approach based on in-situ State of Health tests by EIS was formulated and investigated to understand the most efficient fuel conditions for suitable long term operation of a solid oxide fuel cell stack under power generation conditions. The procedure helped to reflect the individual effects of three most important fuel characteristics CO/H2 volumetric ratio, S/C ratio and fuel utilization under the presence of a simulated alternative fuel at 0.4 A cm-2. Variation tests helped to identify corresponding electrochemical/chemical processes, narrow down the most optimum operating regimes considering practical behavior of simulated reformer-SOFC system arrangements. At the end, 8 different combinations of the optimized parameters were tested long term with the stack, and the most efficient blend was determined.
Ananth, D V N; Nagesh Kumar, G V
2016-05-01
With increase in electric power demand, transmission lines were forced to operate close to its full load and due to the drastic change in weather conditions, thermal limit is increasing and the system is operating with less security margin. To meet the increased power demand, a doubly fed induction generator (DFIG) based wind generation system is a better alternative. For improving power flow capability and increasing security STATCOM can be adopted. As per modern grid rules, DFIG needs to operate without losing synchronism called low voltage ride through (LVRT) during severe grid faults. Hence, an enhanced field oriented control technique (EFOC) was adopted in Rotor Side Converter of DFIG converter to improve power flow transfer and to improve dynamic and transient stability. A STATCOM is coordinated to the system for obtaining much better stability and enhanced operation during grid fault. For the EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during symmetric and asymmetric faults. The offset decomposition of flux will be oscillatory in a conventional field oriented control, whereas in EFOC it was aimed to damp quickly. This paper mitigates voltage and limits surge currents to enhance the operation of DFIG during symmetrical and asymmetrical faults. The system performance with different types of faults like single line to ground, double line to ground and triple line to ground was applied and compared without and with a STATCOM occurring at the point of common coupling with fault resistance of a very small value at 0.001Ω. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Scalable nuclear density functional theory with Sky3D
NASA Astrophysics Data System (ADS)
Afibuzzaman, Md; Schuetrumpf, Bastian; Aktulga, Hasan Metin
2018-02-01
In nuclear astrophysics, quantum simulations of large inhomogeneous dense systems as they appear in the crusts of neutron stars present big challenges. The number of particles in a simulation with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe techniques for an efficient and scalable parallel implementation of Sky3D, a nuclear density functional theory solver that operates on an equidistant grid. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on a Cray XC40 supercomputer.
Progress of research on water vapor lidar
NASA Technical Reports Server (NTRS)
Wilkerson, Thomas D.; Singh, U. N.
1989-01-01
Research is summarized on applications of stimulated Raman scattering (SRS) of laser light into near infrared wavelengths suitable for atmospheric monitoring. Issues addressed are conversion efficiency, spectral purity, optimization of operating conditions, and amplification techniques. A Raman cell was developed and built for the laboratory program, and is now available to NASA-Langley, either as a design or as a completed cell for laboratory or flight applications. The Raman cell has been approved for flight in NASA's DC-8 aircraft. The self-seeding SRS technique developed here is suggested as an essential improvement for tunable near-IR DIAL applications at wavelengths of order 1 micrometer or greater.
Principles of Billing for Diagnostic Ultrasound in the Office and Operating Room.
Grasu, Beatrice L; Wolock, Bruce S; Sedgley, Matthew D; Murphy, Michael S
2018-05-08
Ultrasound is becoming more prevalent as physicians gain comfort in its diagnostic and therapeutic uses. It allows for both static and dynamic evaluation of conditions and assists in therapeutic injections of joints and tendons. Proper technique is necessary for successful use of this modality. Appropriate coding for physician reimbursement is required. We discuss common wrist and hand pathology for which ultrasound may be useful as an adjunct to diagnosis and treatment and provide an overview of technique and reimbursement codes when using ultrasound in a variety of situations. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
[Recombinase Polymerase Amplification and its Applications in Parasite Detection].
ZHENG, Wen-bin; WU, Yao-dong; MA, Jian-gang; ZHU, Xing-quan; ZHOU, Dong-hui
2015-10-01
Recombinase polymerase amplification (RPA) is a recently -developed isothermal nucleic-acid-amplification technology that is based on the nucleic acid replication mechanism in T4 bacteriophage. With this technique, nucleic-acid templates can be amplified to measurable levels within 20 min at 37-42 °C. The. RPA process has high sensitivity and specificity, and is simple to operate, thus nucleic acids can be detected rapidly in non-laboratory conditions. Since its development in 2006, the RPA technique has been applied in agriculture, food safety, medicine, transgene detection, etc. In this review, we will give an overview on the research progress of RPA and its application in parasite detection.
One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps.
Lee, Jaesung; Burns, Mark A
2018-03-01
One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A new technique for observationally derived boundary conditions for space weather
NASA Astrophysics Data System (ADS)
Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson
2018-04-01
Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a number of technical and scientific challenges that still need to be addressed. Nevertheless, we illustrate that coupling quasi-static and MHD simulations in this way can significantly reduce the computational time required to produce realistic space weather boundary conditions.
Cointegration as a data normalization tool for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2012-04-01
The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.
Systems Modeling for Crew Core Body Temperature Prediction Postlanding
NASA Technical Reports Server (NTRS)
Cross, Cynthia; Ochoa, Dustin
2010-01-01
The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.
Safety considerations in testing a fuel-rich aeropropulsion gas generator
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James; Hulligan, David D.
1991-01-01
A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests.
Experimental system for drilling simulated lunar rock in ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Roepke, W. W.
1975-01-01
An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.
NASA Astrophysics Data System (ADS)
Cardone, G.; Durante, T.; Nazarov, S. A.
2017-07-01
We consider the spectral Dirichlet problem for the Laplace operator in the plane Ω∘ with double-periodic perforation but also in the domain Ω• with a semi-infinite foreign inclusion so that the Floquet-Bloch technique and the Gelfand transform do not apply directly. We describe waves which are localized near the inclusion and propagate along it. We give a formulation of the problem with radiation conditions that provides a Fredholm operator of index zero. The main conclusion concerns the spectra σ∘ and σ• of the problems in Ω∘ and Ω•, namely we present a concrete geometry which supports the relation σ∘ ⫋σ• due to a new non-empty spectral band caused by the semi-infinite inclusion called an open waveguide in the double-periodic medium.
NASA Astrophysics Data System (ADS)
Movahednejad, E.; Ommi, F.; Nekofar, K.
2013-04-01
The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.
NASA Technical Reports Server (NTRS)
Succi, G. P.
1983-01-01
The techniques of helicopter rotor noise prediction attempt to describe precisely the details of the noise field and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The Farassat noise prediction techniques was studied, and high speed helicopter noise prediction using more detailed representations of the thickness and loading noise sources was investigated. These predictions were based on the measured blade surface pressures on an AH-1G rotor and compared to the measured sound field. Although refinements in the representation of the thickness and loading noise sources improve the calculation, there are still discrepancies between the measured and predicted sound field. Analysis of the blade surface pressure data indicates shocks on the blades, which are probably responsible for these discrepancies.
Downward longwave surface radiation from sun-synchronous satellite data - Validation of methodology
NASA Technical Reports Server (NTRS)
Darnell, W. L.; Gupta, S. K.; Staylor, W. F.
1986-01-01
An extensive study has been carried out to validate a satellite technique for estimating downward longwave radiation at the surface. The technique, mostly developed earlier, uses operational sun-synchronous satellite data and a radiative transfer model to provide the surface flux estimates. The satellite-derived fluxes were compared directly with corresponding ground-measured fluxes at four different sites in the United States for a common one-year period. This provided a study of seasonal variations as well as a diversity of meteorological conditions. Dome heating errors in the ground-measured fluxes were also investigated and were corrected prior to the comparisons. Comparison of the monthly averaged fluxes from the satellite and ground sources for all four sites for the entire year showed a correlation coefficient of 0.98 and a standard error of estimate of 10 W/sq m. A brief description of the technique is provided, and the results validating the technique are presented.
NASA Astrophysics Data System (ADS)
Lazzi Gazzini, S.; Schädler, R.; Kalfas, A. I.; Abhari, R. S.
2017-02-01
It is technically challenging to measure heat fluxes on the rotating components of gas turbines, yet accurate knowledge of local heat loads under engine-representative conditions is crucial for ensuring the reliability of the designs. In this work, quantitative image processing tools were developed to perform fast and accurate infrared thermography measurements on 3D-shaped film-heaters directly deposited on the turbine endwalls. The newly developed image processing method and instrumentation were used to measure the heat load on the rotor endwalls of an axial turbine. A step-transient heat flux calibration technique is applied to measure the heat flux generated locally by the film heater, thus eliminating the need for a rigorously iso-energetic boundary condition. On-board electronics installed on the rotor record the temperature readings of RTDs installed in the substrate below the heaters in order to evaluate the conductive losses in the solid. Full maps of heat transfer coefficient and adiabatic wall temperature are produced for two different operating conditions, demonstrating the sensitivity of the technique to local flow features and variations in heat transfer due to Reynolds number effect.
Journal of Special Operations Medicine, Volume 7, Edition 2, Spring 2007
2007-01-01
to help preclude dislodgement. Single-lumen central venous /jugular catheters are not difficult to place in an otherwise fit and well-conditioned MWD...progressively lost favor since the intro- duction of the Seldinger technique of central venous line placement. In fact, recent editions of the Advanced...latest advancements in medicine and the history of unconventional warfare medicine. Disclosure Statement: The JSOM presents both medical and nonmedical
Ion transport membrane reactor systems and methods for producing synthesis gas
Repasky, John Michael
2015-05-12
Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.
High performance cryogenic turboexpanders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Ershaghi, B.; Lin, M.C.
1996-12-31
The use of turboexpanders for deep cryogenic temperatures has been constrained because of thermal efficiency limitations. This limited thermal efficiency was mostly due to mechanical constraints. Recent improvements in analytical techniques, bearing technology, and design features have made it possible to design and operate turboexpanders at more favorable conditions, such as of higher rotational speeds. Several turboexpander installations in helium and hydrogen processes have shown a significant improvement in plant performance over non-turboexpander options.
Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel
2005-03-30
Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase.
Affinity adsorption of cells to surfaces and strategies for cell detachment.
Hubble, John
2007-01-01
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
NASA Technical Reports Server (NTRS)
Dickson, B.; Cronkhite, J.; Bielefeld, S.; Killian, L.; Hayden, R.
1996-01-01
The objective of this study was to evaluate two techniques, Flight Condition Recognition (FCR) and Flight Load Synthesis (FLS), for usage monitoring and assess the potential benefits of extending the retirement intervals of life-limited components, thus reducing the operator's maintenance and replacement costs. Both techniques involve indirect determination of loads using measured flight parameters and subsequent fatigue analysis to calculate the life expended on the life-limited components. To assess the potential benefit of usage monitoring, the two usage techniques were compared to current methods of component retirement. In addition, comparisons were made with direct load measurements to assess the accuracy of the two techniques. The data that was used for the evaluation of the usage monitoring techniques was collected under an independent HUMS Flight trial program, using a commercially available HUMS and data recording system. The usage data collect from the HUMS trial aircraft was analyzed off-line using PC-based software that included the FCR and FLS techniques. In the future, if the technique prove feasible, usage monitoring would be incorporated into the onboard HUMS.
[Prevention of cerebrovascular complications in coronary artery bypass grafting].
Mialiuk, P A; Marchenko, A V; Arutiunian, V B; Chragian, V A; Alekseevich, G Iu; Vronskiĭ, A S
The authors carried out a comparative analysis of the incidence rate of cerebrovascular complications following coronary artery bypass grafting performed using either a differentiated approach to surgical policy depending on the findings of epiaortic ultrasonographic scanning or the standard conventional approach. A total of 3,454 operations of coronary artery bypass grafting were performed. All patients were divided into two groups. Patients of the Study Group (n=765) were subjected to obligatory intraoperative epiaortic scanning, with the variant of further surgical intervention depending on the obtained findings of the examination. The Control Group patients (n=2,689) underwent standard coronary artery bypass grafting in the conditions of artificial circulation (AC). In the Study Group patients, depending on the degree and localization of the atherosclerotic lesion of the aorta, determined by the findings of epiaortic scanning, one of the following techniques of coronary artery bypass grafting (CABG) was chosen: cases with no lesion were managed by CABG with AC (585 patients); a local solitary lesion was managed by altering the site of cannulation and application of the clamp (92 patients) or by the operation according to the 'single clamp' technique (43 patients); cases of manifested atherosclerosis of the ascending aorta were treated by the 'on-pump beating-heart' technique in the conditions of AC without placing clamps (27 patients); cases of massive involvement of the ascending aorta and aortic arch were managed by CABG performed according to the 'no-touch aorta' technique (18 patients). The total mortality rate amounted to 1.1%. Thirty-three (0.96%) patients in the postoperative period were found to have ischaemic stroke. The mortality rate in the Control Group amounted to 1.4% and that in the Study Group equalled 0.3%, with the number of cases of ischaemic strokes amounting to 33 (1.4%) and 0, respectively. Perioperative infarction was diagnosed in 16 (0.6%) cases in the Control Group and in 5 (0.7%) patients in the group treated using the differentiated approach. A conclusion was drawn that the differentiated approach to choosing the technique of CABG based on the findings obtained by means of epiaortic scanning was associated with a statistically significant decrease in both the number of ischaemic strokes and the mortality rate after CABG operations.
Discharge measurements using a broad-band acoustic Doppler current profiler
Simpson, Michael R.
2002-01-01
The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.
A base-metal conductor system for silicon solar cells
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.
1980-01-01
Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.
[Distal stenosis of the choledochus in chronic pancreatitis: endoscopic drainage or operation?].
Meyer, W; Bödeker, H; Schönekäs, H; Gebhardt, C
1996-09-01
With the less invasive techniques for complications regarding chronic pancreatitis, such as tubular choledochostenosis, the endoscopic transpapillary bile drainage therapy by means of endoprosthesis has undergone an enlargement of its indications range. Blocked and dislocated prostheses, however, further raise the already existing possibility of septic complications. With 15 out of 43 patients undergoing medium-term endodrainage treatment, we observed different resulting conditions of chronic cholestasis, such as abscess-forming cholangitis, hepatic abscesses, retroperitoneal phlegmon and sepsis up to biliary cirrhosis. Thus, in the case of chronic pancreatitis we still regard choledochostenosis- which, due to scarring, is mostly fixed-as a primary indication for operation.
An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo
1998-01-01
Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,
Computational approach to Thornley's problem by bivariate operational calculus
NASA Astrophysics Data System (ADS)
Bazhlekova, E.; Dimovski, I.
2012-10-01
Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.
The Evolution of Utilizing Manual Throttles to Avoid Low LH2 NPSP at the SSME Inlet
NASA Technical Reports Server (NTRS)
Henfling, Rick
2011-01-01
Even before the first flight of the Space Shuttle, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) can have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System could result in a low LH2 NPSP condition. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs, which alleviated the low LH2 NPSP condition. A throttling down of the SSME resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at a lower throttle setting. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of these additional capabilities. Currently the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now would result in a nominal Main Engine Cut Off (MECO) and no loss of mission objectives.
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Briehl, D.
1982-01-01
An experimental program to investigate hardware configurations which attempt to minimize carbon formation and soot production without sacrificing performance in small gas turbine combustors has been conducted at the United Technologies Research Center. Four fuel injectors, embodying either airblast atomization, pressure atomization, or fuel vaporization techniques, were combined with nozzle air swirlers and injector sheaths, and evaluated at test conditions which included and extended beyond standard small gas turbine combustor operation. Extensive testing was accomplished with configurations embodying either a spill return or a T-vaporizer injector. Minimal carbon deposits were observed on the spill return nozzle for tests using either Jet A or ERBS test fuel. A more extensive film of soft carbon was observed on the vaporizer after operation at standard engine conditions, with large carbonaceous growths forming on the device during off-design operation at low combustor inlet temperature. Test results indicated that smoke emission levels depended on the combustor fluid mechanics (especially the mixing rates near the injector), the atomization quality of the injector and the fuel hydrogen content.
APPLICATION OF TRAVEL TIME RELIABILITY FOR PERFORMANCE ORIENTED OPERATIONAL PLANNING OF EXPRESSWAYS
NASA Astrophysics Data System (ADS)
Mehran, Babak; Nakamura, Hideki
Evaluation of impacts of congestion improvement scheme s on travel time reliability is very significant for road authorities since travel time reliability repr esents operational performance of expressway segments. In this paper, a methodology is presented to estimate travel tim e reliability prior to implementation of congestion relief schemes based on travel time variation modeling as a function of demand, capacity, weather conditions and road accident s. For subject expressway segmen ts, traffic conditions are modeled over a whole year considering demand and capacity as random variables. Patterns of demand and capacity are generated for each five minute interval by appl ying Monte-Carlo simulation technique, and accidents are randomly generated based on a model that links acci dent rate to traffic conditions. A whole year analysis is performed by comparing de mand and available capacity for each scenario and queue length is estimated through shockwave analysis for each time in terval. Travel times are estimated from refined speed-flow relationships developed for intercity expressways and buffer time index is estimated consequently as a measure of travel time reliability. For validation, estimated reliability indices are compared with measured values from empirical data, and it is shown that the proposed method is suitable for operational evaluation and planning purposes.
NASA Astrophysics Data System (ADS)
Stamenkovic, Dragan D.; Popovic, Vladimir M.
2015-02-01
Warranty is a powerful marketing tool, but it always involves additional costs to the manufacturer. In order to reduce these costs and make use of warranty's marketing potential, the manufacturer needs to master the techniques for warranty cost prediction according to the reliability characteristics of the product. In this paper a combination free replacement and pro rata warranty policy is analysed as warranty model for one type of light bulbs. Since operating conditions have a great impact on product reliability, they need to be considered in such analysis. A neural network model is used to predict light bulb reliability characteristics based on the data from the tests of light bulbs in various operating conditions. Compared with a linear regression model used in the literature for similar tasks, the neural network model proved to be a more accurate method for such prediction. Reliability parameters obtained in this way are later used in Monte Carlo simulation for the prediction of times to failure needed for warranty cost calculation. The results of the analysis make possible for the manufacturer to choose the optimal warranty policy based on expected product operating conditions. In such a way, the manufacturer can lower the costs and increase the profit.
Lardon, L; Puñal, A; Martinez, J A; Steyer, J P
2005-01-01
Anaerobic digestion (AD) plants are highly efficient wastewater treatment processes with possible energetic valorisation. Despite these advantages, many industries are still reluctant to use them because of their instability in the face of changes in operating conditions. To the face this drawback and to enhance the industrial use of anaerobic digestion, one solution is to develop and to implement knowledge base (KB) systems that are able to detect and to assess in real-time the quality of operating conditions of the processes. Case-based techniques and heuristic approaches have been already tested and validated on AD processes but two major properties were lacking: modularity of the system (the knowledge base system should be easily tuned on a new process and should still work if one or more sensors are added or removed) and uncertainty management (the assessment of the KB system should remain relevant even in the case of too poor or conflicting information sources). This paper addresses these two points and presents a modular KB system where an uncertain reasoning formalism is used to combine partial and complementary fuzzy diagnosis modules. Demonstration of the interest of the approach is provided from real-life experiments performed on an industrial 2,000 m3 CSTR anaerobic digester.
Sowa, Yoshihiro; Itsukage, Sizu; Morita, Daiki; Numajiri, Toshiaki
2017-10-01
An inverted nipple is a common congenital condition in young women that may cause breastfeeding difficulty, psychological distress, repeated inflammation, and loss of sensation. Various surgical techniques have been reported for correction of inverted nipples, and all have advantages and disadvantages. Here, we report a new technique for correction of an inverted nipple using an operative microscope and traction that results in low recurrence and preserves lactation function and sensation. Between January 2010 and January 2013, we treated eight inverted nipples in seven patients with selective lactiferous duct dissection using an operative microscope. An opposite Z-plasty was added at the junction of the nipple and areola. Postoperatively, traction was applied through an apparatus made from a rubber gasket attached to a sterile syringe. Patients were followed up for 15-48 months. Adequate projection was achieved in all patients, and there was no wound dehiscence or complications such as infection. Three patients had successful pregnancies and subsequent breastfeeding that was not adversely affected by the treatment. There was no loss of sensation in any patient during the postoperative period. Our technique for treating an inverted nipple is effective and preserves lactation function and nipple sensation. The method maintains traction for a longer period, which we believe increases the success rate of the surgery for correction of severely inverted nipples. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
The beauty of simple adaptive control and new developments in nonlinear systems stability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkana, Itzhak, E-mail: ibarkana@gmail.com
Although various adaptive control techniques have been around for a long time and in spite of successful proofs of stability and even successful demonstrations of performance, the eventual use of adaptive control methodologies in practical real world systems has met a rather strong resistance from practitioners and has remained limited. Apparently, it is difficult to guarantee or even understand the conditions that can guarantee stable operations of adaptive control systems under realistic operational environments. Besides, it is difficult to measure the robustness of adaptive control system stability and allow it to be compared with the common and widely used measuremore » of phase margin and gain margin that is utilized by present, mainly LTI, controllers. Furthermore, customary stability analysis methods seem to imply that the mere stability of adaptive systems may be adversely affected by any tiny deviation from the pretty idealistic and assumably required stability conditions. This paper first revisits the fundamental qualities of customary direct adaptive control methodologies, in particular the classical Model Reference Adaptive Control, and shows that some of their basic drawbacks have been addressed and eliminated within the so-called Simple Adaptive Control methodology. Moreover, recent developments in the stability analysis methods of nonlinear systems show that prior conditions that were customarily assumed to be needed for stability are only apparent and can be eliminated. As a result, sufficient conditions that guarantee stability are clearly stated and lead to similarly clear proofs of stability. As many real-world applications show, once robust stability of the adaptive systems can be guaranteed, the added value of using Add-On Adaptive Control along with classical Control design techniques is pushing the desired performance beyond any previous limits.« less
Graphene liquid cells for multi-technique analysis of biological cells in water environment
NASA Astrophysics Data System (ADS)
Matruglio, A.; Zucchiatti, P.; Birarda, G.; Marmiroli, B.; D'Amico, F.; Kocabas, C.; Kiskinova, M.; Vaccari, L.
2018-05-01
In-cell exploration of biomolecular constituents is the new frontier of cellular biology that will allow full access to structure-activity correlation of biomolecules, overcoming the limitations imposed by dissecting the cellular milieu. However, the presence of water, which is a very strong IR absorber and incompatible with the vacuum working conditions of all analytical methods using soft x-rays and electrons, poses severe constraint to perform important imaging and spectroscopic analyses under physiological conditions. Recent advances to separate the sample compartment in liquid cell are based on electron and photon transparent but molecular-impermeable graphene membranes. This strategy has opened a unique opportunity to explore technological materials under realistic operation conditions using various types of electron microscopy. However, the widespread of the graphene liquid cell applications is still impeded by the lack of well-established approaches for their massive production. We report on the first preliminary results for the fabrication of reproducible graphene liquid cells appropriate for the analysis of biological specimens in their natural hydrated environment with several crucial analytical techniques, namely FTIR microscopy, Raman spectroscopy, AFM, SEM and TEM.
NASA Astrophysics Data System (ADS)
Steill, Jason Scott
The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.
Residential roof condition assessment system using deep learning
NASA Astrophysics Data System (ADS)
Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong
2018-01-01
The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.
Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.
Pei, Guihong; Zhang, Liyin
2016-01-01
Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).
NASA Astrophysics Data System (ADS)
Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.
2017-10-01
Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.
Bischoff, W E; Kindermann, A; Sander, U; Sander, J
1995-10-01
In eleven centrally ventilated operating theatres the concentration of particles and airborne germs in wound vicinity was measured on three workdays. Five theatres were equipped with air supply ceilings with supporting flow outlets (supporting flow ceilings), five with laminar air flow ceilings and one with an air supply ceiling, a body exhaust system and a partition wall between the anesthetic and operating areas. Under routine conditions the air supply of the laminar air flow ceiling with its lower turbulence shielded the operating field from the largely staff-related air contamination in the rest of the theatre better than in the case of the supporting flow ceilings. Particles and airborne germs were removed from the endangered wound area faster. A spatial separation between the anesthetic and the operating areas as well as a body exhaust system lead to a considerable reduction of the contamination. Two theatres were conspicuous by reason of their considerably raised values due to defective control engineering and the wrongly positioning of the operating table. From the point of view of ventilation technique the laminar air flow ceilings with lower turbulence are superior to air supply ceilings with supporting flow outlets in the working day of an operating theatre. In order to minimize the influence of the staff, which up till now has been neglected in testing specifications, constructional possibilities such as the size of ceiling, the partitioning off of operating and anaesthetic areas and the positioning of the operating table in relation to the incoming air should be coordinated rationally. Taking measurements regularly during operations can provide the impulse for considerable improvements in both operational and planning phases.
Boiler Tube Corrosion Characterization with a Scanning Thermal Line
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas
2001-01-01
Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall tubing samples and in-situ inspections will be presented.
The art of spacecraft design: A multidisciplinary challenge
NASA Technical Reports Server (NTRS)
Abdi, F.; Ide, H.; Levine, M.; Austel, L.
1989-01-01
Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.
Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise, and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In Summer 2013, a vertically profiling Leosphere WindCube lidar and threemore » Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a “virtual tower” above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure highresolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.« less
Approaches to Improve the Performances of the Sea Launch System Performances
NASA Astrophysics Data System (ADS)
Tatarevs'kyy, K.
2002-01-01
The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the consideration of the launch conditions (weather, launcher motion parameters, actual LV and carried SC performance) allow the evaluation of the actual combination of launch environment influence on the possibility of shockless launch. On the basis of the analysis the launch permissibility deci- sion is taken, even if some separate parameters are beyond the design range.
Annular Seals of High Energy Centrifugal Pumps: Presentation of Full Scale Measurement
NASA Technical Reports Server (NTRS)
Florjancic, S.; Stuerchler, R.; Mccloskey, T.
1991-01-01
Prediction of rotordynamic behavior for high energy concentration centrifugal pumps is a challenging task which still imposes considerable difficulties. While the mechanical modeling of the rotor is solved most satisfactorily by finite element techniques, accurate boundary conditions for arbitrary operating conditions are known for journal bearings only. Little information is available on the reactive forces of annular seals, such as neck ring and interstage seals and balance pistons, and on the impeller interaction forces. The present focus is to establish reliable boundary conditions at annular seals. For this purpose, a full scale test machine was set up and smooth and serrated seal configurations measured. Dimensionless coefficients are presented and compared with a state of the art theory.
NASA Technical Reports Server (NTRS)
Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.
1983-01-01
A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.
Birnhack, Liat; Nir, Oded; Telzhenski, Marina; Lahav, Ori
2015-01-01
Deliberate struvite (MgNH4PO4) precipitation from wastewater streams has been the topic of extensive research in the last two decades and is expected to gather worldwide momentum in the near future as a P-reuse technique. A wide range of operational alternatives has been reported for struvite precipitation, including the application of various Mg(II) sources, two pH elevation techniques and several Mg:P ratios and pH values. The choice of each operational parameter within the struvite precipitation process affects process efficiency, the overall cost and also the choice of other operational parameters. Thus, a comprehensive simulation program that takes all these parameters into account is essential for process design. This paper introduces a systematic decision-supporting tool which accepts a wide range of possible operational parameters, including unconventional Mg(II) sources (i.e. seawater and seawater nanofiltration brines). The study is supplied with a free-of-charge computerized tool (http://tx.technion.ac.il/~agrengn/agr/Struvite_Program.zip) which links two computer platforms (Python and PHREEQC) for executing thermodynamic calculations according to predefined kinetic considerations. The model can be (inter alia) used for optimizing the struvite-fluidized bed reactor process operation with respect to P removal efficiency, struvite purity and economic feasibility of the chosen alternative. The paper describes the algorithm and its underlying assumptions, and shows results (i.e. effluent water quality, cost breakdown and P removal efficiency) of several case studies consisting of typical wastewaters treated at various operational conditions.
Si, Liang; Baier, Horst
2015-07-08
For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with "orange peel" surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments.
Real-Time Impact Visualization Inspection of Aerospace Composite Structures with Distributed Sensors
Si, Liang; Baier, Horst
2015-01-01
For the future design of smart aerospace structures, the development and application of a reliable, real-time and automatic monitoring and diagnostic technique is essential. Thus, with distributed sensor networks, a real-time automatic structural health monitoring (SHM) technique is designed and investigated to monitor and predict the locations and force magnitudes of unforeseen foreign impacts on composite structures and to estimate in real time mode the structural state when impacts occur. The proposed smart impact visualization inspection (IVI) technique mainly consists of five functional modules, which are the signal data preprocessing (SDP), the forward model generator (FMG), the impact positioning calculator (IPC), the inverse model operator (IMO) and structural state estimator (SSE). With regard to the verification of the practicality of the proposed IVI technique, various structure configurations are considered, which are a normal CFRP panel and another CFRP panel with “orange peel” surfaces and a cutout hole. Additionally, since robustness against several background disturbances is also an essential criterion for practical engineering demands, investigations and experimental tests are carried out under random vibration interfering noise (RVIN) conditions. The accuracy of the predictions for unknown impact events on composite structures using the IVI technique is validated under various structure configurations and under changing environmental conditions. The evaluated errors all fall well within a satisfactory limit range. Furthermore, it is concluded that the IVI technique is applicable for impact monitoring, diagnosis and assessment of aerospace composite structures in complex practical engineering environments. PMID:26184196
NASA Astrophysics Data System (ADS)
Bo, Z.; Chen, J. H.
2010-02-01
The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombard, K.H.
1994-08-01
The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less
NASA Astrophysics Data System (ADS)
Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma
Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.
A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.
McMahon, Terry W; Newman, David G
2015-07-01
Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.
Sampling Technique for Robust Odorant Detection Based on MIT RealNose Data
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2012-01-01
This technique enhances the detection capability of the autonomous Real-Nose system from MIT to detect odorants and their concentrations in noisy and transient environments. The lowcost, portable system with low power consumption will operate at high speed and is suited for unmanned and remotely operated long-life applications. A deterministic mathematical model was developed to detect odorants and calculate their concentration in noisy environments. Real data from MIT's NanoNose was examined, from which a signal conditioning technique was proposed to enable robust odorant detection for the RealNose system. Its sensitivity can reach to sub-part-per-billion (sub-ppb). A Space Invariant Independent Component Analysis (SPICA) algorithm was developed to deal with non-linear mixing that is an over-complete case, and it is used as a preprocessing step to recover the original odorant sources for detection. This approach, combined with the Cascade Error Projection (CEP) Neural Network algorithm, was used to perform odorant identification. Signal conditioning is used to identify potential processing windows to enable robust detection for autonomous systems. So far, the software has been developed and evaluated with current data sets provided by the MIT team. However, continuous data streams are made available where even the occurrence of a new odorant is unannounced and needs to be noticed by the system autonomously before its unambiguous detection. The challenge for the software is to be able to separate the potential valid signal from the odorant and from the noisy transition region when the odorant is just introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Dib, Gerges
This project involved the development of enhanced risk monitors (ERMs) for active components in Advanced Reactor (AdvRx) designs by integrating real-time information about equipment condition with risk monitors. Health monitoring techniques in combination with predictive estimates of component failure based on condition and risk monitors can serve to indicate the risk posed by continued operation in the presence of detected degradation. This combination of predictive health monitoring based on equipment condition assessment and risk monitors can also enable optimization of maintenance scheduling with respect to the economics of plant operation. This report summarizes PNNL’s multi-year project on the development andmore » evaluation of an ERM concept for active components while highlighting FY2016 accomplishments. Specifically, this report provides a status summary of the integration and demonstration of the prototypic ERM framework with the plant supervisory control algorithms being developed at Oak Ridge National Laboratory (ORNL), and describes additional case studies conducted to assess sensitivity of the technology to different quantities. Supporting documentation on the software package to be provided to ONRL is incorporated in this report.« less
NASA Astrophysics Data System (ADS)
Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.
2014-12-01
Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.
A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics.
Freeman, Walter J
2008-01-01
Computational models of brain dynamics fall short of performance in speed and robustness of pattern recognition in detecting minute but highly significant pattern fragments. A novel model employs the properties of thermodynamic systems operating far from equilibrium, which is analyzed by linearization near adaptive operating points using root locus techniques. Such systems construct order by dissipating energy. Reinforcement learning of conditioned stimuli creates a landscape of attractors and their basins in each sensory cortex by forming nerve cell assemblies in cortical connectivity. Retrieval of a selected category of stored knowledge is by a phase transition that is induced by a conditioned stimulus, and that leads to pattern self-organization. Near self-regulated criticality the cortical background activity displays aperiodic null spikes at which analytic amplitude nears zero, and which constitute a form of Rayleigh noise. Phase transitions in recognition and recall are initiated at null spikes in the presence of an input signal, owing to the high signal-to-noise ratio that facilitates capture of cortex by an attractor, even by very weak activity that is typically evoked by a conditioned stimulus.
Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul
2015-01-01
The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1985-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1986-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal
2009-01-01
Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
Point-of-Care Ultrasound for Pulmonary Concerns in Remote Spaceflight Triage Environments.
Johansen, Benjamin D; Blue, Rebecca S; Castleberry, Tarah L; Antonsen, Erik L; Vanderploeg, James M
2018-02-01
With the development of the commercial space industry, growing numbers of spaceflight participants will engage in activities with a risk for pulmonary injuries, including pneumothorax, ebullism, and decompression sickness, as well as other concomitant trauma. Medical triage capabilities for mishaps involving pulmonary conditions have not been systematically reviewed. Recent studies have advocated the use of point-of-care ultrasound to screen for lung injury or illness. The operational utility of portable ultrasound systems in disaster relief and other austere settings may be relevant to commercial spaceflight. A systematic review of published literature was conducted concerning the use of point-of-care pulmonary ultrasound techniques in austere environments, including suggested examination protocols for triage and diagnosis. Recent studies support the utility of pulmonary ultrasound examinations when performed by skilled operators, and comparability of the results to computed tomography and chest radiography for certain conditions, with important implications for trauma management in austere environments. Pulmonary injury and illness are among the potential health risks facing spaceflight participants. Implementation of point-of-care ultrasound protocols could aid in the rapid diagnosis, triage, and treatment of such conditions. Though operator-dependent, ultrasound, with proper training, experience, and equipment, could be a valuable tool in the hands of a first responder supporting remote spaceflight operations.Johansen BD, Blue RS, Castleberry TL, Antonsen EL, Vanderploeg JM. Point-of-care ultrasound for pulmonary concerns in remote spaceflight triage environments. Aerosp Med Hum Perform. 2018; 89(2):122-129.
Olyaeemanesh, Alireza; Bavandpour, Elahe; Mobinizadeh, Mohammadreza; Ashrafinia, Mansoor; Bavandpour, Maryam; Nouhi, Mojtaba
2017-01-01
Background: Caesarean section (C-section) is the most common surgery among women worldwide, and the global rate of this surgical procedure has been continuously rising. Hence, it is significantly crucial to develop and apply highly effective and safe caesarean section techniques. In this review study, we aimed at assessing the safety and effectiveness of the Joel-Cohen-based technique and comparing the results with the transverse Pfannenstiel incision for C-section. Methods: In this study, various reliable databases such as the PubMed Central, COCHRANE, DARE, and Ovid MEDLINE were targeted. Reviews, systematic reviews, and randomized clinical trial studies comparing the Joel-Cohen-based technique and the transverse Pfannenstiel incision were selected based on the inclusion criteria. Selected studies were checked by 2 independent reviewers based on the inclusion criteria, and the quality of these studies was assessed. Then, their data were extracted and analyzed. Results: Five randomized clinical trial studies met the inclusion criteria. According to the exiting evidence, statistical results of the Joel-Cohen-based technique showed that this technique is more effective compared to the transverse Pfannenstiel incision. Metaanalysis results of the 3 outcomes were as follow: operation time (5 trials, 764 women; WMD -9.78; 95% CI:-14.49-5.07 minutes, p<0.001), blood loss (3 trials, 309 women; WMD -53.23ml; 95% -CI: 90.20-16.26 ml, p= 0.004), and post-operative hospital stay (3 trials, 453 women; WMD -.69 day; 95% CI: 1.4-0.03 day, p<0.001). Statistical results revealed a significant difference between the 2 techniques. Conclusion: According to the literature, despite having a number of side effects, the Joel-Cohen-based technique is generally more effective than the Pfannenstiel incision technique. In addition, it was recommended that the Joel-Cohen-based technique be used as a replacement for the Pfannenstiel incision technique according to the surgeons' preferences and the patients' conditions.
NASA Astrophysics Data System (ADS)
Thomas, Benjamin A.; Cuplov, Vesna; Bousse, Alexandre; Mendes, Adriana; Thielemans, Kris; Hutton, Brian F.; Erlandsson, Kjell
2016-11-01
Positron emission tomography (PET) images are degraded by a phenomenon known as the partial volume effect (PVE). Approaches have been developed to reduce PVEs, typically through the utilisation of structural information provided by other imaging modalities such as MRI or CT. These methods, known as partial volume correction (PVC) techniques, reduce PVEs by compensating for the effects of the scanner resolution, thereby improving the quantitative accuracy. The PETPVC toolbox described in this paper comprises a suite of methods, both classic and more recent approaches, for the purposes of applying PVC to PET data. Eight core PVC techniques are available. These core methods can be combined to create a total of 22 different PVC techniques. Simulated brain PET data are used to demonstrate the utility of toolbox in idealised conditions, the effects of applying PVC with mismatched point-spread function (PSF) estimates and the potential of novel hybrid PVC methods to improve the quantification of lesions. All anatomy-based PVC techniques achieve complete recovery of the PET signal in cortical grey matter (GM) when performed in idealised conditions. Applying deconvolution-based approaches results in incomplete recovery due to premature termination of the iterative process. PVC techniques are sensitive to PSF mismatch, causing a bias of up to 16.7% in GM recovery when over-estimating the PSF by 3 mm. The recovery of both GM and a simulated lesion was improved by combining two PVC techniques together. The PETPVC toolbox has been written in C++, supports Windows, Mac and Linux operating systems, is open-source and publicly available.
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.
2006-12-01
The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.
A New Technique for Troubleshooting Large Capacitive Energy Storage Banks
2013-06-01
The Power Conditioning System (PCS) of the National Ignition Facility ( NIF ) like many pulse power systems relies on large numbers of inductively...troubleshooting time. II. THEORY OF OPERATION A simplified schematic diagram of the National Ignition Facility ( NIF ) Main Energy Storage Module (MESM...across the capacitor or a null in the current supplied by the generator. In the case of the NIF bank the resonant frequency turns out to be very close
2012-06-14
the attacker . Thus, this race condition causes a privilege escalation . 2.2.5 Summary This section reviewed software exploitation of a Linux kernel...has led to increased targeting by malware writers. Android attacks have naturally sparked interest in researching protections for Android . This...release, Android 4.0 Ice Cream Sandwich. These rootkits focused on covert techniques to hide the presence of data used by an attacker to infect a
Wilson, Charles B.; Grollmus, John M.; Levin, Seymour; Goldfield, Edythe; Schneider, Victor; Hosobuchi, Yoshio; Rand, Robert W.; Heuser, Gunnar; Linfoot, John
1972-01-01
Improved surgical microscopes and intraoperative radiofluoroscopic television have revived the transsphenoidal approach to pituitary tumors. The transsphenoidal approach offers an alternative to craniotomy, and in certain situations it has distinct advantages. The reported experience includes the common pituitary tumors, hypersecreting microadenomas, cerebrospinal rhinorrhea and parasellar aneurysms. The surgical technique, indications and contraindications, and results in 44 transsphenoidal operations are described. ImagesFigure 1. PMID:4638402
2005-06-17
Procedures and Techniques. (California: Thousand Oaks 1998),11. 14 Alan Bryman Quantity and Quality in Social Research . (London: Unwin, 1988), 8. 48... Bryman , Alan. Quantity and Quality in Social Research . London: Unwin, 1988. Clark, Wesley. Winning Modern Wars: Iraq, Terrorism, and the American...a global audience than ever before. Under such conditions the practical business of defeating the enemy militarily in such a way as to deliver
Biofeedback and Self-Regulation in Essential Hypertension.
1977-09-20
SI n.c... ~ y aid ld.ruity by Mock numb.,) Biofeedback Operant condition ing Behav i oral factors in hypertension Re l axa ti on Meditation • 20...preliminary findings of a clini- cal study in which two types of biofeedback training were compared to a form of meditation in the treatment of borderline...behav ioral methods not involving the use of complex feedback techniques include progressive relaxation, medita- tion, yogic practices, autogenic
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Cross-chest liposuction in gynaecomastia.
Murali, Biju; Vijayaraghavan, Sundeep; Kishore, P; Iyer, Subramania; Jimmy, Mathew; Sharma, Mohit; Paul, George; Chavare, Sachin
2011-01-01
Gynaecomastia is usually treated with liposuction or liposuction with excision of the glandular tissue. The type of surgery chosen depends on the grade of the condition. Because gynaecomastia is treated primarily as a cosmetic procedure, we aimed at reducing the invasiveness of the surgery. The technique complies with all recommended protocols for different grades of gynaecomastia. It uses liposuction, gland excision, or both, leaving only minimal post-operative scars. The use of cross-chest liposuction through incisions on the edge of the areola helps to get rid of all the fat under the areola without an additional scar as in the conventional method. This is a short series of 20 patients, all with bilateral gynaecomastia (i.e., 40 breasts), belonging to Simon's Stage 1 and 2, studied over a period of 2 years. The average period of follow-up was 15 months. Post-operative complications were reported in only two cases, with none showing long-term complications or issues specifically due to the procedure. Cross-chest liposuction for gynaecomastia is a simple yet effective surgical tool in bilateral gynaecomastia treatment to decrease the post-operative scars. The use of techniques like incision line drain placement and post-drain removal suturing of wounds aid in decreasing the scar.
Real-time classification of vehicles by type within infrared imagery
NASA Astrophysics Data System (ADS)
Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.
2016-10-01
Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.
1986-01-01
Molecular flow velocity (one component), translational temperature, and static pressure of N2 are measured in a supersonic wind tunnel using inverse Raman spectroscopy. For velocity, the technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counterpropagating (backward scattering). A retrometer system is employed to yield an optical configuration insensitive to mechanical vibration, which has the additional advantage of simultaneously obtaining both the forward and backward scattered spectra. The forward and backward line breadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the technique was performed in a continuous airflow supersonic wind tunnel in which data were obtained under the following conditions: (1) free-stream operation at five set Mach number levels over the 2.50-4.63 range; (2) free-stream operation over a range of Reynolds number (at a fixed Mach number) to vary systematically the static pressure; and (3) operation in the flow field of a simple aerodynamic model to assess beam steering effects in traversing the attached shock layer.
Single incision laparoscopic surgery (SILS) in gynaecology: feasibility and operative outcomes.
Behnia-Willison, Fariba; Foroughinia, Leila; Sina, Maryam; McChesney, Phil
2012-08-01
Single incision laparoscopic surgery (SILS) represents the latest advancement in minimally invasive surgery, combining the benefits of conventional laparoscopic surgery, such as less pain and faster recovery, with improved cosmesis. Although the successful use of this technique is well reported in general surgery and urology, there is a lack of studies on SILS in gynaecology. To evaluate the feasibility, safety, cosmesis and outcome of SILS in gynaecology. A prospective case series analysis of 105 women scheduled to undergo surgery by SILS from August 2010 to November 2011. Intra-operative data such as operative time, estimated blood loss, complications, additional ports and hospital stay were collected. Post-operative pain and cosmetic outcomes (scar size) were also recorded. Out of 105 women, SILS was performed for 84 (60 excisions of endometriosis, 13 divisions of adhesions, five hysterectomies, two mesh sacrohysteropexies and four ovarian cystectomies). SILS was not undertaken for 21 women because of a number of factors, including the lack of required equipment (eg bariatric scope, SILS port, roticulating instruments and diathermy leads). Four women required insertion of additional ports because of surgical difficulties. One intra-operative (uterine perforation) and seven post-operative complications (six wound infections and one vault haematoma) occurred. Mean operation times were as follows: mesh sacrohysteropexy - 60 min, excision of endometriosis - 55 min, hysterectomy - 150 min, laparoscopic division of adhesions - 62 min and ovarian cystectomy - 40 min. Our experience shows that SILS is a feasible and safe technique for the surgical management of various gynaecological conditions. Satisfaction is high because of improved cosmesis and reduced analgesic requirements post-operatively. © 2012 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
NASA Technical Reports Server (NTRS)
Brown, Robert B.
1994-01-01
A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.
Applied Impact Physics Research
NASA Astrophysics Data System (ADS)
Wickert, Matthias
2013-06-01
Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.
NASA Technical Reports Server (NTRS)
Gopher, D.; Wickens, C. D.
1975-01-01
A one dimensional compensatory tracking task and a digit processing reaction time task were combined in a three phase experiment designed to investigate tracking performance in time sharing. Adaptive techniques, elaborate feedback devices, and on line standardization procedures were used to adjust task difficulty to the ability of each individual subject and manipulate time sharing demands. Feedback control analysis techniques were employed in the description of tracking performance. The experimental results show that when the dynamics of a system are constrained, in such a manner that man machine system stability is no longer a major concern of the operator, he tends to adopt a first order control describing function, even with tracking systems of higher order. Attention diversion to a concurrent task leads to an increase in remnant level, or nonlinear power. This decrease in linearity is reflected both in the output magnitude spectra of the subjects, and in the linear fit of the amplitude ratio functions.
NASA Astrophysics Data System (ADS)
Tautz-Weinert, J.; Watson, S. J.
2016-09-01
Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.
Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Yoko; Aiyoshi, Eitaro
2003-08-15
A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less
Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.
Maeng, Min Ho; Cha, Daniel K
2018-02-01
Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noiri, A.; Yoneda, J.; Nakajima, T.
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less
Islanding detection technique using wavelet energy in grid-connected PV system
NASA Astrophysics Data System (ADS)
Kim, Il Song
2016-08-01
This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.
Development of design information for molecular-sieve type regenerative CO2-removal systems
NASA Technical Reports Server (NTRS)
Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.
1973-01-01
Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.
Characterization of the IXV Thermal Protection System in High Enthalphy Plasma Flow
NASA Astrophysics Data System (ADS)
Panerai, F.; Helber, B.; Sakraker, I.; Chazot, O.; Pichon, T.; Barreteau, R.; Tribot, J. P.; Vallee, J. J.; Mareschi, V.; Ferrarella, D.; Rufolo, G.; Mancuso, S.
2011-05-01
An experimental campaign dedicated to the characterization of Intermediate eXperimental Vehicle thermal protection system is performed in the Plasmatron wind tunnel at the von Karman Institute for Fluid Dynamics. Emissivity and catalycity properties for representative ceramic specimens are determined under a wide set of operating conditions in order to reproduce the reentry flight trajectory. Intrusive measurements for flow characterization are used together with optical infrared techniques that provide diagnostic of the test articles surface. Experimental data are postprocessed by means of numerical simulations that allow flow enthalpy rebuilding and characterization of the chemical environment for the different conditions investigated.
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer
Kim, Jong-Myon
2018-01-01
An effective bearing fault detection and diagnosis (FDD) model is important for ensuring the normal and safe operation of machines. This paper presents a reliable model-reference observer technique for FDD based on modeling of a bearing’s vibration data by analyzing the dynamic properties of the bearing and a higher-order super-twisting sliding mode observation (HOSTSMO) technique for making diagnostic decisions using these data models. The HOSTSMO technique can adaptively improve the performance of estimating nonlinear failures in rolling element bearings (REBs) over a linear approach by modeling 5 degrees of freedom under normal and faulty conditions. The effectiveness of the proposed technique is evaluated using a vibration dataset provided by Case Western Reserve University, which consists of vibration acceleration signals recorded for REBs with inner, outer, ball, and no faults, i.e., normal. Experimental results indicate that the proposed technique outperforms the ARX-Laguerre proportional integral observation (ALPIO) technique, yielding 18.82%, 16.825%, and 17.44% performance improvements for three levels of crack severity of 0.007, 0.014, and 0.021 inches, respectively. PMID:29642459
Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer.
Piltan, Farzin; Kim, Jong-Myon
2018-04-07
An effective bearing fault detection and diagnosis (FDD) model is important for ensuring the normal and safe operation of machines. This paper presents a reliable model-reference observer technique for FDD based on modeling of a bearing's vibration data by analyzing the dynamic properties of the bearing and a higher-order super-twisting sliding mode observation (HOSTSMO) technique for making diagnostic decisions using these data models. The HOSTSMO technique can adaptively improve the performance of estimating nonlinear failures in rolling element bearings (REBs) over a linear approach by modeling 5 degrees of freedom under normal and faulty conditions. The effectiveness of the proposed technique is evaluated using a vibration dataset provided by Case Western Reserve University, which consists of vibration acceleration signals recorded for REBs with inner, outer, ball, and no faults, i.e., normal. Experimental results indicate that the proposed technique outperforms the ARX-Laguerre proportional integral observation (ALPIO) technique, yielding 18.82%, 16.825%, and 17.44% performance improvements for three levels of crack severity of 0.007, 0.014, and 0.021 inches, respectively.
NASA Astrophysics Data System (ADS)
Gutiérrez-Montes, Cándido; Bolaños-Jiménez, Rocío; Martínez-Bazán, Carlos; Sevilla, Alejandro
2014-11-01
An experimental and numerical study has been performed to explore the influence of different geometric features and operating conditions on the dynamics of a water-air-water planar co-flow. Specifically, regarding the nozzle used, the inner-to-outer thickness ratio of the air injector, β = Hi/Ho, the water-to-air thickness ratio, h = Hw/Ho, and the shape of the injector tip, have been described. As for the operating conditions, the water exit velocity profile under constant flow rate and constant air feeding pressure has been assessed. The results show that the jetting-bubbling transition is promoted for increasing values of β, decreasing values of h, rounded injector tip, and for uniform water exit velocity profiles. As for the bubble formation frequency, it increases with increasing values of β, decreasing values of h, rounded injector and parabolic-shaped water exit profiles. Furthermore, the bubble formation frequency has been shown to be lower under constant air feeding pressure conditions than at constant gas flow rate conditions. Finally, the effectiveness of a time-variable air feeding stream has been numerically studied, determining the forcing receptivity space in the amplitude-frequency plane. Experimental results corroborate the effectiveness of this control technique. Work supported by Spanish MINECO, Junta de Andalucía, European Funds and UJA under Projects DPI2011-28356-C03-02, DPI2011-28356-C03-03, P11-TEP7495 and UJA2013/08/05.
Kamimura, Emi; Tanaka, Shinpei; Takaba, Masayuki; Tachi, Keita; Baba, Kazuyoshi
2017-01-01
The aim of this study was to evaluate and compare the inter-operator reproducibility of three-dimensional (3D) images of teeth captured by a digital impression technique to a conventional impression technique in vivo. Twelve participants with complete natural dentition were included in this study. A digital impression of the mandibular molars of these participants was made by two operators with different levels of clinical experience, 3 or 16 years, using an intra-oral scanner (Lava COS, 3M ESPE). A silicone impression also was made by the same operators using the double mix impression technique (Imprint3, 3M ESPE). Stereolithography (STL) data were directly exported from the Lava COS system, while STL data of a plaster model made from silicone impression were captured by a three-dimensional (3D) laboratory scanner (D810, 3shape). The STL datasets recorded by two different operators were compared using 3D evaluation software and superimposed using the best-fit-algorithm method (least-squares method, PolyWorks, InnovMetric Software) for each impression technique. Inter-operator reproducibility as evaluated by average discrepancies of corresponding 3D data was compared between the two techniques (Wilcoxon signed-rank test). The visual inspection of superimposed datasets revealed that discrepancies between repeated digital impression were smaller than observed with silicone impression. Confirmation was forthcoming from statistical analysis revealing significantly smaller average inter-operator reproducibility using a digital impression technique (0.014± 0.02 mm) than when using a conventional impression technique (0.023 ± 0.01 mm). The results of this in vivo study suggest that inter-operator reproducibility with a digital impression technique may be better than that of a conventional impression technique and is independent of the clinical experience of the operator.
Measuring the performance of super-resolution reconstruction algorithms
NASA Astrophysics Data System (ADS)
Dijk, Judith; Schutte, Klamer; van Eekeren, Adam W. M.; Bijl, Piet
2012-06-01
For many military operations situational awareness is of great importance. This situational awareness and related tasks such as Target Acquisition can be acquired using cameras, of which the resolution is an important characteristic. Super resolution reconstruction algorithms can be used to improve the effective sensor resolution. In order to judge these algorithms and the conditions under which they operate best, performance evaluation methods are necessary. This evaluation, however, is not straightforward for several reasons. First of all, frequency-based evaluation techniques alone will not provide a correct answer, due to the fact that they are unable to discriminate between structure-related and noise-related effects. Secondly, most super-resolution packages perform additional image enhancement techniques such as noise reduction and edge enhancement. As these algorithms improve the results they cannot be evaluated separately. Thirdly, a single high-resolution ground truth is rarely available. Therefore, evaluation of the differences in high resolution between the estimated high resolution image and its ground truth is not that straightforward. Fourth, different artifacts can occur due to super-resolution reconstruction, which are not known on forehand and hence are difficult to evaluate. In this paper we present a set of new evaluation techniques to assess super-resolution reconstruction algorithms. Some of these evaluation techniques are derived from processing on dedicated (synthetic) imagery. Other evaluation techniques can be evaluated on both synthetic and natural images (real camera data). The result is a balanced set of evaluation algorithms that can be used to assess the performance of super-resolution reconstruction algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Hongbo; Vorobieff, Peter V.; Menicucci, David
2012-06-01
This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energymore » reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.« less
Sivakumar, Venkatasubramanian; Swaminathan, Gopalaraman; Rao, Paruchuri Gangadhar; Ramasami, Thirumalachari
2009-01-01
Ultrasound is a sound wave with a frequency above the human audible range of 16 Hz to 16 kHz. In recent years, numerous unit operations involving physical as well as chemical processes are reported to have been enhanced by ultrasonic irradiation. There have been benefits such as improvement in process efficiency, process time reduction, performing the processes under milder conditions and avoiding the use of some toxic chemicals to achieve cleaner processing. These could be a better way of augmentation for the processes as an advanced technique. The important point here is that ultrasonic irradiation is physical method activation rather than using chemical entities. Detailed studies have been made in the unit operations related to leather such as diffusion rate enhancement through porous leather matrix, cleaning, degreasing, tanning, dyeing, fatliquoring, oil-water emulsification process and solid-liquid tannin extraction from vegetable tanning materials as well as in precipitation reaction in wastewater treatment. The fundamental mechanism involved in these processes is ultrasonic cavitation in liquid media. In addition to this there also exist some process specific mechanisms for the enhancement of the processes. For instance, possible real-time reversible pore-size changes during ultrasound propagation through skin/leather matrix could be a reason for diffusion rate enhancement in leather processing as reported for the first time. Exhaustive scientific research work has been carried out in this area by our group working in Chemical Engineering Division of CLRI and most of these benefits have been proven with publications in valued peer-reviewed international journals. The overall results indicate that about 2-5-fold increase in the process efficiency due to ultrasound under the given process conditions for various unit operations with additional benefits. Scale-up studies are underway for converting these concepts in to a real viable larger scale operation. In the present paper, summary of our research findings from employing this technique in various unit operations such as cleaning, diffusion, emulsification, particle-size reduction, solid-liquid leaching (tannin and natural dye extraction) as well as precipitation has been presented.
Study of VLCC tanker ship damage stability during off-shore operation
NASA Astrophysics Data System (ADS)
Hanzu-Pazara, R.; Arsenie, P.; Duse, A.; Varsami, C.
2016-08-01
Today, for the carriage of crude oil on sea are used larger tanker ships, especially from VLCC class. The operation of this type of ships requires in many cases special conditions, mainly related to water depth in the terminal area and enough maneuvering space for entrance and departure. Because, many ports from all over the world don't have capacity to operate this type of ships inside, in designed oil terminal, have chosen for development of outside terminals, off-shore oil terminals. In case of this type of terminals, the problems of water depth and manoeuvring space are fixed, but other kind of situations appears, regarding the safety in operation and environment factors impact on ship during mooring at oil transfer buoy. In the present paper we intend to show a study made using simulation techniques about VLCC class tanker ship in case of a damage condition resulted after a possible collision with another ship during loading operation at an off-shore terminal. From the beginning, we take in consideration that the ship intact stability, during all loading possible situations, has to be high enough, so that in case of some damage with flooding of different compartments due to hypothetical dimension water hole, the ship stability in the final stage of flooding to correspond to the requirements for damage stability and, also, to complementary requirements for damage ship stability.
Safety concerns for first entry operations of orbiting spacecraft
NASA Technical Reports Server (NTRS)
Wilson, Steven H.; Limero, Thomas F.; James, John T.
1994-01-01
The Space Station Freedom crew will face operational problems unique to the spacecraft environment due to the absence of convection currents and the confined atmosphere within the habitable modules. Airborne contaminants from the materials offgassing or contingency incidents like thermodegradation may accumulate until they reach hazardous concentrations. Flow modeling and experiences from previous space flight missions confirm that caution must be exercised during first-entry operations. A review of the first-entry procedures performed during the Skylab Program will be presented to highlight the necessity for carefully planned operations. Many of the environmental conditions that can be expected on the Space Station are analogous to those which exist in confined storage or work spaces in the industrial setting. Experience with closed-loop environmental operations (e.g., atmospheric control of submarines) have also demonstrated that the buildup of trace contaminant gases could result in conditions that lead to mission termination or loss of crew. Consequently, some first-entry issues for the Station can be addressed by comparing them to familiar techniques developed on Earth. The instruments of the Environmental Health System (EHS) will provide the necessary monitoring capability to protect crew health and safety during the planned first-entry procedures of the MTC phase of the SSF Program. The authors of this paper will describe those procedures and will cite an example of the consequences when proper first-entry procedures are not followed.
Al-Wais, Saba; Khoo, Suiyang; Lee, Tae Hee; Shanmugam, Lakshmanan; Nahavandi, Saeid
2018-01-01
This paper is devoted to the synchronization problem of tele-operation systems with time-varying delay, disturbances, and uncertainty. Delay-dependent sufficient conditions for the existence of integral sliding surfaces are given in the form of Linear Matrix Inequalities (LMIs). This guarantees the global stability of the tele-operation system with known upper bounds of the time-varying delays. Unlike previous work, in this paper, the controller gains are designed but not chosen, which increases the degree of freedom of the design. Moreover, Wirtinger based integral inequality and reciprocally convex combination techniques used in the constructed Lypunove-Krasoviskii Functional (LKF) are deemed to give less conservative stability condition for the system. Furthermore, to relax the analysis from any assumptions regarding the dynamics of the environment and human operator forces, H ∞ design method is used to involve the dynamics of these forces and ensure the stability of the system against these admissible forces in the H ∞ sense. This design scheme combines the strong robustness of the sliding mode control with the H ∞ design method for tele-operation systems which is coupled using state feedback controllers and inherit variable time-delays in their communication channels. Simulation examples are given to show the effectiveness of the proposed method. Copyright © 2017 ISA. All rights reserved.
A screen-printed flexible flow sensor
NASA Astrophysics Data System (ADS)
Moschos, A.; Syrovy, T.; Syrova, L.; Kaltsas, G.
2017-04-01
A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range.
The impact of environmental factors on the performance of millimeter wave seekers in smart munitions
NASA Astrophysics Data System (ADS)
Hager, R.
1987-08-01
An assessment has been made of the degradation in performance of horizontal-glide smart munitions incorporating millimeter wave seekers operating in three types of environments. Atmospheric effects are shown to degrade performance appreciably only in very severe weather conditions. Electromagnetic line-of-sight masking due to foliage (forest canopy and tree-lined roads) will limit submunition usage and may be a potential problem. The most serious problem involves the confident detection of military vehicles in the presence of land clutter. Standard signal processing techniques involving signal amplitude and signal averaging are not likely to be adequate for detection. Observations regarding more sophisticated techniques and the current state of research are included.
Labeling single cell for in-vivo study of cell fate mapping and lineage tracing
NASA Astrophysics Data System (ADS)
He, Sicong; Xu, Jin; Wu, Yi; Tian, Ye; Sun, Qiqi; Wen, Zilong; Qu, Jianan Y.
2018-02-01
Cell fate mapping and lineage tracing are significant ways to understanding the developmental origins of biological tissues. It requires labeling individual cells and tracing the development of their progeny. We develop an infrared laser-evoked gene operator heat-shock microscope system to achieve single-cell labeling in zebrafish. With a fluorescent thermometry technique, we measure the temperature increase in zebrafish tissues induced by infrared laser and identify the optimal heat shock conditions for single-cell gene induction in different types of zebrafish cells. We use this technique to study the fate mapping of T lymphocytes and discover the distinct waves of lymphopoiesis during the zebrafish development.
Pitanguy's otoplasty: report of 551 operations.
Werdin, Frank; Wolters, Marianne; Lampe, Hermann
2007-01-01
Protruding ears is a common condition and in plastic surgery there are many techniques for correcting them such as suture, transection, and scoring. Over a period of 15 years, we have used Pitanguy's otoplasty. The advantages of the Pitanguy technique have been verified in a retrospective study of 278 patients followed up for up to 15 years. There were 20 relapses (4%), which is clearly lower than the mean (between 8% and 11%) for patients treated by other methods. The main reason for our low rate resulted from the generation of large scarring areas, using a combination of transection and seaming. We think that a slightly modified Pitanguy's method reduces postoperative morbidity which affects the aesthetic results.
Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang; Hu, Hui; Chen, Wen-Li
Aircraft operating in some cold weather conditions face the risk of icing. Icing poses a threat to flight safety and its management is expensive. Removing light frost on a clear day from a medium-size business jet can cost $300, heavy wet snow removal can cost $3,000 and removal of accumulated frozen/freezing rain can cost close to $10,000. Understanding conditions that lead to severe icing events is important and challenging. When an aircraft or rotorcraft flies in a cold climate, some of the super cooled droplets impinging on exposed aircraft surfaces may flow along the surface prior to freezing and givemore » various forms and shapes of ice. The runback behavior of a water film on an aircraft affects the morphology of ice accretion and the rate of formation. In this study, we report the recent progress to develop an Ultrasonic Pulse-Echo (UPE) technique to provide real-time thickness distribution measurements of surface water flows driven by boundary layer airflows for aircraft icing studies. A series of initial experimental investigations are conducted in an ice wind tunnel employing an array of ultrasonic transducers placed underneath the surface of a flat plate. The water runback behavior on the plate is evaluated by measuring the thickness profile variation of the water film along the surface by using the UPE technique under various wind speed and flow rate conditions.« less
[Total hip endoprosthesis following resection arthroplasty].
Engelbrecht, E; Siegel, A; Kappus, M
1995-08-01
From 1976 to December 1994, a total of 347 patients underwent implantation of a hip prosthesis at the ENDO-Klinik for treatment of an unsatisfactory condition following resection arthroplasty. From 1976 to 1987, 143 patients were treated and in 1989 the results obtained in these patients were analysed: 99 of them were available for a follow-up examination in 1989, and 64 for a further examination in 1995. In 130 cases infection had been the reason for joint resection. At the time of the prosthesis operation (1-20 years later) intraoperative biopsy revealed that infection was still present in 41 cases (31.5%). Only 15 of these infections had been detected preoperatively by joint aspiration. This shows that the value of resection arthroplasty as a method of treating periprosthetic infection is limited and lends support to the one-stage exchange operation, which is the method we prefer in cases of infected hip prostheses. The operative technique and preparation for implantation of the prosthesis are described, as are septic and aseptic complications and the measures that can be taken to treat them. In spite of the patients' generally poor initial condition and with due consideration for the further revision operations, the medium-term results finally obtained are poor in only 9%.
Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation
NASA Technical Reports Server (NTRS)
Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)
2001-01-01
Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
Choi, Jun-Ik; Lee, Keun-Bae
2016-07-01
The objectives of this study were to compare the clinical outcomes of the two common bone marrow stimulation techniques such as subchondral drilling and microfracture for symptomatic osteochondral lesions of the talus and to evaluate prognostic factors affecting the outcomes. Ninety patients (90 ankles) who underwent arthroscopic bone marrow stimulation for small- to mid-sized osteochondral lesions of the talus constituted the study cohort. The 90 ankles were divided into two groups: a drilling group (40 ankles) and a microfracture group (50 ankles). Each group was matched for age and gender, and both groups had characteristics similar to those obtained from pre-operative demographic data. The American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score and the ankle activity score (AAS) were used to compare clinical outcomes, during a mean follow-up period of 43 months. The median AOFAS scores were 66.0 points (51-80) in drilling group and 66.5 points (45-81) in microfracture group pre-operatively, and these improved to 89.4 points (77-100) and 90.1 points (69-100) at the final follow-up, respectively. The median VAS scores improved at the final follow-up compared with the pre-operative condition. The median AAS for the drilling group improved from 4.5 (1-6) pre-operatively to 6.0 (1-8) at the final follow-up, while those for the microfracture group improved from 3.0 (2-8) to 6.0 (3-9). No significant differences were observed between the two groups in terms of the AOFAS scores, VAS, and AAS. The arthroscopic subchondral drilling and microfracture techniques that were used to stimulate bone marrow showed similar clinical outcomes. The results of this study suggest that both techniques are effective and reliable in treating small- to mid-sized osteochondral lesions of the talus, regardless of which of the two techniques is used. Level III, retrospective comparative study.
New Technique of High-Performance Torque Control Developed for Induction Machines
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2003-01-01
Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a method to clearly visualize the solution. The graphical technique allows a more insightful understanding of the operation of the machine under various conditions.
Aggarwal, Sushil Kumar; Ankur, Bhatnagar; Jain, R K
2015-09-01
We have described a new technique of using ultra-thin silicon sheet (0.2 mm) between two transected bony ends for temporo-mandibular joint (TMJ) ankylosis in children with advantages of short operative time, minimal foreign material insertion and faster recovery time post-operatively which makes our technique a good alternative to conventional techniques. Our study is a non-randomized prospective study conducted on 10 children aged between 4 and 15 years who presented to our tertiary care institute with severe trismus after traumatic injury and were willing to undergo this new technique. The main outcome measure taken into consideration was difference between pre-operative, intra-operative (on table) and post-operative mouth opening (minimum 2 years follow-up). The pre-operative mouth opening in our cases varied from 1 to 5 mm. The intra-operative mouth opening achieved ranged from 2.8 to 3.2 cm. The mouth opening was about more than 2.7 cm in all our cases at 2 years of follow-up. Our technique is a good alternative to conventional techniques used for TMJ ankylosis in children but few more randomized controlled trials are required to assess its effectiveness in comparison to conventional techniques and for universal adoption of this technique.
Pellerin, Brian A.; Bergamaschi, Brian A.; Downing, Bryan D.; Saraceno, John Franco; Garrett, Jessica D.; Olsen, Lisa D.
2013-01-01
The recent commercial availability of in situ optical sensors, together with new techniques for data collection and analysis, provides the opportunity to monitor a wide range of water-quality constituents on time scales in which environmental conditions actually change. Of particular interest is the application of ultraviolet (UV) photometers for in situ determination of nitrate concentrations in rivers and streams. The variety of UV nitrate sensors currently available differ in several important ways related to instrument design that affect the accuracy of their nitrate concentration measurements in different types of natural waters. This report provides information about selection and use of UV nitrate sensors by the U.S. Geological Survey to facilitate the collection of high-quality data across studies, sites, and instrument types. For those in need of technical background and information about sensor selection, this report addresses the operating principles, key features and sensor design, sensor characterization techniques and typical interferences, and approaches for sensor deployment. For those needing information about maintaining sensor performance in the field, key sections in this report address maintenance and calibration protocols, quality-assurance techniques, and data formats and reporting. Although the focus of this report is UV nitrate sensors, many of the principles can be applied to other in situ optical sensors for water-quality studies.
High Performance Power Amplifiers Utilizing Novel Balun Design Techniques
NASA Astrophysics Data System (ADS)
Stameroff, Alexander Nicholas
In this PhD. research, a new power amplifier architecture is introduced. This work develops the push-pull architecture into a multifunctional matching network and combiner to create a high power, high efficiency, linear power amplifier (PA) that operates over a wide bandwidth. The traditional push-pull architecture uses an input balun to split a single ended signal into a differential signal, amplify it, and recombine it. This new technique realizes this architecture as a planar, hybrid, PA in X band. The first contribution of this work is the development of planar Marchand baluns that operate over a wide bandwidth. An analysis technique is developed and broadside coupled, Marchand baluns in an inhomogeneous medium are employed. These baluns operate over a bandwidth from 5 to 26 GHz with amplitude and phase imbalances less than 0.5 dB and 5 °, respectively. The even and odd mode behavior of the Marchand balun is utilized to provide harmonic matching for the PA. The balun inherently presents an open circuit to common mode signals at its center frequency. This is utilized to match the second harmonic to an open circuit condition. A band-stop filter is used as a harmonic trap to match the third harmonic to a short circuit. This achieves inverse class F matching for high efficiency operation. This network simultaneously acts as a combiner and matching network for high power and efficiency. A prototype PA was fabricated to prove this concept and achieves a saturated output power, Psat, greater than 33 dBm and a power added efficiency, PAE, greater than 62% over the bandwidth from 9.7 to 10.3 GHz. This technique was refined to operate over a wide bandwidth. The harmonic trap was removed and the out-of-band behavior of the balun was used to provide the short circuit matching at the third harmonic. A prototype PA was fabricated that achieved a 1 dB compressed power, P1dB, and PAE greater than 40 dBm and 55% respectively over the band from 8 to 12 GHz. Finally, the technique was extended to combine power from four transistors by the development of a 4-to-1 balun. A prototype PA was fabricated to prove this concept and achieves a P1dB and PAE greater than 43 dBm and 55% over the band from 8 to 12 GHz.
Mass Gauging Demonstrator for Any Gravitational Conditions
NASA Technical Reports Server (NTRS)
Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)
2013-01-01
The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.
NASA Technical Reports Server (NTRS)
Beck, Theodore S.
1992-01-01
Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.
Complications of Blepharoplasty: Prevention and Management
Oestreicher, James; Mehta, Sonul
2012-01-01
Blepharoplasty is an operation to modify the contour and configuration of the eyelids in order to restore a more youthful appearance. The surgery involves removing redundant skin, fat, and muscle. In addition, supporting structures such as canthal tendons are tightened. Other conditions such as ptosis, brow ptosis, entropion, ectropion, or eyelid retraction may also need to be corrected at the time a blepharoplasty is performed to ensure the best functional and aesthetic result. Due to the complexity and intricate nature of eyelid anatomy, complications do exist. In addition to a thorough pre operative assessment and meticulous surgical planning, understanding the etiology of complications is key to prevention. Finally, management of complications is just as important as surgical technique. PMID:22655191
Interactive mission planning for a Space Shuttle flight experiment - A case history
NASA Technical Reports Server (NTRS)
Harris, H. M.
1986-01-01
Scientific experiments which use the Space Shuttle as a platform require the development of new operations techniques for the command and control of the instrument. Principal among these is the ability to simulate the complex maneuvers of the orbiter's path realistically. Computer generated graphics provide a window into the actual and predicted performance of the instrument and allow sophisticated control of the instrument under varying conditions. In October of 1984 the Shuttle carried a synthetic aperture radar built by JPL for the purpose of recording images of the earth surface. The mission deviated from planned operation in almost every conceivable way and provided an exacting test bed for concepts of interactive mission planning.