Methods to speed up the gain recovery of an SOA
NASA Astrophysics Data System (ADS)
Wang, Zhi; Wang, Yongjun; Meng, Qingwen; Zhao, Rui
2008-01-01
The semiconductor optical amplifiers (SOAs) are employed in all optical networking and all optical signal processing due to the excellent nonlinearity and high speed. The gain recovery time is the key parameter to describe the response speed of the SOA. The relationship between the gain dynamics and a few operation parameters is obtained in this article. A few simple formula and some simulations are demonstrated, from which, a few methods to improve the response speed of the SOA can be concluded as following, lengthening the active area, or lessening the cross area, increasing the injection current, increasing the probe power, operating with a CW holding beam.
SSA Building Blocks - Transforming Your Data and Applications into Operational Capability
NASA Astrophysics Data System (ADS)
Buell, D.; Hawthorne, Shayn, L.; Higgins, J.
The Electronic System Center's 850 Electronic Systems Group (ELSG) is currently using a Service Oriented Architecture (SOA) to rapidly create net-centric experimental prototypes. This SOA has been utilized effectively across diverse mission areas, such as global air operations and rapid sensor tasking for improved space event management. The 850 ELSG has deployed a working, accredited, SOA on the SIPRNET and provided real-time space information to five separate distributed operations centers. The 850 ELSG has learned first-hand the power of SOAs for integrating DoD and non-DoD SSA data in a rapid and agile manner, allowing capabilities to be fielded and sensors to be integrated in weeks instead of months. This opens a world of opportunity to integrate University data and experimental or proof-of-concept data with sensitive sensors and sources to support developing an array of SSA products for approved users in and outside of the space community. This paper will identify how new capabilities can be proactively developed to rapidly answer critical needs when SOA methodologies are employed and identifies the operational utility and the far-reaching benefits realized by implementing a service-oriented architecture. We offer a new paradigm for how data and application producer's contributions are presented for the rest of the community to leverage.
Response Variability in Commercial MOSFET SEE Qualification
George, J. S.; Clymer, D. A.; Turflinger, T. L.; ...
2016-12-01
Single-event effects (SEE) evaluation of five different part types of next generation, commercial trench MOSFETs indicates large part-to-part variation in determining a safe operating area (SOA) for drain-source voltage (V DS) following a test campaign that exposed >50 samples per part type to heavy ions. These results suggest a determination of a SOA using small sample sizes may fail to capture the full extent of the part-to-part variability. An example method is discussed for establishing a Safe Operating Area using a one-sided statistical tolerance limit based on the number of test samples. Finally, burn-in is shown to be a criticalmore » factor in reducing part-to-part variation in part response. Implications for radiation qualification requirements are also explored.« less
Response Variability in Commercial MOSFET SEE Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, J. S.; Clymer, D. A.; Turflinger, T. L.
Single-event effects (SEE) evaluation of five different part types of next generation, commercial trench MOSFETs indicates large part-to-part variation in determining a safe operating area (SOA) for drain-source voltage (V DS) following a test campaign that exposed >50 samples per part type to heavy ions. These results suggest a determination of a SOA using small sample sizes may fail to capture the full extent of the part-to-part variability. An example method is discussed for establishing a Safe Operating Area using a one-sided statistical tolerance limit based on the number of test samples. Finally, burn-in is shown to be a criticalmore » factor in reducing part-to-part variation in part response. Implications for radiation qualification requirements are also explored.« less
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).
First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
Science Opportunity Analyzer (SOA): Not Just Another Pretty Face
NASA Technical Reports Server (NTRS)
Polanskey, Carol A.; Streiiffert, Barbara; O'Reilly, Taifun
2004-01-01
This viewgraph presentation reviews the Science Opportunity Analyzer (SOA). For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for sequence generation. This means that scientist at other institutions has more responsibility to build the spacecraft sequence. Tools are required to support the sequence development. JPL tools required a complete configuration behind a firewall, and the tools that the user community had developed did not interface with the JPL tools. Therefore the SOA was created to bridge the gap between the remote scientists and the JPL operations teams. The presentation reviews the development of the SOA, and what was required of the system. The presentation reviews the functions that the SOA performed.
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Dutta, Niloy K.
2018-01-01
We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.
[Numerical simulation study of SOA in Pearl River Delta region].
Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song
2009-12-01
Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.
An upstream burst-mode equalization scheme for 40 Gb/s TWDM PON based on optimized SOA cascade
NASA Astrophysics Data System (ADS)
Sun, Xiao; Chang, Qingjiang; Gao, Zhensen; Ye, Chenhui; Xiao, Simiao; Huang, Xiaoan; Hu, Xiaofeng; Zhang, Kaibin
2016-02-01
We present a novel upstream burst-mode equalization scheme based on optimized SOA cascade for 40 Gb/s TWDMPON. The power equalizer is placed at the OLT which consists of two SOAs, two circulators, an optical NOT gate, and a variable optical attenuator. The first SOA operates in the linear region which acts as a pre-amplifier to let the second SOA operate in the saturation region. The upstream burst signals are equalized through the second SOA via nonlinear amplification. From theoretical analysis, this scheme gives sufficient dynamic range suppression up to 16.7 dB without any dynamic control or signal degradation. In addition, a total power budget extension of 9.3 dB for loud packets and 26 dB for soft packets has been achieved to allow longer transmission distance and increased splitting ratio.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2014-05-01
Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NOx ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The unspeciated organics - likely comprising less volatile species such as intermediate volatility organic compounds - appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep + idle operation was 3-4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2013-09-01
Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NOx ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas-chromatography. The unspeciated organics - likely comprising less volatile species, such as intermediate volatility organic compounds - appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep+idle operation was 3-4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.
Reducing secondary organic aerosol formation from gasoline vehicle exhaust
Zhao, Yunliang; Saleh, Rawad; Presto, Albert A.; Gordon, Timothy D.; Drozd, Greg T.; Goldstein, Allen H.; Robinson, Allen L.
2017-01-01
On-road gasoline vehicles are a major source of secondary organic aerosol (SOA) in urban areas. We investigated SOA formation by oxidizing dilute, ambient-level exhaust concentrations from a fleet of on-road gasoline vehicles in a smog chamber. We measured less SOA formation from newer vehicles meeting more stringent emissions standards. This suggests that the natural replacement of older vehicles with newer ones that meet more stringent emissions standards should reduce SOA levels in urban environments. However, SOA production depends on both precursor concentrations (emissions) and atmospheric chemistry (SOA yields). We found a strongly nonlinear relationship between SOA formation and the ratio of nonmethane organic gas to oxides of nitrogen (NOx) (NMOG:NOx), which affects the fate of peroxy radicals. For example, changing the NMOG:NOx from 4 to 10 ppbC/ppbNOx increased the SOA yield from dilute gasoline vehicle exhaust by a factor of 8. We investigated the implications of this relationship for the Los Angeles area. Although organic gas emissions from gasoline vehicles in Los Angeles are expected to fall by almost 80% over the next two decades, we predict no reduction in SOA production from these emissions due to the effects of rising NMOG:NOx on SOA yields. This highlights the importance of integrated emission control policies for NOx and organic gases. PMID:28630318
Moscoso-Mártir, Alvaro; Müller, Juliana; Islamova, Elmira; Merget, Florian; Witzens, Jeremy
2017-09-20
Based on the single channel characterization of a Silicon Photonics (SiP) transceiver with Semiconductor Optical Amplifier (SOA) and semiconductor Mode-Locked Laser (MLL), we evaluate the optical power budget of a corresponding Wavelength Division Multiplexed (WDM) link in which penalties associated to multi-channel operation and the management of polarization diversity are introduced. In particular, channel cross-talk as well as Cross Gain Modulation (XGM) and Four Wave Mixing (FWM) inside the SOA are taken into account. Based on these link budget models, the technology is expected to support up to 12 multiplexed channels without channel pre-emphasis or equalization. Forward Error Correction (FEC) does not appear to be required at 14 Gbps if the SOA is maintained at 25 °C and MLL-to-SiP as well as SiP-to-SOA interface losses can be maintained below 3 dB. In semi-cooled operation with an SOA temperature below 55 °C, multi-channel operation is expected to be compatible with standard 802.3bj Reed-Solomon FEC at 14 Gbps provided interface losses are maintained below 4.5 dB. With these interface losses and some improvements to the Transmitter (Tx) and Receiver (Rx) electronics, 25 Gbps multi-channel operation is expected to be compatible with 7% overhead hard decision FEC.
Measurement of characteristic parameters of 10 Gb/s bidirectional optical amplifier for XG-PON
NASA Astrophysics Data System (ADS)
Rakkammee, Suchaj; Boriboon, Budsara; Worasucheep, Duang-rudee; Wada, Naoya
2018-03-01
This research experimentally measured the characteristic parameters of 10 Gb/s bidirectional optical amplifier: (1) operating wavelength range, (2) small signal gain, (3) Polarization Dependent Loss (PDL), and (4) power consumption. Bidirectional amplifiers are the key component to extend coverage area as well as increase a number of users in Passive Optical Networks (PON). According to 10-Gigabit-capable PON or XG-PON standard, the downstream and upstream wavelengths are 1577 nm and 1270 nm respectively. Thus, our bidirectional amplifier consists of an Erbium Doped Fiber Amplifier (EDFA) and a Semiconductor Optical Amplifier (SOA) for downstream and upstream wavelength transmissions respectively. The operating wavelengths of EDFA and SOA are measured to be from 1570 nm to 1588 nm and 1263 nm to 1280 nm respectively. To measure gain, the input wavelengths of EDFA and SOA were fixed at 1577 nm and 1271 nm respectively, while their input powers were reduced by a variable optical attenuator. The small signal gain of EDFA is 22.5 dB at 0.15 Ampere pump current, whereas the small signal gain of SOA is 7.06 dB at 0.325 Ampere pump current. To measure PDL, which is a difference in output powers at various State of Polarization (SoP) of input signal, a polarization controller was inserted before amplifier to alter input SoP. The measured PDL of EDFA is insignificant with less than 0.1 dB. In contrast, the measured PDL of SOA is as large as 33 dB, indicating its strong polarization dependence. The total power consumptions were measured to be 1.5675 Watt.
Research and design of logistical information system based on SOA
NASA Astrophysics Data System (ADS)
Zhang, Bo
2013-03-01
Through the study on the existing logistics information systems and SOA technology, based on the current situation of enterprise logistics management and business features, this paper puts forward a SOA-based logistics system design program. This program is made in the WCF framework, with the combination of SOA and the actual characteristics of logistics enterprises, is simple to realize, easy to operate, and has strong expansion characteristic, therefore has high practical value.
On phaser-based processing of impulse radio UWB over fiber systems employing SOA
NASA Astrophysics Data System (ADS)
Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.
2017-07-01
In this study, we adopt a phaser-based processing to enhance the performance of impulse radio over fiber system utilizing SOA. The amplifier has been placed at a distance in the optical link, so as to extend the coverage area of proposed transceiver. Operating in the linear or saturation region for SOA, adds ASE noise or strong nonlinearities acting on the propagated pulses, respectively. Both lead to a degradation in the power efficiency and bit error rate performance. By applying up and down analog chirping technique, we have reduced the ASE power and nonlinearity simultaneously. Based on the 5th Gaussian pulse and Abraha's combination of doublets, a significant improvement has been achieved at extremely low and high input powers entering the amplifier (<-15 dBm and 0 dBm), recording a very good bit error rate performance and power efficiency. Better signal quality was observed after photo-detector, due to the fact that waveforms with lower frequency components are less affected by SOA nonlinearity. Our scheme has proved to be effective for 1 Gbps OOK and 0.5 Gbps PPM transmissions, while reaching a distance of 160 km in the optical fiber.
Ummy, M A; Madamopoulos, N; Joyo, A; Kouar, M; Dorsinville, R
2011-02-14
We propose and demonstrate a simple dual port tunable from the C- to the L-band multi-wavelength fiber laser based on a SOA designed for C-band operation and fiber loop mirrors. The laser incorporates a polarization maintaining fiber in one of the fiber loop mirrors and delivers multi-wavelength operation at 9 laser lines with a wavelength separation of ~2.8 nm at room temperature. We show that the number of lasing wavelengths increases with the increase of the bias current of the SOA. Wavelength tunability from the C to L-band is achieved by exploiting the gain compression of a SOA. Stable multi-wavelength operation is achieved at room temperature without temperature compensation techniques, with measured power and the wavelength stability within < ±0.5 dB and ±0.1 nm, respectively.
NASA Astrophysics Data System (ADS)
Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Hu, W.; Ortega, A. M.; Jimenez, J. L.; Liao, J.; Froyd, K. D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; St Clair, J. M.; Crounse, J.; Wennberg, P. O.; Mikoviny, T.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.
2014-12-01
Isoprene-derived SOA formation has been studied extensively in the laboratory. However, it is still unclear to what extent isoprene contributes to the overall SOA burden over the southeastern US, an area with both strong isoprene emissions as well as large discrepancies between modeled and observed aerosol optical depth. For the low-NO isoprene oxidation pathway, the key gas-phase intermediate is believed to be isoprene epoxide (IEPOX), which can be incorporated into the aerosol phase by either sulfate ester formation (IEPOX sulfate) or direct hydrolysis. As first suggested by Robinson et al, the SOA formed by this mechanism (IEPOX-SOA) has a characteristic fragmentation pattern when analyzed by an Aerodyne Aerosol Mass Spectrometer (AMS) with enhanced relative abundances of the C5H6O+ ion (fC5H6O). Based on data from previous ground campaigns and chamber studies, we have developed a empirical method to quantify IEPOX-SOA and have applied it to the data from the DC3 and SEAC4RS aircraft campaigns that sampled the SE US during the Spring of 2012 and the Summer of 2013. We used Positive Matrix Factorization (PMF) to extract IEPOX-SOA factors that show good correlation with inside or downwind of high isoprene emitting areas and in general agree well with the IEPOX-SOA mass predicted by the empirical expression. According to this analysis, the empirical method performs well regardless of (at times very strong) BBOA or urban OA influences. On average 17% of SOA in the SE US boundary layer was IEPOX-SOA. Overall, the highest concentrations of IEPOX-SOA were typically found around 1-2 km AGL, several hours downwind of the isoprene source areas with high gas-phase IEPOX present. IEPOX-SOA was also detected up to altitudes of 6 km, with a clear trend towards more aged aerosol at altitude, likely a combination of chemical aging and physical airmass mixing. The unique instrument package aboard the NASA-DC8 allows us to examine the influence of multiple factors (aerosol acidity, aerosol water content, sulfate mass fraction, isoprene and terpene source strength) to the relative and absolute contribution of IEPOX-SOA to the total OA burden. In particular, the IEPOX-sulfate measurement from the PALMS instrument was used to estimate the relative contribution of the organosulfate channel to the IEPOX-SOA formation.
NASA Astrophysics Data System (ADS)
Usami, Masashi; Tsurusawa, Munefumi; Inohara, Ryo; Nishimura, Kohsuke
2003-08-01
All optical regenerations or wavelength conversions using SOA-based polarization discriminated switch injected by a transparent assist light are reviewed. First, the reduction of a gain recovery time in SOA by injection of a transparent assist light wass discussed. A simple measurement technique of cross gain modulation (XGM) and cross phase modulation (XPM) in SOA was shown to confirm that the injection of transparent cw assist light reduced a gain recovery time without significant reduction in the amount of XGM and XPM. All optical regeneration operation 40Gbit/s as well as bit-rate tunable operation from 10Gbit/s to 80Gbit/s were presented. Simultaneous demultiplexing from 80Gbit/s to 2 channels of 40Gbit/s signals with little loss was also demonstrated. Finally, tolerance to amplitude noise and timing jitter was discussed. Those results indicate that the SOA-based polarization discriminated switch is a promising candidate for all-optical regenerator from the practical point of view.
Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong
2009-09-14
A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.
SOA formation from gasoline vehicles: from the tailpipe to the atmosphere
NASA Astrophysics Data System (ADS)
Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Tkacik, D. S.
2017-12-01
Secondary organic aerosol (SOA) formation from gasoline vehicles has been indicated as an important source of atmospheric SOA, but its contribution to atmospheric SOA is loosely constrained due to the lack of measurements to link SOA formation from the tailpipe to atmospheric SOA. In this study, we determine the contribution of SOA formation based on measurements made with a Potential Aerosol Mass (PAM) oxidation flow reactor by oxidizing vehicular exhaust and ambient air. We first investigate SOA formation from dilute gasoline-vehicle exhaust during chassis dynamometer testing. The test fleet consists of both vehicles equipped with gasoline direct injection engines (GDI vehicles) and those equipped with port fuel injection engines (PFI vehicles). These vehicles span a wide range of emissions standards from Tier0 to Super Ultra-Low Emission Vehicles (SULEV). Then, we combine our measurements of SOA formation from gasoline vehicles during dynamometer testing with measurements of SOA formation using a PAM reactor conducted in a highway tunnel and in the unban atmosphere. Comparisons of SOA formation between these datasets enable us to quantitatively connect SOA formation from individual vehicles, to a large on-road fleet, and to the atmosphere. To facilitate the comparisons, we account for the effects of both the photochemical age and dilution on SOA formation. Our results show that SOA formation from gasoline vehicles can contribute over 50% of fossil fuel-related atmospheric SOA in the Los Angeles area. Furthermore, our results demonstrate that the tightening of emissions standards effectively reduces SOA formation from gasoline vehicles, including both PFI and GDI vehicles, if the atmospheric chemistry regime remains the same.
Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) ...
The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the controlling factors governing IEPOX SOA formation. We present a mechanistic modeling investigation predicting IEPOX SOA based on Community Multiscale Air Quality (CMAQ) model algorithms and a recently introduced photochemical box model, simpleGAMMA. We aim to (1) simulate IEPOX SOA tracers from the SOAS Look Rock ground site, (2) compare the two model formulations, (3) determine the limiting factors in IEPOX SOA formation, and (4) test the impact of a hypothetical sulfate reduction scenario on IEPOX SOA. The estimated IEPOX SOA mass variability is in similar agreement (r2 ∼ 0.6) with measurements. Correlations of the estimated and measured IEPOX SOA tracers with observed aerosol surface area (r2 ∼ 0.5–0.7), rate of particle-phase reaction (r2 ∼ 0.4–0.7), and sulfate (r2 ∼ 0.4–0.5) suggest an important role of sulfate in tracer formation via both physical and chemical mechanisms. A hypothetical 25% reduction of sulfate results in ∼70% reduction of IEPOX SOA formation, reaffirming the importance of aqueous phase chemistry in IEPOX SOA production. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-suppor
NASA Astrophysics Data System (ADS)
Chen, Chia-Li; Li, Lijie; Tang, Ping; Cocker, David R.
2018-05-01
SOA formation is not well predicted in current models in urban area. The interaction among multiple anthropogenic volatile organic compounds is essential for the SOA formation in the complex urban atmosphere. Secondary organic aerosol (SOA) from the photooxidation of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene as well as individual polycyclic aromatic hydrocarbons (PAHs) mixed with m-xylene or an atmospheric surrogate mixture was explored in the UCR CE-CERT environmental chamber under urban relevant low NOx and extremely low NOx (H2O2) conditions. Addition of m-xylene suppressed SOA formation from the individual PAH precursor. A similar suppression effect on SOA formation was observed during the surrogate mixture photooxidation suggesting the importance of gas-phase chemical reactivity to SOA formation. The SOA growth rate for different PAH-m-xylene mixtures was strongly correlated with initial [HO2]/[RO2] ratio but negatively correlated with initial m-xylene/NO ratio. Decreasing SOA formation was observed for increasing m-xylene/PAHs ratios and increasing initial m-xylene/NO ratio. The SOA chemical composition characteristics such as f44 versus f43, H/C ratio, O/C ratio, and the oxidation state of the carbon OSbarc were consistent with a continuously aging with the SOA exhibiting characteristics of both individual precursors. SOA formation from PAHs was also suppressed within an atmospheric surrogate mixture compared to the SOA formed from individual PAHs, indicating that atmospheric reactivity directly influences SOA formation from PAHs.
NASA Astrophysics Data System (ADS)
Bhattu, D.; Stefenelli, G.; Zotter, P.; Zhou, J.; Nussbaumer, T.; Bertrand, A.; Marchand, N.; Termine-Roussel, B.; Baltensperger, U.; Slowik, J.; Prevot, A. S.; El-Haddad, I.; Dommen, J.
2016-12-01
Current legislation limits the emission of particulate matter, but does not regulate the precursors potentially forming secondary organic aerosol (SOA). Recent literature has shown that only 22 non-traditional SOA precursors from residential wood combustion explains 84-116% of the observed SOA mass whereas traditional precursors in the models account for only 3-27% of the SOA mass (Bruns et al., 2016). Investigation of gas phase emissions from wood combustion and their SOA formation potential have largely focused on single combustion devices with limited operating conditions. As, both primary emissions and SOA formation is a strong function of device type, load, fuel and operating conditions, we have performed a detailed chamber study investigating the gas-phase precursors from beech wood using three combustion devices namely a pellet boiler (combustion conditions: optimum, lack and excess of oxygen), an industrial wood chip grate boiler (30% and 100% power), and a log wood stove (varying fuel load and moisture content) using a potential aerosol mass reactor (PAM) with varying OH exposure. The short residence time in the reactor allowed a time resolved picture of SOA production potential and reduced wall losses. The main aim of this study is to characterize the primary and aged gaseous emissions and investigate their SOA formation potential depending on their mass yield, molecular structures, functional groups and OH reactivity in order to ascertain the contribution of residential wood burning in total carbonaceous OA budget. The physical and chemical effects of different OA aging conditions were monitored using an SMPS, an Aethalometer, an HR-ToF-AMS, as well as a PTR-ToF-MS and other gas monitors. In pellet boiler, significant SOA mass enhancement is observed in excess oxygen conditions compared to optimum and oxygen deprived conditions. Highest gas phase emissions from wood stove are observed at cold start (start of each burn cycle) and lowest in burn out phase (end of each burn cycle). Despite of the comparable total gas phase emissions, the compositional space of wood stove emissions is largely occupied by SOA precursors compared to pellet boiler. Finally we will determine effective SOA mass yield of the speciated and unspeciated precursors and assess the extent to which SOA mass closure can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil-fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated by a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibitmore » a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid inducing ice nucleation. Naphthalene SOA coated soot particles acted as IN above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate further renders this even less likely. Furthermore, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during preindustrial times or in pristine areas.« less
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew; ...
2017-01-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil-fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated by a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibitmore » a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid inducing ice nucleation. Naphthalene SOA coated soot particles acted as IN above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate further renders this even less likely. Furthermore, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during preindustrial times or in pristine areas.« less
Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.
Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A
2017-08-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.
Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010
NASA Astrophysics Data System (ADS)
Hayes, P. L.; Carlton, A. G.; Baker, K. R.; Ahmadov, R.; Washenfelder, R. A.; Alvarez, S.; Rappenglück, B.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Zotter, P.; Prévôt, A. S. H.; Szidat, S.; Kleindienst, T. E.; Offenberg, J. H.; Jimenez, J. L.
2014-12-01
Four different parameterizations for the formation and evolution of secondary organic aerosol (SOA) are evaluated using a 0-D box model representing the Los Angeles Metropolitan Region during the CalNex 2010 field campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model-measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model/measurement agreement for mass concentration. When comparing the three parameterizations, the Grieshop et al. (2009) parameterization more accurately reproduces both the SOA mass concentration and oxygen-to-carbon ratio inside the urban area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the parameterizations over-predict urban SOA formation at long photochemical ages (≈ 3 days) compared to observations from multiple sites, which can lead to problems in regional and global modeling. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Polycyclic aromatic hydrocarbons (PAHs) are less important precursors and contribute less than 4% of the SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16-27, 35-61, and 19-35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71 (±3) %. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m-3 is also present due to the long distance transport of highly aged OA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, 1/3 of which is likely to be non-fossil.
Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography
NASA Astrophysics Data System (ADS)
Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.
2012-12-01
The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of BVOC species, including mono- and sesquiterpenes and oxygenated mono- and sesquiterpenes, will be presented. The results will be discussed in the context of atmospheric composition and SOA formation.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2013-08-26
We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.
Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; ...
2016-06-15
Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive ( τ OH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OS C ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel suggests the importance of vehicle emissions for urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. Furthermore, these results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe
Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and O x, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive ( τ OH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OS C ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel suggests the importance of vehicle emissions for urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. Furthermore, these results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.« less
Reliability Engineering for Service Oriented Architectures
2013-02-01
Common Object Request Broker Architecture Ecosystem In software , an ecosystem is a set of applications and/or services that grad- ually build up over time...Enterprise Service Bus Foreign In an SOA context: Any SOA, service or software which the owners of the calling software do not have control of, either...SOA Service Oriented Architecture SRE Software Reliability Engineering System Mode Many systems exhibit different modes of operation. E.g. the cockpit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew T.
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfatemore » mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveT gand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.« less
Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation
Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew T.; ...
2017-01-24
Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfatemore » mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveT gand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.« less
NASA Astrophysics Data System (ADS)
Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.
2017-01-01
In this paper, we investigate the usage of SOA for reach extension of an impulse radio over fiber system. Operating in the saturated regime translates into strong nonlinearities and spectral distortions, which drops the power efficiency of the propagated pulses. After studying the SOA response versus operating conditions, we have enhanced the system performance by applying simple analog pre-distortion schemes for various derivatives of the Gaussian pulse and their combination. A novel pulse shape has also been designed by linearly combining three basic Gaussian pulses, offering a very good spectral efficiency (> 55 %) for a high power (0 dBm) at the amplifier input. Furthermore, the potential of our technique has been examined considering a 1.5 Gbps-OOK and 0.75 Gbps-PPM modulation schemes. Pre-distortion proved an advantage for a large extension of optical link (150 km), with an inline amplification via SOA at 40 km.
Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador
2010-12-06
We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Weiwei; Palm, Brett B.; Day, Douglas A.
Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigatedmore » with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~100 µg m -3 of pure H 2SO 4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical ( k OH) was estimated as 4.0 ± 2.0 ×10 -13 cm 3 molec -1 s -1, which is equivalent to more than a 2-week lifetime. A similar k OH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 10 12 molec cm -3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients ( γ OH = 0.59±0.33 in SE US and γ OH = 0.68±0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of k OH and γ OH was observed, consistent with surface-area-limited OH uptake. No decrease of k OH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.« less
Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L
2018-02-06
Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.
Guo, Xiao-Shuang; Situ, Shu-Ping; Wang, Xue-Mei; Ding, Xiang; Wang, Xin-Ming; Yan, Cai-Qing; Li, Xiao-Ying; Zheng, Mei
2014-05-01
Two simulations were conducted with different secondary organic aerosol (SOA) methods-VBS (volatile basis set) approach and SORGAM (secondary organic aerosol model) , which have been coupled in the WRF/Chem (weather research and forecasting model with chemistry) model. Ground-based observation data from 18th to 25th November 2008 were used to examine the model performance of SOA in the Pearl River Delta(PRD)region. The results showed that VBS approach could better reproduce the temporal variation and magnitude of SOA compared with SORGAM, and the mean absolute deviation and correlation coefficient between the observed and the simulated data using VBS approach were -4.88 microg m-3 and 0.91, respectively, while they were -5.32 microg.m-3 and 0. 18 with SORGAM. This is mainly because the VBS approach considers SOA precursors with a wider volatility range and the process of chemical aging in SOA formation. Spatiotemporal distribution of SOA in the PRD from the VBS simulation was also analyzed. The results indicated that the SOA has a significant diurnal variation, and the maximal SOA concentration occurred at noon and in the early afternoon. Because of the transport and the considerable spatial distribution of O3 , the SOA concentrations were different in different PRD cities, and the highest concentration of SOA was observed in the downwind area, including Zhongshan, Zhuhai and Jiangmen.
Mechanism of SOA formation determines magnitude of radiative effects
NASA Astrophysics Data System (ADS)
Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang
2017-11-01
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of ‑0.05 W m‑2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is ‑0.07 W m‑2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.
Mechanism of SOA Formation Determines Magnitude of Radiative Effects
NASA Astrophysics Data System (ADS)
Zhu, J.; Penner, J.; Lin, G.; Zhou, C.
2017-12-01
Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.
Mechanism of SOA formation determines magnitude of radiative effects
Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang
2017-01-01
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of −0.05 W m−2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is −0.07 W m−2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. PMID:29133426
Mechanism of SOA formation determines magnitude of radiative effects.
Zhu, Jialei; Penner, Joyce E; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang
2017-11-28
Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO 2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m -2 When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is -0.07 W m -2 , even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. Copyright © 2017 the Author(s). Published by PNAS.
Zhu, Yanhong; Yang, Lingxiao; Kawamura, Kimitaka; Chen, Jianmin; Ono, Kaori; Wang, Xinfeng; Xue, Likun; Wang, Wenxing
2017-01-01
Ambient fine particulate matter (PM 2.5 ) and volatile organic compounds (VOCs) collected at Mt. Tai in summer 2014 were analysed and the data were used to identify the contribution of biogenic and anthropogenic hydrocarbons to secondary organic aerosols (SOA) and their sources and potential source areas in high mountain regions. Compared with those in 2006, the 2014 anthropogenic SOA tracers in PM 2.5 aerosols and VOC species related to vehicular emissions exhibited higher concentrations, whereas the levels of biogenic SOA tracers were lower, possibly due to decreased biomass burning. Using the SOA tracer and parameterisation method, we estimated the contributions from biogenic and anthropogenic VOCs, respectively. The results showed that the average concentration of biogenic SOA was 1.08 ± 0.51 μg m -3 , among which isoprene SOA tracers were dominant. The anthropogenic VOC-derived SOA were 7.03 ± 1.21 μg m -3 and 1.92 ± 1.34 μg m -3 under low- and high-NO x conditions, respectively, and aromatics made the greatest contribution. However, the sum of biogenic and anthropogenic SOA only contributed 18.1-49.1% of the total SOA. Source apportionment by positive matrix factorisation (PMF) revealed that secondary oxidation and biomass burning were the major sources of biogenic SOA tracers. Anthropogenic aromatics mainly came from solvent use, fuel and plastics combustion and vehicular emissions. However, for > C6 alkanes and cycloalkanes, vehicular emissions and fuel and plastics combustion were the most important contributors. The potential source contribution function (PSCF) identified the Bohai Sea Region (BSR) as the major source area for organic aerosol compounds and VOC species at Mt. Tai. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research of B2B e-Business Application and Development Technology Based on SOA
NASA Astrophysics Data System (ADS)
Xian, Li Liang
Today, the B2B e-business systems in most enterprises usually have multiple heterogeneous and independent systems which are based on different platforms and operate in different functional departments. To deal with the increased services in future, an enterprise needs to expand its system continuously. This, however, will cause great inconvenience to the future system maintenance. To implement e-business successfully, a unified internal e-business integration environment must be established to integrate the internal system and thus realize a unified internal mechanism within the enterprise e-business system. The SOA (service-oriented architecture), however, can well meet the above requirements. The integration of SOA-based applications can reduce the dependency of different types of IT systems, reduce the cost of system maintenance and the complexity of the IT system operation, increase the flexibility of the system deployment, and at the same time exclude the barrier of service innovation. Research and application of SOA-based enterprise application systems has become a very important research project at present. Based on SOA, this document designs an enterprise e-business application model and realizes a flexible and expandable e-business platform.
Modulations of the executive control network by stimulus onset asynchrony in a Stroop task
2013-01-01
Background Manipulating task difficulty is a useful way of elucidating the functional recruitment of the brain’s executive control network. In a Stroop task, pre-exposing the irrelevant word using varying stimulus onset asynchronies (‘negative’ SOAs) modulates the amount of behavioural interference and facilitation, suggesting disparate mechanisms of cognitive processing in each SOA. The current study employed a Stroop task with three SOAs (−400, -200, 0 ms), using functional magnetic resonance imaging to investigate for the first time the neural effects of SOA manipulation. Of specific interest were 1) how SOA affects the neural representation of interference and facilitation; 2) response priming effects in negative SOAs; and 3) attentional effects of blocked SOA presentation. Results The results revealed three regions of the executive control network that were sensitive to SOA during Stroop interference; the 0 ms SOA elicited the greatest activation of these areas but experienced relatively smaller behavioural interference, suggesting that the enhanced recruitment led to more efficient conflict processing. Response priming effects were localized to the right inferior frontal gyrus, which is consistent with the idea that this region performed response inhibition in incongruent conditions to overcome the incorrectly-primed response, as well as more general action updating and response preparation. Finally, the right superior parietal lobe was sensitive to blocked SOA presentation and was most active for the 0 ms SOA, suggesting that this region is involved in attentional control. Conclusions SOA exerted both trial-specific and block-wide effects on executive processing, providing a unique paradigm for functional investigations of the cognitive control network. PMID:23902451
Laboratory observations of artificial sand and oil agglomerates
Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.
2018-04-27
Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.
Hu, Weiwei; Palm, Brett B.; Day, Douglas A.; ...
2016-09-19
Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated withmore » an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ∼ 100 µg m −3 of pure H 2SO 4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical ( k OH) was estimated as 4.0 ± 2.0 × 10 −13 cm 3 molec −1 s −1, which is equivalent to more than a 2-week lifetime. A similar k OH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 10 12 molec cm −3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients ( γ OH = 0.59 ± 0.33 in SE US and γ OH = 0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of k OH and γ OH was observed, consistent with surface-area-limited OH uptake. No decrease of k OH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Weiwei; Palm, Brett B.; Day, Douglas A.
Isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting, for example, for 16–36 % of the submicron OA in the southeastern United States (SE US) summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated withmore » an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR does not accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ∼ 100 µg m −3 of pure H 2SO 4 to the ambient air allows IEPOX-SOA to be efficiently formed in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical ( k OH) was estimated as 4.0 ± 2.0 × 10 −13 cm 3 molec −1 s −1, which is equivalent to more than a 2-week lifetime. A similar k OH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 10 12 molec cm −3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report, for the first time, OH reactive uptake coefficients ( γ OH = 0.59 ± 0.33 in SE US and γ OH = 0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of k OH and γ OH was observed, consistent with surface-area-limited OH uptake. No decrease of k OH was observed as OH concentrations increased. These observations of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.« less
Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J
2011-12-19
We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.
Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010
Hayes, P. L.; Carlton, A. G.; Baker, K. R.; ...
2015-05-26
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidationmore » of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (≈ 3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m −3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr −1 of SOA globally, or 17% of global SOA, one-third of which is likely to be non-fossil.« less
Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010
NASA Astrophysics Data System (ADS)
Hayes, P. L.; Carlton, A. G.; Baker, K. R.; Ahmadov, R.; Washenfelder, R. A.; Alvarez, S.; Rappengluck, B.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Zotter, P.; Prevot, A. S. H.; Szidat, S.; Kleindienst, T. E.; Offenberg, J. H.; Ma, P. K.; Jimenez, J. L.
2015-05-01
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model-measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model-measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (~ 3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16-27, 35-61, and 19-35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m-3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr-1 of SOA globally, or 17% of global SOA, one-third of which is likely to be non-fossil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, P. L.; Carlton, A. G.; Baker, K. R.
Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidationmore » of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model–measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model–measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (≈ 3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16–27, 35–61, and 19–35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 μg m −3 is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr −1 of SOA globally, or 17% of global SOA, one-third of which is likely to be non-fossil.« less
Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol
NASA Astrophysics Data System (ADS)
Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.
2015-12-01
Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi-volatile organic compounds (SVOC) are emitted from OS operations which accounted for >85% of the formed SOA mass in these plumes. Implications of this SOA formation will be discussed.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2008-01-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Responses of Cells in the Midbrain Near-Response Area in Monkeys with Strabismus
Das, Vallabh E.
2012-01-01
Purpose. To investigate whether neuronal activity within the supraoculomotor area (SOA—monosynaptically connected to medial rectus motoneurons and encode vergence angle) of strabismic monkeys was correlated with the angle of horizontal misalignment and therefore helps to define the state of strabismus. Methods. Single-cell neural activity was recorded from SOA neurons in two monkeys with exotropia as they performed eye movement tasks during monocular viewing. Results. Horizontal strabismus angle varied depending on eye of fixation (dissociated horizontal deviation) and the activity of SOA cells (n = 35) varied in correlation with the angle of strabismus. Both near-response (cells that showed larger firing rates for smaller angles of exotropia) and far-response (cells that showed lower firing rates for smaller angles of exotropia) cells were identified. SOA cells showed no modulation of activity with changes in conjugate eye position as tested during smooth-pursuit, thereby verifying that the responses were related to binocular misalignment. SOA cell activity was also not correlated with change in horizontal misalignment due to A-patterns of strabismus. Comparison of SOA population activity in strabismic animals and normal monkeys (described in the literature) show that both neural thresholds and neural sensitivities are altered in the strabismic animals compared with the normal animals. Conclusions. SOA cell activity is important in determining the state of horizontal strabismus, possibly by altering vergence tone in extraocular muscle. The lack of correlated SOA activity with changes in misalignment due to A/V patterns suggest that circuits mediating horizontal strabismus angle and those that mediate A/V patterns are different. PMID:22562519
NASA Astrophysics Data System (ADS)
Li, Jialin; Zhang, Meigen; Wu, Fangkun; Sun, Yele; Tang, Guiqian
2017-06-01
The secondary organic aerosol (SOA) concentration is generally underestimated by models. Recent studies suggest that the underprediction is related to underestimations of aromatic volatile organic compound (VOC) emissions and SOA yields in current models. Here, the impacts of these two factors in China were investigated with the regional air quality modeling system RAMS-CMAQ, referring to field observations during the episode from October 14 to November 14, 2014. Comparisons between the observed and modeled SOA of four sensitivity simulation cases indicated the significant impacts of the two underestimated factors on the SOA output. By considering these two aspects, the simulated mean SOA concentrations significantly increased by nearly 4 times with a good representation of the intensively temporal variations of concentrations, which were largely controlled by photochemical processes rather than meteorological conditions. The improvement in SOA compensated for the underestimations by approximately 23.5% and contributed to the mean fraction of SOA to organic aerosol (OA) by increasing the fraction from less than 7% to more than 25%, which was closer to the observed result. These results suggested a more reasonable and more realistic representation of SOA formation in the model after allowing for the two factors. Due to the better simulation of SOA, predictions of OA were correspondingly improved when the correlation coefficient increased from 0.57 to 0.73 and other bias parameters were reduced, which indicated the improved ability of our model to trace the temporal variations of OA. Based on the improved simulation throughout the episode, the mean SOA concentration was obviously higher in eastern China than in the west. The highest concentration appeared in the Sichuan Basin and Pearl River Delta (PRD) areas, with values of 6-11 μg/m3 and 8-17 μg/m3, respectively. Over the wide regions of central and eastern China, the dominant component in SOA was formed from anthropogenic sources (ASOA), generally accounting for more than 60%.
CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype
NASA Technical Reports Server (NTRS)
Lucord, Steve; Martinez, Lindolfo
2009-01-01
We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the capabilities of existing legacy systems. Various custom applications and middleware solutions will be combined into one system providing the illusion of a set of homogenous services. This paper will document our journey as we implement the interoperability prototype. The team consists of software engineers with experience on the current command, telemetry and messaging systems that support the International Space Station (ISS) and Space Shuttle programs. Emphasis will be on the objectives, results and potential cost saving benefits.
Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L
2015-10-06
Emissions of intermediate-volatility organic compounds (IVOCs) from five on-road diesel vehicles and one off-road diesel engine were characterized during dynamometer testing. The testing evaluated the effects of driving cycles, fuel composition and exhaust aftertreatment devices. On average, more than 90% of the IVOC emissions were not identified on a molecular basis, instead appearing as an unresolved complex mixture (UCM) during gas-chromatography mass-spectrometry analysis. Fuel-based emissions factors (EFs) of total IVOCs (speciated + unspeciated) depend strongly on aftertreatment technology and driving cycle. Total-IVOC emissions from vehicles equipped with catalyzed diesel particulate filters (DPF) are substantially lower (factor of 7 to 28, depending on driving cycle) than from vehicles without any exhaust aftertreatment. Total-IVOC emissions from creep and idle operations are substantially higher than emissions from high-speed operations. Although the magnitude of the total-IVOC emissions can vary widely, there is little variation in the IVOC composition across the set of tests. The new emissions data are combined with published yield data to investigate secondary organic aerosol (SOA) formation. SOA production from unspeciated IVOCs is estimated using surrogate compounds, which are assigned based on gas-chromatograph retention time and mass spectral signature of the IVOC UCM. IVOCs contribute the vast majority of the SOA formed from exhaust from on-road diesel vehicles. The estimated SOA production is greater than predictions by previous studies and substantially higher than primary organic aerosol. Catalyzed DPFs substantially reduce SOA formation potential of diesel exhaust, except at low speed operations.
NASA Astrophysics Data System (ADS)
Peng, Chao; Wang, Weigang; Li, Kun; Li, Junling; Zhou, Li; Wang, Lingshu; Ge, Maofa
2018-03-01
Limonene, a typical proxy of monoterpenes emitted from biogenic sources, plays an important role in secondary organic aerosol (SOA) formation. However, the optical properties of SOA generated from limonene under various oxidation pathways remain poorly understood. In this study, we investigate the refractive index (RI) of limonene SOA produced from four oxidation conditions with cavity ring-down spectrometer (CRDS) and photoacoustic extinctiometer operated at 532 and 375 nm. Our results show that there is a significant difference in RI values of SOA produced from NO3 oxidation compared to other oxidation pathways. The mean values of RI of SOA produced from NO3 oxidation, NOx oxidation, OH oxidation with NOx-free, and O3 oxidation experiments are 1.578, 1.469, 1.495, and 1.494 at 532 nm; and 1.591, 1.527, 1.513, and 1.537 at 375 nm, respectively, while no detectable absorption is found in all oxidation conditions. We attribute the high RI values of SOA by NO3 oxidation to two factors: a large proportion of organic nitrates and high-molecular-weight dimers/oligomers in the SOA. Our study results indicate that the nighttime chemistry may significantly influence the optical properties of limonene oxidation products. The RI values of limonene SOA generated under various oxidation conditions at different wavelengths retrieved in our laboratory experiments could help improve the model predictions for evaluating the effect of biogenic SOA on the global radiative forcing as well as climate change.
Soto, Horacio; Tong, Miriam A; Domínguez, Juan C; Muraoka, Ramón
2017-09-04
We have inserted into an unbiased semiconductor optical amplifier (SOA) a powerful control beam, with photon energy slightly smaller than that of the band-gap of its active region, for exciting two-photon absorption and the quadratic Stark effect. For the available SOA, we estimated these phenomena generated a nonlinear absorption coefficient β= -865 cm/GW and induced an appreciable birefringence inside the amplifier waveguide, which significantly modified the polarization-state of a probe beam. Based on these effects, we have experimentally demonstrated the operation of an all-optical buffer, using an 80 Gb/s optical pulse comb, as well as an unbiased SOA, which was therefore, devoid of amplified spontaneous emission and pattern effects.
Vapor Wall Deposition in Chambers: Theoretical Considerations
NASA Astrophysics Data System (ADS)
McVay, R.; Cappa, C. D.; Seinfeld, J.
2014-12-01
In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.
Aerosol composition and the contribution of SOA formation over Mediterranean forests
NASA Astrophysics Data System (ADS)
Freney, Evelyn; Sellegri, Karine; Chrit, Mounir; Adachi, Kouji; Brito, Joel; Waked, Antoine; Borbon, Agnès; Colomb, Aurélie; Dupuy, Régis; Pichon, Jean-Marc; Bouvier, Laetitia; Delon, Claire; Jambert, Corinne; Durand, Pierre; Bourianne, Thierry; Gaimoz, Cécile; Triquet, Sylvain; Féron, Anaïs; Beekmann, Matthias; Dulac, François; Sartelet, Karine
2018-05-01
As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), a series of aerosol and gas-phase measurements were deployed aboard the SAFIRE ATR42 research aircraft in summer 2014. The present study focuses on the four flights performed in late June early July over two forested regions in the south of France. We combine in situ observations and model simulations to aid in the understanding of secondary organic aerosol (SOA) formation over these forested areas in the Mediterranean and to highlight the role of different gas-phase precursors. The non-refractory particulate species measured by a compact aerosol time-of-flight mass spectrometer (cToF-AMS) were dominated by organics (60 to 72 %) followed by a combined contribution of 25 % by ammonia and sulfate aerosols. The contribution from nitrate and black carbon (BC) particles was less than 5 % of the total PM1 mass concentration. Measurements of non-refractory species from off-line transmission electron microscopy (TEM) showed that particles have different mixing states and that large fractions (35 %) of the measured particles were organic aerosol containing C, O, and S but without inclusions of crystalline sulfate particles. The organic aerosol measured using the cToF-AMS contained only evidence of oxidized organic aerosol (OOA), without a contribution of fresh primary organic aerosol. Positive matrix factorization (PMF) on the combined organic-inorganic matrices separated the oxidized organic aerosol into a more-oxidized organic aerosol (MOOA), and a less-oxidized organic aerosol (LOOA). The MOOA component is associated with inorganic species and had higher contributions of m/z 44 than the LOOA factor. The LOOA factor is not associated with inorganic species and correlates well with biogenic volatile organic species measured with a proton-transfer-reaction mass spectrometer, such as isoprene and its oxidation products (methyl vinyl ketone, MVK; methacroleine, MACR; and isoprene hydroxyhydroperoxides, ISOPOOH). Despite a significantly high mixing ratio of isoprene (0.4 to 1.2 ppbV) and its oxidation products (0.2 and 0.8 ppbV), the contribution of specific signatures for isoprene epoxydiols SOA (IEPOX-SOA) within the aerosol organic mass spectrum (m/z 53 and m/z 82) were very weak, suggesting that the presence of isoprene-derived SOA was either too low to be detected by the cToF-AMS, or that SOA was not formed through IEPOX. This was corroborated through simulations performed with the Polyphemus model showing that although 60 to 80 % of SOA originated from biogenic precursors, only about 15 to 32 % was related to isoprene (non-IEPOX) SOA; the remainder was 10 % sesquiterpene SOA and 35 to 40 % monoterpene SOA. The model results show that despite the zone of sampling being far from industrial or urban sources, a total contribution of 20 to 34 % of the SOA was attributed to purely anthropogenic precursors (aromatics and intermediate or semi-volatile compounds). The measurements obtained during this study allow us to evaluate how biogenic emissions contribute to increasing SOA concentrations over Mediterranean forested areas. Directly comparing these measurements with the Polyphemus model provides insight into the SOA formation pathways that are prevailing in these forested areas as well as processes that need to be implemented in future simulations.
NASA Astrophysics Data System (ADS)
Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Garimella, Sarvesh; Dias, Antonio; Frege, Carla; Höppel, Niko; Tröstl, Jasmin; Wagner, Robert; Yan, Chao; Amorim, Antonio; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Tomé, Antonio; Virtanen, Annele; Worsnop, Douglas; Stratmann, Frank
2016-05-01
There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from -38 to -10 °C at 5-15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -39.0 and -37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.
NASA Astrophysics Data System (ADS)
Marciacq, Jean-Bruno; Tomasello, Filippo; Erdelyi, Zsuzsanna; Gerhard, Michael
2013-09-01
The Treaty of the European Union allows for the development of common policies for all sectors of transport, including aviation, and its safety. To this end, the European legislator established in 2002 the European Aviation Safety Agency (EASA), located in Cologne, Germany, and gave it responsibility for the regulation of aviation safety, successively encompassing airworthiness, air operations and Flight Crew Licensing (FCL), Air Traffic Management (ATM), Air Navigation Systems (ANS), as well as Aerodromes (ADR).The Annexes 6 and 8 of the International Civil Aviation Organization (ICAO) to the Chicago Convention define an aircraft as "any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth's surface". The aerodynamic lift generated during the atmospheric part of the flight is commonly used to sustain and control the vehicle, that is to take-off, climb, pull-up, perform manoeuvres, fly back to the airport and land. Thus, Sub- orbital and Orbital Aircraft (SOA) are considered to be aircraft, as opposed to rockets which are symmetrical bodies not generating lift, and solely sustained by their rocket engine(s).Consequently, the regulation of SOA airworthiness, their crew, operations, insertion into the traffic and utilisation of aerodromes would in principle fall under the remit of EASA, which would have to fulfil its role of protection of the European citizens in relation to civil suborbital and orbital flights, that is to certify SOAs and their operations before they would be operated for Commercial Transport in the EU.Since EASA was first contacted by potential applicants in 2007, many projects have developed and the context has evolved. Thus, this paper intends to update the approach initially proposed at the 3rd IAASS in Rome in October 2008 and complemented at the 4th IAASS in Huntsville in May 2010 to accommodate sub-orbital and orbital aircraft into the EU regulatory system, and to establish a consistent regulatory framework to allow safe and environmentally controlled operations of SOA in Europe. For further legal and technical details, please refer to the corresponding IAASS-published papers.
Secondary Organic Aerosol Formation from the Photooxidation of Naphthalene
NASA Astrophysics Data System (ADS)
Zhou, S.; Chen, Y.; Wenger, J.
2009-04-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants that are released into the atmosphere as a by-product of combustion processes. The gas-phase PAHs can be chemically transformed via reaction with the hydroxyl radical to produce a range of oxidised organic compounds and other pollutants such as ozone and secondary organic aerosol (SOA). Epidemiological studies have established that exposure to this type of air pollution is associated with damaging effects on the respiratory and cardiovascular systems, and can lead to asthma, oxidative stress, health deterioration and even death. The major anthropogenic source of SOA in urban areas is believed to be aromatic hydrocarbons, which are present in automobile fuels and are used as solvents. As a result, research is currently being performed on the characterisation of SOA produced from aromatic hydrocarbons such as toluene, the xylenes and trimethylbenzenes. However, significant amounts of PAHs are also released into urban areas from automobile emissions and the combustion of fossil fuels for home heating. Naphthalene is regularly cited as the most abundant PAH in polluted urban air, with typical ambient air concentrations of 0.05 - 0.20 parts per billion (ppbV) in European cities, comparable to the xylenes. Since naphthalene reacts in an analogous manner to monocyclic aromatic compounds then it is also expected to make a significant contribution to ambient SOA. However, the yield and chemical composition of SOA produced from the atmospheric degradation of naphthalene is not well known. In this presentation, the effects of NOx level and relative humidity on the SOA formation from the phootooixdation of naphthalene will be presented. A series of experiments has been performed in a large atmospheric simulation chamber equipped with a gas chromatograph and analyzers for monitoring nitrogen oxides (NOx) and ozone. SOA formation from the photooxidation of naphthalene was measured using a scanning mobility particle sizer. The effect of NOx concentration on SOA formation was evaluated by varying the initial naphthalene and NOx concentrations. The results clearly show that a higher hydrocarbon to NOx ratio produces a higher yield of SOA. The SOA mass yields were also found to increase as the relative humidity was raised from 0 to 50%. A recently developed denuder-filter sampling technique was used to investigate the gas/particle partitioning behavior of the photooxidation products. This work is the first study of the formation of SOA from naphthalene and the results will be compared to those obtained from other aromatic compounds.
NASA Technical Reports Server (NTRS)
Smyth, R. K. (Editor)
1979-01-01
The state of the art survey (SOAS) covers six technology areas including flightpath management, aircraft control system, crew station technology, interface & integration technology, military technology, and fundamental technology. The SOAS included contributions from over 70 individuals in industry, government, and the universities.
NASA Astrophysics Data System (ADS)
Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Chen, J.; Yu, J.
2015-08-01
In China, a rapid increase in passenger vehicles has led to the growing concern of vehicle exhaust as an important source of anthropogenic secondary organic aerosol (SOA) in megacities hard hit by haze. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) operated in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with relative humidity at around 50 %. After aging at an OH exposure of 5 × 106 molecules cm-3 h, the formed SOA was 12-259 times as high as primary organic aerosol (POA). The SOA production factors (PF) were 0.001-0.044 g kg-1 fuel, comparable with those from the previous studies at comparable OH exposure. This quite lower OH exposure than that in typical atmospheric conditions might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yields in this study were well fit by a one-product gas-particle partitioning model but quite lower than those of a previous study investigating SOA formation from three idling passenger vehicles (Euro 2-4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90 % of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C / ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.
Optical devices integrated with semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Oh, Kwang R.; Park, Moon S.; Jeong, Jong S.; Baek, Yongsoon; Oh, Dae-Kon
2000-07-01
Semiconductor optical amplifiers (SOA's) have been used as a key optical component for the high capacity communication systems. The monolithic integration is necessary for the stable operation of these devices and the wider applications. In this paper, the coupling technique between different waveguides and the integration of SSC's are discussed and the research results of optical devices integrated with SOA's are presented.
Science Opportunity Analyzer (SOA): Science Planning Made Simple
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Polanskey, Carol A.
2004-01-01
.For the first time at JPL, the Cassini mission to Saturn is using distributed science operations for developing their experiments. Remote scientists needed the ability to: a) Identify observation opportunities; b) Create accurate, detailed designs for their observations; c) Verify that their designs meet their objectives; d) Check their observations against project flight rules and constraints; e) Communicate their observations to other scientists. Many existing tools provide one or more of these functions, but Science Opportunity Analyzer (SOA) has been built to unify these tasks into a single application. Accurate: Utilizes JPL Navigation and Ancillary Information Facility (NAIF) SPICE* software tool kit - Provides high fidelity modeling. - Facilitates rapid adaptation to other flight projects. Portable: Available in Unix, Windows and Linux. Adaptable: Designed to be a multi-mission tool so it can be readily adapted to other flight projects. Implemented in Java, Java 3D and other innovative technologies. Conclusion: SOA is easy to use. It only requires 6 simple steps. SOA's ability to show the same accurate information in multiple ways (multiple visualization formats, data plots, listings and file output) is essential to meet the needs of a diverse, distributed science operations environment.
Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O. T.; Zhang, Zhenfa; Marth, Wendy J.; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G.; Vizuete, William; Xie, Ying; Luecken, Deborah J.; Piletic, Ivan R.; Edney, Edward O.; Bartolotti, Libero J.; Gold, Avram; Surratt, Jason D.
2013-01-01
Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NOx = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NOx. PMID:23553832
Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O T; Zhang, Zhenfa; Marth, Wendy J; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G; Vizuete, William; Xie, Ying; Luecken, Deborah J; Piletic, Ivan R; Edney, Edward O; Bartolotti, Libero J; Gold, Avram; Surratt, Jason D
2013-04-23
Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x).
NASA Astrophysics Data System (ADS)
Leong, Y.; Karakurt Cevik, B.; Hernandez, C.; Griffin, R. J.; Taylor, N.; Matus, J.; Collins, D. R.
2013-12-01
Secondary organic aerosol (SOA) represents a large portion of sub-micron particulate matter on a global scale. The composition of SOA and its formation processes are heavily influenced by anthropogenic and biogenic activity. Volatile organic compounds (VOCs) that are emitted naturally from forests or from human activity serve as precursors to SOA formation. Biogenic SOA (BSOA) is formed from biogenic VOCs and is prevalent in forested regions like the Southeastern United States. The formation and enhancement of BSOA under anthropogenic influences such as nitrogen oxides (NOx), sulfur dioxide (SO2), and oxygen radicals are still not well understood. The lack of information on anthropogenic BSOA enhancement and the reversibility of SOA formation could explain the underprediction of SOA in current models. To address some of these gaps in knowledge, this study was conducted as part of the Southern Oxidant and Aerosol Study (SOAS) in Centreville, AL during the summer of 2013. SOA growth experiments were conducted in two Captive Aerosol Growth and Evolution (CAGE) outdoor chambers located at the SEARCH site. Ambient trace gas concentrations were maintained in these chambers using semi-permeable gas-exchange membranes, while studying the growth of injected monodisperse seed aerosol. The control chamber was operated under ambient conditions; the relative humidity and oxidant and NOx levels were perturbed in the second chamber. This design allows experiments to capture the natural BSOA formation processes in the southeastern atmosphere and to study the influence of anthropogenic activity on aerosol chemistry. Chamber experiments were periodically monitored with physical and chemical instrumentation including a scanning mobility particle sizer (SMPS), a cloud condensation nuclei counter (CCNC), a humidified tandem differential mobility analyzer (H-TDMA), and an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The CAGE experiments focused on SOA reversibility and the sensitivity of SOA reactions to oxidant or NOx enhancement and aerosol liquid water content. Available ambient trace gas concentrations include VOCs, NOx, SO2, ozone, peroxyaxyl nitrates, and ammonia. Chamber data will also be compared to ambient aerosol measurements collected by the instruments mentioned above as well as those from other research groups.
NASA Astrophysics Data System (ADS)
Campuzano Jost, P.; Hu, W.; Palm, B. B.; Day, D. A.; Jimenez, J. L.; Rivera, J. C.; Keutsch, F. N.; Zhao, R.; Lee, A.; Abbatt, J.; Marais, E. A.; Liao, J.; Froyd, K. D.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; St Clair, J. M.; Crounse, J. D.; Wennberg, P. O.; Mikoviny, T.; Armin, W.; Scarino, A. J.; Hair, J. W.; Ferrare, R. A.
2017-12-01
Secondary Organic Aerosol (SOA) formed by uptake of isoprene epoxide (IEPOX), a key isoprene oxidation product under low-NO conditions (<100 pptv), has been recently shown to be a major contributor to the total aerosol burden in many regions of the world with high isoprene emissions, such as the SE US or Amazonia. In the present study, we have used Positive Matrix Factorization (PMF) to extract and identify IEPOX-SOA factors from data recorded by the CU High-Resolution Aerosol Mass Spectrometer (AMS) during the DC3 and SEAC4RS aircraft missions on the NASA DC-8. These campaigns sampled the continental US over the Spring of 2012 and the Summer of 2013, respectively. The contribution of IEPOX-SOA to total OA mass in the SE US was substantial for both DC3 (28% on average) and SEAC4RS flights (26%). IEPOX-SOA was observed in isoprene-rich areas in the W US, albeit with smaller contributions (up to 10% of OA). Highest concentrations of IEPOX-SOA were mostly found downwind and/or aloft of source regions, where IEPOX was already depleted but both inorganic sulfate and particle water/relative humidity were higher. IEPOX sulfate, a specific product of IEPOX uptake, correlates reasonably well with total IEPOX-SOA close to sources at low RH, with an observed contribution between 1-10% to total IEPOX-SOA in the SEUS. While the IEPOX-SOA mass spectrum near the ground was very similar to other ground studies in the SEUS, at higher altitudes differences were observed, likely reflecting aging chemistry aloft. In particular we identify, near the top of the boundary layer/cloud deck, a new OA factor likely resulting from aqueous oxidation of IEPOX-SOA. This factor closely matches the spectrum obtained in recent laboratory experiments simulating aqueous IEPOX-SOA aging, and contributed about 25% to total IEPOX-SOA during SEAC4RS; modeling of this new factor in GEOS-Chem will be presented. Measured IEPOX-SOA concentrations and their overall contribution to the total OA burden were substantially higher for SEAC4RS than those measured at the SOAS ground site the same summer (both total and site overflights). Average daily ground temperatures were substantially higher during the SEAC4RS period, with the overall dependence of concentrations of IEPOX-SOA closely following the isoprene source temperature dependence used in the MEGAN inventory.
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.
2014-12-01
Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.
NASA Astrophysics Data System (ADS)
Kotb, Amer; Zoiros, Kyriakos E.
2017-11-01
The photonic crystal (PC) can be used to prohibit, confine, or control the propagation of light in a photonic band-gap. The performance of an ultrafast exclusive disjunction (XOR) gate-implemented with a photonic crystal semiconductor optical amplifier (PC-SOA)-assisted Mach-Zehnder interferometer (MZI) is numerically investigated and analyzed at a data rate of 160 Gb/s. The impact of the data signals and PC-SOA's critical parameters on the output quality factor (Q-factor) is examined and assessed. The simulation results demonstrate that the XOR gate which is based on the proposed scheme is capable of operating at the target data rate with logical correctness and high quality. This is achieved with better performance than when having conventional SOAs in the MZI, which justifies employing PC-SOAs as nonlinear elements.
Metadata-Driven SOA-Based Application for Facilitation of Real-Time Data Warehousing
NASA Astrophysics Data System (ADS)
Pintar, Damir; Vranić, Mihaela; Skočir, Zoran
Service-oriented architecture (SOA) has already been widely recognized as an effective paradigm for achieving integration of diverse information systems. SOA-based applications can cross boundaries of platforms, operation systems and proprietary data standards, commonly through the usage of Web Services technology. On the other side, metadata is also commonly referred to as a potential integration tool given the fact that standardized metadata objects can provide useful information about specifics of unknown information systems with which one has interest in communicating with, using an approach commonly called "model-based integration". This paper presents the result of research regarding possible synergy between those two integration facilitators. This is accomplished with a vertical example of a metadata-driven SOA-based business process that provides ETL (Extraction, Transformation and Loading) and metadata services to a data warehousing system in need of a real-time ETL support.
SOA Formation from the Atmospheric Oxidation of 2-Methyl-3-Buten-2-ol and Its Implications for PM2.5
The formation of secondary organic aerosol (SOA) generated by irradiating 2-methyl-3-buten-2-01 (MBO) in the presence and/or absence of NOx H2O2, and/or SO2 was examined. Experiments were conducted. in smog chambers operated either in dyna....
Optimisation of SOA-REAMs for hybrid DWDM-TDMA PON applications.
Naughton, Alan; Antony, Cleitus; Ossieur, Peter; Porto, Stefano; Talli, Giuseppe; Townsend, Paul D
2011-12-12
We demonstrate how loss-optimised, gain-saturated SOA-REAM based reflective modulators can reduce the burst to burst power variations due to differential access loss in the upstream path in carrier distributed passive optical networks by 18 dB compared to fixed linear gain modulators. We also show that the loss optimised device has a high tolerance to input power variations and can operate in deep saturation with minimal patterning penalties. Finally, we demonstrate that an optimised device can operate across the C-Band and also over a transmission distance of 80 km. © 2011 Optical Society of America
SOA approach to battle command: simulation interoperability
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Self, Mid; Miller, Gordon J.; McDonnell, Joseph S.
2010-04-01
NVESD is developing a Sensor Data and Management Services (SDMS) Service Oriented Architecture (SOA) that provides an innovative approach to achieve seamless application functionality across simulation and battle command systems. In 2010, CERDEC will conduct a SDMS Battle Command demonstration that will highlight the SDMS SOA capability to couple simulation applications to existing Battle Command systems. The demonstration will leverage RDECOM MATREX simulation tools and TRADOC Maneuver Support Battle Laboratory Virtual Base Defense Operations Center facilities. The battle command systems are those specific to the operation of a base defense operations center in support of force protection missions. The SDMS SOA consists of four components that will be discussed. An Asset Management Service (AMS) will automatically discover the existence, state, and interface definition required to interact with a named asset (sensor or a sensor platform, a process such as level-1 fusion, or an interface to a sensor or other network endpoint). A Streaming Video Service (SVS) will automatically discover the existence, state, and interfaces required to interact with a named video stream, and abstract the consumers of the video stream from the originating device. A Task Manager Service (TMS) will be used to automatically discover the existence of a named mission task, and will interpret, translate and transmit a mission command for the blue force unit(s) described in a mission order. JC3IEDM data objects, and software development kit (SDK), will be utilized as the basic data object definition for implemented web services.
NASA Astrophysics Data System (ADS)
Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos
2016-07-01
Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).
The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions
NASA Astrophysics Data System (ADS)
Lang-Yona, N.; Rudich, Y.; Mentel, Th. F.; Bohne, A.; Buchholz, A.; Kiendler-Scharr, A.; Kleist, E.; Spindler, C.; Tillmann, R.; Wildt, J.
2010-08-01
The Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Jülich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated. Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0±0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13±0.03 at 90% RH with a critical diameter of droplet activation was 100±4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry. The increase of Holm oak emissions with temperature (≈20% per degree) was stronger than e.g. for Boreal tree species (≈10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.
Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.
Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele
2017-02-07
Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NO x ), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NO x concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NO x conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NO x conditions) was 34.1%. The reduced SOA yield under high-NO x conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.
NCAR Integrated Sounding System Observations during the SOAS / SAS Field Campaign
NASA Astrophysics Data System (ADS)
Brown, W. O.; Moore, J.
2013-12-01
The National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) deployed an Integrated Sounding Systems (ISS) for the SOAS (Southern Oxidant and Aerosol Study) field campaign in Alabama in the summer of 2013. The ISS was split between two sites: a former NWS site approximately 1km from the main SOAS chemistry ground site near Centerville AL, and about 20km to the south at the Alabama fish hatchery site approximately 1km from the flux tower site near Marion, AL. At the former-NWS site we launched 106 radiosonde soundings, operated a 915 MHz boundary layer radar wind profiler with RASS (Radio Acoustic Sounding System), ceilometer and various surface meteorological sensors. At the AABC site we operated a Lesosphere WIndcube 200S Doppler lidar and a Metek mini-Doppler sodar. Other NCAR facilities at the AABC site included a 45-m instrumented flux tower. This poster will present a sampling observations made by these instruments, including examples of boundary layer evolution and structure, and summarize the performance of the instrumentation.
Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.
Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi
2017-07-10
Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.
Towards Self-adaptation for Dependable Service-Oriented Systems
NASA Astrophysics Data System (ADS)
Cardellini, Valeria; Casalicchio, Emiliano; Grassi, Vincenzo; Lo Presti, Francesco; Mirandola, Raffaela
Increasingly complex information systems operating in dynamic environments ask for management policies able to deal intelligently and autonomously with problems and tasks. An attempt to deal with these aspects can be found in the Service-Oriented Architecture (SOA) paradigm that foresees the creation of business applications from independently developed services, where services and applications build up complex dependencies. Therefore the dependability of SOA systems strongly depends on their ability to self-manage and adapt themselves to cope with changes in the operating conditions and to meet the required dependability with a minimum of resources. In this paper we propose a model-based approach to the realization of self-adaptable SOA systems, aimed at the fulfillment of dependability requirements. Specifically, we provide a methodology driving the system adaptation and we discuss the architectural issues related to its implementation. To bring this approach to fruition, we developed a prototype tool and we show the results that can be achieved with a simple example.
NASA Astrophysics Data System (ADS)
Grieshop, A. P.; Reece, S. M.; Sinha, A.; Wathore, R.
2016-12-01
Combustion in rudimentary and improved cook-stoves used by billions in developing countries can be a regionally dominant contributor to black carbon (BC), primary organic aerosols (POA) and precursors for secondary organic aerosol (SOA). Recent studies suggest that SOA formed during photo-oxidation of primary emissions from biomass burning may make important contribution to its atmospheric impacts. However, the extent to which stove type and operating conditions affect the amount, composition and characteristics of SOA formed from the aging of cookstoves emissions is still largely undetermined. Here we present results from experiments with a field portable oxidation flow reactor (F-OFR) designed to assess aging of cook-stove emissions in both laboratory and field settings. Laboratory tests results are used to compare the quantity and properties of fresh and aged emissions from a traditional open fire and twp alternative stove designs operated on the standard and alternate testing protocols. Diluted cookstove emissions were exposed to a range of oxidant concentrations in the F-OFR. Primary emissions were aged both on-line, to study the influence of combustion variability, and sampled from batched emissions in a smog chamber to examine different aging conditions. Data from real-time particle- and gas-phase instruments and integrated filter samples were collected up and down stream of the OFR. The properties of primary emissions vary strongly with stove type and combustion conditions (e.g. smoldering versus flaming). Experiments aging diluted biomass emissions from distinct phases of stove operation (smoldering and flaming) showed peak SOA production for both phases occurred between 3 and 6 equivalent days of aging with slightly greater production observed in flaming phase emissions. Changing combustion conditions had a stronger influence than aging on POA+SOA `emission factors'. Aerosol Chemical Speciation Monitor data show a substantial evolution of aerosol composition with aging. These results highlight the importance of both stoves' operating conditions and aging on composition and characteristics of emissions, which have important implications for regional air quality and climate forcing.
SOA precursors at the T0 site during the 2010 CARES campaign
NASA Astrophysics Data System (ADS)
Wallace, H. W.; Jobson, B. T.; Erickson, M. H.
2010-12-01
Continuous measurements of C5 to C12 Volatile Organic Compounds (VOC) have been made using the Washington State University Mobile Atmospheric Chemistry Laboratory (MACL), at the T0 site during the month of June 2010 Carbonaceous Aerosol Carbonaceous Aerosols and Radiative Effects Study (CARES). These measurements were made to better understand aerosol formation and growth in Sacramento, CA and the surrounding areas. Using a sorbent based preconcentration sampling technique for our quadrupole ion trap gas chromatography mass spectrometer (GCMS), we have measured anthropogenic and biogenic secondary organic aerosol (SOA) precursors. Major biogenic VOCs identified include: α-pinene, limonene, isoprene, phellanderene and β-pinene. Diurnal profiles of the concentrations will be presented. Monoterpenes were highest in the mornings while isoprene was highest in the afternoon. In addition to understanding the diurnal profiles the SOA precursors at the T0 site, the relative contributions of biogenic and anthropogenic compounds to SOA formation will be presented.
NASA Astrophysics Data System (ADS)
Rattanavaraha, Weruka; Chu, Kevin; Hapsari Budisulistiorini, Sri; Riva, Matthieu; Lin, Ying-Hsuan; Edgerton, Eric S.; Baumann, Karsten; Shaw, Stephanie L.; Guo, Hongyu; King, Laura; Weber, Rodney J.; Neff, Miranda E.; Stone, Elizabeth A.; Offenberg, John H.; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.
2016-04-01
In the southeastern US, substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA) that contributes to fine particulate matter (PM2.5). Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2), oxides of nitrogen (NOx), and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH)-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM), ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS). Sample extracts were analyzed by gas chromatography-electron ionization-mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH) network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM) ( ˜ 7 to ˜ 20 %). Isoprene-derived SOA tracers correlated with sulfate (SO42-) (r2 = 0.34, n = 117) but not with NOx. Moderate correlations between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (together abbreviated MAE/HMML)-derived SOA tracers with nitrate radical production (P[NO3]) (r2 = 0.57, n = 40) were observed during nighttime, suggesting a potential role of the NO3 radical in forming this SOA type. However, the nighttime correlation of these tracers with nitrogen dioxide (NO2) (r2 = 0.26, n = 40) was weaker. Ozone (O3) correlated strongly with MAE/HMML-derived tracers (r2 = 0.72, n = 30) and moderately with 2-methyltetrols (r2 = 0.34, n = 15) during daytime only, suggesting that a fraction of SOA formation could occur from isoprene ozonolysis in urban areas. No correlation was observed between aerosol pH and isoprene-derived SOA. Lack of correlation between aerosol acidity and isoprene-derived SOA is consistent with the observation that acidity is not a limiting factor for isoprene SOA formation at the BHM site as aerosols were acidic enough to promote multiphase chemistry of isoprene-derived epoxides throughout the duration of the study. All in all, these results confirm previous studies suggesting that anthropogenic pollutants enhance isoprene-derived SOA formation.
Secondary organic aerosol formation from road vehicle emissions
NASA Astrophysics Data System (ADS)
Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.
2014-05-01
Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation. Furthermore, we observed that vehicle emissions and SOA are significantly affected by temperature and RH: doubling the RH in the chamber resulted in significantly increased SOA formation. Primary emissions and secondary aerosol formation from diesel and gasoline vehicles will be compared at different temperature and RH. Also the interaction and influence of inorganics on organics will be discussed. References: [1] Robinson, A.L., et al. (2007) Science 315, 1259. [2] Weitkamp, E.A., et al. (2007) Environ. Sci. Technol. 41, 6969. [3] Bahreini, R., et al. (2012) Geophys. Res. Lett. 39, L06805. [4] Gentner, D.R. et al. (2012) PNAS 109, 18318. [5] Gordon, T.D. et al. (2013) Atmos. Chem. Phys. Discuss 13, 23173. [6] Platt, S.M., et al. (2013) Atmos. Chem. Phys. Discuss. 12, 28343.
NASA Astrophysics Data System (ADS)
Flores, Rosa M.; Doskey, Paul V.
2016-04-01
Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.
NASA Astrophysics Data System (ADS)
Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.
2015-12-01
A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including ambient isoprene-derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.
NASA Astrophysics Data System (ADS)
Tuet, Wing Y.; Chen, Yunle; Fok, Shierly; Champion, Julie A.; Ng, Nga L.
2017-09-01
Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different formation conditions (RO2 + HO2 vs. RO2 + NO dominant, dry vs. humid). Various cellular responses were measured, including reactive oxygen and nitrogen species (ROS/RNS) production and secreted levels of cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SOA precursor identity and formation condition affected all measured responses in a hydrocarbon-specific manner. With the exception of naphthalene SOA, cellular responses followed a trend where TNF-α levels reached a plateau with increasing IL-6 levels. ROS/RNS levels were consistent with relative levels of TNF-α and IL-6, due to their respective inflammatory and anti-inflammatory effects. Exposure to naphthalene SOA, whose aromatic-ring-containing products may trigger different cellular pathways, induced higher levels of TNF-α and ROS/RNS than suggested by the trend. Distinct cellular response patterns were identified for hydrocarbons whose photooxidation products shared similar chemical functionalities and structures, which suggests that the chemical structure (carbon chain length and functionalities) of photooxidation products may be important for determining cellular effects. A positive nonlinear correlation was also detected between ROS/RNS levels and previously measured DTT (dithiothreitol) activities for SOA samples. In the context of ambient samples collected during summer and winter in the greater Atlanta area, all laboratory-generated SOA produced similar or higher levels of ROS/RNS and DTT activities. These results suggest that the health effects of SOA are important considerations for understanding the health implications of ambient aerosols.
Power MOSFET Thermal Instability Operation Characterization Support
NASA Technical Reports Server (NTRS)
Shue, John L.; Leidecker, Henning
2010-01-01
Metal-oxide semiconductor field-effect transistors (MOSFETs) are used extensively in flight hardware and ground support equipment. In the quest for faster switching times and lower "on resistance," the MOSFETs designed from 1998 to the present have achieved most of their intended goals. In the quest for lower on resistance and higher switching speeds, the designs now being produced allow the charge-carrier dominated region (once small and outside of the area of concern) to become important and inside the safe operating area (SOA). The charge-carrier dominated region allows more current to flow as the temperature increases. The higher temperatures produce more current resulting in the beginning of thermal runaway. Thermal runaway is a problem affecting a wide range of modern MOSFETs from more than one manufacturer. This report contains information on MOSFET failures, their causes and test results and information dissemination.
Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing
NASA Astrophysics Data System (ADS)
Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele
2017-05-01
The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.
Secondary organic aerosol from sesquiterpene and monoterpene emissions in the United States.
Sakulyanontvittaya, Tanarit; Guenther, Alex; Helmig, Detlev; Milford, Jana; Wiedinmyer, Christine
2008-12-01
Emissions of volatile organic compounds (VOC) from vegetation are believed to be a major source of secondary organic aerosol (SOA), which in turn comprises a large fraction of fine particulate matter in many areas. Sesquiterpenes are a class of biogenic VOC with high chemical reactivity and SOA yields. Sesquiterpenes have only recently been quantified in emissions from a wide variety of plants. In this study, a new sesquiterpene emission inventory is used to provide input to the Models-3 Community Multiscale Air Quality (CMAQ) model. CMAQ is used to estimate the contribution of sesquiterpenes and monoterpenes to SOA concentrations over the contiguous United States. The gas-particle partitioning module of CMAQ was modified to include condensable products of sesquiterpene oxidation and to update values of the enthalpy of vaporization. The resulting model predicts July monthly average surface concentrations of total SOA in the eastern U.S. ranging from about 0.2-0.8 microg m(-3). This is roughly double the amount of SOA produced in this region when sesquiterpenes are not included. Even with sesquiterpenes included, however, the model significantly underpredicts surface concentrations of particle-phase organic matter compared to observed values. Treating all SOA as capable of undergoing polymerization increases predicted monthly average surface concentrations in July to 0.4-1.2 microg m(-3), in closer agreement with observations. Using the original enthalpy of vaporization value in CMAQ in place of the values estimated from the recent literature results in predicted SOA concentrations of about 0.3-1.3 microg m(-3).
Source apportionment of organic aerosol across Houston, TX during DISCOVER-AQ
NASA Astrophysics Data System (ADS)
Yoon, S.; Clark, A. E.; Ortiz, S. M.; Usenko, S.; Sheesley, R. J.
2015-12-01
As part of the ground-based sampling efforts during DISCOVER-AQ's Houston month-long campaign in September 2013, atmospheric particulate matter (PM) samples were collected at four sites: Moody Tower (urban), Manvel Croix (southern suburb), Conroe (northern suburb), and La Porte (urban industrial). The Houston metropolitan area, especially the Houston Ship Channel, is a densely industrialized urban city with large concentrations of petroleum refining, petrochemical manufacturing, and heavy traffic during peak hours. Due to these and other emission sources, the area is heavily impacted by ambient PM. This study will be looking at fine PM (diameter less than 2.5µm, PM2.5) from all four sites. PM2.5fraction is relevant for understanding fate and transport of organic contaminants and is widely known to negatively impact human health. Chemical analysis including radiocarbon (14C) and organic tracer measurements (polycyclic aromatic hydrocarbons, alkanes, hopanes, steranes, and levoglucosan) were used for source apportionment. The 14C measurements constrained CMB results to estimate both primary and secondary contributions to total organic carbon (TOC). Results indicate that Moody Tower had consistent primary motor vehicle exhaust contribution (18-27%) and a fossil secondary organic aerosol (SOA) contribution from 5-33% depending on atmospheric conditions. Conroe had a lower contribution of motor vehicle exhaust (5-10%) and similarly variable fraction of fossil SOA (4-25%). Manvel Croix had an interim motor vehicle contribution (9-15%) with a variable fossil SOA (5-30%). For contemporary OC, there was minimal contribution of wood smoke during examined weeks (0-9%) but larger contributor of biogenic SOA ranging from 40-75% at Moody Tower, 56-81% at Manvel Croix and 60-79% at Conroe. Overall, the motor vehicle contribution was consistent at each site during the analysis week, biogenic SOA was consistently high, while fossil SOA showed the most variability.
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Brook, J.; Chang, R. Y.-W.; Evans, G. J.; Hayden, K.; Jeong, C.-H.; Li, S.-M.; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.
2011-03-01
As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of ~10.1 μg m-3 ppmvCO-1 h-1 for the first ~10 h of plume processing to near-zero in an aged airmass (i.e. after several days). The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.
NASA Astrophysics Data System (ADS)
Han, Yuemei; Stroud, Craig A.; Liggio, John; Li, Shao-Meng
2016-11-01
Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2-7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6-36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0-1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33-35 % and CxHyO2+ 16-17 %) in the total organics and the O / C ratio (0.52-0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39-40, 17-19, and 0.61-0.64 %), suggesting that α-pinene SOA was less oxygenated in the studied high-NOx conditions. The fraction of nitrogen-containing organic fragments (CxHyNz+ and CxHyOzNp+) in the total organics was enhanced with the increases in particle acidity under high-NOx conditions, indicating that organic nitrates may be formed heterogeneously through a mechanism catalyzed by particle acidity or that acidic conditions facilitate the partitioning of gas-phase organic nitrates into particle phase. The results of this study suggest that inorganic acidity has a significant role to play in determining various organic aerosol chemical properties such as mass yields, oxidation state, and organic nitrate content. The acidity effect being further dependent on the timescale of SOA formation is also an important parameter in the modeling of SOA.
Observation Planning Made Simple with Science Opportunity Analyzer (SOA)
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Polanskey, Carol A.
2004-01-01
As NASA undertakes the exploration of the Moon and Mars as well as the rest of the Solar System while continuing to investigate Earth's oceans, winds, atmosphere, weather, etc., the ever-existing need to allow operations users to easily define their observations increases. Operation teams need to be able to determine the best time to perform an observation, as well as its duration and other parameters such as the observation target. In addition, operations teams need to be able to check the observation for validity against objectives and intent as well as spacecraft constraints such as turn rates and acceleration or pointing exclusion zones. Science Opportunity Analyzer (SOA), in development for the last six years, is a multi-mission toolset that has been built to meet those needs. The operations team can follow six simple steps and define his/her observation without having to know the complexities of orbital mechanics, coordinate transformations, or the spacecraft itself.
Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds
NASA Astrophysics Data System (ADS)
Giller, Robin; Manning, Robert J.; Talli, Giuseppe; Webb, Roderick P.; Adams, Michael J.
2007-02-01
We investigate the dependence of the speed of recovery of optically excited semiconductor optical amplifiers (SOAs) on the active region dimensions. We use a picosecond pump-probe arrangement to experimentally measure and compare the gain and phase dynamics of four SOAs with varying active region dimensions. A sophisticated time domain SOA model incorporating amplified spontaneous emission (ASE) agrees well with the measurements and shows that, in the absence of a continuous wave (CW) beam, the ASE plays a similar role to such a holding beam. The experimental results are shown to be consistent with a recovery rate which is inversely proportional to the optical area. A significant speed increase is predicted for an appropriate choice of active region dimensions.
Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS
NASA Astrophysics Data System (ADS)
Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; Jimenez, Jose L.; Koo, Bonyoung; Pye, Havala O. T.
2016-03-01
Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS instead treats POA as semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/Ox) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 × lower than observed at Pasadena using -log(NOx : NOy)), low intrinsic SOA formation efficiency (low by 1.6 to 2 × for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 × too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation efficiency for that model is estimated to be too low by about 7 × . From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, consistent with a substantial fraction of cooking OA in the observations). This is compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g., industrial, point, and area sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but it did capture the AMS diurnal profile of HOA and CIOA well, with the exception of the midday peak. Overall, the CMAQ-VBS with its semivolatile treatment of POA, SOA from intermediate volatility organic compounds (IVOCs), and aging of SOA improves SOA model performance (though SOA formation efficiency is still 1.6-2 × too low). However, continued efforts are needed to better understand assumptions in the parameterization (e.g., SOA aging) and provide additional certainty to how best to apply existing emission inventories in a framework that treats POA as semivolatile, which currently degrades existing model performance at routine monitoring networks. The VBS and other approaches (e.g., AE6) require additional work to appropriately incorporate IVOC emissions and subsequent SOA formation.
Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS
Woody, Matthew C.; Baker, Kirk R.; Hayes, Patrick L.; ...
2016-03-29
In this paper, Community Multiscale Air Quality (CMAQ) model simulations utilizing the traditional organic aerosol (OA) treatment (CMAQ-AE6) and a volatility basis set (VBS) treatment for OA (CMAQ-VBS) were evaluated against measurements collected at routine monitoring networks (Chemical Speciation Network (CSN) and Interagency Monitoring of Protected Visual Environments (IMPROVE)) and those collected during the 2010 California at the Nexus of Air Quality and Climate Change (CalNex) field campaign to examine important sources of OA in southern California. Traditionally, CMAQ treats primary organic aerosol (POA) as nonvolatile and uses a two-product framework to represent secondary organic aerosol (SOA) formation. CMAQ-VBS insteadmore » treats POA as semivolatile and lumps OA using volatility bins spaced an order of magnitude apart. The CMAQ-VBS approach underpredicted organic carbon (OC) at IMPROVE and CSN sites to a greater degree than CMAQ-AE6 due to the semivolatile POA treatment. However, comparisons to aerosol mass spectrometer (AMS) measurements collected at Pasadena, CA, indicated that CMAQ-VBS better represented the diurnal profile and primary/secondary split of OA. CMAQ-VBS SOA underpredicted the average measured AMS oxygenated organic aerosol (OOA, a surrogate for SOA) concentration by a factor of 5.2, representing a considerable improvement to CMAQ-AE6 SOA predictions (factor of 24 lower than AMS). We use two new methods, one based on species ratios (SOA/ΔCO and SOA/O x) and another on a simplified SOA parameterization, to apportion the SOA underprediction for CMAQ-VBS to slow photochemical oxidation (estimated as 1.5 × lower than observed at Pasadena using -log(NO x:NO y)), low intrinsic SOA formation efficiency (low by 1.6 to 2 × for Pasadena), and low emissions or excessive dispersion for the Pasadena site (estimated to be 1.6 to 2.3 × too low/excessive). The first and third factors are common to CMAQ-AE6, while the intrinsic SOA formation efficiency for that model is estimated to be too low by about 7 ×. From source-apportioned model results, we found most of the CMAQ-VBS modeled POA at the Pasadena CalNex site was attributable to meat cooking emissions (48 %, consistent with a substantial fraction of cooking OA in the observations). This is compared to 18 % from gasoline vehicle emissions, 13 % from biomass burning (in the form of residential wood combustion), and 8 % from diesel vehicle emissions. All "other" inventoried emission sources (e.g., industrial, point, and area sources) comprised the final 13 %. The CMAQ-VBS semivolatile POA treatment underpredicted AMS hydrocarbon-like OA (HOA) + cooking-influenced OA (CIOA) at Pasadena by a factor of 1.8 compared to a factor of 1.4 overprediction of POA in CMAQ-AE6, but it did capture the AMS diurnal profile of HOA and CIOA well, with the exception of the midday peak. Overall, the CMAQ-VBS with its semivolatile treatment of POA, SOA from intermediate volatility organic compounds (IVOCs), and aging of SOA improves SOA model performance (though SOA formation efficiency is still 1.6–2 × too low). However, continued efforts are needed to better understand assumptions in the parameterization (e.g., SOA aging) and provide additional certainty to how best to apply existing emission inventories in a framework that treats POA as semivolatile, which currently degrades existing model performance at routine monitoring networks. Finally, the VBS and other approaches (e.g., AE6) require additional work to appropriately incorporate IVOC emissions and subsequent SOA formation.« less
Uncovering underlying processes of semantic priming by correlating item-level effects.
Heyman, Tom; Hutchison, Keith A; Storms, Gert
2016-04-01
The current study examines the underlying processes of semantic priming using the largest priming database available (i.e., Semantic Priming Project, Hutchison et al. Behavior Research Methods, 45(4), 1099-1114, 2013). Specifically, it compares priming effects in two tasks: lexical decision and pronunciation. Task similarities were assessed at two different stimulus onset asynchronies (SOAs) (i.e., 200 and 1,200 ms) and for both primary and other associates. To evaluate how consistent priming is across these two tasks, item-level priming effects obtained in each task were correlated for each condition separately. The results revealed significant correlations at the short SOA for both primary and other associates. The correlations at the long SOA were significantly smaller and only reached significance when z-transformed response times were used. Furthermore, this pattern remained essentially the same when only asymmetric forward associates (e.g., panda-bear) were considered, suggesting that the cross-task stability at the short SOA was not merely caused by retrospective processes such as semantic matching. Instead, these findings provide evidence for a rapidly operating, item-based, relational characteristic such as spreading activation.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-11-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M
2015-08-18
An analysis of the formation and evaporation of mixed-particles containing squalane (a surrogate for hydrophobic primary organic aerosol, POA) and secondary organic aerosol (SOA) is presented. In these experiments, one material (D62-squalane or SOA from α-pinene + O3) was prepared first to serve as surface area for condensation of the other, forming the mixed-particles. The mixed-particles were then subjected to a heating-ramp from 22 to 44 °C. We were able to determine that (1) almost all of the SOA mass is comprised of material less volatile than D62-squalane; (2) AMS collection efficiency in these mixed-particle systems can be parametrized as a function of the relative mass fraction of the components; and (3) the vast majority of D62-squalane is able to evaporate from the mixed particles, and does so on the same time scale regardless of the order of preparation. We also performed two-population mixing experiments to directly test whether D62-squalane and SOA from α-pinene + O3 form a single solution or two separate phases. We find that these two OA types are immiscible, which informs our inference of the morphology of the mixed-particles. If the morphology is core-shell and dictated by the order of preparation, these data indicate that squalane is able to diffuse relatively quickly through the SOA shell, implying that there are no major diffusion limitations.
Local source impacts on primary and secondary aerosols in the Midwestern United States
NASA Astrophysics Data System (ADS)
Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.
2016-04-01
Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and biogenic SOA were not well-represented by a single site and demonstrated local influences. For isoprene SOA, product distributions indicated a larger role for the high-NOx pathway at the urban site. These local sources are largely responsible for differences in population exposures to outdoor PM in the study domain located within the Midwestern US.
Simulation of photochemical pollutants in summer 2013 in China
NASA Astrophysics Data System (ADS)
Zhang, H.; Guo, H.; Hu, J.
2016-12-01
Rapid economic growth and associated emissions increase in China have led to severe air pollution in recent decades. Photochemical pollutants are secondary formed pollutants in the atmosphere with the existence of sunlight. Ozone (O3) is adverse to human health and ecosystems and secondary organic aerosol (SOA) is a major component of fine particulate matter (PM2.5) that affects human health, visibility, and climate. In this work, the Community Multi-scale Air Quality (CMAQ) model was used to investigate the formation of O3 and SOA in three episodes from June to August 2013. Compared with observation data, O3 performance meets the EPA criteria of mean normalized bias (MNB) within ± 0.15 in major parts of China including five megacities. The diurnal variation of O3 had similar trend with the temperature. The August episode has the highest O3 concentrations of 100 ppb in North China Plain while the July episode has the lowest concentrations of 50 ppb. SOA concentrations were up to 35-40 μgm-3 at different cities in different episodes. Biogenic SOA was the majority with the contributions from glyoxal (GLY), methylglyoxal (MGLY), isoprene epoxydiol (IEPOX) and oligomers (OLGM) of 70%. Isopleth found that NOx controls O3 concentration in most areas of China. Reducing VOC would have minor effects on O3 concentrations while reducing NOx could largely reduce O3 concentration except for urban areas such as Shanghai and Guangzhou. On the contrary, SOA was controlled by VOCs in cities such as Beijing, Shanghai, and Xi'an. This study provides valuable information for designing effective control strategies for O3 and particulate matter in China.
NASA Astrophysics Data System (ADS)
Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.
2014-06-01
Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples and could potentially serve as organic markers of 1,3-butadiene (13BD). Furthermore, a series of oligoesters were detected and found to be produced from esterification reactions among compounds bearing alcoholic groups and compounds bearing acidic groups. Time profiles are provided for selected compounds. SOA was analyzed for organic mass to organic carbon (OM / OC) ratio, effective enthalpy of vaporization (ΔHvapeff), and aerosol yield. The average OM / OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average ΔHvapeff was 26.1 ± 1.5 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been examined. The contribution of SOA products from 13BD oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several locations around the United States. In addition to the occurrence of several organic compounds in field and laboratory samples, glyceric acid, d-threitol, erythritol, erythrose, and threonic acid were found to originate only from the oxidation of 13BD based on our previous experiments involving chamber oxidation of a series of hydrocarbons. Initial attempts have been made to quantify the concentrations of these compounds. The average concentrations of these compounds in ambient PM2.5 samples from the California Research at the Nexus of Air Quality and Climate Change (CalNex) study ranged from 0 to approximately 14.1 ng m-3. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from 13BD oxidation could contribute to the ambient aerosol mainly in areas with high 13BD emission rates.
NASA Astrophysics Data System (ADS)
Jaoui, M.; Lewandowski, M.; Docherty, K.; Offenberg, J. H.; Kleindienst, T. E.
2014-12-01
Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas- and particle-phase products. The chemical composition of the gas phase and SOA was analyzed using derivative-based methods (BSTFA, BSTFA + PFBHA, or DNPH) followed by gas chromatography-mass spectrometry (GC-MS) or high-performance liquid chromatography (HPLC) analysis of the derivative compounds. The analysis showed the occurrence of more than 60 oxygenated organic compounds in the gas and particle phases, of which 31 organic monomers were tentatively identified. The major identified products include glyceric acid, d-threitol, erythritol, d-threonic acid, meso-threonic acid, erythrose, malic acid, tartaric acid, and carbonyls including glycolaldehyde, glyoxal, acrolein, malonaldehyde, glyceraldehyde, and peroxyacryloyl nitrate (APAN). Some of these were detected in ambient PM2.5 samples, and could potentially serve as organic markers of 13BD. Furthermore, a series of oligoesters were detected and found to be produced through chemical reactions occurring in the aerosol phase between compounds bearing alcoholic groups and compounds bearing acidic groups. SOA was analyzed for organic mass to organic carbon (OM /OC) ratio, effective enthalpy of vaporization (Δ Hvapeff), and aerosol yield. The average OM /OC ratio and SOA density were 2.7 ± 0.09 and 1.2 ± 0.05, respectively. The average Δ Hvapeff was -26.08 ± 1.46 kJ mol-1, a value lower than that of isoprene SOA. The average laboratory SOA yield measured in this study at aerosol mass concentrations between 22.5 and 140.2 μg m-3 was 0.025 ± 0.011, a value consistent with the literature (0.021-0.178). While the focus of this study has been examination of the particle-phase measurements, the gas-phase photooxidation products have also been examined. The contribution of SOA products from 13BD oxidation to ambient PM2.5 was investigated by analyzing a series of ambient PM2.5 samples collected in several locations around the United States. In addition to the occurrence of several organic compounds in field and laboratory samples, glyceric acid, d-threitol, erythritol, erythrose, and threonic acid were found to originate only from the oxidation of 13BD based on our previous experiments involving chamber oxidation of a series of hydrocarbons. Initial attempts have been made to quantify the concentrations of these compounds. The average concentrations of these compounds in ambient PM2.5 samples from the California Research at the Nexus of Air Quality and Climate Change (CalNex) study ranged from 0 to approximately 14.1 ng m-3. The occurrence of several other compounds in both laboratory and field samples suggests that SOA originating from 13BD oxidation could contribute to the ambient aerosol mainly in areas with high 13BD emission rates.
NASA Astrophysics Data System (ADS)
Slowik, J. G.; Brook, J.; Chang, R. Y.-W.; Evans, G. J.; Hayden, K.; Jeong, C.-H.; Li, S.-M.; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.
2010-10-01
As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July, 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and uptake processes. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production.
Wei, J L; Hugues-Salas, E; Giddings, R P; Jin, X Q; Zheng, X; Mansoor, S; Tang, J M
2010-05-10
Detailed numerical investigations are undertaken of wavelength reused bidirectional transmission of adaptively modulated optical OFDM (AMOOFDM) signals over a single SMF in a colorless WDM-PON incorporating a semiconductor optical amplifier (SOA) intensity modulator and a reflective SOA (RSOA) intensity modulator in the optical line termination and optical network unit, respectively. A comprehensive theoretical model describing the performance of such network scenarios is, for the first time, developed, taking into account dynamic optical characteristics of SOA and RSOA intensity modulators as well as the effects of Rayleigh backscattering (RB) and residual downstream signal-induced crosstalk. The developed model is rigorously verified experimentally in RSOA-based real-time end-to-end OOFDM systems at 7.5 Gb/s. It is shown that the RB noise and crosstalk effects are dominant factors limiting the maximum achievable downstream and upstream transmission performance. Under optimum SOA and RSOA operating conditions as well as practical downstream and upstream optical launch powers, 10 Gb/s downstream and 6 Gb/s upstream over 40 km SMF transmissions of conventional double sideband AMOOFDM signals are feasible without utilizing in-line optical amplification and chromatic dispersion compensation. In particular, the aforementioned transmission performance can be improved to 23 Gb/s downstream and 8 Gb/s upstream over 40 km SMFs when single sideband subcarrier modulation is adopted in the downstream systems. (c) 2010 Optical Society of America.
NASA Astrophysics Data System (ADS)
Kotb, Amer; Zoiros, Kyriakos E.
2016-08-01
The concept of soliton provides a line in research in telecommunications systems. In the present study, a soliton all-optical logic AND gate with semiconductor optical amplifier (SOA)-assisted Mach-Zehnder interferometer has been numerically simulated and investigated. The dependence of the output quality factor (Q-factor) on the soliton characteristics and SOA parameters has been examined and assessed. The obtained results demonstrate that the soliton AND gate is capable of operating at a data rate of 80 Gb/s with logical correctness and high-output Q-factor.
All-optical phase discrimination using SOA.
Power, Mark J; Webb, Roderick P; Manning, Robert J
2013-11-04
We describe the first experimental demonstration of a novel all-optical phase discrimination technique, which can separate the two orthogonal phase components of a signal onto different frequencies. This method exploits nonlinear mixing in a semiconductor optical amplifier (SOA) to separate a 10.65 Gbaud QPSK signal into two 10.65 Gb/s BPSK signals which are then demodulated using a delay interferometer (DI). Eye diagrams and spectral measurements verify correct operation and a conversion efficiency greater than 9 dB is observed on both output BPSK channels when compared with the input QPSK signal.
Smith, Jeremy D; Kinney, Haley; Anastasio, Cort
2015-04-21
Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.
NASA Astrophysics Data System (ADS)
Zoiros, Kyriakos E.; Vardakas, John S.; Tsigkas, Marios
2010-07-01
The instantaneous frequency deviation of the pulses switched from a semiconductor optical amplifier (SOA)-assisted Sagnac interferometer is theoretically studied and analyzed. By using explicit expressions for the phase response and its temporal derivative and applying a numerical model, a set of curves is obtained that allows us to investigate and assess the dependence of the function of interest on the critical operational parameters. From their interpretation, the basic design rules that must govern them in order for its profile to acquire a form suitable for practical exploitation are extracted. These suggest that the combination of the energy of the driving control pulses and the small signal gain of the SOA must be such that the latter is biased to operate up to the medium saturation regime. Moreover, the width of these pulses must not exceed 10% of their allocated time slot, while the role of the loop asymmetry and the SOA carrier lifetime is found to be less significant. If these conditions are satisfied, then it is feasible to make out of most of the considered interferometric configuration's phase response variation per time increment while being employed as a switching module.
Integrated all-optical programmable logic array based on semiconductor optical amplifiers.
Dong, Wenchan; Huang, Zhuyang; Hou, Jie; Santos, Rui; Zhang, Xinliang
2018-05-01
The all-optical programmable logic array (PLA) is one of the most important optical complex logic devices that can implement combinational logic functions. In this Letter, we propose and experimentally demonstrate an integrated all-optical PLA at the operation speed of 40 Gb/s. The PLA mainly consists of a delay interferometer (DI) and semiconductor optical amplifiers (SOAs) of different lengths. The DI is used to pre-code the input signals and improve the reconfigurability of the scheme. The longer SOAs are nonlinear media for generating canonical logic units (CLUs) using four-wave mixing. The shorter SOAs are used to select the appropriate CLUs by changing the working states; then reconfigurable logic functions can be output directly. The results show that all the CLUs are realized successfully, and the optical signal-to-noise ratios are above 22 dB. The exclusive NOR gate and exclusive OR gate are experimentally demonstrated based on output CLUs.
Can scooter emissions dominate urban organic aerosol?
NASA Astrophysics Data System (ADS)
El Haddad, Imad; Platt, Stephen; Huang, Ru-Jin; Zardini, Alessandro; Clairotte, Micheal; Pieber, Simone; Pfaffenberger, Lisa; Fuller, Steve; Hellebust, Stig; Temime-Roussel, Brice; Slowik, Jay; Chirico, Roberto; Kalberer, Markus; Marchand, Nicolas; Dommen, Josef; Astorga, Covadonga; Baltensperger, Urs; Prevot, Andre
2014-05-01
In urban areas, where the health impact of pollutants increases due to higher population density, traffic is a major source of ambient organic aerosol (OA). A significant fraction of OA from traffic is secondary, produced via the reaction of exhaust volatile organic compounds (VOCs) with atmospheric oxidants. Secondary OA (SOA) has not been systematically assessed for different vehicles and driving conditions and thus its relative importance compared to directly emitted, primary OA (POA) is unknown, hindering the design of effective vehicle emissions regulations. 2-stroke (2S) scooters are inexpensive and convenient and as such a popular means of transportation globally, particularly in Asia. European regulations for scooters are less stringent than for other vehicles and thus primary particulate emissions and SOA precursor VOCs from 2S engines are estimated to be much higher. Assessing the effects of scooters on public health requires consideration of both POA, and SOA production. Here, we quantify POA emission factors and potential SOA EFs from 2S scooters, and the effect of using aromatic free fuel instead of standard gasoline thereon. During the tests, Euro 1 and Euro 2 2S scooters were run in idle or simulated low power conditions. Emissions from a Euro 2 2S scooter were also sampled during regulatory driving cycles on a chassis dynamometer. Vehicle exhaust was introduced into smog chambers, where POA emission and SOA production were quantified using a high-resolution time-of-flight aerosol mass spectrometer. A high resolution proton transfer time-of-flight mass spectrometer was used to investigate volatile organic compounds and a suite of instruments was utilized to quantify CO, CO2, O3, NOX and total hydrocarbons. We show that the oxidation of VOCs in the exhaust emissions of 2S scooters produce significant SOA, exceeding by up to an order of magnitude POA emissions. By monitoring the decay of VOC precursors, we show that SOA formation from 2S scooter emissions essentially stems from the condensation of aromatic oxidation products. Further, we demonstrate that replacing the standard gasoline with an aromatic-free fuel mitigates SOA production, underlining the major role of aromatic compounds from 2S exhaust on SOA production. POA and potential SOA EFs determined here from 2S scooters will be presented and compared with EF from other vehicles, including 4-stroke scooters, gasoline cars and diesel cars to assess the contributions of 2S scooters in urban atmospheres.
Heterogeneous ice nucleation and phase transition of viscous α-pinene secondary organic aerosol
NASA Astrophysics Data System (ADS)
Ignatius, Karoliina; Kristensen, Thomas B.; Järvinen, Emma; Nichman, Leonid; Fuchs, Claudia; Gordon, Hamish; Herenz, Paul; Hoyle, Christopher R.; Duplissy, Jonathan; Baltensperger, Urs; Curtius, Joachim; Donahue, Neil M.; Gallagher, Martin W.; Kirkby, Jasper; Kulmala, Markku; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Virtanen, Annele; Stratmann, Frank
2016-04-01
There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate deposition ice nucleation and thus influence cirrus cloud properties. Global model simulations of monoterpene SOA particles suggest that viscous biogenic SOA are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle (INP) budget. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles at the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (Ignatius et al., 2015, Järvinen et al., 2015). In the CLOUD chamber, the SOA particles were produced from the ozone initiated oxidation of α-pinene at temperatures in the range from -38 to -10° C at 5-15 % relative humidity with respect to water (RHw) to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. As the RHw was increased to between 35 % at -10° C and 80 % at -38° C, a transition to spherical shape was observed with a new in-situ optical method. This transition confirms previous modelling of the viscosity transition conditions. The ice nucleation ability of SOA particles was investigated with a new continuous flow diffusion chamber SPIN (Spectrometer for Ice Nuclei) for different SOA particle sizes. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA in the deposition mode for ice saturation ratios between 1.3 and 1.4, significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between -36.5 and -38.3° C ranged from 6 to 20 % and did not depend on the particle surface area. References Ignatius, K. et al., Heterogeneous ice nucleation of secondary organic aerosol produced from ozonolysis of α-pinene, Atmos. Chem. Phys. Discuss., 15, 35719-35752, doi:10.5194/acpd-15-35719-2015, 2015. Järvinen, E. et al., Observation of viscosity transition in α-pinene secondary organic aerosol, Atmos. Chem. Phys. Discuss., 15, 28575-28617, doi:10.5194/acpd-15-28575-2015, 2015.
NASA Astrophysics Data System (ADS)
Kelly, Jamie M.; Doherty, Ruth M.; O'Connor, Fiona M.; Mann, Graham W.
2018-05-01
The global secondary organic aerosol (SOA) budget is highly uncertain, with global annual SOA production rates, estimated from global models, ranging over an order of magnitude and simulated SOA concentrations underestimated compared to observations. In this study, we use a global composition-climate model (UKCA) with interactive chemistry and aerosol microphysics to provide an in-depth analysis of the impact of each VOC source on the global SOA budget and its seasonality. We further quantify the role of each source on SOA spatial distributions, and evaluate simulated seasonal SOA concentrations against a comprehensive set of observations. The annual global SOA production rates from monoterpene, isoprene, biomass burning, and anthropogenic precursor sources is 19.9, 19.6, 9.5, and 24.6 Tg (SOA) a-1, respectively. When all sources are included, the SOA production rate from all sources is 73.6 Tg (SOA) a-1, which lies within the range of estimates from previous modelling studies. SOA production rates and SOA burdens from biogenic and biomass burning SOA sources peak during Northern Hemisphere (NH) summer. In contrast, the anthropogenic SOA production rate is fairly constant all year round. However, the global anthropogenic SOA burden does have a seasonal cycle which is lowest during NH summer, which is probably due to enhanced wet removal. Inclusion of the new SOA sources also accelerates the ageing by condensation of primary organic aerosol (POA), making it more hydrophilic, leading to a reduction in the POA lifetime. With monoterpene as the only source of SOA, simulated SOA and total organic aerosol (OA) concentrations are underestimated by the model when compared to surface and aircraft measurements. Model agreement with observations improves with all new sources added, primarily due to the inclusion of the anthropogenic source of SOA, although a negative bias remains. A further sensitivity simulation was performed with an increased anthropogenic SOA reaction yield, corresponding to an annual global SOA production rate of 70.0 Tg (SOA) a-1. Whilst simulated SOA concentrations improved relative to observations, they were still underestimated in urban environments and overestimated further downwind and in remote environments. In contrast, the inclusion of SOA from isoprene and biomass burning did not improve model-observations biases substantially except at one out of two tropical locations. However, these findings may reflect the very limited availability of observations to evaluate the model, which are primarily located in the NH mid-latitudes where anthropogenic emissions are high. Our results highlight that, within the current uncertainty limits in SOA sources and reaction yields, over the NH mid-latitudes, a large anthropogenic SOA source results in good agreement with observations. However, more observations are needed to establish the importance of biomass burning and biogenic sources of SOA in model agreement with observations.
Silicon photonics WDM transmitter with single section semiconductor mode-locked laser
NASA Astrophysics Data System (ADS)
Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy
2015-04-01
We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.
NASA Astrophysics Data System (ADS)
Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.
2015-08-01
A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time-resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~ 9 % (up to 28 %) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~ 97 % of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2 > 0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~ 26 % (up to 49 %) of the IEPOX-OA factor mass, which accounted for 32 % of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO ~ 0.03 ppb), carbon monoxide (CO ~ 116 ppb), and black carbon (BC ~ 0.2 μg m-3). Particle-phase sulfate is fairly correlated (r2 ~ 0.3) with both methacrylic acid epoxide (MAE)/hydroxymethyl-methyl-α-lactone (HMML)- (henceforth called methacrolein (MACR)-derived SOA tracers) and IEPOX-derived SOA tracers, and more strongly correlated (r2 ~ 0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the MACR-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy; r2 = 0.38) and nitrate (r2 = 0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r2 ~ 0.5 and ~ 0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC as well as aerosol viscosity and morphology becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.
Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry
Ritterband-Rosenbaum, Anina; Nielsen, Jens B.; Christensen, Mark S.
2014-01-01
In the present study we tested whether sense of agency (SoA) is reflected by changes in coupling between right medio-frontal/supplementary motor area (SMA) and inferior parietal cortex (IPC). Twelve healthy adult volunteers participated in the study. They performed a variation of a line-drawing task (Nielsen, 1963; Fourneret and Jeannerod, 1998), in which they moved a cursor on a digital tablet with their right hand without seeing the hand. Visual feedback displayed on a computer monitor was either in correspondence with or deviated from the actual movement. This made participants uncertain as to the agent of the movement and they reported SoA in approximately 50% of trials when the movement was computer-generated. We tested whether IPC-preSMA coupling was associated with SoA, using dynamic causal modeling (DCM) for induced responses (Chen et al., 2008; Herz et al., 2012). Nine different DCMs were constructed for the early and late phases of the task, respectively. All models included two regions: a superior medial gyrus (preSMA) region and a right supramarginal gyrus (IPC) region. Bayesian models selection (Stephan et al., 2009) favored a model with input to IPC and modulation of the forward connection to SMA in the late task phase, and a model with input to preSMA and modulation of the backward connection was favored for the early task phase. The analysis shows that IPC source activity in the 50–60 Hz range modulated preSMA source activity in the 40–70 Hz range in the presence of SoA compared with no SoA in the late task phase, but the test of the early task phase did not reveal any differences between presence and absence of SoA. We show that SoA is associated with a directionally specific between frequencies coupling from IPC to preSMA in the higher gamma (ɣ) band in the late task phase. This suggests that SoA is a retrospective perception, which is highly dependent on interpretation of the outcome of the performed action. PMID:25076883
Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems
NASA Astrophysics Data System (ADS)
Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad
2014-11-01
In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.
Vaden, Timothy D; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2011-02-08
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol
Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2011-01-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848
NASA Astrophysics Data System (ADS)
Stark, H.; Yatavelli, R. L. N.; Thompson, S.; Kang, H.; Krechmer, J. E.; Kimmel, J.; Palm, B. B.; Hu, W.; Hayes, P.; Day, D. A.; Campuzano Jost, P.; Ye, P.; Canagaratna, M. R.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.
2017-12-01
Understanding the chemical composition of secondary organic aerosol (SOA) is crucial for explaining sources and fate of this important aerosol class in tropospheric chemistry. Further, determining SOA volatility is key in predicting its atmospheric lifetime and fate, due to partitioning from and to the gas phase. We present three analysis approaches to determine SOA volatility distributions from two field campaigns in areas with strong biogenic emissions, a Ponderosa pine forest in Colorado, USA, from the BEACHON-RoMBAS campaign, and a mixed forest in Alabama, USA, from the SOAS campaign. We used a high-resolution-time-of-flight chemical ionization mass spectrometer (CIMS) for both campaigns, equipped with a micro-orifice volatilization impactor (MOVI) inlet for BEACHON and a filter inlet for gases and aerosols (FIGAERO) for SOAS. These inlets allow near simultaneous analysis of particle and gas-phase species by the CIMS. While gas-phase species are directly measured without heating, particles undergo thermal desorption prior to analysis. Volatility distributions can be estimated in three ways: (1) analysis of the thermograms (signal vs. temperature); (2) via partitioning theory using the gas- and particle-phase measurements; (3) from measured chemical formulas via a group contribution model. Comparison of the SOA volatility distributions from the three methods shows large discrepancies for both campaigns. Results from the thermogram method are the most consistent of the methods when compared with independent AMS-thermal denuder measurements. The volatility distributions estimated from partitioning measurements are very narrow, likely due to signal-to-noise limits in the measurements. The discrepancy between the formula and the thermogram methods indicates large-scale thermal decomposition of the SOA species. We will also show results of citric acid thermal decomposition, where, in addition to the mass spectra, measurements of CO, CO2 and H2O were made, showing thermal decomposition of up to 65% of the citric acid molecules.
Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L
2013-12-17
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Manish; Zhao, Chun; Easter, Richard C.
We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to 7 selected tunable model parameters: 4 involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semi-volatile and intermediate volatility organics (SIVOCs), and NOx, 2 involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recentmore » work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the tunable parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether particle-phase transformation of SOA from semi-volatile SOA to non-volatile is on or off, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into 2 subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to non-volatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance. This study highlights the large sensitivity of SOA loadings to the particle-phase transformation of SOA volatility, which is neglected in most previous models.« less
Soa genotype selectively affects mouse gustatory neural responses to sucrose octaacetate
INOUE, MASASHI; LI, XIA; McCAUGHEY, STUART A.; BEAUCHAMP, GARY K.; BACHMANOV, ALEXANDER A.
2013-01-01
In mice, behavioral acceptance of the bitter compound sucrose octaacetate (SOA) depends on allelic variation of a single gene, Soa. The SW.B6-Soab congenic mouse strain has the genetic background of an “SOA taster” SWR/J strain and an Soa-containing donor chromosome fragment from an “SOA nontaster” C57BL/6J strain. Using microsatellite markers polymorphic between the two parental strains, we determined that the donor fragment spans 5–10 cM of distal chromosome 6. The SWR/J mice avoided SOA in two-bottle tests with water and had strong responses to SOA in two gustatory nerves, the chorda tympani (CT) and glossopharyngeal (GL). In contrast, the SW.B6-Soab mice were indifferent to SOA in two-bottle tests and had very weak responses to SOA in both of these nerves. The SWR/J and SW.B6-Soab mice did not differ in responses of either nerve to sucrose, NaCl, HCl, or the bitter-tasting stimuli quinine, denatonium, strychnine, 6-n-propylthiouracil, phenylthiocarbamide, and MgSO4. Thus the effect of the Soa genotype on SOA avoidance is mediated by peripheral taste responsiveness to SOA, involving taste receptor cells innervated by both the CT and GL nerves. PMID:11328963
Srivastava, D; Favez, O; Bonnaire, N; Lucarelli, F; Haeffelin, M; Perraudin, E; Gros, V; Villenave, E; Albinet, A
2018-09-01
The present study aimed at performing PM 10 source apportionment, using positive matrix factorization (PMF), based on filter samples collected every 4h at a sub-urban station in the Paris region (France) during a PM pollution event in March 2015 (PM 10 >50μgm -3 for several consecutive days). The PMF model allowed to deconvolve 11 source factors. The use of specific primary and secondary organic molecular markers favoured the determination of common sources such as biomass burning and primary traffic emissions, as well as 2 specific biogenic SOA (marine+isoprene) and 3 anthropogenic SOA (nitro-PAHs+oxy-PAHs+phenolic compounds oxidation) factors. This study is probably the first one to report the use of methylnitrocatechol isomers as well as 1-nitropyrene to apportion secondary OA linked to biomass burning emissions and primary traffic emissions, respectively. Secondary organic carbon (SOC) fractions were found to account for 47% of the total OC. The use of organic molecular markers allowed the identification of 41% of the total SOC composed of anthropogenic SOA (namely, oxy-PAHs, nitro-PAHs and phenolic compounds oxidation, representing 15%, 9%, 11% of the total OC, respectively) and biogenic SOA (marine+isoprene) (6% in total). Results obtained also showed that 35% of the total SOC originated from anthropogenic sources and especially PAH SOA (oxy-PAHs+nitro-PAHs), accounting for 24% of the total SOC, highlighting its significant contribution in urban influenced environments. Anthropogenic SOA related to nitro-PAHs and phenolic compounds exhibited a clear diurnal pattern with high concentrations during the night indicating the prominent role of night-time chemistry but with different chemical processes involved. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of MEGAN predicted biogenic isoprene emissions at urban locations in Southeast Texas
NASA Astrophysics Data System (ADS)
Kota, Sri Harsha; Schade, Gunnar; Estes, Mark; Boyer, Doug; Ying, Qi
2015-06-01
Summertime isoprene emissions in the Houston area predicted by the Model of Emissions of Gases and Aerosol from Nature (MEGAN) version 2.1 during the 2006 TexAQS study were evaluated using a source-oriented Community Multiscale Air Quality (CMAQ) Model. Predicted daytime isoprene concentrations at nine surface sites operated by the Texas Commission of Environmental Quality (TCEQ) were significantly higher than local observations when biogenic emissions dominate the total isoprene concentrations, with mean normalized bias (MNB) ranges from 2.0 to 7.7 and mean normalized error (MNE) ranges from 2.2 to 7.7. Predicted upper air isoprene and its first generation oxidation products of methacrolein (MACR) and methyl vinyl ketone (MVK) were also significantly higher (MNB = 8.6, MNE = 9.1) than observations made onboard of NOAA's WP-3 airplane, which flew over the urban area. Over-prediction of isoprene and its oxidation products both at the surface and the upper air strongly suggests that biogenic isoprene emissions in the Houston area are significantly overestimated. Reducing the emission rates by approximately 3/4 was necessary to reduce the error between predictions and observations. Comparison of gridded leaf area index (LAI), plant functional type (PFT) and gridded isoprene emission factor (EF) used in MEGAN modeling with estimates of the same factors from a field survey north of downtown Houston showed that the isoprene over-prediction is likely caused by the combined effects of a large overestimation of the gridded EF in urban Houston and an underestimation of urban LAI. Nevertheless, predicted ozone concentrations in this region were not significantly affected by the isoprene over-predictions, while predicted isoprene SOA and total SOA concentrations can be higher by as much as 50% and 13% using the higher isoprene emission rates, respectively.
On the mixing and evaporation of secondary organic aerosol components.
Loza, Christine L; Coggon, Matthew M; Nguyen, Tran B; Zuend, Andreas; Flagan, Richard C; Seinfeld, John H
2013-06-18
The physical state and chemical composition of an organic aerosol affect its degree of mixing and its interactions with condensing species. We present here a laboratory chamber procedure for studying the effect of the mixing of organic aerosol components on particle evaporation. The procedure is applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxidation. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 °C) to 42 °C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from the two precursors on the time scale of the experiments, consistent with a high viscosity of at least one of the phases.
NASA Technical Reports Server (NTRS)
Celaya, Jose Ramon; Saxena, Abhinav; Vashchenko, Vladislay; Saha, Sankalita; Goebel, Kai Frank
2011-01-01
This paper demonstrates how to apply prognostics to power MOSFETs (metal oxide field effect transistor). The methodology uses thermal cycling to age devices and Gaussian process regression to perform prognostics. The approach is validated with experiments on 100V power MOSFETs. The failure mechanism for the stress conditions is determined to be die-attachment degradation. Change in ON-state resistance is used as a precursor of failure due to its dependence on junction temperature. The experimental data is augmented with a finite element analysis simulation that is based on a two-transistor model. The simulation assists in the interpretation of the degradation phenomena and SOA (safe operation area) change.
Mapping SOA Artefacts onto an Enterprise Reference Architecture Framework
NASA Astrophysics Data System (ADS)
Noran, Ovidiu
Currently, there is still no common agreement on the service-Oriented architecture (SOA) definition, or the types and meaning of the artefacts involved in the creation and maintenance of an SOA. Furthermore, the SOA image shift from an infrastructure solution to a business-wide change project may have promoted a perception that SOA is a parallel initiative, a competitor and perhaps a successor of enterprise architecture (EA). This chapter attempts to map several typical SOA artefacts onto an enterprise reference framework commonly used in EA. This is done in order to show that the EA framework can express and structure most of the SOA artefacts and therefore, a framework for SOA could in fact be derived from an EA framework with the ensuing SOA-EA integration benefits.
NASA Astrophysics Data System (ADS)
Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; Nenes, A.; Neff, M. E.; Stone, E. A.; Mueller, S.; Knote, C.; Shaw, S. L.; Zhang, Z.; Gold, A.; Surratt, J. D.
2015-03-01
A suite of offline and real-time gas- and particle-phase measurements was deployed at Look Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formation. High- and low-time resolution PM2.5 samples were collected for analysis of known tracer compounds in isoprene-derived SOA by gas chromatography/electron ionization-mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography/diode array detection-electrospray ionization-high-resolution quadrupole time-of-flight mass spectrometry (UPLC/DAD-ESI-HR-QTOFMS). Source apportionment of the organic aerosol (OA) was determined by positive matrix factorization (PMF) analysis of mass spectrometric data acquired on an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Campaign average mass concentrations of the sum of quantified isoprene-derived SOA tracers contributed to ~9% (up to 26%) of the total OA mass, with isoprene-epoxydiol (IEPOX) chemistry accounting for ~97% of the quantified tracers. PMF analysis resolved a factor with a profile similar to the IEPOX-OA factor resolved in an Atlanta study and was therefore designated IEPOX-OA. This factor was strongly correlated (r2>0.7) with 2-methyltetrols, C5-alkene triols, IEPOX-derived organosulfates, and dimers of organosulfates, confirming the role of IEPOX chemistry as the source. On average, IEPOX-derived SOA tracer mass was ~25% (up to 47%) of the IEPOX-OA factor mass, which accounted for 32% of the total OA. A low-volatility oxygenated organic aerosol (LV-OOA) and an oxidized factor with a profile similar to 91Fac observed in areas where emissions are biogenic-dominated were also resolved by PMF analysis, whereas no primary organic aerosol (POA) sources could be resolved. These findings were consistent with low levels of primary pollutants, such as nitric oxide (NO~0.03ppb), carbon monoxide (CO~116 ppb), and black carbon (BC~0.2 μg m-3). Particle-phase sulfate is fairly correlated (r2~0.3) with both MAE- and IEPOX-derived SOA tracers, and more strongly correlated (r2~0.6) with the IEPOX-OA factor, in sum suggesting an important role of sulfate in isoprene SOA formation. Moderate correlation between the methacrylic acid epoxide (MAE)-derived SOA tracer 2-methylglyceric acid with sum of reactive and reservoir nitrogen oxides (NOy; r2=0.38) and nitrate (r2=0.45) indicates the potential influence of anthropogenic emissions through long-range transport. Despite the lack of a~clear association of IEPOX-OA with locally estimated aerosol acidity and liquid water content (LWC), box model calculations of IEPOX uptake using the simpleGAMMA model, accounting for the role of acidity and aerosol water, predicted the abundance of the IEPOX-derived SOA tracers 2-methyltetrols and the corresponding sulfates with good accuracy (r2~0.5 and ~0.7, respectively). The modeling and data combined suggest an anthropogenic influence on isoprene-derived SOA formation through acid-catalyzed heterogeneous chemistry of IEPOX in the southeastern US. However, it appears that this process was not limited by aerosol acidity or LWC at Look Rock during SOAS. Future studies should further explore the extent to which acidity and LWC becomes a limiting factor of IEPOX-derived SOA, and their modulation by anthropogenic emissions.
NASA Astrophysics Data System (ADS)
Xu, J.; Liu, Y.; Nakao, S.; Cocker, D.; Griffin, R. J.
2013-12-01
Aromatic hydrocarbons contribute an important fraction of anthropogenic reactive volatile organic compounds (VOCs) in the urban atmosphere. Photo-oxidation of aromatic hydrocarbons leads to secondary organic products that have decreased volatilities or increased solubilities and can form secondary organic aerosol (SOA). Despite the crucial role of aromatic-derived SOA in deteriorating air quality and harming human health, its formation mechanism is not well understood and model simulation of SOA formation still remains difficult. The dependence of aromatic SOA formation on nitrogen oxides (NOx) is not captured fully by most SOA formation models. Most models predict SOA formation under high NOx levels well but underestimate SOA formation under low NOx levels more representative of the ambient atmosphere. Thus, it is crucial to investigate the NOx-dependent chemistry in aromatic photo-oxidation systems and correspondingly update SOA formation models. In this study, NOx-dependent mechanisms of toluene and m-xylene SOA formation are updated using the gas-phase Caltech Atmospheric Chemistry Mechanism (CACM) coupled to a gas/aerosol partitioning model. The updated models were optimized by comparing to eighteen University of California, Riverside United States Environmental Protection Agency (EPA) chamber experiment runs under both high and low NOx conditions. Correction factors for vapor pressures imply uncharacterized aerosol-phase association chemistry. Simulated SOA speciation implies the importance of ring-opening products in governing SOA formation (up to 40%~60% for both aromatics). The newly developed model can predict strong decreases of m-xylene SOA yield with increasing NOx. Speciation distributions under varied NOx levels implies that the well-known competition between RO2 + HO2 and RO2 + NO (RO2 = peroxide bicyclic radical) may not be the only factor influencing SOA formation. The reaction of aromatic peroxy radicals with NO competing with its self-cyclization also affects NOx-dependence of SOA formation. Comparison of SOA formation yield and composition between two aromatics implies aldehyde/ketone chemistry from ring-opening route and chemistry for phenolic route play important roles in governing SOA formation and that ring-opening aldehydes and phenolic nitrates are produced to a greater extent in the toluene system, leading to higher SOA yields for toluene than for m-xylene.
[Estimate of the formation potential of secondary organic aerosol in Beijing summertime].
Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua
2009-04-15
Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.
Gentner, Drew R.; Isaacman, Gabriel; Worton, David R.; Chan, Arthur W. H.; Dallmann, Timothy R.; Davis, Laura; Liu, Shang; Day, Douglas A.; Russell, Lynn M.; Wilson, Kevin R.; Weber, Robin; Guha, Abhinav; Harley, Robert A.; Goldstein, Allen H.
2012-01-01
Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region’s fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies. PMID:23091031
Physical properties of ambient and laboratory-generated secondary organic aerosol
NASA Astrophysics Data System (ADS)
O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda C.; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey A.; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.
2014-06-01
The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory-generated secondary organic aerosols (SOA). Scanning transmission X-ray microscopy was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Particles with higher viscosity/surface tension can be identified by a steeper slope on a plot of TCA versus size because they flatten less upon impaction. The slopes of the ambient data are statistically similar indicating a small range of average viscosities/surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory-generated SOA. This comparison indicates that ambient organic particles have higher viscosities/surface tensions than those typically generated in laboratory SOA studies.
Gentner, Drew R; Isaacman, Gabriel; Worton, David R; Chan, Arthur W H; Dallmann, Timothy R; Davis, Laura; Liu, Shang; Day, Douglas A; Russell, Lynn M; Wilson, Kevin R; Weber, Robin; Guha, Abhinav; Harley, Robert A; Goldstein, Allen H
2012-11-06
Emissions from gasoline and diesel vehicles are predominant anthropogenic sources of reactive gas-phase organic carbon and key precursors to secondary organic aerosol (SOA) in urban areas. Their relative importance for aerosol formation is a controversial issue with implications for air quality control policy and public health. We characterize the chemical composition, mass distribution, and organic aerosol formation potential of emissions from gasoline and diesel vehicles, and find diesel exhaust is seven times more efficient at forming aerosol than gasoline exhaust. However, both sources are important for air quality; depending on a region's fuel use, diesel is responsible for 65% to 90% of vehicular-derived SOA, with substantial contributions from aromatic and aliphatic hydrocarbons. Including these insights on source characterization and SOA formation will improve regional pollution control policies, fuel regulations, and methodologies for future measurement, laboratory, and modeling studies.
SOA governance in healthcare organisations.
Koumaditis, Konstantinos; Themistocleous, Marinos; Vassilakopoulos, Georgios
2013-01-01
Service Oriented Architecture (SOA) is increasingly adopted by many sectors, including healthcare. Due to the nature of healthcare systems there is a need to increase SOA adoption success rates as the non integrated nature of healthcare systems is responsible for medical errors that cause the loss of tens of thousands patients per year. Following our previous research [1] we propose that SOA governance is a critical success factor for SOA success in healthcare. Literature reports multiple SOA governance models that have limitations and they are confusing. In addition to this, there is a lack of healthcare specific SOA governance models. This highlights a literature void and thus the purpose of this paper is to proposed a healthcare specific SOA governance framework.
Modeling the formation and aging of secondary organic aerosols during CalNex 2010
NASA Astrophysics Data System (ADS)
Hayes, P. L.; Ortega, A. M.; Ahmadov, R.; McKeen, S. A.; Washenfelder, R. A.; Alvarez, S.; Rappenglueck, B.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Zotter, P.; Prevot, A. S.; Kleindienst, T. E.; Offenberg, J. H.; Jimenez, J. L.
2012-12-01
Several traditional and recently proposed models are applied to predict the concentrations and properties of secondary organic aerosols (SOA) and organic gases at the Pasadena ground site during the CalNex campaign. The models are constrained with and compared against results from available observations. The CalNex campaign and specifically the Pasadena ground site featured a large and sophisticated suite of aerosol and gas phase instrumentation, and thus, it provides a unique opportunity to test SOA models under conditions of strong urban emissions at a range of low photochemical ages. The oxidation of volatile organic compounds (VOCs) using an updated traditional model cannot explain the observed ambient SOA, and under-predicts the measurements by a factor of ~40. Similarly, after accounting for the multi-generation oxidation of VOCs using a volatility basis set (VBS) approach as described by Tsimpidi et al. (2010), SOA is still under-predicted by a factor of ~8. For SOA formed from VOCs (V-SOA) the dominant precursors are aromatics (xylenes, toluene, and trimethylbenzenes). The model SOA formed from the oxidation of primary semivolatile and intermediate volatility organic compounds (P-S/IVOCs, producing SI-SOA) is also predicted using the parameterizations of Robinson et al. (2007) and Grieshop et al. (2009), and the properties of V-SOA + SI-SOA are compared against the measured O:C and volatility. We also compare the results of the different models against fossil/non-fossil carbon measurements as well as tracers of different SOA precursors. Potential Aerosol Mass (PAM) measurements of the SOA forming potential of the Pasadena air masses are also compared against that predicted by the models. The PAM analysis allows for model/measurement comparisons of SOA properties over a range of photochemical ages spanning almost two weeks. Using the V-SOA model, at low photochemical ages (< 1 day) the modeled PAM V-SOA is less than the measured PAM SOA, similar to the ambient results. In contrast, at high photochemical ages (i.e., more than about three days) the modeled PAM V-SOA is substantially greater than that measured, which is likely due fragmentation reactions that are not included in that model. We derive a parameterization of the measured PAM SOA as a function of the input photochemical age and the PAM photochemical age that serves as a comparison with other SOA models.
How will SOA change in the future?: SOA IN THE FUTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guangxing; Penner, Joyce E.; Zhou, Cheng
2016-02-17
Secondary organic aerosol (SOA) plays a significant role in the Earth system by altering its radiative balance. Here we use an Earth system model coupled with an explicit SOA formation module to estimate the response of SOA concentrations to changes in climate, anthropogenic emissions, and human land use in the future. We find that climate change is the major driver for SOA change under the representative concentration pathways for the 8.5 future scenario. Climate change increases isoprene emission rate by 18% with the effect of temperature increases outweighing that of the CO2 inhibition effect. Annual mean global SOA mass ismore » increased by 25% as a result of climate change. However, anthropogenic emissions and land use change decrease SOA. The net effect is that future global SOA burden in 2100 is nearly the same as that of the present day. The SOA concentrations over the Northern Hemisphere are predicted to decline in the future due to the control of sulfur emissions.« less
Impact of shorter wavelengths on optical quality for laws
NASA Technical Reports Server (NTRS)
Wissinger, Alan B.; Noll, Robert J.; Tsacoyeanes, James G.; Tausanovitch, Jeanette R.
1993-01-01
This study explores parametrically as a function of wavelength the degrading effects of several common optical aberrations (defocus, astigmatism, wavefront tilts, etc.), using the heterodyne mixing efficiency factor as the merit function. A 60 cm diameter aperture beam expander with an expansion ratio of 15:1 and a primary mirror focal ratio of f/2 was designed for the study. An HDOS copyrighted analysis program determined the value of merit function for various optical misalignments. With sensitivities provided by the analysis, preliminary error budget and tolerance allocations were made for potential optical wavefront errors and boresight errors during laser shot transit time. These were compared with the baseline l.5 m CO2 LAWS and the optical fabrication state of the art (SOA) as characterized by the Hubble Space Telescope. Reducing wavelength and changing optical design resulted in optical quality tolerances within the SOA both at 2 and 1 micrometers. However, advanced sensing and control devices would be necessary to maintain on-orbit alignment. Optical tolerance for maintaining boresight stability would have to be tightened by a factor of 1.8 for a 2 micrometers system and by 3.6 for a 1 micrometers system relative to the baseline CO2 LAWS. Available SOA components could be used for operation at 2 micrometers but operation at 1 micrometers does not appear feasible.
Impact of shorter wavelengths on optical quality for laws
NASA Technical Reports Server (NTRS)
Wissinger, Alan B.; Noll, Robert J.; Tsacoyeanes, James G.; Tausanovitch, Jeanette R.
1993-01-01
This study explores parametrically as a function of wavelength the degrading effects of several common optical aberrations (defocus, astigmatism, wavefronttilts, etc.), using the heterodyne mixing efficiency factor as the merit function. A 60 cm diameter aperture beam expander with an expansion ratio of 15:1 and a primary mirror focal ratio of f/2 was designed for the study. An HDOS copyrighted analysis program determined the value of merit function for various optical misalignments. With sensitivities provided by the analysis, preliminary error budget and tolerance allocations were made for potential optical wavefront errors and boresight errors during laser shot transit time. These were compared with the baseline 1.5 m CO2 laws and the optical fabrication state of the art (SOA) as characterized by the Hubble Space Telescope. Reducing wavelength and changing optical design resulted in optical quality tolerances within the SOA both at 2 and 1 micrometer. However, advanced sensing and control devices would be necessary to be tightened by a factory of 1.8 for a 2 micrometer system and by 3.6 for a 1 micrometer system relative to the baseline CO2 LAWS. Available SOA components could be used for operation at 2 micrometers but operation at 1 micrometer does not appear feasible.
NASA Astrophysics Data System (ADS)
Pan, Xiang
Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to solar radiation causes significant chemical aging in SOA species.
1990-12-04
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE (Wisconsin Ultraviolet Photo-Polarimeter Experiment) data review at the Science Operations Area during the mission. This image shows mission activities at the Broad Band X-Ray Telescope (BBXRT) Work Station in the Science Operations Area (SOA).
Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.
2011-01-01
Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360
Exploring the influence of context and policy on health district productivity in Cambodia.
Ensor, Tim; So, Sovannarith; Witter, Sophie
2016-01-01
Cambodia has been reconstructing its economy and health sector since the end of conflict in the 1990s. There have been gains in life expectancy and increased health expenditure, but Cambodia still lags behind neighbours One factor which may contribute is the efficiency of public health services. This article aims to understand variations in efficiency and the extent to which changes in efficiency are associated with key health policies that have been introduced to strengthen access to health services over the past decade. The analysis makes use of data envelopment analysis (DEA) to measure relative efficiency and changes in productivity and regression analysis to assess the association with the implementation of health policies. Data on 28 operational districts were obtained for 2008-11, focussing on the five provinces selected to represent a range of conditions in Cambodia. DEA was used to calculate efficiency scores assuming constant and variable returns to scale and Malmquist indices to measure productivity changes over time. This analysis was combined with qualitative findings from 17 key informant interviews and 19 in-depth interviews with managers and staff in the same provinces. The DEA results suggest great variation in the efficiency scores and trends of scores of public health services in the five provinces. Starting points were significantly different, but three of the five provinces have improved efficiency considerably over the period. Higher efficiency is associated with more densely populated areas. Areas with health equity funds in Special Operating Agency (SOA) and non-SOA areas are associated with higher efficiency. The same effect is not found in areas only operating voucher schemes. We find that the efficiency score increased by 0.12 the year any of the policies was introduced. This is the first study published on health district productivity in Cambodia. It is one of the few studies in the region to consider the impact of health policy changes on health sector efficiency. The results suggest that the recent health financing reforms have been effective, singly and in combination. This analysis could be extended nationwide and used for targeting of new initiatives. The finding of an association between recent policy interventions and improved productivity of public health services is relevant for other countries planning similar health sector reforms.
Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F
2010-07-01
Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin
2013-03-01
Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.
The preparation effect in task switching: carryover of SOA.
Altmann, Erik M
2004-01-01
A common finding in task-switching studies is switch preparation (commonly known as the preparation effect), in which a longer interval between task cue and trial stimulus (i.e., a longer stimulus onset asynchrony, or SOA) reduces the cost of switching to a different task. Three experiments link switch preparation to within-subjects manipulations of SOA. In Experiment 1, SOA was randomized within subjects, producing switch preparation that was more pronounced when the SOA switched from the previous trial than when the SOA repeated. In Experiment 2, SOA was blocked within subjects, producing switch preparation but not on the first block of trials. In Experiment 3, SOA was manipulated between subjects with sufficient statistical power to detect switch preparation, but the effect was absent. The results favor an encoding view of cognitive control, but show that any putative switching mechanism reacts lazily when exposed to only one SOA.
Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.
2016-01-01
Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions. PMID:27312480
On the Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol
NASA Astrophysics Data System (ADS)
Zelenyuk, A.; Vaden, T.; Imre, D. G.; Beránek, J.; Shrivastava, M.
2010-12-01
Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort that is focused on finding additional SOA sources, but leaves many of the fundamental assumptions that are used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets that form instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using an accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory generated α-pinene SOA and ambient atmospheric SOA. The experimental setup was first tested by measuring the evaporation kinetics of single component organic particles of known vapor pressure. We show that, as expected for liquid droplets, smaller particles evaporate faster, and that these data yield the correct vapor pressure. We then study the evaporation kinetics of α-pinene SOA and find that evaporation proceeds in two stages: a fast stage, during which 50% of the particle volume evaporates in ~100 minutes, followed by a slower stage, when additional 25% evaporate in 1400 minutes, which is in sharp contrast to the ~10 minutes timescale predicted by current kinetic models. α-pinene SOA formed in the presence of “spectator” hydrophobic organic vapors like dioctyl phthalate, dioctyl sebacate, pyrene, or their mixture, were shown to adsorb noticeable amounts of these organics, forming what we term here ‘coated’ SOA particles. We show that these adsorbed coatings reduce evaporation rates of SOA particles. Moreover, aging of coated SOA particles dramatically reduces evaporation rates, and in some cases nearly stops it. For example, aging of SOA with adsorbed pyrene reduces evaporation rate to the point that only ~11% of the particle volume evaporates within 24 hrs. For all cases studied in this work, SOA evaporation behavior is size-independent and does not follow the evaporation kinetics of liquid droplets, which is in sharp contrast with model assumptions. To address the question of how closely the laboratory observations described above reflect reality in the atmosphere we characterized the evaporation kinetics of size-selected atmospheric SOA particles sampled in-situ during the recent Carbonaceous Aerosols and Radiative Effects Study (CARES) field campaign. We find that the evaporation of ambient SOA is very similar to that of coated and aged laboratory-generated α-pinene SOA. Ambient SOA particles in Sacramento, CA lose between 17% and 25% of their volume in 6 hours. Like laboratory SOA, their evaporation is size-independent and does not follow the kinetics of liquid droplets. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging - all indicate the need to reformulate the way SOA formation and evaporation are treated by models.
Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker
2014-08-21
Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation.
Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R
2012-10-08
We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.
Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker
2014-01-01
Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165
Lyu, X P; Guo, H; Cheng, H R; Wang, X M; Ding, X; Lu, H X; Yao, D W; Xu, C
2017-12-15
Secondary organic aerosol (SOA) is an important constituent of airborne fine particles. PM 2.5 (particles with aerodynamic diameters≤2.5μm) samples were collected at a mountainous site in Hong Kong in autumn of 2010, and analyzed for SOA tracers. Results indicated that the concentrations of isoprene SOA tracers (54.7±22.7ng/m 3 ) and aromatics SOA tracers (2.1±1.6ng/m 3 ) were on relatively high levels in Hong Kong. Secondary organic carbon (SOC) derived from isoprene, monoterpenes, sesquiterpenes and aromatics was estimated with the SOA tracer based approach, which constituted 0.35±0.15μg/m 3 (40.6±5.7%), 0.20±0.03μg/m 3 (30.4±5.5%), 0.05±0.02μg/m 3 (5.6±1.7%) and 0.26±0.20μg/m 3 (21.3±8.2%) of the total estimated SOC. Biogenic SOC (0.60±0.18μg/m 3 ) dominated over anthropogenic SOC (0.26±0.20μg/m 3 ) at this site. In addition to the total estimated SOC (17.8±4.6% of organic carbon (OC) in PM 2.5 ), primary organic carbon (POC) emitted from biomass burning also accounted for a considerable proportion of OC (11.6±3.2%). Insight into the OC origins found that regional transport significantly (p<0.05) elevated SOC from 0.37±0.17 to 1.04±0.39μg/m 3 . Besides, SOC load could also increase significantly if there was influence from local ship emission. Biomass burning related POC in regional air masses (0.81±0.24μg/m 3 ) was also higher (p<0.05) than that in samples affected by local air (0.29±0.35μg/m 3 ). Evidences indicated that SOA formation was closely related to new particle formation and the growth of nucleation mode particles, while biomass burning was responsible for some particle burst events in Hong Kong. This is the first SOA study in afforested areas of Hong Kong. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Pengkun; Zhang, Peng; Shu, Jinian; Yang, Bo; Zhang, Haixu
2018-01-01
To further explore the composition and distribution of secondary organic aerosol (SOA) components from the photo-oxidation of light aromatic precursors (toluene, m-xylene, and 1,3,5-trimethylbenzene (1,3,5-TMB)) and idling gasoline exhaust, a vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) was employed. Peaks of the molecular ions of the SOA components with minimum molecular fragmentation were clearly observed from the mass spectra of SOA, through the application of soft ionization methods in VUV-PIMS. The experiments comparing the exhaust-SOA and light aromatic mixture-SOA showed that the observed distributions of almost all the predominant cluster ions in the exhaust-SOA were similar to that of the mixture-SOA. Based on the characterization experiments of SOA formed from individual light aromatic precursors, the SOA components with molecular weights of 98 and 110 amu observed in the exhaust-SOA resulted from the photo-oxidation of toluene and m-xylene; the components with a molecular weight of 124 amu were derived mainly from m-xylene; and the components with molecular weights of 100, 112, 128, 138, and 156 amu were mainly derived from 1,3,5-TMB. These results suggest that C 7 -C 9 light aromatic hydrocarbons are significant SOA precursors and that major SOA components originate from gasoline exhaust. Additionally, some new light aromatic hydrocarbon-SOA components were observed for the first time using VUV-PIMS. The corresponding reaction mechanisms were also proposed in this study to enrich the knowledge base of the formation mechanisms of light aromatic hydrocarbon-SOA compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III
2016-02-01
Substitution of methyl groups onto the aromatic ring determines the secondary organic aerosol (SOA) formation from the monocyclic aromatic hydrocarbon precursor (SOA yield and chemical composition). This study links the number of methyl groups on the aromatic ring to SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions (HC/NO > 10 ppbC : ppb). Monocyclic aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from monocyclic aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low-NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from monocyclic aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests that, as more methyl groups are attached on the aromatic ring, SOA products from these monocyclic aromatic hydrocarbons become less oxidized per mass/carbon on the basis of SOA yield or chemical composition.
Offenberg, John H; Lewis, Charles W; Lewandowski, Michael; Jaoui, Mohammed; Kleindienst, Tadeusz E; Edney, Edward O
2007-06-01
An organic tracer method, recently proposed for estimating individual contributions of toluene and alpha-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydrocarbon, toluene, and the biogenic monoterpene, alpha-pinene, was irradiated in air in the presence of NO(x) to form SOA. The contributions of toluene and alpha-pinene to the total SOA concentration, calculated using the organic tracer method, were compared with those obtained with a more direct 14C content method. In the study, SOA to SOC ratios of 2.07 +/- 0.08 and 1.41 +/- 0.04 were measured for toluene and (alpha-pinene SOA, respectively. The individual tracer-based SOA contributions of 156 microg m(-3) for toluene and 198 microg m(-)3 for alpha-pinene, which together accounted for 82% of the gravimetrically determined total SOA concentration, compared well with the 14C values of 182 and 230 microg m(-3) measured for the respective SOA precursors. While there are uncertainties associated with the organic tracer method, largely due to the chemical complexity of SOA forming chemical mechanisms, the results of this study suggest the organic tracer method may serve as a useful tool for determining whether a precursor hydrocarbon is a major SOA contributor.
Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R
2012-07-07
A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.
NASA Astrophysics Data System (ADS)
Lim, H. J.; Park, J. H.; Babar, Z.
2015-12-01
Secondary organic aerosol (SOA) accounts for 20-70% of atmospheric fine aerosol. NOx plays crucial roles in SOA formation and consequently affects the composition and yield of SOA. SOA component speciation is incomplete due to its complex composition of polar oxygenated and multifunctional species. In this study, ultrahigh resolution mass spectrometry (UHR MS) was applied to improve the understanding of NOx effects on biogenic SOA formation by identifying the elemental composition of SOA. Additional research aim was to investigate oligomer components that are considered as a driving force for SOA formation and growth. In this study α-pinene SOA from photochemical reaction was examined. SOA formation was performed in the absence and presence of NOx at dry condition (<5% RH) of room temperature (~25oC) in ~8 m3 KNU smog chamber. SOA was collected on Teflon-coated glass fiber filter, which was extracted using acetonitrile and analyzed by ultrahigh resolution 15T FT-ICR MS. UHR MS data were interpreted in various ways including molecular formula, Kendrick diagram, van Krevelen diagram, and double bond equivalent values. Substantially large fractions of them are nitrogen containing species. Thousands of individual species of SOA were identified. For SOA in the absence of NOx. intensity normalized mean O/C, H/C, N/C, OM/OC ratios were 0.43, 1.52, 0.02, and 1.68, respectively. For SOA in the presence of NOx, those ratios were 0.52, 0.95, 0.08, and 1.48, respectively. 4 different oligomer formation mechanisms (addition, H abstraction, hydrolysis and de-hydrolysis reaction) were examined on the basis of SOA compositions. Detailed discussion will be presented on the molecular structure and building block of oligomers in SOA as well as the evolution of individual elemental composition by multi-generation reactions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-01350000).
Yuan, Qi; Lai, Senchao; Song, Junwei; Ding, Xiang; Zheng, Lishan; Wang, Xinming; Zhao, Yan; Zheng, Junyu; Yue, Dingli; Zhong, Liuju; Niu, Xiaojun; Zhang, Yingyi
2018-05-21
Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOA I ), monoterpenes (SOA M ), sesquiterpenes (SOA S ) and aromatics (SOA A ) in fine particulate matter (PM 2.5 ) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOA I , SOA M and SOA S tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOA A tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOA I formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOA M and SOA S formation in summer rather than in other seasons. The influence of atmospheric oxidants (O x ) was found to be an important factor of the formation of SOA M tracers during the enhancement periods in autumn and winter. The formation of SOA S tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and O x as well as [NO 2 ][O 3 ] suggest the involvement of both ozone (O 3 ) and nitrogen dioxide (NO 2 ) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Han
2017-04-01
An ultra-wideband microwave photonic filter (MPF) with a high quality (Q)-factor based on the birefringence effects in a semiconductor optical amplifier (SOA) is presented, and the theoretical fundamentals of the design are explained. The proposed MPF along orthogonal polarization in an active loop operates at up to a Ku-band and provides a tunable free spectral range from 15.44 to 19.44 GHz by controlling the SOA injection current. A prototype of the equivalent second-order infinite impulse response filter with a Q-factor over 6300 and a rejection ration exceeding 41 dB is experimentally demonstrated.
High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.
Cleary, Ciaran S; Manning, Robert J
2012-06-18
We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.
NASA Astrophysics Data System (ADS)
Zhou, Jun; Zotter, Peter; Bruns, Emily A.; Stefenelli, Giulia; Bhattu, Deepika; Brown, Samuel; Bertrand, Amelie; Marchand, Nicolas; Lamkaddam, Houssni; Slowik, Jay G.; Prévôt, André S. H.; Baltensperger, Urs; Nussbaumer, Thomas; El-Haddad, Imad; Dommen, Josef
2018-05-01
Wood combustion emissions can induce oxidative stress in the human respiratory tract by reactive oxygen species (ROS) in the aerosol particles, which are emitted either directly or formed through oxidation in the atmosphere. To improve our understanding of the particle-bound ROS (PB-ROS) generation potential of wood combustion emissions, a suite of smog chamber (SC) and potential aerosol mass (PAM) chamber experiments were conducted under well-determined conditions for different combustion devices and technologies, different fuel types, operation methods, combustion regimes, combustion phases, and aging conditions. The PB-ROS content and the chemical properties of the aerosols were quantified by a novel ROS analyzer using the DCFH (2',7'-dichlorofluorescin) assay and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). For all eight combustion devices tested, primary PB-ROS concentrations substantially increased upon aging. The level of primary and aged PB-ROS emission factors (EFROS) were dominated by the combustion device (within different combustion technologies) and to a greater extent by the combustion regimes: the variability within one device was much higher than the variability of EFROS from different devices. Aged EFROS under bad combustion conditions were ˜ 2-80 times higher than under optimum combustion conditions. EFROS from automatically operated combustion devices were on average 1 order of magnitude lower than those from manually operated devices, which indicates that automatic combustion devices operated at optimum conditions to achieve near-complete combustion should be employed to minimize PB-ROS emissions. The use of an electrostatic precipitator decreased the primary and aged ROS emissions by a factor of ˜ 1.5 which is however still within the burn-to-burn variability. The parameters controlling the PB-ROS formation in secondary organic aerosol were investigated by employing a regression model, including the fractions of the mass-to-charge ratios m/z 44 and 43 in secondary organic aerosol (SOA; f44 - SOA and f43 - SOA), the OH exposure, and the total organic aerosol mass. The regression model results of the SC and PAM chamber aging experiments indicate that the PB-ROS content in SOA seems to increase with the SOA oxidation state, which initially increases with OH exposure and decreases with the additional partitioning of semi-volatile components with lower PB-ROS content at higher OA concentrations, while further aging seems to result in a decay of PB-ROS. The results and the special data analysis methods deployed in this study could provide a model for PB-ROS analysis of further wood or other combustion studies investigating different combustion conditions and aging methods.
NASA Astrophysics Data System (ADS)
Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.
2016-12-01
Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the volatility of the aerosol, and compare observed SOA yields to other OFR and smog chamber SOA generation methods. Additionally, estimates of OH radical exposure in the OFR during different vehicle experiments of varying fuel type and speed were observed to vary as determined from a high-NOx and variable humidity calibration set.
Clark, Christopher H; Kacarab, Mary; Nakao, Shunsuke; Asa-Awuku, Akua; Sato, Kei; Cocker, David R
2016-06-07
Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.
An SOA model for toluene oxidation in the presence of inorganic aerosols.
Cao, Gang; Jang, Myoseon
2010-01-15
A predictive model for secondary organic aerosol (SOA) formation including both partitioning and heterogeneous reactions is explored for the SOA produced from the oxidation of toluene in the presence of inorganic seed aerosols. The predictive SOA model comprises the explicit gas-phase chemistry of toluene, gas-particle partitioning, and heterogeneous chemistry. The resulting products from the explicit gas phase chemistry are lumped into several classes of chemical species based on their vapor pressure and reactivity for heterogeneous reactions. Both the gas-particle partitioning coefficient and the heterogeneous reaction rate constant of each lumped gas-phase product are theoretically determined using group contribution and molecular structure-reactivity. In the SOA model, the predictive SOA mass is decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). OM(P) is estimated from the SOA partitioning model developed by Schell et al. (J. Geophys. Res. 2001, 106, 28275-28293 ) that has been used in a regional air quality model (CMAQ 4.7). OM(H) is predicted from the heterogeneous SOA model developed by Jang et al. (Environ. Sci. Technol. 2006, 40, 3013-3022 ). The SOA model is evaluated using a number of the experimental SOA data that are generated in a 2 m(3) indoor Teflon film chamber under various experimental conditions (e.g., humidity, inorganic seed compositions, NO(x) concentrations). The SOA model reasonably predicts not only the gas-phase chemistry, such as the ozone formation, the conversion of NO to NO(2), and the toluene decay, but also the SOA production. The model predicted that the OM(H) fraction of the total toluene SOA mass increases as NO(x) concentrations decrease: 0.73-0.83 at low NO(x) levels and 0.17-0.47 at middle and high NO(x) levels for SOA experiments with high initial toluene concentrations. Our study also finds a significant increase in the OM(H) mass fraction in the SOA generated with low initial toluene concentrations, compared to those with high initial toluene concentrations. On average, more than a 1-fold increase in OM(H) fraction is observed when the comparison is made between SOA experiments with 40 ppb toluene to those with 630 ppb toluene. Such an observation implies that heterogeneous reactions of the second-generation products of toluene oxidation can contribute considerably to the total SOA mass under atmospheric relevant conditions.
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Mechanism of SOA formation determines magnitude of radiative effects
Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; ...
2017-11-13
Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less
Mechanism of SOA formation determines magnitude of radiative effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing
Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types
Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...
2015-09-22
The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less
Arashiro, Maiko; Lin, Ying-Hsuan; Zhang, Zhenfa; Sexton, Kenneth G; Gold, Avram; Jaspers, Ilona; Fry, Rebecca C; Surratt, Jason D
2018-02-21
Isoprene-derived secondary organic aerosol (SOA), which comprise a large portion of atmospheric fine particulate matter (PM 2.5 ), can be formed through various gaseous precursors, including isoprene epoxydiols (IEPOX), methacrylic acid epoxide (MAE), and isoprene hydroxyhydroperoxides (ISOPOOH). The composition of the isoprene-derived SOA affects its reactive oxygen species (ROS) generation potential and its ability to alter oxidative stress-related gene expression. In this study we assess effects of isoprene SOA derived solely from ISOPOOH oxidation on human bronchial epithelial cells by measuring the gene expression changes in 84 oxidative stress-related genes. In addition, the thiol reactivity of ISOPOOH-derived SOA was measured through the dithiothreitol (DTT) assay. Our findings show that ISOPOOH-derived SOA alter more oxidative-stress related genes than IEPOX-derived SOA but not as many as MAE-derived SOA on a mass basis exposure. More importantly, we found that the different types of SOA derived from the various gaseous precursors (MAE, IEPOX, and ISOPOOH) have unique contributions to changes in oxidative stress-related genes that do not total all gene expression changes seen in exposures to atmospherically relevant compositions of total isoprene-derived SOA mixtures. This study suggests that amongst the different types of known isoprene-derived SOA, MAE-derived SOA are the most potent inducer of oxidative stress-related gene changes but highlights the importance of considering isoprene-derived SOA as a total mixture for pollution controls and exposure studies.
NASA Astrophysics Data System (ADS)
Ge, Shuangshuang; Xu, Yongfu; Jia, Long
2017-12-01
Photochemical oxidations of acetone were studied under different inorganic seed (NaCl, (NH4)2SO4 and NaNO3) conditions in a self-made chamber. The results show that no secondary organic aerosol (SOA) can be formed in the experiments either in the absence of artificially added seed particles or in the presence of solid status of the added particles. Liquid water content is the key factor for the formation of SOA in the experiments with seeds. The amount of SOA was only about 4-7 μg m-3 in the experiments with the initial acetone of ∼15 ppm under different seed conditions. The analysis of SOA compositions by Exactive-Orbitrap mass spectrometer equipped with electro-spray interface (ESI-MS) shows that chlorine-containing and sulfur-containing compounds were detected in SOA formed from the experiments with NaCl and (NH4)2SO4 seeds, respectively, which were not identified in SOA from those with NaNO3. The compositions of SOA were mainly esters, organonitrates, hydroperoxides, etc. It is concluded that inorganic seed particles participated into the formation of SOA. Acetone SOA was mainly formed in the aqueous phase in which dissolved SOA precursors underwent further oxidation reactions, esterification reactions and/or radical-radical reactions. Our experiments further demonstrate that low-molecular-weight VOCs, such as acetone, can form SOA under certain conditions in the atmosphere, although their contributions to SOA may not be large.
Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E
2006-03-15
Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.
Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges
NASA Astrophysics Data System (ADS)
Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu
Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.
Dual-task interference with equal task emphasis: graded capacity sharing or central postponement?
NASA Technical Reports Server (NTRS)
Ruthruff, Eric; Pashler, Harold E.; Hazeltine, Eliot
2003-01-01
Most studies using the psychological refractory period (PRP) design suggest that dual-task performance is limited by a central bottleneck. Because subjects are usually told to emphasize Task 1, however, the bottleneck might reflect a strategic choice rather than a structural limitation. To evaluate the possibility that central operations can proceed in parallel, albeit with capacity limitations, we conducted two dual-task experiments with equal task emphasis. In both experiments, subjects tended to either group responses together or respond to one task well before the other. In addition, stimulus-response compatibility effects were roughly constant across stimulus onset asynchronies (SOAs). At the short SOA, compatibility effects also carried over onto response times for the other task. This pattern of results is difficult to reconcile with the possibility that subjects share capacity roughly equally between simultaneous central operations. However, this pattern is consistent with the existence of a structural central bottleneck.
NASA Astrophysics Data System (ADS)
Li, L.; Tang, P.; Nakao, S.; Chen, C.-L.; Cocker, D. R., III
2015-11-01
Substitution of methyl groups onto the aromatic ring determines the SOA formation from the aromatic hydrocarbon precursor. This study links the number of methyl groups on the aromatic ring to SOA formation from aromatic hydrocarbons photooxidation under low NOx conditions (HC / NO > 10 ppb C : ppb). Aromatic hydrocarbons with increasing numbers of methyl groups are systematically studied. SOA formation from pentamethylbenzene and hexamethylbenzene are reported for the first time. A decreasing SOA yield with increasing number of methyl groups is observed. Linear trends are found in both f44 vs. f43 and O / C vs. H / C for SOA from aromatic hydrocarbons with zero to six methyl groups. An SOA oxidation state predictive method based on benzene is used to examine the effect of added methyl groups on aromatic oxidation under low NOx conditions. Further, the impact of methyl group number on density and volatility of SOA from aromatic hydrocarbons is explored. Finally, a mechanism for methyl group impact on SOA formation is suggested. Overall, this work suggests as more methyl groups are attached on the aromatic ring, SOA products from these aromatic hydrocarbons become less oxidized per mass/carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan
2013-04-27
Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwindmore » of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.« less
NASA Astrophysics Data System (ADS)
Watne, Ågot K.; Westerlund, Jonathan; Hallquist, Åsa M.; Brune, William H.; Hallquist, Mattias
2017-12-01
The behaviour of secondary organic aerosols (SOA) in the atmosphere is highly dependent on their thermal properties. Here we investigate the volatility of SOA formed from alpha-pinene, beta-pinene and limonene upon ozone- and OH-induced oxidation, and the effect of OH-induced ageing on the initially produced SOA. For all three terpenes, the ozone-induced SOA was less volatile than the OH-induced SOA. The thermal properties of the SOA were described using three parameters extracted from the volatility measurements: the temperature at which 50 per cent of the volume has evaporated (TVFR0.5), which is used as a general volatility indicator; a slope factor (SVFR), which describes the volatility distribution; and TVFR0.1, which measures the volatility of the least volatile particle fraction. Limonene-derived SOA generally had higher TVFR0.5 values and shallower slopes than SOA derived from alpha- and beta-pinene. This was especially true for the ozone-induced SOA, partially because the ozonolysis of limonene has a strong tendency to cause SOA formation and to produce extremely low volatility VOCs (ELVOCs). Ageing by OH exposure did not reduce TVFR0.5 for any of the studied terpenes but did increase the breadth of the volatility distribution by increasing the aerosols heterogeneity and contents of substances with different vapour pressures, also leading to increases in TVFR0.1. This stands in contrast to previously reported results from smog chamber experiments, in which TVFR0.5 always increased with ageing. These results demonstrate that there are two opposing processes that influence the evolution of SOAs thermal properties as they age, and that results from both flow reactors and static chambers are needed to fully understand the temporal evolution of atmospheric SOA thermal properties.
Incipient Motion of Sand and Oil Agglomerates
NASA Astrophysics Data System (ADS)
Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.
2016-12-01
Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Takahama; C.I. Davidson; S.N. Pandis
2006-04-01
Laboratory evidence suggests that inorganic acid seed particles may increase secondary organic aerosol yields secondary organic aerosol (SOA) through heterogeneous chemistry. Additional laboratory studies, however, report that organic acidity generated in the same photochemical process by which SOA is formed may be sufficient to catalyze these heterogeneous reactions. Understanding the interaction between inorganic acidity and SOA mass is important when evaluating emission controls to meet PM2.5 regulations. Semicontinuous measurements of organic carbon (OC), elemental carbon (EC), and inorganic species from the Pittsburgh Air Quality Study were examined to determine if coupling in the variations of inorganic acidity and OC couldmore » be detected. Significant enhancements of SOA production could not be detected due to inorganic acidity in Western Pennsylvania most of the time, but its signal might have been lost in the noise. If a causal relationship between inorganic acidity and OC is assumed, reductions in OC for Western Pennsylvania that might result from drastic reductions in inorganic acidity were estimated to be 2 {+-} 4% by a regression technique, and an upper bound for this geographic area was estimated to be 5 {+-} 8% based on calculations from laboratory measurements. 48 refs., 7 figs., 3 tabs.« less
Nearshore dynamics of artificial sand and oil agglomerates
Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.
2015-01-01
Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.
Constructing service-oriented architecture adoption maturity matrix using Kano model
NASA Astrophysics Data System (ADS)
Hamzah, Mohd Hamdi Irwan; Baharom, Fauziah; Mohd, Haslina
2017-10-01
Commonly, organizations adopted Service-Oriented Architecture (SOA) because it can provide a flexible reconfiguration and can reduce the development time and cost. In order to guide the SOA adoption, previous industry and academia have constructed SOA maturity model. However, there is a limited number of works on how to construct the matrix in the previous SOA maturity model. Therefore, this study is going to provide a method that can be used in order to construct the matrix in the SOA maturity model. This study adapts Kano Model to construct the cross evaluation matrix focused on SOA adoption IT and business benefits. This study found that Kano Model can provide a suitable and appropriate method for constructing the cross evaluation matrix in SOA maturity model. Kano model also can be used to plot, organize and better represent the evaluation dimension for evaluating the SOA adoption.
NASA Astrophysics Data System (ADS)
Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.
2015-04-01
Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making it the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a "triangle plot" of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2 if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass resolution data is available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, ManishKumar B.; Easter, Richard C.; Liu, Xiaohong
2015-05-16
Secondary organic aerosols (SOA) are large contributors to fine particle loadings and radiative forcing, but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semi-volatile versus non-volatile SOA treatments (based on some of the latest experimental findings) and also investigate the effects of gas-phase fragmentation reactions. For semi-volatile SOA treatments, fragmentation reactions decrease simulated SOA burden from 7.5 Tg to 1.8 Tg. For the non-volatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between non-volatile and semi-volatilemore » SOA (upto a factor of 5) correspond to continental outflow over the oceans. Compared to a global dataset of surface Aerosol Mass Spectrometer measurements and the US IMPROVE network measurements, the non-volatile SOA with fragmentation treatment (FragNVSOA) agrees best at rural locations. Urban SOA is under-predicted but this may be due to the coarse model resolution. All our three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the N. American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is due to treating SOA precursor gases from biomass burning, and long-range transport of biomass burning OA at elevated levels. The revised model configuration that include fragmentation (both semi-volatile and non-volatile SOA) show much better agreement with MODIS AOD data over regions dominated by biomass burning during the summer, and predict biomass burning as the largest global source of OA followed by biogenic and anthropogenic sources. The non-volatile and semi-volatile configuration predict the direct radiative forcing of SOA as -0.5 W m-2 and -0.26 W m-2 respectively, at top of the atmosphere, which are higher than previously estimated by most models, but in reasonable agreement with a recent constrained modeling study. This study highlights the importance of improving process-level representation of SOA in global models.« less
NASA Astrophysics Data System (ADS)
Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.
2015-10-01
Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.
Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C 5H 6O + ( m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine f C5H6O ( f C5H6O= C 5H 6O +/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher f C5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. f C5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low f C5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of f CO2 vs. f C5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the f C5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.« less
Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; ...
2015-10-23
Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C 5H 6O + ( m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine f C5H6O ( f C5H6O= C 5H 6O +/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher f C5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. f C5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low f C5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of f CO2 vs. f C5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the f C5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.« less
NASA Astrophysics Data System (ADS)
Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.
2016-12-01
Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.
Partitioning phase preference for secondary organic aerosol in an urban atmosphere
NASA Astrophysics Data System (ADS)
Chang, Wayne Li-Wen
Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter (PM). The impact of PM on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state-of-the-art 3-D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the distribution of fAQ values is inversely proportional to the total SOA loading. Further analysis accounting for various meteorological parameters indicates that large fAQ values are the results of aqueous-phase SOA insensitivity to the ambient conditions; while organic-phase SOA concentrations are dramatically reduced under unfavorable SOA formation conditions, aqueous-phase SOA level remains relatively unchanged, thus increasing fAQ at low SOA loading. Diurnal variations of fAQ near the surface are also observed: it tends to be larger during daytime hours than nighttime hours. When examining the vertical gradient of fAQ, largest values are found at heights above the surface layer. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.
Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions
NASA Astrophysics Data System (ADS)
Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.
2017-12-01
Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.
Automated UAV-based video exploitation using service oriented architecture framework
NASA Astrophysics Data System (ADS)
Se, Stephen; Nadeau, Christian; Wood, Scott
2011-05-01
Airborne surveillance and reconnaissance are essential for successful military missions. Such capabilities are critical for troop protection, situational awareness, mission planning, damage assessment, and others. Unmanned Aerial Vehicles (UAVs) gather huge amounts of video data but it is extremely labour-intensive for operators to analyze hours and hours of received data. At MDA, we have developed a suite of tools that can process the UAV video data automatically, including mosaicking, change detection and 3D reconstruction, which have been integrated within a standard GIS framework. In addition, the mosaicking and 3D reconstruction tools have also been integrated in a Service Oriented Architecture (SOA) framework. The Visualization and Exploitation Workstation (VIEW) integrates 2D and 3D visualization, processing, and analysis capabilities developed for UAV video exploitation. Visualization capabilities are supported through a thick-client Graphical User Interface (GUI), which allows visualization of 2D imagery, video, and 3D models. The GUI interacts with the VIEW server, which provides video mosaicking and 3D reconstruction exploitation services through the SOA framework. The SOA framework allows multiple users to perform video exploitation by running a GUI client on the operator's computer and invoking the video exploitation functionalities residing on the server. This allows the exploitation services to be upgraded easily and allows the intensive video processing to run on powerful workstations. MDA provides UAV services to the Canadian and Australian forces in Afghanistan with the Heron, a Medium Altitude Long Endurance (MALE) UAV system. On-going flight operations service provides important intelligence, surveillance, and reconnaissance information to commanders and front-line soldiers.
Li, Fengxia; Schnelle-Kreis, Jürgen; Cyrys, Josef; Wolf, Kathrin; Karg, Erwin; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf
2018-08-01
to study the sources contributing to quasi-ultrafine particle (UFP) organic carbon and the spatial temporal variability of the sources. 24h quasi-UFP (particulate matter <0.36μm in this study) was sampled at a reference site continuously and at one of 5 other sites (T1, T2, T3, T4 and B1) in parallel in Augsburg, Germany from April 11th, 2014 to February 22nd, 2015, attempting to conduct 2-week campaigns at each site in 3 different seasons. Positive matrix factorization (PMF) was applied to measured organic tracers for source apportionment analyses. Pearson correlation coefficient r and coefficient of divergence (COD) were calculated to investigate spatial temporal variation of source contributions. 5 sources were identified comprising biomass burning (BB), traffic emissions (Traffic), biogenic secondary organic aerosol (bioSOA), isoprene originated secondary organic aerosol (isoSOA) and biomass burning related secondary organic aerosol (bbSOA). In general, good temporal correlation and uniform distribution within the study area are found for bioSOA and bbSOA, probably resulting from regional formation/transport. Lower temporal correlation and spatial heterogeneity of isoSOA were found at the city background site with local influence from green space and less traffic impact. BB demonstrated very good temporal correlation, but higher contributions at sites influenced by local residential heating emissions were observed. Traffic showed the least seasonality and lower correlation over time among the sources. However, it demonstrated low spatial heterogeneity of absolute contribution, and only a few days of elevated contribution was found at T3 when wind came directly from the street nearby. temporal correlation and spatial variability of sources contributing to the organic fraction of quasi-UFP vary among sites and source types and show source-specific characteristics. Therefore, caution should be taken when using one monitor site measurement to assess human exposure in health effect studies of quasi-UFP. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.
2018-04-01
The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors and inorganic seeds under different NOx and RH conditions are warranted.
Bachmanov, Alexander A.; Li, Xia; Li, Shanru; Neira, Mauricio; Beauchamp, Gary K.; Azen, Edwin A.
2013-01-01
An acetylated sugar, sucrose octaacetate (SOA), tastes bitter to humans and has an aversive taste to at least some mice and other animals. In mice, taste aversion to SOA depends on allelic variation of a single locus, Soa. Three Soa alleles determine ‘taster’ (Soaa), ‘nontaster’ (Soab), and ‘demitaster’ (Soac) phenotypes of taste sensitivity to SOA. Although Soa has been mapped to distal Chromosome (Chr) 6, the limits of the Soa region have not been defined. In this study, mice from congenic strains SW.B6-Soab, B6.SW-Soaa, and C3.SW-Soaa/c and from an outbred CFW strain were genotyped with polymorphic markers on Chr 6. In the congenic strains, the limits of introgressed donor fragments were determined. In the outbred mice, linkage disequilibrium and haplotype analyses were conducted. Positions of the markers were further resolved by using radiation hybrid mapping. The results show that the Soa locus is contained in a ~1-cM (3.3–4.9 Mb) region including the Prp locus. PMID:11641717
Besner, Derek; Reynolds, Mike; O'Malley, Shannon
2009-11-01
The Psychological Refractory Period (PRP) paradigm is a dual-task procedure that can be used to examine the resource demands of specific cognitive processes. Inferences about the underlying processes are typically based on performance in the second of two speeded tasks. If the effect of a factor manipulated in Task 2 decreases as the stimulus onset asynchrony (SOA) between tasks decreases (underadditivity), the normative inference is that the effect of this factor occurs prior to a limited-capacity central processing mechanism. In contrast, if the effect of a factor is additive with SOA then the inference is that this indexes a process that either uses a limited-capacity central processing mechanism or occurs after some process that uses this mechanism. A heretofore unidentified exception to this logic arises when Task 2 involves two separate processes that operate in parallel, but compete. Interference with one process in Task 2 because of work on Task 1 will eliminate or reduce competition within Task 2 and is hence manifest as an underadditive interaction with decreasing SOA. This is illustrated here by reference to a PRP experiment in which the ubiquitous effect of spelling-to-sound regularity on reading aloud time is eliminated at a short SOA and by consideration of three converging lines of investigation in the PRP paradigm when Task 2 involves reading aloud.
Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P
2010-03-29
Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.
All-optical noise reduction of fiber laser via intracavity SOA structure.
Ying, Kang; Chen, Dijun; Pan, Zhengqing; Zhang, Xi; Cai, Haiwen; Qu, Ronghui
2016-10-10
We have designed a unique intracavity semiconductor optical amplifier (SOA) structure to suppress the relative intensity noise (RIN) for a fiber DFB laser. By exploiting the gain saturation effect of the SOA, a maximum noise suppression of 30 dB around the relaxation oscillation frequency is achieved, and the whole resonance relaxation oscillation peak completely disappears. Moreover, via a specially designed intracavity SOA structure, the optical intensity inside the SOA will be in a balanced state via the oscillation in the laser cavity, and the frequency noise of the laser will not be degraded with the SOA.
Jathar, Shantanu H; Friedman, Beth; Galang, Abril A; Link, Michael F; Brophy, Patrick; Volckens, John; Eluri, Sailaja; Farmer, Delphine K
2017-02-07
Diesel engines are important sources of fine particle pollution in urban environments, but their contribution to the atmospheric formation of secondary organic aerosol (SOA) is not well constrained. We investigated direct emissions of primary organic aerosol (POA) and photochemical production of SOA from a diesel engine using an oxidation flow reactor (OFR). In less than a day of simulated atmospheric aging, SOA production exceeded POA emissions by an order of magnitude or more. Efficient combustion at higher engine loads coupled to the removal of SOA precursors and particle emissions by aftertreatment systems reduced POA emission factors by an order of magnitude and SOA production factors by factors of 2-10. The only exception was that the retrofitted aftertreatment did not reduce SOA production at idle loads where exhaust temperatures were low enough to limit removal of SOA precursors in the oxidation catalyst. Use of biodiesel resulted in nearly identical POA and SOA compared to diesel. The effective SOA yield of diesel exhaust was similar to that of unburned diesel fuel. While OFRs can help study the multiday evolution, at low particle concentrations OFRs may not allow for complete gas/particle partitioning and bias the potential of precursors to form SOA.
To what extent can biogenic SOA be controlled?
Carlton, Annmarie G; Pinder, Robert W; Bhave, Prakash V; Pouliot, George A
2010-05-01
The implicit assumption that biogenic secondary organic aerosol (SOA) is natural and can not be controlled hinders effective air quality management. Anthropogenic pollution facilitates transformation of naturally emitted volatile organic compounds (VOCs) to the particle phase, enhancing the ambient concentrations of biogenic secondary organic aerosol (SOA). It is therefore conceivable that some portion of ambient biogenic SOA can be removed by controlling emissions of anthropogenic pollutants. Direct measurement of the controllable fraction of biogenic SOA is not possible, but can be estimated through 3-dimensional photochemical air quality modeling. To examine this in detail, 22 CMAQ model simulations were conducted over the continental U.S. (August 15 to September 4, 2003). The relative contributions of five emitted pollution classes (i.e., NO(x), NH(3), SO(x), reactive non methane carbon (RNMC) and primary carbonaceous particulate matter (PCM)) on biogenic SOA were estimated by removing anthropogenic emissions of these pollutants, one at a time and all together. Model results demonstrate a strong influence of anthropogenic emissions on predicted biogenic SOA concentrations, suggesting more than 50% of biogenic SOA in the eastern U.S. can be controlled. Because biogenic SOA is substantially enhanced by controllable emissions, classification of SOA as biogenic or anthropogenic based solely on VOC origin is not sufficient to describe the controllable fraction.
NASA Astrophysics Data System (ADS)
Slade, J. H., Jr.; Shepson, P. B.; Desrochers, S. J.; Harvey, R. M.; Wallace, W.; Bui, A.; Griffin, R. J.; Kavassalis, S.; Shi, Q.; Murphy, J. G.; Cook, R.; Connor, M.; Ault, A. P.; Pratt, K.; Alwe, H. D.; Millet, D. B.; Bertman, S. B.; Stevens, P. S.; Wennberg, P. O.; Boor, B.; Petrucci, G.
2016-12-01
Particle phase state plays a key role in secondary organic aerosol (SOA) growth, reactive uptake of gas-phase radicals, and condensed phase reactions, influencing atmospheric composition and clouds. While biogenic SOA derived from isoprene and monoterpene oxidation can exhibit glassy or highly viscous semisolid phase states depending on relative humidity, the lifetimes of important SOA precursors including organic nitrates (ON) can depend on the liquid water content (LWC) and particle acidity. Reactions such as acid-catalyzed hydrolysis of particulate ON (pON) are especially sensitive to changes in aerosol LWC. However, the role of particle phase state on the chemistry of pON, and the chemical transformations of pON on the phase of SOA are poorly understood. During the summer of 2016, as part of the PROPHET - Atmospheric Measurements of Oxidants in Summer (AMOS) field study in a northern Michigan mixed deciduous/coniferous forest, we investigated the production of isoprene (IN) and monoterpene nitrates (MTN) at the ground and canopy levels and their role in particle formation, growth, and phase using a combination of high-resolution chemical ionization and aerosol mass spectrometry techniques, size distribution measurements, and particle bounce factors (BF) using two electrical low pressure impactors operating in parallel. Preliminary derived BF suggest the particles may be in a liquid-like state similar to those measured in other high-humidity and isoprene-rich regions such as the Amazon and Southeastern US. However, maxima in BF are observed during periods of high pON, NO, and IN during the day and high NO2 and MTN at night. Some periods were marked with low pON followed by an increase in particulate organic sulfate (pOS), and decrease in BF. Based on these observations, we hypothesize that acid-catalyzed hydrolysis of pON from IN- and MTN-derived SOA may be driving the transition of pON to pOS, leading to a change in the phase state of SOA. Preliminary results also indicate that the smallest particles can be acidic. We will further explore the role of LWC on the phase state of the particles applying ISORROPIA analysis. Although the PROPHET forest is generally NOx-limited, the work presented here highlights the potential importance of NOx and pON chemistry in dictating the phase state of SOA.
Ying, Qi; Li, Jingyi; Kota, Sri Harsha
2015-07-07
A modified SAPRC-11 (S11) photochemical mechanism with more detailed treatment of isoprene oxidation chemistry and additional secondary organic aerosol (SOA) formation through surface-controlled reactive uptake of dicarbonyls, isoprene epoxydiol and methacrylic acid epoxide was incorporated in the Community Multiscale Air Quality Model (CMAQ) to quantitatively determine contributions of isoprene to summertime ambient SOA concentrations in the eastern United States. The modified model utilizes a precursor-origin resolved approach to determine secondary glyoxal and methylglyoxal produced by oxidation of isoprene and other major volatile organic compounds (VOCs). Predicted OC concentrations show good agreement with field measurements without significant bias (MFB ∼ 0.07 and MFE ∼ 0.50), and predicted SOA reproduces observed day-to-day and diurnal variation of Oxygenated Organic Aerosol (OOA) determined by an aerosol mass spectrometer (AMS) at two locations in Houston, Texas. On average, isoprene SOA accounts for 55.5% of total predicted near-surface SOA in the eastern U.S., followed by aromatic compounds (13.2%), sesquiterpenes (13.0%) and monoterpenes (10.9%). Aerosol surface uptake of isoprene-generated glyoxal, methylglyoxal and epoxydiol accounts for approximately 83% of total isoprene SOA or more than 45% of total SOA. A domain wide reduction of NOx emissions by 40% leads to a slight decrease of domain average SOA by 3.6% and isoprene SOA by approximately 2.6%. Although most of the isoprene SOA component concentrations are decreased, SOA from isoprene epoxydiol is increased by ∼16%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romonosky, Dian E.; Li, Ying; Shiraiwa, Manabu
Formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds 13 (BVOC) occurs via O 3 - and OH-initiated reactions during the day and reactions with NO 3 during the 14 night. We explored the effect of these three oxidation conditions on the molecular composition and 15 aqueous photochemistry of model SOA prepared from two common BVOC. A common monoterpene, α- 16 pinene, and sesquiterpene, α-humulene, were used to form SOA in a smog chamber via BVOC + O3, 17 BVOC + NO3, and BVOC + OH + NOx oxidation. Samples of SOA were collected, extracted in water,more » 18 and photolyzed in an aqueous solution in order to simulate the photochemical cloud processing of SOA. 19 The extent of change in the molecular level composition of SOA over 4 hours of photolysis (roughly 20 equivalent to 64 hours of photolysis under ambient conditions) was assessed with high-resolution 21 electrospray ionization mass spectrometry. The analysis revealed significant differences in the molecular 22 composition between monoterpene and sesquiterpene SOA formed by the different oxidation pathways. 23 The composition further evolved during photolysis with the most notable change corresponding to the 24 nearly-complete removal of nitrogen-containing organic compounds. Hydrolysis of SOA compounds also 25 occurred in parallel with photolysis. The preferential loss of larger SOA compounds during photolysis 26 and hydrolysis made the SOA compounds more volatile on average. This study suggests that cloud- and 27 fog-processing may under certain conditions lead to a reduction in the SOA loading as opposed to an 28 increase in SOA loading commonly assumed in the literature.« less
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Adams, P. J.; Robinson, A. L.
2012-04-01
We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.
Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?
NASA Astrophysics Data System (ADS)
Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.
2007-07-01
This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.
SOA formation by biogenic and carbonyl compounds: data evaluation and application.
Ervens, Barbara; Kreidenweis, Sonia M
2007-06-01
The organic fraction of atmospheric aerosols affects the physical and chemical properties of the particles and their role in the climate system. Current models greatly underpredict secondary organic aerosol (SOA) mass. Based on a compilation of literature studies that address SOA formation, we discuss different parameters that affect the SOA formation efficiency of biogenic compounds (alpha-pinene, isoprene) and aliphatic aldehydes (glyoxal, hexanal, octanal, hexadienal). Applying a simple model, we find that the estimated SOA mass after one week of aerosol processing under typical atmospheric conditions is increased by a few microg m(-3) (low NO(x) conditions). Acid-catalyzed reactions can create > 50% more SOA mass than processes under neutral conditions; however, other parameters such as the concentration ratio of organics/NO(x), relative humidity, and absorbing mass are more significant. The assumption of irreversible SOA formation not limited by equilibrium in the particle phase or by depletion of the precursor leads to unrealistically high SOA masses for some of the assumptions we made (surface vs volume controlled processes).
Different roles of water in secondary organic aerosol formation from toluene and isoprene
NASA Astrophysics Data System (ADS)
Jia, Long; Xu, YongFu
2018-06-01
Roles of water in the formation of secondary organic aerosol (SOA) from the irradiations of toluene-NO2 and isoprene-NO2 were investigated in a smog chamber. Experimental results show that the yield of SOA from toluene almost doubled as relative humidity increased from 5 to 85 %, whereas the yield of SOA from isoprene under humid conditions decreased by 2.6 times as compared to that under dry conditions. The distinct difference of RH effects on SOA formation from toluene and isoprene is well explained with our experiments and model simulations. The increased SOA from humid toluene-NO2 irradiations is mainly contributed by O-H-containing products such as polyalcohols formed from aqueous reactions. The major chemical components of SOA in isoprene-NO2 irradiations are oligomers formed from the gas phase. SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates (SCIs) that are greatly influenced by water. As a result, high RH can obstruct the oligomerization reaction of SCIs to form SOA.
NASA Astrophysics Data System (ADS)
Hayes, P. L.; Ma, P. K.; Jimenez, J. L.; Zhao, Y.; Robinson, A. L.; Carlton, A. M. G.; Baker, K. R.; Ahmadov, R.; Washenfelder, R. A.; Alvarez, S. L.; Rappenglück, B.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Prevot, A. S.; Zotter, P.; Szidat, S.; Kleindienst, T. E.; Offenberg, J. H.
2015-12-01
Several different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) are evaluated using a box model representing the Los Angeles Region during CalNex. The model SOA formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. Including SOA from primary semi-volatile and intermediate volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model/measurement agreement for mass concentration at shorter photochemical ages (0.5 days). Our results strongly suggest that other precursors besides VOCs are needed to explain the observed SOA concentrations. In contrast, all of the literature P-S/IVOC parameterizations over-predict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and global modeling. Sensitivity studies that reduce the IVOC emissions by one-half in the model improve SOA predictions at these long ages. In addition, when IVOC emissions in the Robinson et al. parameterization are constrained using recently reported measurements of these species model/measurement agreement is achieved. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16 - 27%, 35 - 61%, and 19 - 35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3)%. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in SOA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in urban SOA, possibly cooking emissions, that was not accounted for in those previous studies, and which is higher on weekends.
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).
Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; ...
2018-01-17
Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. Our study enables a better understanding of SOA formation in environments with diverse emission sources.« less
NASA Astrophysics Data System (ADS)
Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.
2018-01-01
Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.
Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 μg m -3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air, and confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ~ 1.0, and then decreased as O : C increased further. Some possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. And while measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. Our study enables a better understanding of SOA formation in environments with diverse emission sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.
Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O 3, over ranges from hours to days (O 3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to asmore » much as 10 µg m −3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O 3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O 3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign, multilinear regression analysis was performed between measured SOA formation and the concentration of gas-phase tracers representing different precursor sources. The majority of SOA-forming gases present during both seasons were of biogenic origin. Urban sources also contributed substantially in both seasons, while biomass burning sources were more important during the dry season. This study enables a better understanding of SOA formation in environments with diverse emission sources.« less
Thermal Performance Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin
2016-06-07
The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge Nationalmore » Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.« less
Eimer, Martin; Grubert, Anna
2015-09-01
Previous electrophysiological studies have shown that attentional selection processes are highly sensitive to the temporal order of task-relevant visual events. When two successively presented colour-defined target stimuli are separated by a stimulus onset asynchrony (SOA) of only 10 ms, the onset latencies of N2pc components to these stimuli (which reflect their attentional selection) precisely match their objective temporal separation. We tested whether such small onset differences are accessible to conscious awareness by instructing participants to report the category (letter or digit) of the first of two target-colour items that were separated by an SOA of 10, 20, or 30 ms. Performance was at chance level for the 10 ms SOA, demonstrating that temporal order information which is available to attentional control processes cannot be utilized for conscious temporal order judgments. These results provide new evidence that selective attention and conscious awareness are functionally separable, and support the hypothesis that attention and awareness operate at different stages of cognitive processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Bertelson, Paul; Aschersleben, Gisa
2003-10-01
In the well-known visual bias of auditory location (alias the ventriloquist effect), auditory and visual events presented in separate locations appear closer together, provided the presentations are synchronized. Here, we consider the possibility of the converse phenomenon: crossmodal attraction on the time dimension conditional on spatial proximity. Participants judged the order of occurrence of sound bursts and light flashes, respectively, separated in time by varying stimulus onset asynchronies (SOAs) and delivered either in the same or in different locations. Presentation was organized using randomly mixed psychophysical staircases, by which the SOA was reduced progressively until a point of uncertainty was reached. This point was reached at longer SOAs with the sounds in the same frontal location as the flashes than in different places, showing that apparent temporal separation is effectively longer in the first condition. Together with a similar one obtained recently in a case of tactile-visual discrepancy, this result supports a view in which timing and spatial layout of the inputs play to some extent inter-changeable roles in the pairing operation at the base of crossmodal interaction.
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation
Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.
2013-01-01
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.
Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H
2013-07-16
Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.
NASA Astrophysics Data System (ADS)
Bones, D. L.; Bateman, A. P.; Nguyen, T. B.; Laskin, J.; Laskin, A.; Nizkorodov, S.
2009-12-01
This study investigated long term changes in the chemical composition of model biogenic secondary organic aerosol (SOA) prepared via ozonolysis of the terpene limonene. This SOA has been observed to turn brown when exposed to NH4+. Our hypothesis is that the chromophoric compounds responsible for this color change are suspected to be imidazole-like or pyridinium-like compounds. These compounds are only present in small relative amounts, hence standard mass spectrometry is insufficient to unambiguously detect these compounds. However, a combination of HPLC and high resolution electrospray ionization mass spectrometry allows assignments of chemical formulae to individual peaks. These and other experiments confirm the presence of N-containing compounds in treated SOA. We are in the process of determining the exact identity of these species by MS/MS methods. LC-MS can also provide information about the polarity of the compounds in SOA. Most compounds in limonene-O3 SOA are polar and are detected at short retention times; peaks suggesting trimeric species appear at longer retention times in the case of fresh SOA, but at shorter times with the bulk of the components for aged SOA. Limonene SOA has been shown to be composed of monomers, dimers, trimers and larger oligomers. The appearance of trimers in specific regions of the chromatogram suggests these species are genuine SOA components and not an artifact of electrospray ionization. Changes in biogenic SOA over time are important because of the propensity of SOA to affect direct and indirect radiative forcing.
NASA Astrophysics Data System (ADS)
Pierce, J. R.; Kreidenweis, S. M.; Bian, Q.; Jathar, S.; Kodros, J.; Barsanti, K.; Hatch, L. E.; May, A.
2017-12-01
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in ambient plumes. The plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We use an aerosol microphysics model that includes representations of volatility and oxidation chemistry to estimate SOA formation in the smoke emitted into the atmosphere. We add Gaussian dispersion to our aerosol microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g. fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. Normalized OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.
NASA Astrophysics Data System (ADS)
Ots, Riinu; Young, Dominique E.; Vieno, Massimo; Xu, Lu; Dunmore, Rachel E.; Allan, James D.; Coe, Hugh; Williams, Leah R.; Herndon, Scott C.; Ng, Nga L.; Hamilton, Jacqueline F.; Bergström, Robert; Di Marco, Chiara; Nemitz, Eiko; Mackenzie, Ian A.; Kuenen, Jeroen J. P.; Green, David C.; Reis, Stefan; Heal, Mathew R.
2016-05-01
We present high-resolution (5 km × 5 km) atmospheric chemical transport model (ACTM) simulations of the impact of newly estimated traffic-related emissions on secondary organic aerosol (SOA) formation over the UK for 2012. Our simulations include additional diesel-related intermediate-volatility organic compound (IVOC) emissions derived directly from comprehensive field measurements at an urban background site in London during the 2012 Clean Air for London (ClearfLo) campaign. Our IVOC emissions are added proportionally to VOC emissions, as opposed to proportionally to primary organic aerosol (POA) as has been done by previous ACTM studies seeking to simulate the effects of these missing emissions. Modelled concentrations are evaluated against hourly and daily measurements of organic aerosol (OA) components derived from aerosol mass spectrometer (AMS) measurements also made during the ClearfLo campaign at three sites in the London area. According to the model simulations, diesel-related IVOCs can explain on average ˜ 30 % of the annual SOA in and around London. Furthermore, the 90th percentile of modelled daily SOA concentrations for the whole year is 3.8 µg m-3, constituting a notable addition to total particulate matter. More measurements of these precursors (currently not included in official emissions inventories) is recommended. During the period of concurrent measurements, SOA concentrations at the Detling rural background location east of London were greater than at the central London location. The model shows that this was caused by an intense pollution plume with a strong gradient of imported SOA passing over the rural location. This demonstrates the value of modelling for supporting the interpretation of measurements taken at different sites or for short durations.
Reincarnation of Streaming Applications
2009-10-01
will be procured and implemented over the next few years. Once operational , the IC SOA/grid/EDA will continue to l t h l i l d i d l d ievo ve as new...inter- 10/6/200916 , operable with Fortran with MPI. 76 Further Data Isn’t Surprising Either. Total j t age total number of Largest...burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Gas and particulate phase products from the ozonolysis of acenaphthylene
NASA Astrophysics Data System (ADS)
Riva, Matthieu; Healy, Robert M.; Tomaz, Sophie; Flaud, Pierre-Marie; Perraudin, Emilie; Wenger, John C.; Villenave, Eric
2016-10-01
Polycyclic aromatic hydrocarbons (PAHs) are recognized as important secondary organic aerosol (SOA) precursors in the urban atmosphere. In this work, the gas-phase ozonolysis of acenaphthylene was investigated in an atmospheric simulation chamber using a proton transfer reaction time-of-flight-mass spectrometer (PTR-TOF-MS) and an aerosol time-of-flight-mass spectrometer (ATOFMS) for on-line characterization of the oxidation products in the gas and particle phases, respectively. SOA samples were also collected on filters and analyzed by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). The major gas-phase products included a range of oxygenated naphthalene derivatives such as 1,8-naphthalic anhydride, naphthalene 1,8-dicarbaldehyde and naphthaldehyde, as well as a secondary ozonide. Possible reaction mechanisms are proposed for the formation of these products and favoured pathways have been suggested. Many of these products were also found in the particle phase along with a range of oligomeric compounds. The same range of gas and particle phase products was observed in the presence and absence of excess cyclohexane, an OH scavenger, indicating that OH radical production from the ozonolysis of acenaphthylene is negligible. SOA yields in the range 23-37% were determined and indicate that acenaphthylene ozonolysis may contribute to part of the SOA observed in urban areas.
The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the co...
Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lu; Kollman, Matthew S.; Song, Chen
2014-01-28
The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu
2014-04-08
Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and inmore » ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.« less
Global distribution of particle phase state in atmospheric secondary organic aerosols
NASA Astrophysics Data System (ADS)
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-21
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Direct observation of aqueous secondary organic aerosol from biomass-burning emissions
Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina
2016-01-01
The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1–0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4–20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086
Global distribution of particle phase state in atmospheric secondary organic aerosols
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-01-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776
Contrasting Secondary Organic Aerosol Formation in Aerosol Liquid Water During Summer and Winter
NASA Astrophysics Data System (ADS)
El-Sayed, M.; Hennigan, C. J.
2017-12-01
In this study, we characterize the formation of aqueous secondary organic aerosols (aqSOA) in the eastern United States during summer and winter. The aim was to identify the main factors affecting the reversible and irreversible uptake of water-soluble organic gases to aerosol liquid water under variable influence from biogenic and anthropogenic sources. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was measured in Baltimore, MD using a recently developed on-line method. The formation of aqSOA was observed during the summer and the winter; however, the amount of aqSOA varied significantly between the two seasons, as did the reversible and irreversible nature of the uptake. While the availability of aerosol liquid water (ALW) predominantly controlled aqSOA formation in the summer, wintertime aqSOA formation was limited by precursor VOCs as well. During the summer, aqSOA formation was tightly linked with isoprene oxidation, while the aqSOA formed in the winter was associated with biomass burning. Irreversible aqSOA was formed in both seasons; however, reversible aqSOA was only observed in the summer. Overall, these results demonstrate the importance of multi-phase chemistry in aerosol formation and underscore the significance of soluble organic gases partitioning to aerosol water both reversibly and irreversibly.
Gas-phase kinetics modifies the CCN activity of a biogenic SOA.
Vizenor, A E; Asa-Awuku, A A
2018-02-28
Our current knowledge of cloud condensation nuclei (CCN) activity and the hygroscopicity of secondary organic aerosol (SOA) depends on the particle size and composition, explicitly, the thermodynamic properties of the aerosol solute and subsequent interactions with water. Here, we examine the CCN activation of 3 SOA systems (2 biogenic single precursor and 1 mixed precursor SOA system) in relation to gas-phase decay. Specifically, the relationship between time, gas-phase precursor decay and CCN activity of 100 nm SOA is studied. The studied SOA systems exhibit a time-dependent growth of CCN activity at an instrument supersaturation of ∼0.2%. As such, we define a critical activation time, t 50 , above which a 100 nm SOA particle will activate. The critical activation time for isoprene, longifolene and a mixture of the two precursor SOA is 2.01 hours, 2.53 hours and 3.17 hours, respectively. The activation times are then predicted with gas-phase kinetic data inferred from measurements of precursor decay. The gas-phase prediction of t 50 agrees well with CCN measured t 50 (within 0.05 hours of the actual critical times) and suggests that the gas-to-particle phase partitioning may be more significant for SOA CCN prediction than previously thought.
Effect of SO2 and Photolysis on Photooxidized Diesel Fuel Secondary Organic Aerosol Composition
NASA Astrophysics Data System (ADS)
MacMillan, A. C.; Blair, S. L.; Lin, P.; Laskin, A.; Laskin, J.; Nizkorodov, S.
2014-12-01
Diesel fuel (DSL) and sulfur dioxide (SO2) are important precursors to secondary organic aerosol (SOA) formation. DSL is often co-emitted with SO2 and NO2, thus it is important to understand the possible effects of SO2 on DSL SOA composition. Additionally, DSL SOA composition can be affected by photochemical aging processes such as photolysis. In this study, DSL SOA was first prepared under dry, high-NOx conditions with various concentrations of SO2 by photooxidation in a smog chamber. The SOA was then stripped of excess oxidants and gaseous organics with a denuder train and the resulting particles were photolyzed at various photolysis times in a quartz flow tube. The SOA composition, photochemical aging, properties, and mass concentration, before and after direct photolysis in the flow tube, were examined using several techniques. High-resolution mass spectrometry (HR-MS) was performed on DSL SOA samples to investigate the effect of SO2 on molecular level composition. SOA composition as a function of photolysis time was measured with an aerosol mass spectrometer (AMS). HR-MS results show that organosulfates are produced in DSL SOA. Both AMS and HR-MS results show that photolysis also has an effect on composition; though, this is more apparent in the HR-MS results than in the AMS results. In summary, both the presence of SO2 and solar radiation has an effect on DSL SOA composition.
Partitioning phase preference for secondary organic aerosol in an urban atmosphere.
Chang, Wayne L; Griffin, Robert J; Dabdub, Donald
2010-04-13
Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter. The impact of particular matter on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state of the art 3D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the likelihood of large fAQ values is inversely proportional to the total SOA loading. Analysis of various meteorological parameters indicates that large fAQ values are predicted because modeled aqueous-phase SOA formation is less sensitive than that of organic-phase SOA to atmospheric conditions that are not conducive to SOA formation. There is a diurnal variation of fAQ near the surface: It tends to be larger during daytime hours than during nighttime hours. Results also indicate that the largest fAQ values are simulated in layers above ground level at night. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.
NASA Astrophysics Data System (ADS)
Updyke, Katelyn M.; Nguyen, Tran B.; Nizkorodov, Sergey A.
2012-12-01
Filter samples of secondary organic aerosols (SOA) generated from the ozone (O3)- and hydroxyl radical (OH)-initiated oxidation of various biogenic (isoprene, α-pinene, limonene, α-cedrene, α-humulene, farnesene, pine leaf essential oils, cedar leaf essential oils) and anthropogenic (tetradecane, 1,3,5-trimethylbenzene, naphthalene) precursors were exposed to humid air containing approximately 100 ppb of gaseous ammonia (NH3). Reactions of SOA compounds with NH3 resulted in production of light-absorbing "brown carbon" compounds, with the extent of browning ranging from no observable change (isoprene SOA) to visible change in color (limonene SOA). The aqueous phase reactions with dissolved ammonium (NH4+) salts, such as ammonium sulfate, were equally efficient in producing brown carbon. Wavelength-dependent mass absorption coefficients (MAC) of the aged SOA were quantified by extracting known amounts of SOA material in methanol and recording its UV/Vis absorption spectra. For a given precursor, the OH-generated SOA had systematically lower MAC compared to the O3-generated SOA. The highest MAC values, for brown carbon from SOA resulting from O3 oxidation of limonene and sesquiterpenes, were comparable to MAC values for biomass burning particles but considerably smaller than MAC values for black carbon aerosols. The NH3/NH4+ + SOA brown carbon aerosol may contribute to aerosol optical density in regions with elevated concentrations of NH3 or ammonium sulfate and high photochemical activity.
Secondary organic aerosol: a comparison between foggy and nonfoggy days.
Kaul, D S; Gupta, Tarun; Tripathi, S N; Tare, V; Collett, J L
2011-09-01
Carbonaceous species, meteorological parameters, trace gases, and fogwater chemistry were measured during winter in the Indian city of Kanpur to study secondary organic aerosol (SOA) during foggy and clear (nonfoggy) days. Enhanced SOA production was observed during fog episodes. It is hypothesized that aqueous phase chemistry in fog drops is responsible for increasing SOA production. SOA concentrations on foggy days exceeded those on clear days at all times of day; peak foggy day SOA concentrations were observed in the evening vs peak clear day SOA concentrations which occurred in the afternoon. Changes in biomass burning emissions on foggy days were examined because of their potential to confound estimates of SOA production based on analysis of organic to elemental carbon (OC/EC) ratios. No evidence of biomass burning influence on SOA during foggy days was found. Enhanced oxidation of SO(2) to sulfate during foggy days was observed, possibly causing the regional aerosol to become more acidic. No evidence was found in this study, either, for effects of temperature or relative humidity on SOA production. In addition to SOA production, fogs can also play an important role in cleaning the atmosphere of carbonaceous aerosols. Preferential scavenging of water-soluble organic carbon (WSOC) by fog droplets was observed. OC was found to be enriched in smaller droplets, limiting the rate of OC deposition by droplet sedimentation. Lower EC concentrations were observed on foggy days, despite greater stagnation and lower mixing heights, suggesting fog scavenging and removal of EC was active as well.
Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation
NASA Astrophysics Data System (ADS)
Tasoglou, A.; Pandis, S. N.
2015-06-01
The secondary organic aerosol (SOA) production during the oxidation of β-caryophyllene by ozone (O3) and hydroxyl radicals (OH) and the subsequent chemical aging of the products during reactions with OH were investigated. Experiments were conducted with ozone and with hydroxyl radicals at low NOx (zero added NOx) and at high NOx (hundreds of parts per billion). The SOA mass yield at 10 μg m-3 of organic aerosol was 27% for the ozonolysis, 20% for the reaction with OH at low NOx, and 38% at high NOx under dry conditions, 20 °C, and ozone excess. Parameterizations of the fresh SOA yields have been developed. The average fresh SOA atomic O : C ratio varied from 0.24 to 0.34 depending on the oxidant and the NOx level, while the H : C ratio was close to 1.5 for all systems examined. An average density of 1.06 ± 0.1 μg m-3 of the β-caryophyllene SOA was estimated. The exposure to UV light had no effect on the β-caryophyllene SOA concentration and aerosol mass spectrometer (AMS) measurements. The chemical aging of the β-caryophyllene SOA produced was studied by exposing the fresh SOA to high concentrations (107 molecules cm-3) of OH for several hours. These additional reactions increased the SOA concentration by 15-40% and O : C by approximately 25%. A limited number of experiments suggested that there was a significant impact of the relative humidity on the chemical aging of the SOA. The evaporation rates of β-caryophyllene SOA were quantified by using a thermodenuder allowing us to estimate the corresponding volatility distributions and effective vaporization enthalpies.
Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; ...
2017-09-06
The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescalesmore » that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization – proton nuclear magnetic resonance ( 1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1×10 12 molec OH cm -3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola
The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescalesmore » that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization – proton nuclear magnetic resonance ( 1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1×10 12 molec OH cm -3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.« less
NASA Astrophysics Data System (ADS)
Zanca, Nicola; Lambe, Andrew T.; Massoli, Paola; Paglione, Marco; Croasdale, David R.; Parmar, Yatish; Tagliavini, Emilio; Gilardoni, Stefania; Decesari, Stefano
2017-09-01
The study of secondary organic aerosol (SOA) in laboratory settings has greatly increased our knowledge of the diverse chemical processes and environmental conditions responsible for the formation of particulate matter starting from biogenic and anthropogenic volatile compounds. However, characteristics of the different experimental setups and the way they impact the composition and the timescale of formation of SOA are still subject to debate. In this study, SOA samples were generated using a potential aerosol mass (PAM) oxidation flow reactor using α-pinene, naphthalene and isoprene as precursors. The PAM reactor facilitated exploration of SOA composition over atmospherically relevant photochemical ageing timescales that are unattainable in environmental chambers. The SOA samples were analyzed using two state-of-the-art analytical techniques for SOA characterization - proton nuclear magnetic resonance (1H-NMR) spectroscopy and HPLC determination of humic-like substances (HULIS). Results were compared with previous Aerodyne aerosol mass spectrometer (AMS) measurements. The combined 1H-NMR, HPLC, and AMS datasets show that the composition of the studied SOA systems tend to converge to highly oxidized organic compounds upon prolonged OH exposures. Further, our 1H-NMR findings show that only α-pinene SOA acquires spectroscopic features comparable to those of ambient OA when exposed to at least 1 × 1012 molec OH cm-3 × s OH exposure, or multiple days of equivalent atmospheric OH oxidation. Over multiple days of equivalent OH exposure, the formation of HULIS is observed in both α-pinene SOA and in naphthalene SOA (maximum yields: 16 and 30 %, respectively, of total analyzed water-soluble organic carbon, WSOC), providing evidence of the formation of humic-like polycarboxylic acids in unseeded SOA.
NASA Astrophysics Data System (ADS)
Hinks, Mallory L.; Montoya-Aguilera, Julia; Ellison, Lucas; Lin, Peng; Laskin, Alexander; Laskin, Julia; Shiraiwa, Manabu; Dabdub, Donald; Nizkorodov, Sergey A.
2018-02-01
The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI-HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75-90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor
approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, Dan G.; Wilson, Jacqueline
2017-01-01
When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics,more » have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.« less
Jeunet, Camille; Albert, Louis; Argelaguet, Ferran; Lecuyer, Anatole
2018-04-01
While the Sense of Agency (SoA) has so far been predominantly characterised in VR as a component of the Sense of Embodiment, other communities (e.g., in psychology or neurosciences) have investigated the SoA from a different perspective proposing complementary theories. Yet, despite the acknowledged potential benefits of catching up with these theories a gap remains. This paper first aims to contribute to fill this gap by introducing a theory according to which the SoA can be divided into two components, the feeling and the judgment of agency, and relies on three principles, namely the principles of priority, exclusivity and consistency. We argue that this theory could provide insights on the factors influencing the SoA in VR systems. Second, we propose novel approaches to manipulate the SoA in controlled VR experiments (based on these three principles) as well as to measure the SoA, and more specifically its two components based on neurophysiological markers, using ElectroEncephaloGraphy (EEG). We claim that these approaches would enable us to deepen our understanding of the SoA in VR contexts. Finally, we validate these approaches in an experiment. Our results (N=24) suggest that our approach was successful in manipulating the SoA as the modulation of each of the three principles induced significant decreases of the SoA (measured using questionnaires). In addition, we recorded participants' EEG signals during the VR experiment, and neurophysiological markers of the SoA, potentially reflecting the feeling and judgment of agency specifically, were revealed. Our results also suggest that users' profile, more precisely their Locus of Control (LoC), influences their level of immersion and SoA.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
NASA Astrophysics Data System (ADS)
Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.
2016-03-01
At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.
NASA Technical Reports Server (NTRS)
Marais, E. A.; Jacob, D. J.; Jimenez, J. L.; Campuzano-Jost, P.; Day, D. A.; Hu, W.; Krechmer, J.; Zhu, L.; Kim, P. S.; Miller, C. C.;
2016-01-01
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (gamma) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx = NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate 42 on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.
Morken, Tone; Baste, Valborg; Johnsen, Grethe E; Rypdal, Knut; Palmstierna, Tom; Johansen, Ingrid Hjulstad
2018-05-08
Many emergency primary health care workers experience aggressive behaviour from patients or visitors. Simple incident-reporting procedures exist for inpatient, psychiatric care, but a similar and simple incident-report for other health care settings is lacking. The aim was to adjust a pre-existing form for reporting aggressive incidents in a psychiatric inpatient setting to the emergency primary health care settings. We also wanted to assess the validity of the severity scores in emergency primary health care. The Staff Observation Scale - Revised (SOAS-R) was adjusted to create a pilot version of the Staff Observation Scale - Revised Emergency (SOAS-RE). A Visual Analogue Scale (VAS) was added to the form to judge the severity of the incident. Data for validation of the pilot version of SOAS-RE were collected from ten casualty clinics in Norway during 12 months. Variance analysis was used to test gender and age differences. Linear regression analysis was performed to evaluate the relative impact that each of the five SOAS-RE columns had on the VAS score. The association between SOAS-RE severity score and VAS severity score was calculated by the Pearson correlation coefficient. The SOAS-R was adjusted to emergency primary health care, refined and called The Staff Observation Aggression Scale - Revised Emergency (SOAS-RE). A total of 350 SOAS-RE forms were collected from the casualty clinics, but due to missing data, 291 forms were included in the analysis. SOAS-RE scores ranged from 1 to 22. The mean total severity score of SOAS-RE was 10.0 (standard deviation (SD) =4.1) and the mean VAS score was 45.4 (SD = 26.7). We found a significant correlation of 0.45 between the SOAS-RE total severity scores and the VAS severity ratings. The linear regression analysis showed that individually each of the categories, which described the incident, had a low impact on the VAS score. The SOAS-RE seems to be a useful instrument for research, incident-recording and management of incidents in emergency primary care. The moderate correlation between SOAS-RE severity score and the VAS severity score shows that application of both the severity ratings is valuable to follow-up of workers affected by workplace violence.
NASA Astrophysics Data System (ADS)
Li, Y. P.; Elbern, H.; Lu, K. D.; Friese, E.; Kiendler-Scharr, A.; Mentel, Th. F.; Wang, X. S.; Wahner, A.; Zhang, Y. H.
2013-03-01
The formation of Secondary organic aerosol (SOA) was simulated with the Secondary ORGanic Aerosol Model (SORGAM) by a classical gas-particle partitioning concept, using the two-product model approach, which is widely used in chemical transport models. In this study, we extensively updated SORGAM including three major modifications: firstly, we derived temperature dependence functions of the SOA yields for aromatics and biogenic VOCs, based on recent chamber studies within a sophisticated mathematic optimization framework; secondly, we implemented the SOA formation pathways from photo oxidation (OH initiated) of isoprene; thirdly, we implemented the SOA formation channel from NO3-initiated oxidation of reactive biogenic hydrocarbons (isoprene and monoterpenes). The temperature dependence functions of the SOA yields were validated against available chamber experiments. Moreover, the whole updated SORGAM module was validated against ambient SOA observations represented by the summed oxygenated organic aerosol (OOA) concentrations abstracted from Aerosol Mass Spectrometer (AMS) measurements at a rural site near Rotterdam, the Netherlands, performed during the IMPACT campaign in May 2008. In this case, we embedded both the original and the updated SORGAM module into the EURopean Air pollution and Dispersion-Inverse Model (EURAD-IM), which showed general good agreements with the observed meteorological parameters and several secondary products such as O3, sulfate and nitrate. With the updated SORGAM module, the EURAD-IM model also captured the observed SOA concentrations reasonably well especially those during nighttime. In contrast, the EURAD-IM model before update underestimated the observations by a factor of up to 5. The large improvements of the modeled SOA concentrations by updated SORGAM were attributed to the mentioned three modifications. Embedding the temperature dependence functions of the SOA yields, including the new pathways from isoprene photo oxidations, and switching on the SOA formation from NO3 initiated biogenic VOCs oxidations contributed to this enhancement by 10%, 22% and 47%, respectively. However, the EURAD-IM model with updated SORGAM still clearly underestimated the afternoon SOA observations up to a factor of two. More work such as to improve the simulated OH concentrations under high VOCs and low NOx concentrations, further including the SOA formation from semi-volatile organic compounds, the correct aging process of aerosols, oligomerization process and the influence on the biogenic SOA by the anthropogenic SOA, are still required to fill the gap.
NASA Astrophysics Data System (ADS)
Palm, Brett Brian
Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic compounds; S/IVOCs) were present in ambient air and were the likely source of SOA formation that could not be explained by VOCs. These measurements show that S/IVOCs likely play an important intermediary role in ambient SOA formation in all of the sampled locations, from rural forests to urban air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia
2015-03-19
A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate amore » remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents before and after photolysis showed the tendency to reduce the average number of atoms in the SOA compounds without a significant effect on the overall O/C and H/C ratios. SOA prepared by OH/NOx photooxidation of 1,3,5-trimethylbenzene and guaiacol were relatively resilient to photolysis despite being the most light-absorbing. The composition of SOA prepared by ozonolysis of monoterpenes changed more significantly as a result of the photolysis. The results indicate that aqueous photolysis of dissolved SOA compounds in cloud/fog water can occur in a number of SOA, and on atmospherically relevant time scales. However, the extent of change depends on the specific type of SOA.« less
NASA Astrophysics Data System (ADS)
Mutzel, Anke; Rodigast, Maria; Iinuma, Yoshiteru; Böge, Olaf; Herrmann, Hartmut
2016-04-01
Investigation of the consecutive reactions of first-generation terpene oxidation products provides insight into the formation of secondary organic aerosol (SOA). To this end, OH radical reactions with α-pinene, β-pinene, and limonene were examined along with the OH-oxidation of nopinone as a β-pinene oxidation product and pinonaldehyde and myrtenal as α-pinene oxidation products. The SOA yield of β-pinene (0.50) was much higher than that of α-pinene (0.35) and the limonene/OH system (0.30). This is opposite to the ozonolysis SOA yields described in the literature. The growth curve of SOA from β-pinene shows the contribution of secondary reactions, such as further reaction of nopinone. This contribution (17%) and the high SOA yield of nopinone (0.24) might lead to the high SOA formation potential observed for β-pinene. The majority of the C9 oxidation products observed from β-pinene can be attributed to the consecutive reaction of nopinone, whereas in the case of pinonaldehyde, only a few α-pinene oxidation products were identified. Nopinone contributes significantly to the formation of pinic acid (51%), homoterpenylic acid (74%), and 3-methyl-1,2,3-butane-tricarboxylic acid (MBTCA, 88%) during β-pinene oxidation. The oxidation of pinonaldehyde was expected to produce important SOA markers, but only negligible amounts were identified. This indicates that their formation by oxidation of α-pinene must proceed via different pathways from the further oxidation of pinonaldehyde. Only pinonic acid and MBTCA were found in considerable amounts and were formed in α-pinene oxidation with 57% yield, while that for the pinonaldehyde/OH reaction was 33%. The lack of important SOA marker compounds might cause the low SOA yield (0.07) observed for pinonaldehyde. Based on the low SOA yield, pinonaldehyde contributes only 4.5% to α-pinene SOA. Myrtenal was identified among the gas-phase products of α-pinene oxidation. A majority of α-pinene SOA marker compounds was indeed formed by myrtenal oxidation, especially terebic acid (84%), pinic acid (76%), and diaterpenylic acid acetate (DTAA; 40%). In general, the contribution of myrtenal to α-pinene SOA is estimated to be as high as 23%. Among the detected compounds, homoterpenylic acid was positively identified as a new SOA marker compound, which was formed from β-pinene/OH and nopinone/OH but not from α-pinene/OH. A new reaction pathway yielding MBTCA was also identified in the β-pinene/OH system formed by the oxidation of nopinone, while in the case of α-pinene, the oxidation of pinonaldehyde yielded MBTCA.
SOA Measurements vs. Models: a Status Report
NASA Astrophysics Data System (ADS)
Jimenez, J. L.; de Gouw, J. A.
2009-12-01
The advent of fast and more detailed organic aerosol (OA) and VOC measurements in the last decade has allowed clearer model-measurement comparisons for OA and secondary OA (SOA). Here we summarize the patterns emerging from studies to date.
Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.
Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J
2010-03-15
Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.
NASA Astrophysics Data System (ADS)
Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.; Lei, W.; Bei, N.; Molina, L.; Pandis, S. N.
2011-06-01
Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 includes the recently developed volatility basis-set framework in which both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico de Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites is encouraging. The average predicted PM1 organic aerosol (OA) concentration in T0, T1, and T2 is 18 μg m-3, 11.7 μg m-3, and 10.5 μg m-3 respectively, while the corresponding measured values are 17.2 μg m-3, 11 μg m-3, and 9 μg m-3. The average predicted locally-emitted primary OA concentrations, 4.4 μg m-3 at T0, 1.2 μg m-3 at T1 and 1.7 μg m-3 at PTP, are in reasonably good agreement with the corresponding PMF analysis estimates based on the Aerosol Mass Spectrometer (AMS) observations of 4.5, 1.3, and 2.9 μg m-3 respectively. The model reproduces reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m-3 predicted versus 7.5 μg m-3 measured), in T1 (6.3 μg m-3 predicted versus 4.6 μg m-3 measured) and in PTP (6.6 μg m-3 predicted versus 5.9 μg m-3 measured). The rest of the OA mass (6.1 μg m-3 and 4.2 μg m-3 in T0 and T1 respectively) is assumed to originate from biomass burning activities and is introduced to the model as part of the boundary conditions. Inside Mexico City (at T0), the locally-produced OA is predicted to be on average 60 % locally-emitted primary (POA), 6 % semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 34 % traditional SOA from the oxidation of VOCs (V-SOA). The average contributions of the OA components to the locally-produced OA for the entire modelling domain are predicted to be 32 % POA, 10 % S-SOA and I-SOA, and 58 % V-SOA. The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.
NASA Astrophysics Data System (ADS)
Brito, Joel; Freney, Evelyn; Dominutti, Pamela; Borbon, Agnes; Haslett, Sophie L.; Batenburg, Anneke M.; Colomb, Aurelie; Dupuy, Regis; Denjean, Cyrielle; Burnet, Frederic; Bourriane, Thierry; Deroubaix, Adrien; Sellegri, Karine; Borrmann, Stephan; Coe, Hugh; Flamant, Cyrille; Knippertz, Peter; Schwarzenboeck, Alfons
2018-01-01
As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d'Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (< 2000 m), in particular their sources and chemical composition in view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and ancillary instrumentation. Background concentrations (i.e. outside urban plumes) observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( > 15 nm) of 735 cm-3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (< 0.5 %). Average background PM1 in the region was 5.9 µg m-3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and Lomé, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol particle number concentration of 6500 cm-3 stp), as well as PM1 concentration (11.9 µg m-3 stp). Two classes of organic aerosols were estimated based on C-ToF-AMS: particulate organic nitrates (pONs) and isoprene epoxydiols secondary organic aerosols (IEPOX-SOA). Both classes are usually associated with the formation of particulate matter through complex interactions of anthropogenic and biogenic sources. During DACCIWA, pONs have a fairly small contribution to OA (around 5 %) and are more associated with long-range transport from central Africa than local formation. Conversely, IEPOX-SOA provides a significant contribution to OA (around 24 and 28 % under background and in-plume conditions). Furthermore, the fractional contribution of IEPOX-SOA is largely unaffected by changes in the aerosol composition (particularly the SO4 concentration), which suggests that IEPOX-SOA concentration is mainly driven by pre-existing aerosol surface, instead of aerosol chemical properties. At times of large in-plume SO4 enhancements (above 5 µg m-3), the fractional contribution of IEPOX-SOA to OA increases above 50 %, suggesting only then a change in the IEPOX-SOA-controlling mechanism. It is important to note that IEPOX-SOA constitutes a lower limit to the contribution of biogenic OA, given that other processes (e.g. non-IEPOX isoprene, monoterpene SOA) are likely in the region. Given the significant contribution to aerosol concentration, it is crucial that such complex biogenic-anthropogenic interactions are taken into account in both present-day and future scenario models of this fast-changing, highly sensitive region.
NASA Astrophysics Data System (ADS)
Kotb, Amer
2015-05-01
The performance of an all-optical NOR gate is numerically simulated and investigated. The NOR Boolean function is realized by using a semiconductor optical amplifier (SOA) incorporated in Mach-Zehnder interferometer (MZI) arms and exploiting the nonlinear effect of two-photon absorption (TPA). If the input pulse intensities is adjusting to be high enough, the TPA-induced phase change can be larger than the regular gain-induced phase change and hence support ultrafast operation in the dual rail switching mode. The numerical study is carried out by taking into account the effect of the amplified spontaneous emission (ASE). The dependence of the output quality factor ( Q-factor) on critical data signals and SOAs parameters is examined and assessed. The obtained results confirm that the NOR gate implemented with the proposed scheme is capable of operating at a data rate of 250 Gb/s with logical correctness and high output Q-factor.
Influence of local production and vertical transport on the organic aerosol budget over Paris
NASA Astrophysics Data System (ADS)
Janssen, R. H. H.; Tsimpidi, A. P.; Karydis, V. A.; Pozzer, A.; Lelieveld, J.; Crippa, M.; Prévôt, A. S. H.; Ait-Helal, W.; Borbon, A.; Sauvage, S.; Locoge, N.
2017-08-01
We performed a case study of the organic aerosol (OA) budget during the MEGAPOLI campaign during summer 2009 in Paris. We combined aerosol mass spectrometer, gas phase chemistry, and atmospheric boundary layer (ABL) data and applied the MXL/MESSy column model. We find that during daytime, vertical mixing due to ABL growth has opposing effects on secondary organic aerosol (SOA) and primary organic aerosol (POA) concentrations. POA concentrations are mainly governed by dilution due to boundary layer expansion and transport of POA-depleted air from aloft, while SOA concentrations are enhanced by entrainment of SOA-rich air from the residual layer (RL). Further, local emissions and photochemical production control the diurnal cycle of SOA. SOA from intermediate volatility organic compounds constitutes about half of the locally formed SOA mass. Other processes that previously have been shown to influence the urban OA budget, such as aging of semivolatile and intermediate volatility organic compounds (S/IVOC), dry deposition of S/IVOCs, and IVOC emissions, are found to have minor influences on OA. Our model results show that the modern carbon content of the OA is driven by vertical and long-range transport, with a minor contribution from local cooking emissions. SOA from regional sources and resulting from aging and long-lived precursors can lead to high SOA concentrations above the ABL, which can strongly influence ground-based observations through downward transport. Sensitivity analysis shows that modeled SOA concentrations in the ABL are equally sensitive to ABL dynamics as to SOA concentrations transported from the RL.
Modeling SOA formation from the oxidation of intermediate volatility n-alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-08-01
The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
Modeling SOA formation from the oxidation of intermediate volatility n-alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-06-01
The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
Li, Jianjun; Wang, Gehui; Wu, Can; Cao, Cong; Ren, Yanqin; Wang, Jiayuan; Li, Jin; Cao, Junji; Zeng, Limin; Zhu, Tong
2018-01-11
Isoprene is the most abundant non-methane volatile organic compound (VOC) and the largest contributor to secondary organic aerosol (SOA) burden on a global scale. In order to examine the influence of high concentrations of anthropogenic pollutants on isoprene-derived SOA (SOA i ) formation, summertime PM 2.5 filter samples were collected with a three-hour sampling interval at a rural site in the North China Plain (NCP), and determined for SOA i tracers and other chemical species. RO 2 +NO pathway derived 2-methylglyceric acid presented a relatively higher contribution to the SOA i due to the high-NOx (~20 ppb) conditions in the NCP that suppressed the reactive uptake of RO 2 +HO 2 reaction derived isoprene epoxydiols. Compared to particle acidity and water content, sulfate plays a dominant role in the heterogeneous formation process of SOA i . Diurnal variation and correlation of 2-methyltetrols with ozone suggested an important effect of isoprene ozonolysis on SOA i formation. SOA i increased linearly with levoglucosan during June 10-18, which can be attributed to an increasing emission of isoprene caused by the field burning of wheat straw and a favorable aqueous SOA formation during the aging process of the biomass burning plume. Our results suggested that isoprene oxidation is highly influenced by intensive anthropogenic activities in the NCP.
Testing methodologies and systems for semiconductor optical amplifiers
NASA Astrophysics Data System (ADS)
Wieckowski, Michael
Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable of ascertaining SOA performance based solely on the subthreshold differential resistance signature, and are a first step toward the inevitable integration of self-testing circuits into complex optoelectronic systems.
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.
2007-08-01
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.
NASA Astrophysics Data System (ADS)
Chan, A. W. H.; Kroll, J. H.; Ng, N. L.; Seinfeld, J. H.
2007-05-01
The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms.
Jathar, Shantanu H.; Gordon, Timothy D.; Hennigan, Christopher J.; Pye, Havala O. T.; Pouliot, George; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.
2014-01-01
Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10–20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y−1 of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations. PMID:25002466
NASA Astrophysics Data System (ADS)
Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; Ortega, Amber M.; Fry, Juliane L.; Brown, Steven S.; Zarzana, Kyle J.; Dube, William; Wagner, Nicholas L.; Draper, Danielle C.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Gutiérrez-Montes, Cándido; Jimenez, Jose L.
2017-04-01
Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20-30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C similar to the least-oxidized OA observed in local ambient air, and neither oxidant led to net mass loss at the highest exposures, in contrast to OH oxidation. An OH exposure in the OFR equivalent to several hours of atmospheric aging also produced SOA with O : C and H : C values similar to ambient OA, while higher aging (days-weeks) led to formation of SOA with progressively higher O : C and lower H : C (and net mass loss at the highest exposures). NO3 oxidation led to the production of particulate organic nitrates (pRONO2), while OH and O3 oxidation (under low NO) did not, as expected. These measurements of SOA formation provide the first direct comparison of SOA formation potential and chemical evolution from OH, O3, and NO3 oxidation in the real atmosphere and help to clarify the oxidation processes that lead to SOA formation from biogenic hydrocarbons.
NASA Astrophysics Data System (ADS)
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; Barsanti, Kelley C.; Hatch, Lindsay E.; May, Andrew A.; Kreidenweis, Sonia M.; Pierce, Jeffrey R.
2017-04-01
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated. We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms.We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Lastly, our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.« less
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; ...
2017-04-28
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Lastly, our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.« less
NASA Astrophysics Data System (ADS)
Mahmud, A.; Barsanti, K.
2013-07-01
The secondary organic aerosol (SOA) module in the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) was updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits (MZ4-C1), and by treating SOA formation from the following additional volatile organic compounds (VOCs): isoprene, propene and lumped alkenes (MZ4-C2). Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base case and updated model simulations. Updates to the model resulted in significant increases in annual average SOA mass concentrations, particularly for the MZ4-C2 simulation in which the additional SOA precursor VOCs were treated. Annual average SOA concentrations predicted by the MZ4-C2 simulation were 1.00 ± 1.04 μg m-3 in South America, 1.57 ± 1.88 μg m-3 in Indonesia, 0.37 ± 0.27 μg m-3 in the USA, and 0.47 ± 0.29 μg m-3 in Europe with corresponding increases of 178, 406, 311 and 292% over the base-case simulation, respectively, primarily due to inclusion of isoprene. The increases in predicted SOA mass concentrations resulted in corresponding increases in SOA contributions to annual average total aerosol optical depth (AOD) by ~ 1-6%. Estimated global SOA production was 5.8, 6.6 and 19.1 Tg yr-1 with corresponding burdens of 0.22, 0.24 and 0.59 Tg for the base-case, MZ4-C1 and MZ4-C2 simulations, respectively. The predicted SOA budgets fell well within reported ranges for comparable modeling studies, 6.7 to 96 Tg yr-1, but were lower than recently reported observationally constrained values, 50 to 380 Tg yr-1. For MZ4-C2, simulated SOA concentrations at the surface also were in reasonable agreement with comparable modeling studies and observations. Total organic aerosol (OA) mass concentrations at the surface, however, were slightly over-predicted in Europe, Amazonian regions and Malaysian Borneo (Southeast Asia) during certain months of the year, and under-predicted in most sites in Asia; relative to those regions, the model performed better for sites in North America. Overall, with the inclusion of additional SOA precursors (MZ4-C2), namely isoprene, MOZART-4 showed consistently better skill (NMB (normalized mean bias) of -11 vs. -26%) in predicting total OA levels and spatial distributions of SOA as compared with unmodified MOZART-4. Treatment of SOA formation by these known precursors (isoprene, propene and lumped alkenes) may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Barsanti, K. C.
2012-12-01
The secondary organic aerosol (SOA) module in the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4) has been updated by replacing existing two-product (2p) parameters with those obtained from two-product volatility basis set (2p-VBS) fits, and by treating SOA formation from the following volatile organic compounds (VOCs): isoprene, propene and lumped alkenes. Strong seasonal and spatial variations in global SOA distributions were demonstrated, with significant differences in the predicted concentrations between the base-case and updated model versions. The base-case MOZART-4 predicted annual average SOA of 0.36 ± 0.50 μg m-3 in South America, 0.31 ± 0.38 μg m-3 in Indonesia, 0.09 ± 0.05 μg m-3 in the USA, and 0.12 ± 0.07 μg m-3 in Europe. Concentrations from the updated versions of the model showed a~marked increase in annual average SOA. Using the updated set of parameters alone (MZ4-v1) increased annual average SOA by ~8%, ~16%, ~56%, and ~108% from the base-case in South America, Indonesia, USA, and Europe, respectively. Treatment of additional parent VOCs (MZ4-v2) resulted in an even more dramatic increase of ~178-406% in annual average SOA for these regions over the base-case. The increases in predicted SOA concentrations further resulted in increases in corresponding SOA contributions to annual average total aerosol optical depth (AOD) by <1% for MZ4-v1 and ~1-6% for MZ4-v2. Estimated global SOA production was ~6.6 Tg yr-1 and ~19.1 Tg yr-1 with corresponding burdens of ~0.24 Tg and ~0.59 Tg using MZ4-v1 and MZ4-v2, respectively. The SOA budgets predicted in the current study fall well within reported ranges for similar modeling studies, 6.7 to 96 Tg yr-1, but are lower than recently reported observationally-constrained values, 50 to 380 Tg yr-1. With MZ4-v2, simulated SOA concentrations at the surface were also in reasonable agreement with comparable modeling studies and observations. Concentrations of estimated organic aerosol (OA) at the surface, however, showed under-prediction in Europe and over-prediction in the Amazonian regions and Malaysian Borneo during certain months of the year. Overall, the updated version of MOZART-4, MZ4-v2, showed consistently better skill in predicting SOA and OA levels and spatial distributions as compared with unmodified MOZART-4. The MZ4-v2 updates may be particularly important when MOZART-4 output is used to generate boundary conditions for regional air quality simulations that require more accurate representation of SOA concentrations and distributions.
NASA Astrophysics Data System (ADS)
Farmann, Alexander; Sauer, Dirk Uwe
2016-10-01
This study provides an overview of available techniques for on-board State-of-Available-Power (SoAP) prediction of lithium-ion batteries (LIBs) in electric vehicles. Different approaches dealing with the on-board estimation of battery State-of-Charge (SoC) or State-of-Health (SoH) have been extensively discussed in various researches in the past. However, the topic of SoAP prediction has not been explored comprehensively yet. The prediction of the maximum power that can be applied to the battery by discharging or charging it during acceleration, regenerative braking and gradient climbing is definitely one of the most challenging tasks of battery management systems. In large lithium-ion battery packs because of many factors, such as temperature distribution, cell-to-cell deviations regarding the actual battery impedance or capacity either in initial or aged state, the use of efficient and reliable methods for battery state estimation is required. The available battery power is limited by the safe operating area (SOA), where SOA is defined by battery temperature, current, voltage and SoC. Accurate SoAP prediction allows the energy management system to regulate the power flow of the vehicle more precisely and optimize battery performance and improve its lifetime accordingly. To this end, scientific and technical literature sources are studied and available approaches are reviewed.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2014-05-01
The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors emitted by newer vehicles appears to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the nonmethane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. By comparing this study with a companion study of diesel trucks, we conclude that both primary PM emissions and SOA production for light-duty gasoline vehicles are much greater than for late-model (2007 and later) on-road heavy-duty diesel trucks.
NASA Astrophysics Data System (ADS)
Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; Chen, J.; Yu, J.
2015-04-01
In China, fast increase in passenger vehicles has procured the growing concern about vehicle exhausts as an important source of anthropogenic secondary organic aerosols (SOA) in megacities hard-hit by haze. However, there are still no chamber simulation studies in China on SOA formation from vehicle exhausts. In this study, the SOA formation of emissions from two idling light-duty gasoline vehicles (LDGVs) (Euro 1 and Euro 4) in China was investigated in a 30 m3 smog chamber. Five photo-oxidation experiments were carried out at 25 °C with the relative humidity around 50%. After aging at an OH exposure of 5 × 106 molecules cm-3 h, the formed SOA was 12-259 times as high as primary OA (POA). The SOA production factors (PF) were 0.001-0.044 g kg-1 fuel, comparable with those from the previous studies at the quite similar OH exposure. This quite lower OH exposure than that in typical atmospheric condition might however lead to the underestimation of the SOA formation potential from LDGVs. Effective SOA yield data in this study were well fit by a one-product gas-particle partitioning model and quite lower than those of a previous study investigating SOA formation form three idling passenger vehicles (Euro 2-Euro 4). Traditional single-ring aromatic precursors and naphthalene could explain 51-90% of the formed SOA. Unspeciated species such as branched and cyclic alkanes might be the possible precursors for the unexplained SOA. A high-resolution time-of-flight aerosol mass spectrometer was used to characterize the chemical composition of SOA. The relationship between f43 (ratio of m/z 43, mostly C2H3O+, to the total signal in mass spectrum) and f44 (mostly CO2+) of the gasoline vehicle exhaust SOA is similar to the ambient semi-volatile oxygenated organic aerosol (SV-OOA). We plot the O : C and H : C molar ratios of SOA in a Van Krevelen diagram. The slopes of ΔH : C/ΔO : C ranged from -0.59 to -0.36, suggesting that the oxidation chemistry in these experiments was a combination of carboxylic acid and alcohol/peroxide formation.
NASA Astrophysics Data System (ADS)
Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen
2017-08-01
When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was substantial, while PANs were found to be insignificant for both SOAs. Isoprene DTTm was almost exclusively attributable to organic hydroperoxides, while toluene DTTm was partially attributable to organic hydroperoxides. The DTT assay results of the model compound study suggested that electron-deficient alkenes, which are abundant in toluene SOA, could also modulate DTTm.
Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.
2014-12-01
Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.
2012-10-01
We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.
Secondary organic aerosol from atmospheric photooxidation of indole
NASA Astrophysics Data System (ADS)
Montoya-Aguilera, Julia; Horne, Jeremy R.; Hinks, Mallory L.; Fleming, Lauren T.; Perraud, Véronique; Lin, Peng; Laskin, Alexander; Laskin, Julia; Dabdub, Donald; Nizkorodov, Sergey A.
2017-09-01
Indole is a heterocyclic compound emitted by various plant species under stressed conditions or during flowering events. The formation, optical properties, and chemical composition of secondary organic aerosol (SOA) formed by low-NOx photooxidation of indole were investigated. The SOA yield (1. 3 ± 0. 3) was estimated from measuring the particle mass concentration with a scanning mobility particle sizer (SMPS) and correcting it for wall loss effects. The high value of the SOA mass yield suggests that most oxidized indole products eventually end up in the particle phase. The SOA particles were collected on filters and analysed offline with UV-vis spectrophotometry to measure the mass absorption coefficient (MAC) of the bulk sample. The samples were visibly brown and had MAC values of ˜ 2 m2 g-1 at λ = 300 nm and ˜ 0. 5 m2 g-1 at λ = 400 nm, comparable to strongly absorbing brown carbon emitted from biomass burning. The chemical composition of SOA was examined with several mass spectrometry methods. Direct analysis in real-time mass spectrometry (DART-MS) and nanospray desorption electrospray high-resolution mass spectrometry (nano-DESI-HRMS) were both used to provide information about the overall distribution of SOA compounds. High-performance liquid chromatography, coupled to photodiode array spectrophotometry and high-resolution mass spectrometry (HPLC-PDA-HRMS), was used to identify chromophoric compounds that are responsible for the brown colour of SOA. Indole derivatives, such as tryptanthrin, indirubin, indigo dye, and indoxyl red, were found to contribute significantly to the visible absorption spectrum of indole SOA. The potential effect of indole SOA on air quality was explored with an airshed model, which found elevated concentrations of indole SOA during the afternoon hours contributing considerably to the total organic aerosol under selected scenarios. Because of its high MAC values, indole SOA can contribute to decreased visibility and poor air quality.
NASA Astrophysics Data System (ADS)
Ebben, C. J.; Strick, B. F.; Upshur, M. A.; Chase, H. M.; Achtyl, J. L.; Thomson, R. J.; Geiger, F. M.
2013-11-01
SOA particle formation ranks among the least understood processes in the atmosphere, rooted in part in (a) the limited knowledge about SOA chemical composition; (b) the availability of only little concrete evidence for chemical structures; and (c) little availability of reference compounds needed for benchmarking and chemical identification in pure and homogenous form. Here, we address these challenges by synthesizing and subjecting to physical and chemical analysis putative isoprene-derived SOA particle constituents. Our surface-selective spectroscopic analysis of these compounds is followed by comparison to synthetic SOA particles prepared at the Harvard Environmental Chamber (HEC) and to authentic SOA particles collected in a tropical forest environment, namely the Amazon Basin, where isoprene oxidation by OH radicals has been reported to dominate SOA particle formation (Martin et al., 2010b; Sun et al., 2003; Hudson et al., 2008; Yasmeen et al., 2010). We focus on the epoxides and tetraols that have been proposed to be present in the SOA particles. We characterize the compounds prepared here by a variety of physical measurements and polarization-resolved vibrational sum frequency generation (SFG), paying particular attention to the phase state (condensed vs. vapor) of four epoxides and two tetraols in contact with a fused silica window. We compare the spectral responses from the tetraol and epoxide model compounds with those obtained from the natural and synthetic SOA particle samples that were collected on filter substrates and pressed against a fused silica window and discuss a possible match for the SFG response of one of the epoxides with that of the synthetic SOA particle material. We conclude our work by discussing how the approach described here will allow for the study of the SOA particle formation pathways from first- and second-generation oxidation products by effectively "fast-forwarding" through the initial reaction steps of particle nucleation via a chemically resolved approach aimed at testing the underlying chemical mechanisms of SOA particle formation.
Cash, James M; Heal, Mathew R; Langford, Ben; Drewer, Julia
2016-11-09
The atmospheric reactions leading to the generation of secondary organic aerosol (SOA) from the oxidation of isoprene are generally assumed to produce only racemic mixtures, but aspects of the chemical reactions suggest this may not be the case. In this review, the stereochemical outcomes of published isoprene-degradation mechanisms contributing to high amounts of SOA are evaluated. Despite evidence suggesting isoprene first-generation oxidation products do not contribute to SOA directly, this review suggests the stereochemistry of first-generation products may be important because their stereochemical configurations may be retained through to the second-generation products which form SOA. Specifically, due to the stereochemistry of epoxide ring-opening mechanisms, the outcome of the reactions involving epoxydiols of isoprene (IEPOX), methacrylic acid epoxide (MAE) and hydroxymethylmethyl-α-lactone (HMML) are, in principle, stereospecific which indicates the stereochemistry is predefined from first-generation precursors. The products from these three epoxide intermediates oligomerise to form macromolecules which are proposed to form chiral structures within the aerosol and are considered to be the largest contributors to SOA. If conditions in the atmosphere such as pH, aerosol water content, relative humidity, pre-existing aerosol, aerosol coatings and aerosol cation/anion content (and other) variables acting on the reactions leading to SOA affect the tacticity (arrangement of chiral centres) in the SOA then they may influence its physical properties, for example its hygroscopicity. Chamber studies of SOA formation from isoprene encompass particular sets of controlled conditions of these variables. It may therefore be important to consider stereochemistry when upscaling from chamber study data to predictions of SOA yields across the range of ambient atmospheric conditions. Experiments analysing the stereochemistry of the reactions under varying conditions of the above variables would help elucidate whether there is stereoselectivity in SOA formation from isoprene and if the rates of SOA formation are affected.
Lee, Hyun Ji Julie; Aiona, Paige Kuuipo; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A
2014-09-02
Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol (SOA) prepared by high-NOx photooxidation of naphthalene (NAP SOA). Our experiments were designed to model photolysis processes of NAP SOA compounds dissolved in cloud or fog droplets. Aqueous solutions of NAP SOA were observed to photobleach (i.e., lose their ability to absorb visible radiation) with an effective half-life of ∼15 h (with sun in its zenith) for the loss of near-UV (300-400 nm) absorbance. The molecular composition of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C14.1H14.5O5.1N0.085 to C11.8H14.9O4.5N0.023 after 4 h of irradiation. However, the average O/C ratio did not change significantly, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photobleaching of BrC material produced by the reaction of limonene + ozone SOA with ammonia vapor (aged LIM/O3 SOA) was much faster, but it did not result in a significant change in average molecular composition. The characteristic absorbance of the aged LIM/O3 SOA in the 450-600 nm range decayed with an effective half-life of <0.5 h. These results emphasize the highly variable and dynamic nature of different types of atmospheric BrC.
NASA Astrophysics Data System (ADS)
Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.
2011-12-01
Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.
Formation of hydroxyl radicals from photolysis of secondary organic aerosol material
NASA Astrophysics Data System (ADS)
Badali, K. M.; Zhou, S.; Aljawhary, D.; Antiñolo, M.; Chen, W. J.; Lok, A.; Mungall, E.; Wong, J. P. S.; Zhao, R.; Abbatt, J. P. D.
2015-07-01
This paper demonstrates that OH radicals are formed by photolysis of secondary organic aerosol (SOA) material formed by terpene ozonolysis. The SOA is collected on filters, dissolved in water containing a radical trap (benzoic acid), and then exposed to ultraviolet light in a photochemical reactor. The OH formation rates, which are similar for both α-pinene and limonene SOA, are measured from the formation rate of p-hydroxybenzoic acid as measured using offline HPLC analysis. To evaluate whether the OH is formed by photolysis of H2O2 or organic hydroperoxides (ROOH), the peroxide content of the SOA was measured using the horseradish peroxidase-dichlorofluorescein (HRP-DCF) assay, which was calibrated using H2O2. The OH formation rates from SOA are 5 times faster than from the photolysis of H2O2 solutions whose concentrations correspond to the peroxide content of the SOA solutions, assuming that the HRP-DCF signal arises from H2O2 alone. The higher rates of OH formation from SOA are likely due to ROOH photolysis, but we cannot rule out a contribution from secondary processes as well. This result is substantiated by photolysis experiments conducted with t-butyl hydroperoxide and cumene hydroperoxide which produce over 3 times more OH than photolysis of equivalent concentrations of H2O2. Relative to the peroxide level in the SOA and assuming that the peroxides drive most of the ultraviolet absorption, the quantum yield for OH generation from α-pinene SOA is 0.8 ± 0.4. This is the first demonstration of an efficient photolytic source of OH in SOA, one that may affect both cloud water and aerosol chemistry.
Sugi, Miho; Hagimoto, Yutaka; Nambu, Isao; Gonzalez, Alejandro; Takei, Yoshinori; Yano, Shohei; Hokari, Haruhide; Wada, Yasuhiro
2018-01-01
Recently, a brain-computer interface (BCI) using virtual sound sources has been proposed for estimating user intention via electroencephalogram (EEG) in an oddball task. However, its performance is still insufficient for practical use. In this study, we examine the impact that shortening the stimulus onset asynchrony (SOA) has on this auditory BCI. While very short SOA might improve its performance, sound perception and task performance become difficult, and event-related potentials (ERPs) may not be induced if the SOA is too short. Therefore, we carried out behavioral and EEG experiments to determine the optimal SOA. In the experiments, participants were instructed to direct attention to one of six virtual sounds (target direction). We used eight different SOA conditions: 200, 300, 400, 500, 600, 700, 800, and 1,100 ms. In the behavioral experiment, we recorded participant behavioral responses to target direction and evaluated recognition performance of the stimuli. In all SOA conditions, recognition accuracy was over 85%, indicating that participants could recognize the target stimuli correctly. Next, using a silent counting task in the EEG experiment, we found significant differences between target and non-target sound directions in all but the 200-ms SOA condition. When we calculated an identification accuracy using Fisher discriminant analysis (FDA), the SOA could be shortened by 400 ms without decreasing the identification accuracies. Thus, improvements in performance (evaluated by BCI utility) could be achieved. On average, higher BCI utilities were obtained in the 400 and 500-ms SOA conditions. Thus, auditory BCI performance can be optimized for both behavioral and neurophysiological responses by shortening the SOA. PMID:29535602
NASA Astrophysics Data System (ADS)
Richards-Henderson, Nicole K.; Hansel, Amie K.; Valsaraj, Kalliat T.; Anastasio, Cort
2014-10-01
Green leaf volatiles (GLVs) are a class of oxygenated hydrocarbons released from vegetation, especially during mechanical stress or damage. The potential for GLVs to form secondary organic aerosol (SOA) via aqueous-phase reactions is not known. Fog events over vegetation will lead to the uptake of GLVs into water droplets, followed by aqueous-phase reactions with photooxidants such as the hydroxyl radical (OH). In order to determine if the aqueous oxidation of GLVs by OH can be a significant source of secondary organic aerosol, we studied the partitioning and reaction of five GLVs: cis-3-hexen-1-ol, cis-3-hexenyl acetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol. For each GLV we measured the kinetics of aqueous oxidation by OH, and the corresponding SOA mass yield. The second-order rate constants for GLVs with OH were all near diffusion controlled, (5.4-8.6) × 109 M-1 s-1 at 298 K, and showed a small temperature dependence, with an average activation energy of 9.3 kJ mol-1 Aqueous-phase SOA mass yields ranged from 10 to 88%, although some of the smaller values were not statistically different from zero. Methyl jasmonate was the most effective aqueous-phase SOA precursor due to its larger Henry's law constant and high SOA mass yield (68 ± 8%). While we calculate that the aqueous-phase SOA formation from the five GLVs is a minor source of aqueous-phase SOA, the availability of other GLVs, other oxidants, and interfacial reactions suggest that GLVs overall might be a significant source of SOA via aqueous reactions.
SOA Measurements vs. Models: A Status Report
NASA Astrophysics Data System (ADS)
Jimenez, Jose-Luis; de Gouw, Joost; Hodzic, Alma
2010-05-01
The advent of fast and chemically-resolved organic aerosol (OA) and VOC measurements in the last decade has allowed more detailed model-measurement comparisons for OA and secondary OA (SOA). Large model underpredictions have been reported for SOA at many locations, but this is not always the case. Here we summarize the patterns emerging from studies to date, focusing on studies that use highly time and/or chemically resolved OA measurements. The model-measurement comparisons exhibit clear patterns depending on the region of the atmosphere. • At least 8 studies have reported a large (x5-10) underestimation of SOA for polluted regions when using traditional models (those developed until ~2006) (Heald GRL05, Volkamer GRL06, Johnson ACP06, Kleinman ACP08, Matsui JGR09, Dzepina ACP09, Hodzic ACP09, Tsimpidi ACP09). This is especially obvious when models are evaluated with the ΔOA/ΔCO ratio. • Close to pollution sources, discrepancies of an order-of-magnitude in SOA lead to smaller discrepancies (often x2-3) for total OA due to the presence of primary OA (de Gouw EST09). Such OA discrepancies have been repeatedly observed (e.g. Vutukuru JGR06, McKeen JGR07&09, Heald JGR07, Fast ACP09, Hodzic ACP09). • The discrepancy is reduced when recently-updated yields for aromatics (Ng ACP07) and SOA from glyoxal (Volkamer GRL07) are used, and is eliminated when using SOA formation from S/IVOC (Robinson Sci07) although with an overprediction of SOA at long aging times (Dzepina ACP09; Hodzic ACP10), especially with the Grieshop (ACP09) update of the Robison mechanism (Hodzic10). It is not clear whether the urban discrepancy is removed for the right reasons. • 4 evaluations of biogenic SOA formed in unpolluted regions find reasonable agreement between SOA from traditional models and field measurements (Tunved Sci06; Hodzic ACP09; Chen GRL09; Slowik ACPD09). One evaluation reports a significant underprediction (Capes ACP09), although the amount of precursor reacted was difficult to ascertain for that case. The difference with the systematic underprediction observed for anthropogenic SOA may be due to the lack of primary S/IVOC in biogenic emissions, or to other reasons (NOx, SO2, POA, etc.). • Comparisons for biogenic SOA formed in polluted regions are more complex. Several studies have reported a lack of clear influence of biogenic VOCs in SOA formation in polluted regions (de Gouw JGR05, GRL09; Weber JGR07; Bahreini JGR09), but 14C studies suggest a large fraction of modern C (Weber JGR07). Synergistic effects of pollution and BVOCs appear likely (e.g. de Gouw JGR05; Weber JGR07; Goldstein PNAS09). • Net SOA formation (above the POA mass emission) from biomass burning appears very variable in the field (Capes JGR09; Yokelson ACP09; DeCarlo ACPD10) as well as in the laboratory (Ortega AGU09; Prevot AGU09; Hennigan in prep.), likely due flaming vs. smoldering fraction and biomass identity, and perhaps also to prompt SOA formation triggered by HONO photolysis. Several studies report significant SOA formation, given enough photochemical processing. Models based on traditional precursors appear to underpredict SOA from BB sources (Grieshop ACP09; Hodzic ACP09). • The very large SOA source in the free troposphere postulated by Heald (GRL05) has not been confirmed nor disproved by later studies. Dunlea (ACP09) did not find evidence of this source across the Pacific near North America, though precipitation removal precludes any strong conclusions. However Carlton (EST09) reported better comparisons after implementing in-cloud SOA formation. • Evaluation of models against measured total OA or OC or SOA levels is thoroughly unsufficient to model verification. OA measurements can be matched through a large number of mechanism permutations, but investigators need to push further to determine whether the agreement is for the right reasons. Future model evaluations should compare POA, SOA precursors, OVOCs, oxidants, and boundary conditions. Multiple OA measurements (WSOC, OC, AMS, molecular tracers, 14C, etc.) are necessary to overcome the limitations of any one method. Measurements of semivolatile species are critically needed to constrain models. These advanced diagnostics are needed in order to build confidence on SOA models, which is needed to predict the changes in SOA concentrations in response to precursor and climate changes.
Sense of agency, associative learning, and schizotypy
Moore, James W.; Dickinson, Anthony; Fletcher, Paul C.
2011-01-01
Despite the fact that the role of learning is recognised in empirical and theoretical work on sense of agency (SoA), the nature of this learning has, rather surprisingly, received little attention. In the present study we consider the contribution of associative mechanisms to SoA. SoA can be measured quantitatively as a temporal linkage between voluntary actions and their external effects. Using an outcome blocking procedure, it was shown that training action–outcome associations under conditions of increased surprise augmented this temporal linkage. Moreover, these effects of surprise were correlated with schizotypy scores, suggesting that individual differences in higher level experiences are related to associative learning and to its impact on SoA. These results are discussed in terms of models of SoA, and our understanding of disrupted SoA in certain disorders. PMID:21295497
Neural correlates of cross-domain affective priming.
Zhang, Qin; Li, Xiaohua; Gold, Brian T; Jiang, Yang
2010-05-06
The affective priming effect has mostly been studied using reaction time (RT) measures; however, the neural bases of affective priming are not well established. To understand the neural correlates of cross-domain emotional stimuli presented rapidly, we obtained event-related potential (ERP) measures during an affective priming task using short SOA (stimulus onset asynchrony) conditions. Two sets of 480 picture-word pairs were presented at SOAs of either 150ms or 250ms between prime and target stimuli. Participants decided whether the valence of each target word was pleasant or unpleasant. Behavioral results from both SOA conditions were consistent with previous reports of affective priming, with longer RTs for incongruent than congruent pairs at SOAs of 150ms (771 vs. 738ms) and 250ms (765 vs. 720ms). ERP results revealed that the N400 effect (associated with incongruent pairs in affective processing) occurred at anterior scalp regions at an SOA of 150ms, and this effect was only observed for negative target words across the scalp at an SOA of 250ms. In contrast, late positive potentials (LPPs) (associated with attentional resource allocation) occurred across the scalp at an SOA of 250ms. LPPs were only observed for positive target words at posterior parts of the brain at an SOA of 150ms. Our finding of ERP signatures at very short SOAs provides the first neural evidence that affective pictures can exert an automatic influence on the evaluation of affective target words. Copyright 2010 Elsevier B.V. All rights reserved.
Hill, Holger; Ott, Friederike; Weisbrod, Matthias
2005-06-01
In a previous semantic priming study, we found a semantic distance effect on the lexical-decision-related P300 when SOA was short (150 ms) only, but no different RT and N400 priming effects between short and long (700 ms) SOAs. To investigate this further, we separated priming from lexical decision, using a delayed lexical decision in the present study. In the short SOA only, primed targets evoked an early peaking (approximately 480 ms) P300-like component, probably because the subject detected the semantic relationship implicitly. We hypothesize that in tasks requiring an immediate lexical decision, this early P300 and the later lexical decision P300 (approximately 600 ms) are additive. Secondly, we found both a direct and an indirect priming effect for both SOAs for the ERP amplitude of the N400 time window. However the N400 component itself was considerably larger in the long SOA than in the short SOA. We interpreted this finding as an ERP correlate for deeper semantic processing in the long SOA, due to increased attention that was provoked by the use of pseudoword primes. In contrast, in the short SOA, subjects might have used a shallowed semantic processing. N400, P300, and RTs are sensitive to semantic priming-but the modulation patterns are not consistent. This raises the question as to which variable reflects an immediate physiological correlate of semantic priming, and which variable reflects co-occurring processes associated with semantic priming.
Sources of secondary organic aerosols over North China Plain in winter
NASA Astrophysics Data System (ADS)
Xing, L.; Li, G.; Tie, X.; Junji, C.; Long, X.
2017-12-01
Organic aerosol (OA) concentrations are simulated over the North China Plain (NCP) from 10th to 26th January, 2014 using the Weather Research and Forecasting model coupled to chemistry (WRF-CHEM), with the goal of examining the impact of heterogeneous HONO sources on atmospheric oxidation capacity and consequently on SOA formation and SOA formation from different pathways in winter. Generally, the model well reproduced the spatial and temporal distribution of PM2.5, SO2, NO2, and O3 concentrations. The heterogeneous HONO formation contributed a major part of atmospheric HONO concentrations in Beijing. The heterogeneous HONO sources significantly increased the daily maximum OH concentrations by 260% on average in Beijing, which enhanced the atmospheric oxidation capacity and consequently SOA concentrations by 80% in Beijing on average. Under severe haze pollution on January 16th 2014, the regional average HONO concentration over NCP was 0.86 ppb, which increased SOA concentration by 68% on average. The average mass fractions of ASOA (SOA from oxidation of anthropogenic VOCs), BSOA (SOA from oxidation of biogenic VOCs), PSOA (SOA from oxidation of evaporated POA), and GSOA (SOA from irreversible uptake of glyoxal and methylglyoxal) during the simulation period over NCP were 24%, 5%, 26% and 45%, respectively. GSOA contributed most to the total SOA mass over NCP in winter. The model sensitivity simulation revealed that GSOA in winter was mainly from primary residential sources. The regional average of GSOA from primary residential sources constituted 87% of total GSOA mass.
Donahue, Neil M; Hartz, Kara E Huff; Chuong, Bao; Presto, Albert A; Stanier, Charles O; Rosenhørn, Thomas; Robinson, Allen L; Pandis, Spyros N
2005-01-01
A substantial fraction of the total ultrafine particulate mass is comprised of organic compounds. Of this fraction, a significant subfraction is secondary organic aerosol (SOA), meaning that the compounds are a by-product of chemistry in the atmosphere. However, our understanding of the kinetics and mechanisms leading to and following SOA formation is in its infancy. We lack a clear description of critical phenomena; we often don't know the key, rate limiting steps in SOA formation mechanisms. We know almost nothing about aerosol yields past the first generation of oxidation products. Most importantly, we know very little about the derivatives in these mechanisms; we do not understand how changing conditions, be they precursor levels, oxidant concentrations, co-reagent concentrations (i.e., the VOC/NOx ratio) or temperature will influence the yields of SOA. In this paper we explore the connections between fundamental details of physical chemistry and the multitude of steps associated with SOA formation, including the initial gas-phase reaction mechanisms leading to condensible products, the phase partitioning itself, and the continued oxidation of the condensed-phase organic products. We show that SOA yields in the alpha-pinene + ozone are highly sensitive to NOx, and that SOA yields from beta-caryophylene + ozone appear to increase with continued ozone exposure, even as aerosol hygroscopicity increases as well. We suggest that SOA yields are likely to increase substantially through several generations of oxidative processing of the semi-volatile products.
2005-06-01
virtualisation of distributed computing and data resources such as processing, network bandwidth, and storage capacity, to create a single system...and Simulation (M&S) will be integrated into this heterogeneous SOA. M&S functionality will be available in the form of operational M&S services. One...documents defining net centric warfare, the use of M&S functionality is a common theme. Alberts and Hayes give a good overview on net centric operations
Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources
NASA Astrophysics Data System (ADS)
Jathar, Shantanu Hemant
Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility-only model suggested that differences in the volatility of the precursors were able to explain most of the variability observed in the SOA formation. For aircraft exhaust, the previous methods to simulate SOA formation from SVOC and IVOC performed poorly. A more physically-realistic modeling framework was developed, which was then used to show that SOA formation from aircraft exhaust was (a) higher for petroleum-based than synthetically derived jet fuel and (b) higher at lower engine loads and vice versa. All of the SOA data from combustion emissions experiments were used to determine source-specific parameterizations to model SOA formation from SVOC, IVOC and other unspeciated emissions. The new parameterizations were used to investigate their influence on the OA budget in the United States. Combustion sources were estimated to emit about 2.61 Tg yr-1 of SVOC, 1VOC and other unspeciated emissions (sixth of the total anthropogenic organic emissions), which are predicted to double SOA production from combustion sources in the United States. The contribution of SVOC and IVOC emissions to global SOA formation was assessed using a global climate model. Simulations were performed using a modified version of GISS GCM 11'. The modified model predicted that SVOC and IVOC contributed to half of the OA mass in the atmosphere. Their inclusion improved OA model-measurement comparisons for absolute concentrations, POA-SOA split and volatility (gas-particle partitioning) globally suggesting that atmospheric models need to incorporate SOA formation from SVOC and IVOC if they are to reasonably predict the abundance and properties of aerosols. This thesis demonstrates that SVOC/IVOC and possibly other unspeciated organics emitted by combustion sources are very important precursors of SOA and potentially large contributors to the atmospheric aerosol mass. Models used for research and policy applications need to represent them to improve model-predictions of aerosols on climate and health outcomes. The improved modeling frameworks developed in this dissertation are suitable for implementation into chemical transport models.
Modeling SOA production from the oxidation of intermediate volatility alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-12-01
Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.
Visual Feedback Dominates the Sense of Agency for Brain-Machine Actions
Evans, Nathan; Gale, Steven; Schurger, Aaron; Blanke, Olaf
2015-01-01
Recent advances in neuroscience and engineering have led to the development of technologies that permit the control of external devices through real-time decoding of brain activity (brain-machine interfaces; BMI). Though the feeling of controlling bodily movements (sense of agency; SOA) has been well studied and a number of well-defined sensorimotor and cognitive mechanisms have been put forth, very little is known about the SOA for BMI-actions. Using an on-line BMI, and verifying that our subjects achieved a reasonable level of control, we sought to describe the SOA for BMI-mediated actions. Our results demonstrate that discrepancies between decoded neural activity and its resultant real-time sensory feedback are associated with a decrease in the SOA, similar to SOA mechanisms proposed for bodily actions. However, if the feedback discrepancy serves to correct a poorly controlled BMI-action, then the SOA can be high and can increase with increasing discrepancy, demonstrating the dominance of visual feedback on the SOA. Taken together, our results suggest that bodily and BMI-actions rely on common mechanisms of sensorimotor integration for agency judgments, but that visual feedback dominates the SOA in the absence of overt bodily movements or proprioceptive feedback, however erroneous the visual feedback may be. PMID:26066840
Kiendler-Scharr, Astrid; Zhang, Qi; Hohaus, Thorsten; Kleist, Einhard; Mensah, Amewu; Mentel, Thomas F; Spindler, Christian; Uerlings, Ricarda; Tillmann, Ralf; Wildt, Jürgen
2009-11-01
Secondary organic aerosol (SOA) is known to form from a variety of anthropogenic and biogenic precursors. Current estimates of global SOA production vary over 2 orders of magnitude. Since no direct measurement technique for SOA exists, quantifying SOA remains a challenge for atmospheric studies. The identification of biogenic SOA (BSOA) based on mass spectral signatures offers the possibility to derive source information of organic aerosol (OA) with high time resolution. Here we present data from simulation experiments. The BSOA from tree emissions was characterized with an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Collection efficiencies were close to 1, and effective densities of the BSOA were found to be 1.3 +/- 0.1 g/cm(3). The mass spectra of SOA from different trees were found to be highly similar. The average BSOA mass spectrum from tree emissions is compared to a BSOA component spectrum extracted from field data. It is shown that overall the spectra agree well and that the mass spectral features of BSOA are distinctively different from those of OA components related to fresh fossil fuel and biomass combustions. The simulation chamber mass spectrum may potentially be useful for the identification and interpretation of biogenic SOA components in ambient data sets.
Jang, Myoseon; Czoschke, Nadine M; Northcross, Amanda L; Cao, Gang; Shaof, David
2006-05-01
A predictive model for secondary organic aerosol (SOA) formation by both partitioning and heterogeneous reactions was developed for SOA created from ozonolysis of alpha-pinene in the presence of preexisting inorganic seed aerosols. SOA was created in a 2 m3 polytetrafluoroethylene film indoor chamber under darkness. Extensive sets of SOA experiments were conducted varying humidity, inorganic seed compositions comprising of ammonium sulfate and sulfuric acid, and amounts of inorganic seed mass. SOA mass was decoupled into partitioning (OM(P)) and heterogeneous aerosol production (OM(H)). The reaction rate constant for OM(H) production was subdivided into three categories (fast, medium, and slow) to consider different reactivity of organic products for the particle phase heterogeneous reactions. The influence of particle acidity on reaction rates was treated in a previous semiempirical model. Model OM(H) was developed with medium and strong acidic seed aerosols, and then extrapolated to OM(H) in weak acidic conditions, which are more relevant to atmospheric aerosols. To demonstrate the effects of preexisting glyoxal derivatives (e.g., glyoxal hydrate and dimer) on OM(H), SOA was created with a seed mixture comprising of aqueous glyoxal and inorganic species. Our results show that heterogeneous SOA formation was also influenced by preexisting reactive glyoxal derivatives.
Gentner, Drew R; Jathar, Shantanu H; Gordon, Timothy D; Bahreini, Roya; Day, Douglas A; El Haddad, Imad; Hayes, Patrick L; Pieber, Simone M; Platt, Stephen M; de Gouw, Joost; Goldstein, Allen H; Harley, Robert A; Jimenez, Jose L; Prévôt, André S H; Robinson, Allen L
2017-02-07
Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.
NASA Astrophysics Data System (ADS)
Jia, Xiaofei
2018-06-01
Starting from the basic equations describing the evolution of the carriers and photons inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output pulse by the SOA is obtained, which can effectively characterize the temporal features of the nonlinear process during the pulse propagation inside the SOA. Moreover, the analytical solution is compared with numerical simulations with a good agreement. The theoretical results will benefit the future analysis of other problems related to the pulse propagation in the SOA.
Stable passive optical clock generation in SOA-based fiber lasers.
Wang, Jing-Yun; Lin, Kuei-Huei; Chen, Hou-Ren
2015-02-15
Stable optical pulse trains are obtained from 1.3-μm and 1.5-μm semiconductor optical amplifier (SOA)-based fiber lasers using passive optical technology. The waveforms depend on SOA currents, and the repetition rates can be tuned by varying the relative length of sub-cavities. The output pulse trains of these SOA-based fiber lasers are stable against intracavity polarization adjustment and environmental perturbation. The optical clock generation is explained in terms of mode competition, self-synchronization, and SOA saturation. Without resorting to any active modulation circuits or devices, the technology used here is simple and may find various applications in the future.
NASA Astrophysics Data System (ADS)
Jia, Xin-Hong; Wu, Zheng-Mao; Xia, Guang-Qiong
2006-12-01
It is well known that the gain-clamped semiconductor optical amplifier (GC-SOA) based on lasing effect is subject to transmission rate restriction because of relaxation oscillation. The GC-SOA based on compensating effect between signal light and amplified spontaneous emission by combined SOA and fiber Bragg grating (FBG) can be used to overcome this problem. In this paper, the theoretical model on GC-SOA based on compensating light has been constructed. The numerical simulations demonstrate that good gain and noise figure characteristics can be realized by selecting reasonably the FBG insertion position, the peak reflectivity of FBG and the biasing current of GC-SOA.
Science opportunity analyzer - a multi-mission tool for planning
NASA Technical Reports Server (NTRS)
Streiffert, B. A.; Polanskey, C. A.; O'Reilly, T.; Colwell, J.
2002-01-01
For many years the diverse scientific community that supports JPL's wide variety ofinterplanetary space missions has needed a tool in order to plan and develop their experiments. The tool needs to be easily adapted to various mission types and portable to the user community. The Science Opportunity Analyzer, SOA, now in its third year of development, is intended to meet this need. SOA is a java-based application that is designed to enable scientists to identify and analyze opportunities for science observations from spacecraft. It differs from other planning tools in that it does not require an in-depth knowledge of the spacecraft command system or operation modes to begin high level planning. Users can, however, develop increasingly detailed levels of design. SOA consists of six major functions: Opportunity Search, Visualization, Observation Design, Constraint Checking, Data Output and Communications. Opportunity Search is a GUI driven interface to existing search engines that can be used to identify times when a spacecraft is in a specific geometrical relationship with other bodies in the solar system. This function can be used for advanced mission planning as well as for making last minute adjustments to mission sequences in response to trajectory modifications. Visualization is a key aspect of SOA. The user can view observation opportunities in either a 3D representation or as a 2D map projection. The user is given extensive flexibility to customize what is displayed in the view. Observation Design allows the user to orient the spacecraft and visualize the projection of the instrument field of view for that orientation using the same views as Opportunity Search. Constraint Checking is provided to validate various geometrical and physical aspects of an observation design. The user has the ability to easily create custom rules or to use official project-generated flight rules. This capability may also allow scientists to easily impact the cost to science if flight rule changes occur. Data Output generates information based on the spacecraft's trajectory, opportunity search results or based on a created observation. The data can be viewed either in tabular format or as a graph. Finally, SOA is unique in that it is designed to be able to communicate with a variety of existing planning and sequencing tools. From the very beginning SOA was designed with the user in mind. Extensive surveys of the potential user community were conducted in order to develop the software requirements. Throughout the development period, close ties have been maintained with the science community to insure that the tool maintains its user focus. Although development is still in its early stages, SOA is already developing a user community on the Cassini project, which is depending on this tool for their science planning. There are other tools at JPL that do various pieces of what SOA can do; however, there is no other tool which combines all these functions and presents them to the user in such a convenient, cohesive, and easy to use fashion.
NASA Astrophysics Data System (ADS)
Friedman, B.; Link, M.; Farmer, D.
2016-12-01
We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.
NASA Astrophysics Data System (ADS)
Waxman, Eleanor M.; Dzepina, Katja; Ervens, Barbara; Lee-Taylor, Julia; Aumont, Bernard; Jimenez, Jose L.; Madronich, Sasha; Volkamer, Rainer
2013-03-01
The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.
Laboratory studies of monoterpene secondary organic aerosol formation and evolution
NASA Astrophysics Data System (ADS)
Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.
2017-12-01
We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.
NASA Astrophysics Data System (ADS)
Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.
2011-10-01
Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and the scooter, respectively. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.
Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang
2012-06-15
We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.
NASA Astrophysics Data System (ADS)
Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.
2012-02-01
Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this study indicate that the SV-OOA in Barcelona is strongly influenced by diesel emissions in winter while in summer at SIRTA at the southwestern edge of Paris SV-OOA is more similar to alpha-pinene SOA. However, contributions to the ambient SV-OOA from SOA sources that are not covered by the model can cause major interference and therefore future expansions of the PCA model with additional SOA sources is recommended.
Crosstalk: The Journal of Defense Software Engineering. Volume 22, Number 2, February 2009
2009-02-01
IT Investment With Service-Oriented Architecture ( SOA ), Geoffrey Raines examines how an SOA offers federal senior leadership teams an incremental and...values, and is used by 30 million people. [1] Given budget constraints, an incre- mental approach seems to be required. A Path Forward SOA , as implemented...point of view, SOA offers several positive benefits. Language Neutral Integration Web-enabling applications with a com- mon browser interface became a
Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol
Zhang, Xuan; Cappa, Christopher D.; Jathar, Shantanu H.; McVay, Renee C.; Ensberg, Joseph J.; Kleeman, Michael J.; Seinfeld, John H.
2014-01-01
Secondary organic aerosol (SOA) constitutes a major fraction of submicrometer atmospheric particulate matter. Quantitative simulation of SOA within air-quality and climate models—and its resulting impacts—depends on the translation of SOA formation observed in laboratory chambers into robust parameterizations. Worldwide data have been accumulating indicating that model predictions of SOA are substantially lower than ambient observations. Although possible explanations for this mismatch have been advanced, none has addressed the laboratory chamber data themselves. Losses of particles to the walls of chambers are routinely accounted for, but there has been little evaluation of the effects on SOA formation of losses of semivolatile vapors to chamber walls. Here, we experimentally demonstrate that such vapor losses can lead to substantially underestimated SOA formation, by factors as much as 4. Accounting for such losses has the clear potential to bring model predictions and observations of organic aerosol levels into much closer agreement. PMID:24711404
Factors controlling the evaporation of secondary organic aerosol from α‐pinene ozonolysis
Pajunoja, Aki; Tikkanen, Olli‐Pekka; Buchholz, Angela; Faiola, Celia; Väisänen, Olli; Hao, Liqing; Kari, Eetu; Peräkylä, Otso; Garmash, Olga; Shiraiwa, Manabu; Ehn, Mikael; Lehtinen, Kari; Virtanen, Annele
2017-01-01
Abstract Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α‐pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents. PMID:28503004
NASA Astrophysics Data System (ADS)
Miller, D. O.; Brune, W. H.
2017-12-01
Accurate estimates of secondary organic aerosol (SOA) from atmospheric models is a major research challenge due to the complexity of the chemical and physical processes involved in the SOA formation and continuous aging. The primary uncertainties of SOA models include those associated with the formation of gas-phase products, the conversion between gas phase and particle phase, the aging mechanisms of SOA, and other processes related to the heterogeneous and particle-phase reactions. To address this challenge, we us a modular modeling framework that combines both simple and near-explicit gas-phase reactions and a two-dimensional volatility basis set (2D-VBS) to simulate the formation and evolution of SOA. Global sensitivity analysis is used to assess the relative importance of the model input parameters. In addition, the model is compared to the measurements from the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT).
Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching
NASA Astrophysics Data System (ADS)
Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David
2011-05-01
The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.
2013-09-01
The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the non-methane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. These results for light-duty gasoline vehicles contrast with the results from a companion study of on-road heavy-duty diesel trucks; in that study late model (2007 and later) diesel trucks equipped with catalyzed diesel particulate filters emitted very little primary PM, and the photo-oxidized emissions produced negligible amounts of SOA.
NASA Astrophysics Data System (ADS)
Kim, M. J.; Teng, A.; Crounse, J.; Wennberg, P. O.
2016-12-01
Hydroxynitrates, a multifunctional product of alkene oxidation, can make significant impacts on regional ozone, SOA, and NOX budgets. A product of VOC oxidation and NOx, hydroxynitrates can be key markers of interactions between biogenic and anthropogenic sources, as well as aging of petrochemical emissions. This work compares observations from recent field campaigns across the globe including the Southeast United States (SEAC4RS, SOAS) as well as the recently concluded Korean US Air Quality mission (KORUS-AQ). The KORUS-AQ airborne campaign examined air quality around the Seoul Metropolitan Area (population 25 million) and immediate forested regions, as well as petrochemical processing facilities and shipping activities throughout the Korean peninsula.
NASA Astrophysics Data System (ADS)
Youssefi, Somayeh; Waring, Michael S.
2015-07-01
The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.
Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul
2012-05-15
Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.
Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiumeng; Lin, Peng; Laskin, Alexander
2016-10-14
The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less
Mixing of secondary organic aerosols versus relative humidity
Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin
2016-01-01
Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions. PMID:27791066
Mixing of secondary organic aerosols versus relative humidity.
Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin; Sullivan, Ryan C; Donahue, Neil M
2016-10-24
Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-12-24
All-optical on-off keying (OOK) to binary phase-shift keying (BPSK) modulation format conversion based on gain-transparent semiconductor optical amplifier (GT-SOA) is simulated and analyzed, where GT-SOA is used as an all-optical phase-modulator (PM). Numerical simulation of the phase modulation effect of GT-SOA is performed using a wideband dynamic model of GT-SOA and the quality of the BPSK signal is evaluated using the differential-phase-Q factor. Performance improvement by holding light injection is analyzed and non-return-to-zero (NRZ) and return-to-zero (RZ) modulation formats of the OOK signal are considered.
NASA Astrophysics Data System (ADS)
Zeyl, Timothy; Yin, Erwei; Keightley, Michelle; Chau, Tom
2016-04-01
Objective. Error-related potentials (ErrPs) have the potential to guide classifier adaptation in BCI spellers, for addressing non-stationary performance as well as for online optimization of system parameters, by providing imperfect or partial labels. However, the usefulness of ErrP-based labels for BCI adaptation has not been established in comparison to other partially supervised methods. Our objective is to make this comparison by retraining a two-step P300 speller on a subset of confident online trials using naïve labels taken from speller output, where confidence is determined either by (i) ErrP scores, (ii) posterior target scores derived from the P300 potential, or (iii) a hybrid of these scores. We further wish to evaluate the ability of partially supervised adaptation and retraining methods to adjust to a new stimulus-onset asynchrony (SOA), a necessary step towards online SOA optimization. Approach. Eleven consenting able-bodied adults attended three online spelling sessions on separate days with feedback in which SOAs were set at 160 ms (sessions 1 and 2) and 80 ms (session 3). A post hoc offline analysis and a simulated online analysis were performed on sessions two and three to compare multiple adaptation methods. Area under the curve (AUC) and symbols spelled per minute (SPM) were the primary outcome measures. Main results. Retraining using supervised labels confirmed improvements of 0.9 percentage points (session 2, p < 0.01) and 1.9 percentage points (session 3, p < 0.05) in AUC using same-day training data over using data from a previous day, which supports classifier adaptation in general. Significance. Using posterior target score alone as a confidence measure resulted in the highest SPM of the partially supervised methods, indicating that ErrPs are not necessary to boost the performance of partially supervised adaptive classification. Partial supervision significantly improved SPM at a novel SOA, showing promise for eventual online SOA optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia
2013-05-10
Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM)more » spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.« less
NASA Astrophysics Data System (ADS)
Li, Weihua; Cocker, David R.
2018-07-01
Diesel fuel is a complex mixture of intermediate volatility organic compounds (IVOCs). Previous studies focused on secondary organic aerosol (SOA) and ozone formation from photo-oxidation of organic vapor from diesel exhaust and their components such as aromatics and heavy alkanes. However, there are few studies on atmospheric behavior of unburnt diesel. Therefore, in this study, ten unburnt #2 commercial diesel samples and one FACE9A research diesel fuel were photo-oxidized in the University of California Riverside, College of Engineering-Center for Environmental Research & Technology dual environmental chambers to investigate their SOA and ozone production potential. Photochemical aging rapidly produced significant SOA (yield ∼20.3-37.7%) in the presence of a surrogate reactive organic gas (ROG) mixture used to mimic urban atmospheric reactivity. SOA yields were consistent with n-Heptadecane yields under similar conditions. Doubling NOx concentrations within relevant urban concentration levels enhanced SOA formation by 33% and ozone formation by 48%. SOA formation in this study was approximately fourteen times higher than previously reported for very high NOx conditions. An SOA experiment designed to mimic the previous work achieved similar yields to the earlier work. SOA formed under urban relevant NOx concentrations were consistent with semi-volatile-oxygenated organic aerosol (SV-OOA) and underwent little further chemical processing once produced.
Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A
2013-06-04
Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.
[Social Cognition and the Sense of Agency in Autism: From Action to Interaction].
Lafleur, Alexis; Soulières, Isabelle; Forgeot d'Arc, Baudoin
The sense of agency (SoA) refers to the ability for one to detect that she is the cause of an action (Gallagher, 2000). The SoA is linked to motor control but also to self-awareness and could play an important role in social interactions. Autism spectrum disorder (ASD) is characterized by an alteration of social interactions and communication (DSM-5; APA, 2013) and is often seen as a primary deficit of functions specific to social cognition. However, motor control is also altered in ASD. We hypothesize that motor symptoms and social impairments could both arise from the same alteration of SoA. We first introduce theoretical models of implicit and explicit SoA (Synofzik et al., 2008) and present their neurofunctional basis. Then, we assess the clinical expressions of a disrupted SoA in different neuropsychiatric disorders such as schizophrenia. In ASD, the atypical formation of internal models of action during motor acquisition (Haswell et al., 2009) could be at the source of an altered implicit SoA. A lack of fidelity of sensorimotor agency cues (Zalla et al., 2015) could also entail an alteration of explicit SoA. We discuss the main clinical expressions of ASD that may ensue from a disrupted SoA (difficulties in theory of mind and imitation, deficits in motor coordination and praxis, etc.).
Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.
2014-12-01
Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.
Ambient pine forest air was oxidized by OH, O 3, or NO 3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics and Nitrogen – Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O 3 and NO 3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOAmore » precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O 3 or NO 3 oxidation. This is likely because O 3 and NO 3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O 3 and NO 3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O 3 and NO 3 oxidation produced SOA with elemental O : C and H : C similar to the least-oxidized OA observed in local ambient air, and neither oxidant led to net mass loss at the highest exposures, in contrast to OH oxidation. An OH exposure in the OFR equivalent to several hours of atmospheric aging also produced SOA with O : C and H : C values similar to ambient OA, while higher aging (days–weeks) led to formation of SOA with progressively higher O : C and lower H : C (and net mass loss at the highest exposures). NO 3 oxidation led to the production of particulate organic nitrates (pRONO 2), while OH and O 3 oxidation (under low NO) did not, as expected. As a result, these measurements of SOA formation provide the first direct comparison of SOA formation potential and chemical evolution from OH, O 3, and NO 3 oxidation in the real atmosphere and help to clarify the oxidation processes that lead to SOA formation from biogenic hydrocarbons.« less
Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; ...
2017-04-25
Ambient pine forest air was oxidized by OH, O 3, or NO 3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio–hydro–atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics and Nitrogen – Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O 3 and NO 3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20–30 min, in order to determine how the availability of SOAmore » precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O 3 or NO 3 oxidation. This is likely because O 3 and NO 3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O 3 and NO 3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O 3 and NO 3 oxidation produced SOA with elemental O : C and H : C similar to the least-oxidized OA observed in local ambient air, and neither oxidant led to net mass loss at the highest exposures, in contrast to OH oxidation. An OH exposure in the OFR equivalent to several hours of atmospheric aging also produced SOA with O : C and H : C values similar to ambient OA, while higher aging (days–weeks) led to formation of SOA with progressively higher O : C and lower H : C (and net mass loss at the highest exposures). NO 3 oxidation led to the production of particulate organic nitrates (pRONO 2), while OH and O 3 oxidation (under low NO) did not, as expected. As a result, these measurements of SOA formation provide the first direct comparison of SOA formation potential and chemical evolution from OH, O 3, and NO 3 oxidation in the real atmosphere and help to clarify the oxidation processes that lead to SOA formation from biogenic hydrocarbons.« less
Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro
2014-01-01
Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-d-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-α, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively. PMID:25361045
Primary and secondary organic aerosols in summer 2016 in Beijing
NASA Astrophysics Data System (ADS)
Tang, Rongzhi; Wu, Zepeng; Li, Xiao; Wang, Yujue; Shang, Dongjie; Xiao, Yao; Li, Mengren; Zeng, Limin; Wu, Zhijun; Hallquist, Mattias; Hu, Min; Guo, Song
2018-03-01
To improve air quality, the Beijing government has employed several air pollution control measures since the 2008 Olympics. In order to investigate organic aerosol sources after the implementation of these measures, ambient fine particulate matter was collected at a regional site in Changping (CP) and an urban site at the Peking University Atmosphere Environment Monitoring Station (PKUERS) during the Photochemical Smog in China
field campaign in summer 2016. Chemical mass balance (CMB) modeling and the tracer yield method were used to apportion primary and secondary organic sources. Our results showed that the particle concentration decreased significantly during the last few years. The apportioned primary and secondary sources explained 62.8 ± 18.3 and 80.9 ± 27.2 % of the measured OC at CP and PKUERS, respectively. Vehicular emissions served as the dominant source. Except for gasoline engine emissions, the contributions of all the other primary sources decreased. In addition, the anthropogenic SOC, i.e., toluene SOC, also decreased, implying that deducting primary emissions can reduce anthropogenic SOA. In contrast to the SOA from other regions in the world where biogenic SOA was dominant, anthropogenic SOA was the major contributor to SOA, implying that deducting anthropogenic VOC emissions is an efficient way to reduce SOA in Beijing. Back-trajectory cluster analysis results showed that high mass concentrations of OC were observed when the air mass was from the south. However, the contributions of different primary organic sources were similar, suggesting regional particle pollution. The ozone concentration and temperature correlated well with the SOA concentration. Different correlations between day and night samples suggested different SOA formation pathways. Significant enhancement of SOA with increasing particle water content and acidity was observed in our study, suggesting that aqueous-phase acid-catalyzed reactions may be the important SOA formation mechanism in summer in Beijing.
Holderbaum, Candice Steffen; de Salles, Jerusa Fumagalli
2011-11-01
Differences in the semantic priming effect comparing child and adult performance have been found by some studies. However, these differences are not well established, mostly because of the variety of methods used by researchers around the world. One of the main issues concerns the absence of semantic priming effects on children at stimulus onset asynchrony (SOA) smaller than 300ms. The aim of this study was to compare the semantic priming effect between third graders and college students at two different SOAs: 250ms and 500ms. Participants performed lexical decisions to targets which were preceded by semantic related or unrelated primes. Semantic priming effects were found at both SOAs in the third graders' group and in college students. Despite the fact that there was no difference between groups in the magnitude of semantic priming effects when SOA was 250ms, at the 500ms SOA their magnitude was bigger in children, corroborating previous studies. Hypotheses which could explain the presence of semantic priming effects in children's performance when SOA was 250ms are discussed, as well as hypotheses for the larger magnitude of semantic priming effects in children when SOA was 500ms.
Nakahara, Tatsushi; Takahashi, Ryo
2013-05-06
We propose a novel, self-stabilizing optical clock pulse-train generator for processing preamble-free, asynchronous optical packets with variable lengths. The generator is based on an optical loop that includes a semiconductor optical amplifier (SOA) and a high-extinction spin-polarized saturable absorber (SA), with the loop being self-stabilized by balancing out the gain and absorption provided by the SOA and SA, respectively. The optical pulse train is generated by tapping out a small portion of a circulating seed pulse. The convergence of the generated pulse energy is enabled by the loop round-trip gain function that has a negative slope due to gain saturation in the SOA. The amplified spontaneous emission (ASE) of the SOA is effectively suppressed by the SA, and a backward optical pulse launched into the SOA enables overcoming the carrier-recovery speed mismatch between the SOA and SA. Without external control for the loop gain, a stable optical pulse train consisting of more than 50 pulses with low jitter is generated from a single 10-ps seed optical pulse even with a variation of 10 dB in the seed pulse intensity.
Estimated effects of temperature on secondary organic aerosol concentrations.
Sheehan, P E; Bowman, F M
2001-06-01
The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.
SOA YIELDS AND ORGANIC PRODUCT DISTRIBUTION FROM NATURAL HYDROCARBON/NOX IRRADIATIONS
Secondary organic aerosol (SOA) typically comprises one-quarter to one-third of the ambient aerosol mass in summertime urban atmospheres. In tropospheric environments, the main precursors of SOA come from aromatic and natural hydrocarbons. Recent work by various investigators...
Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-12-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9-5.6, 6.4-12.0 and 0.9-2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, W.; Rinne, J.
2016-12-01
Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.
Tenneij, Nienke H; Goedhard, Laurette E; Stolker, Joost J; Nijman, Henk; Koot, Hans M
2009-08-01
Previous research has shown good psychometric properties of the Staff Observation Aggression Scale-Revised (SOAS-R). However, it has never been investigated what proportion of aggressive incidents occurring in facilities is documented with the SOAS-R. Furthermore, if incidents are underreported, the consequences for the categorization of clients into aggressive and nonaggressive subgroups based on the SOAS-R are unknown. To examine this, in four inpatient psychiatric facilities for adults with mild intellectual disabilities, aggressive incidents were documented with the SOAS-R and two other indicators of aggressive incidents: the daily staff reports on clients' behavior and reports on of the use of restraints. Less than half of the incidents documented with the staff and restraint reports were also documented with the SOAS-R. On the other way around, however, it was also found that a substantial proportion of incidents reported on SOAS-R forms were not documented in the daily staff reports, which points to a more general problem of underreporting aggressive behavior. Apart from that, categorization of clients into an aggressive and a nonaggressive subgroup with SOAS-R data collected during 1 month or longer corresponded largely with the categorization based on both other indicators. This study showed that underreporting of aggressive incidents is likely to occur with the SOAS-R, making the instrument less suitable to assess absolute aggression incidence in facilities. Still, the SOAS-R seems a good instrument to categorize clients into aggressive and nonaggressive subgroups. Ways to improve the compliance of the ward team to document all aggressive incidents are addressed in the Discussion section of this article.
Optical properties and aging of light-absorbing secondary organic aerosol
Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...
2016-10-14
The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Ji; Aiona, Paige K.; Laskin, Alexander
2014-09-02
Sources, optical properties, and chemical composition of atmospheric brown carbon (BrC) aerosol are uncertain, making it challenging to estimate its contribution to radiative forcing. Furthermore, optical properties of BrC may change significantly during its atmospheric aging. We examined the effect of solar photolysis on the molecular composition, mass absorption coefficient, and fluorescence of secondary organic aerosol prepared by high-NO x photooxidation of naphthalene (NAP SOA). The aqueous solutions of NAP SOA was observed to photobleach with an effective half-time of ~15 hours (with sun in its zenith) for the loss of the near-UV (300 -400 nm) absorbance. The molecular compositionmore » of NAP SOA was significantly modified by photolysis, with the average SOA formula changing from C 14.1H 14.5O 5.1N 0.08 to C 11.8H 14.9O 4.5N 0.02 after 4 hours of irradiation. The average O/C ratio did not change significantly, however, suggesting that it is not a good metric for assessing the extent of photolysis-driven aging in NAP SOA (and in BrC in general). In contrast to NAP SOA, the photolysis of BrC material produced by aqueous reaction of limonene+O 3 SOA (LIM/O 3 SOA) with ammonium sulfate was much faster, but it did not result in a significant change in the molecular level composition. The characteristic absorbance of the aged LIM/O 3 SOA in the 450-600 nm range decayed with an effective half-time of <0.5 hour. This result emphasizes the highly variable and dynamic nature of different types of atmospheric BrC.« less
NASA Astrophysics Data System (ADS)
Smith, J.; Anastasio, C.
2014-12-01
The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seinfeld, John H.
Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratorymore » chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.« less
A Review of Secondary Organic Aerosol (SOA) Formation from Isoprene
Recent field and laboratory evidence indicates that the oxidation of isoprene forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg yr-1) are sufficiently large the formation of SOA is even small yields results in substantial production ...
A critical role for autoxidation in the alpha-pinene + OH aerosol system
Oxidation of monoterpenes results in efficient formation of secondary organic aerosol (SOA) and is included as an SOA source in most chemical transport models. However, current model parameterizations lack a mechanistic dependence of monoterpene SOA on NOx and oxidant identity (e...
Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA). In this work, modeling of isoprene SOA via heterogeneous uptake is explored and compared to observations from the Southern Oxidant and Aerosol Study (SOAS).
EVIDENCE FOR ORGANOSULFATES IN SECONDARY ORGANIC AEROSOL
Recent work has shown that particle-phase reactions contribute to the formation of secondary organic aerosol (SOA), with enhancements of SOA yields in the presence of acidic seed aerosol. In this study, the chemical composition of SOA from the photooxidations of α-pinene and isop...
Uncertainties in SOA Formation from the Photooxidation of α-pinene
NASA Astrophysics Data System (ADS)
McVay, R.; Zhang, X.; Aumont, B.; Valorso, R.; Camredon, M.; La, S.; Seinfeld, J.
2015-12-01
Explicit chemical models such as GECKO-A (the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) enable detailed modeling of gas-phase photooxidation and secondary organic aerosol (SOA) formation. Comparison between these explicit models and chamber experiments can provide insight into processes that are missing or unknown in these models. GECKO-A is used to model seven SOA formation experiments from α-pinene photooxidation conducted at varying seed particle concentrations with varying oxidation rates. We investigate various physical and chemical processes to evaluate the extent of agreement between the experiments and the model predictions. We examine the effect of vapor wall loss on SOA formation and how the importance of this effect changes at different oxidation rates. Proposed gas-phase autoxidation mechanisms are shown to significantly affect SOA predictions. The potential effects of particle-phase dimerization and condensed-phase photolysis are investigated. We demonstrate the extent to which SOA predictions in the α-pinene photooxidation system depend on uncertainties in the chemical mechanism.
A synthesis theory for the externally excited adaptive system /EEAS/
NASA Technical Reports Server (NTRS)
Horowitz, I. M.; Smay, J. W.; Shapiro, A.
1974-01-01
The externally excited adaptive system (EEAS) is a two-degree-of-freedom feedback system with a nonlinearity which is saturated hard by an external periodic signal. Under certain conditions, the EEAS responds quasi-linearly to command and plant disturbance signals, permitting the development of a quantitative synthesis theory for satisfying system tolerances despite large plant uncertainty. The great advantage of the EEAS is its zero sensitivity to plant gain variations, a property it shares with the self-oscillating adaptive system (SOAS). The EEAS is, however, more flexible than the SOAS in satisfying the quasi-linearity constraints. The essential difference is that in the EEAS the loop transmission bandwidth is not rigorously tied to the 'carrier' signal, as it is in the SOAS. There is a class of problems for which the EEAS is superior to the purely linear system, which in turn is superior to the SOAS. The superiority of the EEAS over the SOAS is especially marked in the case of significant plant disturbances, which generally vitiate a SOAS design.
Characterization of secondary organic aerosol generated from ozonolysis of α-pinene mixtures
NASA Astrophysics Data System (ADS)
Amin, Hardik S.; Hatfield, Meagan L.; Huff Hartz, Kara E.
2013-03-01
In the atmosphere, multiple volatile organic compounds (VOCs) co-exist, and they can be oxidized concurrently and generate secondary organic aerosol (SOA). In this work, SOA is formed by the oxidation (in presence of excess ozone) of mixtures containing α-pinene and other VOCs. The VOC mixtures were made so their composition approached a commercially-available α-pinene-based essential oil, Siberian fir needle oil. The SOA products were sampled using filters, solvent extracted and analyzed by gas chromatography/mass spectrometry with trimethylsilyl derivatization. The individual product yields for SOA generated from α-pinene changed upon the addition of other VOCs. An increase in concentration of non-reactive VOCs (bornyl acetate, camphene, and borneol) lead to a decrease in individual product yields of characteristic α-pinene SOA products. Although these experiments were carried out under higher VOC and ozone concentrations in comparison to the atmosphere, this work suggests that the role of non-reactive VOCs should be explored in SOA products formation.
Microphysical Properties of Single Secondary Organic Aerosol (SOA) Particles
NASA Astrophysics Data System (ADS)
Rovelli, Grazia; Song, Young-Chul; Pereira, Kelly; Hamilton, Jacqueline; Topping, David; Reid, Jonathan
2017-04-01
Secondary Organic Aerosols (SOA) deriving from the oxidation of volatile organic compounds (VOCs) can account for a substantial fraction of the overall atmospheric aerosol mass.[1] Therefore, the investigation of SOA microphysical properties is crucial to better comprehend their role in the atmospheric processes they are involved in. This works describes a single particle approach to accurately characterise the hygroscopic response, the optical properties and the gas-particle partitioning kinetics of water and semivolatile components for laboratory generated SOA. SOA was generated from the oxidation of different VOCs precursors (e.g. α-pinene, toluene) in a photo-chemical flow reactor, which consists of a temperature and relative humidity controlled 300 L polyvinyl fluoride bag. Known VOC, NOx and ozone concentrations are introduced in the chamber and UV irradiation is performed by means of a Hg pen-ray. SOA samples were collected with an electrical low pressure impactor, wrapped in aluminium foil and kept refrigerated at -20°C. SOA samples were extracted in a 1:1 water/methanol mixture. Single charged SOA particles were generated from the obtained solution using a microdispenser and confined within an electrodynamic balance (EDB), where they sit in a T (250-320 K) and RH (0-95%) controlled nitrogen flow. Suspended droplets are irradiated with a 532 nm laser and the evolving angularly resolved scattered light is used to keep track of changes in droplet size. One of the key features of this experimental approach is that very little SOA solution is required because of the small volumes needed to load the dispensers (<20 μL). A number of diverse experiments were performed in order to characterise different microphysical properties of SOA. The equilibrium hygroscopic response of SOA was determined with comparative evaporation kinetics experiments (CK-EDB) of suspended probe and sample droplets.[2] The variation of the refractive index of SOA droplets following to water or SVOCs evaporative loss was measured as a function of water activity by fitting the collected light scattering patterns with a generated Mie-Theory library of phase functions.[3] Long trapping experiments (up to >20000 s) allow the observation of slow SVOCs evaporation kinetics at different T and RH conditions. Water condensation/evaporation kinetics experiments onto/from trapped SOA droplets following fast RH step changes (<0.5 s) were also performed in order to evaluate possible kinetics limitations to water diffusion in the condensed phase resulting from the formation of a viscous matrix. [1] Fuzzi et al., Atmos. Chem. Phys. 15, 8217-8299 (2015). [2] Rovelli et al., J. Phys. Chem. A 120, 4376-4388 (2016). [3] Cotterell et al., Phys. Chem. Chem. Phys. 17, 15843-15856 (2015).
Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model
NASA Astrophysics Data System (ADS)
Knote, C.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J.; Fast, J.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R.; Tyndall, G.; Washenfelder, R.; Waxman, E.; Zhang, Q.
2014-06-01
New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale chemistry transport model WRF-Chem to include detailed gas-phase chemistry of glyoxal formation as well as a state-of-the-science module describing its partitioning and reactions in the aerosol aqueous-phase. A comparison of several proposed mechanisms is performed to quantify the relative importance of different formation pathways and their regional variability. The CARES/CalNex campaigns over California in summer 2010 are used as case studies to evaluate the model against observations. A month-long simulation over the continental United States (US) enables us to extend our results to the continental scale. In all simulations over California, the Los Angeles (LA) basin was found to be the hot spot for SOA formation from glyoxal, which contributes between 1% and 15% of the model SOA depending on the mechanism used. Our results indicate that a mechanism based only on a reactive (surface limited) uptake coefficient leads to higher SOA yields from glyoxal compared to a more detailed description that considers aerosol phase state and chemical composition. In the more detailed simulations, surface uptake is found to give the highest SOA mass yields compared to a volume process and reversible formation. We find that the yields of the latter are limited by the availability of glyoxal in aerosol water, which is in turn controlled by an increase in the Henry's law constant depending on salt concentrations ("salting-in"). A time dependence in this increase prevents substantial partitioning of glyoxal into aerosol water at high salt concentrations. If this limitation is removed, volume pathways contribute > 20% of glyoxal-SOA mass, and the total mass formed (5.8% of total SOA in the LA basin) is about a third of the simple uptake coefficient formulation without consideration of aerosol phase state and composition. Results from the continental US simulation reveal the much larger potential to form glyoxal-SOA over the eastern continental US. Interestingly, the low concentrations of glyoxal-SOA over the western continental US are not due to the lack of a potential to form glyoxal-SOA here. Rather these small glyoxal-SOA concentrations reflect dry conditions and high salt concentrations, and the potential to form SOA mass here will strongly depend on the water associated with particles.
NASA Astrophysics Data System (ADS)
Bui, A. T.; Wallace, H. W., IV; Alvarez, S. L.; Erickson, M.; Alwe, H. D.; May, N.; Cook, R.; Connor, M.; Slade, J. H., Jr.; Shi, Q.; Kavassalis, S.; Tyndall, G. S.; Shepson, P. B.; Pratt, K.; Ault, A. P.; Millet, D. B.; Murphy, J. G.; Usenko, S.; Sheesley, R. J.; Flynn, J. H., III; Griffin, R. J.; Wang, W.
2017-12-01
Forests are a rich source of biogenic volatile organic compounds (BVOCs). Oxidation of BVOCs can result in the formation of secondary organic aerosol (SOA) and in the presence of NOx (NO+NO2) produce organic nitrate-containing particles. However, the distribution of both BVOCs and oxidants can be dramatically altered by the physical barriers provided by a forest canopy. Global models currently neglect the effect of these canopies on SOA formation in forested regions. In this work, we characterize non-refractory submicron aerosol (NR-PM1) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) during the 2016 Program on Oxidants: Photochemistry, Emissions, and Transport-Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS) campaign. This site is located in a rural forest in northern Michigan and features a tower that allowed for both above and below canopy measurements. Our results indicate that organic aerosols (OA) account for a substantial portion of the NR-PM1 measured at this site. Organic nitrate aerosol can contribute up to 18% of the total OA and an average of 75% of the total measured nitrate aerosol. Episodes of above- and below-canopy NR-PM1 concentration differences indicate that above-canopy OA concentrations can be up to 40% greater than below-canopy, which represents an increase of up to 1.5 µg/m3. Organic fragment ions such as CxHy, CxHyOz, and CxHyO1 contribute to enhanced above-canopy OA concentrations. Positive matrix factorization analysis of the high-resolution OA mass spectra identified three SOA factors: low volatility oxygenated OA (LVOOA), isoprene-derived OOA (ISOOA), and oxygenated organic aerosol. Analysis of air mass backward trajectories and correlations with external data indicate that LVOOA correlates well with sulfate and aged, urban-influenced air masses, whereas ISOOA correlates well with isoprene SOA tracers and air masses originating from semi-remote areas. Our results indicate that the OA at this site is dominated by SOA formation and that vertical differences in OA can exist in the presence of a forest canopy. Results from this work have important implications in understanding the role that canopies play in SOA formation and provide useful data to help accurately validate biosphere-atmosphere exchange models.
Ye, Penglin; Ding, Xiang; Ye, Qing; Robinson, Ellis S; Donahue, Neil M
2016-03-10
Semivolatile organic compounds (SVOCs) play an essential role in secondary organic aerosol (SOA) formation, chemical aging, and mixing of organic aerosol (OA) from different sources. Polyethylene glycol (PEG400) particles are liquid, polar, and nearly nonvolatile; they provide a new vehicle to study the interaction between SVOCs with OA. With a unique fragment ion C4H9O2(+) (m/z 89), PEG400 can be easily separated from α-pinene SOA in aerosol mass spectra. By injecting separately prepared PEG probe particles into a chamber containing SOA coated on ammonium sulfate seeds, we show that a substantial pool of SVOCs exists in equilibrium with the original SOA particles. Quantitative findings are based on bulk mass spectra, size-dependent composition, and the evolution of individual particle mass spectra, which we use to separate the two particle populations. We observed a larger fraction of SVOC vapors with increased amounts of reacted α-pinene. For the same amount of reacted α-pinene, the SOA formed from α-pinene oxidized by OH radicals had a higher fraction of SOA vapors than SOA formed by α-pinene ozonolysis. Compared to the PEG400 probe particles, we observed a lower mass fraction of SVOCs in poly(ethylene glycol) dimethyl ether (MePEG500) probe particles under otherwise identical conditions; this may be due to the lower polarity of the MePEG500 or caused by esterification reactions between the PEG400 and organic acids in the SOA.
NASA Astrophysics Data System (ADS)
Arashiro, Maiko; Lin, Ying-Hsuan; Sexton, Kenneth G.; Zhang, Zhenfa; Jaspers, Ilona; Fry, Rebecca C.; Vizuete, William G.; Gold, Avram; Surratt, Jason D.
2016-11-01
Atmospheric oxidation of isoprene, the most abundant non-methane hydrocarbon emitted into Earth's atmosphere primarily from terrestrial vegetation, is now recognized as a major contributor to the global secondary organic aerosol (SOA) burden. Anthropogenic pollutants significantly enhance isoprene SOA formation through acid-catalyzed heterogeneous chemistry of epoxide products. Since isoprene SOA formation as a source of fine aerosol is a relatively recent discovery, research is lacking on evaluating its potential adverse effects on human health. The objective of this study was to examine the effect of isoprene-derived SOA on inflammation-associated gene expression in human lung cells using a direct deposition exposure method. We assessed altered expression of inflammation-related genes in human bronchial epithelial cells (BEAS-2B) exposed to isoprene-derived SOA generated in an outdoor chamber facility. Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) in exposed cells, together with complementary chemical measurements, showed that a dose of 0.067 µg cm-2 of SOA from isoprene photooxidation leads to statistically significant increases in IL-8 and COX-2 mRNA levels. Resuspension exposures using aerosol filter extracts corroborated these findings, supporting the conclusion that isoprene-derived SOA constituents induce the observed changes in mRNA levels. The present study is an attempt to examine the early biological responses of isoprene SOA exposure in human lung cells.
Robotic disaster recovery efforts with ad-hoc deployable cloud computing
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Marsh, Ronald; Mohammad, Atif F.
2013-06-01
Autonomous operations of search and rescue (SaR) robots is an ill posed problem, which is complexified by the dynamic disaster recovery environment. In a typical SaR response scenario, responder robots will require different levels of processing capabilities during various parts of the response effort and will need to utilize multiple algorithms. Placing these capabilities onboard the robot is a mediocre solution that precludes algorithm specific performance optimization and results in mediocre performance. Architecture for an ad-hoc, deployable cloud environment suitable for use in a disaster response scenario is presented. Under this model, each service provider is optimized for the task and maintains a database of situation-relevant information. This service-oriented architecture (SOA 3.0) compliant framework also serves as an example of the efficient use of SOA 3.0 in an actual cloud application.
NASA Astrophysics Data System (ADS)
Hodzic, A.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; Decarlo, P. F.; Kleinman, L.; Fast, J.
2010-01-01
It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (3-6 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total SOA at the surface during the day and is somewhat larger than that from aromatics, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20-30 μg sm-3 ppm-1 up to 60-70 μg sm-3 ppm-1 between a fresh and 1-day aged air mass, while the GRI case produces a 30-40% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R2=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA evolution with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for improvements in current parameterizations. We note that our simulations did not include other proposed pathways of SOA formation such as formation from very volatile species like glyoxal, which can also contribute SOA mass and especially increase the O/C ratio.
OR.NET RT: how service-oriented medical device architecture meets real-time communication.
Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank
2018-02-23
Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.
2015-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. One such technology is the Cascade Distillation System (CDS) a multi-stage vacuum rotary distiller system designed to recover water in a microgravity environment. Its rotating cascading distiller operates similarly to the state of the art (SOA) vapor compressor distiller (VCD), but its control scheme and ancillary components are judged to be straightforward and simpler to implement into a successful design. Through the Advanced Exploration Systems (AES) Life Support Systems (LSS) Project, the NASA Johnson Space Center (JSC) in collaboration with Honeywell International is developing a second generation flight forward prototype (CDS 2.0). The key objectives for the CDS 2.0 design task is to provide a flight forward ground prototype that demonstrates improvements over the SOA system in the areas of increased reliability and robustness, and reduced mass, power and volume. It will also incorporate exploration-class automation. The products of this task are a preliminary flight system design and a high fidelity prototype of an exploration class CDS. These products will inform the design and development of the third generation CDS which is targeted for on-orbit DTO. This paper details the preliminary design of the CDS 2.0.
SOA VOLATILITY EVOLUTION: FORMATION AND OXIDATION OVER THE LIFECYCLE OF PM2.5
Secondary Organic Aerosols are a major, possibly dominant, source of organic PM2.5 that remain enigmatic. Enormous progress has been made in the past 15 years regarding SOA formation, starting with recognition that most SOA products are semivolatile, continuing to a...
Service-Oriented Architecture--What Is It, and How Do We Get One?
ERIC Educational Resources Information Center
Phelps, Jim; Busby, Brian
2007-01-01
Everyone involved in information technology (IT) at higher education institutions around the world have likely heard of service-oriented architecture (SOA). Simply put, SOA presents well-defined business functions as services, which are made available to multiple applications through standard protocols. Using SOA, institutions can integrate…
Model-driven Service Engineering with SoaML
NASA Astrophysics Data System (ADS)
Elvesæter, Brian; Carrez, Cyril; Mohagheghi, Parastoo; Berre, Arne-Jørgen; Johnsen, Svein G.; Solberg, Arnor
This chapter presents a model-driven service engineering (MDSE) methodology that uses OMG MDA specifications such as BMM, BPMN and SoaML to identify and specify services within a service-oriented architecture. The methodology takes advantage of business modelling practices and provides a guide to service modelling with SoaML. The presentation is case-driven and illuminated using the telecommunication example. The chapter focuses in particular on the use of the SoaML modelling language as a means for expressing service specifications that are aligned with business models and can be realized in different platform technologies.
Zalla, Tiziana; Sperduti, Marco
2015-01-01
While a large number of studies have reported impairments in social and interpersonal abilities in individuals with autism spectrum disorder (ASD), relatively few studies have focused on self-related knowledge in this population. One of the processes implicated in the physical dimension of the Self is the sense of agency (SoA), i.e., the experience of initiating and controlling one’s own actions and producing desired changes in the world via these actions. So far, the few studies investigating SoA in ASD have reported contrasting results, with some showing spared, others impaired SoA. Here, we review the existing literature and suggest that the distinction between prospective and retrospective mechanisms of the SoA might help reconcile the existing findings. In the light of a multi-componential model of SoA, we propose the view that a specific impairment at the level of prospective mechanisms acting on internal agency signals (i.e., the intention, action selection, or command produced to achieve the goal) may be responsible for the reduced SoA in ASD, along with spared retrospective mechanisms. Future research should shed light on the impact of abnormal SoA on social and self-related dysfunctions in ASD. PMID:26441700
Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol.
Lin, Ying-Hsuan; Arashiro, Maiko; Clapp, Phillip W; Cui, Tianqu; Sexton, Kenneth G; Vizuete, William; Gold, Avram; Jaspers, Ilona; Fry, Rebecca C; Surratt, Jason D
2017-07-18
Secondary organic aerosol (SOA) derived from the photochemical oxidation of isoprene contributes a substantial mass fraction to atmospheric fine particulate matter (PM 2.5 ). The formation of isoprene SOA is influenced largely by anthropogenic emissions through multiphase chemistry of its multigenerational oxidation products. Considering the abundance of isoprene SOA in the troposphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. In this study, we assessed the effects of isoprene SOA on gene expression in human airway epithelial cells (BEAS-2B) through an air-liquid interface exposure. Gene expression profiling of 84 oxidative stress and 249 inflammation-associated human genes was performed. Our results show that the expression levels of 29 genes were significantly altered upon isoprene SOA exposure under noncytotoxic conditions (p < 0.05), with the majority (22/29) of genes passing a false discovery rate threshold of 0.3. The most significantly affected genes belong to the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor network. The Nrf2 function is confirmed through a reporter cell line. Together with detailed characterization of SOA constituents, this study reveals the impact of isoprene SOA exposure on lung responses and highlights the importance of further understanding its potential health outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riva, Matthieu; Bell, David M.; Hansen, Anne-Maria Kaldal
2016-06-07
Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically-relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-β-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptakemore » by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated by AP-derived SOA is strongly dependent on particle size and composition. IEPOX uptake occurred only when weight fraction of AP-derived SOA dropped below 50 %, effectively limiting IEPOX uptake to larger particles.« less
NASA Astrophysics Data System (ADS)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.
2015-03-01
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.
NASA Astrophysics Data System (ADS)
Zhao, Defeng; Schmitt, Sebastian H.; Wang, Mingjin; Acir, Ismail-Hakki; Tillmann, Ralf; Tan, Zhaofeng; Novelli, Anna; Fuchs, Hendrik; Pullinen, Iida; Wegener, Robert; Rohrer, Franz; Wildt, Jürgen; Kiendler-Scharr, Astrid; Wahner, Andreas; Mentel, Thomas F.
2018-02-01
Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: < 1to 20 ppb, SO2: < 0.05 to 15 ppb). In these experiments, monoterpene oxidation was dominated by OH oxidation. We found that SO2 induced nucleation and enhanced SOA mass formation. NOx strongly suppressed not only new particle formation but also SOA mass yield. However, in the presence of SO2 which induced a high number concentration of particles after oxidation to H2SO4, the suppression of the mass yield of SOA by NOx was completely or partly compensated for. This indicates that the suppression of SOA yield by NOx was largely due to the suppressed new particle formation, leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57-77 %), even in low-NOx conditions (< ˜ 1 ppb). Organic nitrate contributed 7-26 % of total organics assuming a molecular weight of 200 g mol-1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H / C), compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the combining effect of SO2 and NOx may have an important influence on SOA formation affected by interactions of biogenic volatile organic compounds (VOCs) with anthropogenic emissions.
Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...
2016-03-08
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowedmore » for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m –3 when LVOC fate corrected) compared to daytime (average 0.9 µg m –3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+ p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 4.4 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. To our knowledge this is the first time that this has been shown when comparing VOC concentrations with SOA formation measured at the same time, rather than comparing measurements made at different times. Several recently developed instruments have quantified ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). An SOA yield of 18–58 % from those compounds can explain the observed SOA formation. S/IVOCs were the only pool of gas-phase carbon that was large enough to explain the observed SOA formation. This work suggests that these typically unmeasured gases play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Lastly, these measurements help clarify the magnitude of potential SOA formation from OH oxidation in forested environments and demonstrate methods for interpretation of ambient OFR measurements.« less
NASA Astrophysics Data System (ADS)
Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.
2016-03-01
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 4.4 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. To our knowledge this is the first time that this has been shown when comparing VOC concentrations with SOA formation measured at the same time, rather than comparing measurements made at different times. Several recently developed instruments have quantified ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). An SOA yield of 18-58 % from those compounds can explain the observed SOA formation. S/IVOCs were the only pool of gas-phase carbon that was large enough to explain the observed SOA formation. This work suggests that these typically unmeasured gases play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. These measurements help clarify the magnitude of potential SOA formation from OH oxidation in forested environments and demonstrate methods for interpretation of ambient OFR measurements.
NASA Astrophysics Data System (ADS)
Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.
2015-12-01
Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary organic aerosol (POA) emissions and with a single-step oxidation scheme of traditional SOA also agrees with the OA / Ox slopes (about ± 50 % with respect to the observed ones); however, it underestimates the background. Both configurations are coherent with observed OA plume buildup, but they show very different SI-SOA and traditional anthropogenic SOA (ASOA) contributions. It is hence concluded that available theoretical knowledge and available data in this study are not sufficient to discern the relative contributions of different types of anthropogenic SOA in the Paris pollution plume, while its sum is correctly simulated. Based on these simulations, for specific plumes, the anthropogenic OA buildup can reach between 8 and 10μg m-3. For the average of the month of July 2009, maximum OA increases due to emissions from the Paris agglomeration are noticed close to the agglomeration at various length scales: several tens (for primary OA) to hundreds (for SI-SOA and ASOA) of kilometers from the Paris agglomeration. In addition, BSOA (SOA formed from biogenic VOC precursors) is an important contributor to regional OA levels (inside and outside the Paris plume).
NASA Astrophysics Data System (ADS)
Ma, Prettiny K.; Zhao, Yunliang; Robinson, Allen L.; Worton, David R.; Goldstein, Allen H.; Ortega, Amber M.; Jimenez, Jose L.; Zotter, Peter; Prévôt, André S. H.; Szidat, Sönke; Hayes, Patrick L.
2017-08-01
Secondary organic aerosol (SOA) is an important contributor to fine particulate matter (PM) mass in polluted regions, and its modeling remains poorly constrained. A box model is developed that uses recently published literature parameterizations and data sets to better constrain and evaluate the formation pathways and precursors of urban SOA during the CalNex 2010 campaign in Los Angeles. When using the measurements of intermediate-volatility organic compounds (IVOCs) reported in Zhao et al. (2014) and of semi-volatile organic compounds (SVOCs) reported in Worton et al. (2014) the model is biased high at longer photochemical ages, whereas at shorter photochemical ages it is biased low, if the yields for VOC oxidation are not updated. The parameterizations using an updated version of the yields, which takes into account the effect of gas-phase wall losses in environmental chambers, show model-measurement agreement at longer photochemical ages, even though some low bias at short photochemical ages still remains. Furthermore, the fossil and non-fossil carbon split of urban SOA simulated by the model is consistent with measurements at the Pasadena ground site. Multi-generation oxidation mechanisms are often employed in SOA models to increase the SOA yields derived from environmental chamber experiments in order to obtain better model-measurement agreement. However, there are many uncertainties associated with these aging mechanisms. Thus, SOA formation in the model is compared to data from an oxidation flow reactor (OFR) in order to constrain SOA formation at longer photochemical ages than observed in urban air. The model predicts similar SOA mass at short to moderate photochemical ages when the aging mechanisms or the updated version of the yields for VOC oxidation are implemented. The latter case has SOA formation rates that are more consistent with observations from the OFR though. Aging mechanisms may still play an important role in SOA chemistry, but the additional mass formed by functionalization reactions during aging would need to be offset by gas-phase fragmentation of SVOCs. All the model cases evaluated in this work show a large majority of the urban SOA (70-83 %) at Pasadena coming from the oxidation of primary SVOCs (P-SVOCs) and primary IVOCs (P-IVOCs). The importance of these two types of precursors is further supported by analyzing the percentage of SOA formed at long photochemical ages (1.5 days) as a function of the precursor rate constant. The P-SVOCs and P-IVOCs have rate constants that are similar to highly reactive VOCs that have been previously found to strongly correlate with SOA formation potential measured by the OFR. Finally, the volatility distribution of the total organic mass (gas and particle phase) in the model is compared against measurements. The total SVOC mass simulated is similar to the measurements, but there are important differences in the measured and modeled volatility distributions. A likely reason for the difference is the lack of particle-phase reactions in the model that can oligomerize and/or continue to oxidize organic compounds even after they partition to the particle phase.
Secondary organic aerosol formation from propylene irradiations in a chamber study
NASA Astrophysics Data System (ADS)
Ge, Shuangshuang; Xu, Yongfu; Jia, Long
2017-05-01
Some studies have shown that low-molecular-weight VOCs such as ethylene and acetylene can form SOA. However, so far propylene (C3H6) has not been studied. The current work systematically investigates irradiations of propylene in the presence of NOx (x = 1, 2) in a self-made indoor chamber. Only a small amount of secondary organic aerosols (SOA) was formed under 5% and 80% RH conditions without sodium chloride (NaCl) seed particles or in the presence of solid NaCl. When NaCl was in the form of droplets, liquid water content (LWC) increased from 34.5 to 169.8 μg m-3 under different initial NaCl concentrations, and correspondingly the amount of SOA linearly increased from 5.9 to 29.8 μg m-3 (SOA = 0.0164 × LWC+1.137, R2 = 0.97) at the C3H6/NOx ratio of 32.2-44.9 (ppbC/ppb). The initial C3H6/NOx concentration ratio considerably impacted the formation of SOA, in which the amount of SOA increased from 12.1 to 47.9 μg m-3 exponentially as the ratio decreased from 46.5 to 6.3 with an important point of the ratio value of 11. At the ratio of less than 11 in the regime under the control of C3H6, SOA concentrations decreased considerably with increasing ratio, whereas at the ratio value of larger than 11 in the NOx controlled regime, SOA slightly decreased with increasing ratio. From combination of the analysis of different functional groups of particles by IR spectra and ESI-Exactive-Orbitrap mass spectrometer, the constituents of SOA were identified to be hydroperoxides (e.g. HOCH2CCl(CH3)OOH), esters (e.g. CH2ClC(O)OCHClCHO), organic nitrates (e.g. HO2CH(CH2Cl)C(O)OCCl(CH2Cl)C(O)OCHClCH2ONO2), etc. Furthermore, a liquid-phase mechanism of SOA formation has been proposed in this study.
Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3D model
NASA Astrophysics Data System (ADS)
Knote, C. J.; Hodzic, A.; Jimenez, J. L.; Volkamer, R.; Orlando, J. J.; Baidar, S.; Brioude, J. F.; Fast, J. D.; Gentner, D. R.; Goldstein, A. H.; Hayes, P. L.; Knighton, W. B.; Oetjen, H.; Setyan, A.; Stark, H.; Thalman, R. M.; Tyndall, G. S.; Washenfelder, R. A.; Waxman, E.; Zhang, Q.
2013-12-01
Formation of secondary organic aerosols (SOA) through multi-phase processing of glyoxal has been proposed recently as a relevant contributor to SOA mass. Glyoxal has both anthropogenic and biogenic sources, and readily partitions into the aqueous-phase of cloud droplets and aerosols. Both reversible and irreversible chemistry in the liquid-phase has been observed. A recent laboratory study indicates that the presence of salts in the liquid-phase strongly enhances the Henry';s law constant of glyoxal, allowing for much more effective multi-phase processing. In our work we investigate the contribution of glyoxal to SOA formation on the regional scale. We employ the regional chemistry transport model WRF-chem with MOZART gas-phase chemistry and MOSAIC aerosols, which we both extended to improve the description of glyoxal formation in the gas-phase, and its interactions with aerosols. The detailed description of aerosols in our setup allows us to compare very simple (uptake coefficient) parameterizations of SOA formation from glyoxal, as has been used in previous modeling studies, with much more detailed descriptions of the various pathways postulated based on laboratory studies. Measurements taken during the CARES and CalNex campaigns in California in summer 2010 allowed us to constrain the model, including the major direct precursors of glyoxal. Simulations at convection-permitting resolution over a 2 week period in June 2010 have been conducted to assess the effect of the different ways to parameterize SOA formation from glyoxal and investigate its regional variability. We find that depending on the parameterization used the contribution of glyoxal to SOA is between 1 and 15% in the LA basin during this period, and that simple parameterizations based on uptake coefficients derived from box model studies lead to higher contributions (15%) than parameterizations based on lab experiments (1%). A kinetic limitation found in experiments hinders substantial contribution of volume-based pathways to total SOA formation from glyoxal. Once removed, 5% of total SOA can be formed from glyoxal through these channels. Results from a year-long simulation over the continental US will give a broader picture of the contribution of glyoxal to SOA formation.
Khim, Keovathanak; Annear, Peter Leslie
2013-11-01
Following a decade of piloting different models of contracting, in mid-2009 the Cambodian Ministry of Health began to test a form of 'internal contracting' for health care delivery in selected health districts (including hospitals and health centers) contracted by the provincial health department as Special Operating Agencies (SOAs) and provided with greater management autonomy. This study assesses the internal contracting approach as a means for improving the management of district health services and strengthening service delivery. While the study may contribute to the emerging field now known as performance-based financing, the lessons deal more broadly with the impact of management reform and increased autonomy in contrast to traditional public sector line-management and budgeting. Carried out during 2011, the study was based on: (i) a review of the literature and of operational documents; (ii) primary data from semi-structured key informant interviews with 20 health officials in two provinces involved in four SOA pilot districts; and (iii) routine data from the 2011 SOA performance monitoring report. Five prerequisites were identified for effective contract management and improved service delivery: a clear understanding of roles and responsibilities by the contracting parties; implementation of clear rules and procedures; effective management of performance; effective monitoring of the contract; and adequate and timely provision of resources. Both the level and allocation of incentives and management bottlenecks at various levels continue to impede implementation. We conclude that, in contracted arrangements like these, the clear separation of contracting functions (purchasing, commissioning, monitoring and regulating), management autonomy where responsibilities are genuinely devolved and accepted, and the provision of resources adequate to meet contract demands are necessary conditions for success. Copyright © 2013 Elsevier Ltd. All rights reserved.
Takao, Saki; Yamani, Yusuke; Ariga, Atsunori
2018-01-01
The direction of gaze automatically and exogenously guides visual spatial attention, a phenomenon termed as the gaze-cueing effect. Although this effect arises when the duration of stimulus onset asynchrony (SOA) between a non-predictive gaze cue and the target is relatively long, no empirical research has examined the factors underlying this extended cueing effect. Two experiments compared the gaze-cueing effect at longer SOAs (700 ms) in Japanese and American participants. Cross-cultural studies on cognition suggest that Westerners tend to use a context-independent analytical strategy to process visual environments, whereas Asians use a context-dependent holistic approach. We hypothesized that Japanese participants would not demonstrate the gaze-cueing effect at longer SOAs because they are more sensitive to contextual information, such as the knowledge that the direction of a gaze is not predictive. Furthermore, we hypothesized that American participants would demonstrate the gaze-cueing effect at the long SOAs because they tend to follow gaze direction whether it is predictive or not. In Experiment 1, American participants demonstrated the gaze-cueing effect at the long SOA, indicating that their attention was driven by the central non-predictive gaze direction regardless of the SOAs. In Experiment 2, Japanese participants demonstrated no gaze-cueing effect at the long SOA, suggesting that the Japanese participants exercised voluntary control of their attention, which inhibited the gaze-cueing effect with the long SOA. Our findings suggest that the control of visual spatial attention elicited by social stimuli systematically differs between American and Japanese individuals. PMID:29379457
Takao, Saki; Yamani, Yusuke; Ariga, Atsunori
2017-01-01
The direction of gaze automatically and exogenously guides visual spatial attention, a phenomenon termed as the gaze-cueing effect . Although this effect arises when the duration of stimulus onset asynchrony (SOA) between a non-predictive gaze cue and the target is relatively long, no empirical research has examined the factors underlying this extended cueing effect. Two experiments compared the gaze-cueing effect at longer SOAs (700 ms) in Japanese and American participants. Cross-cultural studies on cognition suggest that Westerners tend to use a context-independent analytical strategy to process visual environments, whereas Asians use a context-dependent holistic approach. We hypothesized that Japanese participants would not demonstrate the gaze-cueing effect at longer SOAs because they are more sensitive to contextual information, such as the knowledge that the direction of a gaze is not predictive. Furthermore, we hypothesized that American participants would demonstrate the gaze-cueing effect at the long SOAs because they tend to follow gaze direction whether it is predictive or not. In Experiment 1, American participants demonstrated the gaze-cueing effect at the long SOA, indicating that their attention was driven by the central non-predictive gaze direction regardless of the SOAs. In Experiment 2, Japanese participants demonstrated no gaze-cueing effect at the long SOA, suggesting that the Japanese participants exercised voluntary control of their attention, which inhibited the gaze-cueing effect with the long SOA. Our findings suggest that the control of visual spatial attention elicited by social stimuli systematically differs between American and Japanese individuals.
NASA Astrophysics Data System (ADS)
Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.
2018-03-01
Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.
Molecular formula composition of β-caryophyllene ozonolysis SOA formed in humid and dry conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Shuvashish; Fisseha, Rebeka; Putman, Annie L.
Here, we studied the molecular formula composition of six β-caryophyllene SOA samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry under various reaction conditions. The SOA samples were generated in dry or low relative humidity (RH) chamber conditions with or without cyclohexane. All of the studied SOA mass spectra have three distinct clusters of hundreds of negative ions referred to as Group I (100 < m/z < 400), Group II (400 < m/z < 700) and Group III (700 < m/z < 1 000) compounds. C 14-16H 22-28O 2-11, C 28-29H 42-48O 6-16 and C 42-43H 68-70O 14-16more » were observed as highly abundant organic compounds in the compound class of Group I, II and III, respectively. The relative intensities of most analytes were higher in humid conditions compared to those in dry conditions, indicating the importance of water-dependent reactions and the catalytic role of water both in the presence and absence of cyclohexane. In addition, molecular formulas with higher average carbon numbers were observed in humid SOA than in dry SOA in the absence of cyclohexane, suggesting a decrease of cleavage reactions in humid condition. This study characterizes β-caryophyllene ozonolysis SOA based on ultrahigh mass resolution and demonstrates the significance of humidity in terms of the molecular distributions and relative abundances of the analytes. We also discuss the possible mechanism for the formation of Group I-III compounds based on the current understanding of SOA formation in the atmosphere.« less
Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils
NASA Astrophysics Data System (ADS)
Liu, Tengyu; Li, Zijun; Chan, ManNin; Chan, Chak K.
2017-06-01
Cooking emissions can potentially contribute to secondary organic aerosol (SOA) but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils) was investigated in a potential aerosol mass (PAM) chamber. Experiments were conducted at 19-20 °C and 65-70 % relative humidity (RH). The characterization instruments included a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS). The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm-3 s, was 1. 35 ± 0. 30 µg min-1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5) from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol) in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc) of SOA was -1.51 to -0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA) and semi-volatile oxygenated organic aerosol (SV-OOA), indicating that SOA in these experiments was lightly oxidized.
Molecular formula composition of β-caryophyllene ozonolysis SOA formed in humid and dry conditions
Kundu, Shuvashish; Fisseha, Rebeka; Putman, Annie L.; ...
2016-12-22
Here, we studied the molecular formula composition of six β-caryophyllene SOA samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry under various reaction conditions. The SOA samples were generated in dry or low relative humidity (RH) chamber conditions with or without cyclohexane. All of the studied SOA mass spectra have three distinct clusters of hundreds of negative ions referred to as Group I (100 < m/z < 400), Group II (400 < m/z < 700) and Group III (700 < m/z < 1 000) compounds. C 14-16H 22-28O 2-11, C 28-29H 42-48O 6-16 and C 42-43H 68-70O 14-16more » were observed as highly abundant organic compounds in the compound class of Group I, II and III, respectively. The relative intensities of most analytes were higher in humid conditions compared to those in dry conditions, indicating the importance of water-dependent reactions and the catalytic role of water both in the presence and absence of cyclohexane. In addition, molecular formulas with higher average carbon numbers were observed in humid SOA than in dry SOA in the absence of cyclohexane, suggesting a decrease of cleavage reactions in humid condition. This study characterizes β-caryophyllene ozonolysis SOA based on ultrahigh mass resolution and demonstrates the significance of humidity in terms of the molecular distributions and relative abundances of the analytes. We also discuss the possible mechanism for the formation of Group I-III compounds based on the current understanding of SOA formation in the atmosphere.« less
Aged particles derived from emissions of coal-fired power plants: The TERESA field results
Kang, Choong-Min; Gupta, Tarun; Ruiz, Pablo A.; Wolfson, Jack M.; Ferguson, Stephen T.; Lawrence, Joy E.; Rohr, Annette C.; Godleski, John; Koutrakis, Petros
2013-01-01
The Toxicological Evaluation of Realistic Emissions Source Aerosols (TERESA) study was carried out at three US coal-fired power plants to investigate the potential toxicological effects of primary and photochemically aged (secondary) particles using in situ stack emissions. The exposure system designed successfully simulated chemical reactions that power plant emissions undergo in a plume during transport from the stack to receptor areas (e.g., urban areas). Test atmospheres developed for toxicological experiments included scenarios to simulate a sequence of atmospheric reactions that can occur in a plume: (1) primary emissions only; (2) H2SO4 aerosol from oxidation of SO2; (3) H2SO4 aerosol neutralized by gas-phase NH3; (4) neutralized H2SO4 with secondary organic aerosol (SOA) formed by the reaction of α-pinene with O3; and (5) three control scenarios excluding primary particles. The aged particle mass concentrations varied significantly from 43.8 to 257.1 μg/m3 with respect to scenario and power plant. The highest was found when oxidized aerosols were neutralized by gas-phase NH3 with added SOA. The mass concentration depended primarily on the ratio of SO2 to NOx (particularly NO) emissions, which was determined mainly by coal composition and emissions controls. Particulate sulfate (H2SO4 + neutralized sulfate) and organic carbon (OC) were major components of the aged particles with added SOA, whereas trace elements were present at very low concentrations. Physical and chemical properties of aged particles appear to be influenced by coal type, emissions controls and the particular atmospheric scenarios employed. PMID:20462390
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.
Alshinina, Remah; Elleithy, Khaled
2017-03-08
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.
Hydroxyl radicals from secondary organic aerosol decomposition in water
NASA Astrophysics Data System (ADS)
Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu
2016-02-01
We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.
Tapal, Adam; Oren, Ela; Dar, Reuven; Eitam, Baruch
2017-01-01
The sense of agency (SoA) is defined as “the registration that I am the initiator of my actions.” Both “direct” and “indirect” measurement of SoA has focused on specific contextualized perceptual events, however it has also been demonstrated that “higher level” cognitions seemingly affect the SoA. We designed a measure of person's general, context-free beliefs about having core agency—the Sense of Agency Scale (SoAS). An exploratory (EFA) and confirmatory (CFA) factor analyses on samples of 236 (Study 1) and 408 (Study 2) participants yielded two correlated factors we labeled Sense of Positive Agency (SoPA) and Sense of Negative Agency (SoNA). The construct validity of SoAS is demonstrated by its low-to-moderate correlations with conceptually relevant tools and by the moderate-strong relationship between the SoNA subscale and obsessive-compulsive (OC) symptoms (r = 0.35). We conclude that the SoAS seems to isolate people's general beliefs in their agency from their perceived success in obtaining outcomes. PMID:28955273
High-NOx Photooxidation of n-Dodecane: Temperature Dependence of SOA Formation.
Lamkaddam, Houssni; Gratien, Aline; Pangui, Edouard; Cazaunau, Mathieu; Picquet-Varrault, Bénédicte; Doussin, Jean-François
2017-01-03
The temperature and concentration dependence of secondary organic aerosol (SOA) yields has been investigated for the first time for the photooxidation of n-dodecane (C 12 H 26 ) in the presence of NO x in the CESAM chamber (French acronym for "Chamber for Atmospheric Multiphase Experimental Simulation"). Experiments were performed with and without seed aerosol between 283 and 304.5 K. In order to quantify the SOA yields, a new parametrization is proposed to account for organic vapor loss to the chamber walls. Deposition processes were found to impact the aerosol yields by a factor from 1.3 to 1.8 between the lowest and the highest value. As with other photooxidation systems, experiments performed without seed and at low concentration of oxidant showed a lower SOA yield than other seeded experiments. Temperature did not significantly influence SOA formation in this study. This unforeseen behavior indicates that the SOA is dominated by sufficiently low volatility products for which a change in their partitioning due to temperature would not significantly affect the condensed quantities.
Tapal, Adam; Oren, Ela; Dar, Reuven; Eitam, Baruch
2017-01-01
The sense of agency (SoA) is defined as "the registration that I am the initiator of my actions." Both "direct" and "indirect" measurement of SoA has focused on specific contextualized perceptual events, however it has also been demonstrated that "higher level" cognitions seemingly affect the SoA. We designed a measure of person's general, context-free beliefs about having core agency-the Sense of Agency Scale (SoAS). An exploratory (EFA) and confirmatory (CFA) factor analyses on samples of 236 (Study 1) and 408 (Study 2) participants yielded two correlated factors we labeled Sense of Positive Agency (SoPA) and Sense of Negative Agency (SoNA). The construct validity of SoAS is demonstrated by its low-to-moderate correlations with conceptually relevant tools and by the moderate-strong relationship between the SoNA subscale and obsessive-compulsive (OC) symptoms ( r = 0.35). We conclude that the SoAS seems to isolate people's general beliefs in their agency from their perceived success in obtaining outcomes.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks
Alshinina, Remah; Elleithy, Khaled
2017-01-01
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs. PMID:28282896
A synthesis theory for self-oscillating adaptive systems /SOAS/
NASA Technical Reports Server (NTRS)
Horowitz, I.; Smay, J.; Shapiro, A.
1974-01-01
A quantitative synthesis theory is presented for the Self-Oscillating Adaptive System (SOAS), whose nonlinear element has a static, odd character with hard saturation. The synthesis theory is based upon the quasilinear properties of the SOAS to forced inputs, which permits the extension of quantitative linear feedback theory to the SOAS. A reasonable definition of optimum design is shown to be the minimization of the limit cycle frequency. The great advantages of the SOAS is its zero sensitivity to pure gain changes. However, quasilinearity and control of the limit cycle amplitude at the system output, impose additional constraints which partially or completely cancel this advantage, depending on the numerical values of the design parameters. By means of narrow-band filtering, an additional factor is introduced which permits trade-off between filter complexity and limit cycle frequency minimization.
Lee, Dong-Hun; Jeong, Jong Sool; Kim, Ki-Soo; Kim, Hyun-Soo; Kim, Dong Churl; Park, Mi-Ran; Han, Yong-Tak; Kwon, Oh Kee; Kwon, O-Kyun
2015-02-09
We present a 10-Gb/s L-band reflective electro-absorption modulator integrated with a semiconductor optical amplifier (REAM-SOA) having improved transmission performance at very low input power of seed light. To decrease the input power of seed light, the absorption characteristics of the REAM are adjusted to reduce the amplified spontaneous emission light returned into the SOA, suppressing the gain saturation effect of the SOA. At a considerably low input power of -16 dBm, the REAM-SOA exhibits a low transmission penalty of about 1.2 dB after 50-km SMF transmission. Over a wide input power range from -16 dBm to 5 dBm, a penalty of less than 1.6 dB is achieved at 50-km transmission.
Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation
Zheng, Y.; Unger, N.; Hodzic, A.; ...
2015-12-08
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NO x = NO + NO 2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NO x-dependent SOA yields and aging parameterizations. Small differences aremore » found for the no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NO x perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NO x can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NO x pathways, O 3 versus NO 3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less
NASA Astrophysics Data System (ADS)
Lin, Y.-H.; Knipping, E. M.; Edgerton, E. S.; Shaw, S. L.; Surratt, J. D.
2013-08-01
Filter-based PM2.5 samples were chemically analyzed to investigate secondary organic aerosol (SOA) formation from isoprene in a rural atmosphere of the southeastern US influenced by both anthropogenic sulfur dioxide (SO2) and ammonia (NH3) emissions. Daytime PM2.5 samples were collected during summer 2010 using conditional sampling approaches based on pre-defined high and low SO2 or NH3 thresholds. Known molecular-level tracers for isoprene SOA formation, including 2-methylglyceric acid, 3-methyltetrahydrofuran-3,4-diols, 2-methyltetrols, C5-alkene triols, dimers, and organosulfate derivatives, were identified and quantified by gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). Mass concentrations of six isoprene low-NOx SOA tracers contributed to 12-19% of total organic matter (OM) in PM2.5 samples collected during the sampling period, indicating the importance of the hydroxyl radical (OH)-initiated oxidation (so-called photooxidation) of isoprene under low-NOx conditions that lead to SOA formation through reactive uptake of gaseous isoprene epoxydiols (IEPOX) in this region. The contribution of the IEPOX-derived SOA tracers to total organic matter was enhanced by 1.4% (p = 0.012) under high-SO2 sampling scenarios, although only weak associations between aerosol acidity and mass of IEPOX SOA tracers were observed. This suggests that IEPOX-derived SOA formation might be modulated by other factors simultaneously, rather than only aerosol acidity. No clear associations between isoprene SOA formation and high or low NH3 conditional samples were found. Positive correlations between sulfate aerosol loadings and IEPOX-derived SOA tracers for samples collected under all conditions indicates that sulfate aerosol could be a surrogate for surface accommodation in the uptake of IEPOX onto preexisting aerosols.
Tong, Haijie; Lakey, Pascale S J; Arangio, Andrea M; Socorro, Joanna; Kampf, Christopher J; Berkemeier, Thomas; Brune, William H; Pöschl, Ulrich; Shiraiwa, Manabu
2017-08-24
Mineral dust and secondary organic aerosols (SOA) account for a major fraction of atmospheric particulate matter, affecting climate, air quality and public health. How mineral dust interacts with SOA to influence cloud chemistry and public health, however, is not well understood. Here, we investigated the formation of reactive oxygen species (ROS), which are key species of atmospheric and physiological chemistry, in aqueous mixtures of SOA and mineral dust by applying electron paramagnetic resonance (EPR) spectrometry in combination with a spin-trapping technique, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a kinetic model. We found that substantial amounts of ROS including OH, superoxide as well as carbon- and oxygen-centred organic radicals can be formed in aqueous mixtures of isoprene, α-pinene, naphthalene SOA and various kinds of mineral dust (ripidolite, montmorillonite, kaolinite, palygorskite, and Saharan dust). The molar yields of total radicals were ∼0.02-0.5% at 295 K, which showed higher values at 310 K, upon 254 nm UV exposure, and under low pH (<3) conditions. ROS formation can be explained by the decomposition of organic hydroperoxides, which are a prominent fraction of SOA, through interactions with water and Fenton-like reactions with dissolved transition metal ions. Our findings imply that the chemical reactivity and aging of SOA particles can be enhanced upon interaction with mineral dust in deliquesced particles or cloud/fog droplets. SOA decomposition could be comparably important to the classical Fenton reaction of H 2 O 2 with Fe 2+ and that SOA can be the main source of OH radicals in aqueous droplets at low concentrations of H 2 O 2 and Fe 2+ . In the human respiratory tract, the inhalation and deposition of SOA and mineral dust can also lead to the release of ROS, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols in the Anthropocene.
NASA Astrophysics Data System (ADS)
Slade, J. H., Jr.; Jayarathne, T.; Morales, A. C.; Shepson, P. B.
2017-12-01
Biogenic volatile organic compound (BVOC) oxidation represents a significant pathway in the production of secondary organic aerosol (SOA). BVOC oxidation products, including organic nitrates (ON), impact both the SOA burden and the oxidative capacity of the atmosphere by sequestering NOx. A recent field study in the mixed deciduous/coniferous forest of northern Michigan showed that concentrations of multifunctional monoterpene-derived hydroxy nitrates (MTN) and SOA can be greater in the above-canopy environment during daytime, but the source of MTN is unclear as model simulations cannot replicate the higher concentrations above canopy. Light-dependent monoterpenes, including the polyolefinic species, trans-ocimene, may be one such contributor to the higher measured ON and SOA above canopy as this compound has been predicted to be an important source of monoterpene-derived ON during daytime in this environment. However, there are currently no measurements of the ON (and SOA yields) from trans-ocimene oxidation by OH in the presence of NOx, the dominant pathway for daytime ON production. Here we conduct photochemical reaction chamber studies of the OH radical-initiated oxidation of authentic (E)- and (Z)-β-ocimene isomers in the presence of NOx to examine the total (gas and particle) ON, hydroxy nitrate, and SOA yields. The effects of variable chamber relative humidity and seed particle acidity on the ON and SOA yields are examined to better understand the role of hydrolysis on SOA formation and the lifetime of ocimene-derived ON in the particles. This work underscores the importance of light-dependent monoterpenes on mediating the oxidative capacity of the near canopy forest environment and has important implications for understanding NOx cycling and the formation of SOA in forests, which are not currently included in atmospheric models.
Molecular structure impacts on secondary organic aerosol formation from glycol ethers
NASA Astrophysics Data System (ADS)
Li, Lijie; Cocker, David R.
2018-05-01
Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA formation.
Primary sources and secondary formation of organic aerosols in Beijing, China.
Guo, Song; Hu, Min; Guo, Qingfeng; Zhang, Xin; Zheng, Mei; Zheng, Jun; Chang, Chih Chung; Schauer, James J; Zhang, Renyi
2012-09-18
Ambient aerosol samples were collected at an urban site and an upwind rural site of Beijing during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. Contributions of primary particles and secondary organic aerosols (SOA) were estimated by chemical mass balance (CMB) modeling and tracer-yield method. The apportioned primary and secondary sources explain 73.8% ± 9.7% and 79.6% ± 10.1% of the measured OC at the urban and rural sites, respectively. Secondary organic carbon (SOC) contributes to 32.5 ± 15.9% of the organic carbon (OC) at the urban site, with 17.4 ± 7.6% from toluene, 9.7 ± 5.4% from isoprene, 5.1 ± 2.0% from α-pinene, and 2.3 ± 1.7% from β-caryophyllene. At the rural site, the secondary sources are responsible for 38.4 ± 14.4% of the OC, with the contributions of 17.3 ± 6.9%, 13.9 ± 9.1%, 5.6 ± 1.9%, and 1.7 ± 1.0% from toluene, isoprene, α-pinene, and β-caryophyllene, respectively. Compared with other regions in the world, SOA in Beijing is less aged, but the concentrations are much higher; between the sites, SOA is more aged and affected by regional transport at the urban site. The high SOA loading in Beijing is probably attributed to the high regional SOC background (~2 μg m(-3)). The toluene SOC concentration is high and comparable at the two sites, implying that some anthropogenic components, at least toluene SOA, are widespread in Beijing and represents a major factor in affecting the regional air quality. The aerosol gaseous precursor concentrations and temperature correlate well with SOA, both affecting SOA formation. The significant SOA enhancement with increasing water uptake and acidification indicates that the aqueous-phase reactions are largely responsible SOA formation in Beijing.
Message Bus Architectures - Simplicity in the Right Places
NASA Technical Reports Server (NTRS)
Smith, Dan
2010-01-01
There will always be a new latest and greatest architecture for satellite ground systems. This paper discusses the use of a proven message-oriented middleware (MOM) architecture using publish/subscribe functions and the strengths it brings to these mission critical systems. An even newer approach gaining popularity is Service Oriented Architectures (SOAs). SOAs are generally considered more powerful than the MOM approach and address many mission-critical system challenges. A MOM vs SOA discussion can highlight capabilities supported or enabled by the underlying architecture and can identify benefits of MOMs and SOAs when applied to differing sets of mission requirements or evaluation criteria.
Wyma, John M.; Herron, Timothy J.; Yund, E. William; Reed, Bruce
2018-01-01
The Paced Auditory Serial Addition Test (PASAT) is widely used to evaluate processing speed and executive function in patients with multiple sclerosis, traumatic brain injury, and other neurological disorders. In the PASAT, subjects listen to sequences of digits while continuously reporting the sum of the last two digits presented. Four different stimulus onset asynchronies (SOAs) are usually tested, with difficulty increasing as SOAs are reduced. Ceiling effects are common at long SOAs, while the digit delivery rate often exceeds the subject’s processing capacity at short SOAs, causing some subjects to stop performing altogether. In addition, subjects may adopt an “alternate answer” strategy at short SOAs, which reduces the test’s demands on working-memory and processing speed. Consequently, studies have shown that the number of dyads (consecutive correct answers) is a more sensitive measure of PASAT performance than the overall number of correct sums. Here, we describe a 2.5-minute computerized test, the Dyad-Adaptive PASAT (DA-PASAT), where SOAs are adjusted with a 2:1 staircase, decreasing after each pair of correct responses and increasing after misses. Processing capacity is reflected in the minimum SOA (minSOA) achieved in 54 trials. Experiment 1 gathered normative data in two large populations: 1617 subjects in New Zealand ranging in age from 18 to 65 years, and 214 Californians ranging in age from 18 to 82 years. Minimum SOAs were influenced by age, education, and daily hours of computer-use. Minimum SOA z-scores, calculated after factoring out the influence of these factors, were virtually identical in the two control groups, as were response times (RTs) and dyad ratios (the proportion of hits occurring in dyads). Experiment 2 measured the test-retest reliability of the DA-PASAT in 44 young subjects who underwent three test sessions at weekly intervals. High intraclass correlation coefficients (ICCs) were found for minSOAs (0.87), response times (0.76), and dyad ratios (0.87). Performance improved across test sessions for all measures. Experiment 3 investigated the effects of simulated malingering in 50 subjects: 42% of simulated malingerers produced abnormal (p< 0.05) minSOA z-scores. Simulated malingerers with abnormal scores were distinguished with 87% sensitivity and 69% specificity from control subjects with abnormal scores by excessive differences between training performance and the actual test. Experiment 4 investigated patients with traumatic brain injury (TBI): patients with mild TBI performed within the normal range while patients with severe TBI showed deficits. The DA-PASAT reduces the time and stress of PASAT assessment while gathering sensitive measures of dyad processing that reveal the effects of aging, malingering, and traumatic brain injury on performance. PMID:29677192
Boyd, Christopher M; Nah, Theodora; Xu, Lu; Berkemeier, Thomas; Ng, Nga Lee
2017-07-18
Nitrate radical (NO 3 ) oxidation of biogenic volatile organic compounds (BVOC) is important for nighttime secondary organic aerosol (SOA) formation. SOA produced at night may evaporate the following morning due to increasing temperatures or dilution of semivolatile compounds. We isothermally dilute the oxidation products from the limonene+NO 3 reaction at 25 °C and observe negligible evaporation of organic aerosol via dilution. The SOA yields from limonene+NO 3 are approximately constant (∼174%) at 25 °C and range from 81 to 148% at 40 °C. Based on the difference in yields between the two temperatures, we calculated an effective enthalpy of vaporization of 117-237 kJ mol -1 . The aerosol yields at 40 °C can be as much as 50% lower compared to 25 °C. However, when aerosol formed at 25 °C is heated to 40 °C, only about 20% of the aerosol evaporates, which could indicate a resistance to aerosol evaporation. To better understand this, we probe the possibility that SOA from limonene+NO 3 and β-pinene+NO 3 reactions is highly viscous. We demonstrate that particle morphology and evaporation is dependent on whether SOA from limonene is formed before or during the formation of SOA from β-pinene. This difference in particle morphology is present even at high relative humidity (∼70%).
Aqueous-phase mechanism for secondary organic aerosol ...
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA) from the low-NOx pathway and glyoxal (28 %) from both low- and high-NOx pathways. This speciation is consistent with observati
Analysis of ROI in Industry SOA Implementation
2011-09-01
and SOA ....................................29 Table 4. Baseline Data—ROI Reported by 18 Selected Companies According to Case Study Reports...interactively Systems with shorter life expectancy Systems with longer life expectancy Use of individual company preferences to set and maintain...concerning standards have already been published. Already adheres to an enabling environment because many major companies are supporting SOA. 2
SOA Governance: A Critical SOA Success Factor
2010-04-01
Software Perspective Service Consumer Service Providers Interface Optimize tomorrow today. ® Building Blocks...of a SOA Service – Software implemented capability that is well-defined, self contained and does not depend on context or state of other services ... Service Consumer – Service , application or other software component that requires a specific service . – Located through registry – Initiates service
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-09-01
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data; and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional UCD/CIT air quality model and applied to air quality episodes in California and the eastern US. The mass, composition and properties of SOA predicted using SOM are compared to SOA predictions generated by a traditional "two-product" model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than constrained multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which "ageing" reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least three times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these "hybrid" multi-generational schemes should be used with great caution in regional models.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2016-02-01
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...
2015-03-18
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
NASA Astrophysics Data System (ADS)
Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.
2014-04-01
Secondary Organic Aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM simulation chamber. The formation and ageing of the SOA were studied by following their optical, hygroscopic and chemical properties. The optical properties investigated by determining the particle Complex Refractive Index (CRI). The hygroscopicity was quantified by measuring the effect of RH on particle size (Growth Factor, GF) and scattering coefficient (f(RH)). The oxygen to carbon (O : C) atomic ratio of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in real CRI correlates with a decrease in the O : C ratio of SOA from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF stayed roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2) RH. Simultaneous measurements of O : C ratio of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but with less oxidised species at the surface which would limit the water adsorption onto particle. In addition, an apparent change of both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 16 h reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.
NASA Astrophysics Data System (ADS)
Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.
2015-02-01
Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.
[Study on transformation mechanism of SOA from biogenic VOC under UV-B condition].
Li, Ying-Ying; Li, Xiang; Chen, Jian-Min
2011-12-01
A laboratory study was carried out to investigate the biogenic volatile organic compounds (BVOC) in a lab-made glass chamber. The secondary organic aerosol (SOA) products can be detected under the UV photooxidation of BVOC. Pelargonium x Citrenella was chosen as the target plant in this research because it can release a large amount of BVOCs. The predominant 7 alkene and ketol compounds were detected by using solid phase microextraction (SPME) sampling and gas chromatography/mass spectrometry (GC/MS) analysis. The photochemical experiment indicated that these BVOC can be rapidly oxidized into SOA under UV-B irradiation. A tandem differential mobility analyzer (TDMA) was used to measure the size distribution and the hygroscopicity of the SOA. The particle diameter was in the range of 50 nm to 320 nm. The high hygroscopicity of SOA was also obtained and the size increased from 1.05 to 1.11 during the wet experiment.
NASA Astrophysics Data System (ADS)
Saffari, Arian; Hasheminassab, Sina; Shafer, Martin M.; Schauer, James J.; Chatila, Talal A.; Sioutas, Constantinos
2016-05-01
Recent investigations suggest that aqueous phase oxidation of hydrophilic organic compounds can be a significant source of secondary organic aerosols (SOA) in the atmosphere. Here we investigate the possibility of nighttime aqueous phase formation of SOA in Los Angeles during winter, through examination of trends in fine particulate matter (PM2.5) carbonaceous content during two contrasting seasons. Distinctive winter and summer trends were observed for the diurnal variation of organic carbon (OC) and secondary organic carbon (SOC), with elevated levels during the nighttime in winter, suggesting an enhanced formation of SOA during that period. The nighttime ratio of SOC to OC was positively associated with the relative humidity (RH) at high RH levels (above 70%), which is when the liquid water content of the ambient aerosol would be high and could facilitate dissolution of hydrophilic primary organic compounds into the aqueous phase. Time-integrated collection and analysis of wintertime particles at three time periods of the day (morning, 6:00 a.m.-9:00 a.m.; afternoon, 11:00 a.m.-3:00 p.m.; night, 8:00 p.m.-4:00 a.m.) revealed higher levels of water soluble organic carbon (WSOC) and organic acids during the night and afternoon periods compared to the morning period, indicating that the SOA formation in winter continues throughout the nighttime. Furthermore, diurnal trends in concentrations of semi-volatile organic compounds (SVOCs) from primary emissions showed that partitioning of SVOCs from the gas to the particle phase due to the decreased nighttime temperatures cannot explain the substantial OC and SOC increase at night. The oxidative potential of the collected particles (quantified using a biological macrophage-based reactive oxygen species assay, in addition to the dithiothreitol assay) was comparable during afternoon and nighttime periods, but higher (by at least ∼30%) compared to the morning period, suggesting that SOA formation processes possibly enhance the toxicity of the ambient particles compared to mobile-source dominated primary emissions in the Los Angeles area.
SOA Formation Potential of Emissions from Soil and Leaf Litter
NASA Astrophysics Data System (ADS)
Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.
2013-12-01
In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be dominated by soil/litter emissions--soil/litter monoterpene emissions in spring could contribute up to 63% of total forest emissions. If this is the case, a significant portion of total forest monoterpene emission rates would be controlled by factors that affect soil/litter emissions rather than factors that affect plant emissions.
Shulman, Lester M; Martin, Javier; Sofer, Danit; Burns, Cara C; Manor, Yossi; Hindiyeh, Musa; Gavrilin, Eugene; Wilton, Thomas; Moran-Gilad, Jacob; Gamzo, Ronni; Mendelson, Ella; Grotto, Itamar
2015-04-01
Israel has >95% polio vaccine coverage with the last 9 birth cohorts immunized exclusively with inactivated polio vaccine (IPV). Using acute flaccid paralysis and routine, monthly countrywide environmental surveillance, no wild poliovirus circulation was detected between 1989 and February 2013, after which wild type 1 polioviruses South Asia genotype (WPV1-SOAS) have persistently circulated in southern Israel and intermittently in other areas without any paralytic cases as determined by intensified surveillance of environmental and human samples. We aimed to characterize antigenic and neurovirulence properties of WPV1-SOAS silently circulating in a highly vaccinated population. WPV1-SOAS capsid genes from environmental and stool surveillance isolates were sequenced, their neurovirulence was determined using transgenic mouse expressing the human poliovirus receptor (Tg21-PVR) mice, and their antigenicity was characterized by in vitro neutralization using human sera, epitope-specific monoclonal murine anti-oral poliovirus vaccine (OPV) antibodies, and sera from IPV-immunized rats and mice. WPV1 amino acid sequences in neutralizing epitopes varied from Sabin 1 and Mahoney, with little variation among WPV1 isolates. Neutralization by monoclonal antibodies against 3 of 4 OPV epitopes was lost. Three-fold lower geometric mean titers (Z = -4.018; P < .001, Wilcoxon signed-rank test) against WPV1 than against Mahoney in human serum correlated with 4- to 6-fold lower neutralization titers in serum from IPV-immunized rats and mice. WPV1-SOAS isolates were neurovirulent (50% intramuscular paralytic dose in Tg21-PVR mice: log10(7.0)). IPV-immunized mice were protected against WPV1-induced paralysis. Phenotypic and antigenic profile changes of WPV1-SOAS may have contributed to the intense silent transmission, whereas the reduced neurovirulence may have contributed to the absence of paralytic cases in the background of high population immunity. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chirico, R.; Decarlo, P. F.; Heringa, M. F.; Tritscher, T.; Richter, R.; Prévôt, A. S. H.; Dommen, J.; Weingartner, E.; Wehrle, G.; Gysel, M.; Laborde, M.; Baltensperger, U.
2010-12-01
Diesel particulate matter (DPM) is a significant source of aerosol in urban areas and has been linked to adverse health effects. Although newer European directives have introduced increasingly stringent standards for primary PM emissions, gaseous organics emitted from diesel cars can still lead to large amounts of secondary organic aerosol (SOA) in the atmosphere. Here we present results from smog chamber investigations characterizing the primary organic aerosol (POA) and the corresponding SOA formation at atmospherically relevant concentrations for three in-use diesel vehicles with different exhaust aftertreatment systems. One vehicle lacked exhaust aftertreatment devices, one vehicle was equipped with a diesel oxidation catalyst (DOC) and the third vehicle used both a DOC and diesel particulate filter (DPF). The experiments presented here were obtained from the vehicles at conditions representative of idle mode, and for one car in addition at a speed of 60 km/h. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the organic aerosol (OA) concentration and to obtain information on the chemical composition. For the conditions explored in this paper, primary aerosols from vehicles without a particulate filter consisted mainly of black carbon (BC) with a low fraction of organic matter (OM, OM/BC < 0.5), while the subsequent aging by photooxidation resulted in a consistent production of SOA only for the vehicles without a DOC and with a deactivated DOC. After 5 h of aging ~80% of the total organic aerosol was on average secondary and the estimated "emission factor" for SOA was 0.23-0.56 g/kg fuel burned. In presence of both a DOC and a DPF, only 0.01 g SOA per kg fuel burned was produced within 5 h after lights on. The mass spectra indicate that POA was mostly a non-oxidized OA with an oxygen to carbon atomic ratio (O/C) ranging from 0.10 to 0.19. Five hours of oxidation led to a more oxidized OA with an O/C range of 0.21 to 0.37.
Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States
Zhang, Haofei; Yee, Lindsay D.; Lee, Ben H.; ...
2018-02-12
The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic–biogenic interaction affecting ambient aerosolmore » in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.« less
Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Haofei; Yee, Lindsay D.; Lee, Ben H.
The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic–biogenic interaction affecting ambient aerosolmore » in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.« less
Intelligent Information Retrieval and Web Mining Architecture Using SOA
ERIC Educational Resources Information Center
El-Bathy, Naser Ibrahim
2010-01-01
The study of this dissertation provides a solution to a very specific problem instance in the area of data mining, data warehousing, and service-oriented architecture in publishing and newspaper industries. The research question focuses on the integration of data mining and data warehousing. The research problem focuses on the development of…
The O2 reduction at the IFC modified O2 fuel cell electrode
NASA Technical Reports Server (NTRS)
Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.
1992-01-01
The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.
Aerosol formation by ozonolysis of α- and β-pinene with initial concentrations below 1 ppb
NASA Astrophysics Data System (ADS)
Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar
2014-05-01
Secondary organic aerosols (SOA) from the oxidation of biogenic volatile organic compounds (BVOC) are a large fraction of the tropospheric aerosol especially over tropical continental regions. The dominant SOA forming compounds are monoterpenes of which pinene is the most abundant. The reactions of monoterpenes with OH radicals, NO3 radicals, and ozone yield secondary organic aerosol mass in highly variable yields. Despite the various studies on SOA formation the influence of temperature and precursor concentrations on SOA yields are still major uncertainties in tropospheric aerosol models. In previous studies we observed a negative temperature dependence of SOA yields for SOA from ozonolysis α-pinene and limonene (Saathoff et al., 2009). However, this study as well as most of the literature data for measured SOA yields is limited to terpene concentrations of several ppb and higher (e.g. Bernard et al., 2012), hence about an order of magnitude higher than terpene concentrations even near their sources. Monoterpene concentrations in and above tropical or boral forests reach values up to a few tenth of a ppb during daytime decreasing rapidly with altitude in the boundary layer (Kesselmeier et al. 2000; Boy et al., 2004). Therefore we investigated the yield of SOA material from the ozonolysis of α- and β-pinene under simulated tropospheric conditions in the large aerosol chamber AIDA on time scales of several hours and for terpene concentrations between 0.1 and 1 ppb. The temperatures investigated were 243, 274, and 296 K with relative humidities ranging from 25% to 41%. The organic aerosol was generated by controlled oxidation with an excess of ozone (220-930 ppb) and the aerosol yield is calculated from size distributions measured with differential mobility analysers (SMPS, TSI, 3071 & 3080N) in the size range between 2 and 820 nm. On the basis of the measured initial particle size distribution, particle number concentration (CPC, TSI, 3775, 3776, 3022), and trace gas evolution model calculations were done using the aerosol model COSIMA (Naumann, 2003; Saathoff et al., 2009) supplemented by an improved SOA module in combination with the master chemical mechanism (MCM 3.2). As previously reported for higher SOA concentrations the overall SOA yields from ozonolysis of α- and β-pinene increase significantly with decreasing temperature. However, compared to the yields extrapolated from experiments done with higher terpene concentrations the SOA yields at ambient like concentrations are surprisingly high. They reach values of up to 20% at 243 K for organic aerosol mass concentrations of about 0.5 µg m-3 even without additional seed aerosol. This paper discusses the temperature dependent SOA yields from the ozonolysis of α-pinene and β-pinene in comparison with data from literature. Bernard et al., (2012) J. Aerosol Sci. 43, 14-30. Boy et al., (2004) Atmos. Chem. Phys. 4, 657-678. Kesselmeier et al., (2000) Atmos. Environ. 34, 4063-4072 Naumann (2003) J. Aerosol Sci. 34 (10), 1371-1397. Saathoff et al., (2009) Atmos. Chem. Phys. 9 (5), 1551-1577.
The SE US and the Amazon have large sources of biogenic VOCs, varying anthropogenic pollution impacts, and often poor organic aerosol (OA) model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over ...
An organic tracer method, recently proposed for estimating individual contributions of toluene and α-pinene to secondary organic aerosol (SOA) formation, was evaluated by conducting a laboratory study where a binary hydrocarbon mixture, containing the anthropogenic aromatic hydro...
Agile Integration of Complex Systems
2010-04-28
intervention in using SOA can be reduced Page 5 SOA in DoD DoD has mandated that all systems support the Network - Centric Environment and SOA is fundamental to...it and dropping it on an orchestrate icon (slide 22) Di i lifi d d d i l Page 13 scovery s mp e an ma e v sua SOAF Messaging Service Transport
Safe Configuration of TLS Connections
2013-10-16
users. All of these points together lead to unprotected communications that are assumed to be protected. What makes this even worse is that not only...Architecture (SOA) is a software engineering technology that is increasingly used in many important military and civilian systems. The features that make ...SOA appealing, like loose coupling, dynamism and composition-oriented system construction, make securing SOA systems complicated. These features ease
Workflow Design Using Fragment Composition
NASA Astrophysics Data System (ADS)
Mosser, Sébastien; Blay-Fornarino, Mireille; France, Robert
The Service-Oriented Architecture (Soa) paradigm supports the assembly of atomic services to create applications that implement complex business processes. Assembly can be accomplished by service orchestrations defined by Soa architects. The Adore method allows Soa architects to model complex orchestrations of services by composing models of smaller orchestrations called orchestration fragments. The Adore method can also be used to weave fragments that address new concerns into existing application models. In this paper we illustrate how the Adore method can be used to separate and compose process aspects in a Soa design of the Car Crash Crisis Management System. The paper also includes a discussion of the benefits and limitations of the Adore method.
Wilson, Jacqueline; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla
2015-01-06
Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.
Heritability and genetic covariation of sensitivity to PROP, SOA, quinine HCl, and caffeine.
Hansen, Jonathan L; Reed, Danielle R; Wright, Margaret J; Martin, Nicholas G; Breslin, Paul A S
2006-06-01
The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 +/- 3.1 years), including 62 monozygotic and 131 dizygotic twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22-28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7-22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes.
Heritability and Genetic Covariation of Sensitivity to PROP, SOA, Quinine HCl, and Caffeine
Hansen, Jonathan L.; Reed, Danielle R.; Wright, Margaret J.; Martin, Nicholas G.; Breslin, Paul A. S.
2006-01-01
The perceived bitterness intensity for bitter solutions of propylthiouracil (PROP), sucrose octa-acetate (SOA), quinine HCl and caffeine were examined in a genetically informative sample of 392 females and 313 males (mean age of 17.8 ± 3.1 years), including 62 MZ and 131 DZ twin pairs and 237 sib pairs. Broad-sense heritabilities were estimated at 0.72, 0.28, 0.34, and 0.30 for PROP, SOA, quinine, and caffeine, respectively, for perceived intensity measures. Modeling showed 1) a group factor which explained a large amount of the genetic variation in SOA, quinine, and caffeine (22–28% phenotypic variation), 2) a factor responsible for all the genetic variation in PROP (72% phenotypic variation), which only accounted for 1% and 2% of the phenotypic variation in SOA and caffeine, respectively, and 3) a modest specific genetic factor for quinine (12% phenotypic variation). Unique environmental influences for all four compounds were due to a single factor responsible for 7–22% of phenotypic variation. The results suggest that the perception of PROP and the perception of SOA, quinine, and caffeine are influenced by two distinct sets of genes. PMID:16527870
NASA Astrophysics Data System (ADS)
Hu, Jianlin; Jathar, Shantanu; Zhang, Hongliang; Ying, Qi; Chen, Shu-Hua; Cappa, Christopher D.; Kleeman, Michael J.
2017-04-01
Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0. 1). Recent epidemiological studies have identified associations between PM0. 1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0. 1 in California for a 9-year (2000-2008) modeling period with 4 km horizontal resolution to provide more insights about PM0. 1 OA for health effect studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2. 5) total organic carbon at six major urban sites had mean fractional bias of -0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2. 5 SOA / OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2-3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0. 1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0. 1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0. 1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0. 1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of SOA model, although the absolute amount of SOA can change significantly. Therefore, the spatial distributions of PM0. 1 POA and SOA over the 9-year study period provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Faiola, C. L.; Wen, M.; VanReken, T. M.
2015-04-01
The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH 3O +), m/z 58 (C 2H 2O 2 +, C 3H 6O +), m/z 29 (C 2H 5 +), m/z 57 (C 3H 5O +), m/z 59 (C 2H 3O 2 +, C 3H 7O +), m/z 71 (C 3H 3O 2 +, C 4H 7O +), and m/z 83 (C 5H 7O +). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Furthermore the results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela
2014-05-14
Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols usingmore » broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.« less
Flores, J M; Washenfelder, R A; Adler, G; Lee, H J; Segev, L; Laskin, J; Laskin, A; Nizkorodov, S A; Brown, S S; Rudich, Y
2014-06-14
Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions of the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360-420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (±0.01) after 1.5 h of exposure to 1.9 ppm NH3, whereas the imaginary component (k) remained below k < 0.001((+0.002)(-0.001)). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.000 to an average k = 0.029 (±0.021) for α-humulene SOA, and from k < 0.001((+0.002)(-0.001)) to an average k = 0.032 (±0.019) for limonene SOA after 1.5 h of exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line by nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in situ using a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS), confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, which will not necessarily be the case in the atmosphere, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.
NASA Astrophysics Data System (ADS)
Faiola, C. L.; Wen, M.; VanReken, T. M.
2014-10-01
The largest global source of secondary organic aerosol in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic VOC profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate, a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. VOCs emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA particle size distribution and chemical composition were measured using a scanning mobility particle sizer (SMPS) and Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS), respectively. The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+) m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, methyl jasmonate, is also presented. Elemental analysis results demonstrated an O:C range of baseline biogenic SOA between 0.3-0.47. The O:C of standard methyl jasmonate SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient datasets collected in forest environments.
NASA Astrophysics Data System (ADS)
Faiola, C. L.; Wen, M.; VanReken, T. M.
2015-04-01
The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- and post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.
Secondary organic aerosol (SOA) was generated by irradiating 1,3-butadiene (13BD) in the presence of H2O2 or NOx. Experiments were conducted in a smog chamber operated in either flow or batch mode. A filter/denuder sampling system was used for simultaneously collecting gas and pa...
Testing in Service-Oriented Environments
2010-03-01
software releases (versions, service packs, vulnerability patches) for one com- mon ESB during the 13-month period from January 1, 2008 through...impact on quality of service : Unlike traditional software compo- nents, a single instance of a web service can be used by multiple consumers. Since the...distributed, with heterogeneous hardware and software (SOA infrastructure, services , operating systems, and databases). Because of cost and security, it
Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A
2007-01-01
The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.
NASA Astrophysics Data System (ADS)
Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan
2016-05-01
The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.
Size resolved fog water chemistry and its atmospheric implications
NASA Astrophysics Data System (ADS)
Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika
2015-04-01
Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via PMF (Positive matrix factorization) revealed presence of some very highly oxidized OA inside fog water samples. From PMF results a method for aqSOA estimation is developed and aqSOA was found to be substantially contributing to total SOA. These findings indicate that light fog with large number of fine droplets can process the ambient aerosols more efficiently than very dense fog with larger droplets where scavenging becomes more important. These findings also highlight the need of incorporating fog size resolved chemistry along with metal chemistry into global models for accurately predicting aqSOA formation and contribution to total organic aerosol loading.
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
NASA Astrophysics Data System (ADS)
Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.
2015-08-01
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.
Photolysis of α-KETO Acids in Model Atmospheric Water
NASA Astrophysics Data System (ADS)
Eugene, A. J.; Guzman, M. I.
2017-12-01
Recent work has reported the potential of aqueous-phase photochemistry to promote secondary organic aerosol (SOA) formation. New aqueous photochemical SOA sources may contribute to bridging the gap between field measurements of SOA and models of SOA formation. The ubiquitous α-ketocarboxylic acids pyruvic and glyoxylic acid are known products of the atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) as well as of biogenic volatile organic compounds (VOCs). The combination of a carbonyl chromophore (absorbing at wavelengths λ ≥ 300 nm) and hydrophilic functional groups makes these acids likely candidates for forming aqueous SOA by direct sunlight photolysis. We use a variety of analytical techniques including: 2,4-dinitrophenylhydrazine (DNPH) derivatization; ultra-high performance liquid chromatography (UHPLC) and ion chromatography (IC) coupled to mass spectrometry;1H and 13C NMR; and 13C gCOSY NMR to probe the kinetics and mechanisms of the direct photolysis of model solutions of pyruvic acid and glyoxylic acid. The results indicate that despite the structural similarity between the two acids, they each react via very different primary photochemical pathways. Pyruvic acid undergoes a proton-coupled electron transfer (PCET) mechanism with radical recombination, resulting in CO2 and 6-8 carbon organic acids. In contrast, glyoxylic acid primarily undergoes α-cleavage to generate CO, CO2, and glyoxal which is a key species in SOA formation. This work demonstrates that aqueous photolysis is a very competitive atmospheric sink for both pyruvic and glyoxylic acid, indicating that these photoreactions are capable of contributing substantially to SOA formation.
Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian
2017-09-01
In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m 3 Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel -1 , respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel -1 and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10 15 particleskg-fuel -1 , and particles with diameters less than 50nm dominated in total particle numbers. Traditional C 2 -C 12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Haofei; Worton, David R; Lewandowski, Michael; Ortega, John; Rubitschun, Caitlin L; Park, Jeong-Hoo; Kristensen, Kasper; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Jaoui, Mohammed; Offenberg, John H; Kleindienst, Tadeusz E; Gilman, Jessica; Kuster, William C; de Gouw, Joost; Park, Changhyoun; Schade, Gunnar W; Frossard, Amanda A; Russell, Lynn; Kaser, Lisa; Jud, Werner; Hansel, Armin; Cappellin, Luca; Karl, Thomas; Glasius, Marianne; Guenther, Alex; Goldstein, Allen H; Seinfeld, John H; Gold, Avram; Kamens, Richard M; Surratt, Jason D
2012-09-04
2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.
Formation and evolution of molecular products in α-pinene secondary organic aerosol.
Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H
2015-11-17
Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.
NASA Astrophysics Data System (ADS)
George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.
2015-01-01
Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.
A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...
ERIC Educational Resources Information Center
Paulsson, Fredrik; Naeve, Ambjorn
2006-01-01
Based on existing Learning Object taxonomies, this article suggests an alternative Learning Object taxonomy, combined with a general Service Oriented Architecture (SOA) framework, aiming to transfer the modularized concept of Learning Objects to modularized Virtual Learning Environments. The taxonomy and SOA-framework exposes a need for a clearer…
Molecular characterization of nitrogen and sulfur containing compounds in night-time SOA
NASA Astrophysics Data System (ADS)
Iinuma, Yoshiteru; Mutzel, Anke; Rodigast, Maria; Böge, Olaf; Herrmann, Hartmut
2014-05-01
The oxidation of volatile organic compounds (VOCs) leads to the formation of low volatile organic compounds that can form secondary organic aerosol (SOA). Studies in the past showed that laboratory generated and ambient SOA are made of polar molecules with O/C ratios generally greater than 0.5. More recent studies have shown that SOA compounds can contain heteroatoms mainly sulfur and nitrogen atoms. Offline chemical analysis with high-resolution mass spectrometers and fragmentation experiments has shown that sulphur containing compounds are mainly organosulfates and nitrogen containing species are aromatic heterocyclic compounds such as imidazole and nitrated aromatic compounds such as nitrophenols. In addition to these, SOA compounds containing both sulfur and nitrogen have been reported from the analysis of ambient organic aerosol, rainwater, fog and cloud samples. Based on the mass spectrometric evidence these compounds are attributed to nitrooxy-organosulfates originating from isoprene and monoterpenes. Although these compounds are ubiquitously detected in the ambient samples, reports about their detection in laboratory generated SOA are scares and their formation mechanisms are not well understood. In the present study, we investigated the formation of sulfur and nitrogen containing SOA species in the oxidation of biogenic VOCs. Photooxidation and night-time oxidation experiments were performed in a smog chamber to produce SOA samples. The laboratory generated SOA samples were analysed with UPLC-IMS-TOFMS (Ultra Performance Liquid Chromatography coupled to Ion Mobility Spectrometry and Time of Flight Mass Spectrometry). The presence of highly acidic sulphate seed particles (pH0) did not promote the formation of compounds with chemical formula of C10H17NO7S- and m/z value of 294.0653, indicating that the formation mechanisms of these compounds unlikely involve the ring opening reactions of epoxides and subsequent sulfation reactions. On the other hand, their formation was significantly enhanced when the night-time oxidation was performed in the presence of both neutral seed particle and gas-phase SO2, suggesting that the presence of gas-phase SO2 is a key for their formation.
Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro
2015-01-01
Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males.
Win-Shwe, Tin-Tin; Kyi-Tha-Thu, Chaw; Moe, Yadanar; Fujitani, Yuji; Tsukahara, Shinji; Hirano, Seishiro
2016-01-01
Secondary organic aerosol (SOA) is a component of particulate matter (PM) 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE) originated SOA (DE-SOA) affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the developmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control), DE, DE-SOA and gas without any PM in the inhalation chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO)-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty preference as well as social interaction were remarkably impaired, expression levels of estrogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, expression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxicity and impair social behavior in the males. PMID:26834549
NASA Astrophysics Data System (ADS)
Knote, C.; Hodzic, A.; Jimenez, J. L.
2015-01-01
The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40 vs. -8% for anthropogenics, and -52 vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = H* (CH3COOH); H* = 105 M atm-1; H* = H* (HNO3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.
Moores, Elisabeth; Tsouknida, Effie; Romani, Cristina
2015-06-01
We report results from two experiments assessing distribution of attention and cue use in adults with dyslexia (AwD) and in a group of typically reading controls. Experiment 1 showed normal effects of cueing in AwD, with faster responses when probes were presented within a cued area and normal effects of eccentricity and stimulus onset asynchrony (SOA). In addition, AwD showed stronger benefits of a longer SOA when they had to move attention farther, and stronger effects of inclusion on the left, suggesting that cueing is particularly important in more difficult conditions. Experiment 2 tested the use of cues in a texture detection task involving a wider range of eccentricities and a shorter SOA. In this paradigm, focused attention at the central location is actually detrimental and cueing further reduces performance. Thus, if AwD have a more distributed attention, they should show a reduced performance drop at central locations and, if they do not use cues, they should show less negative effects of cueing. In contrast, AwD showed a larger drop and a positive effect of cueing. These results are better accounted for by a smaller and weaker spotlight of attention. Performance does not decrease at central locations because the attentional spotlight is already deployed with maximum intensity, which cannot be further enhanced at central locations. Instead, use of cueing helps to focus limited resources. Cues orient attention to the right area without enhancing it to the point where this is detrimental for texture detection. Implications for reading are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia
2009-09-09
Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.
Selected area growth integrated wavelength converter based on PD-EAM optical logic gate
NASA Astrophysics Data System (ADS)
Bin, Niu; Jifang, Qiu; Daibing, Zhou; Can, Zhang; Song, Liang; Dan, Lu; Lingjuan, Zhao; Jian, Wu; Wei, Wang
2014-09-01
A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.
NASA Astrophysics Data System (ADS)
Tsimpidi, A. P.; Karydis, V. A.; Zavala, M.; Lei, W.; Bei, N.; Molina, L.; Pandis, S. N.
2010-11-01
Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to quantify. In this study the three-dimensional chemical transport model PMCAMx-2008 is used to investigate the temporal and geographic variability of organic aerosol in the Mexico City Metropolitan Area (MCMA) during the MILAGRO campaign that took place in the spring of 2006. The organic module of PMCAMx-2008 is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semi-volatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The MCMA emission inventory is modified and the POA emissions are distributed by volatility based on dilution experiments. The model predictions are compared with observations from four different types of sites, an urban (T0), a suburban (T1), a rural (T2), and an elevated site in Pico Tres Padres (PTP). The performance of the model in reproducing organic mass concentrations in these sites was encouraging. The average predicted PM1 OA concentration in T0, T1, and T2 was 18 μg m-3, 11.7 μg m-3, and 10.5 μg m-3 respectively, while the corresponding measured values were 17.2 μg m-3, 11 μg m-3, and 9 μg m-3. The average predicted fresh primary OA concentrations were 4.4 μg m-3 at T0, 1.2 μg m-3 at T1 and 1.7 μg m-3 at PTP in reasonably good agreement with the corresponding PMF analysis estimates based on the AMS observations of 4.5, 1.3, and 2.9 μg m-3 respectively. The model reproduced reasonably well the average oxygenated OA (OOA) levels in T0 (7.5 μg m-3 predicted versus 7.5 μg m-3 measured), in T1 (6.3 μg m-3 predicted versus 4.6 μg m-3 measured) and in PTP (6.6 μg m-3 predicted versus 5.9 μg m-3 measured). Inside Mexico City, the locally produced OA is predicted to be on average 53% fresh primary (POA), 11% semi-volatile (S-SOA) and intermediate volatile (I-SOA) organic aerosol, and 36% traditional SOA from the oxidation of VOCs (V-SOA). The long range transport from biomass burning activities and other sources in Mexico is predicted to contribute on average almost as much as the local sources during the MILAGRO period.
NASA Astrophysics Data System (ADS)
Hodzic, A.; Jimenez, J. L.; Madronich, S.; Canagaratna, M. R.; Decarlo, P. F.; Kleinman, L.; Fast, J.
2010-06-01
It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2-4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40-60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20-30 μg sm-3 ppm-1 up to 60-70 μg sm-3 ppm-1 between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (R2=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio.
Testosterone facilitates the sense of agency.
van der Westhuizen, Donné; Moore, James; Solms, Mark; van Honk, Jack
2017-11-01
Sense of agency (SoA) refers to feelings of being in control of one's actions. Evidence suggests that SoA might contribute towards higher-order feelings of personal control - a key attribute of powerful individuals. Whether testosterone, a steroid hormone linked to power in dominance hierarchies, also influences the SoA is not yet established. In a repeated-measures design, 26 females participated in a double-blind, placebo-controlled trial to test the effects of 0.5 mg testosterone on SoA, using an implicit measure based upon perceived shifts in time between a voluntary action and its outcome. Illusions of control, as operationalized by optimism in affective forecasting, were also assessed. Testosterone increased action binding but there was no significant effect on tone binding. Affective forecasting was found to be significantly more positive on testosterone. SoA and optimistic expectations are basic manifestations of power which may contribute to feelings of infallibility often associated with dominance and testosterone. Copyright © 2017 Elsevier Inc. All rights reserved.
Hydroxyl radicals from secondary organic aerosol decomposition in water
NASA Astrophysics Data System (ADS)
Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Pöschl, U.; Shiraiwa, M.
2015-11-01
We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ~ 0.1 % upon extraction with pure water and increases to ~ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.
Hydroxyl radicals from secondary organic aerosol decomposition in water
NASA Astrophysics Data System (ADS)
Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher. J.; Pöschl, Ulrich; Shiraiwa, Manabu
2016-04-01
We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, and limonene) is ~ 0.1% upon extraction with pure water, and which increases to ~ 1.5% in the presence of iron ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical hydrogen peroxide Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.
Perception without awareness: further evidence from a Stroop priming task.
Daza, M Teresa; Ortells, Juan J; Fox, Elaine
2002-11-01
In the present research, we examined the influence of prime-target stimulus onset asynchrony (SOA) on Stroop-priming effects from masked words. Participants indicated the color of a central target, which was preceded by a 33-msec prime word followed either immediately or after a variable delay by a pattern mask. The prime word was incongruent or congruent with the target color on 75% and 25% of the trials, respectively. The words followed by an immediate mask produced reliable Stroop interference at SOAs of 300 and 400 msec but not at SOAs of 500 and 700 msec. The words followed by a delayed mask produced a reversed (i.e., facilitatory) Stroop effect, which reached significance at an SOA of 400 msec or longer, but never at the shorter 300-msec SOA. Such an differential time course of both types of Stroop priming effects provides further evidence for the existence of qualitative differences between conscious and nonconscious perceptual processes.
HYDRA: A Middleware-Oriented Integrated Architecture for e-Procurement in Supply Chains
NASA Astrophysics Data System (ADS)
Alor-Hernandez, Giner; Aguilar-Lasserre, Alberto; Juarez-Martinez, Ulises; Posada-Gomez, Ruben; Cortes-Robles, Guillermo; Garcia-Martinez, Mario Alberto; Gomez-Berbis, Juan Miguel; Rodriguez-Gonzalez, Alejandro
The Service-Oriented Architecture (SOA) development paradigm has emerged to improve the critical issues of creating, modifying and extending solutions for business processes integration, incorporating process automation and automated exchange of information between organizations. Web services technology follows the SOA's principles for developing and deploying applications. Besides, Web services are considered as the platform for SOA, for both intra- and inter-enterprise communication. However, an SOA does not incorporate information about occurring events into business processes, which are the main features of supply chain management. These events and information delivery are addressed in an Event-Driven Architecture (EDA). Taking this into account, we propose a middleware-oriented integrated architecture that offers a brokering service for the procurement of products in a Supply Chain Management (SCM) scenario. As salient contributions, our system provides a hybrid architecture combining features of both SOA and EDA and a set of mechanisms for business processes pattern management, monitoring based on UML sequence diagrams, Web services-based management, event publish/subscription and reliable messaging service.
Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass
NASA Astrophysics Data System (ADS)
Bahreini, R.; Middlebrook, A. M.; de Gouw, J. A.; Warneke, C.; Trainer, M.; Brock, C. A.; Stark, H.; Brown, S. S.; Dube, W. P.; Gilman, J. B.; Hall, K.; Holloway, J. S.; Kuster, W. C.; Perring, A. E.; Prevot, A. S. H.; Schwarz, J. P.; Spackman, J. R.; Szidat, S.; Wagner, N. L.; Weber, R. J.; Zotter, P.; Parrish, D. D.
2012-03-01
Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...
2018-03-15
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.
The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less
Holistic approach to design and implementation of a medical teleconsultation workspace.
Czekierda, Łukasz; Malawski, Filip; Wyszkowski, Przemysław
2015-10-01
While there are many state-of-the-art approaches to introducing telemedical services in the area of medical imaging, it is hard to point to studies which would address all relevant aspects in a complete and comprehensive manner. In this paper we describe our approach to design and implementation of a universal platform for imaging medicine which is based on our longstanding experience in this area. We claim it is holistic, because, contrary to most of the available studies it addresses all aspects related to creation and utilization of a medical teleconsultation workspace. We present an extensive analysis of requirements, including possible usage scenarios, user needs, organizational and security issues and infrastructure components. We enumerate and analyze multiple usage scenarios related to medical imaging data in treatment, research and educational applications - with typical teleconsultations treated as just one of many possible options. Certain phases common to all these scenarios have been identified, with the resulting classification distinguishing several modes of operation (local vs. remote, collaborative vs. non-interactive etc.). On this basis we propose a system architecture which addresses all of the identified requirements, applying two key concepts: Service Oriented Architecture (SOA) and Virtual Organizations (VO). The SOA paradigm allows us to decompose the functionality of the system into several distinct building blocks, ensuring flexibility and reliability. The VO paradigm defines the cooperation model for all participating healthcare institutions. Our approach is validated by an ICT platform called TeleDICOM II which implements the proposed architecture. All of its main elements are described in detail and cross-checked against the listed requirements. A case study presents the role and usage of the platform in a specific scenario. Finally, our platform is compared with similar systems described into-date studies and available on the market. Copyright © 2015. Published by Elsevier Inc.
US NDC Modernization: Service Oriented Architecture Study Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Benjamin R.; Encarnacao, Andre Villanova; Harris, James M.
2014-12-01
This report is a progress update on the USNDC Modernization Service Oriented Architecture (SOA) study describing results from Inception Iteration 1, which occurred between October 2012 and March 2013. The goals during this phase are 1) discovering components of the system that have potential service implementations, 2) identifying applicable SOA patterns for data access, service interfaces, and service orchestration/choreography, and 3) understanding performance tradeoffs for various SOA patterns
NASA Astrophysics Data System (ADS)
Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua
High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.
Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model
NASA Astrophysics Data System (ADS)
Stadtler, Scarlet; Kühn, Thomas; Taraborrelli, Domenico; Kokkola, Harri; Schultz, Martin
2017-04-01
Secondary organic aerosol (SOA) impacts earth's climate and human health. Since its precursor chemistry and its formation are not fully understood, climate models cannot catch its direct and indirect effects. Global isoprene emissions are higher than any other non-methane hydrocarbons. Therefore, SOA from isoprene-derived, low volatile species (iSOA) is simulated using a global aerosol chemistry climate model ECHAM6-HAM-SALSA-MOZ. Isoprene oxidation in the chemistry model MOZ is following a novel semi-explicit scheme, embedded in a detailed atmospheric chemical mechanism. For iSOA formation four low volatile isoprene oxidation products were identified. The group method by Nanoonlal et al. 2008 was used to estimate their evaporation enthalpies ΔHvap. To calculate the saturation concentration C∗(T) the sectional aerosol model SALSA uses the gas phase concentrations simulated by MOZ and their corresponding ΔHvap to obtain the saturation vapor pressure p∗(T) from the Clausius Clapeyron equation. Subsequently, the saturation concentration is used to calculate the explicit kinetic partitioning of these compounds forming iSOA. Furthermore, the irreversible heterogeneous reactions of IEPOX and glyoxal from isoprene were included. The possibility of reversible heterogeneous uptake was ignored at this stage, leading to an upper estimate of the contribution of glyoxal to iSOA mass.
Modeling study of secondary organic aerosol in winter in China using NAQPMS
NASA Astrophysics Data System (ADS)
Yang, W.; Li, J.
2017-12-01
The concentration of organic aerosol (OA) in the central and eastern China is much higher than that in Europe and America. Compared with the observation, the current numerical modeling studies largely underestimated the concentration of OA, especially the secondary component. Based on the volatility basis set framework, a secondary organic aerosol (SOA) module was developed, which considering the multi-generation oxidation of volatile organic compounds (VOCs), semi-volatile POA and intermediate volatility organic compounds (IVOCs). The newly developed SOA module was coupled into the NAQPMS, and the performance of the simulation was validated by the observation with high temporal resolution. In wintertime, the OA concentration in the central and eastern China was maintained above 15-20 μg·m-3, and SOA accounted for 50-65% of OA concentration. The OA concentration even reached 40 μg·m-3 in the provinces emitting most pollutants (such as Hunan, Hubei, Henan, Anhui, Jiangsu, Shandong and Hubei province). IVOCs were important precursors of SOA in China, and could reduce the great discrepancy between simulation and observation. In wintertime, the contribution from IVOCs accounted for 60-80% of SOA formation. The aging of semi-volatile POA had less impact on the SOA formation, which maintained only 2-8% over central and eastern China.
NASA Astrophysics Data System (ADS)
Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji
2018-04-01
Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at < 1 and ˜ 40 % relative humidity. The volume fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.
Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiumeng; D’Ambro, Emma L.; Lee, Ben H.
2016-09-20
With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are a subject of intense research because particles affect Earth’s climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2, or more, higher than those typically used in coupled chemistry-climate models.more » SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 10 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the pre-industrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest a more complex representation of NOx dependent SOA yields may be important in models.« less
Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc
2010-02-01
The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.
NASA Astrophysics Data System (ADS)
Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.
2018-05-01
We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.
Naphthalene SOA: redox activity and naphthoquinone gas-particle partitioning
NASA Astrophysics Data System (ADS)
McWhinney, R. D.; Zhou, S.; Abbatt, J. P. D.
2013-10-01
Chamber secondary organic aerosol (SOA) from low-NOx photooxidation of naphthalene by hydroxyl radical was examined with respect to its redox cycling behaviour using the dithiothreitol (DTT) assay. Naphthalene SOA was highly redox-active, consuming DTT at an average rate of 118 ± 14 pmol per minute per μg of SOA material. Measured particle-phase masses of the major previously identified redox active products, 1,2- and 1,4-naphthoquinone, accounted for only 21 ± 3% of the observed redox cycling activity. The redox-active 5-hydroxy-1,4-naphthoquinone was identified as a new minor product of naphthalene oxidation, and including this species in redox activity predictions increased the predicted DTT reactivity to 30 ± 5% of observations. These results suggest that there are substantial unidentified redox-active SOA constituents beyond the small quinones that may be important toxic components of these particles. A gas-to-SOA particle partitioning coefficient was calculated to be (7.0 ± 2.5) × 10-4 m3 μg-1 for 1,4-naphthoquinone at 25 °C. This value suggests that under typical warm conditions, 1,4-naphthoquinone is unlikely to contribute strongly to redox behaviour of ambient particles, although further work is needed to determine the potential impact under conditions such as low temperatures where partitioning to the particle is more favourable. Also, higher order oxidation products that likely account for a substantial fraction of the redox cycling capability of the naphthalene SOA are likely to partition much more strongly to the particle phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...
2017-06-15
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less
Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye
2014-10-21
The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.
NASA Astrophysics Data System (ADS)
Nah, T.; Sanchez, J.; Boyd, C.; Ng, N. L.
2015-12-01
The nitrate radical (NO3), one of the most important oxidants in the nocturnal atmosphere, can react rapidly with a variety of biogenic volatile organic compounds (BVOCs) to form high mass concentrations of secondary organic aerosol (SOA) and organic nitrates (ON). Despite its critical importance in aerosol formation, the mechanisms and products from the NO3 oxidation of BVOCs have been largely unexplored, and the fates of their SOA and ON after formation are not well characterized. In this work, we studied the formation of SOA and ON from the NO3 oxidation of α-pinene and β-pinene and investigated for the first time how they evolve during dark and photochemical aging through a series of chamber experiments performed at the Georgia Tech Environmental Chamber (GTEC) facility. The α-pinene and β-pinene SOA are characterized using real-time gas- and particle-phase measurements, which are used to propose mechanisms for SOA and organic nitrate formation and aging. Highly oxygenated gas- and particle-phase ON (containing as many as 9 oxygen atoms) are detected during the NO3 reaction. In addition, the β-pinene SOA and α-pinene SOA exhibited drastically different behavior during photochemical aging. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either NOx reservoirs or sinks depending on the monoterpene precursor. Results from this study provide fundamental data for evaluating the contributions of NO3+monoterpene reactions to ambient OA measured in the Southeastern U.S.
Recent advances in understanding secondary organic aerosol: Implications for global climate forcing
NASA Astrophysics Data System (ADS)
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi
2017-06-01
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.
Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation
Zheng, Y.; Unger, N.; Hodzic, A.; ...
2015-08-28
Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NO x = NO + NO 2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NO x-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitudemore » and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NO x perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NO x can be largely attributed to buffering in chemical pathways (low- and high-NO x pathways, O 3 versus NO 3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less
Field observations of artificial sand and oil agglomerates
Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.
2015-01-01
Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.
Supercritical Fluid Extraction of Biogenic SOA in Northern Michigan
NASA Astrophysics Data System (ADS)
Flores, R. M.; Doskey, P. V.; Perlinger, J. A.
2010-12-01
Secondary organic aerosols (SOA) are formed by photooxidation of volatile organic compounds (VOCs) and nucleation and condensation of the oxygenated products. On a global scale, monoaromatic hydrocarbons of anthropogenic origin are estimated to be the source of 12% of the SOA while biogenic emissions of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24) are estimated to be the source of 46, 29 and 7% of SOA, respectively. The functional groups of organic substances comprising SOA (i.e., hydroxyl, carbonyl, carboxylic acid, sulfate, and nitrate) complicate sample processing, analysis, and identification of the characteristic aerosol products of VOC oxidation pathways. Only a very small fraction of the organic molecular species in SOA have been identified due to the complexity of precursor oxidation reactions and the need for (1) methodologies that are less labor intensive and suitable for thermally labile compounds and (2) analytic instrumentation that provides more complete resolution of complex mixtures for sensitive detection of molecular species. Extraction techniques commonly used include solvent extraction, which requires large amounts of solvent and is labor intensive and thermal desorption, which evolves organic substances from aerosol at temperatures not suitable for thermally labile compounds. A promising technique that does not involve sample processing with solvents or high temperatures is supercritical fluid extraction (SFE). In this work, the composition of biogenic SOA was studied in Northern Michigan. Aerosol samples were collected on quartz fiber filters with a high-volume air sampler and extracted with supercritical CO2. Carboxylic and hydroxyl compounds were derivatized during static extraction conditions and identified by comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC-TOFMS). The overall goal of the research is to couple the post-collection analytic scheme developed here with a rapid sampling technique to evaluate SOA produced from a variety of biogenic and anthropogenic sources of precursors in the Midwestern United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Peng; Liu, Jiumeng; Shilling, John E.
Atmospheric Brown carbon (BrC) is a significant contributor to light absorption and climate forcing. However, little is known about a fundamental relationship between the chemical composition of BrC and its optical properties. In this work, light-absorbing secondary organic aerosol (SOA) was generated in the PNNL chamber from toluene photo-oxidation in the presence of NOx (Tol-SOA). Molecular structures of BrC components were examined using nanospray desorption electrospray ionization (nano-DESI) and liquid chromatography (LC) combined with UV/Vis spectroscopy and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS). The chemical composition of BrC chromophores and the light absorption properties of toluene SOA (Tol-SOA) dependmore » strongly on the initial NOx concentration. Specifically, Tol-SOA generated under high-NOx conditions (defined here as initial NOx/toluene of 5/1) appears yellow and mass absorption coefficient of the bulk sample (MACbulk@365nm = 0.78 m2 g-1) is nearly 80 fold higher than that measured for the Tol-SOA sample generated under low-NOx conditions (NOx/toluene < 1/300). Fifteen compounds, most of which are nitrophenols, are identified as major BrC chromophores responsible for the enhanced light absorption of Tol-SOA material produced in the presence of NOx. The integrated absorbance of these fifteen chromophores accounts for 40-60% of the total light absorbance by Tol-SOA at wavelengths between 300 nm and 500 nm. The combination of tandem LC-UV/Vis-ESI/HRMS measurements provides an analytical platform for predictive understanding of light absorption properties by BrC and their relationship to the structure of individual chromophores. General trends in the UV/vis absorption by plausible isomers of the BrC chromophores were evaluated using theoretical chemistry calculations. The molecular-level understanding of BrC chemistry is helpful for better understanding the evolution and behavior of light absorbing aerosols in the atmosphere.« less
NASA Astrophysics Data System (ADS)
Ye, Jianhuai
Secondary organic aerosol (SOA) formed from oxidation of volatile organic compounds (VOCs), comprises a major fraction of atmospheric submicron particulate matter, which is crucial for global climate change and human health. While biogenic VOCs are naturally emitted and cannot be directly controlled, field measurements and satellite observations have shown that biogenic SOA (BSOA) formation correlates well with anthropogenic pollutants and may be anthropogenically controlled. In this work, the formation of the "anthropogenically controllable BSOA" was examined. BSOA from alpha-pinene ozonolysis was investigated in the presence of laboratory-generated or ambient organic aerosol such as Toronto ambient particles. It is shown that SOA was not equally miscible with all organic species. Aerosol mixing thermodynamics in the atmosphere is composition dependent. Based on laboratory observations, an empirical framework using bulk elemental ratios was developed to predict atmospheric organic miscibility and SOA yield enhancements. Besides organic aerosol, interactions between BSOA formation and SO2 was also examined. Synergistic effects were observed between BSOA formation and SO2 oxidation through Criegee and peroxide chemistry under atmospherically relevant RH conditions. In addition to the physicochemical properties of SOA, health impacts of SOA were examined. An atmospheric simulation reactor (ASR) was developed to investigate the health effects of air pollutants by permitting controlled chronic in vivo exposure of mice to combine particulate and gaseous pollutants at 'real-life' concentrations. Results show that daily exposure to SOA from naphthalene photooxidation led to increased airway hyperresponsiveness (AHR) to methacholine in a dose-dependent manner. Multi-pollutant exposures with ozone and/or NO2 in conjunction with a sub-toxic concentration of SOA resulted in additive effects on AHR to methacholine. Inflammatory cell recruitment to the airways was not observed in any of the exposure conditions, indicating the increased AHR was not associated with airway inflammation and may occur through other mechanisms.
Differences in BVOC oxidation and SOA formation above and below the forest canopy
NASA Astrophysics Data System (ADS)
Schulze, Benjamin C.; Wallace, Henry W.; Flynn, James H.; Lefer, Barry L.; Erickson, Matt H.; Jobson, B. Tom; Dusanter, Sebastien; Griffith, Stephen M.; Hansen, Robert F.; Stevens, Philip S.; VanReken, Timothy; Griffin, Robert J.
2017-02-01
Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially with respect to the nitrate radical (NO3), above and below a forest canopy in rural Michigan. In both modeled environments (above and below the canopy), NO3 mixing ratios are relatively small (< 0.5 pptv); however, daytime (08:00-20:00 LT) mixing ratios below the canopy are 2 to 3 times larger than those above. As a result of this difference, NO3 contributes 12 % of total daytime α-pinene oxidation below the canopy while only contributing 4 % above. Increasing background pollutant levels to simulate a more polluted suburban or peri-urban forest environment increases the average contribution of NO3 to daytime below-canopy α-pinene oxidation to 32 %. Gas-phase RONO2 produced through NO3 oxidation undergoes net transport upward from the below-canopy environment during the day, and this transport contributes up to 30 % of total NO3-derived RONO2 production above the canopy in the morning (˜ 07:00). Modeled SOA mass loadings above and below the canopy ultimately differ by less than 0.5 µg m-3, and extremely low-volatility organic compounds dominate SOA composition. Lower temperatures below the canopy cause increased partitioning of semi-volatile gas-phase products to the particle phase and up to 35 % larger SOA mass loadings of these products relative to above the canopy in the model. Including transport between above- and below-canopy environments increases above-canopy NO3-derived α-pinene RONO2 SOA mass by as much as 45 %, suggesting that below-canopy chemical processes substantially influence above-canopy SOA mass loadings, especially with regard to monoterpene-derived RONO2.
Modelling secondary organic aerosol in the United Kingdom
NASA Astrophysics Data System (ADS)
Redington, A. L.; Derwent, R. G.
2013-01-01
The Lagrangian atmospheric dispersion model, NAME, has been used to model the formation and transport of anthropogenic and biogenic secondary organic aerosol (SOA) over North-West Europe in 2008. The model has been tested against daily organic carbon measurements at Harwell, a rural site in southern UK, where it was able to represent adequately the observed values in summer, with some under-prediction in winter. The model has been used to look at the contribution of SOA to total measured PM10 at four selected UK sites. The site with the greatest contribution (32%) of SOA to PM10 was Auchencorth, a rural site in Scotland and least (9%) at London Bloomsbury. The biogenic SOA (BSOA) dominated over the anthropogenic SOA (ASOA) in the UK and showed a strong seasonal cycle peaking in the summer. There was also a slight summer increase in ASOA. The model has been employed to provide source attribution between UK sources and sources in the rest of Europe. The contribution from Europe was generally small but varied considerably due to meteorology. The UK component showed a seasonal cycle, peaking in the summer months. On an annual basis, considering the four measurement sites, the percentage of SOA arriving from outside the UK was least at Auchencorth (9.8%) and most at London (28.4%). Total modelled SOA had a maximum contribution of 2-3 μg m-3 as a monthly average. (It should be noted that in addition there will be a small contribution from background SOA to these figures.) Emission sensitivity studies revealed that the response of ASOA was highly non-linear, showing both positive and negative responses to a 30% reduction in all man-made NOx sources and the response was greater than 1:1 to a 30% reduction in all man-made VOC sources. BSOA showed only a small negative response to a 30% NOx reduction and no change to a 30% VOC reduction.
NASA Astrophysics Data System (ADS)
Tomaz, S.; Cui, T.; Chen, Y.; Sexton, K.; Surratt, J. D.; Turpin, B. J.
2017-12-01
Aqueous multiphase chemistry of water-soluble organic gases (WSOGs) is now recognized to be a potential and significant source of atmospheric secondary organic aerosol (SOA). SOA formation through aqueous-phase chemistry of WSOGs, known to be present in wildfire emissions, such as glycolaldehyde or phenols, remains unclear. Furthermore, most oxidized organic constituents of biomass burning (BB) emissions still remain unidentified and may represent a major source of atmospheric aqueous SOA (aqSOA). In the present work, we investigated the chemical composition of gas-phase emissions from the combustion of several western U.S. fuels at the Fire Science Laboratory as part of FIREX, using a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) equipped with iodide reagent ion chemistry. By using the HR-ToF-CIMS, more than 50 oxygen (O)-containing and 15 nitrogen (N)-containing organic compounds were identified in the gas-phase emissions from BB of the western U.S. fuel types. Amongst these compounds, potential precursors of aqSOA were selected based on their atomic O/C ratio, water solubility, abundance and potential reactivity toward hydroxyl (OH) radical using literature data. These results indicated the high potency of BB as a source of aqSOA. We compared these results with water samples collected during the FIREX experiments, by scrubbing gaseous emissions into water using mist chamber samplers. We investigated the composition of these samples using both ion chromatography (IC) and high-resolution quadrupole time-of-flight mass spectrometry equipped with electrospray ionization (ESI-HR-QTOFMS). The presence of potential reactive compounds was evaluated by oxidizing these samples with OH radical (H2O2/UV). Known precursors of aqSOA, such as acetic and glycolic acids, were identified in those samples. The formation of low-volatility organics, such as oxalic and pyruvic acids, through OH oxidation also indicates the potential formation of aqSOA from BB emissions during wildfires.
Wlotko, Edward W.; Federmeier, Kara D.
2015-01-01
Predictive processing is a core component of normal language comprehension, but the brain may not engage in prediction to the same extent in all circumstances. This study investigates the effects of timing on anticipatory comprehension mechanisms. Event-related brain potentials (ERPs) were recorded while participants read two-sentence mini-scenarios previously shown to elicit prediction-related effects for implausible items that are categorically related to expected items (‘They wanted to make the hotel look more like a tropical resort. So along the driveway they planted rows of PALMS/PINES/TULIPS.’). The first sentence of every pair was presented in its entirety and was self-paced. The second sentence was presented word-by-word with a fixed stimulus onset asynchrony (SOA) of either 500 ms or 250 ms that was manipulated in a within-subjects blocked design. Amplitudes of the N400 ERP component are taken as a neural index of demands on semantic processing. At 500 ms SOA, implausible words related to predictable words elicited reduced N400 amplitudes compared to unrelated words (PINES vs. TULIPS), replicating past studies. At 250 ms SOA this prediction-related semantic facilitation was diminished. Thus, timing is a factor in determining the extent to which anticipatory mechanisms are engaged. However, we found evidence that prediction can sometimes be engaged even under speeded presentation rates. Participants who first read sentences in the 250 ms SOA block showed no effect of semantic similarity for this SOA, although these same participants showed the effect in the second block with 500 ms SOA. However, participants who first read sentences in the 500 ms SOA block continued to show the N400 semantic similarity effect in the 250 ms SOA block. These findings add to results showing that the brain flexibly allocates resources to most effectively achieve comprehension goals given the current processing environment. PMID:25987437
Terahertz Schottky Multiplier Sources
NASA Technical Reports Server (NTRS)
Schlecht, Erich T.
2007-01-01
This viewgraph presentation reviews the multiplier source technologies and the status/Performance of THz multiplier sources. An example of a THz application is imaging radar. The presentation reviews areas of requirements for THz sources: (1) Figures of merit, (i.e., Frequency Terahertz for high resolution Bandwidth of at least 15 GHz for high range resolution Efficiency (i.e., minimize power supply requirements) (2) Output power: (i.e., Milliwatts below 800 GHz, 10s of microwatts above 1 THz, 1-2 microwatts near 2 THz (3) Mechanical--stability, compact, low mass (4) Environmental -- radiation, vibration, thermal. Several sources for 0.3 - 2 THz are reviewed: FIR lasers, quantum cascade lasers (QCL), backward-wave oscillator (BWO), and Multiplier sources. The current state of the art (SoA) is shown as Substrateless Technology. It also shows where the SoA is for devices beyond 1 THz. The presentation concludes by reviewing the options for future development, and 2 technology roadmaps
Suggestions for Documenting SOA-Based Systems
2010-09-01
Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and...understandability and fo even across an enterprise. Technical reference models (see F (e.g., Oracle database managemen general in nature, and they typica...architectural pattern. CMU/SEI-2010- T Key Aspects of the Architecture unicate something that is important to the stakeholders intaining the system
Word Frequency Effects in Dual-Task Studies Using Lexical Decision and Naming as Task 2
NASA Technical Reports Server (NTRS)
Remington, Roger W.; McCann, Robert S.; VanSelst, Mark; Shafto, Michael G. (Technical Monitor)
1997-01-01
Word frequency effects in dual-task lexical decision are variously reported to be additive or underadditive across SOA. We replicate and extend earlier lexical decision studies and find word frequency to be additive across SOA. To more directly capture lexical processing, we examine dual-task naming. Once again, we find word frequency to be additive across SOA. Lexical processing appears to be constrained by central processing limitations.
Word Effects in Dual-Task Studies Using Lexical Decision and Naming as Task 2
NASA Technical Reports Server (NTRS)
Remington, Roger; McCann, Robert S.; VanSelst, Mark; Shafto, Michael (Technical Monitor)
1997-01-01
Word frequency effects in dual-task, lexical decision are variously reported to be additive or under-additive across SOA. We replicate and extend earlier lexical decision studies and find word frequency to be additive across SOA. To more directly capture lexical processing, we examine dual-task naming. Once again we find word frequency to be additive across SOA. Lexical processing appears to be constrained by central processing limitations.
Kobayashi, Wataru; Arai, Masakazu; Fujisawa, Takeshi; Sato, Tomonari; Ito, Toshio; Hasebe, Koichi; Kanazawa, Shigeru; Ueda, Yuta; Yamanaka, Takayuki; Sanjoh, Hiroaki
2015-04-06
We propose a novel approach for simultaneously controlling the chirp and increasing the output power of an EADFB laser by monolithically integrating a short-cavity SOA. We achieved a 40-Gbit/s 5-km SMF transmission at a wavelength of 1.55 μm by using an EADFB SOA with a lower power consumption than a stand-alone EADFB laser.
Lin, Ying-Hsuan; Budisulistiorini, Sri Hapsari; Chu, Kevin; Siejack, Richard A; Zhang, Haofei; Riva, Matthieu; Zhang, Zhenfa; Gold, Avram; Kautzman, Kathryn E; Surratt, Jason D
2014-10-21
Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.
Consideration of HOMs in α- and β-pinene SOA model
NASA Astrophysics Data System (ADS)
Gatzsche, Kathrin; Iinuma, Yoshiteru; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf
2016-04-01
Secondary organic aerosol (SOA) is the major burden of the atmospheric organic particulate matter with 140 - 910 TgC yr-1 (Hallquist et al., 2009). SOA particles are formed via the oxidation of volatile organic carbons (VOCs), where the volatility of the VOCs is lowered due to the increase in their functionalization as well as their binding ability. Therefore, gaseous compounds can either nucleate to form new particles or condense on existing particles. The framework of SOA formation under natural conditions is very complex, because there are a multitude of gas-phase precursors, atmospheric degradation processes and products after oxidation. A lacking understanding about chemical and physical processes associated with SOA formation makes modeling of SOA processes difficult, leading to discrepancy between measured and modeled global SOA burdens. The present study utilizes a parcel model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model, Wolke et al., 2005) that couples a multiphase chemical model with a microphysical model. For SOA modeling a further development of SPACCIM was necessary. Therefore, two components are added (i) a gas-phase chemistry mechanism for the VOC oxidation and (ii) a partitioning approach for the gas-to-particle phase transfer. An aggregated gas-phase chemistry mechanism for α- and β-pinene was adapted from Chen and Griffin (2005). For the phase transfer an absorptive partitioning approach (Pankow, 1994) and a kinetic approach (Zaveri et al., 2014) are implemented. Whereby the kinetic approach serves some advantages. The organic aerosol can be resolved in different size sections, whereby the particle radius is involved in the partitioning equations. The phase state of the organic material and the reactivity of the organic compounds in the particle-phase directly influence the modeled SOA yields. Recently, highly oxidized multifunctional organic compounds (HOMs) were found in the gas phase from lab and field studies. They are also known as extremely low-volatile organic compounds (ELVOCs) (Ehn et al. 2014). The importance of HOMs for the early aerosol growth makes them indispensable in SOA modeling. Thus, we included HOMs in our model framework. The measurements from the institute's own smog chamber LEAK are used as a base for model evaluation and process analysis, especially since HOMs were lately identified from LEAK data (Mutzel et al., 2015). The presentation will provide a sensitivity study for the kinetic approach as well as a comparison of measured and modeled SOA yields. References: Ehn, M., Thornton, J. A., Kleist, E. et al. (2014) Nature, 506, 476 - 479 Hallquist, M., Wenger, J. C., Baltensperger, U., et al. (2009) Atmos. Chem. Phys., 9, 5155 - 5236 Mutzel, A., Poulain, L., Berndt, T. et al. (2015) Environ. Sci. Technol., 49, 7754 - 7761 Pankow, J. F. (1994) Atmos. Environ., 28, 2, 189 - 193 Wolke, R., Sehili, A. M., Simmel, M., Knoth, O., Tilgner, A. and Herrmann, H. (2005) Atmos. Environ., 39, 4375 - 4388 Zaveri, R. A., Easter, R. C., Shilling J. E. and Seinfeld, J. H. (2014) Atmos. Chem. Phys., 14, 5153 - 5181