33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
Mantziaras, I D; Stamou, A; Katsiri, A
2011-06-01
This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.
2016-01-01
tenance period to achieve planned expected service life ( ESL ), as well as the length, workload, and periodicity of a continuous maintenance...a ship’s service life but extends the length of each deployment. Figure 2.1 compares the number of deployments that can be made over the ESL of...ships in different cycle lengths. The ESL of DDG-51 Arleigh Burke–class destroyers Flight I and II is 35 years, and Flight IIA has an ESL of 40 years
Fuel cycle cost reduction through Westinghouse fuel design and core management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, F.J.; Scherpereel, L.R.
1985-11-01
This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.
Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M
2011-05-01
The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.
Code of Federal Regulations, 2011 CFR
2011-07-01
... machines. (2) Revolutions, number of cycles, and length of cycles of each COW machine. (3) Pressure and... in each cargo tank. (5) Volume of water used for water rinsing. (6) Trim conditions of the tank...
Code of Federal Regulations, 2012 CFR
2012-07-01
... machines. (2) Revolutions, number of cycles, and length of cycles of each COW machine. (3) Pressure and... in each cargo tank. (5) Volume of water used for water rinsing. (6) Trim conditions of the tank...
Code of Federal Regulations, 2013 CFR
2013-07-01
... machines. (2) Revolutions, number of cycles, and length of cycles of each COW machine. (3) Pressure and... in each cargo tank. (5) Volume of water used for water rinsing. (6) Trim conditions of the tank...
Code of Federal Regulations, 2014 CFR
2014-07-01
... machines. (2) Revolutions, number of cycles, and length of cycles of each COW machine. (3) Pressure and... in each cargo tank. (5) Volume of water used for water rinsing. (6) Trim conditions of the tank...
Study of short-haul aircraft operating economics, volume 1
NASA Technical Reports Server (NTRS)
1975-01-01
A short-haul air transportation operating cost model is developed. The effect is identified of such factors as level of service provided, traffic density of the market, stage length, number of flight cycles, level of automation, as well as aircraft type and other operational factors on direct and indirect operating costs.
Role of the vomeronasal organ on the estral cycle reduction by pheromones in the rat.
Mora, O A; Sánchez-Criado, J E; Guisado, S
1985-09-01
The role of he vomeronasal organ on the estral cycle reduction induced by pheromones is studied in adult female wistar rats. The animals were divided in three groups: I, intact rats; II, vomeronasalectomized rats (VNX); and III, sham operated rats (sham). Each group was submitted to another three distinct conditions from the day they were weaned (21 days old): Isolated female rats; with male odors from two adult males of tested sexual potency, and isolated rats again. The isolated intact rats show mainly 5 day length cycles. The groups I and III (intacts and sham) with male odors, show 4 day length cycles. The VNX animals show 5 day cycles in any one experimental conditions. These results support the idea that the vomeronasal organ is the receptor of the male reducing cycle pheromone in the female rat.
Kim, Jeong Jin; Kang, Jun Hyeok; Lee, Kyo Won; Kim, Kye Hyun; Song, Taejong
2017-05-01
The aim of this study was to determine whether the different phases of the menstrual cycle could affect operative bleeding in women undergoing laparoscopic hysterectomy. This was a retrospective comparative study. Based on the adjusted day of menstrual cycle, 212 women who underwent laparoscopic hysterectomy were classified into three groups: the follicular phase (n = 51), luteal phase group (n = 125), and menstruation group (n = 36). The primary outcome measure was the operative bleeding. There was no difference in the baseline characteristics of the patients belonging to the three groups. For the groups, there were no significant differences in operative bleeding (p = .469) and change in haemoglobin (p = .330), including operative time, length of hospital stay and complications. The menstrual cycle did not affect the operative bleeding and other parameters. Therefore, no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding. Impact statement What is already known on this subject: the menstrual cycle results in periodic changes in haemostasis and blood flow in the reproductive organs. What the results of this study add: the menstrual cycle did not affect the operative bleeding and other operative parameters during laparoscopic hysterectomy. What the implications are of these findings for clinical practice and/or further research: no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding.
Using Kalman Filter Chemical Data Assimilation to Study Ozone Catalytic Loss Cycles in January 1992
NASA Technical Reports Server (NTRS)
Lary, David J.
2002-01-01
This paper presents for the first time a global study of the ozone catalytic destruction cycles operating in the stratosphere using a stratospheric analyses for January 1992. The chemical analyses were produced using a Kalman filter data assimilation system. Because a major component of the variability of trace gases is due to the atmospheric motions the analyses have been cast in a flow-tracking coordinate system that moves with the large scale flow pattern. Particular attention is paid to the kinetic aspects of these cycles such as the rate limiting step and chain length. Although it is an important kinetic parameter, the chain length of the various cycles is seldom considered when the various catalytic cycles are discussed. This survey highlights that in the low stratosphere the cycles involving HO2 and halogens (notably bromine) are particularly important. In approximate order of effectiveness the most important ozone loss cycles in the polar lower stratosphere are the BrO/ClO, HO2/BrO, and OH/HO2 cycles. The ClO/ClO cycle clearly delineates the regions of chlorine activation. The chain length of the HO2/ClO, OH/HO2, Br/BrO, and ClO/NO2, clearly delineate the vortex edge region. The chain length of the BrO/NO2 and Cl/NO2 cycles highlight the regions of chemical processing outside the vortex where streamers of chemically processed air are stripped-off and transported away from the vortex. This is also true in the very low stratosphere for the Cl/ClO and BrO/ClO cycles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank... used to pass the inspections under § 157.140: (1) Pressure and flow of the crude oil pumped to the COW machines. (2) Revolutions, number of cycles, and length of cycles of each COW machine. (3) Pressure and...
Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.
Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer
2014-03-01
The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.
VR/LE engine with a variable R/L during a single cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rychter, T.J.; Teodorczyk, A.
1985-01-01
A new concept of an engine, called a Variable R/L Engine (VR/LE) is presented. The main feature of the engine is the continuous change of the crank-radius to connecting-rod-length ratio (R/L) during the single engine cycle. The variations of the phase angle result in changes of all the engine stroke lengths and also-they are causing the changes of the thermodynamic cycle of the engine. Therefore the phase angle variations make it possible to regulate continuously the compression ratio and the displacement volume of the engine within the range which depends on the engine mechanism geometry. The presented concept can bemore » applied to all the types of the IC piston engines, independently of their size and operation principle.« less
Emission response from extended length, variable geometry gas turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troth, D.L.; Verdouw, A.J.; Tomlinson, J.G.
1974-01-01
A program to analyze, select, and experimentally evaluate low emission combustors for aircraft gas turbine engines is conducted to demonstrate a final combustor concept having a 50 percent reduction in total mass emissions (carbon monoxide, unburnt hydrocarbons, oxides of nitrogen, and exhaust smoke) without an increase in any specific pollutant. Research conducted under an Army Contract established design concepts demonstrating significant reductions in CO and UHC emissions. Two of these concepts were an extended length intermediate zone to consume CO and UHC and variable geometry to control the primary zone fuel air ratio over varying power conditions. Emission reduction featuresmore » were identified by analytical methods employing both reaction kinetics and empirical correlations. Experimental results were obtained on a T63 component combustor rig operating at conditions simulating the engine over the complete power operating range with JP-4 fuel. A combustor incorporating both extended length and variable geometry was evaluated and the performance and emission results are reported. These results are compared on the basis of a helicopter duty cycle and the EPA 1979 turboprop regulation landing take off cycle. The 1979 EPA emission regulations for P2 class engines can be met with the extended length variable geometry combustor on the T63 turboprop engine.« less
Heuristic-based scheduling algorithm for high level synthesis
NASA Technical Reports Server (NTRS)
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario
2007-01-01
The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.
The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes
NASA Astrophysics Data System (ADS)
Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.
2016-12-01
The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the length of a planet's habitable period.
Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study, volume 2
NASA Technical Reports Server (NTRS)
1981-01-01
The engine requirements are emphasized and include: high specific impulse within a restricted installed length constraint, long life, multiple starts, different thrust levels, and man-rated reliability. The engine operating characteristics and the major component analytical design are summarized.
Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming
2011-06-01
Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.
The influence of quarantine on reproductive cycling in wild-caught Baboons (Papio anubis).
Liechty, Emma R; Wang, Diane Y; Chen, Emily; Chai, Daniel; Bell, Jason D; Bergin, Ingrid L
2015-12-01
Stress impacts nonhuman primate menstrual cycle length but the impact of quarantine is unknown. A retrospective analysis was performed on cycle data from 31 wild-caught baboons during and following quarantine. Cycling initiated in 94 days (19-181) and length normalized within 4-6 cycles. Quarantine significantly impacts menstrual cycle length. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
2013-10-01
From June to November of 2010, the Louisiana Department of Transportation and : Development (DOTD) deployed ramp metering control, using a simple pre-timed operation : with a xed cycle length (2 seconds of green/2 seconds of red), along a 15-mile ...
Edge length dynamics on graphs with applications to p-adic AdS/CFT
Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian; ...
2017-06-30
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less
Edge length dynamics on graphs with applications to p-adic AdS/CFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
NASA Astrophysics Data System (ADS)
Xie, J. L.; Shi, X. J.; Xu, J. C.
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
The role of fracture mechanics in the design of fuel tanks in space vehicles
NASA Technical Reports Server (NTRS)
Denton, S. J.; Liu, C. K.
1976-01-01
With special reference to design of fuel tanks in space vehicles, the principles of fracture mechanics are reviewed. An approximate but extremely simple relationship is derived among the operating stress level, the length of crack, and the number of cycles of failure. Any one of the variables can be computed approximately from the knowledge of the other two, if the loading schedule (mission of the tank) is not greatly altered. Two sample examples illustrating the procedures of determining the allowable safe operating stress corresponding to a set of assumed loading schedule are included. The selection of sample examples is limited by the relatively meager available data on the candidate material for various stress ratios in the cycling.
Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Thomas A.
2015-01-01
Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman’s last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. PMID:25027273
NASA Astrophysics Data System (ADS)
Raman, Barani; Meier, Douglas; Shenoy, Rupa; Benkstein, Kurt; Semancik, Steve
2011-09-01
We describe progress on an array-based microsensor approach employed for detecting trace levels of toxic industrial chemicals (TICs) in air-based backgrounds with varied levels of humidity, and with occasional introduction of aggressive interferents. Our MEMS microhotplate arrays are populated with multiple chemiresistive sensing materials, and all elements are programmed to go through extensive temperature cycling over repetitive cycles with lengths of approximately 20 s. Under such operation, analytically-rich data streams are produced containing the required information for target recognition.
Effects of adrenalectomy and constant light on the rat estrous cycle.
Hoffmann, J C
1978-01-01
Adult female ARS/Sprague-Dawley rats were allowed to acclimatize to a a lighting schedule of 12L:12D (LD) for 5 weeks. At that time, half the animals were adrenalectomized, and all rats remained in LD for an additional 4 to 5 weeks. Subsequently, half of the control and half of the adrenalectomized rats were exposed to constant light (LL) for an additional 8 weeks, at which time all animals were sacificed. Operated rats with regenerated adrenal tissue, determined either by macroscopic examination or serum corticosterone assay (about 50% of the rats), were excluded from all data calculations. Acute disturbances of estrous cycle length were minor. The long-term effects revealed a significant increase in 5-day cycles among the adrenalectomized rats, although the majority of cycles recorded (80%) were still 4 days in length. None of the rats in LD showed spontaneous persistent estrus. Adrenalectomy did not affect the number of ova shed. When placed in LL, the adrenalectomized rats continued to cycle longer than the unoperated controls, but all rats showed persistent estrus (5 or more consecutive days of vaginal cornification) within 7--8 weeks. Adrenalectomized rats had significantly higher body weights than controls. Relative uterine weight was decreased in these animals in both lighting regimens but only reached statistical significance in LD. Ovarian weight, by contrast, was significantly increased among adrenalectomized rats in LD but was identical in both groups in LL. Adrenal weight of intact rats was not altered by LL. Since estrous cycles can continue for at least 6 months in the absence of the adrenal gland, the persistent estrus that occurs in LL is not merely due to the loss of a diurnal rhythm of corticosteroids. Indeed, when adrenalectomized rats are placed in LL, they continue to show estrous cycles longer than do intact rats. Adrenalectomy does appear to increase the length of the cycle in some animals, and the hormonal basis for this warrants further study.
The primacy model: a new model of immediate serial recall.
Page, M P; Norris, D
1998-10-01
A new model of immediate serial recall is presented: the primacy model. The primacy model stores order information by means of the assumption that the strength of activation of successive list items decreases across list position to form a primacy gradient. Ordered recall is supported by a repeated cycle of operations involving a noisy choice of the most active item followed by suppression of the chosen item. Word-length and list-length effects are attributed to a decay process that occurs both during input, when effective rehearsal is prevented, and during output. The phonological similarity effect is attributed to a second stage of processing at which phonological confusions occur. The primacy model produces accurate simulations of the effects of word length, list length, and phonological similarity.
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2017-07-20
Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.
Effect of Operating Frequency and Fill Time on PDE-Ejector Thrust Performance
NASA Technical Reports Server (NTRS)
Landry, K.; Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.
2005-01-01
Thrust measurements for a pulse detonation engine (PDE)-ejector system were determined for a range of operating frequencies. Various length tubular ejectors were utilized. The results were compared to the measurements of the thrust output of the PDE alone to determine the enhancement provided by each ejector configuration at the specified frequencies. Ethylene was chosen as the fuel, with an equi-molar mixture of nitrogen and oxygen acting as the oxidizer. The propellant was kept at an equivalence ratio of one during all the experiments. The system was operated for frequencies between 20 and 50 Hz. The parameter space of the study included PDE operation frequency, ejector length, overlap percentage, the radius of curvature for the ejector inlets, and duration of the time allowed between cycles. The results of the experiments showed a maximum thrust augmentation of 120% for a PDE-ejector configuration at a frequency of 40Hz with a fill time of 10 ms.
Lum, Kirsten J; Sundaram, Rajeshwari; Louis, Thomas A
2015-01-01
Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman's last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis
2009-11-01
The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.
Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle
NASA Astrophysics Data System (ADS)
Rouf; Su'ud, Zaki
2016-08-01
Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.
Analysis of ProSEDS Test of Bare-Tether Collection
NASA Technical Reports Server (NTRS)
Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.
2003-01-01
NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.
ALMA specifications and results: report at mid-cycle 3
NASA Astrophysics Data System (ADS)
Dent, W. R. F.
2016-07-01
ALMA is now nearing the end of its third cycle of operations, and is transitioning from `early science' to regular PI-driven observing. The array has been operated over the complete range of available baseline lengths, from <10m with the ACA out to the maximum of 16km in the long-baseline configuration. Typically 40 12m-diameter antennas are now used at any one time. In this paper, we summarise the advertised capabilities and how they have evolved in the first 5 years, the proposal pressure and `hot spots', and describe some of the issues with the real measured system performance. We also outline the observing statistics, project completion rates, and papers from ALMA. Finally we highlight some of the new transformational science coming from this facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle lengthmore » for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.« less
Sabau, Adrian S.; Nejad, Ali H.; Klett, James W.; ...
2017-11-26
Here in this article, a novel geometry is proposed for evaporators that are used in Supercritical Organic Rankine Cycles. The proposed geometry consists of successive plenums at several length-scale levels, creating a multi-scale heat exchanger (HX). The channels at the lowest length-scale levels were considered to have their length determined by the thermal entrance-length. Numerical simulations based on turbulent flow correlations for supercritical R134a and water were used to evaluate the performance of heat exchangers. Using the data on pumping power and area of heat exchange, the total present cost was evaluated using a cost model for shell-and-tube heat exchangers.more » With respect to the shell-and-tube baseline case, the cost per heat load and total costs of new HXs is lowered by approximately 20–26% and 15–30%, respectively. This reduction in present costs of the new HXs were found to be attributed to higher operational costs for the shell-and-tube HXs, as evidenced by the higher pumping power, as well their capital investment costs. The cost savings in the new HX designs compared to those of the shell-and-tube HXs, at similar heat load performance, indicate that the new HX architectures proposed in this paper are valid alternatives to traditional HX designs.« less
On the Influence of the Solar Bi-Cycle on Comic Ray Modulatio
NASA Astrophysics Data System (ADS)
Lifter, N. Part Xxvii: A. Defect Of The Solar Dynamo. B.; Scissors, K.; Sprucener, H.
In this presentation we propose a new paradigm that explains the different lengths of individual solar Hale cycles. It proves beneficial to distinguish between a so-called inHale and ex-Hale cycle, which together form the solar bi-cycle. We carefully analyzed the influence of so-called complex mode excitations (CMEs) on comic ray modulation, in particular on the drifts of the comic isotope O+3 , which we found to induce characteristic anisotropies. This comic isotope anisotropy (CIA) is caused by the wellknown north-south asymmetry (NSA) and can be observed as a rare Forbush increase (FBI). The latter is linked to the solar magnetic field which appears to have a chaotic behaviour (for details see part I-XXVI). Especially during an ex-Hale cycle magnetic flux is pseudo-pneumatically escaping through a coronal hole. Consequently, the solar dynamo can no longer operate efficiently, i.e. is defect.
Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation
NASA Technical Reports Server (NTRS)
Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.
1998-01-01
The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.
Sohda, Satoshi; Suzuki, Kenta; Igari, Ichiro
2017-11-27
There are many mobile phone apps aimed at helping women map their ovulation and menstrual cycles and facilitating successful conception (or avoiding pregnancy). These apps usually ask users to input various biological features and have accumulated the menstrual cycle data of a vast number of women. The purpose of our study was to clarify how the data obtained from a self-tracking health app for female mobile phone users can be used to improve the accuracy of prediction of the date of next ovulation. Using the data of 7043 women who had reliable menstrual and ovulation records out of 8,000,000 users of a mobile phone app of a health care service, we analyzed the relationship between the menstrual cycle length, follicular phase length, and luteal phase length. Then we fitted a linear function to the relationship between the length of the menstrual cycle and timing of ovulation and compared it with the existing calendar-based methods. The correlation between the length of the menstrual cycle and the length of the follicular phase was stronger than the correlation between the length of the menstrual cycle and the length of the luteal phase, and there was a positive correlation between the lengths of past and future menstrual cycles. A strong positive correlation was also found between the mean length of past cycles and the length of the follicular phase. The correlation between the mean cycle length and the luteal phase length was also statistically significant. In most of the subjects, our method (ie, the calendar-based method based on the optimized function) outperformed the Ogino method of predicting the next ovulation date. Our method also outperformed the ovulation date prediction method that assumes the middle day of a mean menstrual cycle as the date of the next ovulation. The large number of subjects allowed us to capture the relationships between the lengths of the menstrual cycle, follicular phase, and luteal phase in more detail than previous studies. We then demonstrated how the present calendar methods could be improved by the better grouping of women. This study suggested that even without integrating various biological metrics, the dataset collected by a self-tracking app can be used to develop formulas that predict the ovulation day when the data are aggregated. Because the method that we developed requires data only on the first day of menstruation, it would be the best option for couples during the early stages of their attempt to have a baby or for those who want to avoid the cost associated with other methods. Moreover, the result will be the baseline for more advanced methods that integrate other biological metrics. ©Satoshi Sohda, Kenta Suzuki, Ichiro Igari. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.11.2017.
Chlorination by-products in drinking water and menstrual cycle function.
Windham, Gayle C; Waller, Kirsten; Anderson, Meredith; Fenster, Laura; Mendola, Pauline; Swan, Shanna
2003-06-01
We analyzed data from a prospective study of menstrual cycle function and early pregnancy loss to explore further the effects of trihalomethanes (THM) on reproductive end points. Premenopausal women ((italic)n(/italic) = 403) collected urine samples daily during an average of 5.6 cycles for measurement of steroid metabolites that were used to define menstrual parameters such as cycle and phase length. Women were asked about consumption of various types of water as well as other habits and demographics. A THM level was estimated for each cycle based on residence and quarterly measurements made by water utilities during a 90-day period beginning 60 days before the cycle start date. We found a monotonic decrease in mean cycle length with increasing total THM (TTHM) level; at > 60 microg/L, the adjusted decrement was 1.1 days [95% confidence interval (CI), -1.8 to -0.40], compared with less than or equal to 40 microg/L. This finding was also reflected as a reduced follicular phase length (difference -0.94 day; 95% CI, -1.6 to -0.24). A decrement in cycle and follicular phase length of 0.18 days (95% CI, -0.29 to -0.07) per 10 microg/L unit increase in TTHM concentration was found. There was little association with luteal phase length, menses length, or cycle variability. Examining the individual THMs by quartile, we found the greatest association with chlorodibromomethane or the sum of the brominated compounds. Incorporating tap water consumption showed a similar pattern of reduced cycle length with increasing TTHM exposure. These findings suggest that THM exposure may affect ovarian function and should be confirmed in other studies.
Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2017-01-01
Air pollution can influence women’s reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM10, SO2, CO, and NOx) to represent a source-related mixture. PM10 and SO2 assessed separately negatively affected the length of the luteal phase after standardization (b = −0.02; p = 0.03; b = −0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = −0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NOx assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women. PMID:28726748
Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24
NASA Astrophysics Data System (ADS)
Paassilta, Miikka; Raukunen, Osku; Vainio, Rami; Valtonen, Eino; Papaioannou, Athanasios; Siipola, Robert; Riihonen, Esa; Dierckxsens, Mark; Crosby, Norma; Malandraki, Olga; Heber, Bernd; Klein, Karl-Ludwig
2017-06-01
We present a new catalogue of solar energetic particle events near the Earth, covering solar cycle 23 and the majority of solar cycle 24 (1996-2016), based on the 55-80 MeV proton intensity data gathered by the Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron experiment (SOHO/ERNE). In addition to ERNE proton and heavy ion observations, data from the Advanced Composition Explorer/Electron, Proton and Alpha Monitor (ACE/EPAM) (near-relativistic electrons), SOHO/EPHIN (Electron Proton Helium Instrument) (relativistic electrons), SOHO/LASCO (Large Angle and Spectrometric Coronagraph) (coronal mass ejections, CMEs) and Geostationary Operational Environmental Satellite (GOES) soft X-ray experiments are also considered and the associations between the particle and CME/X-ray events deduced to obtain a better understanding of each event. A total of 176 solar energetic particle (SEP) events have been identified as having occurred during the time period of interest; their onset and solar release times have been estimated using both velocity dispersion analysis (VDA) and time-shifting analysis (TSA) for protons, as well as TSA for near-relativistic electrons. Additionally, a brief statistical analysis was performed on the VDA and TSA results, as well as the X-rays and CMEs associated with the proton/electron events, both to test the viability of the VDA and to investigate possible differences between the two solar cycles. We find, in confirmation of a number of previous studies, that VDA results for protons that yield an apparent path length of 1 AU < s ≾ 3 AU seem to be useful, but those outside this range are probably unreliable, as evidenced by the anticorrelation between apparent path length and release time estimated from the X-ray activity. It also appears that even the first-arriving energetic protons apparently undergo significant pitch angle scattering in the interplanetary medium, with the resulting apparent path length being on average about twice the length of the spiral magnetic field. The analysis indicates an increase in high-energy SEP events originating from the far-eastern solar hemisphere; for instance, such an event with a well-established associated GOES flare has so far occurred three times during cycle 24 but possibly not at all during cycle 23. The generally lower level of solar activity during cycle 24, as opposed to cycle 23, has probably caused a significant decrease in total ambient pressure in the interplanetary space, leading to a larger proportion of SEP-associated halo-type CMEs. Taken together, these observations point to a qualitative difference between the two solar cycles.
Elek, J; Prochazka, A; Hulliger, M; Vincent, S
1990-01-01
1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our results suggested that the stiffness of the MG tendinous compartment was force related, and about double that of cat soleus muscle at any given force. Calculations indicated that though the stretch was small, the MG tendon would store and release enough strain energy per cycle to contribute significantly to the E3 phase of the step cycle. The discrepancies in spindle firing were generally quite subtle, so we reject the claim that extramysial stretch poses a serious difficulty for inferences about fusimotion from chronic spindle afferent recordings. PMID:2148952
Length of the solar cycle influence on the relationship NAO-Northern Hemisphere Temperature
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Añel, J. A.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
The influence of the length of the solar cycle on the relationship North Atlantic Oscillation (NAO)-Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship is different according to the length of the solar cycle. When the sunspot cycle is 10 or 11 years long, wintertime NAO and NHT are positively correlated, being the signal more intense during 11 years period, but when the sunspot cycle is longer (12 years) correlations between wintertime NAO and NHT are not significant. In fact there are significant negative correlations between wintertime NAO and spring NHT, with predictive potential.
Uterine length and fertility outcomes: a cohort study in the IVF population.
Hawkins, L K; Correia, K F; Srouji, S S; Hornstein, M D; Missmer, S A
2013-11-01
What is the relationship between pre-cycle uterine length and IVF outcome (chemical pregnancy, clinical pregnancy, spontaneous abortion and live birth)? Women at extremes of uterine length (<7.0 or >9.0 cm) were less likely to achieve live birth and women with uterine lengths <6.0 cm were also more likely to experience spontaneous abortion. A prospective study of 807 women published in 2000 found that implantation and clinical pregnancy rates were highest in women with uterine lengths between 7.0 and 9.0 cm, though the difference was not significant. The relationship between pre-cycle uterine length and live birth has not been evaluated. A retrospective cohort study of all cycles performed after uterine length measurement at an academic hospital IVF clinic from 2001 to 2012. A total of 8981 fresh cycles were performed in 5120 adult women with normal uterine anatomy. Women with uterine anomalies (unicornuate, bicornuate, septate or uterus exposed to diethylstilbestrol) were excluded and women with fibroids were identified for subanalysis. Uterine length was measured by uterine sounding. Cycles were divided by uterine length into groups: <6.0 cm (very short, n = 76), 6.0-6.9 cm (short, n = 2014), 7.0-7.9 cm (referent, n = 4984), 8.0-8.9 cm (long, n = 1664) and ≥9 cm (very long, n = 243). Multivariate logistic regression (first-cycle analyses) and generalized estimating equations (all-cycle analyses) were adjusted for age, fibroids and ART treatment (assisted hatching, intracytoplasmic sperm injection) to generate relative risk (RR) of cycle outcomes by uterine length. Median uterine length in the IVF population was 7.0 cm (interquartile range 7.0-7.8) and was positively associated with BMI (P < 0.001) and fibroids (P = 0.02). Compared with the referent group, women with uterine lengths <6.0 cm were half as likely to achieve live birth (RR: 0.53; 95% confidence interval (CI): 0.35-0.81) and women with lengths of 6.0-6.9 cm were also less likely (RR: 0.91; CI: 0.85-0.98). Cubic regression spline identified a significant inverse U-shaped association whereby women with uterine lengths <7.0 or >9.0 cm were less likely to achieve live birth. Women with lengths <6.0 cm were also more likely to experience spontaneous abortion (RR: 2.16; CI: 1.23-3.78). Results remained consistent when excluding women with a uterine factor diagnosis (n = 8823), when limiting to the first cycle at our institution (n = 5120) and when further restricting to first-ever cycles (n = 3941). Optimal assessment of uterine length by ultrasound was not feasible due to time and cost limitations, though uterine sounding is a clinically relevant measurement allowing for results with practical implications. Findings from our predominantly Caucasian clinic population may not be generalizable to infertile populations with different ethnic compositions. Reproducibility of results would solidify findings and inform patient counseling in women undergoing IVF. No funding was sought for this investigation. MD declares relationships with UpToDate (royalties) and WINFertlity (consultant).
Apparatus and method for classifying fuel pellets for nuclear reactor
Wilks, Robert S.; Sternheim, Eliezer; Breakey, Gerald A.; Sturges, Jr., Robert H.; Taleff, Alexander; Castner, Raymond P.
1984-01-01
Control for the operation of a mechanical handling and gauging system for nuclear fuel pellets. The pellets are inspected for diameters, lengths, surface flaws and weights in successive stations. The control includes, a computer for commanding the operation of the system and its electronics and for storing and processing the complex data derived at the required high rate. In measuring the diameter, the computer enables the measurement of a calibration pellet, stores that calibration data and computes and stores diameter-correction factors and their addresses along a pellet. To each diameter measurement a correction factor is applied at the appropriate address. The computer commands verification that all critical parts of the system and control are set for inspection and that each pellet is positioned for inspection. During each cycle of inspection, the measurement operation proceeds normally irrespective of whether or not a pellet is present in each station. If a pellet is not positioned in a station, a measurement is recorded, but the recorded measurement indicates maloperation. In measuring diameter and length a light pattern including successive shadows of slices transverse for diameter or longitudinal for length are projected on a photodiode array. The light pattern is scanned electronically by a train of pulses. The pulses are counted during the scan of the lighted diodes. For evaluation of diameter the maximum diameter count and the number of slices for which the diameter exceeds a predetermined minimum is determined. For acceptance, the maximum must be less than a maximum level and the minimum must exceed a set number. For evaluation of length, the maximum length is determined. For acceptance, the length must be within maximum and minimum limits.
Accreditation status of U.S. military graduate medical education programs.
De Lorenzo, Robert A
2008-07-01
Military graduate medical education (GME) comprises a substantial fraction of U.S. physician training capacity. The wars in Iraq and Afghanistan have placed substantial stress on military medicine, and lay and professional press accounts have raised awareness of the effects on military GME. To date, however, objective data on military GME quality remains sparse. Determine the accreditation status of U.S. military GME programs. Additionally, military GME program data will be compared to national (U.S.) accreditation lengths. Retrospective review of Accreditation Council for Graduate Medical Education (ACGME) data. All military-sponsored core programs in specialties with at least three residencies were included. Military-affiliated but civilian-sponsored programs were excluded. The current and past cycle data were used for the study. For each specialty, the current mean accreditation length and the net change in cycle was calculated. National mean accreditation lengths by specialty for 2005 to 2006 were obtained from the ACGME. Comparison between the overall mean national and military accreditation lengths was performed with a z test. All other comparisons employed descriptive statistics. Ninety-nine military programs in 15 specialties were included in the analysis. During the study period, 1 program was newly accredited, and 6 programs had accreditation withdrawn or were closed. The mean accreditation length of the military programs was 4.0 years. The overall national mean for the same specialties is 3.5 years (p < 0.01). In previous cycles, 68% of programs had accreditation of 4 years or longer, compared to 70% in the current cycle, while 13% had accreditation of 2 years or less in the previous cycle compared to 14% in the current cycle. Ten (68%) of the military specialties had mean accreditation lengths greater than the national average, while 5 (33%) were below it. Ten (68%) specialties had stable or improving cycle lengths when compared to previous cycles. Military GME accreditation cycle lengths are, overall, longer than national averages. Trends show many military programs are experiencing either stable or slightly lengthening accreditation compared to previous cycles. A few specialties show a declining trend. There has been a modest 5% decline in the number of military core residency programs since 2000.
Malone-brayton cycle engine/heat pump
NASA Astrophysics Data System (ADS)
Gilmour, Thomas A.
1994-07-01
A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.
Quasi-static analysis of foil journal bearings for a Brayton cycle turboalternator
NASA Technical Reports Server (NTRS)
Eshel, A.
1974-01-01
A quasi-static analysis is presented for foil journal bearings designed for a NASA Brayton Cycle Turboalternator. Included in the analysis are effects of 'slack' (due to flexural rigidity of the foil), of frictionally restrained extension of the foil-length in contact with cylindrical guides, of fluid inertia and compressibility, and of thermal expansion of rotor, foil and supporting structure. Comparisons are made with results of early experiments performed by Licht (1968, 1969) and recent data of Licht and Branger (1973). Variatons of film thickness, foil tension and bearing stiffness are presented graphically as functions of pertinent parameters for the case of operation in zero-gravity environment.
On the seat of the solar cycle
NASA Technical Reports Server (NTRS)
Gough, D.
1981-01-01
A discussion of some of the issues raised in connection with the seat of the solar cycle are presented. Is the cycle controlled by a strictly periodic oscillator that operates in the core, or is it a turbulent dynamo confined to the convection zone and possibly a thin boundary layer beneath it? Sunspot statistics are discussed, with a view to ascertaining the length of the memory of the cycle, without drawing a definitive conclusion. Also discussed are some of the processes that might bring about variations delta L and delta R in the luminosity and the radius of the photosphere. It appears that the ratio W = delta lnR/delta lnL increases with the depth of the disturbance that produces the variations, so that imminent observations might determine whether or not the principal dynamical processes are confined to only the outer layers of the Sun.
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
The effect of ultradian and orbital cycles on plant growth
NASA Technical Reports Server (NTRS)
Berry, W.; Hoshizaki, T.; Ulrich, A.
1986-01-01
In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.
Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study
Davis, Stephanie I; Blanck, Heidi Michels; Hertzberg, Vicki S; Tolbert, Paige E; Rubin, Carol; Cameron, Lorraine L; Henderson, Alden K; Marcus, Michele
2005-01-01
Background Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. Methods The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. Results Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. Conclusion This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds. PMID:16091135
MELO, MARCO A.B.; SIMÓN, CARLOS; REMOHÍ, JOSÉ; PELLICER, ANTONIO; MESEGUER, MARCOS
2007-01-01
Aim: The aim of the present study was to identify the risk factors, their prognostic value on multiple pregnancies (MP) prediction and their thresholds in women undergoing controlled ovarian hyperstimulation (COH) with follicle stimulating hormone (FSH) and intrauterine insemination (IUI). Methods: A case‐control study was carried out by identifying in our database all the pregnancies reached by donor and conjugal IUI (DIUI and CIUI, respectively), and compared cycle features, patients’ characteristics and sperm analysis results between women achieving single pregnancy (SP) versus MP. The number of gestational sacs, follicular sizes and estradiol levels on the human chorionic gonadotropin (hCG) administration day, COH length and semen parameters were obtained from each cycle and compared. Student's t‐tests for mean comparisons, receiver–operator curve (ROC) analysis to determine the predictive value of each parameter on MP achievement and multiple regression analysis to determine single parameter influence were carried out. Results: Women with MP in IUI stimulated cycles reached the adequate size of the dominant follicle (17 mm) significantly earlier than those achieving SP. Also, the mean follicles number, and estradiol levels on the hCG day were higher in the CIUI and DIUI MP group. Nevertheless, only ROC curve analysis revealed good prognostic value for estradiol and follicles higher than 17 mm. Multiple regression analysis confirmed these results. No feature of the basic sperm analysis, either in the ejaculate or in the prepared sample, was different or predictive of MP. When using donor sperm, different thresholds of follicle number, stimulation length and estradiol in the prediction of MP were noted, in comparison with CIUI. Conclusions: MP in stimulated IUI cycles are closely associated to stimulation length, number of developed follicles higher than 17 mm on the day of hCG administration and estradiol levels. Also, estradiol has a good predictive value over MP in IUI stimulated cycles. The establishment of clinical thresholds will certainly help in the management of these couples to avoid undesired multiple pregnancies by canceling cycles or converting them into in vitro fertilization procedures. (Reprod Med Biol 2007; 6: 19–26) PMID:29699262
High temperature electrically conducting ceramic heating element and control system
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.
1975-01-01
Improvements were made in both electrode technology and ceramic conductor quality to increase significantly the lifetime and thermal cycling capability of electrically conducting ceramic heater elements. These elements were operated in vacuum, inert and reducing environments as well as oxidizing atmospheres adding to the versatility of the conducting ceramic as an ohmic heater. Using stabilized zirconia conducting ceramic heater elements, a furnace was fabricated and demonstrated to have excellent thermal response and cycling capability. The furnace was used to melt platinum-20% rhodium alloy (melting point 1904 C) with an isothermal ceramic heating element having a nominal working cavity size of 2.5 cm diameter by 10.0 cm long. The furnace was operated to 1940 C with the isothermal ceramic heating element. The same furnace structure was fitted with a pair of main heater elements to provide axial gradient temperature control over a working cavity length of 17.8 cm.
Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.
Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H
2006-12-01
The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.
Upson, Kristen; Harmon, Quaker E.; Baird, Donna D.
2016-01-01
Objective To examine the association between serum 25-hydroxyvitamin D (25(OH)D) and menstrual cycle length and regularity. Design Community-based, cross-sectional study of serum 25(OH)D (adjusted for seasonal differences in timing of blood draw) and menstrual cycle length. Women ages 23-34 reported their gynecologic history. Menstrual cycles were described with four independent categories (normal, short, long, irregular). We used polytomous logistic regression to estimate the association between a doubling of seasonally-adjusted 25(OH)D and the odds of each cycle category. Setting Women from the Detroit, Michigan area attended a study clinic visit. Participants 1102 African-American women ages 23-34. Intervention None Main Outcome Measure Self-reported menstrual cycle length over the previous 12 months excluding women who were using cycle-regulating medications over the entire year. Women who reported that their cycles were “too irregular to estimate” were classified as having irregular cycles. A typical cycle length of <27 days was considered “short,” >34 days was “long,” and 27-34 days was “normal”. Results The median 25(OH)D level was 14.7 ng/ml (interquartile range: 10.9, 19.6). A doubling of 25(OH)D was associated with half the odds of having long menstrual cycles (adjusted odds ratio (aOR) (95% Confidence interval (CI): 0.54 (0.32, 0.89)). 25(OH)D was not associated with the occurrence of short (aOR(CI): 1.03 (0.82, 1.29)) or irregular (aOR(CI): 1.46 (0.88, 2.41) menstrual cycles. Results were robust to several sensitivity analyses. Conclusions These findings suggest that vitamin D status may influence the menstrual cycle and play a role in ovarian function. Further investigation of 25(OH)D and ovarian hormones, and prospective studies of 25(OH)D and cycle length, are needed. PMID:26997249
Jukic, Anne Marie Z; Upson, Kristen; Harmon, Quaker E; Baird, Donna D
2016-07-01
To examine the association between serum 25-hydroxyvitamin D [25(OH)D] and menstrual cycle length and regularity. Community-based, cross-sectional study of serum 25(OH)D (adjusted for seasonal differences in timing of blood draw) and menstrual cycle length. Women aged 23-34 years reported their gynecologic history. Menstrual cycles were described with four independent categories (normal, short, long, irregular). We used polytomous logistic regression to estimate the association between a doubling of seasonally adjusted 25(OH)D and the odds of each cycle category. Not applicable. A total of 1,102 African American women. Not applicable. Self-reported menstrual cycle length over the previous 12 months, excluding women who were using cycle-regulating medications over the entire year. Women who reported that their cycles were "too irregular to estimate" were classified as having irregular cycles. A typical cycle length of <27 days was considered "short," >34 days was "long," and 27-34 days was "normal." The median 25(OH)D level was 14.7 ng/mL (interquartile range, 10.9-19.6 ng/mL). A doubling of 25(OH)D was associated with half the odds of having long menstrual cycles: adjusted odds ratio (aOR) 0.54, 95% confidence interval (CI) 0.32-0.89. 25-Hydroxyvitamin D was not associated with the occurrence of short (aOR 1.03, 95% CI 0.82-1.29) or irregular (aOR 1.46, 95% CI 0.88-2.41) menstrual cycles. Results were robust to several sensitivity analyses. These findings suggest that vitamin D status may influence the menstrual cycle and play a role in ovarian function. Further investigation of 25(OH)D and ovarian hormones, and prospective studies of 25(OH)D and cycle length, are needed. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
Post Irradiation Examination for Advanced Materials at Burnups Exceeding the Current Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
John H. Strumpell
2004-12-31
Permitting fuel to be irradiated to higher burnups limits can reduce the amount of spent nuclear fuel (SNF) requiring storage and/or disposal and enable plants to operate with longer more economical cycle lengths and/or at higher power levels. Therefore, Framatome ANP (FANP) and the B&W Owner's Group (BWOG) have introduced a new fuel rod design with an advanced M5 cladding material and have irradiated several test fuel rods through four cycles. The U.S. Department of Energy (DOE) joined FANP and the BWOG in supporting this project during its final phase of collecting and evaluating high burnup data through post irradiationmore » examination (PIE).« less
Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core
NASA Astrophysics Data System (ADS)
Morita, Y.; Kageyama, T.; Akoshima, M.; Torizuka, S.; Tsukamoto, M.; Yamashita, S.; Yoshikawa, N.
2013-11-01
The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA-ribbon-wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated.
Variation of the distribution of crack lengths during corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Miyao, K.; Shiozawa, K.
1984-07-01
The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.
Influence of crank length and crank width on maximal hand cycling power and cadence.
Krämer, Christian; Hilker, Lutz; Böhm, Harald
2009-07-01
The effect of different crank lengths and crank widths on maximal hand cycling power, cadence and handle speed were determined. Crank lengths and crank widths were adapted to anthropometric data of the participants as the ratio to forward reach (FR) and shoulder breadth (SB), respectively. 25 able-bodied subjects performed maximal inertial load hand cycle ergometry using crank lengths of 19, 22.5 and 26% of FR and 72, 85 and 98% of SB. Maximum power ranged from 754 (246) W for the crank geometry short wide (crank length x crank width) to 873 (293) W for the combination long middle. Every crank length differed significantly (P < 0.05) from each other, whereas no significant effect of crank width to maximum power output was revealed. Optimal cadence decreased significantly (P < 0.001) with increasing crank length from 124.8 (0.9) rpm for the short to 107.5 (1.6) rpm for the long cranks, whereas optimal handle speed increased significantly (P < 0.001) with increasing crank length from 1.81 (0.01) m/s for the short to 2.13 (0.03) m/s for the long cranks. Crank width did neither influence optimal cadence nor optimal handle speed significantly. From the results of this study, for maximum hand cycling power, a crank length to FR ratio of 26% for a crank width to SB ratio of 85% is recommended.
NASA Technical Reports Server (NTRS)
Landry, K.
2005-01-01
Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.
Validity of the two-level model for Viterbi decoder gap-cycle performance
NASA Technical Reports Server (NTRS)
Dolinar, S.; Arnold, S.
1990-01-01
A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C; Demko, Dr. Jonathan A; Lumsdaine, Arnold
2015-01-01
In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH)more » has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.« less
Cobos-Trigueros, Nazaret; Solé, Mar; Castro, Pedro; Torres, Jorge Luis; Rinaudo, Mariano; De Lazzari, Elisa; Morata, Laura; Hernández, Cristina; Fernández, Sara; Soriano, Alex; Nicolás, José María; Mensa, Josep; Vila, Jordi; Martínez, José Antonio
2016-01-01
To compare the effect of two strategies of antibiotic use (mixing vs. cycling) on the acquisition of resistant microorganisms, infections and other clinical outcomes. Prospective cohort study in an 8-bed intensive care unit during 35- months in which a mixing-cycling policy of antipseudomonal beta-lactams (meropenem, ceftazidime/piperacillin-tazobactam) and fluoroquinolones was operative. Nasopharyngeal and rectal swabs and respiratory secretions were obtained within 48h of admission and thrice weekly thereafter. Target microorganisms included methicillin-resistant S. aureus, vancomycin-resistant enterococci, third-generation cephalosporin-resistant Enterobacteriaceae and non-fermenters. A total of 409 (42%) patients were included in mixing and 560 (58%) in cycling. Exposure to ceftazidime/piperacillin-tazobactam and fluoroquinolones was significantly higher in mixing while exposure to meropenem was higher in cycling, although overall use of antipseudomonals was not significantly different (37.5/100 patient-days vs. 38.1/100 patient-days). There was a barely higher acquisition rate of microorganisms during mixing, but this difference lost its significance when the cases due to an exogenous Burkholderia cepacia outbreak were excluded (19.3% vs. 15.4%, OR 0.8, CI 0.5-1.1). Acquisition of Pseudomonas aeruginosa resistant to the intervention antibiotics or with multiple-drug resistance was similar. There were no significant differences between mixing and cycling in the proportion of patients acquiring any infection (16.6% vs. 14.5%, OR 0.9, CI 0.6-1.2), any infection due to target microorganisms (5.9% vs. 5.2%, OR 0.9, CI 0.5-1.5), length of stay (median 5 d for both groups) or mortality (13.9 vs. 14.3%, OR 1.03, CI 0.7-1.3). A cycling strategy of antibiotic use with a 6-week cycle duration is similar to mixing in terms of acquisition of resistant microorganisms, infections, length of stay and mortality.
Higgs, Paul G
2016-06-08
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.
Higgs, Paul G.
2016-01-01
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479
Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy
2014-09-01
63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen
AM CAS - Spectral variations during the eruption cycles
NASA Astrophysics Data System (ADS)
Richter, G. A.; Notni, P.; Tiersch, H.
Spectroscopic investigations of AM Cas, the Z Camelopardalis star with the shortest known mean cycle length, were performed during quiescence and eruption. It is shown that, although the cycle length is very small, the spectral behavior of AM Cas during an eruption cycle is similar to that of other Z Camelopardalis stars and other U Geminorum stars. During an outburst, the Balmer emissions are narrower and the Balmer decrement is steeper than during quiescence.
Chemical Reactions in Turbulent Mixing Flows.
1987-06-01
longer in the z-t diagrams for higher fuel flow rates (consistent with longer flame lengths ) and, further, the celerity of a structure at a given axial...clocking rate synchronized with the cycle, while the slower clocking rate data corres- pond to about seven cycles. Flame lengths [61, Z,,D, for various...heat fABlLE I releases studied here are also shown in Table I Flame Lengths and Axial Measurement Stations, These flame lengths are based on 50% intermit
Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.
Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L
1984-11-01
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.
Reconstructing the 11-year solar cycle length from cosmogenic radionuclides for the last 600 years
NASA Astrophysics Data System (ADS)
Nilsson, Emma; Adolphi, Florian; Mekhaldi, Florian; Muscheler, Raimund
2017-04-01
The cyclic behavior of the solar magnetic field has been known for centuries and the 11-year solar cycle is one of the most important features directly visible on the solar disc. Using sunspot records it is evident that the length of this cycle is variable. A hypothesis of an inverse relationship between the average solar activity level and the solar cycle length has been put forward (e.g. Friis-Christensen & Lassen, 1991), indicating longer solar cycles during periods of low solar activity and vice versa. So far, studies of the behavior of the 11-year solar cycle have largely been limited for the last 4 centuries where observational sunspot data are available. However, cosmogenic radionuclides, such as 10Be and 14C from ice cores and tree rings allow an assessment of the strength of the open solar magnetic field due to its shielding influence on galactic cosmic rays in the heliosphere. Similarly, very strong solar storms can leave their imprint in cosmogenic radionuclide records via solar proton-induced direct production of cosmogenic radionuclides in the Earth atmosphere. Here, we test the hypothesis of an inverse relationship between solar cycle length and the longer-term solar activity level by using cosmogenic radionuclide records as a proxy for solar activity. Our results for the last six centuries suggest significant solar cycle length variations that could exceed the range directly inferred from sunspot records. We discuss the occurrence of SPEs within the 11-year solar cycle from a radionuclide perspective, specifically the largest one known yet, at AD 774-5 (Mekhaldi et al., 2015). References: Friis-Christensen, E. & Lassen, K. Length of the solar-cycle - An indicator of solar activity closely associated with climate. Science 254, 698-700, doi:10.1126/science.254.5032.698 (1991). Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C. & Woodruff, T. E. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8, doi:10.1038/ncomms9611 (2015).
Orbital transfer rocket engine technology: Advanced engine study
NASA Technical Reports Server (NTRS)
Hayden, Warren R.
1992-01-01
An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.
Gold, Daniel R.; Catanzaro, John N.; Makaryus, John N.; Waldman, Cory; Sauer, William H.; Sison, Cristina; Makaryus, Amgad N.; Altman, Erik; Jadonath, Ram; Beldner, Stuart
2010-01-01
Studies have shown the predictive value of inducible ventricular tachycardia and clinical arrhythmia in patients who have structural heart disease. We examined the possible predictive value of electrophysiologic study before the placement of an implantable cardioverter-defibrillator. Our retrospective study group comprised 315 patients who had ventricular tachycardia that was inducible during electrophysiologic study and who had undergone at least 1 month of follow-up (247 men; mean age, 66.9 ± 13.5 yr; mean follow-up, 24.9 ± 14.8 mo). Recorded characteristics included induced ventricular tachycardia cycle length, atrio-His and His-ventricular electrograms, PR and QT intervals, QRS duration, and drug therapy. Of the 315 patients, 97 experienced ventricular arrhythmia during the follow-up period, as registered by 184 of more than 400 interrogations. There were 187 episodes of ventricular arrhythmia (tachycardia, 178; fibrillation, 9) during 652.5 person-years of follow-up. Subjects with a cycle length ≥240 msec were more likely to have an earlier 1st arrhythmia than those with a cycle length <240 msec (P=0.032). A quarter of the subjects with a cycle length ≥240 msec had their 1st arrhythmia by 19.14 months, compared with 23.8 months for a quarter of the subjects with a cycle length <240 msec (P <0.032). Among the electrophysiologic characteristics examined, inducible ventricular tachycardia with a cycle length ≥240 msec is predictive of appropriate implantable cardioverter-defibrillator therapy at an earlier time. This may have prognostic implications that warrant implantable cardioverter-defibrillator programming to enable appropriate antitachycardia pacing in this group of patients. PMID:20548804
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
Barrett, E.S.; Thune, I.; Lipson, S.F.; Furberg, A.-S.; Ellison, P.T.
2013-01-01
STUDY QUESTION How are ovarian steroid concentrations, gonadotrophins and menstrual cycle characteristics inter-related within normal menstrual cycles? SUMMARY ANSWER Within cycles, measures of estradiol production are highly related to one another, as are measures of progesterone production; however, the two hormones also show some independence from one another, and measures of cycle length and gonadotrophin concentrations show even greater independence, indicating minimal integration within cycles. WHAT IS KNOWN ALREADY The menstrual cycle is typically conceptualized as a cohesive unit, with hormone levels, follicular development and ovulation all closely inter-related within a single cycle. Empirical support for this idea is limited, however, and to our knowledge, no analysis has examined the relationships among all of these components simultaneously. STUDY DESIGN, SIZE, DURATION A total of 206 healthy, cycling Norwegian women participated in a prospective cohort study (EBBA-I) over the duration of a single menstrual cycle. Of these, 192 contributed hormonal and cycle data to the current analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Subjects provided daily saliva samples throughout the menstrual cycle from which estradiol and progesterone concentrations were measured. FSH and LH concentrations were measured in serum samples from three points in the same menstrual cycle and cycle length characteristics were calculated based on hormonal data and menstrual records. A factor analysis was conducted to examine the underlying relationships among 22 variables derived from the hormonal data and menstrual cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Six rotated factors emerged, explaining 80% of the variance in the data. Of these, factors representing estradiol and progesterone concentrations accounted for 37 and 13% of the variance, respectively. There was some association between measures of estradiol and progesterone production within cycles; however, cycle length characteristics and gonadotrophin concentrations showed little association with any measure of ovarian hormone concentrations. LIMITATIONS, REASONS FOR CAUTION Our summary measures of ovarian hormones may be imprecise in women with extremely long or short cycles, which could affect the patterns emerging in the factor analysis. Given that we only had data from one cycle on each woman, we cannot address how cycle characteristics may covary within individual women across multiple cycles. WIDER IMPLICATIONS OF THE FINDINGS Our findings are generalizable to other healthy populations with typical cycles, however, may not be applicable to cycles that are anovulatory, extreme in length or otherwise atypical. The results support previous findings that measures of estradiol production are highly correlated across the cycle, as are measures of progesterone production. Estradiol and progesterone concentrations are associated with one another, furthermore. However factor analysis also revealed more complex underlying patterns in the menstrual cycle, highlighting the fact that gonadotrophin concentrations and cycle length characteristics are virtually independent of ovarian hormones. These results suggest that despite integration of follicular and luteal ovarian steroid production across the cycle, cycle quality is a multi-faceted construct, rather than a single dimension. STUDY FUNDING/COMPETING INTEREST(S) The EBBA-I study was supported by a grant from the Norwegian Cancer Society (49 258, 05087); Foundation for the Norwegian Health and Rehabilitation Organizations (59010-2000/2001/2002); Aakre Foundation (5695-2000, 5754-2002) and Health Region East. The current analyses were completed under funding from the National Institutes of Health (K12 ES019852). No competing interests declared. PMID:23250924
Ahn, A N; Monti, R J; Biewener, A A
2003-01-01
Many studies examine sarcomere dynamics in single fibres or length–tension dynamics in whole muscles in vivo or in vitro, but few studies link the various levels of organisation. To relate data addressing in vitro muscle segment behaviour with in vivo whole muscle behaviour during locomotion, we measured in vivo strain patterns of muscle segments using three sonomicrometry crystals implanted along a fascicle of the semimembranosus muscle in the American toad (Bufo americanus; n = 6) during hopping. The centre crystal emitted an ultrasonic signal, while the outer crystals received the signal allowing the instantaneous measurement of lengths from two adjacent muscle segments. On the first day, we recorded from the central and distal segments. On the second day of recordings, the most distal crystal was moved to a proximal position to record from a proximal segment and the same central segment. When the toads hopped a distance of two body lengths, the proximal and central segments strained −15.1 ± 6.1 and −14.0 ± 4.9 % (i.e. shortening), respectively. Strain of the distal segment, however, was significantly lower and more variable in pattern, often lengthening before shortening during a hop. From rest length, the distal segment initially lengthened by 2.6 ± 2.0 % before shortening by 6.5 ± 3.2 % at the same hop distance. Under in vitro conditions, the central segment always shortened more than the distal segment, except when passively cycled, during which the segments strained similarly. When the whole muscle was cycled sinusoidally and stimulated phasically in vitro, the two adjacent segments strained in opposite directions over much (up to 34 %) of the cycle. These differences in strain amplitude and direction imply that two adjacent segments can not only produce and/or absorb varying amounts of mechanical energy, but can also operate on different regions of their force–length and force–velocity relationships when activated by the same neural signal. Understanding regional differences in contractile dynamics within muscles is therefore important to linking our understanding of sarcomere behaviour with whole muscle behaviour during locomotion. PMID:12717006
Apparatus and method for pulsed laser deposition of materials on wires and pipes
Fernandez, Felix E.
2003-01-01
Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.
325 Watts from 1-cm wide 9xx laser bars for DPSSL and FL applications
NASA Astrophysics Data System (ADS)
Lichtenstein, Norbert; Manz, Yvonne; Mauron, Pascal; Fily, Arnaud; Schmidt, Berthold E.; Mueller, Juergen; Arlt, Sebastian; Weiss, Stefan; Thies, Achim; Troger, Joerg; Harder, Christoph S.
2005-03-01
Reliable power scaling by stretching the cavity length of the laser bars ranging from 1.2 mm to 3.6 mm at constant filling factor of 50% is demonstrated. While a relatively short cavity length of 1.2 mm allows for thermally limited CW output powers in excess of 180 W, extremely high 325 W at 420 A (CW, 16°C) have been achieved by leveraging the enhanced thermal properties of a 3.6 mm cavity length on standard micro-channel coolers. A high electro-optical conversion efficiency of 62% and 51% respectively is attributed to the low internal losses from an optimized waveguide design and the excellent properties of the AlGaAs-material system accounting for low thermal and electrical resistance. Multi-cell lifetest data at various operation conditions show extremely low wear-out rates even at harsh intermittent operation conditions (1-Hz type, 50% duty-cycle, 100% modulation). At 100 W output power 300 Mshots corresponding to 64000 h mean-time-to-failure (MTTF) have been extrapolated for 20% power drop from initial 2000 h and 4000 h lifetest readouts of a 1.2 mm cavity design. Similar results have been obtained for our next generation of ultra high power laser bars enabling reliable operation at 120 W output power and beyond. From 2.4 mm cavity length bars we have obtained 250 W of CW output power at 25°C while extrapolated reliability data at 120 W and 140 W power levels of up to 2000 h duration indicates that such devices are able to fulfill the requirements for lifetimes in the 20 - 30 kh range.
Thompson, Joseph T; Shelton, Ryan M; Kier, William M
2014-06-15
Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch force. Sonomicrometry experiments revealed that the CMP circular muscle fibers operated in vivo primarily along the ascending limb of the length-tension curve. The CMP fibers functioned routinely over muscle lengths at which force output ranged from only 85% to 40% of P₀, and during escape jets from 100% to 30% of P₀. Our work shows that the functional diversity of obliquely striated muscles is much greater than previously recognized. © 2014. Published by The Company of Biologists Ltd.
Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System
NASA Technical Reports Server (NTRS)
Tischler, Adelbert O.; Bellman, Donald R.
1951-01-01
Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.
The 15 cm diameter ion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1974-01-01
The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.
Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)
2000-01-01
Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.
25-Hydroxyvitamin D and Long Menstrual Cycles in a Prospective Cohort Study.
Jukic, Anne Marie Z; Wilcox, Allen J; McConnaughey, D Robert; Weinberg, Clarice R; Steiner, Anne Z
2018-05-01
Vitamin D insufficiency is associated with subfertility and prolonged estrus cycles in animals, but humans have not been well studied. A prospective time-to-pregnancy study, Time to Conceive (2010-2015), collected up to 4 months of daily diary data. Participants were healthy, late reproductive-aged women in North Carolina who were attempting pregnancy. We examined menstrual cycle length as a continuous variable and in categories: long (35+ days) and short (≤25 days). Follicular phase length and luteal phase length were categorized as long (18+ days) or short (≤10 days). We estimated associations between those lengths and serum 25-hydroxyvitamin D (25[OH]D) using linear mixed models and marginal models. There were 1,278 menstrual cycles from 446 women of whom 5% were vitamin D deficient (25[OH]D, <20 ng/ml), 69% were between 20 and 39 ng/ml, and 26% were 40 ng/ml or higher. There was a dose-response association between vitamin D levels and cycle length. Compared with the highest 25(OH)D level (≥40 ng/ml), 25(OH)D deficiency was associated with almost three times the odds of long cycles (adjusted odds ratio [aOR] = 2.8 [95% confidence interval (CI) = 1.0, 7.5]). The aOR was 1.9 (1.1, 3.5) for 20 to <30 ng/ml. The probability of a long follicular phase and the probability of a short luteal phase both increased with decreasing 25(OH)D. Lower levels of 25(OH)D are associated with longer follicular phase and an overall longer menstrual cycle. Our results are consistent with other evidence supporting vitamin D's role in the reproductive axis, which may have broader implications for reproductive success.
Lum, Kirsten J.; Sundaram, Rajeshwari; Barr, Dana Boyd; Louis, Thomas A.; Louis, Germaine M. Buck
2016-01-01
Background Perfluoroalkyl substances have been associated with changes in menstrual cycle characteristics and fecundity, when modeled separately. However, these outcomes are biologically related, and we evaluate their joint association with exposure to perfluoroalkyl substances. Methods We recruited 501 couples from Michigan and Texas in 2005-2009 upon their discontinuing contraception and followed them until pregnancy or 12 months of trying. Female partners provided a serum sample upon enrollment and completed daily journals on menstruation, intercourse, and pregnancy test results. We measured seven perfluoroalkyl substances in serum using liquid-chromatography-tandem mass spectrometry. We assessed the association between perfluoroalkyl substances and menstrual cycle length using accelerated failure time models and between perfluoroalkyl substances and fecundity using a Bayesian joint modeling approach to incorporate cycle length. Results Menstrual cycles were 3% longer comparing women in the second versus first tertile of perfluorodecanoate (PFDeA; acceleration factor [AF]=1.03, 95% credible interval [CrI]=[1.00, 1.05]), but 2% shorter for women in the highest versus lowest tertile of perfluorooctanoic acid (PFOA) (AF=0.98, 95% CrI=[0.96, 1.00]). When accounting for cycle length, relevant covariates and remaining perfluoroalkyl substances, the probability of pregnancy was lower for women in second versus first tertile of PFNA (odds ratio [OR]=0.6, 95% CrI=[0.4, 1.0]) though not when comparing the highest versus lowest (OR=0.7, 95% CrI=[0.3, 1.1]) tertile. Conclusions In this prospective cohort study, we observed associations between two perfluoroalkyl substances and menstrual cycle length changes, and between select perfluoroalkyl substances and diminished fecundity at some (but not all) concentrations. PMID:27541842
An activity-based methodology for operations cost analysis
NASA Technical Reports Server (NTRS)
Korsmeyer, David; Bilby, Curt; Frizzell, R. A.
1991-01-01
This report describes an activity-based cost estimation method, proposed for the Space Exploration Initiative (SEI), as an alternative to NASA's traditional mass-based cost estimation method. A case study demonstrates how the activity-based cost estimation technique can be used to identify the operations that have a significant impact on costs over the life cycle of the SEI. The case study yielded an operations cost of $101 billion for the 20-year span of the lunar surface operations for the Option 5a program architecture. In addition, the results indicated that the support and training costs for the missions were the greatest contributors to the annual cost estimates. A cost-sensitivity analysis of the cultural and architectural drivers determined that the length of training and the amount of support associated with the ground support personnel for mission activities are the most significant cost contributors.
Postconditioning of the small intestine: which is the most effective algorithm in a rat model?
Rosero, Oliver; Onody, Peter; Stangl, Rita; Turoczi, Zsolt; Fulop, Andras; Garbaisz, David; Lotz, Gabor; Harsanyi, Laszlo; Szijarto, Attila
2014-04-01
Mesenteric ischemia is a serious clinical condition requiring immediate surgical intervention. The unavoidable ischemic-reperfusion (IR) injury may be ameliorated using the appropriate postconditioning protocol. The aim of the present study was to investigate the optimal postconditioning algorithm in a rat model of intestinal ischemic-reperfusion injury. Male Wistar rats were randomized into five groups (n = 10), one sham-operated, one IR, and three postconditioned groups, each with different protocols. The animals were subjected to 60 min of mesenteric ischemia, followed by 60 min of reperfusion. Postconditioning was applied at the onset of reperfusion using three different algorithms. Arterial pressure and mucosal microcirculation were monitored throughout the experiment. Mesenteric pH was determined at the early phase of reperfusion. Blood and tissue samples were taken at the end of reperfusion for histologic evaluation, serum lactate dehydrogenase, serum creatine kinase, serum tumor necrosis factor-α, serum interleukin-6, detailed mucosal antioxidant, and scavenger capacity assays. The shorter and intermediate length cycles of postconditioning enhanced mucosal microcirculation and redox state and significantly delayed the normalization of mesenteric pH. Furthermore, milder histopathologic lesions and lower concentrations of serum necroenzymes and proinflammatory cytokines were detected compared with the IR group. The protective effect of postconditioning using longer cycles could only be seen in a tendentious manner. In a rat model of intestinal ischemia-reperfusion, the shorter and intermediate length cycles of postconditioning proved to be more effective than the use of longer cycles. Copyright © 2014 Elsevier Inc. All rights reserved.
Considerations for a design and operations knowledge support system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Erickson, Jon D.; Crouse, Kenneth H.; Wechsler, Donald B.; Flaherty, Douglas R.
1989-01-01
Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF.
Differences in Pedaling Technique in Cycling: A Cluster Analysis.
Lanferdini, Fábio J; Bini, Rodrigo R; Figueiredo, Pedro; Diefenthaeler, Fernando; Mota, Carlos B; Arndt, Anton; Vaz, Marco A
2016-10-01
To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (PO VT2 ) compared with cycling at their maximal power output (PO MAX ). Twenty athletes performed an incremental cycling test to determine their power output (PO MAX and PO VT2 ; first session), and pedal forces, muscle activation, muscle-tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in PO MAX and PO VT2 . Athletes were assigned to 2 clusters based on the behavior of outcome variables at PO VT2 and PO MAX using cluster analysis. Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle-tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at PO VT2 vs PO MAX , cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length. Increases in power output lead to greater variations in knee angle, muscle-tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.
The Performance of the NAS HSPs in 1st Half of 1994
NASA Technical Reports Server (NTRS)
Bergeron, Robert J.; Walter, Howard (Technical Monitor)
1995-01-01
During the first six months of 1994, the NAS (National Airspace System) 16-CPU Y-MP C90 Von Neumann (VN) delivered an average throughput of 4.045 GFLOPS while the ACSF (Aeronautics Consolidated Supercomputer Facility) 8-CPU Y-MP C90 Eagle averaged 1.658 GFLOPS. The VN rate represents a machine efficiency of 26.3% whereas the Eagle rate corresponds to a machine efficiency of 21.6%. VN displayed a greater efficiency than Eagle primarily because the stronger workload demand for its CPU cycles allowed it to devote more time to user programs and less time to idle. An additional factor increasing VN efficiency was the ability of the UNICOS 8.0 Operating System to deliver a larger fraction of CPU time to user programs. Although measurements indicate increasing vector length for both workloads, insufficient vector lengths continue to hinder HSP (High Speed Processor) performance. To improve HSP performance, NAS should continue to encourage the HSP users to modify their codes to increase program vector length.
Singer, Alison B; Whitworth, Kristina W; Haug, Line S; Sabaredzovic, Azemira; Impinen, Antti; Papadopoulou, Eleni; Longnecker, Matthew P
2018-06-04
Perfluoroalkyl substances (PFASs) are fluorinated organic compounds that have been used in a variety of industrial and consumer applications. Menstruation is implicated as a possible route of elimination for PFASs in women. The overall purpose of this study was to examine menstrual cycle characteristics as determinants of plasma PFAS concentrations in women. Our study sample consisted of 1977 pregnant women from the Norwegian Mother and Child Cohort (MoBa) study. The women were asked about menstrual cycle regularity in the year before the pregnancy and typical menstrual cycle length as well as other demographic and reproductive characteristics in a questionnaire completed during the pregnancy. Blood samples were collected around 17-18 weeks gestation and PFAS concentrations were measured in plasma. We examined the association between menstrual cycle characteristics and seven PFASs (perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), and perfluorooctane sulfonate (PFOS)) using multiple linear regression, adjusted for age, pre-pregnancy body mass index, smoking, education, income, parity, oral contraceptive use, inter-pregnancy interval, and breastfeeding duration. Irregular cycles were not associated with PFAS concentrations. Overall, we found no evidence of associations between menstrual cycle length and PFAS concentrations. In subgroup analyses we found some evidence, among parous women, of decreased PFHpS and PFOS with short menstrual cycles; we also found, among recent OC users (in the 12 months before the questionnaire) increased PFNA and PFUnDA with long cycle length. Limitations of our study include misclassification of menstrual cycle characteristics, small sample sizes in the sub-group analyses, and a lack of information on duration and volume of menses. In the entire study sample, we found little evidence of menstrual cycle characteristics as determinants of PFAS concentrations. However, we observed some associations between cycle length and PFAS concentrations with some select PFAS compounds in subgroup analyses. Copyright © 2018 Elsevier Inc. All rights reserved.
Automated one-step DNA sequencing based on nanoliter reaction volumes and capillary electrophoresis.
Pang, H M; Yeung, E S
2000-08-01
An integrated system with a nano-reactor for cycle-sequencing reaction coupled to on-line purification and capillary gel electrophoresis has been demonstrated. Fifty nanoliters of reagent solution, which includes dye-labeled terminators, polymerase, BSA and template, was aspirated and mixed with the template inside the nano-reactor followed by cycle-sequencing reaction. The reaction products were then purified by a size-exclusion chromatographic column operated at 50 degrees C followed by room temperature on-line injection of the DNA fragments into a capillary for gel electrophoresis. Over 450 bases of DNA can be separated and identified. As little as 25 nl reagent solution can be used for the cycle-sequencing reaction with a slightly shorter read length. Significant savings on reagent cost is achieved because the remaining stock solution can be reused without contamination. The steps of cycle sequencing, on-line purification, injection, DNA separation, capillary regeneration, gel-filling and fluidic manipulation were performed with complete automation. This system can be readily multiplexed for high-throughput DNA sequencing or PCR analysis directly from templates or even biological materials.
Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.
2013-01-01
Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
Life cycle environmental implications of residential swimming pools.
Forrest, Nigel; Williams, Eric
2010-07-15
Ownership of private swimming pools in the U.S. grew 2 to 4% per annum from 1997 to 2007. The environmental implications of pool ownership are analyzed by hybrid life cycle assessment (LCA) for nine U.S. cities. An operational model is constructed estimating consumption of chemicals, water, and energy for a typical residential pool. The model incorporates geographical climatic variations and upstream water and energy use from electricity and water supply networks. Results vary considerably by city: a factor of 5-6 for both water and energy use. Water use is driven by aridness and length of the swimming season, while energy use is mainly driven by length of the swimming season. Water and energy impacts of pools are significant, particularly in arid climates. In Phoenix for example pools account for 22% and 13% of a household's electricity and water use, respectively. Measures to reduce water and energy use in pools such as optimizing the pump schedule and covering the pool in winter can realize greater savings than many common household efficiency improvements. Private versus community pools are also compared. Community pools in Phoenix use 60% less swimming pool water and energy per household than subdivisions without community pools.
Radiographic screen-film noise power spectrum: variation with microdensitometer slit length.
Sandrik, J M; Wagner, R F
1981-08-15
When the noise power spectrum (NPS) of a radiographic screen-film system is measured by microdensito-metrically scanning the film with a long narrow slit, sufficient slit length allows estimation of a section of the 2-D NPS from the 1-D film scans; insufficient length causes underestimation of the NPS, particularly at low frequencies ( greater, similar1 cycle/mm). Spectra of Hi-Plus, Par Speed, and Detail screens used with XRP films measured as a function of microdensitometer slit length tended to plateau at long slit lengths. The slit length was considered sufficient when NPS components at 0.4 cycle/mm were within 5% of the plateau. This occurred for slit lengths of at least 4.2, 2.6, and 2.5 mm for Hi-Plus, Par Speed, and Detail systems, respectively.
Saady, Noori M Cata; Massé, Daniel I
2015-06-01
Zero liquid discharge is increasingly adopted as an objective for waste treatment process. The objective of this study was to increase the feed total solids (TS) and the organic loading rate (OLR) fed to a novel psychrophilic (20°C) dry anaerobic digestion (PDAD). Duplicate laboratory-scale bioreactors were fed cow feces and wheat straw (35% TS in feed) at OLR of 6.0 g TCOD kg(-1) inoculum d(-1) during long-term operation (147 days consisting of 7 successive cycles). An overall average specific methane yield (SMY) of 151.8±7.9 N L CH4 kg(-1) VS fed with an averaged volatile solids removal of 42.4±4.3% were obtained at a volatile solids-based inoculum-to-substrate ratio (ISR) of 2.13±0.2. The operation was stable as indicated by biogas and VFAs profiles and the results were reproducible in successive cycles; a maximum SMY of 163.3±5.7 N L CH4 kg(-1) VS fed was obtained. Hydrolysis was the reaction limiting step. High rate PDAD of 35% TS dairy manure is possible in sequential batch reactor within 21 days treatment cycle length. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Operation of the 56 MHz superconducting RF cavity in RHIC during run 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.
2015-09-11
A 56 MHz superconducting RF cavity was designed and installed in the Relativistic Heavy Ion Collider (RHIC). It is the first superconducting quarter wave resonator (QWR) operating in a high-energy storage ring. We discuss herein the cavity operation with Au+Au collisions, and with asymmetrical Au+He3 collisions. The cavity is a storage cavity, meaning that it becomes active only at the energy of experiment, after the acceleration cycle is completed. With the cavity at 300 kV, an improvement in luminosity was detected from direct measurements, and the bunch length has been reduced. The uniqueness of the QWR demands an innovative designmore » of the higher order mode dampers with high-pass filters, and a distinctive fundamental mode damper that enables the cavity to be bypassed during the acceleration stage.« less
A proposal for unification of fatigue crack growth law
NASA Astrophysics Data System (ADS)
Kobelev, V.
2017-05-01
In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.
Non-Volatile High Speed & Low Power Charge Trapping Devices
NASA Astrophysics Data System (ADS)
Kim, Moon Kyung; Tiwari, Sandip
2007-06-01
We report the operational characteristics of ultra-small-scaled SONOS (below 50 nm gate width and length) and SiO2/SiO2 structural devices with 0.5 um gate width and length where trapping occurs in a very narrow region. The experimental work summarizes the memory characteristics of retention time, endurance cycles, and speed in SONOS and SiO
Health impact assessment of cycling network expansions in European cities.
Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark
2018-04-01
We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.
Burghardt, Liana T; Metcalf, C Jessica E; Wilczek, Amity M; Schmitt, Johanna; Donohue, Kathleen
2015-02-01
Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.
A quantitative study of the effects of vasectomy on spermatogenesis in rats.
McDonald, S W; Scothorne, R J
1988-01-01
A large sample of cross sectional profiles of seminiferous tubules from the left testes of five Albino Swiss rats 6 months after left unilateral vasectomy was compared with those of sham-operated controls. Using the classification of Leblond & Clermont (1952), based primarily on the morphology of the spermatids, the frequency of each stage of the seminiferous cycle was recorded. Profiles were also analysed for distension, reduction in epithelial area and changes in spermatocyte numbers. The lack of significant alterations in either the seminiferous cycle, the numbers of pachytene spermatocyte nuclei or epithelial area in the tubular profiles indicated that there was no alteration in spermatogenic rate after vasectomy. The lack of tubular distension, reduction in spermatocytes per unit length of perimeter or of the presence of mature spermatozoa at inappropriate stages of the cycle indicated the absence of sperm retention. The study makes clear that, at least in Albino Swiss rats 6 months after vasectomy, the apparently healthy tubules were indeed normal. PMID:3248969
Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.
2013-01-01
SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638
On the Importance of Cycle Minimum in Sunspot Cycle Prediction
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.
1996-01-01
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.
Problems encountered with conventional fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Landel, R. F.
1981-01-01
Preparational, computational, and operational problems associated with fiber-reinforced composites (FRC) are reviewed. Initial preparation of FRCs is shown to involve consideration of the type of prepreg, the setting time, cure conditions and cycles, and cure temperatures. The effects of the choice of bonding agents, the fiber transfer length, and individual fiber responses to bonding agents are noted to have an impact on fiber strength, moisture uptake, and fatigue resistance. The deformation prior to failure and the failure region are modeled through models of mini-, micro- and macro mechanics formulations employing a stiffness matrix, failure criterion, or fracture mechanics. The detection, evaluation, and repair of defects comprises the operational domain, and it is stressed that no good repair techniques exist for FRCs.
The influence of oestrous substances on cyclicity and oestrous behaviour in dairy heifers
2012-01-01
Background Declining fertility is a major concern for dairy farmers today. One explanation is shorter and weaker expression of oestrus in dairy cows making it difficult to determine optimal time for artificial insemination (AI). Chemical communication is of interest in the search for tools to detect oestrus or to synchronise or enhance oestrous periods. Pheromones, used in chemical communication within species, can influence reproduction in different ways. The aim here was to investigate whether oestrous cycle length, and duration and intensity of oestrous expression in dairy heifers could be manipulated through exposure to pheromones in oestrual substances from other females. Methods Beginning on day 16 of two consecutive control oestrous cycles, ten heifers of the Swedish Red Breed (SRB) were exposed to water. During the two following cycles the heifers were exposed to urine and vaginal mucus, obtained from cows in oestrus. Cyclicity parameters were monitored through hormone measurements, oestrus detection and ultrasonographic examination. Results We found no difference in cycle length or in duration of standing oestrus between control and treatment. We did, however, find a tendency of interaction between type of exposure (control or treatment) and cycle number within type of exposure for cycle length (p = 0.068), with the length differing less between the treatment cycles. We also found a tendency of effect of type of exposure on maximal concentration (p = 0.073) and sum of concentrations (p = 0.063) of LH during the LH surge, with values being higher for the control cycles. There were also significant differences in when the different signs of oestrus occurred and in the intensity of oestrous expression. The score for oedema and hyperaemia of external genitalia was significantly higher (p = 0.004) for the control cycles and there was also a significant interaction between type of exposure and time period for restlessness (p = 0.011), with maximum score occurring earlier for treatment cycles. Conclusions No evidence of altered oestrous cycle length or duration of oestrus after exposure of females to oestrous substances from other females was found. Expression of oestrus, and maybe also LH secretion, however, seemed influenced by the exposure, with the effect of treatment being suppressive rather than enhancing. PMID:22510614
Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos
Tsai, Tony Y.-C.; Theriot, Julie A.; Ferrell, James E.
2014-01-01
During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development. PMID:24523664
Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan
2015-03-01
The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.
Wood, Simon; Quinn, Alison; Troupe, Stephen; Kingsland, Charles; Lewis-Jones, Iwan
2006-12-01
The effect of seasonality and daylight length on mammalian reproduction leading to spring births has been well established, and is known as photoperiodism. In assisted reproduction there is much greater uncertainty as to the effect of seasonality. This was a 4-year retrospective analysis of 2709 standardised cycles of IVF/ICSI. Data was analysed with regard to the 1642 cycles occurring during the months of extended daylight (Apr-Sept) and those 1067 cycles during winter months of restricted light length (Oct-Mar). The results showed that there was significant improvement in assisted conception outcomes in cycles performed in summer (lighter) months with more efficient ovarian stimulation 766iu v880iu/per oocyte retrieved (p=0.006). There was similarly a significantly improved implantation rate per embryo transferred 11.42% vs 9.35% (p=0.011) and greater clinical pregnancy rate 20% vs 15% (p=0.0033) during summer cycles. This study appears to demonstrate a significant benefit of increased daylight length on outcomes of IVF/ICSI cycles. Whilst the exact mechanism of this is unclear, it would seem probable that melatonin may have actions at multiple sites and on multiple levels of the reproductive tract, and may exert a more profound effect on outcomes of assisted conception cycles than has been previously considered.
Thermal fatigue performance of integrally cast automotive turbine wheels
NASA Technical Reports Server (NTRS)
Humphreys, V. E.; Hofer, K. E.
1980-01-01
Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
Barratt, Paul Richard; Martin, James C; Elmer, Steve J; Korff, Thomas
2016-04-01
During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s(-1) and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system's attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians.
Randall S. Morin; R. Riemann
2015-01-01
This publication provides an overview of forest resources in Vermont based on inventories conducted by the U.S. Forest Service Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2003-2013, the cycle length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2014 inventory,...
NASA Astrophysics Data System (ADS)
Kumar, Aravinda; Singh, Jeetendra Kumar; Mohan, K.
2012-06-01
Desuperheater assembly experiences thermal cycling in operation by design. During power plant's start up, load change and shut down, thermal gradient is highest. Desuperheater should be able to handle rapid ramp up or ramp down of temperature in these operations. With "hump style" two nozzle desuperheater, cracks were appearing in the pipe after only few cycles of operation. From the field data, it was clear that desuperheater is not able to handle disproportionate thermal expansion happening in the assembly during temperature ramp up and ramp down in operation and leading to cracks appearing in the piping. Growth of thermal fatigue crack is influenced by several factors including geometry, severity of thermal stress and applied mechanical load. This paper seeks to determine cause of failure of two nozzle "hump style" desuperheater using Finite Element Method (FEM) simulation technique. Thermal stress simulation and fatigue life calculation were performed using commercial FEA software "ANSYS" [from Ansys Inc, USA]. Simulation result showed that very high thermal stress is developing in the region where cracks are seen in the field. From simulation results, it is also clear that variable thermal expansion of two nozzle studs is creating high stress at the water manifold junction. A simple and viable solution is suggested by increasing the length of the manifold which solved the cracking issues in the pipe.
Adaptive low-power listening MAC protocol based on transmission rates.
Hwang, Kwang-il; Yi, Gangman
2014-01-01
Even though existing low-power listening (LPL) protocols have enabled ultra-low-power operation in wireless sensor networks (WSN), they do not address trade-off between energy and delay, since they focused only on energy aspect. However, in recent years, a growing interest in various WSN applications is requiring new design factors, such as minimum delay and higher reliability, as well as energy efficiency. Therefore, in this paper we propose a novel sensor multiple access control (MAC) protocol, transmission rate based adaptive low-power listening MAC protocol (TRA-MAC), which is a kind of preamble-based LPL but is capable of controlling preamble sensing cycle adaptively to transmission rates. Through experiments, it is demonstrated that TRA-MAC enables LPL cycle (LC) and preamble transmission length to adapt dynamically to varying transmission rates, compensating trade-off between energy and response time.
Floodplain dynamics control the age distribution of organic carbon in large rivers
NASA Astrophysics Data System (ADS)
Torres, M. A.; Limaye, A. B. S.; Ganti, V.; West, A. J.; Fischer, W. W.; Lamb, M. P.
2016-12-01
As sediments transit through river systems, they are temporarily stored within floodplains. This storage is important for geochemical cycles because it imparts a certain cadence to weathering processes and organic carbon cycling. However, the time and length scales over which these processes operate are poorly known. To address this, we developed a model for the distribution of storage times in floodplains and used it to make predictions of the age distribution of riverine particulate organic carbon (POC) that can be compared with data from a range of rivers.Using statistics generated from a numerical model of river meandering that accounts for the rates of lateral channel migration and the lengths of channel needed to exchange the sediment flux with the floodplain, we estimated the distribution of sediment storage times. Importantly, this approach consistently yields a heavy-tailed distribution of storage times. This finding, based on comprehensive simulations of a wide range of river conditions, arises because of geometrical constraints that lead to the preferential erosion and reworking of young deposits. To benchmark our model, we compared our results with meteoric 10Be data (a storage time proxy) from Amazonian rivers. Our model correctly predicts observed 10Be concentrations, and consequently appears to capture the correct characteristic timescales associated with floodplain storage. By coupling a simple model of carbon cycling with our floodplain storage model, we are able to make predictions about the radiocarbon content of riverine POC. We observe that floodplains with greater storage times tend to have biospheric POC with a lower radiocarbon content (after correcting bulk ages for contribution from radiocarbon-dead petrogenic carbon). This result confirms that storage plays a key role in setting the age of POC transported by rivers with important implications for the dynamics of the global carbon cycle.
De Monte, Gianpiero; Arampatzis, Adamantios
2008-07-19
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.
Burchard, J F; Nguyen, D H; Block, E
1998-01-01
Sixteen multiparous nonpregnant lactating Holstein cows (each weighing 662 +/- 65 kg in 150.4 +/- 40 day of lactation) were confined to wooden metabolic cages with 12:12 h light:dark cycle during the experiment. The cows were divided into two sequences of eight cows each and exposed to electric and magnetic fields (EMF) in an exposure chamber. This chamber produced a vertical electric field of 10 kV/m and a uniform horizontal magnetic field of 30 microT at 60 Hz. One sequence was exposed for three estrous cycles of 24 to 27 days. During the first estrous cycle, the electric and magnetic fields were off; during the second estrous cycle, they were on; and during the third estrous cycle, they were off. The second sequence was also exposed for three 24 to 26 days estrous cycles, but the exposure to the fields was reversed (first estrous cycle, on; second estrous cycle, off; third estrous cycle, on). The length of each exposure period (21 to 27 days) varied according to the estrous cycle length. No differences were detected in plasma progesterone concentrations and area under the progesterone curve during estrous cycles between EMF nonexposed and exposed periods (2.28 +/- 0.17 and 2.25 +/- 0.17; and 24.5 +/- 1.9 vs. 26.4 +/- 1.9 ng/ml, respectively). However, estrous cycle length, determined by the presence of a functional corpus luteum detected by concentrations of progesterone equal to or more than 1 ng/ml plasma, was shorter in nonexposed cows than when they were exposed to EMF (22.0 +/- 0.9 vs. 25.3 +/- 1.4 days).
Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David
2009-01-01
The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng
Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less
Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng; ...
2017-02-07
Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less
Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D
2017-02-28
Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.
Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems
NASA Astrophysics Data System (ADS)
Sarrazin, J. C.; Mascaro, Stephen A.
2015-04-01
Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling
BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS
2016-01-01
ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455
Kinematic Variables Evolution During a 200-m Maximum Test in Young Paddlers
Vaquero-Cristóbal, Raquel; Alacid, Fernando; López-Plaza, Daniel; Muyor, José María; López-Miñarro, Pedro A.
2013-01-01
The objective of this research was to determine the kinematic variables evolution in a sprint canoeing maximal test over 200 m, comparing women and men kayak paddlers and men canoeists. Speed evolution, cycle frequency, cycle length and cycle index were analysed each 50 m section in fifty-two young paddlers (20 male kayakers, 17 female kayakers and 15 male canoeists; 13–14 years-old). Recordings were taken from a boat which followed each paddler trial in order to measure the variables cited above. Kinematic evolution was similar in the three categories, the speed and cycle index decreased through the test after the first 50 m. Significant differences were observed among most of the sections in speed and the cycle index (p<0.05 and <0.01, respectively). Cycle length remained stable showing the lowest values in the first section when compared with the others (p<0.01). Cycle frequency progressively decreased along the distance. Significant differences were identified in the majority of the sections (p<0.01). Men kayakers attained higher values in all the variables than women kayakers and men canoeists, but only such variables as speed, cycle length and cycle index were observed to be significantly higher (p<0.01). Moreover, lower kinematic values were obtained from men canoeists. The study of the evolution of kinematic variables can provide valuable information for athletes and coaches while planning training sessions and competitions. PMID:24235980
14 CFR 121.434 - Operating experience, operating cycles, and consolidation of knowledge and skills.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Operating experience, operating cycles, and... Qualifications § 121.434 Operating experience, operating cycles, and consolidation of knowledge and skills. (a... position, the operating experience, operating cycles, and the line operating flight time for consolidation...
Cabrita, Marisa; Bekman, Evguenia; Braga, José; Rino, José; Santus, Renè; Filipe, Paulo L.; Sousa, Ana E.; Ferreira, João A.
2017-01-01
We propose a novel single-deoxynucleoside-based assay that is easy to perform and provides accurate values for the absolute length (in units of time) of each of the cell cycle stages (G1, S and G2/M). This flow-cytometric assay takes advantage of the excellent stoichiometric properties of azide-fluorochrome detection of DNA substituted with 5-ethynyl-2′-deoxyuridine (EdU). We show that by pulsing cells with EdU for incremental periods of time maximal EdU-coupled fluorescence is reached when pulsing times match the length of S phase. These pulsing times, allowing labelling for a full S phase of a fraction of cells in asynchronous populations, provide accurate values for the absolute length of S phase. We characterized additional, lower intensity signals that allowed quantification of the absolute durations of G1 and G2 phases. Importantly, using this novel assay data on the lengths of G1, S and G2/M phases are obtained in parallel. Therefore, these parameters can be estimated within a time frame that is shorter than a full cell cycle. This method, which we designate as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, was successfully applied to cell types with distinctive cell cycle features and shows excellent agreement with established methodologies for analysis of cell cycle kinetics. PMID:28465489
Autocorrelation peaks in congruential pseudorandom number generators
NASA Technical Reports Server (NTRS)
Neuman, F.; Merrick, R. B.
1976-01-01
The complete correlation structure of several congruential pseudorandom number generators (PRNG) of the same type and small cycle length was studied to deal with the problem of congruential PRNG almost repeating themselves at intervals smaller than their cycle lengths, during simulation of bandpass filtered normal random noise. Maximum period multiplicative and mixed congruential generators were studied, with inferences drawn from examination of several tractable members of a class of random number generators, and moduli from 2 to the 5th power to 2 to the 9th power. High correlation is shown to exist in mixed and multiplicative congruential random number generators and prime moduli Lehmer generators for shifts a fraction of their cycle length. The random noise sequences in question are required when simulating electrical noise, air turbulence, or time variation of wind parameters.
... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...
Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft
NASA Technical Reports Server (NTRS)
Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.
1975-01-01
The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.
Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.
Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L
2013-01-01
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César
2017-01-01
Study Objectives: By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Methods: Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Results: Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308–0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175–6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Conclusions: Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. Citation: Rey de Castro J, Liendo A, Ortiz O, Rosales-Mayor E, Liendo C. Ventilatory cycle measurements and loop gain in central apnea in mining drivers exposed to intermittent altitude. J Clin Sleep Med. 2017;13(1):27–32. PMID:27707449
EFO-LCI: A New Life Cycle Inventory Database of Forestry Operations in Europe
NASA Astrophysics Data System (ADS)
Cardellini, Giuseppe; Valada, Tatiana; Cornillier, Claire; Vial, Estelle; Dragoi, Marian; Goudiaby, Venceslas; Mues, Volker; Lasserre, Bruno; Gruchala, Arkadiusz; Rørstad, Per Kristian; Neumann, Mathias; Svoboda, Miroslav; Sirgmets, Risto; Näsärö, Olli-Pekka; Mohren, Frits; Achten, Wouter M. J.; Vranken, Liesbet; Muys, Bart
2018-06-01
Life cycle assessment (LCA) has become a common methodology to analyze environmental impacts of forestry systems. Although LCA has been widely applied to forestry since the 90s, the LCAs are still often based on generic Life Cycle Inventory (LCI). With the purpose of improving LCA practices in the forestry sector, we developed a European Life Cycle Inventory of Forestry Operations (EFO-LCI) and analyzed the available information to check if within the European forestry sector national differences really exist. We classified the European forests on the basis of "Forest Units" (combinations of tree species and silvicultural practices). For each Forest Unit, we constructed the LCI of their forest management practices on the basis of a questionnaire filled out by national silvicultural experts. We analyzed the data reported to evaluate how they vary over Europe and how they affect LCA results and made freely available the inventory data collected for future use. The study shows important variability in rotation length, type of regeneration, amount and assortments of wood products harvested, and machinery used due to the differences in management practices. The existing variability on these activities sensibly affect LCA results of forestry practices and raw wood production. Although it is practically unfeasible to collect site-specific data for all the LCAs involving forest-based products, the use of less generic LCI data of forestry practice is desirable to improve the reliability of the studies. With the release of EFO-LCI we made a step toward the construction of regionalized LCI for the European forestry sector.
EFO-LCI: A New Life Cycle Inventory Database of Forestry Operations in Europe.
Cardellini, Giuseppe; Valada, Tatiana; Cornillier, Claire; Vial, Estelle; Dragoi, Marian; Goudiaby, Venceslas; Mues, Volker; Lasserre, Bruno; Gruchala, Arkadiusz; Rørstad, Per Kristian; Neumann, Mathias; Svoboda, Miroslav; Sirgmets, Risto; Näsärö, Olli-Pekka; Mohren, Frits; Achten, Wouter M J; Vranken, Liesbet; Muys, Bart
2018-06-01
Life cycle assessment (LCA) has become a common methodology to analyze environmental impacts of forestry systems. Although LCA has been widely applied to forestry since the 90s, the LCAs are still often based on generic Life Cycle Inventory (LCI). With the purpose of improving LCA practices in the forestry sector, we developed a European Life Cycle Inventory of Forestry Operations (EFO-LCI) and analyzed the available information to check if within the European forestry sector national differences really exist. We classified the European forests on the basis of "Forest Units" (combinations of tree species and silvicultural practices). For each Forest Unit, we constructed the LCI of their forest management practices on the basis of a questionnaire filled out by national silvicultural experts. We analyzed the data reported to evaluate how they vary over Europe and how they affect LCA results and made freely available the inventory data collected for future use. The study shows important variability in rotation length, type of regeneration, amount and assortments of wood products harvested, and machinery used due to the differences in management practices. The existing variability on these activities sensibly affect LCA results of forestry practices and raw wood production. Although it is practically unfeasible to collect site-specific data for all the LCAs involving forest-based products, the use of less generic LCI data of forestry practice is desirable to improve the reliability of the studies. With the release of EFO-LCI we made a step toward the construction of regionalized LCI for the European forestry sector.
Magnet Design with High B0 Homogeneity for Fast-Field-Cycling NMR Applications
NASA Astrophysics Data System (ADS)
Lips, O.; Privalov, A. F.; Dvinskikh, S. V.; Fujara, F.
2001-03-01
The design, construction, and performance of a low-inductance solenoidal coil with high B0 homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B0 inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B0 field of 0.95 T at 800 A . The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 μH. Switching times below 200 μs can be achieved. During 6 months of operation the coil has shown good stability and reliability.
Compaction behavior of out-of-autoclave prepreg materials
NASA Astrophysics Data System (ADS)
Serrano, Léonard; Olivier, Philippe; Cinquin, Jacques
2017-10-01
The main challenges with composite parts manufacturing are related to the curing means, mainly autoclaves, the length of their cycles and their operating costs. In order to decrease this dependency, out of autoclave materials have been considered as a solution for high production rate parts such as spars, flaps, etc… However, most out-of-autoclave process do not possess the same maturity as their counterpart, especially concerning part quality1. Some pre-cure processes such as compaction and ply lay-up are usually less of a concern for autoclave manufacturing: the pressure applied during the cycle participates to reduce the potential defects (porosity caused by a poor quality lay-up, bad compaction, entrapped air or humidity…). For out-of-autoclave parts, those are crucial steps which may have many consequences on the final quality of the laminate2. In order to avoid this quality loss, those steps must be well understood.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
I'Anson, Helen; Sundling, Lois A; Roland, Shannon M; Ritter, Sue
2003-10-01
We tested the hypothesis that hindbrain catecholamine (norepinephrine or epinephrine) neurons, in addition to their essential role in glucoprivic feeding, are responsible for suppressing estrous cycles during chronic glucoprivation. Normally cycling female rats were given bilateral injections of the retrogradely transported ribosomal toxin, saporin, conjugated to monoclonal dopamine beta-hydroxylase antibody (DSAP) into the paraventricular nucleus (PVN) of the hypothalamus to selectively destroy norepinephrine and epinephrine neurons projecting to the PVN. Controls were injected with unconjugated saporin. After recovery, we assessed the lesion effects on estrous cyclicity under basal conditions and found that DSAP did not alter estrous cycle length. Subsequently, we examined effects of chronic 2-deoxy-d-glucose-induced glucoprivation on cycle length. After two normal 4- to 5-d cycles, rats were injected with 2-deoxy-d-glucose (200 mg/kg every 6 h for 72 h) beginning 24 h after detection of estrus. Chronic glucoprivation increased cycle length in seven of eight unconjugated saporin rats but in only one of eight DSAP rats. Immunohistochemical results confirmed loss of dopamine beta-hydroxylase immunoreactivity in PVN. Thus, hindbrain catecholamine neurons with projections to the PVN are required for inhibition of reproductive function during chronic glucose deficit but are not required for normal estrous cyclicity when metabolic fuels are in abundance.
Prospective evaluation of luteal phase length and natural fertility.
Crawford, Natalie M; Pritchard, David A; Herring, Amy H; Steiner, Anne Z
2017-03-01
To evaluate the impact of a short luteal phase on fecundity. Prospective time-to-pregnancy cohort study. Not applicable. Women trying to conceive, ages 30-44 years, without known infertility. Daily diaries, ovulation prediction testing, standardized pregnancy testing. Subsequent cycle fecundity. Included in the analysis were 1,635 cycles from 284 women. A short luteal phase (≤11 days including the day of ovulation) occurred in 18% of observed cycles. Mean luteal phase length was 14 days. Significantly more women with a short luteal phase were smokers. After adjustment for age, women with a short luteal phase had 0.82 times the odds of pregnancy in the subsequent cycle immediately following the short luteal phase compared with women without a short luteal phase. Women with a short luteal length in the first observed cycle had significantly lower fertility after the first 6 months of pregnancy attempt, but at 12 months there was no significant difference in cumulative probability of pregnancy. Although an isolated cycle with a short luteal phase may negatively affect short-term fertility, incidence of infertility at 12 months was not significantly higher among these women. NCT01028365. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Amiad Pavlov, Daria; Landesberg, Amir
2016-01-01
The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.
Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K
2010-01-01
We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. (c) 2009 S. Karger AG, Basel.
Menstrual cycle perturbation by organohalogens and elements in the Cree of James Bay, Canada.
Wainman, Bruce C; Kesner, James S; Martin, Ian D; Meadows, Juliana W; Krieg, Edward F; Nieboer, Evert; Tsuji, Leonard J
2016-04-01
Persistent organohalogens (POHs) and metals have been linked to alterations in menstrual cycle function and fertility in humans. The Cree First Nations people living near James Bay in Ontario and Quebec, Canada, have elevated levels of POHs, mercury and lead compared to other Canadians. The present study examines the interrelationships between selected POHs and elements on menstrual cycle function in these Cree women. Menstrual cycle characteristics were derived from structured daily diaries and endocrine measurements from daily urine samples collected during one cycle for 42 women age 19-42. We measured 31 POHs in blood plasma and 18 elements in whole blood, for 31 of the participants. POHs and elements detected in ≥ 70% of the participants were transformed by principal component (PC) analysis to reduce the contaminant exposure data to fewer, uncorrelated PCA variables. Multiple regression analysis revealed that, after adjusting for confounders, PC-3 values showed significant negative association with cycle length, after adjusting for confounders (p = 0.002). PC-3 accounted for 9.2% of the variance and shows positive loadings for cadmium, selenium, and PBDE congeners 47 and 153, and a negative loading for copper. Sensitivity analysis of the model to quantify likely effect sizes showed a range of menstrual cycle length from 25.3 to 28.3 days using the lower and upper 95% confidence limits of mean measured contaminant concentrations to predict cycle length. Our observations support the hypothesis that the menstrual cycle function of these women may be altered by exposure to POHs and elements from their environment. Copyright © 2015. Published by Elsevier Ltd.
Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César
2017-01-15
By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308-0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175-6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. © 2017 American Academy of Sleep Medicine
NASA Astrophysics Data System (ADS)
Brune, S.; Williams, S.; Müller, D.
2017-12-01
The deep carbon cycle links the carbon content of crust and mantle to Earth's surface: extensional plate boundaries and arc volcanoes release CO2 to the ocean and atmosphere while subducted lithosphere carries carbon back into the mantle. The length of extensional and convergent plate boundaries therefore exerts first-order control on solid Earth CO2 degassing rates. Here we provide a global census of plate boundary length for the last 200 million years. Focusing on rift systems, we find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this pervasive rift episode, the global rift length dropped by 60% to 20,000 km. We further find that a second pronounced rift episode with global rift lengths of up to 30,000 km started in Eocene times. A close geological link between CO2 degassing and faulting has been documented in currently active rift systems worldwide. Regional-scale CO2 flux densities at rift segments in Africa, Europe, and New Zealand feature an annual average value of 200 t of CO2 per km2. Assuming that the release of CO2 scales with rift length, we show that rift-related CO2 degassing rates during the two major Mesozoic and Cenozoic rift episodes reached more than 300% of present-day values. Most importantly, the timing of enhanced CO2 degassing from continental rifts correlates with two well-known periods of elevated atmospheric CO2 in the Mesozoic and Cenozoic as evidenced by multiple independent proxy indicators. Compiling the length of other plate boundaries (mid-ocean ridges, subduction zones, continental arcs) through time, we do not reproduce such a correlation. Finally, we conduct numerical carbon cycle models that account for key feedback-mechanisms of the long-term carbon cycle. We find that only those models that feature a strong rift degassing component reproduce the timing and amplitude of the paleo-CO2 record. We therefore suggest that rift-related degassing constitutes a key component of the deep carbon cycle.
Offer, Gerald; Ranatunga, K W
2015-01-01
The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional temperature-sensitive step. PMID:25564737
UWB multi-burst transmit driver for averaging receivers
Dallum, Gregory E
2012-11-20
A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).
Maritime vessel obsolescence, life cycle cost and design service life
NASA Astrophysics Data System (ADS)
Dinu, O.; Ilie, A. M.
2015-11-01
Maritime vessels have long service life and great costs of building, manning, operating, maintaining and repairing throughout their life. Major actions are needed to repair, renovate, sometime built or even replace those scrapped when technology or demand changes determine obsolescence. It is regarded as a concern throughout vessel's entire life cycle and reflects changes in expectation regarding performances in functioning, safety and environmental effects. While service live may differ from physical lives, expectations about physical lives is the main factors that determines design service life. Performance and failure are illustrated conceptually and represented in a simplified form considering the evolution of vessels parameters during its service life. In the proposed methodology an accumulated vessel lifecycle cost is analyzed and obsolescence is characterized from ship's design, performances, maintenance and management parameters point of view. Romanian ports feeding Black Sea are investigated in order to provide comprehensive information on: number and types of vessels, transport capacity and life cycle length. Recommendations are to be made in order to insure a best practice in lifecycle management in order to reduce costs.
Granule size control and targeting in pulsed spray fluid bed granulation.
Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko
2009-07-30
The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.
Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.
Osadchii, Oleg E
2016-01-01
Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.
Rossetti, Valentina; Filippini, Manuela; Svercel, Miroslav; Barbour, A D; Bagheri, Homayoun C
2011-12-07
Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.
Dick, Taylor J M; Wakeling, James M
2017-12-01
When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigler, C.; Kirch, J. D.; Mawst, L. J.
2014-03-31
Resonant coupling of the transverse-magnetic polarized (guided) optical mode of a quantum-cascade laser (QCL) to the antisymmetric surface-plasmon modes of 2nd-order distributed-feedback (DFB) metal/semiconductor gratings results in strong antisymmetric-mode absorption. In turn, lasing in the symmetric mode, that is, surface emission in a single-lobe far-field beam pattern, is strongly favored over controllable ranges in grating duty cycle and tooth height. By using core-region characteristics of a published 4.6 μm-emitting QCL, grating-coupled surface-emitting (SE) QCLs are analyzed and optimized for highly efficient single-lobe operation. For infinite-length devices, it is found that when the antisymmetric mode is resonantly absorbed, the symmetric mode hasmore » negligible absorption loss (∼0.1 cm{sup −1}) while still being efficiently outcoupled, through the substrate, by the DFB grating. For finite-length devices, 2nd-order distributed Bragg reflector (DBR) gratings are used on both sides of the DFB grating to prevent uncontrolled reflections from cleaved facets. Equations for the threshold-current density and the differential quantum efficiency of SE DFB/DBR QCLs are derived. For 7 mm-long, 8.0 μm-wide, 4.6 μm-emitting devices, with an Ag/InP grating of ∼39% duty cycle, and ∼0.22 μm tooth height, threshold currents as low as 0.45 A are projected. Based on experimentally obtained internal efficiency values from high-performance QCLs, slope efficiencies as high as 3.4 W/A are projected; thus, offering a solution for watt-range, single-lobe CW operation from SE, mid-infrared QCLs.« less
Electropolymerized polyazulene as active material in flexible supercapacitors
NASA Astrophysics Data System (ADS)
Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita
2017-07-01
We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S.; Nejad, Ali H.; Klett, James W.
Here in this article, a novel geometry is proposed for evaporators that are used in Supercritical Organic Rankine Cycles. The proposed geometry consists of successive plenums at several length-scale levels, creating a multi-scale heat exchanger (HX). The channels at the lowest length-scale levels were considered to have their length determined by the thermal entrance-length. Numerical simulations based on turbulent flow correlations for supercritical R134a and water were used to evaluate the performance of heat exchangers. Using the data on pumping power and area of heat exchange, the total present cost was evaluated using a cost model for shell-and-tube heat exchangers.more » With respect to the shell-and-tube baseline case, the cost per heat load and total costs of new HXs is lowered by approximately 20–26% and 15–30%, respectively. This reduction in present costs of the new HXs were found to be attributed to higher operational costs for the shell-and-tube HXs, as evidenced by the higher pumping power, as well their capital investment costs. The cost savings in the new HX designs compared to those of the shell-and-tube HXs, at similar heat load performance, indicate that the new HX architectures proposed in this paper are valid alternatives to traditional HX designs.« less
P. J Mulholland; J. L. Tanks; J. R. Webster; W. B. Bowden; W. K Dodds; S. V. Gregory; N. B Grimm; J. L. Meriam; J. L. Meyer; B. J. Peterson; H. M. Valett; W. M. Wollheim
2002-01-01
Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship...
Cyclic Fatigue Life of Two Single File Engine-Driven Systems in Simulated Curved Canals.
Nabavizadeh, Mohammad Reza; Sedigh-Shams, Mahdi; Abdolrasoulnia, Sara
2018-01-01
This study aimed to evaluate the cyclic fatigue resistance of two single file engine-driven instruments, Reciproc and NeoNiTi, in simulated root canals. Two groups of 15 NiTi endodontic instruments with an identical tip size of 0.25 mm were tested: Reciproc R25 (group A) and NeoNiTi A1 (group B). Cyclic fatigue testing was performed in a stainless steel artificial canal. The simulated canals had a 60 ° angle and 5-mm radius curvature. The Reciproc instruments were operated using the preset program on torque control electric motor specific for the Reciproc instruments, while the NeoNiTi instruments were operated using the manufacturer recommendation. All instruments were rotated until fracture occurred, and the number of cycles to fracture (NCF) and the length of the fractured tip were recorded and registered. Means and standard deviations of NCF and fragment length were calculated for each system and data were subjected to Student's t test ( P <0.05). A statistically significant difference ( P <0.05) was noted between Reciproc and NeoNiTi instruments. NeoNiTi A1 instruments were associated with a significantly higher mean NCF as compared to Reciproc R25 instruments (833±176 vs. 318±87 NCF). There was no significant difference ( P >0.05) in the mean length of the fractured fragments between the instruments. NeoNiTi instruments were associated with a significantly higher cyclic fatigue resistance than Reciproc instruments.
40 CFR 1065.514 - Cycle-validation criteria for operation over specified duty cycles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Cycle-validation criteria for operation over specified duty cycles. 1065.514 Section 1065.514 Protection of Environment ENVIRONMENTAL... Over Specified Duty Cycles § 1065.514 Cycle-validation criteria for operation over specified duty...
Size effects on miniature Stirling cycle cryocoolers
NASA Astrophysics Data System (ADS)
Yang, Xiaoqin; Chung, J. N.
2005-08-01
Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.
NASA Technical Reports Server (NTRS)
Whitlow, J. B., Jr.
1976-01-01
Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.
Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation
NASA Astrophysics Data System (ADS)
Horvath, Viktor; Epstein, Irving R.
2018-04-01
Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucha, E.I.
1984-01-01
A general method was developed to calculate two dimensional (axisymmetric) mixing of a compressible jet in a variable cross-sectional area mixing channel of the ejector. The analysis considers mixing of the primary and secondary fluids at constant pressure and incorporates finite difference approximations to the conservation equations. The flow model is based on the mixing length approximations. A detailed study and modeling of the flow phenomenon determines the best (optimum) mixing channel geometry of the ejector. The detailed ejector performance characteristics are predicted by incorporating the flow model into a solar-powered ejector cycle cooling system computer model. Freon-11 is usedmore » as both the primary and secondary fluids. Performance evaluation of the cooling system is examined for its coefficient of performance (COP) under a variety of operating conditions. A study is also conducted on a modified ejector cycle in which a secondary pump is introduced at the exit of the evaporator. Results show a significant improvement in the overall performance over that of the conventional ejector cycle (without a secondary pump). Comparison between one and two-dimensional analyses indicates that the two-dimensional ejector fluid flow analysis predicts a better overall system performance. This is true for both the conventional and modified ejector cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett C.; Less, Brennan D.; Delp, William W.
To inform efforts to improve combustion appliance testing in residential energy efficiency programs, we studied the frequency of coincident fan use and depressurization-induced downdrafting and spillage from atmospherically vented (i.e., natural draft) wall furnaces in airtight apartments. Indoor environmental conditions, heating appliance operation, use of exhaust fans, and cooking with stovetop or oven were monitored for approximately three weeks each in 16 apartment units in two buildings in Northern California. Apartments also were assessed using standard combustion appliance safety test methods and enhanced protocols. Monitoring occurred in February and March of 2016, with heating demand corresponding to 7.3 ± 0.5more » heating degree-days at a 65ºF reference temperature. Most of the furnaces spilled combustion products when the apartments were depressurized in the “worst-case” challenge condition of all exhaust fans operating at their highest settings and all windows closed. Many also spilled under less challenging conditions (e.g., with kitchen exhaust fan on low and bathroom fan operating). On average, bathroom exhaust fans were operated 3.9% of monitored minutes (13.5% max), and cooking (burner or kitchen fan operation) occurred 4.6% of minutes (max 13.3%). Event lengths averaged 17 minutes (max 540) and 34 minutes (max 324), respectively. Their coincident operation averaged 0.34% of minutes (max 2.0%), with average event length of 13 minutes (max 92 minutes). This suggests that the operation of apartment units at or near the currently used worst-case challenge condition is quite rare. Wall furnace burners operated an average of 2.8% of minutes (max of 8.9%), with average burner cycle length of 14 minutes (max 162). Coincident bath fan use, cooking and wall furnace operation was very rare, occurring only a handful of times across all apartments. The highest rate was 0.075% of monitored minutes in one apartment, and the longest event length was 12 minutes. Exhaust fan operation in this study may have been more frequent than typical as participants were asked to use an exhaust fan whenever cooking or bathing. Consistent with the low levels of coincident operation, unambiguous spillage occurred in only 4 apartments and the longest event was 5 minutes. The frequency of partial spillage is unknown, owing to a lack of a clear signal from monitored parameters. Downdrafting during exhaust fan use occurred in all 13 of the apartments with relevant data, and 9 of these units had 10 or more events. Exhaust fans also sometimes led to weakened draft, even if downdrafting did not occur. Each unambiguous spillage event identified in the study was immediately preceded by downdrafting. The observed occurrence of downdrafting and spillage may have been impacted in those apartments with the most severe drafting problems (i.e., appliances spilled combustion pollutants under ‘natural’ test conditions), because occupants in these units were instructed to open windows whenever using the kitchen exhaust fan.« less
The detection and stabilisation of limit cycle for deterministic finite automata
NASA Astrophysics Data System (ADS)
Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing
2018-04-01
In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.
Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment
Lorz, Alexander; Botesteanu, Dana-Adriana; Levy, Doron
2017-01-01
Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/switch-off” increase in the average cell-cycle length maintains an active cell population in the long term, with oscillating numbers of proliferative cells and a relatively constant quiescent cell number. PMID:28913178
Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats
NASA Astrophysics Data System (ADS)
Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-08-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats
NASA Technical Reports Server (NTRS)
Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-01-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Changes in fat distribution (WHR) and body weight across the menstrual cycle.
Kirchengast, S; Gartner, M
2002-12-01
The aim of the present study was to analyze changes of the body weight and waist-to-hip ratio during menstrual cycle, with special respect to changes around ovulation. 32 healthy young women ranging in age between 19 and 30 years (X = 23.5) were enrolled in the study. Beside a basal anthropometric investigation (stature, weight, BMI, waist circumference, hip circumference, fat percentage, waist to hip ratio) the probands were instructed to take body weight, waist and hip circumference and basal body temperature every morning by themselves over a whole cycle. Three proband groups according to cycle length (average, short and long) were defined and eight hormonal contraceptive users served as controls. It turned out that body weight increased only slightly during the second cycle half in all proband groups. A marked decrease of WHR around the time of ovulation was found in the proband group who exhibited average cycle length and a successful ovulation could be assumed. Evolutionary and physiological explanations are discussed.
Perennial plants for biofuel production: bridging genomics and field research.
Alves, Alexandre Alonso; Laviola, Bruno G; Formighieri, Eduardo F; Carels, Nicolas
2015-04-01
Development of dedicated perennial crops has been indicated as a strategic action to meet the growing demand for biofuels. Breeding of perennial crops,however, is often time- and resource-consuming. As genomics offers a platform from which to learn more about the relationships of genes and phenotypes,its operational use in the context of breeding programs through strategies such as genomic selection promises to foster the development of perennial crops dedicated to biodiesel production by increasing the efficiency of breeding programs and by shortening the length of the breeding cycles. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L
2015-12-15
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.
A Bayesian Joint Model of Menstrual Cycle Length and Fecundity
Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Germaine M. Buck; Louis, Thomas A.
2015-01-01
Summary Menstrual cycle length (MCL) has been shown to play an important role in couple fecundity, which is the biologic capacity for reproduction irrespective of pregnancy intentions. However, a comprehensive assessment of its role requires a fecundity model that accounts for male and female attributes and the couple’s intercourse pattern relative to the ovulation day. To this end, we employ a Bayesian joint model for MCL and pregnancy. MCLs follow a scale multiplied (accelerated) mixture model with Gaussian and Gumbel components; the pregnancy model includes MCL as a covariate and computes the cycle-specific probability of pregnancy in a menstrual cycle conditional on the pattern of intercourse and no previous fertilization. Day-specific fertilization probability is modeled using natural, cubic splines. We analyze data from the Longitudinal Investigation of Fertility and the Environment Study (the LIFE Study), a couple based prospective pregnancy study, and find a statistically significant quadratic relation between fecundity and menstrual cycle length, after adjustment for intercourse pattern and other attributes, including male semen quality, both partner’s age, and active smoking status (determined by baseline cotinine level 100ng/mL). We compare results to those produced by a more basic model and show the advantages of a more comprehensive approach. PMID:26295923
Uldry, Laurent; Virag, Nathalie; Jacquemet, Vincent; Vesin, Jean-Marc; Kappenberger, Lukas
2010-12-01
While successful termination by pacing of organized atrial tachycardias has been observed in patients, rapid pacing of AF can induce a local capture of the atrial tissue but in general no termination. The purpose of this study was to perform a systematic evaluation of the ability to capture AF by rapid pacing in a biophysical model of the atria with different dynamics in terms of conduction velocity (CV) and action potential duration (APD). Rapid pacing was applied during 30 s at five locations on the atria, for pacing cycle lengths in the range 60-110% of the mean AF cycle length (AFCL(mean)). Local AF capture could be achieved using rapid pacing at pacing sites located distal to major anatomical obstacles. Optimal pacing cycle lengths were found in the range 74-80% AFCL(mean) (capture window width: 14.6 ± 3% AFCL(mean)). An increase/decrease in CV or APD led to a significant shrinking/stretching of the capture window. Capture did not depend on AFCL, but did depend on the atrial substrate as characterized by an estimate of its wavelength, a better capture being achieved at shorter wavelengths. This model-based study suggests that a proper selection of the pacing site and cycle length can influence local capture results and that atrial tissue properties (CV and APD) are determinants of the response to rapid pacing.
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.; Sigler, C.; Kirch, J. D.
2016-03-21
Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical modemore » to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.« less
NASA Astrophysics Data System (ADS)
McGovern, Scott; Alici, Gursel; Truong, Van-Tan; Spinks, Geoffrey
2009-09-01
This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s-1 (or 0.25 body lengths s-1) and was achieved with a flapping frequency of 0.6-0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors.
Effect of Variable Chord Length on Transonic Axial Rotor Performance Investigated
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2002-01-01
During the life of any gas turbine, blade erosion is present, especially for those units that are exposed to unfiltered air, such as aviation turbofan engines. The effect of this erosion is to reduce the blade chord progressively from the midspan to the tip region and to roughen and distort the blade surface. The effects of roughness on rotor performance have been documented by Suder et al. and Roberts. These papers indicate that the penalty for leading-edge roughness and erosion can be significant. Turbofan operators, therefore, restore chord length at routine maintenance intervals to regain performance before deterioration is too severe to salvage blades. As the rotor blades erode, the leading edge becomes rough - blunt and distorted from the nominal shape - and the aerodynamic performance suffers. Nominal performance can be recovered by recontouring the leading edges. This process, which inherently shortens the blade chord, can be used until the blade chord erodes to the stall limit. Below this chord length, which varies among engine-compressor types, a decrease of stall margin is likely. After compressor blade rework that includes leading edge recontouring, the blades have different chord lengths, ranging from blades that are near nominal chord length down to those near the stall chord limit. Furthermore, as blades erode below the stall limit, they must be replaced with new blades that have the full nominal chord length. Consequently, a set of compressor blades with varying chord lengths will be installed into each turbofan engine that goes through a complete maintenance cycle. The question arises, "Does fan or compressor performance depend on the order in which mixed-chord blades are installed into a fan or compressor disk?"
De Sanctis, Vincenzo; Bernasconi, Sergio; Bianchin, Luigi; Bona, Gianni; Bozzola, Mauro; Buzi, Fabio; De Sanctis, Carlo; Rigon, Franco; Tatò, Luciano; Tonini, Giorgio; Perissinotto, Egle
2014-11-01
Healthcare professionals need updated information about what is the range of "normal" variation of menstrual cycle features to support young girls and their parents in managing reproductive health, and to detect diseases early. This cross-sectional study aimed to provide an updated picture of age at menarche and main menstrual cycle characteristics and complaints in an Italian population-based sample of 3,783 adolescents attending secondary school. Girls filled in a self-administered anonymous questionnaire including questions about demography, anthropometry, smoking and drinking habits, use of contraceptive, socioeconomic status, age at menarche, menstrual pattern, and physical/psychological menstrual complaints. Mean age at menarche and prevalence of polymenorrhea (cycle length < 21 days), oligomenorrhea (cycle length > 35 days), irregularity, dysmenorrhea, and of physical/psychological complaints were computed. Factors associated with age at menarche and menstrual disturbances were explored by using multiple logistic models. The girls' mean age was 17.1 years (SD 1.4 years) and the mean age at menarche was 12.4 years (SD 1.3 years); menarche occurred with two monthly peaks of frequency in July-September and in December-January (P < 0.0001). Age at menarche was significantly associated with geographic genetics (as expressed by parents' birth area), mother's menarcheal age, BMI, family size, and age at data collection. The prevalence of polymenorrhea was about 2.5%, oligomenorrhea was declared by 3.7%, irregular length by 8.3%, while long bleeding (>6 days) was shown in 19.6% of girls. Gynecological age was significantly associated with cycle length (P < 0.0001) with long cycles becoming more regular within the fourth year after menarche, while frequency of polymenorrhea stabilized after the second gynecological year. Oligomenorrhea and irregularity were both significantly associated with long menstrual bleeding (adjusted OR = 2.36; 95% CI = 1.55-3.60, and adjusted OR = 2.59; 95% CI = 1.95-3.44, respectively). The findings of the study support the levelling-off of secular trend in menarche anticipation in Italy and confirm the timing in menstrual cycle regularization. The study provides updated epidemiological data on frequency of menstrual abnormalities to help reproductive health professionals in managing adolescent gynecology.
40 CFR 86.884-7 - Dynamometer operation cycle for smoke emission tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Dynamometer operation cycle for smoke... Dynamometer operation cycle for smoke emission tests. (a) The following sequence of operations shall be... the preconditioning prior to the smoke cycle. (ii) With the throttle remaining in the fully open...
Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1998-01-01
A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).
Rapid cycling genomic selection in a multiparental tropical maize population
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...
Quezada-Casasola, Andrés; Avendaño-Reyes, Leonel; Macías-Cruz, Ulises; Ramírez-Godínez, José Alejandro; Correa-Calderón, Abelardo
2014-04-01
In beef and dairy cattle, the number of follicular waves affects endocrine, ovarian, and behavioral events during a normal estrous cycle. However, in Mexican-native Criollo cattle, a shortly and recently domesticated breed, the association between wave patterns and follicular development has not been studied. The objective of this study was to evaluate the effect of number of follicular waves in an estrous cycle on development of anovulatory and ovulatory follicles, corpus luteum (CL) development and functionality, as well as estrual behavior in Criollo cows. Ovarian follicular activities of 22 cycling multiparous Criollo cows were recorded daily by transrectal ultrasound examinations during a complete estrous cycle. Additionally, blood samples were collected daily to determine serum progesterone concentrations. Only two- (n = 17, 77.3%) and three-wave follicular (n = 5, 22.7%) patterns were observed. Duration of estrus, length of estrous cycle, and length of follicular and luteal phases were similar (P > 0.05) between cycles of two and three waves. Two-wave cows ovulated earlier (P < 0.05) after detection of estrus than three-wave cows. Detected day and maximum diameter of first anovulatory follicle were not affected (P > 0.05) by number of waves. Growth rate of first dominant follicle was higher (P < 0.05) in three-wave cycles. Onset of regression of the first dominant follicle was earlier (P < 0.01) in cycles with three waves than in those with two waves. In two-wave cycles, ovulatory follicles were detected earlier (P < 0.01) and had lower (P < 0.01) growth rate than in three-wave cycles. Development (i.e., maximum diameter and volume) and functionality (minimum and maximum progesterone concentration) of CL were similar (P > 0.05) between two- and three-wave patterns. In conclusion, Criollo cows have two or three follicular waves per estrous cycle, which alters partially ovulatory follicle development and ovulation time after detection of estrus. Length of estrous cycle, as well as CL development and functionality, was not affected by number of follicular waves.
A High-Speed Design of Montgomery Multiplier
NASA Astrophysics Data System (ADS)
Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi
With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.
Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orr, P.L.; Guiguer, K.R.; Russel, C.K.
2006-02-15
Selenium (Se) is an essential micronutrient, exhibiting a narrow margin between nutritionally optimal and potentially toxic concentrations. Egg-laying vertebrates at the top of aquatic food chains are most at risk in environments with elevated aqueous Se concentrations. The Elk River watershed in British Columbia, Canada receives effluents containing Se from five coal mine operations. This study tested three hypotheses that might account for higher Se concentrations in fish from lentic compared to lotic habitats in the watershed: (1) enhanced uptake by aquatic primary producers, (2) longer food chain length, or (3) greater food web accumulation through sediment-detrital pathways. Stable isotopemore » and Se concentration data demonstrated that Se concentrations in aquatic primary producers and food chain lengths were comparable in lentic and lotic habitats. Enhanced formation of organoselenium and subsequent uptake and cycling via sediment detrital pathways likely account for higher fish tissue Se concentrations in lentic than in lotic areas.« less
Cyclic fatigue of ProTaper instruments.
Lopes, Hélio Pereira; Moreira, Edson Jorge Lima; Elias, Carlos Nelson; de Almeida, Renata Andriola; Neves, Mônica Schultz
2007-01-01
The present work evaluated the influence of the curved segment length of artificial root canals (the arc) and the number of cycles necessary to fracture engine-driven nickel-titanium endodontic instruments. ProTaper F3 25-mm files at 250 rpm were used in two artificial canals. The artificial canals were made of stainless steel with an inner diameter of 1.04 mm, a total length of 20 mm, and arc on the ends with a radius of curvature of 6 mm. The arc length of the first tube measured 9.4 mm, and the straight part measured 10.6 mm. The second tube was 14.1 mm long, and the straight part measured 5.9 mm. We determined the fracture surface distances and the number of cycles necessary to induce fatigue fracture in the ProTaper F3 instruments. The fracture surfaces and the helical shaft of the instruments were investigated using a scanning electron microscope. The results indicated that the required number of cycles to cause a fracture was influenced by the canal arc length, the morphology of the fractured surface presented ductile characteristics, and plastic deformation in the helical shaft of the fractured instruments did not occur.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
Chen, Bailian; Reynolds, Albert C.
2018-03-11
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bailian; Reynolds, Albert C.
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
Effects of surface chemistry on hot corrosion life
NASA Technical Reports Server (NTRS)
Fryxell, R. E.
1984-01-01
Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion.
Cell-free DNA and telomere length among women undergoing in vitro fertilization treatment.
Czamanski-Cohen, J; Sarid, O; Cwikel, J; Douvdevani, A; Levitas, E; Lunenfeld, E; Har-Vardi, I
2015-11-01
The current research is aimed at finding potential non-invasive bio-markers that will help us learn more about the mechanisms at play in failed assisted reproduction treatment. This exploratory pilot study examined the relationship between cell-free DNA (CFD) in plasma and telomere length in lymphocytes among women undergoing in vitro fertilization (IVF) and compared telomere length and CFD levels to a healthy control group. Blood of 20 women undergoing IVF was collected at three time points during the IVF cycle. We assessed the relationship between CFD and telomere length as well as controlling for morning cortisol levels. We also collected blood of 10 healthy controls at two time points (luteal and follicular phases of the menstrual cycle) and compared mean telomere length, CFD, and cortisol levels between the IVF patients and healthy controls. The results revealed an inverse relationship between CFD levels and telomere lengths at several time points that remained significant even after controlling for cortisol levels. Women undergoing IVF had statistically significant higher levels of CFD and shorter telomeres compared to healthy controls. The relationship between telomere length and CFD should be further explored in larger studies in order to uncover potential mechanisms that cause both shortened telomere length and elevated CFD in women undergoing IVF.
Ayas, Selçuk; Bayraktar, Mesut; Gürbüz, Ayşe; Alkan, Akif; Eren, Sadiye
2012-01-01
Objective: We aimed to evaluate uterine junctional zone thickness, cervical length and bioelectrical impedance analysis of body composition in women with endometriosis. Material and Methods: This is a prospective study conducted in a tertiary teaching hospital. A total of 73 patients were included in the study. Endometriosis was surgically diagnosed in 36 patients (study group). The control group included 37 patients. Main outcome measure(s): Bioelectrical impedance analysis was used to measure body composition. Uterine junctional zone thickness and cervical length were measured by transvaginal ultrasonography. Results: Patients’ characteristics (age, gravida, parity, live baby, age of menarche, lengths of menstrual cycle, percentage of patients with dysmenorrhea, positive family history), body mass index (BMI) (kg/m2), amount of body fat (kg), percentage of body fat were not statistically different between the two groups (p>0.05). The length of menstruation and cervical length were longer in women with endometriosis. Similarly, the inner myometrium was thicker in women with endometriosis than the control group. Conclusion: The relation between endometriosis and demographic features such as age, gravida, parity, gravida, BMI, lengths of the menstrual cycle, age of menarche are controversial. Longer cervical length and thicker inner myometrial layer may be important in the etiopathogenesis of endometriosis. PMID:25207044
Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs
George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...
2014-12-01
Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less
Fully Modulated Turbulent Diffusion Flames in Microgravity*
NASA Astrophysics Data System (ADS)
Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.
2001-11-01
Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.
Extracting the respiration cycle lengths from ECG signal recorded with bed sheet electrodes
NASA Astrophysics Data System (ADS)
Vehkaoja, A.; Peltokangas, M.; Lekkala, J.
2013-09-01
A method for recognizing the respiration cycle lengths from the electrocardiographic (ECG) signal recorded with textile electrodes that are attached to a bed sheet is proposed. The method uses two features extracted from the ECG that are affected by the respiration: respiratory sinus arrhythmia and the amplitude of the R-peaks. The proposed method was tested in one hour long recordings with ten healthy young adults. A relative mean absolute error of 5.6 % was achieved when the algorithm was able to provide a result for approximately 40 % of the time. 90 % of the values were within 0.5 s and 97 % within 1 s from the reference respiration value. In addition to the instantaneous respiration cycle lengths, also the mean values during 1 and 5 minutes epochs are calculated. The effect of the ECG signal source is evaluated by calculating the result also from the simultaneously recorded reference ECG signal. The acquired respiration information can be used in the estimation of sleep quality and the detection of sleep disorders.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2010-01-01
Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions. PMID:20607111
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
Dissimilar metals joint evaluation
NASA Technical Reports Server (NTRS)
Wakefield, M. E.; Apodaca, L. E.
1974-01-01
Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.
Key metrics for HFIR HEU and LEU models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Betzler, Benjamin R.; Chandler, David
This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less
Mira-Escolano, María-Pilar; Mendiola, Jaime; Mínguez-Alarcón, Lidia; Roca, Manuela; Cutillas-Tolín, Ana; López-Espín, José J; Torres-Cantero, Alberto M
2014-02-01
Animal models suggest that anogenital distance (AGD) at birth reflects androgen concentrations during in-utero development and predicts adult AGD. Several human observational studies show an association between menstrual cycle irregularities and a hyperandrogenic environment and that may result in a potential alteration of the female reproductive tract during in-utero development. This study examined associations between AGD of young women and their mother's gynaecological characteristics before or during pregnancy. This is cross-sectional study of 100 college-age volunteers in southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. Linear regression analysis was used to examine the association between AGD measurements (anus-fourchette (AGDAF) and anus-clitoris (AGDAC)) of women and their mother's gynaecological characteristics. Longer AGDAF was associated with the presence of mother's menstrual cycle irregularities before pregnancy (P=0.03). Longer female AGD has been related to excess androgen exposure in utero in toxicological studies. The current findings may be consistent with studies in which an association between menstrual cycle irregularities and an hyperandrogenic environment has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including AGD. Rodent models suggest that perineal length at birth reflects male hormone concentrations (androgens) during in-utero development and predicts adult perineal length. Several human studies show a relationship between menstrual cycle irregularities and an excessive androgen environment. We hypothesize that androgen excess may result in a potential alteration of the female reproductive tract during in-utero development. Our aim was to examine associations between perineal length of young women and their mother's gynaecological characteristics before or during pregnancy. This is a study of 100 college-age volunteers in Southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. We used multivariate analyses to assess the association between perineal length of women and their mother's gynaecological characteristics. Longer perineal length was associated with the presence of mother's menstrual cycle irregularities before pregnancy. Longer female perineal length has been related to excess androgen exposure in utero in rodent studies. Our findings may be consistent with previous studies in which an association between menstrual cycle irregularities and an excess of androgen has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including perineal length. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Recent developments in BWR fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Noble, L.D.; Wood, J.E.
1991-11-01
Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less
Implications of Extended Solar Minima
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Davis, J. M.
2009-01-01
Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.
Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics
Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.
2010-01-01
During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695
Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.
Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M
2016-10-20
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Pham, Toan; Tran, Kenneth; Mellor, Kimberley M; Hickey, Anthony; Power, Amelia; Ward, Marie-Louise; Taberner, Andrew; Han, June-Chiew; Loiselle, Denis
2017-07-15
The heat of activation of cardiac muscle reflects the metabolic cost of restoring ionic homeostasis following a contraction. The accuracy of its measurement depends critically on the abolition of crossbridge cycling. We abolished crossbridge activity in isolated rat ventricular trabeculae by use of blebbistatin, an agent that selectively inhibits myosin II ATPase. We found cardiac activation heat to be muscle length independent and to account for 15-20% of total heat production at body temperature. We conclude that it can be accurately estimated at minimal muscle length. Activation heat arises from two sources during the contraction of striated muscle. It reflects the metabolic expenditure associated with Ca 2+ pumping by the sarcoplasmic reticular Ca 2+ -ATPase and Ca 2+ translocation by the Na + /Ca 2+ exchanger coupled to the Na + ,K + -ATPase. In cardiac preparations, investigators are constrained in estimating its magnitude by reducing muscle length to the point where macroscopic twitch force vanishes. But this experimental protocol has been criticised since, at zero force, the observed heat may be contaminated by residual crossbridge cycling activity. To eliminate this concern, the putative thermal contribution from crossbridge cycling activity must be abolished, at least at minimal muscle length. We achieved this using blebbistatin, a selective inhibitor of myosin II ATPase. Using a microcalorimeter, we measured the force production and heat output, as functions of muscle length, of isolated rat trabeculae from both ventricles contracting isometrically at 5 Hz and at 37°C. In the presence of blebbistatin (15 μmol l -1 ), active force was zero but heat output remained constant, at all muscle lengths. Activation heat measured in the presence of blebbistatin was not different from that estimated from the intercept of the heat-stress relation in its absence. We thus reached two conclusions. First, activation heat is independent of muscle length. Second, residual crossbridge heat is negligible at zero active force; hence, the intercept of the cardiac heat-force relation provides an estimate of activation heat uncontaminated by crossbridge cycling. Both results resolve long-standing disputes in the literature. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-04-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-01-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612
Gao, Jiangang; Wang, Xiang; Wu, Xudong; Aguinaga, Sal; Huynh, Kristin; Jia, Shuping; Matsuda, Keiji; Patel, Manish; Zheng, Jing; Cheatham, MaryAnn; He, David Z.; Dallos, Peter; Zuo, Jian
2007-01-01
The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells. In C1/C1 knockin mice, localization of C1-prestin, as well as the length and number of OHCs, were all normal. In OHCs isolated from C1/C1 mice, nonlinear capacitance and somatic motility were both shifted toward hyperpolarization, so that, compared with WT controls, the amplitude of cycle-by-cycle (alternating, or AC) somatic motility remained the same, but the unidirectional (DC) component reversed polarity near the OHC's presumed in vivo resting membrane potential. No physiological defects in cochlear sensitivity or frequency selectivity were detected in C1/C1 or C1/+ mice. Hence, our results do not support the idea that OHC somatic motility adjusts the operating point of a stereocilia-based amplifier. However, they are consistent with the notion that the AC component of OHC somatic motility plays a dominant role in mammalian cochlear amplification. PMID:17640919
Borghol-Kassar, R; Menezo-Rozalén, J L; Harto-Castaño, M A; Desco-Esteban, M C
2015-03-01
The aim of this article is to study the effect of unilateral congenital cataract surgery on ocular growth and corneal flattening. This is a cross-sectional study of 59 patients operated on due to a unilateral congenital cataract. The median age of the patients at the time of diagnosis was 17 months (interquartile range, 5-39 months). The median age at cataract the time of surgery was 28 months (interquartile range, 8-52 months), and the mean follow-up between cataract surgery and assessments was 149.7±69.9 months (range, 30-319 months). Axial length and corneal curvature were measured in both operated and non-operated eyes, comparing the results between them. There were no statistically significant differences for axial length growth or corneal flattening between operated and non-operated eyes: axial length (P=.327, Student t test) and corneal curvature (P=.078, Student t test). A sub-analysis was performed using the visual acuity and the age of the patient at the time of surgery. The only statistically significant data (P=.007, Student t test) was a lower axial length in operated eyes compared to non-operated eyes, in the non-deep-amblyopia group. No significant axial length growth modifications were observed between operated and non-operated eyes. Only the non-deep-amblyopia group presented with a lower axial length in the operated eyes compared to non-operated eyes. No significant differences in corneal flattening were found between groups after unilateral congenital cataract surgery. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice
2014-07-01
Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.
2010-01-01
Background We have previously shown that the White-crowned Sparrow (WCS) decreases sleep by 60% during a period of migratory restlessness relative to a non-migratory period when housed in a 12 h light: 12 h dark cycle. Despite this sleep reduction, accuracy of operant performance was not impaired, and in fact rates of responding were elevated during the migratory period, effects opposite to those routinely observed following enforced sleep deprivation. To determine whether the previously observed increases in operant responding were due to improved performance or to the effects of migration on activity level, here we assessed operant performance using a task in which optimal performance depends on the bird's ability to withhold a response for a fixed interval of time (differential-reinforcement-of-low-rate-behavior, or DRL); elevated response rates ultimately impair performance by decreasing access to food reward. To determine the influence of seasonal changes in day length on sleep and behavioral patterns, we recorded sleep and assessed operant performance across 4 distinct seasons (winter, spring, summer and fall) under a changing photoperiod. Results Sleep amount changed in response to photoperiod in winter and summer, with longest sleep duration in the winter. Sleep duration in the spring and fall migratory periods were similar to what we previously reported, and were comparable to sleep duration observed in summer. The most striking difference in sleep during the migratory periods compared to non-migratory periods was the change from discrete day-night temporal organization to an almost complete temporal fragmentation of sleep. The birds' ability to perform on the DRL task was significantly impaired during both migratory periods, but optimal performance was sustained during the two non-migratory periods. Conclusions Birds showed dramatic changes in sleep duration across seasons, related to day length and migratory status. Migration was associated with changes in sleep amount and diurnal distribution pattern, whereas duration of sleep in the non-migratory periods was largely influenced by the light-dark cycle. Elevated response rates on the DRL task were observed during migration but not during the short sleep duration of summer, suggesting that the migratory periods may be associated with decreased inhibition/increased impulsivity. Although their daily sleep amounts and patterns may vary by season, birds are susceptible to sleep loss throughout the year, as evidenced by decreased responding rates following enforced sleep deprivation. PMID:20670404
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-03
... the LSCS, Cycle 15, operation. Cycle 15 will be the first cycle of operation with a mixed core... methodologies. The analyses for LSCS, Unit 1, Cycle 15 have concluded that a two-loop MCPR SL of >= 1.13, based... accident from any accident previously evaluated? Response: No. The GNF2 fuel to be used in Cycle 15 is of a...
MSL-RAD Cruise Operations Concept
NASA Technical Reports Server (NTRS)
Brinza, David E.; Zeitlin, Cary; Hassler, Donald; Weigle, Gerald E.; Boettcher, Stephan; Martin, Cesar; Wimmer-Schweingrubber, Robert
2012-01-01
The Mars Science Laboratory (MSL) payload includes the Radiation Assessment Detector (RAD) instrument, intended to fully characterize the radiation environment for the MSL mission. The RAD instrument operations concept is intended to reduce impact to spacecraft resources and effort for the MSL operations team. By design, RAD autonomously performs regular science observations without the need for frequent commanding from the Rover Compute Element (RCE). RAD operates with pre-defined "sleep" and "observe" periods, with an adjustable duty cycle for meeting power and data volume constraints during the mission. At the start of a new science observation, RAD performs a pre-observation activity to assess count rates for selected RAD detector elements. Based on this assessment, RAD can enter "solar event" mode, in which instrument parameters (including observation duration) are selected to more effectively characterize the environment. At the end of each observation period, RAD stores a time-tagged, fixed length science data packet in its non-volatile mass memory storage. The operating cadence is defined by adjustable parameters, also stored in non-volatile memory within the instrument. Periodically, the RCE executes an on-board sequence to transfer RAD science data packets from the instrument mass storage to the MSL downlink buffer. Infrequently, the RAD instrument operating configuration is modified by updating internal parameter tables and configuration entries.
Persistent organochlorine pollutants and menstrual cycle characteristics
Buck Louis, Germaine M.; Rios, Lisbeth Iglesias; McLain, Alexander; Cooney, Maureen A.; Kostyniak, Paul J.; Sundaram, Rajeshwari
2014-01-01
An evolving body of evidence suggests an adverse relation between persistent organochlorine pollutants (POPs) and menstruation, though prospective longitudinal measurement of menses is limited and served as the impetus for study. We prospectively assessed the relation between a mixture of persistent organochlorine compounds and menstrual cycle length and duration of bleeding in a cohort of women attempting to become pregnant. Eighty-three (83%) women contributing 447 cycles for analysis provided a blood specimen for the quantification of 76 polychlorinated biphenyls and seven organochlorine pesticides, and completed daily diaries on menstruation until a human chorionic gonadotropin confirmed pregnancy or 12 menstrual cycles without conception. Gas chromatography with electron capture detection was used to quantify concentrations (ng g−1 serum); enzymatic methods were used to quantify serum lipids (mg dL−1). A linear regression model with a mixture distribution was used to identify chemicals grouped by purported biologic activity that significantly affected menstrual cycle length and duration of bleeding adjusting for age at menarche and enrollment, body mass index, and cigarette smoking. A significant 3-d increase in cycle length was observed for women in the highest tertile of estrogenic PCB congeners relative to the lowest tertile (β = 3.20; 95% CI 0.36, 6.04). A significant reduction in bleeding (<1 d) was observed among women in the highest versus lowest tertile of aromatic fungicide exposure (γ = −0.15; 95% CI −0.29, −0.00). Select POPs were associated with changes in menstruation underscoring the importance of assessing chemical mixtures for female fecundity. PMID:22018858
The key kinematic determinants of undulatory underwater swimming at maximal velocity.
Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross
2016-01-01
The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.
Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M
2015-03-15
A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aerobic Exercise, Estrogens, and Breast Cancer Risk
2011-11-01
on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism in sedentary, eumenorrheic, healthy premenopausal women...changes in menstrual cycle length, and 4) limited changes in estrogen metabolism. The resulting increases in urinary 2-hydroxyestrone levels and 2...effects of a 16-week, aerobic exercise intervention on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism of young
Scaling of chew cycle duration in primates.
Ross, Callum F; Reed, David A; Washington, Rhyan L; Eckhardt, Alison; Anapol, Fred; Shahnoor, Nazima
2009-01-01
The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass-spring system models of the feeding system. The gravity-driven pendulum model best predicts the observed cycle duration scaling but is rejected as biomechanically unrealistic. The forced mass-spring model predicts larger increases in chew cycle duration with size than observed, but provides reasonable predictions of cycle duration scaling. We hypothesize that intrinsic properties of the muscles predict spring-like behavior of the jaw elevator muscles during opening and fast close phases of the jaw cycle and that modulation of stiffness by the central nervous system leads to spring-like properties during the slow close/power stroke phase. Strepsirrhines show no predictable relationship between chew cycle duration and jaw length. Anthropoids have longer chew cycle durations than nonprimate mammals with similar mandible lengths, possibly due to their enlarged symphyses, which increase the moment of inertia of the mandible. Deviations from general scaling trends suggest that both scaling of the jaw muscles and the inertial properties of the mandible are important in determining the scaling of chew cycle duration in primates.
40 CFR 1065.514 - Cycle-validation criteria for operation over specified duty cycles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Cycle-validation criteria for... Over Specified Duty Cycles § 1065.514 Cycle-validation criteria for operation over specified duty...-validation criteria. You must compare the original reference duty cycle points generated as described in...
40 CFR 1065.514 - Cycle-validation criteria for operation over specified duty cycles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Cycle-validation criteria for... Over Specified Duty Cycles § 1065.514 Cycle-validation criteria for operation over specified duty...-validation criteria. You must compare the original reference duty cycle points generated as described in...
40 CFR 1065.514 - Cycle-validation criteria for operation over specified duty cycles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Cycle-validation criteria for... Over Specified Duty Cycles § 1065.514 Cycle-validation criteria for operation over specified duty...-validation criteria. You must compare the original reference duty cycle points generated as described in...
40 CFR 1065.514 - Cycle-validation criteria for operation over specified duty cycles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Cycle-validation criteria for... Over Specified Duty Cycles § 1065.514 Cycle-validation criteria for operation over specified duty...-validation criteria. You must compare the original reference duty cycle points generated as described in...
Effects of day-length variations on emotional responses towards unfamiliarity in Swiss mice.
Kopp, C; Misslin, R; Vogel, E; Rettori, M C; Delagrange, P; Guardiola-Lemaitre, B
1997-11-01
Pineal melatonin secretion occurs at night in all vertebrates and the duration of its secretion is negatively correlated with day length. As an anxiolytic activity of melatonin has been shown in rats and mice, this study examined possible changes of emotional reactivity in response to day length variations in Swiss mice. Three groups of mice were observed in a free-exploratory test: a group submitted to a short-day exposure (6:18 h light-dark cycle) for 2 weeks, a group submitted to a long-day exposure (18:6 h light-dark cycle) for 2 weeks and a control group which was maintained in housing 12:12 h light-dark cycle. The short-day exposed group of mice exhibited significantly fewer attempts to enter into the unfamiliar enclosure, spent significantly more time in it and presented significantly more rears than controls whereas the long-day exposed group of mice made more attempts than controls. These results suggest a decreased emotional level in short-day exposed mice and an increased level in long-day exposed mice. This could be interpreted as confirming the idea of anxiolytic-like properties of melatonin; however, the specific role of this hormone in the changes of anxiety related to day length must be assessed by further measures of potential variations of circulating melatonin.
Update to Millstone 3 elevated pH tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, C.A.; Perock, J.D.; Hudson, M.J.B.
1995-03-01
In view of the potential radiological benefits of elevated coolant pH operation, Northwest Utilities (NU), in support of an EPRI-Westinghouse program, agreed to operate the Millstone 3 plant at the start of its second fuel cycle as a demonstration of the effect of elevated coolant pH on out-of-core radiation fields. Operating with an elevated pH is defined as operating with an average lithium concentration of 3.35 ppm, until reaching an end of cycle pH of 7.2 or 7.4. The plant operated during its second and third cycles with an elevated coolant pH. The end of cycle pH during the secondmore » cycle was 7.4, and 7.2 during the third cycle. (During the first cycle, operation was with a coordinated pH of 7.0). Evaluation of the dose rate trends in Millstone 3 after two cycles of elevated coolant pH operation concluded that an elevated coolant pH resulted in a 15 percent lower component dose rate compared to other plants that operated with coordinated pH 6.9. However, due to a possible increase in fuel clad corrosion, operation during cycle 4 was restricted to pH 6.9 coordinated chemistry, with the exception of the last two months during which the pH increased to 7.35. At the end of cycle 4 (EOC4), there was a greater increase in component and crud trap dose rates than expected. This paper reviews the radiological trends in the plant and discusses the potential causes for the increase in the dose rates at EOC4.« less
Ingrisch, Sigfrid
1986-11-01
In eggs of European Tettigoniidae species, an initial diapause can occur just after blastoderm formation and a final diapause close to the end of embryonic development. The effect of photoperiod experienced maternally on the induction of the initial diapause was studied, using 13 species from Central and Southeastern Europe. In Conocephalus dorsalis and Platycleis albopunctata there was no initial diapause induced by photoperod, while, in Tettigonia-and Saga-species and in Metrioptera saussuriana it occurred independently of day length. In Metrioptera roeseli, M. bicolor, Leptophyes punctatissima, Eupholidoptera smyrnensis, and Decticus verrucivorus, oviposition at short day induced an initial diapause, while after oviposition at long day, the eggs developed directly until final diapause. On the other hand, in up to 1/4 of the eggs of Pholidoptera griseoaptera an initial diapause was induced by long day length. Populations of D. verrucivorus from different latitudes differed with respect to the critical day length. For E. smyrnensis and M. roeseli, a photoperiodic response curve was calculated.In the Rhodian population of E. smyrnensis, the dormancy sequence of initial and final embryonic diapause can be used for aestivation and hibernation within an annual life cycle, while enabling hibernation in successive years for the Central European species. The population of D. verrucivorus near Aachen has an "obligatory" plurennial life cycle, since the critical day length for development without initial diapause is above the range of day length occurring in the field.
On the prospect of using butterfly diagrams to predict cycle minimum
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1987-01-01
Features enabling the prediction of the beginning and the length of a solar cycle, in addition to the turning points in the period-growth dichotomy, have been identified based on butterfly diagrams for the period from 1874 to the present. The present results indicate that cycle 21 will be a long-period cycle ending after July 1987. On the assumption that April 1985 was the first occurrence of high latitude new cycle (cycle 22) spots during the decline of cycle 21 (the old cycle), it is suggested that the last occurrence of high latitude old cycle spots was September 1983 and that the minimum for cycle 22 will be about 1986.7 + or - 1.1 yr.
Crawford, Sybil L.; El Khoudary, Samar R.; Allshouse, Amanda A.; Burnett-Bowie, Sherri-Ann; Finkelstein, Joel; Derby, Carol; Matthews, Karen; Kravitz, Howard M.; Harlow, Sioban D.; Greendale, Gail A.; Gold, Ellen B.; Kazlauskaite, Rasa; McConnell, Dan; Neal-Perry, Genevieve; Pavlovic, Jelena; Randolph, John; Weiss, Gerson; Chen, Hsiang-Yu; Lasley, Bill
2017-01-01
Context: Menstrual cycle hormone patterns in women approaching menopause are inadequately studied. Objective: To describe day-to-day menstrual cycle hormones in women as they approach menopause from the Study of Women's Health Across the Nation Daily Hormone Study (DHS). Design: DHS enrollees collected daily urine for one entire menstrual cycle or up to 50 days, whichever came first, annually, up to the final menstrual period (FMP) or for up to 10 years. Setting: Seven sites across the United States. Participants: A total of 511 premenopausal or early perimenopausal women at enrollment, within 10 years before menopause. Intervention: Time-to-FMP measurement. Main Outcome Measures: Evidence of luteal activity (ELA), determined using objective algorithms. Menstrual cycle/segment length; whole cycle, and segment integrated urinary luteinizing hormone, follicle-stimulating hormone, estrone conjugates, and pregnanediol glucuronide (Pdg) for each year, organized around the FMP. Results: Mean menstrual cycle length was remarkably preserved at 26 to 27 days in ELA cycles; non-ELA cycles had greater variability. The percentage of cycles that were ELA remained high until 5 years before the FMP (87.9%); only 22.8% of cycles within 1 year of the FMP were ELA. Whole cycle hormones remained relatively stable up to 3 years before the FMP, when gonadotropins began to increase. Pdg excretion declined slowly with progress to the FMP, but Pdg patterns of ELA cycles remained distinguishable from non-ELA. Conclusions: Menstrual cycle hormone patterns in perimenopausal women resemble those of midreproductive-aged women until 5 years before menopause, and presumably ovulatory cycles retain a potentially fertile pattern up to the end of reproductive life. PMID:28368525
Effects of meteorological factors and the lunar cycle on onset of parturition in cows.
Ammann, T; Hässig, M; Rüegg, S; Bleul, U
2016-04-01
The present paper summarizes a comprehensive retrospective study that was undertaken to investigate effects of meteorological factors and lunar cycle on gestation length and daily birth rate in cows. To this end, all cattle births in Switzerland between 2008 and 2010 (n=2,091,159) were related to detailed matched weather recordings. The study revealed some statistically significant effects of climate (temperature, barometric pressure, relative humidity) and weather (thunderstorms, heat index) on gestational length. Thunderstorms on the day before birth reduced the gestation length by 0.5 days. An increase in the birth rate was correlated with the temperature on the day before birth and the barometric pressure 3 days before birth. Differences in the barometric pressure >15hPa increased the birth rate by 4%. Nevertheless, the effects were not consistent and the modeled size of effect was so small that a clinical implication is unlikely. Although the daily birth rate was unevenly distributed across the lunar cycle, no clear pattern could be identified. Compared to the mean birth rate across the lunar cycle the highest daily birth rate was detected on day 4 after new moon (+1.9%) and the lowest on day 20 (-2.1%). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Revamping High School Accounting Courses.
ERIC Educational Resources Information Center
Bittner, Joseph
2002-01-01
Provides ideas for updating accounting courses: convert to semester length; focus on financial reporting/analysis, financial statements, the accounting cycle; turn textbook exercises into practice sets for the accounting cycle; teach about corporate accounting; and address individual line items on financial statements. (SK)
Albers, J.L.; Wildhaber, M.L.; Noltie, Douglas B.
2001-01-01
The key to successful fish culture is to understand the environmental cues that trigger spawning. In temperate fishes, photoperiod and temperature are important in many species including the family Ictaluridae. The object of this study was to examine whether natural photo-thermal conditions in the laboratory could stimulate the reproductive cycle of Neosho madtoms (Noturus placidus). For three years a small population of Neosho madtoms were maintained under natural conditions and continually sampled using ultrasound to examine interior gonad state and exterior body measurements. The purpose was to examine the secondary sexual characteristics that normally occur during the spawning period. Every year the fish cycled in and out of spawning condition, including production and reabsorbtion of eggs. The best external measurement found to distinguish between sexes was the ratio of head length to total length. Internal measurements found the average number of eggs per female increased as the fish length increased and over time but the average sizes of the eggs were constant. After years in the simulated environment 13 different fish were involved in ten spawns. The use of ultrasound to examine gonad in madtoms is promising, especially the lack of injury associated with the procedure. Overall laboratory conditions that simulated the natural photo-thermal environment, especially daily temperature fluctuations, were successful at stimulating the reproductive cycle of Neosho madtoms including egg cycling and spawning. These results show promise towards culture of madtoms especially for those species that are rare and endangered.
Amulya, K; Jukuri, Srinivas; Venkata Mohan, S
2015-01-01
Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plot intensity and cycle-length effects on growth and removals estimates from forest inventories
Paul C. Van Deusen; Francis A. Roesch
2015-01-01
Continuous forest inventory planners can allocate the budget to more plots per acre or a shorter remeasurement cycle. A higher plot intensity benefits small area estimation and allows for more precision in current status estimates. Shorter cycles may provide better estimates of growth, removals and mortality. On a fixed budget, the planner can't have both greater...
Isolated few-cycle radiation from chirped-pulse compression of a superradiant free-electron laser
Huang, Yen -Chieh; Zhang, Zhen; Chen, Chia -Hsiang; ...
2015-08-31
When a short electron bunch traverses an undulator to radiate a wavelength longer than the bunch length, intense superradiance from the electron bunch can quickly deplete the electron’s kinetic energy and lead to generation of an isolated chirped radiation pulse. Here, we develop a theory to describe this novel chirped pulse radiation in a superradiant free-electron laser and show the opportunity to generate isolated few-cycle high-power radiation through chirped-pulse compression after the undulator. The theory is completely characterized by how fast the electron energy is depleted for a given length of an undulator. We further present two design examples atmore » the THz and extreme-ultraviolet wavelengths and numerically generate isolated three- and nine-cycle radiation pulses, respectively.« less
Sun, Yeran; Du, Yunyan; Wang, Yu; Zhuang, Liyuan
2017-01-01
Policymakers pay much attention to effectively increasing frequency of people’s cycling in the context of developing sustainable and green cities. Investigating associations of environmental characteristics and cycling behaviour could offer implications for changing urban infrastructure aiming at encouraging active travel. However, earlier examinations of associations between environmental characteristics and active travel behaviour are limited by low spatial granularity and coverage of traditional data. Crowdsourced geographic information offers an opportunity to determine the fine-grained travel patterns of people. Particularly, Strava Metro data offer a good opportunity for studies of recreational cycling behaviour as they can offer hourly, daily or annual cycling volumes with different purposes (commuting or recreational) in each street across a city. Therefore, in this study, we utilised Strava Metro data for investigating associations between environmental characteristics and recreational cycling behaviour at a large spatial scale (street level). In this study, we took account of population density, employment density, road length, road connectivity, proximity to public transit services, land use mix, proximity to green space, volume of motor vehicles and traffic accidents in an empirical investigation over Glasgow. Empirical results reveal that Strava cyclists are more likely to cycle for recreation on streets with short length, large connectivity or low volume of motor vehicles or on streets surrounded by residential land. PMID:28617345
Sun, Yeran; Du, Yunyan; Wang, Yu; Zhuang, Liyuan
2017-06-15
Policymakers pay much attention to effectively increasing frequency of people's cycling in the context of developing sustainable and green cities. Investigating associations of environmental characteristics and cycling behaviour could offer implications for changing urban infrastructure aiming at encouraging active travel. However, earlier examinations of associations between environmental characteristics and active travel behaviour are limited by low spatial granularity and coverage of traditional data. Crowdsourced geographic information offers an opportunity to determine the fine-grained travel patterns of people. Particularly, Strava Metro data offer a good opportunity for studies of recreational cycling behaviour as they can offer hourly, daily or annual cycling volumes with different purposes (commuting or recreational) in each street across a city. Therefore, in this study, we utilised Strava Metro data for investigating associations between environmental characteristics and recreational cycling behaviour at a large spatial scale (street level). In this study, we took account of population density, employment density, road length, road connectivity, proximity to public transit services, land use mix, proximity to green space, volume of motor vehicles and traffic accidents in an empirical investigation over Glasgow. Empirical results reveal that Strava cyclists are more likely to cycle for recreation on streets with short length, large connectivity or low volume of motor vehicles or on streets surrounded by residential land.
Deflagration-to-detonation transition in gases in tubes with cavities
NASA Astrophysics Data System (ADS)
Smirnov, N. N.; Nikitin, V. F.; Phylippov, Yu. G.
2010-12-01
The existence of a supersonic second combustion mode — detonation — discovered by Mallard and Le Chatelier and by Berthélot and Vieille in 1881 posed the question of mechanisms for transition from one mode to the other. In the period 1959-1969, experiments by Salamandra, Soloukhin, Oppenheim, and their coworkers provided insights into this complex phenomenon. Since then, among all the phenomena related to combustion processes, deflagration-to-detonation transition is, undoubtedly, the most intriguing one. Deflagration-to-detonation transition (DDT) in gases is connected with gas and vapor explosion safety issues. Knowing mechanisms of detonation onset control is of major importance for creating effective mitigation measures addressing two major goals: to prevent DDT in the case of mixture ignition, or to arrest the detonation wave in the case where it has been initiated. A new impetus to the increase in interest in deflagration-to-detonation transition processes was given by the recent development of pulse detonation devices. The probable application of these principles to creation of a new generation of engines put the problem of effectiveness of pulse detonating devices at the top of current research needs. The effectiveness of the pulse detonation cycle turned out to be the key factor characterizing the Pulse Detonation Engine (PDE), whose operation modes were shown to be closely related to periodical onset and degeneration of a detonation wave. Those unsteady-state regimes should be self-sustained to guarantee a reliable operation of devices using the detonation mode of burning fuels as a constitutive part of their working cycle. Thus deflagration-to-detonation transition processes are of major importance for the issue. Minimizing the predetonation length and ensuring stability of the onset of detonation enable one to increase the effectiveness of a PDE. The DDT turned out to be the key factor characterizing the PDE operating cycle. Thus, the problem of DDT control in gaseous fuel-air mixtures became very acute. This paper contains results of theoretical and experimental investigations of DDT processes in combustible gaseous mixtures. In particular, the paper investigates the effect of cavities incorporated in detonation tubes at the onset of detonation in gases. Extensive numerical modeling and simulations allowed studying the features of deflagration-to-detonation transition in gases in tubes incorporating cavities of a wider cross section. The presence of cavities substantially affects the combustion modes being established in the device and their dependence on the governing parameters of the problem. The influence of geometrical characteristics of the confinement and flow turbulization on the onset of detonation and the influence of temperature and fuel concentration in the unburned mixture are discussed. It was demonstrated both experimentally and theoretically that the presence of cavities of wider cross section in the ignition part of the tube promotes DDT and shortens the predetonation length. At the same time, cavities incorporated along the whole length or in the far-end section inhibit detonation and bring about the onset of low-velocity galloping detonation or galloping combustion modes. The presence of cavities in the ignition section turns an increase in the initial mixture temperature into a DDT-promoting factor instead of a DDT-inhibiting factor.
A Surgical Model of Posttraumatic Osteoarthritis With Histological and Gait Validation.
Zahoor, Talal; Mitchell, Reed; Bhasin, Priya; Schon, Lew; Zhang, Zijun
2016-07-01
Posttraumatic osteoarthritis (PTOA) is secondary to an array of joint injuries. Animal models are useful tools for addressing the uniqueness of PTOA progression in each type of joint injury and developing strategies for PTOA prevention and treatment. Intra-articular fracture induces PTOA pathology. Descriptive laboratory study. Through a parapatellar incision, the medial tibial plateau was exposed in the left knees of 8 Sprague-Dawley rats. Osteotomy at the midpoint between the tibial crest and the outermost portion of the medial tibial plateau, including the covering articular cartilage, was performed using a surgical blade. The fractured medial tibial plateau was fixed with 2 needles transversely. The fractured knees were not immobilized. Before and after surgery, rat gait was recorded. Rats were sacrificed at week 8, and their knees were harvested for histology. After intra-articular fracture, the affected limbs altered gait from baseline (week 0). In the first 2 weeks, the gait of the operated limbs featured a reduced paw print intensity and stride length but increased maximal contact and stance time. Reduction of maximal and mean print area and duty cycle (the percentage of stance phase in a step) was present from week 1 to week 5. Only print length was reduced in weeks 7 and 8. At week 8, histology of the operated knees demonstrated osteoarthritic pathology. The severity of the PTOA pathology did not correlate with the changes of print length at week 8. Intra-articular fracture of the medial tibial plateau effectively induced PTOA in rat knees. During PTOA development, the injured limbs demonstrated characteristic gait. Intra-articular fracture represents severe joint injury and associates with a high rate of PTOA. This animal model, with histologic and gait validations, can be useful for future studies of PTOA prevention and early diagnosis.
Investigation of Freeze and Thaw Cycles of a Gas-Charged Heat Pipe
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Krimchansky, Alexander
2012-01-01
The traditional constant conductance heat pipes (CCHPs) currently used on most spacecraft run the risk of bursting the pipe when the working fluid is frozen and later thawed. One method to avoid pipe bursting is to use a gas-charged heat pipe (GCHP) that can sustain repeated freeze/thaw cycles. The construction of the GCHP is similar to that of the traditional CCHP except that a small amount of non-condensable gas (NCG) is introduced and a small length is added to the CCHP condenser to serve as the NCG reservoir. During the normal operation, the NCG is mostly confined to the reservoir, and the GCHP functions as a passive variable conductance heat pipe (VCHP). When the liquid begins to freeze in the condenser section, the NCG will expand to fill the central core of the heat pipe, and ice will be formed only in the grooves located on the inner surface of the heat pipe in a controlled fashion. The ice will not bridge the diameter of the heat pipe, thus avoiding the risk of pipe bursting during freeze/thaw cycles. A GCHP using ammonia as the working fluid was fabricated and then tested inside a thermal vacuum chamber. The GCHP demonstrated a heat transport capability of more than 200W at 298K as designed. Twenty-seven freeze/thaw cycles were conducted under various conditions where the evaporator temperature ranged from 163K to 253K and the condenser/reservoir temperatures ranged from 123K to 173K. In all tests, the GCHP restarted without any problem with heat loads between 10W and 100W. No performance degradation was noticed after 27 freeze/thaw cycles. The ability of the GCHP to sustain repeated freeze/thaw cycles was thus successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-05-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less
Women's attitudes about menstruation and associated health and behavioral characteristics.
Morrison, Lynn A; Larkspur, Louona; Calibuso, Marites J; Brown, Susan
2010-01-01
To examine the relationships between attitudes towards menstruation, health, and behavioral characteristics. The 136 women who completed questionnaires varied in their sexual activity, sexual orientation, and use of hormonal contraception. Women's estimated cycle length was accurate when compared to observed cycle length (F (3,156) = .05; P = .98). Smokers had decreased durations of flow (P < .01). Depo-Provera users were less likely to view menstruation as natural compared to abstinent, sexually active heterosexuals or those using traditional oral contraception (F (5,141) = 2.43; P = .04). Hormonal contraception use, but not sexual orientation, was associated with attitudes about menstruation.
Fatigue during maximal sprint cycling: unique role of cumulative contraction cycles.
Tomas, Aleksandar; Ross, Emma Z; Martin, James C
2010-07-01
Maximal cycling power has been reported to decrease more rapidly when performed with increased pedaling rates. Increasing pedaling rate imposes two constraints on the neuromuscular system: 1) decreased time for muscle excitation and relaxation and 2) increased muscle shortening velocity. Using two crank lengths allows the effects of time and shortening velocity to be evaluated separately. We conducted this investigation to determine whether the time available for excitation and relaxation or the muscle shortening velocity was mainly responsible for the increased rate of fatigue previously observed with increased pedaling rates and to evaluate the influence of other possible fatiguing constraints. Seven trained cyclists performed 30-s maximal isokinetic cycling trials using two crank lengths: 120 and 220 mm. Pedaling rate was optimized for maximum power for each crank length: 135 rpm for the 120-mm cranks (1.7 m x s(-1) pedal speed) and 109 rpm for the 220-mm cranks (2.5 m x s(-1) pedal speed). Power was recorded with an SRM power meter. Crank length did not affect peak power: 999 +/- 276 W for the 120-mm crank versus 1001 +/- 289 W for the 220-mm crank. Fatigue index was greater (58.6% +/- 3.7% vs 52.4% +/- 4.8%, P < 0.01), and total work was less (20.0 +/- 1.8 vs 21.4 +/- 2.0 kJ, P < 0.01) with the higher pedaling rate-shorter crank condition. Regression analyses indicated that the power for the two conditions was most highly related to cumulative work (r2 = 0.94) and to cumulative cycles (r2 = 0.99). These results support previous findings and confirm that pedaling rate, rather than pedal speed, was the main factor influencing fatigue. Our novel result was that power decreased by a similar increment with each crank revolution for the two conditions, indicating that each maximal muscular contraction induced a similar amount of fatigue.
Lauder, J M
1977-04-22
The effects of early hypo- and hyperthyroidism on the rates of cell acquisition and proliferation have been studied in the external granular layer (EGL) of the developing rat cerebellar cortex at 10 days of age using quantitative autoradiographic methods. Both altered thyroid states reduce the rate of cell acquisition in the EGL, but appear to do so for different reasons. Hyperthyroidism shortens the average length of the cell cycle by decreasing the duration of the pre-DNA synthetic phase (G1), indicating that excess thyroxine may exert a direct effect on the EGL. This action involves the early onset of neuronal differentiation (cessation of proliferation)46 which presumably leads to the observed decrease in the rate of cell acquisition (increased doubling time). Such differentiating cells do not, however, leave the proliferative zone or the EGL prematurely, resulting in a reduced labeling index, mitotic index, and growth fraction as non-dividing cells dilute the proliferating cell population. Hypothyroidism, on the other hand, leads to no significant change in the length of the cell cycle or in the mitotic index, but causes a decreased labeling index and growth fraction, as well as a reduced rate of cell acquisition (increased doubling time). No significant change in the amount of cell death in the EGL could be found to explain this apparent discrepancy between the rate of cell proliferation (cell cycle length) and cell acqusiition. The answer to this puzzle appears to lie in the mitotic index, which is not affected to the same extent as the labeling index, although it is also slightly reduced. If cells were to remain longer in mitosis, this could result in a decreased labeling index and growth fraction but nearly normal mitotic index and cell cycle length (as measured using the % labeled mitoses method), since those cells dropping out of the cycling population would be counted as mitoses...
Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.
2005-01-01
The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.
Kostanyan, Artak E; Erastov, Andrey A
2016-09-02
The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.
Design considerations and validation of the MSTAR absolute metrology system
NASA Astrophysics Data System (ADS)
Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu
2004-08-01
Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk
2016-12-01
A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.
Santiago-Moreno, J; Esteso, M C; Pradiee, J; Castaño, C; Toledano-Díaz, A; O'Brien, E; Lopez-Sebastián, A; Martínez-Nevado, E; Delclaux, M; Fernández-Morán, J; Zhihe, Z
2016-05-01
This work examines the effects of subsequent cycles of freezing-thawing on giant panda (Ailuropoda melanoleuca) sperm morphometry and function, and assesses whether density-gradient centrifugation (DGC) can increase the number of freezing-thawing cycles this sperm can withstand. A sperm sample was collected by electroejaculation from a mature giant panda and subjected to five freezing-thawing cycles. Although repeated freezing-thawing negatively affected (P < 0.05) sperm motility and membrane integrity, in both nonselected and DCG-selected sperm samples, >60% of the sperm cells in both treatments showed acrosome integrity even after the fifth freezing cycle. In fresh semen, the sperm head length was 4.7 μm, the head width 3.6 μm, area 14.3 μm(2) and perimeter length 14.1 μm. The present results suggest that giant panda sperm trends to be resistant to repeated freezing-thawing, even without DGC selection. © 2015 Blackwell Verlag GmbH.
A compact 10 kW solid-state RF power amplifier at 352 MHz
NASA Astrophysics Data System (ADS)
Dancila, Dragos; Hoang Duc, Long; Jobs, Magnus; Holmberg, Måns; Hjort, Adam; Rydberg, Anders; Ruber, Roger
2017-07-01
A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a singleended architecture. During the final tests, a total output peak power of 10.5 kW was measured.
NASA Technical Reports Server (NTRS)
Winget, C. M.; Deroshia, C. W.; Markley, C. L.; Holley, D. C.
1984-01-01
This review discusses the effects, in the aerospace environment, of alterations in approximately 24-h periodicities (circadian rhythms) upon physiological and psychological functions and possible therapies for desynchronosis induced by such alterations. The consequences of circadian rhythm alteration resulting from shift work, transmeridian flight, or altered day lengths are known as desynchronosis, dysrhythmia, dyschrony, jet lag, or jet syndrome. Considerable attention is focused on the ability to operate jet aircraft and manned space vehicles. The importance of environmental cues, such as light-dark cycles, which influence physiological and psychological rhythms is discussed. A section on mathematical models is presented to enable selection and verification of appropriate preventive and corrective measures and to better understand the problem of dysrhythmia.
Design and testing a high fuel volume fraction, externally finned, thermionic emitter.
NASA Technical Reports Server (NTRS)
Peelgren, M. L.; Ernst, D. M.
1971-01-01
A prototypical, high fuel volume fraction, thermionic emitter body was designed and tested. The emitter body is all tungsten, with a 1.40-cm ID, a 3.23-cm OD, and eight full-length axial fins. The emitter thickness is 0.15 cm while the fins and outer clad are 0.075 cm thick. Different methods of fabrication were used in making the test samples. Stress analysis was performed with a three-dimensional elastic code. Thermal testing of the samples, duplicating calculated radial temperature gradients, heatup and cooldown rates, and emitter body temperatures in operation, was performed with no structural failures noted (six heatup and cooldown cycles per sample). Further emitter analysis and testing is planned.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... 0.75 inch to 11.8 inches in length at the buttock line 61, between water line (WL) 220 and WL 228..., and between 10,685 total flight cycles and 29,357 total flight cycles. The cracking is attributed to..., in addition to normal pressurization cycles. Material analysis revealed multiple crack initiation...
40 CFR 190.10 - Standards for normal operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...
Honig, Hen; Ofer, Lior; Kaim, Moshe; Jacobi, Shamay; Shinder, Dima; Gershon, Eran
2016-07-15
The use of ultrasound imaging for the examination of reproductive organs has contributed substantially to the fertility management of dairy cows around the world. This method has many advantages such as noninvasiveness and immediate availability of information. Adding Doppler index to the ultrasound imaging examination, improved the estimation of blood volume and flow rate to the ovaries in general and to the dominant follicle in particular. The aim of this study was to examine changes in the blood flow to the dominant follicle and compare them to the follicular development throughout the cycle. We further set out to examine the effects of different types of cooling management during the summer on the changes in blood flow to the dominant follicle. For this purpose, 24 Israeli-Holstein dairy cows, under heat stress, were randomly assigned one of two groups: one was exposed to five cooling sessions per day (5CS) and the other to eight cooling sessions per day (8CS). Blood flow to the dominant follicle was measured daily using Doppler index throughout the estrous cycle. No differences in the preovulatory dominant follicle diameter were detected between the two cooling management regimens during the cycle. However, the length of the first follicular wave was significantly longer, whereas the second follicular wave was nonsignificantly shorter in the 5CS group as compared to the 8CS group. In addition, no difference in blood flow was found during the first 18 days of the cycle between the two groups. However, from Day 20 until ovulation a higher rate of blood flow was measured in the ovaries of cows cooled 8 times per day as compared to the 5CS group. No differences in progesterone levels were noted. Finally, the estrous cycle length was shorter in the 8CS group as compared to the 5CS group. Our data suggest that blood flow to the dominant follicle and estrous cycle length is affected by heat stress. Using the appropriate cooling management during heat stress can enhance the blood flow to the ovary and may contribute to improved fertility in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE... shall impose a length limitation of less than 48 feet on a semitrailer operating in a truck tractor-semitrailer combination. (2) No State shall impose a length limitation of less than 28 feet on any semitrailer...
Criticality in conserved dynamical systems: experimental observation vs. exact properties.
Marković, Dimitrije; Gros, Claudius; Schuelein, André
2013-03-01
Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributions for complete graphs, we find log corrections to power-law scaling for the mean cycle length, as a function of the number of vertices, and a sub-polynomial growth for the overall number of cycles. When observing experimentally a real-world dynamical system one normally samples stochastically its phase space. The number and the length of the attractors are then weighted by the size of their respective basins of attraction. This situation is equivalent, for theory studies, to "on the fly" generation of the dynamical transition probabilities. For the case of vertex routing models, we find in this case power law scaling for the weighted average length of attractors, for both conserved routing models. These results show that the critical dynamical systems are generically not scale-invariant but may show power-law scaling when sampled stochastically. It is hence important to distinguish between intrinsic properties of a critical dynamical system and its behavior that one would observe when randomly probing its phase space.
The Atacama Large Millimeter/submillimeter Array - from Early Science to Full Operations.
NASA Astrophysics Data System (ADS)
Remijan, Anthony
2017-06-01
The Atacama Large Millimeter/Submillimeter Array (ALMA) is now entering its 6th cycle of scientific observations. Starting with Cycle 3, science observations were no longer considered "Early Science" or "best efforts". Cycle 5 is now the third cycle of "steady state" observations and Cycle 7 is advertised to begin ALMA "full science" operations. ALMA Full Science Operations will include all the capabilities that were agreed upon by the international consortium after the ALMA re-baselining effort. In this talk, I will detail the upcoming ALMA Cycle 5 observing capabilities, describe the process of selecting new observing modes for upcoming cycles and provide an update on the status of the ALMA Full Science capabilities.
Design of a high temperature subsurface thermal energy storage system
NASA Astrophysics Data System (ADS)
Zheng, Qi
Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.
Acidosis slows electrical conduction through the atrio-ventricular node
Nisbet, Ashley M.; Burton, Francis L.; Walker, Nicola L.; Craig, Margaret A.; Cheng, Hongwei; Hancox, Jules C.; Orchard, Clive H.; Smith, Godfrey L.
2014-01-01
Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis. PMID:25009505
Acidosis slows electrical conduction through the atrio-ventricular node.
Nisbet, Ashley M; Burton, Francis L; Walker, Nicola L; Craig, Margaret A; Cheng, Hongwei; Hancox, Jules C; Orchard, Clive H; Smith, Godfrey L
2014-01-01
Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis.
Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice
NASA Technical Reports Server (NTRS)
Hayes, N. L.; Nowakowski, R. S.
2002-01-01
The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.
Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang
2016-01-01
Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332
Harris, Holly R; Babic, Ana; Webb, Penelope M; Nagle, Christina M; Jordan, Susan J; Risch, Harvey A; Rossing, Mary Anne; Doherty, Jennifer A; Goodman, Marc T; Modugno, Francesmary; Ness, Roberta B; Moysich, Kirsten B; Kjær, Susanne K; Høgdall, Estrid; Jensen, Allan; Schildkraut, Joellen M; Berchuck, Andrew; Cramer, Daniel W; Bandera, Elisa V; Wentzensen, Nicolas; Kotsopoulos, Joanne; Narod, Steven A; Phelan, Catherine M; McLaughlin, John R; Anton-Culver, Hoda; Ziogas, Argyrios; Pearce, Celeste L; Wu, Anna H; Terry, Kathryn L
2018-02-01
Background: Polycystic ovary syndrome (PCOS), and one of its distinguishing characteristics, oligomenorrhea, have both been associated with ovarian cancer risk in some but not all studies. However, these associations have been rarely examined by ovarian cancer histotypes, which may explain the lack of clear associations reported in previous studies. Methods: We analyzed data from 14 case-control studies including 16,594 women with invasive ovarian cancer ( n = 13,719) or borderline ovarian disease ( n = 2,875) and 17,718 controls. Adjusted study-specific ORs were calculated using logistic regression and combined using random-effects meta-analysis. Pooled histotype-specific ORs were calculated using polytomous logistic regression. Results: Women reporting menstrual cycle length >35 days had decreased risk of invasive ovarian cancer compared with women reporting cycle length ≤35 days [OR = 0.70; 95% confidence interval (CI) = 0.58-0.84]. Decreased risk of invasive ovarian cancer was also observed among women who reported irregular menstrual cycles compared with women with regular cycles (OR = 0.83; 95% CI = 0.76-0.89). No significant association was observed between self-reported PCOS and invasive ovarian cancer risk (OR = 0.87; 95% CI = 0.65-1.15). There was a decreased risk of all individual invasive histotypes for women with menstrual cycle length >35 days, but no association with serous borderline tumors ( P heterogeneity = 0.006). Similarly, we observed decreased risks of most invasive histotypes among women with irregular cycles, but an increased risk of borderline serous and mucinous tumors ( P heterogeneity < 0.0001). Conclusions: Our results suggest that menstrual cycle characteristics influence ovarian cancer risk differentially based on histotype. Impact: These results highlight the importance of examining ovarian cancer risk factors associations by histologic subtype. Cancer Epidemiol Biomarkers Prev; 27(2); 174-82. ©2017 AACR . ©2017 American Association for Cancer Research.
Divergent selection for fiber length and bundle strength and correlated responses in cotton
USDA-ARS?s Scientific Manuscript database
Cotton breeders must develop cultivars to meet the demand for longer, stronger, and more uniform fibers. In the current study, two cycles of divergent selection for fiber upper-half mean length (UHML) and bundle strength (Str) were conducted within five diverse parental combinations selected based o...
2011-01-01
Background Most species of birds exhibit well-defined seasonality in their various physiological and behavioral functions like reproduction, molt, bill color etc. such that they occur at the most appropriate time of the year. Day length has been shown to be a major source of temporal information regulating seasonal reproduction and associated events in a number of avian species. The present study aims to investigate the role of photoperiod in control of seasonal cycles in the subtropical male tree sparrow (Passer montanus) and to compare its responses at Shillong (Latitude 25°34'N, Longitude 91°53'E) with those exhibited by its conspecifics and related species at other latitudes. Results Initial experiment involving study of seasonal cycles revealed that the wild tree sparrows posses definite seasonal cycles of testicular volume, molt and bill color. These cycles were found remarkably linked to annual solar cycle suggesting the possibility of their photoperiodic control. To confirm this possibility in the next experiment, the photosensitive birds were exposed to three different light-dark regimes that were close to what they experience at this latitude: 9L/15D (close to shortest day length), 12L/12D (equinox day length) and 14L/10D (close to longest day length) for 18 months. Tree sparrows showed testicular growth followed by regression and development of photorefractoriness, molting and bill color changes only under long daily photoperiods (12 L and 14 L) but not under short daily photoperiod (9 L). Birds, under stimulatory photoperiods, did not show reinitiation of the above responses after the completion of initiation regression cycle even after their exposure to these photoperiods for 18 months. This precludes the possibility of circannual rhythm generation and suggests the involvement of photoperiodic mechanism in control of their seasonal cycles. Further, replacement of body and primary feathers progressed with gonadal regression only under long days suggesting that the two high energy demanding events of reproduction and molt are phased at two different times in the annual cycle of the bird and are photoperiodically regulated. Results of the final experiment involving exposure of photosensitive birds to a variety of photoperiodic treatments (9L/15D, 10L/14D, 11L/13D, 12L/12D, 14L/10D and 16L/8D) for 30 days suggested that the light falling for 11 h or more is important in inducing testicular growth and function in this species. Conclusion These results clearly indicate that despite of small photofluctuation, subtropical tree sparrows are capable of fine discrimination of photoperiodic information and use day length as a proximate environmental factor to time their seasonal responses similar to their conspecifics and related species at other latitudes suggesting the conservation of photoperiodic control mechanism in them. PMID:21223557
Energy absorption of impacts during running at various stride lengths.
Derrick, T R; Hamill, J; Caldwell, G E
1998-01-01
The foot-ground impact experienced during running produces a shock wave that is transmitted through the human skeletal system. This shock wave is attenuated by deformation of the ground/shoe as well as deformation of biological tissues in the body. The goal of this study was to investigate the locus of energy absorption during the impact phase of the running cycle. Running speed (3.83 m x s[-1]) was kept constant across five stride length conditions: preferred stride length (PSL), +10% of PSL, -10% of PSL, +20% of PSL, and -20% of PSL. Transfer functions were generated from accelerometers attached to the leg and head of ten male runners. A rigid body model was used to estimate the net energy absorbed at the hip, knee, and ankle joints. There was an increasing degree of shock attenuation as stride length increased. The energy absorbed during the impact portion of the running cycle also increased with stride length. Muscles that cross the knee joint showed the greatest adjustment in response to increased shock. It was postulated that the increased perpendicular distance from the line of action of the resultant ground reaction force to the knee joint center played a role in this increased energy absorption.
Konik, Anita; Kuklewicz, Stanisław; Rosłoniec, Ewelina; Zając, Marcin; Spannbauer, Anna; Nowobilski, Roman; Mika, Piotr
2016-01-01
The purpose of the study was to evaluate selected temporal and spatial gait parameters in patients with intermittent claudication after completion of 12-week supervised treadmill walking training. The study included 36 patients (26 males and 10 females) aged: mean 64 (SD 7.7) with intermittent claudication. All patients were tested on treadmill (Gait Trainer, Biodex). Before the programme and after its completion, the following gait biomechanical parameters were tested: step length (cm), step cycle (cycle/s), leg support time (%), coefficient of step variation (%) as well as pain-free walking time (PFWT) and maximal walking time (MWT) were measured. Training was conducted in accordance with the current TASC II guidelines. After 12 weeks of training, patients showed significant change in gait biomechanics consisting in decreased frequency of step cycle (p < 0.05) and extended step length (p < 0.05). PFWT increased by 96% (p < 0.05). MWT increased by 100% (p < 0.05). After completing the training, patients' gait was more regular, which was expressed via statistically significant decrease of coefficient of variation (p < 0.05) for both legs. No statistically significant relation between the post-training improvement of PFWT and MWT and step length increase and decreased frequency of step cycle was observed (p > 0.05). Twelve-week treadmill walking training programme may lead to significant improvement of temporal and spatial gait parameters in patients with intermittent claudication. Twelve-week treadmill walking training programme may lead to significant improvement of pain-free walking time and maximum walking time in patients with intermittent claudication.
On the effect of networks of cycle-tracks on the risk of cycling. The case of Seville.
Marqués, R; Hernández-Herrador, V
2017-05-01
We analyze the evolution of the risk of cycling in Seville before and after the implementation of a network of segregated cycle tracks in the city. Specifically, we study the evolution of the risk for cyclists of being involved in a collision with a motor vehicle, using data reported by the traffic police along the period 2000-2013, i.e. seven years before and after the network was built. A sudden drop of such risk was observed after the implementation of the network of bikeways. We study, through a multilinear regression analysis, the evolution of the risk by means of explanatory variables representing changes in the built environment, specifically the length of the bikeways and a stepwise jump variable taking the values 0/1 before/after the network was implemented. We found that this last variable has a high value as explanatory variable, even higher than the length of the network, thus suggesting that networking the bikeways has a substantial effect on cycling safety by itself and beyond the mere increase in the length of the bikeways. We also analyze safety in numbers through a non-linear regression analysis. Our results fully agree qualitatively and quantitatively with the results previously reported by Jacobsen (2003), thus providing an independent confirmation of Jacobsen's results. Finally, the mutual causal relationships between the increase in safety, the increase in the number of cyclists and the presence of the network of bikeways are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of two cut-to-length harvesting systems operating in eastern hardwoods
Chris B. LeDoux; Niel K. Huyler
2001-01-01
We compared production rates, operating costs, and break-even points (BEP) for small and large cut-to-length (CTL) harvesting systems operating at several machine utilization rates (MUR) in mixed hardwood and softwood stands in Vermont.
NASA Technical Reports Server (NTRS)
Remer, D. S.
1977-01-01
A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.
Stöggl, Thomas; Welde, Boye; Supej, Matej; Zoppirolli, Chiara; Rolland, Carsten G.; Holmberg, Hans-Christer; Pellegrini, Barbara
2018-01-01
Here, female and male elite cross-country (XC) skiers were compared on varying terrain during an official 10-km (women) and 15-km (men) Norwegian championship race. On the basis of race performance, 82 skiers were classified as fast (FS) (20 women, 20 men) or slower (SS) (21, 21) skiers. All were video recorded on flat (0°), intermediate (3.5°), uphill (7.1°) and steep uphill (11°) terrain during the race at a distance of 0.8, 1.2, 2.1 and 7.1 km from the start, respectively. All skiers employed exclusively double-poling (DP) on the flat section and, except for the male winner, exclusively diagonal stride (DIA) on the uphill sections. On the intermediate section, more men than women utilized DP and fewer DIA (p = 0.001), with no difference in kick double-poling (DPK). More FS than SS utilized DPK and fewer DIA (p = 0.001), with similar usage of DP. Males skied with faster and longer cycles but lower cycle rate compared with females (p < 0.001), with largest absolute sex differences on flat terrain (p < 0.001) and largest relative differences for cycle velocity and length on intermediate and uphill terrain. External power output rose with increasing incline, being higher for men and FS (p < 0.001). Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill was the best predictor for the women (both p < 0.001). In conclusion, incline, sex and level of performance influenced cycle characteristics and power output. Greatest absolute sex gap was on flat terrain, whereas the relative difference was greatest on intermediate and steep uphill terrain. We recommend usage of more DP and/or DPK, and less DIA and fewer transitions between techniques on intermediate terrain. Predictors of race performance are sex specific with greatest potential for enhancing performance on flat terrain for men and on steep uphill terrain for women. Key points There was a main effect of sex and level of performance, with longer and more rapid cycles by male than female skiers and by faster than slower skiers. The largest absolute sex differences in cycle velocity and length were observed on flat terrain, with these differences narrowing as the incline rose. However, the greatest relative sex differences were in cycle velocity on the intermediate terrain (23.3%) and for cycle length on steep uphill terrain (27.0%). The men employed DP and DPK to a greater extent and with fewer transitions on intermediate terrain than the women. Faster skiers (especially women) employed DPK to a greater and DIA to a lesser extent than the slower skiers, with approximately equal usage of DP. Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill terrain was the best predictor in the case of the women. As the incline increased, cycle velocity, cycle length and pole swing time were reduced, while poling time and external power output rose. A J-shaped pattern with respect to cycle rate was observed, with the lowest values on intermediate and highest on steep uphill terrain. PMID:29535586
Miki, Hidenobu; Sugano, Nobuhiko; Hagio, Keisuke; Nishii, Takashi; Kawakami, Hideo; Kakimoto, Akihiro; Nakamura, Nobuo; Yoshikawa, Hideki
2004-04-01
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-11-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less
Quantification of the degradation of Ni-YSZ anodes upon redox cycling
NASA Astrophysics Data System (ADS)
Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.
2018-01-01
Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.
Technology development and demonstration of a low thrust resistojet thruster
NASA Technical Reports Server (NTRS)
Pfeifer, G. R.
1972-01-01
Three thrusters were fabricated to definitized thruster drawings using new rhenium vapor deposition technology. Two of the thrusters were operated using ammonia as propellant and one was operated using hydrogen propellant for performance determination. All demonstrated consistent operational specific impulse performance while demonstrating thermal performance better than the development units from which they evolved. Two of the thrusters were subjected to environmental structural testing including vibration, acceleration and shock loading to specifications. Both of the thrusters subjected to the environmental tests passed all required tests. The third, spare, thruster was introduced into the life test portion of the program. Two thrusters were then subjected to a life cycling test program under typical spacecraft operating power levels. During the life test sequence, the hydrogen thruster accrued 720 operating life test cycles, more than 370 on-off cycles and 365 hours of powered up time. The ammonia accrued approximately 380 on-off cycles and 392.2 on time hours of operation during the 720 cycling hour test. Both thrusters completed the scheduled operational life test in reasonably good condition, structurally integral and capable of indefinite further operation.
Avian predation pressure as a potential driver of periodical cicada cycle length
Walter E. Koenig; Andrew M. Liebhold
2013-01-01
The extraordinarily long life cycles, synchronous emergences at 13- or 17-year intervals, and complex geographic distribution of periodical cicadas (Magicicada spp.) in eastern North America are a long-standing evolutionary enigma. Although a variety of factors, including satiation of aboveground predators and avoidance of interbrood hybridization,...
Time-to-Degree and the Business Cycle
ERIC Educational Resources Information Center
Messer, Dolores; Wolter, Stefan C.
2010-01-01
This paper presents the results of an empirical investigation trying to explain individual time-to-degree variances with business cycle fluctuations. Assuming that students determine the optimum study length at university weighing up the cost of an additional semester against the consumption benefit of studying and not yet working, the general…
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
2016-05-02
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Electromyographic amplitude variability of chewing cycles in deaf individuals.
de Oliveira, A Siriani; Vitti, M; Chaves, T C; Bevilaqua-Grossi, D; Zuccolotto, M C C; Regalo, S C H
2006-09-01
This study had the goal of determining if the amplitude of the surface electromyograph signals changes in terms of time of analysis and subjects, deaf or normal listeners, when estimated in a 250 ms of length window, visually determined, considering the most stable signal period from the center of the chewing cycle. In order to do this, groups with control subjects, listeners and deaf individuals, who made use of the Brazilian sign language (LIBRAS), were studied. All participants performed continuous 5 s of chewing for the electromyographic recording of the temporalis and masseter muscles. The normalized RMS values of three chewing cycles were compared between and among groups. The results from the Kruskall-Wallis test did not show any statistically significant differences (p > 0.05) between the normalized RMS values obtained in the three individual chewing cycles, for each of the two completed and evaluated cycles, in both groups studied. The Mann-Whitney test showed that the mean normalized RMS values obtained in the first chewing cycle were higher for the control group when compared to the mean amplitude values of the first chewing cycle of the group of deaf volunteers. It can be concluded that, in these experimental conditions, the RMS values obtained from the select windows of 250 ms length duration, in relatively stable periods of the electromyographic signal of chewing cycles did not suffer any changes in terms of EMG register duration, in both studied groups, but does give evidence of the differences among the groups.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... production method. 1206.259(c)(1)(ii) and (c)(2)(iii). Submit arm's-length and non- AUDIT PROCESS (See Note...-length AUDIT PROCESS (See Note). transportation contracts, production agreements, operating agreements...-length AUDIT PROCESS (See Note). power plant contracts, production and operating agreements and related...
Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles.
Rescan, Marie; Lenormand, Thomas; Roze, Denis
2016-01-01
Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this article, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (due to either ecological differences or differential effects of mutations) and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.
ROTATIONAL AND CYCLICAL VARIABILITY IN {gamma} CASSIOPEIAE. II. FIFTEEN SEASONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, Gregory W.; Smith, Myron A., E-mail: gregory.w.henry@gmail.com, E-mail: msmith@stsci.edu
The B0.5 IVe star {gamma} Cas is of great interest because it is the prototype of a small group of classical Be stars having hard X-ray emission of unknown origin. We discuss results from ongoing B and V observations of the {gamma} Cas star-disk system acquired with an Automated Photometric Telescope during the observing seasons 1997-2011. In an earlier study, Smith, Henry, and Vishniac showed that light variations in {gamma} Cas are dominated by a series of comparatively prominent cycles with amplitudes of 0.02-0.03 mag and lengths of 2-3 months, superimposed on a 1.21 day periodic signal some five timesmore » smaller, which they attributed to rotation. The cycle lengths clustered around 70 days, with a total range of 50-91 days. Changes in both cycle length and amplitude were observed from year to year. These authors also found the V-band cycles to be 30%-40% larger than the B-band cycles. In the present study, we find continued evidence for these variability patterns and for the bimodal distribution of the {Delta}B/{Delta}V amplitude ratios in the long cycles. During the 2010 observing season, {gamma} Cas underwent a mass-loss event ({sup o}utburst{sup )}, as evidenced by the brightening and reddening seen in our new photometry. This episode coincided with a waning of the amplitude in the ongoing cycle. The Be outburst ended the following year, and the light-curve amplitude returned to pre-outburst levels. This behavior reinforces the interpretation that cycles arise from a global disk instability. We have determined a more precise value of the rotation period, 1.215811 {+-} 0.000030 days, using the longer 15-season data set and combining solutions from the V and B light curves. Remarkably, we also find that both the amplitude and the asymmetry of the rotational waveform changed over the years. We review arguments for this modulation arising from transits of a surface magnetic disturbance. Finally, to a limit of 5 mmag, we find no evidence for any photometric variation corresponding to the {gamma} Cas binary period, 203.55 days, or to the first few harmonics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W; Kelly, Kenneth J; Kresse, John
When developing and designing new technology for integrated vehicle systems deployment, standard cycles have long existed for chassis dynamometer testing and tuning of the powertrain. However, to this day with recent developments and advancements in plug-in hybrid and battery electric vehicle technology, no true 'work day' cycles exist with which to tune and measure energy storage control and thermal management systems. To address these issues and in support of development of a range-extended pickup and delivery Class 6 commercial vehicle, researchers at the National Renewable Energy Laboratory in collaboration with Cummins analyzed 78,000 days of operational data captured from moremore » than 260 vehicles operating across the United States to characterize the typical daily performance requirements associated with Class 6 commercial pickup and delivery operation. In total, over 2.5 million miles of real-world vehicle operation were condensed into a pair of duty cycles, an 80-mile cycle and a 100-mile cycle representative of the daily operation of U.S. class 3-6 commercial pickup and delivery trucks. Using novel machine learning clustering methods combined with mileage-based weighting, these composite representative cycles correspond to 90th and 95th percentiles for daily vehicle miles traveled by the vehicles observed. In addition to including vehicle speed vs time drive cycles, in an effort to better represent the environmental factors encountered by pickup and delivery vehicles operating across the United States, a nationally representative grade profile and key status information were also appended to the speed vs. time profiles to produce a 'work day' cycle that captures the effects of vehicle dynamics, geography, and driver behavior which can be used for future design, development, and validation of technology.« less
Butterfield, Timothy A; Herzog, Walter
2006-05-01
Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.
Prediction of the Length of Upcoming Solar Cycles
NASA Astrophysics Data System (ADS)
Kakad, Bharati; Kakad, Amar; Ramesh, Durbha Sai
2017-12-01
The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10 - 24. We found that the autocorrelation width Aw n of SC n during the second half of its ascending phase correlates well with the modified length that is defined as T_{cy}^{n+2} - Tan. Here T_{cy}^{n+2} and T_{ a}n are the length and ascent time of SCs n+2 and n, respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs ( i.e., n+1, n+2) are readily available at the time of the peak of SC n. The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).
Petsos, P; Chandler, C; Oak, M; Ratcliffe, W A; Wood, R; Anderson, D C
1985-06-01
We have examined for the presence of subtle hormonal abnormalities in women with long-standing unexplained infertility. For a full cycle serum LH, FSH, progesterone and oestradiol levels were measured about three times a week, and serial ultrasound scans of the ovaries made until the time of apparent ovulation. The results on 45 cycles in 35 women with unexplained infertility and in three normal volunteers are presented. Normal ovulatory cycles were defined by a length of 26-32 d, and progressive follicular maturation followed by disappearance or abrupt reduction in size of a follicle within 48 h of the recorded LH peak, followed by progressive and sustained rise in serum progesterone levels to more than 25 nmol/l and a luteal phase length of greater than or equal to 13 d. Thirty spontaneous cycles (28 women) were clearly normal while 15 spontaneous cycles (12 women) were abnormal. Abnormalities included luteinization of an unruptured follicle (eight cycles), absence of follicular development (two cycles), poor follicular development (two cycles), persistence of a large ovarian cyst from the preceeding cycle (two cycles) and one aluteal cycle. Six of the abnormal cycles were characterized hormonally by inappropriate elevation of serum LH levels throughout. If this study had been based only on serial ultrasound scans, all results on abnormal cycles might have been misinterpreted. If it had been conducted only with (multiple) progesterone determinations and the level of greater than 25 nmol/l had been taken as indicative of ovulation nine clearly abnormal cycles would have been considered as normal. We conclude that the combination of the hormonal and ultrasound assessment of ovulation increases our confidence for confirmation of normality and reveals various ovulatory disorders which are possibly due to an endocrinological defect or defects.
Measuring Clearance Mechanics Based on Dynamic Leg Length
ERIC Educational Resources Information Center
Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli
2018-01-01
The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Derby, Jeffrey J.
2000-02-01
Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.
Visual Circular Analysis of 266 Years of Sunspot Counts.
Buelens, Bart
2016-06-01
Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1979-01-01
The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.
Observations of Space Weather and Space Climate Over the Past 15 Years From SABER (And Longer!)
NASA Technical Reports Server (NTRS)
Mlynczak, Marty; Hunt, Linda; Russell, James M., III
2016-01-01
The global infrared (IR) energy budget of the thermosphere has been reconstructed back 70 years (to 1947). IR cooling, integrated over a solar cycle, is relatively constant over the 5 complete cycles (19 -23) studied. Result implies that solar energy (particles and photons) has similar, small (< 7%) variation from one cycle to next. From Earth's upper atmosphere perspective, solar cycles are really more similar than different, over their length. No consistent relationship between peak of IR cooling and sunspot number peak. Results submitted to GRL 8/2016.
23 CFR Appendix B to Part 658 - Grandfathered Semitrailer Lengths
Code of Federal Regulations, 2010 CFR
2010-04-01
... OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS Pt. 658, App. B Appendix B to Part 658—Grandfathered Semitrailer Lengths State Feet and inches Alabama 53-6 Alaska 48-0... 3 48-0 Wyoming 57-4 1 Semitrailers up to 53 feet may also operate without a permit by conforming to...
23 CFR Appendix B to Part 658 - Grandfathered Semitrailer Lengths
Code of Federal Regulations, 2011 CFR
2011-04-01
... OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS Pt. 658, App. B Appendix B to Part 658—Grandfathered Semitrailer Lengths State Feet and inches Alabama 53-6 Alaska 48-0... 3 48-0 Wyoming 57-4 1 Semitrailers up to 53 feet may also operate without a permit by conforming to...
Progress on Shape Memory Alloy Actuator Development for Active Clearance Control
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald
2006-01-01
Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
Carbon corrosion in PEM fuel cells during drive cycle operation
Borup, Rodney L.; Papadias, D. D.; Mukundan, Rangachary; ...
2015-09-14
One of the major contributors to degradation involves the electrocatalyst, including the corrosion of the carbons used as catalyst supports, which leads to changes in the catalyst layer structure. We have measured and quantified carbon corrosion during drive cycle operation and as a variation of the upper and lower potential limits used during drive cycle operation. The amount of carbon corrosion is exacerbated by the voltage cycling inherent in the drive cycle compared with constant potential operation. The potential gap between upper and lower potentials appears to be more important than the absolute operating potentials in the normal operating potentialmore » regime (0.40V to 0.95V) as changes in the measured carbon corrosion are similar when the upper potential was lower compared to raising the lower potential. Catalyst layer thinning was observed during the simulated drive cycle operation which had an associated decrease in catalyst layer porosity. This catalyst layer thinning is not due solely to carbon corrosion, although carbon corrosion likely plays a role; much of this thinning must be from compaction of the material in the catalyst layer. As a result, the decrease in catalyst layer porosity leads to additional performance losses due to mass transport losses.« less
Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H
2016-11-01
Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.
Muscle fascicle behavior during eccentric cycling and its relation to muscle soreness.
Peñailillo, Luis; Blazevich, Anthony J; Nosaka, Kazunori
2015-04-01
A single bout of eccentric exercise confers a protective effect against muscle damage and soreness in subsequent eccentric exercise bouts, but the mechanisms underpinning this effect are unclear. This study compared vastus lateralis (VL) muscle-tendon behavior between two eccentric cycling bouts to test the hypothesis that muscle-tendon behavior would be different between bouts and would be associated with the protective effect. Eleven untrained men (27.1 ± 7.0 yr) performed two bouts of eccentric cycling (ECC1 and ECC2) separated by 2 wk for 10 min at 65% of maximal concentric workload (191.9 ± 44.2 W) each. Muscle soreness (by visual analog scale) and maximal voluntary isometric contraction (MVC) torque of the knee extensors were assessed before and 1-2 d after exercise. Using ultrasonography, VL fascicle length and angle changes during cycling were assessed, and tendinous tissue (TT) length changes were estimated. VL EMG amplitude, crank torque, and knee joint angles were measured during cycling. Soreness was greater (P < 0.0001) after ECC1 than ECC2, although MVC changes were not different between bouts (P = 0.47). No significant differences in peak EMG amplitude (normalized to EMG during MVC), crank peak torque, or knee angles were evident between bouts. However, fascicle elongation was 16% less during ECC2 than ECC1 (P < 0.01), indicating less fascicle strain in ECC2. Maximum TT length occurred at a smaller knee joint angle during ECC2 than ECC1 (P = 0.055). These results suggest that a lesser fascicle elongation and earlier TT elongation were associated with reduced muscle soreness after ECC2 than ECC1; thus, changes in muscle-tendon behavior may be an important mechanism underpinning the protective effect.
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.
2009-01-01
Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA's current Fundamental Aeronautics research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today's aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA's aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
Using the Modified Precursor Method to Estimate the Size of Cycle 24
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2008-01-01
Modified geomagnetic precursor techniques for predicting the size of the following sunspot cycle are developed, where these techniques use the 12-month moving averages of the number of disturbed days (when Ap greater than or equals 25), the Ap index, the aa index, and the aaI index at about 4 yr during the declining portion of the preceding sunspot cycle. For cycle 24, these techniques suggest that its RM will measure about 130 +/- 14, a value outside the consensus prediction interval of the low prediction (90 +/- 10) given by the NOAA Solar Cycle 24 Prediction Panel. Furthermore, cycle 24 is predicted to be a fast-rising cycle (ASC = 44 +/- 5 months), peaking before April 2012, presuming the official start of cycle 24 in March 2008. Also discussed are the variation of solar cycle lengths and Hale cycle effects, as related to cycles 23 and 24.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
Cardiac surgery productivity and throughput improvements.
Lehtonen, Juha-Matti; Kujala, Jaakko; Kouri, Juhani; Hippeläinen, Mikko
2007-01-01
The high variability in cardiac surgery length--is one of the main challenges for staff managing productivity. This study aims to evaluate the impact of six interventions on open-heart surgery operating theatre productivity. A discrete operating theatre event simulation model with empirical operation time input data from 2603 patients is used to evaluate the effect that these process interventions have on the surgery output and overtime work. A linear regression model was used to get operation time forecasts for surgery scheduling while it also could be used to explain operation time. A forecasting model based on the linear regression of variables available before the surgery explains 46 per cent operating time variance. The main factors influencing operation length were type of operation, redoing the operation and the head surgeon. Reduction of changeover time between surgeries by inducing anaesthesia outside an operating theatre and by reducing slack time at the end of day after a second surgery have the strongest effects on surgery output and productivity. A more accurate operation time forecast did not have any effect on output, although improved operation time forecast did decrease overtime work. A reduction in the operation time itself is not studied in this article. However, the forecasting model can also be applied to discover which factors are most significant in explaining variation in the length of open-heart surgery. The challenge in scheduling two open-heart surgeries in one day can be partly resolved by increasing the length of the day, decreasing the time between two surgeries or by improving patient scheduling procedures so that two short surgeries can be paired. A linear regression model is created in the paper to increase the accuracy of operation time forecasting and to identify factors that have the most influence on operation time. A simulation model is used to analyse the impact of improved surgical length forecasting and five selected process interventions on productivity in cardiac surgery.
NASA Astrophysics Data System (ADS)
Khosropour, B.
2016-07-01
In this work, we consider a D-dimensional ( β, β^' -two-parameters deformed Heisenberg algebra, which was introduced by Kempf et al. The angular-momentum operator in the presence of a minimal length scale based on the Kempf-Mann-Mangano algebra is obtained in the special case of β^' = 2β up to the first order over the deformation parameter β . It is shown that each of the components of the modified angular-momentum operator, commutes with the modified operator {L}2 . We find the magnetostatic field in the presence of a minimal length. The Zeeman effect in the deformed space is studied and also Lande's formula for the energy shift in the presence of a minimal length is obtained. We estimate an upper bound on the isotropic minimal length.
Trivedi, Amit K; Rani, Sangeeta; Kumar, Vinod
2006-01-01
Background In many birds, day length (=photoperiod) regulates reproductive cycle. The photoperiodic environment varies between different seasons and latitudes. As a consequence, species at different latitudes may have evolved separate photoperiodic strategies or modified them as per their adaptive need. We studied this using house sparrow as a model since it is found worldwide and is widely investigated. In particular, we examined whether photoperiodism in house sparrows (Passer domesticus) at 27°N, 81°E shared features with those exhibited by its conspecifics at high latitudes. Results Initial experiment described in the wild and captive conditions the gonad development and molt (only in captives) cycles over a 12-month period. Both male and female sparrows had similar seasonal cycles, linked with annual variations in day length; this suggested that seasonal reproduction in house sparrows was under the photoperiodic control. However, a slower testis and attenuated follicular growth among captives indicated that other (supplementary) factors are also involved in controlling the reproductive cycle. Next experiment examined if sparrows underwent seasonal variations in their response to stimulatory effects of long day lengths. When birds were transferred every month over a period of 1 year to 16 hours light:8 hours darkness (16L:8D) for 17–26 weeks, there was indeed a time-of-year effect on the growth-regression cycle of gonads. The final experiment investigated response of house sparrows to a variety of light-dark (LD) cycles. In the first set, sparrows were exposed for 31 weeks to photoperiods that were close to what they receive in between the period from sunrise to sunset at this latitude: 9L:15D (close to shortest day length in December), 12L:12D (equinox, in March and September) 15L:9D (close to longest day length in June). They underwent testicular growth and regression and molt in 12L and 15L photoperiods, but not in 9L photoperiod. In the second set, sparrows were exposed for 17 weeks to photoperiods with light periods extending to different duration of the daily photosensitivity rhythm (e.g. 2L:22D, 6L:18D, 10L:14D, 14L:10D, 18L:6D and 22L:2D). Interestingly, a slow and small testicular response occurred under 2L and 10L photoperiods; 6L:18D was non-inductive. On the other hand, 14L, 18L and 22L photoperiods produced testicular growth and subsequent regression response as is typical of a long day photostimulation. Conclusion Subtropical house sparrows exhibit photoperiodic responses similar to that is reported for its population living at high latitudes. This may suggest the conservation of the photoperiodic control mechanisms in birds evolved over a long period of time, as a physiological strategy in a temporally changing environment ensuring reproduction at the best suited time of the year. PMID:16923197
Developmental kinetics of pig embryos by parthenogenetic activation or by handmade cloning.
Li, J; Li, R; Liu, Y; Villemoes, K; Purup, S; Callesen, H
2013-10-01
The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time-lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time-lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non-viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro-handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre-implantation developmental kinetics should be observed. © 2013 Blackwell Verlag GmbH.
Optimizing MRI Logistics: Prospective Analysis of Performance, Efficiency, and Patient Throughput.
Beker, Kevin; Garces-Descovich, Alejandro; Mangosing, Jason; Cabral-Goncalves, Ines; Hallett, Donna; Mortele, Koenraad J
2017-10-01
The objective of this study is to optimize MRI logistics through evaluation of MRI workflow and analysis of performance, efficiency, and patient throughput in a tertiary care academic center. For 2 weeks, workflow data from two outpatient MRI scanners were prospectively collected and stratified by value added to the process (i.e., value-added time, business value-added time, or non-value-added time). Two separate time cycles were measured: the actual MRI process cycle as well as the complete length of patient stay in the department. In addition, the impact and frequency of delays across all observations were measured. A total of 305 MRI examinations were evaluated, including body (34.1%), neurologic (28.9%), musculoskeletal (21.0%), and breast examinations (16.1%). The MRI process cycle lasted a mean of 50.97 ± 24.4 (SD) minutes per examination; the mean non-value-added time was 13.21 ± 18.77 minutes (25.87% of the total process cycle time). The mean length-of-stay cycle was 83.51 ± 33.63 minutes; the mean non-value-added time was 24.33 ± 24.84 minutes (29.14% of the total patient stay). The delay with the highest frequency (5.57%) was IV or port placement, which had a mean delay of 22.82 minutes. The delay with the greatest impact on time was MRI arthrography for which joint injection of contrast medium was necessary but was not accounted for in the schedule (mean delay, 42.2 minutes; frequency, 1.64%). Of 305 patients, 34 (11.15%) did not arrive at or before their scheduled time. Non-value-added time represents approximately one-third of the total MRI process cycle and patient length of stay. Identifying specific delays may expedite the application of targeted improvement strategies, potentially increasing revenue, efficiency, and overall patient satisfaction.
NASA Technical Reports Server (NTRS)
Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S.; Tucker, S.
2006-01-01
In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1
Energetic constraints, not predation, influence the evolution of sleep patterning in mammals.
Capellini, I; Nunn, C L; McNamara, P; Preston, B T; Barton, R A
2008-10-01
Mammalian sleep is composed of two distinct states - rapid-eye-movement (REM) and non-REM (NREM) sleep - that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of sleep into several bouts per day), as having multiple sleep bouts avoids long periods of unconsciousness, potentially reducing vulnerability.Using phylogenetic comparative methods, we tested these predictions in mammals, and also investigated the relationships among sleep phasing, sleep-cycle length, sleep durations and body mass.Neither sleep-cycle length nor phasing of sleep was significantly associated with three different measures of predation risk, undermining the idea that they represent anti-predator adaptations.Polyphasic sleep was associated with small body size, shorter sleep cycles and longer sleep durations. The correlation with size may reflect energetic constraints: small animals need to feed more frequently, preventing them from consolidating sleep into a single bout. The reduced daily sleep quotas in monophasic species suggests that the consolidation of sleep into one bout per day may deliver the benefits of sleep more efficiently and, since early mammals were small-bodied and polyphasic, a more efficient monophasic sleep pattern could be a hitherto unrecognized advantage of larger size.
Local homogeneity of cell cycle length in developing mouse cortex
NASA Technical Reports Server (NTRS)
Cai, L.; Hayes, N. L.; Nowakowski, R. S.
1997-01-01
We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the proliferating cells in the ventricular zone during early development of the cerebral cortex.
Forests of West Virginia, 2014
Randall S. Morin; Richard H. Widmann
2015-01-01
This publication provides an overview of forest resources in West Virginia based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2002-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2014...
Dacia M. Meneguzzo
2017-01-01
This resource update provides an overview of forest resources in Kansas based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2016 inventory,...
Dacia M. Meneguzzo
2016-01-01
This resource update provides an overview of forest resources in Kansas based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015 inventory,...
Forests of New Hampshire, 2016
Randall S. Morin; Kyle. Lombard
2017-01-01
This publication provides an overview of forest resources in New Hampshire based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2002-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2016...
Forests of New Hampshire, 2015
Randall S. Morin; Richard H. Widmann
2016-01-01
This publication provides an overview of forest resources in New Hampshire based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2002-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015...
Forests of New Hampshire, 2014
Randall S. Morin; R. Riemann
2015-01-01
This publication provides an overview of forest resources in New Hampshire based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2002-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2014...
Dacia M. Meneguzzo; Mark D. Nelson
2018-01-01
This resource update provides an overview of forest resources in Nebraska based on inventories conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2001â2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2017 inventory...
Forests of West Virginia, 2015
Randall S. Morin
2016-01-01
This publication provides an overview of forest resources in West Virginia based on inventories conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2002-2013, the sample length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2015...
Walkway Length Determination for Steady State Walking in Young and Older Adults
ERIC Educational Resources Information Center
Macfarlane, Pamela A.; Looney, Marilyn A.
2008-01-01
The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…
García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto
2012-01-01
During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293
The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Xingjun; Zhang, Jun; Zhong, Huihuang
2014-11-03
The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator (RBWO) are presented. The operation frequency tuning can be easily achieved by merely altering the inner-conductor length. The key effects of the inner-conductor length contributing to the mechanical frequency tunability are investigated theoretically and experimentally. There is a specific inner-conductor length where the operation frequency can jump from one mode to another mode, which belongs to a different operation band. In addition, the operation frequency is tunable within each operation band. During simulation, the L-band microwave with a frequency of 1.61 GHz is radiated when the inner-conductor length ismore » 39 cm. Meanwhile, the S-band microwave with a frequency of 2.32 GHz is radiated when the inner-conductor length is 5 cm. The frequency adjustment bandwidths of L-band and S-band are about 8.5% and 2%, respectively. Moreover, the online mechanical tunability process is described in detail. In the initial experiment, the generated microwave frequencies remain approximately 1.59 GHz and 2.35 GHz when the inner-conductor lengths are 39 cm and 5 cm. In brief, this technical route of the band-agile coaxial RBWO is feasible and provides a guide to design other types of band-agile high power microwaves sources.« less
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Birur, Gajanana
2004-01-01
This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermal electric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of condenser is fully utilized. Ammonia was used ad the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 1OW even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/-0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing the orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.
NASA Technical Reports Server (NTRS)
Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana
2004-01-01
This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5 ) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.
The G1 restriction point as critical regulator of neocortical neuronogenesis
NASA Technical Reports Server (NTRS)
Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.
1999-01-01
Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.
NASA Technical Reports Server (NTRS)
Remer, D. S.
1977-01-01
The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.
14 CFR 121.434 - Operating experience, operating cycles, and consolidation of knowledge and skills.
Code of Federal Regulations, 2011 CFR
2011-01-01
... consolidation of knowledge and skills. 121.434 Section 121.434 Aeronautics and Space FEDERAL AVIATION... Qualifications § 121.434 Operating experience, operating cycles, and consolidation of knowledge and skills. (a... of knowledge and skills, required by this section, except as follows: (1) Crewmembers other than...
Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...
2018-01-04
Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less
Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma
Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi; ...
2015-12-01
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less
Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less
Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria
2012-01-01
Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921
A Loblolly Pine Management Guide: Foresters' Primer in Nutrient Cycling
Jacques R. Jorgensen; Carol G. Wells
1986-01-01
The nutrient cycle, which includes the input of nutrients to the site, their losses, and their movement from one soil or vegetation component to another, can be modified by site preparation, rotation length, harvest system, fertilization, and fire, and by using soil-improving plants. Included is a report on how alternative procedures affect site nutrients, and provides...
Analysis of Cycling Costs in Western Wind and Solar Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, G.; Venkataraman, S.
The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveragingmore » the results of WWSIS Phase 1 study.« less
Yeang, Hoong-Yeet
2007-01-01
How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
Solar cycle length hypothesis appears to support the ipcc on global warming
NASA Astrophysics Data System (ADS)
Laut, P.; Gundermann, J.
1998-12-01
Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of northern hemisphere land air temperatures, there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The solar hypothesis (as we shall term this assumption) claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier article we have demonstrated that for data covering the period 1860-1980 the solar hypothesis does not rule out any significant contribution from man-made greenhouse gases and sulphate aerosols. The present analysis goes a step further. We analyse the period 1579-1987 and find that the solar hypothesis-instead of contradicting-appears to support the assumption of a significant warming due to human activities. We have tentatively corrected the historical northern hemisphere land air temperature anomalies by removing the assumed effects of human activities. These are represented by northern hemisphere land air temperature anomalies calculated as the contributions from man-made greenhouse gases and sulphate aerosols by using an upwelling diffusion-energy balance model similar to the model of [Wigley and Raper, 1993] employed in the Second Assessment Report of The Intergovernmental Panel on Climate Change (IPCC). It turns out that the agreement of the filtered solar cycle lengths with the corrected temperature anomalies is substantially better than with the historical anomalies, with the mean square deviation reduced by 36% for a climate sensitivity of 2.5°C, the central value of the IPCC assessment, and by 43% for the best-fit value of 1.7°C. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
As noted by Gray et al., Sir William Herschel was the first to suggest a possible close connection between the Sun and the Earth’s climate. The Sun, being the source of energy that impacts and drives the Earth’s climate system, displays a variety of changes over both short and long term time scales, the most obvious examples being the somewhat regular waxing and waning of sunspots with time (i.e., the sunspot cycle (SC)), first described by Samuel Heinrich Schwabe, a German apothecary and amateur astronomer who observed the Sun from Dessau, Germany, and the now well established variation of the Sun’s irradiance over the SC. Other factors related to the SC have been linked to changes in climate as well. Some of these other factors include the role of cosmic rays and the solar wind (i.e., the geomagnetic cycle) on climate, as well as the apparent close association between trends in global and northern hemispheric temperature and the length of the SC, although some investigators have described the inferred association between climate and, in particular, SC length as now being weak. More recently, Solheim et al. have reported on the relation between SC length and the average temperature in the same and immediately following SC for a number of meteorological stations in Norway and in the North Atlantic region. They noted that while they found no significant trend (correlation) between SC length and the average temperature when measured for the same cycle, in contrast, they found a significant negative trend when SC length was compared with the following cycle’s average temperature. From this observation, they suggested that average northern hemispheric temperature during the present ongoing SC (SC24) will be lower by about 0.9 °C than was seen in SC23 (spanning 1996–2007, based on yearly averages of sunspot number (SSN), and onset for SC24 occurring in 2008). The purpose of this Technical Publication (TP) is to examine the annual variations of the Armagh surface air temperature (ASAT) and the Global Land-Ocean Temperature Index (GLOTI) in relation to SSN and the SC in order to determine their likely values during SC24. Hence, it may provide insight as to whether solar forcing of global temperature is now lessening as a contributor to global warming, thereby indicating a possible cooling in the near term immediate future that potentially could ameliorate the effect of increased anthropogenic warming.
Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John
2016-01-01
When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a function of the circuit elements (such as shunt resistor, SQUID inductance, and capacitor values). In other words, same device measured in different electrical circuits will have a different resistive surface in temperature, current, and magnetic field. Next we consider that at the transition temperature of a superconductor both the magnetic penetration depth and coherence length are divergent. As a consequence these important characteristic length scales are changing with operating point. We present measurements on devices showing commensurate behavior between these characteristic lengths and the length scale of added normal metal structures. Reordering of proximity vortices leads to discontinuities and irreversibility of the current-voltage curves. Last we consider a weak-link TES including both thermal activated resistance effects and the effect of the magnetic penetration depth being a function of temperature and magnetic field. We derive its impact on the resistive transition surface and the important device parameters a and b.
Thermal Cyclic Resistance Polyester Resin Composites Reinforce Fiber Nut Shell
NASA Astrophysics Data System (ADS)
Fahmi, Hendriwan
2017-12-01
The purpose of study is to determine the effect of fiber length and thermal cyclic of the bending strength of polyester resin composite reinforced by fibers nut shell. The materials used in this study is a nut shell fibers with fiber length of 1 cm, 2 cm and 3 cm and polyester resin with composition 70-30%wt. Fiber nut shell treated soaking in NaOH 30% for 30 minutes, then rinse with clean water so that the fiber free of alkali and then dried. Furthermore, the composite is heated in an oven to a temperature of 100°C for 1 hour and then cooled in the open with a variety of thermal cyclic 30, 40, and 50 times. Bending properties of composites known through the testing process using a three-point bending test equipment universal testing machine. The test results show that the bending strength bending highest in fiber length of 3 cm with 30 treatment cycles of thermal to the value of 53.325 MPa, while the lowest occurred in bending strength fiber length of 1 cm with no cycles of thermal treatment to the value of 30.675 MPa.
Rilo, B; Fernández-Formoso, N; Mora, M J; Cadarso-Suárez, C; Santana, U
2009-08-01
This study was designed to characterize the distance of the contact glide in the closing masticatory stroke in healthy adult subjects, during chewing of three types of food (crustless bread, chewing gum and peanuts). Mandibular movements (masticatory movements and laterality movements with dental contact) were registered using a gnathograph (MK-6I Diagnostic System) on the right and left side during unilateral chewing of the three food types. Length of dental contact was measured in masticatory cycle, which is defined as where the terminal part of the chewing cycles could be superimposed on the pathways taken by the mandible during lateral excursions with occlusal contacts. The length of dental contact during mastication of chewing gum is 1.46 +/- 1 mm, during chewing of soft bread is 1.38 +/- 0.7 mm and during chewing of peanuts is 1.45 +/- 0.9 mm. There is no significant difference in the lengths of dental contact during mastication of three types of foods that enable direct tooth gliding.
TW-class hollow-fiber compressor with tunable pulse duration (Conference Presentation)
NASA Astrophysics Data System (ADS)
Boehle, Frederik; Vernier, Aline; Kretschmar, Martin; Jullien, Aurélie; Kovacs, Mate; Romero, Rosa M.; Crespo, Helder M.; Simon, Peter; Nagy, Tamas; Lopez-Martens, Rodrigo
2017-05-01
CEP-stable few-cycle light pulses find numerous applications in attosecond science, most notably the production of isolated attosecond pulses for studying ultrafast electronic processes in matter [1]. Scaling up the pulse energy of few-cycle pulses could extend the scope of applications to even higher intensity processes, such as attosecond dynamics of relativistic plasma mirrors [2]. Hollow fiber compressors are widely used to produce few-cycle pulses with excellent spatiotemporal quality [3], where octave-spanning broadened spectra can be temporally compressed to sub-2-cycle duration [4,5]. Several tricks help increase the output energy: using circularly polarized light [6], applying a pressure gradient along the fiber [7] or even temporal multiplexing [8]. The highest pulse energy of 5 mJ at 5 fs pulse duration was achieved by using a hollow fiber in pressure gradient mode [9] but in this case no CEP stabilization was achieved, which is crucial for most applications of few-cycle pulses. Nevertheless, it did show that in order to scale up the peak power, the effective length and area mode of the fiber had to be increased proportionally, thereby requiring the use of longer waveguides with larger apertures. Thanks to an innovative design utilizing stretched flexible capillaries [10], we recently demonstrated the generation CEP-stable sub-4fs pulses with 3mJ energy using a 2m length 450mm bore hollow fiber in pressure gradient mode [11]. Here, we show that a stretched hollow-fiber compressor operated in pressure gradient mode can generate relativistic intensity pulses with continuously tunable waveform down to almost a single cycle (3.5fs at 750nm central wavelength). The pulses are characterized online using an integrated d-scan device directly under vacuum [12]. While the pulse shape is tuned, all other pulse characteristics, such as energy, pointing stability and focal distribution remain the same on target, making it possible to explore the dynamics of plasma mirrors using controllable relativistic-intensity light waveforms at 1kHz. [1] Krausz and Ivanov, Rev. Mod. Phys. 81, 163 (2009). [2] Borot et al., Nature Phys. 8, 417-421 (2012). [3] Nisoli et al., Appl. Phys. Lett. 68, 2793-2795 (1996). [4] Park et al., Opt. Lett. 34, 2342-2344 (2009). [5] Schweinberger et al., Opt. Lett. 37, 3573-5 (2012). [6] Chen et al., Opt. Lett. 34, 1588-1590 (2009). [7] Suda et al., Appl. Phys. Lett. 86, 111116 (2005). [8] Jacqmin et al., Opt. Lett. 40, 709-712 (2015) [9] Bohman et al., Opt. Lett. 35, 1887-9 (2010). [10] Nagy et al., Appl. Opt. 47, 3264-3268 (2008). [11] Boehle et al., Las. Phys. Lett. 11, 095401 (2014). [12] Miranda et al., Opt. Express 20, 18732-43 (2012)
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.
Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade
NASA Technical Reports Server (NTRS)
Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.
1995-01-01
INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.
Left Ventricular Isovolumetric Relaxation Time Is Prolonged in Fetal Long-QT Syndrome.
Clur, Sally-Ann B; Vink, Arja S; Etheridge, Susan P; Robles de Medina, Pascale G; Rydberg, Annika; Ackerman, Michael J; Wilde, Arthur A; Blom, Nico A; Benson, D Woodrow; Herberg, Ulrike; Donofrio, Mary T; Cuneo, Bettina F
2018-04-01
Long-QT syndrome (LQTS), an inherited cardiac repolarization disorder, is an important cause of fetal and neonatal mortality. Detecting LQTS prenatally is challenging. A fetal heart rate (FHR) less than third percentile for gestational age is specific for LQTS, but the sensitivity is only ≈50%. Left ventricular isovolumetric relaxation time (LVIRT) was evaluated as a potential diagnostic marker for fetal LQTS. LV isovolumetric contraction time, LV ejection time, LVIRT, cycle length, and FHR were measured using pulsed Doppler waveforms in fetuses. Time intervals were expressed as percentages of cycle length, and the LV myocardial performance index was calculated. Single measurements were stratified by gestational age and compared between LQTS fetuses and controls. Receiver-operator curves were performed for FHR and normalized LVIRT (N-LVIRT). A linear mixed-effect model including multiple measurements was used to analyze trends in FHR, N-LVIRT, and LV myocardial performance index. There were 33 LQTS fetuses and 469 controls included. In LQTS fetuses, the LVIRT was prolonged in all gestational age groups ( P <0.001), as was the N-LVIRT. The best cutoff to diagnose LQTS was N-LVIRT ≥11.3 at ≤20 weeks (92% sensitivity, 70% specificity). Simultaneous analysis of N-LVIRT and FHR improved the sensitivity and specificity for LQTS (area under the curve=0.96; 95% confidence interval, 0.82-1.00 at 21-30 weeks). N-LVIRT, LV myocardial performance index, and FHR trends differed significantly between LQTS fetuses and controls through gestation. The LVIRT is prolonged in LQTS fetuses. Findings of a prolonged N-LVIRT and sinus bradycardia can improve the prenatal detection of fetal LQTS. © 2018 American Heart Association, Inc.
Alexandre, Joachim; Saloux, Eric; Lebon, Alain; Dugué, Audrey Emmanuelle; Lemaitre, Adrien; Roule, Vincent; Labombarda, Fabien; Champ-Rigot, Laure; Gomes, Sophie; Pellissier, Arnaud; Scanu, Patrice; Milliez, Paul
2014-02-01
After an old myocardial infarction (MI), patients are at risk for reentrant ventricular tachycardia (VT) due to scar tissue that can be accurately identified by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Although the ability of LGE-CMR to predict sustained VT in implantable cardioverter-defibrillator (ICD) recipients has been well established, its use to predict monomorphic VT (sustained or not) cycle length (CL) and so, optimize ICD programming has never been investigated. We included retrospectively 49 consecutive patients with an old MI who had undergone LGE-CMR before ICD implantation over a 4-year period (2006-09). Patients with amiodarone used were excluded. Scar extent was assessed by measuring scar mass, percent scar, and transmural scar extent. The endpoint was the occurrence of monomorphic VT, requiring an ICD therapy or not. The endpoint occurred in 26 patients. The median follow-up duration was 31 months. Scar extent parameters were significantly correlated with the study endpoint. With univariate regression analysis, the scar mass had the highest correlation with the VT CL (R = 0.671, P = 0.0002). Receiver-operating characteristic curve showed that scar mass can predict VT CL (area under the curve = 0.977, P < 0.0001). For a cut-off value of scar mass at 17.6 g, there is 100% specificity and 94.4% sensitivity. In this observational and retrospective study, scar mass studied by LGE-CMR was specific and sensitive to predict VT CL and so could be a promising option to improve ICD post-implantation programming and decrease appropriate and inappropriate shocks. These conclusions must now be confirmed in a large and prospective study.
Astrometric Calibration and Performance of the Dark Energy Camera
Bernstein, G. M.; Armstrong, R.; Plazas, A. A.; ...
2017-05-30
We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3more » $deg^2$ science field of view, and across 4 years of operation. This is done using internal comparisons of $~ 4 x 10^7$ measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to $$\\approx 10 \\mu m$$ when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and $$5^{\\prime}-10^{\\prime}$$ arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density $$\\approx 0.7$$ $$arcmin^{-2}$$, e.g. from Gaia, the typical atmospheric distortions can be interpolated to $$\\approx$$ 7 mas RMS accuracy (for 30 s exposures) with $$1^{\\prime}$$ arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( $$\\approx$$ 0.02 pixels, or $$\\approx$$ 300 nm) on the focal plane, plus the stochastic atmospheric distortion.« less
Organic rankine cycle system for use with a reciprocating engine
Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.
2006-01-17
In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennifer Lyons; Wade R. Marcum; Mark D. DeHart
2014-01-01
The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less
Initial results from the NASA Lewis wave rotor experiment
NASA Technical Reports Server (NTRS)
Wilson, Jack; Fronek, Dennis
1993-01-01
Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.
Initial results from the NASA-Lewis wave rotor experiment
NASA Technical Reports Server (NTRS)
Wilson, Jack; Fronek, Dennis
1993-01-01
Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.
Delayed effect of pinealectomy on hibernation of the golden-mantled ground squirrel
NASA Astrophysics Data System (ADS)
Ralph, C. L.; Harlow, H. J.; Phillips, J. A.
1982-12-01
Pinealectomy or radical sham pinealectomy were performed on adult golden-mantled ground squirrels, Spermophilus (=Citellus) lateralis, approximately 1 month prior to the date of normal winter emergence. The first hibernatory period and subsequent active season were not different in either of the operated groups from intact animals. However, although the initiation of the second hibernatory period was not affected in the pinealectomized animals, this group failed to show the progressive increase in the length of heterothermic bouts that is characteristic of normal hibernation. Also, terminal arousal occurred approximately 6 weeks earlier in the second year after pinealectomy. Male squirrels showed a corresponding time compression in their annual gonadal cycle, as was assessed by testicular state. These results suggest that the pineal gland of the golden-mantled ground squirrel is involved in the expression of the annual hibernatory cycle. In the absence of the pineal gland the adult of this species is unable to sustain the normal depth and duration of hibernation in the second over-wintering period following pinealectomy. We have carried out additional experiments with young, laboratory-born S. lateralis and with field-caught, adult S. richardsonii. The results of these studies also are described in this paper.
Caswell, Joseph M; Carniello, Trevor N; Murugan, Nirosha J
2016-01-01
Increasing research into heliobiology and related fields has revealed a myriad of potential relationships between space weather factors and terrestrial biology. Additionally, many studies have indicated cyclicity in incidence of various diseases along with many aspects of cardiovascular function. The current study examined annual mortality associated with hypertensive diseases in Canada from 1979 to 2009 for periodicities and linear relationships with a range of heliophysical parameters. Analyses indicated a number of significant lagged correlations between space weather and hypertensive mortality, with solar wind plasma beta identified as the likely source of these relationships. Similar periodicities were observed for geomagnetic activity and hypertensive mortality. A significant rhythm was revealed for hypertensive mortality centered on a 9.6-year cycle length, while geomagnetic activity was fit with a 10.1-year cycle. Cross-correlograms of mortality with space weather demonstrated a 10.67-year periodicity coinciding with the average 10.6-year solar cycle length for the time period examined. Further quantification and potential implications are discussed.
A lithographically patterned capacitor with horizontal nanowires of length 2.5 mm.
Yan, Wenbo; Thai, Mya Le; Dutta, Rajen; Li, Xiaowei; Xing, Wendong; Penner, Reginald M
2014-04-09
A symmetrical hybrid capacitor consisting of interdigitated, horizontal nanowires is described. Each of the 750 nanowires within the capacitor is 2.5 mm in length, consisting of a gold nanowire core (40 × ≈200 nm) encapsulated within a hemicylindrical shell of δ-phase MnO2 (thickness = 60-220 nm). These Au@δ-MnO2 nanowires are patterned onto a planar glass surface using lithographically patterned nanowire electrodeposition (LPNE). A power density of 165 kW/kg and energy density of 24 Wh/kg were obtained for a typical nanowire array in which the MnO2 shell thickness was 68 ± 8 nm. Capacitors incorporating these ultralong nanowires lost ≈10% of their capacity rapidly, during the first 20 discharge cycles, and then retained 90% of their maximum capacity for the ensuing 6000 cycles. The ability of capacitors consisting of ultralong Au@δ-MnO2 nanowires to simultaneously deliver high power and high capacity with acceptable cycle life is demonstrated.
NASA Astrophysics Data System (ADS)
Caswell, Joseph M.; Carniello, Trevor N.; Murugan, Nirosha J.
2016-01-01
Increasing research into heliobiology and related fields has revealed a myriad of potential relationships between space weather factors and terrestrial biology. Additionally, many studies have indicated cyclicity in incidence of various diseases along with many aspects of cardiovascular function. The current study examined annual mortality associated with hypertensive diseases in Canada from 1979 to 2009 for periodicities and linear relationships with a range of heliophysical parameters. Analyses indicated a number of significant lagged correlations between space weather and hypertensive mortality, with solar wind plasma beta identified as the likely source of these relationships. Similar periodicities were observed for geomagnetic activity and hypertensive mortality. A significant rhythm was revealed for hypertensive mortality centered on a 9.6-year cycle length, while geomagnetic activity was fit with a 10.1-year cycle. Cross-correlograms of mortality with space weather demonstrated a 10.67-year periodicity coinciding with the average 10.6-year solar cycle length for the time period examined. Further quantification and potential implications are discussed.
The correlation structure of several popular pseudorandom number generators
NASA Technical Reports Server (NTRS)
Neuman, F.; Merrick, R.; Martin, C. F.
1973-01-01
One of the desirable properties of a pseudorandom number generator is that the sequence of numbers it generates should have very low autocorrelation for all shifts except for zero shift and those that are multiples of its cycle length. Due to the simple methods of constructing random numbers, the ideal is often not quite fulfilled. A simple method of examining any random generator for previously unsuspected regularities is discussed. Once they are discovered it is often easy to derive the mathematical relationships, which describe the mathematical relationships, which describe the regular behavior. As examples, it is shown that high correlation exists in mixed and multiplicative congruential random number generators and prime moduli Lehmer generators for shifts a fraction of their cycle lengths.
Harris, H R; Titus, L J; Cramer, D W; Terry, K L
2017-01-15
Long and irregular menstrual cycles, a hallmark of polycystic ovary syndrome (PCOS), have been associated with higher androgen and lower sex hormone binding globulin levels and this altered hormonal environment may increase the risk of specific histologic subtypes of ovarian cancer. We investigated whether menstrual cycle characteristics and self-reported PCOS were associated with ovarian cancer risk among 2,041 women with epithelial ovarian cancer and 2,100 controls in the New England Case-Control Study (1992-2008). Menstrual cycle irregularity, menstrual cycle length, and PCOS were collected through in-person interview. Unconditional logistic regression models were used to calculate odds ratios (OR) and 95% confidence intervals (95% CIs) for ovarian cancer risk overall, and polytomous logistic regression to evaluate whether risk differed between histologic subtypes. Overall, we observed no elevation in ovarian cancer risk for women who reported periods that were never regular or for those reporting a menstrual cycle length of >35 days with ORs of 0.87 (95% CI = 0.69-1.10) and 0.83 (95% CI = 0.44-1.54), respectively. We observed no overall association between self-reported PCOS and ovarian cancer (OR = 0.97; 95% CI = 0.61-1.56). However, we observed significant differences in the association with menstrual cycle irregularity and risk of ovarian cancer subtypes (p heterogeneity = 0.03) as well as by BMI and OC use (p interaction < 0.01). Most notable, menstrual cycle irregularity was associated with a decreased risk of high grade serous tumors but an increased risk of serous borderline tumors among women who had never used OCs and those who were overweight. Future research in a large collaborative consortium may help clarify these associations. © 2016 UICC.
Cho, Catherine; Louie, Ke'ale; Maawadh, Ahmed; Gerstner, Geoffrey E
2015-11-01
To study and compare the relationships between mean chewing cycle duration, selected cephalometric variables representing mandibular length, face height, etc., measured in women and in their teenage or young-adult biological daughters. Daughters were recruited from local high schools and the University of Michigan School of Dentistry. Selection criteria included healthy females with full dentition, 1st molar occlusion, no active orthodontics, no medical conditions nor medication use that could interfere with normal masticatory motor function. Mothers had to be biologically related to their daughters. All data were obtained in the School of Dentistry. Measurements obtained from lateral cephalograms included: two "jaw length" measures, condylion-gnathion and gonion-gnathion, and four measures of facial profile including lower anterior face height, and angles sella-nasion-A point (SNA), sella-nasion-B point (SNB) and A point-nasion-B point (ANB). Mean cycle duration was calculated from 60 continuous chewing cycles, where a cycle was defined as the time between two successive maximum jaw openings in the vertical dimension. Other variables included subject height and weight. Linear and logistic regression analyses were used to evaluate the mother-daughter relationships and to study the relationships between cephalometric variables and chewing cycle duration. Height, weight, Co-Gn and Go-Gn were significantly correlated between mother-daughter pairs; however, mean cycle duration was not (r(2)=0.015). Mean cycle duration was positively correlated with ANB and height in mothers, but negatively correlated with Co-Gn in daughters. Chewing rate is not correlated between mothers and daughters in humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jesam, Cristián; Salvatierra, Ana María; Schwartz, Jill L; Croxatto, Horacio B
2010-02-01
There is evidence that cyclooxygenase-2 (COX-2) inhibitors can prevent or delay follicular rupture. COX-2 inhibitors, such as meloxicam, may offer advantages over emergency contraception with levonorgestrel, such as extending the therapeutic window for up to 24 h. We assessed the effect of meloxicam administered in the late follicular phase upon ovulation in women. This was a single center, double blind, crossover study designed to assess the effects in 27 eligible women (18-40 years old, surgically sterilized with regular menstrual cycles) of meloxicam, 15 or 30 mg/day, administered orally for five consecutive days during the late follicular phase, starting when the leading follicle reached 18 mm diameter. Volunteers underwent two treatment cycles separated by one resting cycle, with randomization to dose sequence. Main outcomes were follicular rupture; serum LH, progesterone and estradiol (E2) levels; and incidence of adverse events. Twenty-two volunteers completed the study. There were no differences between meloxicam doses in menstrual cycle length. Dysfunctional ovulation was observed in 11/22 (50%) cycles treated with 15 mg/day and 20/22 (90.9%) cycles with 30 mg/day (P = 0.0068). All women had normal luteal phase progesterone levels; mean maximal values +/- SEM were 42 +/- 4.1 and 46.8 +/- 2.6 nmol/l for 15 and 30 mg/day groups, respectively. There were no serious adverse events, and no changes in LH and E2 levels or in cycle length. Meloxicam 30 mg given for five consecutive days in the late follicular phase is safe, effective and may be an alternative form of emergency contraception.
NASA Technical Reports Server (NTRS)
Graf, B. K.; Fujisaki, K.; Vanderby, R. Jr; Vailas, A. C.
1992-01-01
Cell necrosis has been well documented as one of the many changes that occur in autogenous tendon when it is used to reconstruct the anterior cruciate ligament. The purpose of this experiment was to isolate cell necrosis as a variable and study its effect on the patellar tendon. To accomplish this, both knees of 25 New Zealand White rabbits were operated on. In one knee, a 5-mm wide band of patellar tendon was subjected to two rapid freeze-thaw cycles, while the other knee underwent sham surgery. Histologic evaluation showed a zone of necrosis at 2 and 4 weeks with cellular repopulation complete at 8 weeks. patellar tendon cross-sectional area was 0.118 cm2 at 8 weeks for the frozen specimens compared to 0.102 cm2 for the sham-operated controls. This difference was significant at the P = 0.025 level. Mechanical testing at 4 and 8 weeks revealed no significant changes in tendon length, maximum load, or stiffness. The collagen content was also unchanged at both 4 and 8 weeks.
Development of economic and environmental metrics for forest-based biomass harvesting
NASA Astrophysics Data System (ADS)
Zhang, F. L.; Wang, J. J.; Liu, S. H.; Zhang, S. M.
2016-08-01
An assessment of the economic, energy consumption, and greenhouse gas (GHG) emission dimensions of forest-based biomass harvest stage in the state of Michigan, U.S. through gathering data from literature, database, and other relevant sources, was performed. The assessment differentiates harvesting systems (cut-to-length harvesting, whole tree harvesting, and motor-manual harvesting), harvest types (30%, 70%, and 100% cut) and forest types (hardwoods, softwoods, mixed hardwood/softwood, and softwood plantations) that characterize Michigan's logging industry. Machine rate methods were employed to determine unit harvesting cost. A life cycle inventory was applied to calculating energy demand and GHG emissions of different harvesting scenarios, considering energy and material inputs (diesel, machinery, etc.) and outputs (emissions) for each process (cutting, forwarding/skidding, etc.). A sensitivity analysis was performed for selected input variables for the harvesting operation in order to explore their relative importance. The results indicated that productivity had the largest impact on harvesting cost followed by machinery purchase price, yearly scheduled hours, and expected utilization. Productivity and fuel use, as well as fuel factors, are the most influential environmental impacts of harvesting operations.
The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes
NASA Astrophysics Data System (ADS)
Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.
The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.
Chandran, D; Woods, C M; Schar, M; Ma, N; Ooi, E H; Athanasiadis, T
2018-02-01
To conduct a cost analysis of injection laryngoplasty performed in the operating theatre under local anaesthesia and general anaesthesia. The retrospective study included patients who had undergone injection laryngoplasty as day cases between July 2013 and March 2016. Cost data were obtained, along with patient demographics, anaesthetic details, type of injectant, American Society of Anesthesiologists score, length of stay, total operating theatre time and surgeon procedure time. A total of 20 cases (general anaesthesia = 6, local anaesthesia = 14) were included in the cost analysis. The mean total cost under general anaesthesia (AU$2865.96 ± 756.29) was significantly higher than that under local anaesthesia (AU$1731.61 ± 290.29) (p < 0.001). The mean operating theatre time, surgeon procedure time and length of stay were all significantly lower under local anaesthesia compared to general anaesthesia. Time variables such as operating theatre time and length of stay were the most significant predictors of the total costs. Procedures performed under local anaesthesia in the operating theatre are associated with shorter operating theatre time and length of stay in the hospital, and provide significant cost savings. Further savings could be achieved if local anaesthesia procedures were performed in the office setting.
Oxygenation of the Root Zone and TCE Remediation: A Plant Model of Rhizosphere Dynamics
2008-03-01
Behavior Test .......................................................................................... 128 IV. Results and Analysis ...Circadian Rhythms and Diurnal Cycles. Just as humans have a rhythmic response to the environment, plants also have a periodic cycle governed by light...characteristics, fatty acid carbon lengths, G + C values, and 16S rRNA sequences. 16S RNA sequence analysis has identified eight genera of methanotrophs
Relating Stellar Cycle Periods to Dynamo Calculations
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1998-01-01
Stellar magnetic activity in slowly rotating stars is often cyclic, with the period of the magnetic cycle depending critically on the rotation rate and the convective turnover time of the star. Here we show that the interpretation of this law from dynamo models is not a simple task. It is demonstrated that the period is (unsurprisingly) sensitive to the precise type of non-linearity employed. Moreover the calculation of the wave-speed of plane-wave solutions does not (as was previously supposed) give an indication of the magnetic period in a more realistic dynamo model, as the changes in length-scale of solutions are not easily captured by this approach. Progress can be made, however, by considering a realistic two-dimensional model, in which the radial length-scale of waves is included. We show that it is possible in this case to derive a more robust relation between cycle period and dynamo number. For all the non-linearities considered in the most realistic model, the magnetic cycle period is a decreasing function of IDI (the amplitude of the dynamo number). However, discriminating between different non-linearities is difficult in this case and care must therefore be taken before advancing explanations for the magnetic periods of stars.
Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius
2015-01-01
ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511
Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor
2017-08-01
Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.
Across-Gimbal and Miniaturized Cryogenic Loop Heat Pipes
NASA Astrophysics Data System (ADS)
Bugby, D.; Marland, B.; Stouffer, C.; Kroliczek, E.
2003-01-01
This paper describes the development status of three advanced cryogenic loop heat pipes (CLHP) for solving important problems in cryogenic integration. The three devices described herein are: (1) an across-gimbal CLHP; (2) a short transport length miniaturized CLHP; and (3) a long transport length miniaturized CLHP. The across-gimbal CLHP, which is baselined for operation from 80-100 K with nitrogen, provides a low weight, low torque, high conductance solution for gimbaled cryogenic systems wishing to mount their cryocoolers off-gimbal. The short transport length miniaturized CLHP, which is baselined for operation near 35 K with neon, combines localized thermal transport, flexibility, and thermal switching into one device that can be directly mounted to a cryocooler cold head and a cryogenic component just a short distance (10-20 cm) away. The long transport length miniaturized CLHP, which is also baselined for operation near 35 K with neon, adds to the capabilities of the short transport length miniaturized CLHP by increasing the transport length to over 250 cm to meet cryogenic heat transport device requirements of future NASA and DoD spacecraft.
Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Jones, Scott M.; Haller, William J.; Handschuh, Robert F.
2009-01-01
Worldwide concerns of air quality and climate change have made environmental protection one of the most critical issues in aviation today. NASA s current Fundamental Aeronautics Research program is directed at three generations of aircraft in the near, mid and far term, with initial operating capability around 2015, 2020, and 2030, respectively. Each generation has associated goals for fuel burn, NOx, noise, and field-length reductions relative to today s aircrafts. The research for the 2020 generation is directed at enabling a hybrid wing body (HWB) aircraft to meet NASA s aggressive technology goals. This paper presents the conceptual cycle and mechanical designs of the two engine concepts, podded and embedded systems, which were proposed for a HWB cargo freighter. They are expected to offer significant benefits in noise reductions without compromising the fuel burn.
A Two Dimensional Prediction of Solar Cycle 25
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, A.; Martens, P. C.
2017-12-01
To this date solar cycle most cycle predictions have focused on the forecast of solar cycle amplitude and cycle bell-curve shape. However, recent intriguing observational results suggest that all solar cycles follow the same longitudinal path regardless of their amplitude, and have a very similar decay once they reach a sufficient level of maturity. Cast in the light of our current understanding, these results suggest that the toroidal fields inside the Sun are subject to a very high turbulent diffusivity (of the order of magnitude of mixing-length estimates), and their equatorward propagation is driven by a steady meridional flow. Assuming this is the case, we will revisit the relationship between the polar fields at minimum and the amplitude of the next cycle and deliver a new generation of polar-field based predictions that include the depth of the minimum, as well as the latitude and time of the first active regions of solar cycle 25.
Code of Federal Regulations, 2010 CFR
2010-01-01
... during the normal operation cycle of the business or within one year if the operation cycle is shorter...), International Business Systems (IBM)-defined, byte controlled communications protocol, using control characters...
Governmentally amplified output volatility
NASA Astrophysics Data System (ADS)
Funashima, Yoshito
2016-11-01
Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.
Mutungi, Gabriel; Edman, K A P; Ranatunga, K W
2003-01-01
The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasch, James Jay
A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.
NASA Astrophysics Data System (ADS)
Douvartzides, S.; Karmalis, I.
2016-11-01
Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.
NASA Technical Reports Server (NTRS)
Bugby, David C.; Farmer, Jeffery T.; Stouffer, Charles J.
2013-01-01
This paper describes the development and testing of a scalable thermal management architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture involves a serial linkage of one or more hot-side variable conductance heat pipes (VCHPs) to one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. The single-VCHP, single-LHP system described herein was developed to maintain thermal control of a small robotic lunar lander throughout the lunar day-night thermal cycle. It is also applicable to other variable heat rejection space missions in severe environments. Operationally, despite a 60-70% gas blocked VCHP condenser during ON testing, the system was still able to provide 2-4 W/K ON conductance, 0.01 W/K OFF conductance, and an end-to-end switching ratio of 200-400. The paper provides a detailed analysis of VCHP condenser performance, which quantified the gas blockage situation. Future multi-VCHP/multi-LHP thermal management system concepts that provide power/transport length scalability are also discussed.
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.
2005-01-01
This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.
Park, G L; Schäfer, A I; Richards, B S
2012-01-01
Renewable energy powered membrane systems that are directly-connected must take account of both the inherent fluctuations and the intermittency of the energy resource. In order to determine the effect of intermittent operation, a membrane system was tested with variables of (i) amplitude from 60 to 300 W and (ii) length of time with no power from 0.5 to 3 min. This was performed over one hour periods with six on/off cycles to simulate the system operating under intermittent operation for short periods of time when directly-connected to a small wind turbine. The setup used a Filmtec BW30-4040 brackish water reverse osmosis membrane with feed waters of 2,750 mg/L and 5,500 mg/L NaCl. The results showed that the membrane system produced potable water under the majority of intermittency experiments performed. There was a relatively large increase in the average salt concentration of the permeate, especially when the system was off for shorter periods of time (0.5-1 min). Longer periods of no power (1-3 min) did not have as significant an effect on the average water quality. This is important when the need for energy buffering or short term storage is considered for these systems as it shows the potential for improving the overall flux and water quality using temporary energy storage.
Impact of operative length on post-operative complications in meningioma surgery: a NSQIP analysis.
Karhade, Aditya V; Fandino, Luis; Gupta, Saksham; Cote, David J; Iorgulescu, Julian B; Broekman, Marike L; Aglio, Linda S; Dunn, Ian F; Smith, Timothy R
2017-01-01
Many studies have implicated operative length as a predictor of post-operative complications, including venous thromboembolism [deep vein thrombosis (DVT) and pulmonary embolism (PE)]. We analyzed the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) database from 2006 to 2014, to evaluate whether length of operation had a statistically significant effect on post-operative complications in patients undergoing surgical resection of meningioma. Patients were included for this study if they had a post-operative diagnosis of meningioma. Patient demographics, pre-operative comorbidities, and post-operative 30-day complications were analyzed. Of 3743 patients undergoing craniotomy for meningioma, 13.6 % experienced any complication. The most common complications and their median time to occurrence were urinary tract infection (2.6 %) at 10 days postoperatively (IQR 7-15), unplanned intubation (2.5 %) at 3 days (IQR 1-7), failure to wean from ventilator (2.4 %) at 2.0 days (IQR 2-4), and DVT (2.4 %) at 6 days (IQR 11-19). Postoperatively, 3.6 % developed VTE; 2.4 % developed DVT and 1.7 % developed PE. Multivariable analysis identified older age (third and upper quartile), obesity, preoperative ventilator dependence, preoperative steroid use, anemia, and longer operative time as significant risk factors for VTE. Separate multivariable logistic regression models demonstrated longer operative time as a significant risk factor for VTE, all complications, major complications, and minor complications. Meningioma resection is associated with various post-operative complications that increase patient morbidity and mortality risk. this large, multi-institutional patient sample, longer operative length was associated with increased risk for postoperative venous thromboembolisms, as well as major and minor complications.
Disulfide oil hazard assessment using categorical analysis and a mode of action determination.
Morgott, David; Lewis, Christopher; Bootman, James; Banton, Marcy
2014-01-01
Diethyl and diphenyl disulfides, naphtha sweetening (Chemical Abstracts Service [CAS] # 68955-96-4), are primarily composed of low-molecular-weight dialkyl disulfides extracted from C4 to C5 light hydrocarbon streams during the refining of crude oil. The substance, commonly known as disulfide oil (DSO), can be composed of up to 17 different disulfides and trisulfides with monoalkyl chain lengths no greater than C4. The disulfides in DSO constitute a homologous series of chemical constituents that are perfectly suited for a hazard evaluation using a read-across/worst-case approach. The DSO constituents exhibit a common mode of action that is operable at all trophic levels. The observed oxidative stress response is mediated by reactive oxygen species and free radical intermediates generated after disulfide bond cleavage and subsequent redox cycling of the resulting mercaptan. Evidence indicates that the lowest series member, dimethyl disulfide (DMDS), can operate as a worst-case surrogate for other members of the series, since it displays the highest toxicity. Increasing the alkyl chain length or degree of substitution has been shown to serially reduce disulfide toxicity through resonance stabilization of the radical intermediate or steric inhibition of the initial enzymatic step. The following case study examines the mode of action for dialkyl disulfide toxicity and documents the use of read-across information from DMDS to assess the hazards of DSO. The results indicate that DSO possesses high aquatic toxicity, moderate environmental persistence, low to moderate acute toxicity, high repeated dose toxicity, and a low potential for genotoxicity, carcinogenicity, and reproductive/developmental effects.
NASA Astrophysics Data System (ADS)
Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae
2012-05-01
Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
2016-03-24
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Zink, Matthias Daniel; Brüser, Christoph; Winnersbach, Patrick; Napp, Andreas; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl
2015-01-01
Background. Heart rate monitoring is especially interesting in patients with atrial fibrillation (AF) and is routinely performed by ECG. A ballistocardiography (BCG) foil is an unobtrusive sensor for mechanical vibrations. We tested the correlation of heartbeat cycle length detection by a novel algorithm for a BCG foil to an ECG in AF and sinus rhythm (SR). Methods. In 22 patients we obtained BCG and synchronized ECG recordings before and after cardioversion and examined the correlation between heartbeat characteristics. Results. We analyzed a total of 4317 heartbeats during AF and 2445 during SR with a correlation between ECG and BCG during AF of r = 0.70 (95% CI 0.68–0.71, P < 0.0001) and r = 0.75 (95% CI 0.73–0.77, P < 0.0001) during SR. By adding a quality index, artifacts could be reduced and the correlation increased for AF to 0.76 (95% CI 0.74–0.77, P < 0.0001, n = 3468) and for SR to 0.85 (95% CI 0.83–0.86, P < 0.0001, n = 2176). Conclusion. Heartbeat cycle length measurement by our novel algorithm for BCG foil is feasible during SR and AF, offering new possibilities of unobtrusive heart rate monitoring. This trial is registered with IRB registration number EK205/11. This trial is registered with clinical trials registration number NCT01779674. PMID:26229965
NASA Astrophysics Data System (ADS)
Bronstein, Omri; Loya, Yossi
2015-03-01
In spite of the efforts invested in the search for the environmental factors that regulate discrete breeding periods in marine invertebrates, they remain poorly understood. Here, we present the first account of the annual reproductive cycle of the pantropical sea urchin Echinometra sp. from the Gulf of Aqaba/Eilat (Red Sea) and explore some of the main environmental variables that drive echinoid reproduction. Monthly measurements of gonado-somatic indexes and histological observations of 20 specimens revealed a single seasonal reproductive cycle, with gametogenesis in males and females being highly synchronized. Gametogenesis commenced in June and peak spawning occurred between September and October. Gonado-somatic indexes were significantly correlated with seawater temperatures but not with photoperiod. The latter cycle lagged behind the gonado-somatic cycle by two months, suggesting that the onset of gametogenesis corresponds to shortening day length, while spawning may be driven by warming seawater temperatures. Gonads remained quiescent throughout the winter and spring (January through May) when temperatures were at their lowest. Chlorophyll- a concentrations increased significantly in the months following spawning (October through January). These high concentrations are indicative of high phytoplankton abundance and may reflect the increase in food availability for the developing larvae. Of the external test dimensions, length presented the highest correlation to body weight, indicating length as the best predictor for body size in Echinometra. Neither sexual dimorphism nor size differences between males and females were detected, and the sex ratios were approximately 1:1 in three distant Echinometra populations. Environmentally regulated reproduction, as occurs in sea urchins, might face severe outcomes due to anthropogenic disturbances to the marine environment. Consequently, there is a need to deepen our understanding of the mechanisms that drive and regulate this process in broadcast-spawning species.
Prabhu, Sandeep; Kalla, Manish; Peck, Kah Y; Voskoboinik, Aleksandr; McLellan, Alex J A; Pathik, Bupesh; Nalliah, Chrishan J; Wong, Geoff R; Sugumar, Hariharan; Azzopardi, Sonia M; Lee, Geoffrey; Ling, Liang-Han; Kalman, Jonathan M; Kistler, Peter M
2018-03-02
Pulmonary vein (PV) isolation (PVI) remains the cornerstone of catheter ablation (CA) in persistent atrial fibrillation (AF) (PeAF), although less successful than for paroxysmal AF. Whether rapid or fibrillatory (PV AF) PV firing may identify patients with PeAF more likely to benefit from a PV-based ablation approach is unclear. The purpose of this study was to determine the relationship between the PV cycle length (PVCL) and the PV AF outcome after CA. Before ablation, the multipolar catheter was placed in each PV and the left atrial appendage (LAA) for 100 consecutive cycles. The presence of PV AF, the average PVCL of all 4 veins (PV 4VAverage ), the fastest vein average (PV FVAverage ), the fastest cycle length (PV Fast ) both individually and relative to the average LAA cycle length were calculated. The ablation strategy included PVI and posterior wall isolation with a minimum of 12 months follow-up. A total of 123 patients underwent CA (age 62 ± 9.1 years; CHA 2 DS 2 -VASC score 1.6 ± 1.1; left ventricular ejection fraction 48% ± 13%; left atrial area 31 ± 8.7 cm 2 ; AF duration 16 ± 17 months). PVI was achieved in 100% of patients. Multiprocedure success (MPS; freedom from AF/atrial tachycardia episodes lasting >30 seconds) was achieved in 76% of patients at 24 ± 8.1 months of follow-up after 1.2 ± 0.4 procedures. PV activity was not associated with MPS either absolutely (PV 4VAverage [MPS no vs yes: 178 ± 27 ms vs 177 ± 24 ms; P = .92], PV FVAverage [P = .69], or PV Fast [P = .82]) or as a ratio relative to the LAA cycle length (PV 4VAverage /LAA 1.05 ± 0.11 vs 1.06 ± 0.21; P = .87). The presence of PV AF (31% vs 47%; P = .13) did not predict MPS. The rapidity of PV firing or presence of fibrillation within the PV was not predictive of outcome of CA for PeAF. PV activity does not identify patients most likely to benefit from a PV-based ablation strategy. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal operating cycle of the business. Current liabilities means obligations which are reasonably expected to be paid or liquidated within one year or within the normal operating cycle of the business... applicant has been in continuous operation as a business entity for a period of not less than 5 years...
Code of Federal Regulations, 2010 CFR
2010-01-01
... cycle of the business, which is considered to be one year. (2) Current liabilities means obligations... consumed in the normal operating cycle of the business; (7) accounts due from employees, if collectable; (8... classifiable as current assets or the creation of other current liabilities during the one year operating cycle...
Double-push skating versus V2 and V1 skating on uphill terrain in cross-country skiing.
Stöggl, Thomas; Kampel, Wolfgang; Müller, Erich; Lindinger, Stefan
2010-01-01
The aims of the study were a) to compare the double-push skating technique with the V2 and the V1 skating techniques on an uphill terrain by a kinematic and kinetic analysis, b) to provide kinetic and kinematic data of the V1 technique at maximal skiing speeds, and c) to test the hypotheses that the double-push skating technique is faster compared with the V2 and the V1 skating techniques. Six elite skiers performed maximum speed sprints over a 60-m uphill section (7 degrees -10 degrees) using the double-push, the V2, and the V1 techniques. Pole and plantar forces and cycle characteristics were analyzed. The double-push skating technique was approximately 4.3% faster (P < 0.05) compared with the V2 skating technique and equally fast compared with the V1 skating technique. The double-push and the V2 techniques demonstrated longer cycle lengths, lower cycle rates (both P < 0.05), and equal poling frequencies and pole forces compared with the V1 technique. Cycle length, peak foot force, and knee extension ranges of motion and velocities were higher in the double-push technique compared with the V2 technique (all P values <0.05). Center of pressure was located more laterally in the double-push technique compared with the other two techniques (P < 0.05). All measured skiing speeds were drastically higher compared with former studies. The higher skiing speeds of the V1 and the double-push techniques compared with the V2 technique stress the mechanical advantage of those techniques on uphill terrain. Because of larger cycle lengths, lower cycle rate, longer recovery times, and equal poling frequency, the double-push technique might be seen as more economic on steep uphills compared with the V1 technique. From a tactical point of view compared with the V1 technique, the double-push technique needs less space due to less lateral displacement, and no technique transitions are necessary when entering and leaving an uphill section.
Machado, Aline dos Santos; Pires-Neto, Ruy Camargo; Carvalho, Maurício Tatsch Ximenes; Soares, Janice Cristina; Cardoso, Dannuey Machado; de Albuquerque, Isabella Martins
2017-01-01
ABSTRACT Objective: To evaluate the effects that passive cycling exercise, in combination with conventional physical therapy, have on peripheral muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients admitted to the ICU of a tertiary care university hospital. Methods: This was a randomized clinical trial involving 38 patients (≥ 18 years of age) on mechanical ventilation who were randomly divided into two groups: control (n = 16), receiving conventional physical therapy; and intervention (n = 22), receiving conventional physical therapy and engaging in passive cycling exercise five days per week. The mean age of the patients was 46.42 ± 16.25 years, and 23 were male. The outcomes studied were peripheral muscle strength, as measured by the Medical Research Council scale, duration of mechanical ventilation, and length of hospital stay. Results: There was a significant increase in peripheral muscle strength (baseline vs. final) in both groups (control: 40.81 ± 7.68 vs. 45.00 ± 6.89; and intervention: 38.73 ± 11.11 vs. 47.18 ± 8.75; p < 0.001 for both). However, the range of increase in strength was higher in the intervention group than in the control group (8.45 ± 5.20 vs. 4.18 ± 2.63; p = 0.005). There were no significant differences between the groups in terms of duration of mechanical ventilation or length of hospital stay. Conclusions: The results suggest that the performance of continuous passive mobilization on a cyclical basis helps to recover peripheral muscle strength in ICU patients. (ClinicalTrials.gov Identifier: NCT01769846 [http://www.clinicaltrials.gov/]) PMID:28538781
Thermodynamic design of natural gas liquefaction cycles for offshore application
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2014-09-01
A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.
NASA Astrophysics Data System (ADS)
Gaponenko, A. M.; Kagramanova, A. A.
2017-11-01
The opportunity of application of Stirling engine with non-conventional and renewable sources of energy. The advantage of such use. The resulting expression for the thermal efficiency of the Stirling engine. It is shown that the work per cycle is proportional to the quantity of matter, and hence the pressure of the working fluid, the temperature difference and, to a lesser extent, depends on the expansion coefficient; efficiency of ideal Stirling cycle coincides with the efficiency of an ideal engine working on the Carnot cycle, which distinguishes a Stirling cycle from the cycles of Otto and Diesel underlying engine. It has been established that the four input parameters, the only parameter which can be easily changed during operation, and which effectively affects the operation of the engine is the phase difference. Dependence of work per cycle of the phase difference, called the phase characteristic, visually illustrates mode of operation of Stirling engine. The mathematical model of the cycle of Schmidt and the analysis of operation of Stirling engine in the approach of Schmidt with the aid of numerical analysis. To conduct numerical experiments designed program feature in the language MathLab. The results of numerical experiments are illustrated by graphical charts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less
Cytokinetics of adult rat SVZ after EAE.
Sajad, Mir; Chawla, Raman; Zargan, Jamil; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A
2011-01-31
Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19 h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25 h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE. Copyright © 2010 Elsevier B.V. All rights reserved.
The Effects of ISM1 Medium on Embryo Quality and Outcomes of IVF/ICSI Cycles.
Hassani, Fatemeh; Eftekhari-Yazdi, Poopak; Karimian, Leila; Rezazadeh Valojerdi, Mojtaba; Movaghar, Bahar; Fazel, Mohammad; Fouladi, Hamid Reza; Shabani, Fatemeh; Johansson, Lars
2013-07-01
The aim of this study is to investigate the effect of ISM1 culture medium on embryo development, quality and outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles. This study compares culture medium commonly used in the laboratory setting for oocyte recovery and embryo development with a medium from MediCult. We have assessed the effects of these media on embryo development and newborn characteristics. In this prospective randomized study, fertilized oocytes from patients were randomly assigned to culture in ISM1 (MediCult, cycles: n=293) or routine lab culture medium (G-1TM v5; Vitrolife, cycles: n=290) according to the daily media schedule for oocyte retrieval. IVF or ICSI and embryo transfer were performed with either MediCult media or routine lab media. Embryo quality on days 2/3, cleavage, pregnancy and implantation rates, baby take home rate (BTHR), in addition to the weight and length of newborns were compared between groups. There were similar cleavage rates for ISM1 (86%) vs. G-1TM v5 (88%). We observed a significantly higher percentage of excellent embryos in ISM1 (42.7%) compared to G-1TM v5 (39%, p<0.05). Babies born after culture in ISM1 had both higher birth weight (3.03 kg) and length (48.8 cm) compared to G-1TM v5 babies that had a birth weight of 2.66 kg and a length of 46.0 cm (p<0.001 for both). This study suggests that ISM1 is a more effective culture medium in generating higher quality embryos, which may be reflected in the characteristics of babies at birth.
The Effects of ISM1 Medium on Embryo Quality and Outcomes of IVF/ICSI Cycles
Hassani, Fatemeh; Eftekhari-Yazdi, Poopak; Karimian, Leila; Rezazadeh Valojerdi, Mojtaba; Movaghar, Bahar; Fazel, Mohammad; Fouladi, Hamid Reza; Shabani, Fatemeh; Johansson, Lars
2013-01-01
Background: The aim of this study is to investigate the effect of ISM1 culture medium on embryo development, quality and outcomes of in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles. This study compares culture medium commonly used in the laboratory setting for oocyte recovery and embryo development with a medium from MediCult. We have assessed the effects of these media on embryo development and newborn characteristics. Materials and Methods: In this prospective randomized study, fertilized oocytes from patients were randomly assigned to culture in ISM1 (MediCult, cycles: n=293) or routine lab culture medium (G-1TM v5; Vitrolife, cycles: n=290) according to the daily media schedule for oocyte retrieval. IVF or ICSI and embryo transfer were performed with either MediCult media or routine lab media. Embryo quality on days 2/3, cleavage, pregnancy and implantation rates, baby take home rate (BTHR), in addition to the weight and length of newborns were compared between groups. Results: There were similar cleavage rates for ISM1 (86%) vs. G-1TM v5 (88%). We observed a significantly higher percentage of excellent embryos in ISM1 (42.7%) compared to G-1TM v5 (39%, p<0.05). Babies born after culture in ISM1 had both higher birth weight (3.03 kg) and length (48.8 cm) compared to G-1TM v5 babies that had a birth weight of 2.66 kg and a length of 46.0 cm (p<0.001 for both). Conclusion: This study suggests that ISM1 is a more effective culture medium in generating higher quality embryos, which may be reflected in the characteristics of babies at birth. PMID:24520472
Menstrual characteristics in some adolescent girls in Accra, Ghana.
Gumanga, S K; Kwame-Aryee, R A
2012-03-01
Menstruation has a variable pattern within a few years of menarche which may not be well understood by many adolescent girls. Providing accurate information on menstruation is necessary to reduce anxiety, menstrual morbidity and improve reproductive health of these adolescents. To determine the age at menarche, duration of menstruation, length of menstrual cycle, regularity of menstrual cycle, prevalence of dysmenorrhoea and sources of information on menstruation. S(T) Mary's Senior Secondary School, Accra. Cross-sectional descriptive study using self-administered questionnaire. Four hundred and fifty six girls whose ages ranged from 14-19 years with mean and median ages of 16 ± 0.93 years and 16 years respectively were surveyed. Their ages at menarche ranged from 9 years to 16 years and the mean age at menarche was 12.5 ±1.28 years. Their menstrual cycle lengths ranged from 21-35 days with mean menstrual cycle length of 27.9± 0.9 days; the mode and median were both 28 days. The mean duration of menstrual flow was 4.9 days with mode and median of 5 days. Seventy one percent (n=449) had menses lasting 3-5 days while 27.2% had menses lasting over 5 days. Some 24% (n=409) had irregular menses six months after their menarche and 59.6% (n=453) were experiencing menses with clots. The prevalence of dysmenorrhoea was 74.4% (n=453). Some 80.2% (n=378) of the girls got counselling and education on care for their menses from their parents. The age at menarche and other menstrual characteristics observed in this study are similar to adolescent menstrual characteristics described by studies in other populations in the world.
The interdependence of Ca2+ activation, sarcomere length, and power output in the heart.
McDonald, Kerry S
2011-07-01
Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.
2015-10-01
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.
Ortiz, R E; Ortiz, A C; Gajardo, G; Zepeda, A J; Parraguez, V H; Ortiz, M E; Croxatto, H B
2005-07-01
Few reports on the reproductive physiology of Cebus apella have been published. In this study we characterized menstrual cycle events by means of vaginal cytology, ultrasonography (US), and hormonal measurements in serum during three consecutive cycles in 10 females, and assessed the probability that ovulation would occur in the same ovary in consecutive cycles in 18 females. The lengths and phases of the cycles were determined according to vaginal cytology. Taking the first day of endometrial bleeding as the first day of the cycle, the mean cycle length +/- SEM was 19.5+/-0.4 days, with follicular and luteal phases lasting 8.2+/-0.2 and 11.3+/-0.4 days, respectively. The follicular phase included menstruation and the periovulatory period, which was characterized by the presence of a large number of superficial eosinophilic cells in the vaginal smear. The myometrium, endometrium, and ovaries were clearly distinguished on US examination. During each menstrual cycle a single follicle was recruited at random from either ovary. The follicle grew from 3 mm to a maximum diameter of 8-9 mm over the course of 8 days, in association with increasing estradiol (E(2)) serum levels (from 489+/-41 to 1600+/-92 pmol/L). At ovulation, the mean diameter of the dominant follicle usually decreased by >20%, 1 day after the maximum E(2) level was reached. Ovulation was associated with an abrupt fall in E(2), a decreased number of eosinophilic cells, the presence of leukocytes and intermediate cells in the vaginal smear, and a progressive increase in progesterone (P) levels that reached a maximum of 892+/-65 nmol/L on days 3-6 of the luteal phase. The menstrual cycle of Cebus apella differs in several temporal and quantitative aspects from that in humans and Old World primates, but it exhibits the same correlations between ovarian endocrine and morphologic parameters. (c) 2005 Wiley-Liss, Inc.
Cragin, Lori A; Kesner, James S; Bachand, Annette M; Barr, Dana Boyd; Meadows, Juliana W; Krieg, Edward F; Reif, John S
2011-11-01
Atrazine is the most commonly used herbicide in the U.S. and a wide-spread groundwater contaminant. Epidemiologic and laboratory evidence exists that atrazine disrupts reproductive health and hormone secretion. We examined the relationship between exposure to atrazine in drinking water and menstrual cycle function including reproductive hormone levels. Women 18-40 years old residing in agricultural communities where atrazine is used extensively (Illinois) and sparingly (Vermont) answered a questionnaire (n=102), maintained menstrual cycle diaries (n=67), and provided daily urine samples for analyses of luteinizing hormone (LH), and estradiol and progesterone metabolites (n=35). Markers of exposures included state of residence, atrazine and chlorotriazine concentrations in tap water, municipal water and urine, and estimated dose from water consumption. Women who lived in Illinois were more likely to report menstrual cycle length irregularity (odds ratio (OR)=4.69; 95% confidence interval (CI): 1.58-13.95) and more than 6 weeks between periods (OR=6.16; 95% CI: 1.29-29.38) than those who lived in Vermont. Consumption of >2 cups of unfiltered Illinois water daily was associated with increased risk of irregular periods (OR=5.73; 95% CI: 1.58-20.77). Estimated "dose" of atrazine and chlorotriazine from tap water was inversely related to mean mid-luteal estradiol metabolite. Atrazine "dose" from municipal concentrations was directly related to follicular phase length and inversely related to mean mid-luteal progesterone metabolite levels. We present preliminary evidence that atrazine exposure, at levels below the US EPA MCL, is associated with increased menstrual cycle irregularity, longer follicular phases, and decreased levels of menstrual cycle endocrine biomarkers of infertile ovulatory cycles. Copyright © 2011 Elsevier Inc. All rights reserved.
Takeo, Y
1984-08-01
Plasma concentrations of LH, FSH, 17 beta-estradiol, estrone and progesterone were determined chronologically by radioimmunoassays in two groups of adult female rats exposed to continuous illumination (LL). Group 1 rats showing vaginal estrous cycles were sacrificed at 3- to 6-hour intervals during late proestrus through early estrus of the first 5 cycles after exposure to LL. Group 2 animals which displayed persistent vaginal estrus in an early period of exposure to LL were killed on the 2nd, 3rd, 4th, 5th and 7th days of vaginal estrus. In Group 1 rats, surges of the hormones, except estrone, took place in all the 5 cycles. The occurrence of peak hormone levels in each cycle was invariably delayed after transfer of animals to LL. According to regression analyses, the lengths of secretion cycles of LH, FSH, 17 beta-estradiol and progesterone in rats under LL were 100.89, 100.46, 101.14 and 101.06 h, respectively. Elevation of 17 beta-estradiol levels was observed prior to the LH surge, and peaks of progesterone and FSH occurred following it. However, the secretion patterns of these hormones appear to be disrupted with length of exposure to LL. In group 2 rats, the mean concentration of LH during persistent estrus was approximately similar to that on the morning of the days of proestrus of the 4-day cycles of rats placed under an alternating 12-hour light-dark regimen (LD), whereas the mean FSH concentration was continuously low. While the concentrations of 17 beta-estradiol and estrone in persistent-estrous rats were elevated, progesterone levels remained low.(ABSTRACT TRUNCATED AT 250 WORDS)
Mairet-Coello, Georges; Tury, Anna; Van Buskirk, Elise; Robinson, Kelsey; Genestine, Matthieu; DiCicco-Bloom, Emanuel
2012-01-01
During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57KIP2, an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57KIP2 regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27KIP1 controlled IPC proliferation exclusively. Furthermore, p57KIP2 deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27KIP1 increased IPC proliferation at E16.5. Consequently, loss of p57KIP2 increased primarily layer 5-6 neuron production, whereas loss of p27KIP1 increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57KIP2 and p27KIP1 control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation. PMID:22223678
Total hip arthroplasty using a short-stem prosthesis: restoration of hip anatomy.
Amenabar, Tomas; Marimuthu, Kanniraj; Hawdon, Gabrielle; Gildone, Alessandro; McMahon, Stephen
2015-04-01
To evaluate hip parameters such as vertical centre of rotation (VCR), horizontal centre of rotation (HCR), femoral offset, and leg length after total hip arthroplasty (THA) using the Nanos short-stem prosthesis. Medical records of 73 men and 74 women aged 25 to 92 (mean, 63) years who underwent THA using the Nanos short-stem prosthesis by a single surgeon were reviewed. Prior to the surgery, the optimal cup and stem size, head length, and level of the neck osteotomy were determined using radiographs. Intra-operatively, the leg length and femoral offset were checked, and the level of neck resection and head length were adjusted. VCR, HCR, femoral offset, and leg length of the operated and contralateral sides were compared. Functional outcomes were assessed using the Harris Hip Score (HHS). Compared with the normal contralateral hips, the operated hips had a mean increase of 0.4 mm in VCR (p=0.032), a mean decrease of 1.4 mm in HCR (p=0.027), a mean increase of 0.6 mm in femoral offset (p=0.043), and a mean increase of 0.36 mm in leg length (p=0.035). For these respective parameters, the difference between the normal contralateral side and the operated side was within 5 mm in 89%, 80%, 71%, and 96% of patients. The HHS improved from a mean of 53 to 91 at one year (p<0.001). THA using the Nanos short-stem prosthesis enabled restoration of hip anatomy (VCR, HCR, femoral offset, and leg length).
Low-grade geothermal energy conversion by organic Rankine cycle turbine generator
NASA Astrophysics Data System (ADS)
Zarling, J. P.; Aspnes, J. D.
Results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49 C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator are presented. The geothermal source which supplied the water is located in a rural Alaskan village. The reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: (1) high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable and (2) the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. Data is provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.
23 CFR 658.16 - Exclusions from length and width determinations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.16 Exclusions from length and width determinations. (a) Vehicle components not excluded by law or regulation shall be included in the measurement of the length and width of commercial motor vehicles. (b) The...
Rotary Stirling-Cycle Engine And Generator
NASA Technical Reports Server (NTRS)
Chandler, Joseph A.
1990-01-01
Proposed electric-power generator comprises three motor generators coordinated by microprocessor and driven by rotary Stirling-cycle heat engine. Combination offers thermodynamic efficiency of Stirling cycle, relatively low vibration, and automatic adjustment of operating parameters to suit changing load on generator. Rotary Stirling cycle engine converts heat to power via compression and expansion of working gas between three pairs of rotary pistons on three concentric shafts in phased motion. Three motor/generators each connected to one of concentric shafts, can alternately move and be moved by pistons. Microprocessor coordinates their operation, including switching between motor and generator modes at appropriate times during each cycle.
Describing Elementary Teachers' Operative Systems: A Case Study
ERIC Educational Resources Information Center
Dotger, Sharon; McQuitty, Vicki
2014-01-01
This case study introduces the notion of an operative system to describe elementary teachers' knowledge and practice. Drawing from complex systems theory, the operative system is defined as the network of knowledge and practices that constituted teachers' work within a lesson study cycle. Data were gathered throughout a lesson study cycle in which…
Cycle-time equations for five small tractors operating in low-volume small-diameter hardwood stands
Chris B. LeDoux; Neil K. Huyler; Neil K. Huyler
1992-01-01
Prediction equations for estimating cycle time were developed for five small tractors studied under various silvicultural treatments and operating conditions. The tractors studied included the Pasquali 933, a Holder A60F, a Forest Ant Forwarder (Skogsman), a Massey-Ferguson, and a Sam4 Minitarus. Skidding costs were estimated based on the cycle-time equations. Using...
ERIC Educational Resources Information Center
McCraley, Thomas L.
1985-01-01
Life cycle costing establishes a realistic comparison of the cost of owning and operating products. The formula of initial cost plus maintenance plus operation divided by useful life identifies the best price over the lifetime of the product purchased. (MLF)
Stellar activity cycles from long-term data by robotic telescopes
NASA Astrophysics Data System (ADS)
Oláh, K.
2014-03-01
All results about stellar activity cycles stem from decades-long systematic observations that were done by small telescopes. Without these equipments we would not know much, if anything, about stellar activity cycles, like those we see and observe easily on the nearest star, the Sun. In the early 80's of the last century systematic photometric monitoring of active stars began with automated photometric telescopes (APTs), some of which continue the observations to date. The Vienna-Potsdam APT now works for about two decades (Strassmeier et al. 1997), similarly to the 4-College Consortium APT (Dukes et al. 1995), while the Catania APT (Rodono et al. 2001) was closed down a few years ago. These small tools with the same setups for decades do not cost much and are relatively cheap to maintain. The longest continuous photometric datasets of a few objects from APTs span now over 30 years, which, together with earlier, manually-obtained data allow to study those activity cycles of stars which are in the order of 10 years or shorter: to be sure in the timescale of a cycle it should be observed repeatedly at least 2-3 times. The spectroscopic automated telescope STELLA (Strassmeier et al. 2004), built in the first decade of this century, measured already a few dozens of radial velocity curves for long-period binary stars and measured their activity levels (Strassmeier et al. 2012); these results can be gathered only by robotic telescopes. Only with STELLA it is possible to study the decades-long behavior of starspots on active giants with long rotational periods via Doppler Imaging. As the databases were growing it became clear that stars, just as the Sun, had multiple cycles. It was also found that stellar cycles showed systematic changes and that the cycle lengths correlated with the rotational periods of the stars. Extensive summaries of stellar activity cycles are found in Baliunas et al. (1995) using the Mt. Wilson Ca-index survey, and Oláh et al. (2009) based on automated photometry+manual data from the literature, resulting in the detection of positive correlation between the rotational rates and cycle length(s) in the sense that faster rotating stars have shorter cycle(s). The long-term, B-V and U-B color index changes of active stars were thoroughly studied by Messina (2008). Direct connection between the magnetic behavior and the orbit of a system containing an active star is seldom observed; such examples are presented by Strassmeier et al. (2011) and Oláh et al. (2013). Based on the data from the DASCH (Digital Access to a Sky Century at Harvard) project, three active K-giants' long-term variability on the timescale of decades to 100 years have beed discovered by Tang et al. (2010). The ASAS database was used to study the cyclic behavior of field M-dwarf stars by Savanov (2012) who found no correlation between the rotation rates and cycle lengths of these objects, suggesting a different type of dynamo to those that drive the dynamo in the RS CVn systems and related active stars, e.g., in Oláh et al. (2009). Recently, Vida & Oláh (2013) determined cycles on the timescale of a year on fast rotating, late-type dwarf stars measured by the Kepler space telescope. However, despite the extremely high precision and time cadence, the Kepler data do not allow to study very long- term phenomena, such as the activity cycles of solar-like stars, due to the limited lifetime of the mission. One of the most important factors in studying stellar activity cycles is time, which cannot be overtaken by any means. It needs systematic, uninterrupted observations for dozens of years, preferably with the same instrument, to avoid systematic effects in the observed long-term variations. Another point is that most of the known magnetically active stars are quite bright objects needing a small telescope to be observed. The construction of automated photometric and spectroscopic telescopes is one of the major, and at the same time low-cost, investments in astronomy. These telescopes and their equipments should be preserved and used as long as possible, replaced when necessary, but never closed down.
Muscle fiber type, Achilles tendon length, potentiation, and running economy.
Hunter, Gary R; McCarthy, John P; Carter, Stephen J; Bamman, Marcas M; Gaddy, Emily S; Fisher, Gordon; Katsoulis, Kostantina; Plaisance, Eric P; Newcomer, Bradley R
2015-05-01
The purpose of this investigation was to develop a potential model for how muscle fiber type, Achilles tendon length, stretch-shortening cycle potentiation (SSCP), and leg strength interact with running economy. Twenty trained male distance runners 24-40 years of age served as subjects. Running economy (net oxygen uptake) was measured while running on a treadmill. Leg press SSCP(force) and SSCP(velocity) were determined by measuring the difference in velocity between a static leg press throw and a countermovement leg press throw. Vertical jump SSCP was determined by measuring the difference in jump height between a static jump and a drop jump from a 20.3-cm bench. Tendon length was measured by magnetic resonance imaging, and muscle fiber type was made from a vastus lateralis muscle biopsy. Type IIx muscle fiber percent (r = 0.70, p < 0.001) and leg strength (r = 0.95, p < 0.001) were positively and independently related to late eccentric force development. Achilles tendon length (r = 0.42, p ≤ 0.05) and late eccentric force during stretch-shortening cycle (r = 0.76, p < 0.001) were independently related to SSCP(force). SSCP(force) was related to SSCP(velocity), which in turn was related to running economy (r = 0.61, p < 0.01). These results suggest that longer Achilles tendon length, type II fiber, and muscular leg strength may enhance the potential for SSCP, running economy, and physiological effort while running.
Mechanisms of mechanical strain memory in airway smooth muscle.
Kim, Hak Rim; Hai, Chi-Ming
2005-10-01
We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.
Menstrual and hormonal alterations in juvenile dermatomyositis.
Aikawa, N E; Sallum, A M E; Leal, M M; Bonfá, E; Pereira, R M R; Silva, C A A
2010-01-01
To evaluate age at menarche, menstrual cycles and hormone profile in juvenile dermatomyositis (JDM) patients and controls. Twelve consecutive JDM patients were compared to 24 age-matched healthy subjects. Age at menarche and age of maternal menarche were recorded. Menstrual cycle was evaluated prospectively for 6 consecutive months and the mean cycle length and flow were calculated. The hormone profile was collected on the last menstrual cycle. Demographic data, clinical features, muscle enzymes, JDM scores and treatment were analysed. The median of current age of JDM patients and controls was similar (18 vs. 17 years, p=0.99). The median age at menarche of the JDM patients was higher than in the control group (13 vs. 11 years, p=0.02) whereas the median age of maternal menarche was alike in both groups (12 vs. 13 years, p=0.67). Menstrual disturbances were not observed, except for one patient who had longer length of menstrual cycle. The median of follicle stimulating hormone (FSH) was significantly higher in JDM patients compared to controls (4.5 vs. 3.0 IU/L, p=0.02) and none of them had premature ovarian failure (POF). The median of progesterone was significantly lower in JDM patients (0.3 vs. 0.7 ng/mL, p=0.01) with a higher frequency of decreased progesterone compared to controls (75% vs. 29%, p=0.01). Our study identifies in JDM patients delayed menarche with normal cycles and low follicular reserve. The decreased progesterone levels may suggest an underlying subclinical corpus luteum dysfunction in this disease.
Petrofsky, Jerrold; Lee, Haneul
2015-11-01
One of the sexual hormones, estrogen, increases elasticity of human connective tissue such as the anterior cruciate ligament during the menstrual cycle in women. In the present investigation, the plantar fascia was investigated to see if there is a difference in elasticity with the menstrual cycle. Fifteen young healthy females in the age range of 18-35 years old with a regular menstrual cycle were tested twice throughout one full menstrual cycle; once during the early follicular phases and once at ovulation. Foot length, while standing on both feet and one foot were used to assess plantar fascia elasticity, ultrasound measured plantar fascia thickness while lying and standing, and posture sway and tremor using a balance platform during 8 different balance tests were assessed to see the impact of elasticity changes. Foot length increased significantly at ovulation compared to menstruation when standing on two feet (p = 0.03) and standing on one foot (p < 0.001). There was also a significant increase in plantar fascia in thinning per kilogram weight applied to the foot at ovulation compared to menstruation (p = 0.014). Associated with this increase in elasticity at ovulation, there was a reduction in balance in the most difficult balance tasks and an increase in tremor during ovulation (p < 0.05). Plantar fascia elasticity change during the menstrual cycle might have effects on posture sway and tremor, which could have a potential risk of falling. Therefore, healthy professionals working with young female adults should recognize these physiological effects.
Exponent and scrambling index of double alternate circular snake graphs
NASA Astrophysics Data System (ADS)
Rahmayanti, Sri; Pasaribu, Valdo E.; Nasution, Sawaluddin; Liani Salnaz, Sishi
2018-01-01
A graph is primitive if it contains a cycle of odd length. The exponent of a primitive graph G, denoted by exp(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk length k. The scrambling index of a primitive graph G, denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk of length 2k. For an even positive integer n and an odd positive integer r, a (n,r)-double alternate circular snake graph, denoted by DA(C r,n ), is a graph obtained from a path u 1 u 2 ... u n by replacing each edge of the form u 2i u 2i+1 by two different r-cycles. We study the exponent and scrambling index of DA(C r,n ) and show that exp(DA(C r,n )) = n + r - 4 and k(DA(C r,n )) = (n + r - 3)/2.
Synthetic battery cycling techniques
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; Thaller, L. H.
1982-01-01
Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2014-12-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A generic training simulator of a natural gas combined cycle was modified to match operations at a real plant. The objective was to use the simulator to analyze cycling operations of the plant. Initial operation of the simulator revealed the potential for saturation conditions in the final high pressure superheater as the attemperator tried to control temperature at the superheater outlet during gas turbine loading and unloading. Subsequent plant operational data confirmed simulation results. Multiple simulations were performed during loading and unloading of the gas turbine to determine operational strategies that prevented saturation and increased the approach to saturation temperature.more » The solutions included changes to the attemperator temperature control setpoints and strategic control of the steam turbine inlet pressure control valve.« less
On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits
NASA Astrophysics Data System (ADS)
Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hoerhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp
2018-01-01
Stable isotope ratios δ18O and δD in polar ice provide a wealth of information about past climate evolution. Snow-pit studies allow us to relate observed weather and climate conditions to the measured isotope variations in the snow. They therefore offer the possibility to test our understanding of how isotope signals are formed and stored in firn and ice. As δ18O and δD in the snowfall are strongly correlated to air temperature, isotopes in the near-surface snow are thought to record the seasonal cycle at a given site. Accordingly, the number of seasonal cycles observed over a given depth should depend on the accumulation rate of snow. However, snow-pit studies from different accumulation conditions in East Antarctica reported similar isotopic variability and comparable apparent cycles in the δ18O and δD profiles with typical wavelengths of ˜ 20 cm. These observations are unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80 mm w. e. yr-1 ( ˜ 6-21 cm of snow per year). Various mechanisms have been proposed to explain the isotopic variations individually at each site; however, none of these are consistent with the similarity of the different profiles independent of the local accumulation conditions.Here, we systematically analyse the properties and origins of δ18O and δD variations in high-resolution firn profiles from eight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of ˜ 20 cm by counting the isotopic maxima. Spectral analysis further shows a strong similarity between the sites but indicates no dominant periodic features. Furthermore, the apparent cycle length increases with depth for most East Antarctic sites, which is inconsistent with burial and compression of a regular seasonal cycle. We show that these results can be explained by isotopic diffusion acting on a noise-dominated isotope signal. The firn diffusion length is rather stable across the Antarctic Plateau and thus leads to similar power spectral densities of the isotopic variations. This in turn implies a similar distance between isotopic maxima in the firn profiles.Our results explain a large set of observations discussed in the literature, providing a simple explanation for the interpretation of apparent cycles in shallow isotope records, without invoking complex mechanisms. Finally, the results underline previous suggestions that isotope signals in single ice cores from low-accumulation regions have a small signal-to-noise ratio and thus likely do not allow the reconstruction of interannual to decadal climate variations.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
Phillips, Rebecca Sellin; Wheaton, Catharine J
2008-07-01
The objective of this study was to determine if sexual swellings in mandrills (Mandrillus sphinx) are a reflection of reproductive endocrine state. Urine samples were assayed using an enzyme immunoassay measuring pregnanediol-3-glucuronide (PdG) and estrone conjugates (E(1)C). Hormone patterns of ovarian cycles, pregnancy and lactation were characterized and compared with sexual swellings and copulations relative to menses and peak E(1)C. Cycle lengths averaging 28.7 days and pregnancy length of 181 days determined by hormonal and sexual swelling measures were similar to those reported in other Old World primate species. First day of copulation was observed during rising E(1)C concentrations and preceded observations of peak swelling by 1-2 days. Observations of peak sexual swellings occurred at or on the day after peak E(1)C and decreased following the ovulatory increase in PdG. Observations of menses and sexual swellings are a useful method to track mandrill ovarian cycles and can assist zoos in determining the reproductive state of females in their collections. Zoo Biol 27:320-330, 2008. (c) 2008 Wiley-Liss, Inc.
MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Wolk, Scott J.; Christensen, Ulrich R.
2016-12-20
The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristicsmore » of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.« less
Menstruation among adolescent girls in Malaysia: a cross-sectional school survey.
Lee, L K; Chen, P C Y; Lee, K K; Kaur, J
2006-10-01
The onset of menstruation is part of the maturation process. However, variability in menstrual cycle characteristics and menstrual disorders are common. The purpose of this study was to determine the menstrual characteristics of adolescent females and factors associated with it. This is a cross-sectional descriptive study carried out on 2,411 secondary school adolescent females in Negeri Sembilan, Malaysia. Data were collected using a self-administered structured questionnaire on menstruation in Bahasa Malaysia. Abnormal cycle length (menstrual cycle longer than 35 days or cycle length between 14 to 20 days or irregular pattern) was common and affected 37.2 percent of subjects. The majority (74.6 percent) experienced premenstrual syndrome and 69.4 percent had dysmenorrhoea. About 18 percent reported excessive menstrual loss (use two pads at a time to prevent blood from soaking through or confirmed by doctor to be anaemic due to heavy menstrual flow). Only 11.1 percent of schoolgirls seeked medical consultation for their menstrual disorders. Mothers remained the most important source of information (80 percent). Menstrual disorders were significantly more common in female adolescents who smoke and have suicidal behaviours (p-value is less than 0.05). Menstrual problems among adolescent female are common. They are influenced by certain modifiable factors.
Estimation of tensile force in the hamstring muscles during overground sprinting.
Ono, T; Higashihara, A; Shinohara, J; Hirose, N; Fukubayashi, T
2015-02-01
The purpose of this study was to identify the period of the gait cycle during which the hamstring muscles were likely injured by estimating the magnitude of tensile force in each muscle during overground sprinting. We conducted three-dimensional motion analysis of 12 male athletes performing overground sprinting at their maximal speed and calculated the hamstring muscle-tendon length and joint angles of the right limb throughout a gait cycle during which the ground reaction force was measured. Electromyographic activity during sprinting was recorded for the biceps femoris long head, semitendinosus, and semimembranosus muscles of ipsilateral limb. We estimated the magnitude of tensile force in each muscle by using the length change occurred in the musculotendon and normalized electromyographic activity value. The study found a quick increase of estimated tensile force in the biceps femoris long head during the early stance phase of the gait cycle during which the increased hip flexion angle and ground reaction force occurred at the same time. This study provides quantitative data of tensile force in the hamstring muscles suggesting that the biceps femoris long head muscle is susceptible to a strain injury during the early stance phase of the sprinting gait cycle. © Georg Thieme Verlag KG Stuttgart · New York.
Impact of SCBA size and fatigue from different firefighting work cycles on firefighter gait.
Kesler, Richard M; Bradley, Faith F; Deetjen, Grace S; Angelini, Michael J; Petrucci, Matthew N; Rosengren, Karl S; Horn, Gavin P; Hsiao-Wecksler, Elizabeth T
2018-04-04
Risk of slips, trips and falls in firefighters maybe influenced by the firefighter's equipment and duration of firefighting. This study examined the impact of a four self-contained breathing apparatus (SCBA) three SCBA of increasing size and a prototype design and three work cycles one bout (1B), two bouts with a five-minute break (2B) and two bouts back-to-back (BB) on gait in 30 firefighters. Five gait parameters (double support time, single support time, stride length, step width and stride velocity) were examined pre- and post-firefighting activity. The two largest SCBA resulted in longer double support times relative to the smallest SCBA. Multiple bouts of firefighting activity resulted in increased single and double support time and decreased stride length, step width and stride velocity. These results suggest that with larger SCBA or longer durations of activity, firefighters may adopt more conservative gait patterns to minimise fall risk. Practitioner Summary: The effects of four self-contained breathing apparatus (SCBA) and three work cycles on five gait parameters were examined pre- and post-firefighting activity. Both SCBA size and work cycle affected gait. The two largest SCBA resulted in longer double support times. Multiple bouts of activity resulted in more conservative gait patterns.
Tseng, Shun-Fu; Shen, Zih-Jie; Tsai, Hung-Ji; Lin, Yi-Hsuan; Teng, Shu-Chun
2009-06-01
Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.
NASA Astrophysics Data System (ADS)
Orseau, Sylvain; Lesourd, Sandric; Huybrechts, Nicolas; Gardel, Antoine
2017-04-01
Along the Guianas coast, coastal dynamic is characterized by the migration of mud banks originating from the Amazon. This singular feature affects the dynamic and the morphology of local estuaries and can induce rapid bathymetric evolution in lower estuaries. Since 2012, the navigation channel of the Mahury Estuary (French Guiana) is enduring a severe siltation whose origin comes from a mud bank crossing the estuary mouth. This study aims to determine how the migration of a mud bank through an estuary mouth could influence the transport and fluxes in the estuary. Field measurements were performed over a year with the monitoring of the salt intrusion length, mooring surveys during spring-neap cycles and shipboard profiling surveys during semi-diurnal cycles. Salt intrusion lengths underline a significant seasonal variation characterized by the transition from a steady-state length during high river discharge and a wide range of lengths with the tidal range during low to moderate river discharge. During the rainy season, measurements indicate a fluvial-dominated condition with low suspended-sediment concentrations most of the semi-diurnal cycle. Residual sediment fluxes are usually seaward excepted when river discharge is below seasonal average. During the dry season, maximum suspended-sediment concentrations are higher in the middle part of the estuary. Residual sediment fluxes are landward along the estuary and stronger during neap tides in the estuary mouth and few kilometers upstream. In this area, a persistent density stratification traps sediments in the bottom layer and generates a gravitational circulation during neap tides, which enhances landward transports up to 2.56 t m-1 over a semi-diurnal cycle. In the middle estuary, landward fluxes are most significant during the dry season and also during the rainy season when the river discharge is below the seasonal average. Although this study includes temporal and spatial limitations, it underlines significant mud inflows in the middle part of the estuary during low to moderate river discharges. Comparison with old data suggests higher sediment loads in the estuary during the migration of a mud bank but must be confirmed by further studies during the interbank period.
Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.
Guan, Dongsheng; Cai, Chuan; Wang, Ying
2011-04-01
We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.
High temperature high velocity direct power extraction using an open-cycle oxy-combustion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Norman
The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWthmore » model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The results observed in the lab-scale system were employed to develop a 1-MW scaled prototype. Scaling methods were based on critical design criteria found in similar systems, aimed at replicating combustion flow fields and reducing possible instabilities. A numerical simulation of the combustor wall was developed for a combined thermal steady model and static structural model. This combined model was developed predict combined stress parameters within the wall during testing conditions. Both models were developed within ANSYS FEA software package. The relative accuracy presented as well major performance parameters are discussed to assess the design's validity and ensure safety. The scaled prototype was manufactured through selective laser melting (SLM)-based additive manufacturing to reduce lead times and increase geometrical complexity. Additional CFD models were developed to optimize coolant manifold system parameters and perform a parametric study on channel geometry. An investigation on coolant manifold geometry demonstrated improvements in channel flow distribution when enlarging manifold lengths and increasing the number of tubes feeding into the flow. A three-dimensional model based on a single channel was developed to capture the effect of variable properties and thermal stratification. All cases in the simulation exhibited higher wall temperatures and lower convective coefficients than those determined through 1-D analytical equations. This implies that pressure and velocity safety factors must be implemented during system operation. Overall, the findings made in this investigation are thought to be of value to researchers and industrial practitioners when designing oxy-fuel direct power extraction systems operating at temperatures exceeding 3000 K. In addition to this, the implementation of the developed technology at pilot and commercial scales could result in a significant improvement in the efficiencies of heritage and next-generation power cycles.« less
Project summary: Application of a trailer-mounted slash bundler for southern logging
S. Meadows; T. Gallagher; D. Mitchell
2010-01-01
The John Deere bundler was originally designed to collect material behind a cutâtoâlength (CTL) operation, where the biomass feedstock is distributed across the harvested site. While the occurrence of a CTL operation is common in Europe, it is rarely used in the southern United States. Southern logging typically involves a treeâlength operation, where the whole tree is...
Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator
Asaad, Sameth W.; Kapur, Mohit
2016-01-05
A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.
Life Cycle Energy Assessment of a Multi-storey Residential Building
NASA Astrophysics Data System (ADS)
Mehta, Sourabh; Chandur, Arjun; Palaniappan, Sivakumar
2017-06-01
This study presents the findings of life cycle energy assessment of two multi-storey residential buildings. These buildings consist of a total of 60 homes. The usable floor area is 43.14 m2 (463.36 ft2) per home. A detailed estimation of embodied energy is carried out by considering the use of materials during building construction. Major contributors of embodied energy are found to be steel, cement and aluminum. Monthly building operation energy was assessed using a total of 2520 data samples corresponding to 3 years of building operation. Analysis of a base case scenario, with 50 years of service life and average monthly operation energy, indicates that the embodied energy and the operation energy account for 16 and 84% of the life cycle energy respectively. Sensitivity analysis is carried out to study the influence of service life and operation energy on the relative contribution of embodied energy and operation energy. It is found that the embodied energy represents as high as 31% of the life cycle energy depending upon the variation in the operation energy and the service life. Hence, strategies towards sustainable building construction should also focus on reducing the embodied energy in the design and construction phases in addition to operation energy.
Buoyancy Effects in Strongly-Pulsed, Turbulent Diffusion Flames
NASA Astrophysics Data System (ADS)
Hermanson, James; Johari, Hamid; Stocker, Dennis; Hegde, Uday
2004-11-01
Buoyancy effects in pulsed, turbulent flames are studied in microgravity in a 2.2 s drop-tower. The fuel is pure ethylene or a 50/50 mixture with nitrogen; the oxidizer co-flow is either air or 30% oxygen in nitrogen. A fast solenoid valve fully modulates (shuts off) the fuel flow between pulses. The jet Reynolds number is 5000 with a nozzle i.d. of 2 mm. For short injection times and small duty cycle (jet-on fraction), compact, puff-like flames occur. The invariance in flame length of these puffs with buoyancy is due to offsetting changes in puff celerity and burnout time. Buoyancy does impact interacting flame puffs, with the flame length generally increasing with injection duty cycle. The mean centerline temperatures for all flames are generally higher in microgravity than in normal gravity. The transition in temperatures with increasing injection time is more gradual in micro-g than in 1-g. These observations can be explained in terms of the local duty cycle in the flame and differences in entrainment in normal- vs. microgravity.
Ho, Sean Wei Loong; Tan, Teong Jin Lester; Lee, Keng Thiam
2016-03-01
To evaluate whether pre-operative anthropometric data can predict the optimal diameter and length of hamstring tendon autograft for anterior cruciate ligament (ACL) reconstruction. This was a cohort study that involved 169 patients who underwent single-bundle ACL reconstruction (single surgeon) with 4-stranded MM Gracilis and MM Semi-Tendinosus autografts. Height, weight, body mass index (BMI), gender, race, age and -smoking status were recorded pre-operatively. Intra-operatively, the diameter and functional length of the 4-stranded autograft was recorded. Multiple regression analysis was used to determine the relationship between the anthropometric measurements and the length and diameter of the implanted autografts. The strongest correlation between 4-stranded hamstring autograft diameter was height and weight. This correlation was stronger in females than males. BMI had a moderate correlation with the diameter of the graft in females. Females had a significantly smaller graft both in diameter and length when compared with males. Linear regression models did not show any significant correlation between hamstring autograft length with height and weight (p>0.05). Simple regression analysis demonstrated that height and weight can be used to predict hamstring graft diameter. The following regression equation was obtained for females: Graft diameter=0.012+0.034*Height+0.026*Weight (R2=0.358, p=0.004) The following regression equation was obtained for males: Graft diameter=5.130+0.012*Height+0.007*Weight (R2=0.086, p=0.002). Pre-operative anthropometric data has a positive correlation with the diameter of 4 stranded hamstring autografts but no significant correlation with the length. This data can be utilised to predict the autograft diameter and may be useful for pre-operative planning and patient counseling for graft selection.
Bright crater outflows: Possible emplacement mechanisms
NASA Technical Reports Server (NTRS)
Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.
1992-01-01
Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.
Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser
NASA Technical Reports Server (NTRS)
Mcmanus, J. Barry; Kebabian, Paul L.; Kolb, Charles E.
1989-01-01
The construction of an atmospheric methane measurement instrument based on a Zeeman-split IR He-Ne laser is reported. The laser has a tranverse magnetic field over about 2/3 of its gain length and can oscillate at an (unsplit) frequency (2947.91/cm) centered on a methane absorption line, or on either of two frequencies split by + or - 0.055/cm from the center, with low CH4 absorption. The laser is tuned to dwell sequentially at each frequency, giving two differential absorption measurements in each 46-ms tuning cycle. Atmospheric measurements are made using two multiple pass absorption cells, one with fast (0.75-s) and one with slow (5-s) flow response times. Fluctuations in ambient CH4 of about 20-ppb (rms, 1-s averaging) are detected, with interference fringe effects the dominant noise source. The instrument has operated in a field experiment (NASA GTE/ABLE-3A) in Alaska.
Stegeman, Sylvia A; de Witte, Pieter Bas; Boonstra, Sjoerd; de Groot, Jurriaan H; Nagels, Jochem; Krijnen, Pieta; Schipper, Inger B
2016-08-01
Clavicular shortening after fracture is deemed prognostic for clinical outcome and is therefore generally assessed on radiographs. It is used for clinical decision making regarding operative or non-operative treatment in the first 2weeks after trauma, although the reliability and accuracy of the measurements are unclear. This study aimed to assess the reliability of roentgen photogrammetry (2D) of clavicular length and shortening, and to compare these with 3D-spatial digitization measurements, obtained with an electromagnetic recording system (Flock of Birds). Thirty-two participants with a consolidated non-operatively treated two or multi-fragmented dislocated midshaft clavicular fracture were analysed. Two observers measured clavicular lengths and absolute and proportional clavicular shortening on radiographs taken before and after fracture consolidation. The clavicular lengths were also measured with spatial digitization. Inter-observer agreement on the radiographic measurements was assessed using the Intraclass Correlation Coefficient (ICC). Agreement between the radiographic and spatial digitization measurements was assessed using a Bland-Altman plot. The inter-observer agreement on clavicular length, and absolute and proportional shortening on trauma radiographs was almost perfect (ICC>0.90), but moderate for absolute shortening after consolidation (ICC=0.45). The Bland-Altman plot compared measurements of length on AP panorama radiographs with spatial digitization and showed that planar roentgen photogrammetry resulted in up to 37mm longer and 34mm shorter measurements than spatial digitization. Measurements of clavicular length on radiographs are highly reliable between observers, but may not reflect the actual length and shortening of the clavicle when compared to length measurements with spatial digitization. We recommend to use proportional shortening when measuring clavicular length or shortening on radiographs for clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid sulfur cycle operation for high-temperature gas-cooled reactors
Gorensek, Maximilian B
2015-02-17
A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.
Low chemical concentrating steam generating cycle
Mangus, James D.
1983-01-01
A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.
Performance of a cut-to-length harvester in a single-tree and group selection cut
Neil K. Huyler; Chris LeDoux
1999-01-01
Presents production and cost data for a mechanized and cut-to-length (CTL) harvester used in a single-tree and group-selection cut on the Groton State Forest in central Vermont. For trees whose average volume (size) was 7 to 18 ft3, production ranged from 464 to 734 ft3 per productive machine hour (PMH). The cycle time for processing trees into bunches to forward to a...
Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Blanco, Horacio; Vineyard, Edward
This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less
Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant
Perez-Blanco, Horacio; Vineyard, Edward
2016-05-06
This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
Choi, Hwan; Wren, Tishya Anne Leong; Steele, Katherine Muterspaugh
2017-06-01
Many individuals with cerebral palsy wear ankle foot orthoses during daily life. Orthoses influence joint motion, but how they impact muscle remains unclear. In particular, the gastrocnemius is commonly stiff in cerebral palsy. Understanding whether orthoses stretch or shorten this muscle during daily life may inform orthosis design and rehabilitation. This study investigated the impact of different ankle foot orthoses on gastrocnemius operating length during walking in children with cerebral palsy. Case series, within subject comparison of gastrocnemius operating length while walking barefoot and with two types of ankle foot orthoses. We performed gait analyses for 11 children with cerebral palsy. Each child was fit with two types of orthoses: a dynamic ankle foot orthosis (Cascade dynamic ankle foot orthosis) and an adjustable dynamic response ankle foot orthosis (Ultraflex ankle foot orthosis). Musculoskeletal modeling was used to quantify gastrocnemius musculotendon operating length and velocity with each orthosis. Walking with ankle foot orthoses could stretch the gastrocnemius more than barefoot walking for some individuals; however, there was significant variability between participants and orthoses. At least one type of orthosis stretched the gastrocnemius during walking for 4/6 and 3/5 of the Gross Motor Functional Classification System Level I and III participants, respectively. AFOs also reduced peak gastrocnemius lengthening velocity compared to barefoot walking for some participants, with greater reductions among the Gross Motor Functional Classification System Level III participants. Changes in gastrocnemius operating length and lengthening velocity were related to changes in ankle and knee kinematics during gait. Ankle foot orthoses impact gastrocnemius operating length during walking and, with proper design, may assist with stretching tight muscles in daily life. Clinical relevance Determining whether ankle foot orthoses stretch tight muscles can inform future orthotic design and potentially provide a platform for integrating therapy into daily life. However, stretching tight muscles must be balanced with other goals of orthoses such as improving gait and preventing bone deformities.
Perineal swelling, intermenstrual cycle, and female sexual behavior in bonobos (Pan paniscus).
Paoli, T; Palagi, E; Tacconi, G; Tarli, S Borgognini
2006-04-01
Many reports have claimed that the duration of the swelling cycle in female bonobos (Pan paniscus) is longer than that of chimpanzees, and that the bonobo maximum swelling phase is markedly prolonged. Field data on intermenstrual intervals (IMIs) in female bonobos are limited and restricted to interswelling intervals (ISIs), which are assumed to reflect the IMI, though a direct comparison between the duration of ISIs and IMIs is still lacking. Reports on bonobo sexual activity as a function of the swelling phase are often contradictory. Moreover, the function of female homosexual interactions (genito-genital (GG) rubbing) is still debated. This study examines the reliability of the ISI as an approximation of the IMI, and the attractivity of female sexual swellings for other individuals. An analysis of 51 ISI-IMI pairs showed that ISIs are a fair representation of the reproductive cycle. The cycle length was 35.6+/-1.1 SE days relying on the ISI, whereas it was 35.0+/-1.1 SE days considering the IMI. This result is similar to the cycle length reported for chimpanzees. Female homosexual interactions and copulatory rates were higher during maximum tumescence, suggesting that the sexual swelling may be attractive for both males and other females. Furthermore, the GG-rubbing was performed free of a hierarchical postural imposition, and was not correlated with affinitive interactions. We suggest that GG-rubbing, which is generally the most frequent female sexual interaction, is a tool for social assessments among females. Copyright (c) 2006 Wiley-Liss, Inc.
MID-VASTUS VS MEDIAL PARA-PATELLAR APPROACH IN TOTAL KNEE REPLACEMENT—TIME TO DISCHARGE
Mukherjee, P.; Press, J.; Hockings, M.
2009-01-01
Background It has been shown before that when compared with the medial para-patellar approach, the mid-vastus approach for TKR results in less post-operative pain for patients and more rapid recovery of straight leg raise. As far as we are aware the post-operative length of stay of the two groups of patients has not been compared. We postulated that the reduced pain and more rapid recovery of straight leg raise would translate into an earlier, safe, discharge home for the mid-vastus patients compared with those who underwent a traditional medial para-patellar approach. Methods Twenty patients operated on by each of five established knee arthroplasty surgeons were evaluated prospectively with regard to their pre and post-operative range of movement, time to achieve straight leg raise post-operatively and length of post-operative hospital stay. Only one of the surgeons performed the mid-vastus approach, and the measurements were recorded by physiotherapists who were blinded as to the approach used on each patient. Results The results were analysed using a standard statistical software package, and although the mean length of stay was lower for the mid-vastus patients, the difference did not reach a level of significance (p = 0.13). The time taken to achieve straight leg raise post-operatively was significantly less in the mid-vastus group (p<0.001). Conclusion Although this study confirms previous findings that the mid-vastus approach reduces the time taken for patients to achieve straight leg raise, when compared with the medial para-patellar approach, on its own it does not translate into a significantly shorter length of hospital stay. In order to reduce the length of post-operative hospital stay with an accelerated rehabilitation program for TKR, a multi-disciplinary approach is required. Patient expectations, GP support, physiotherapists and nursing staff all have a role to play and the mid-vastus approach, in permitting earlier straight leg raising, significantly contributes to this. PMID:19742080
Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams
NASA Astrophysics Data System (ADS)
Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.
2013-11-01
Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.
Indirect-fired gas turbine dual fuel cell power cycle
Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.
1996-01-01
A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.
Clinical Gait Evaluation of Patients with Lumbar Spine Stenosis.
Sun, Jun; Liu, Yan-Cheng; Yan, Song-Hua; Wang, Sha-Sha; Lester, D Kevin; Zeng, Ji-Zhou; Miao, Jun; Zhang, Kuan
2018-02-01
The third generation Intelligent Device for Energy Expenditure and Activity (IDEEA3, MiniSun, CA) has been developed for clinical gait evaluation, and this study was designed to evaluate the accuracy and reliability of IDEEA3 for the gait measurement of lumbar spinal stenosis (LSS) patients. Twelve healthy volunteers were recruited to compare gait cycle, cadence, step length, velocity, and number of steps between a motion analysis system and a high-speed video camera. Twenty hospitalized LSS patients were recruited for the comparison of the five parameters between the IDEEA3 and GoPro camera. Paired t-test, intraclass correlation coefficient, concordance correlation coefficient, and Bland-Altman plots were used for the data analysis. The ratios of GoPro camera results to motion analysis system results, and the ratios of IDEEA3 results to GoPro camera results were all around 1.00. All P-values of paired t-tests for gait cycle, cadence, step length, and velocity were greater than 0.05, while all the ICC and CCC results were above 0.950 with P < 0.001. The measurements for gait cycle, cadence, step length, velocity, and number of steps with the GoPro camera are highly consistent with the measurements with the motion analysis system. The measurements for IDEEA3 are consistent with those for the GoPro camera. IDEEA3 can be effectively used in the gait measurement of LSS patients. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Lopes, Hélio P; Vieira, Márcia V B; Elias, Carlos N; Gonçalves, Lucio S; Siqueira, José F; Moreira, Edson J L; Vieira, Victor T L; Souza, Letícia C
2013-05-01
This study evaluated the influence of different features of canal curvature geometry on the number of cycles to fracture of a rotary nickel-titanium endodontic instrument subjected to a cyclic fatigue test. BioRaCe BR4C instruments (FKG Dentaire, La Chaux-de Fonds, Switzerland) were tested in 4 grooves simulating curved metallic artificial canals, each one measuring 1.5 mm in width, 20 mm in total length, and 3.5 mm in depth with a U-shaped bottom. The parameters of curvature including the radius and arc lengths and the position of the arc differed in the 4 canal designs. Fractured surfaces and helical shafts of the separated instruments were analyzed by scanning electron microscopy. The Student's t test showed that a significantly lower number of cycles to fracture values were observed for instruments tested in canals with the smallest radius, the longest arc, and the arc located in the middle portion of the canal. Scanning electron microscopic analysis of the fracture surfaces revealed morphologic characteristics of ductile fracture. Plastic deformation was not observed in the helical shaft of the fractured instruments. Curvature geometry including the radius and arc lengths and the position of the arc along the root canal influence the number of cycles to fracture of rotary nickel-titanium instruments subjected to flexural load. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
The electrophysiologic properties of esmolol, a short acting beta-blocker.
Greenspan, A M; Spielman, S R; Horowitz, L N; Laddu, A; Senior, S
1988-04-01
Although beta-blockers have established efficacy in treating ventricular ectopy and PSVT, their applicability for acute antiarrhythmic interventions in patients with organic heart disease or COPD, is frequently limited by negative inotropic or bronchospastic side effects. The development of an ultrashort acting beta-blocker with rapid reversibility of its side effects would widen their applicability. Therefore, we tested the electrophysiologic properties of such a new short acting beta-blocker, esmolol, in 14 patients (10 with organic heart disease) with a mean EF of 47.6 +/- 17%, undergoing standard clinical electrophysiologic studies for various indications. Like most other beta-blockers, esmolol's major direct effects were on sinus node function and AV nodal conduction characteristics; significantly prolonging sinus cycle length, cycle length to Wenckebach and AH interval in sinus rhythm and at a paced cycle length of 600 ms. In contrast to most other beta-blockers, following termination of its infusion, esmolol shortened parameters of sinus node function and AV nodal refractoriness, with respect to the control values, suggesting a possible rebound phenomena. These effects occurred within 5 min of terminating the intravenous drug infusion. Esmolol had no significant effect on systolic blood pressure, electrocardiographic intervals and had rare adverse reactions. We conclude that esmolol is an ultra-short acting beta-blocker, with typical direct electrophysiologic effects on sinus node and AV nodal function, and a possible rebound phenomena following its discontinuation that may make it particularly suited to acute antiarrhythmic interventions in patients susceptible to adverse beta-blocker side effects.
Rosman, Jonathan; Hanon, Sam; Shapiro, Michael; Evans, Steven J; Schweitzer, Paul
2006-04-01
The mechanisms underlying the initiation of sustained ventricular tachycardia (VT) have not been fully elucidated. The extent to which reentry, abnormal automaticity, and triggered activity play a role in VT differs depending on the etiology of left ventricular dysfunction. By analyzing electrograms from implantable cardioverter defibrillator (ICD), we sought to determine whether there were differences in VT initiation patterns between patients with ischemic and nonischemic cardiomyopathy. We analyzed ICD electrograms in patients with ejection fractions < 40% who had sustained VT over a 27-month period. The trigger for VT onset was classified as a ventricular premature beat (VPB), supraventricular tachycardia, or of "sudden onset." The baseline cycle length, VT cycle length, coupling interval, and prematurity ratio were recorded for each event. The prematurity ratio was calculated as the coupling interval of the VT initiator divided by the baseline cycle length. Sixty-three VT events in 14 patients met the inclusion criteria. A VPB initiated the VT in 58 episodes (92%), 1 episode (2%) was initiated by a supraventricular tachycardia, and 4 episodes (6%) were sudden onset. The prematurity ratio was significantly higher (P < 0.05) in patients with ischemic cardiomyopathy (0.751 +/- 0.068) as compared to patients with nonischemic cardiomyopathy (0.604 +/- 0.139). VPBs initiated most sustained VT episodes. A significantly higher prematurity ratio was observed in the ischemic heart disease group. This may represent different mechanisms of VT initiation in patients with ischemic versus nonischemic heart disease.
2010-11-01
S.A. Horn, A. Zegers ; DRDC CORA TM 2010-252 ; R & D pour la défense Canada – CARO ; novembre 2010. Contexte : La pêche au filet dérivant est une... 13 3.1 Characterizing the Information Provided by the Sensors . . . . . . . . . . . . . . 13 3.2 Operational Decision Support...ship for a given RS2 cut-off length based on measurements of length deviations. . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 13 : AS-IS
Mathematical models of tumor heterogeneity and drug resistance
NASA Astrophysics Data System (ADS)
Greene, James
In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of transition rates as a function of global density. Finally, we extend the model of cell-cycle heterogeneity to include spatial variables. Cells are modeled as soft spheres and exhibit attraction/repulsion/random forces. A fundamental hypothesis is that cell-cycle length increases with local density, thus producing a distribution of observed division lengths. Apoptosis occurs primarily through an extended period of unsuccessful proliferation, and the explicit mechanism of the drug (Paclitaxel) is modeled as an increase in cell-cycle duration. We show that the distribution of cell-cycle lengths is highly time-dependent, with close time-averaged agreement with the distribution used in the previous work. Furthermore, survival curves are calculated and shown to qualitatively agree with experimental data in different densities and geometries, thus relating the cellular microenvironment to drug resistance.
NASA Astrophysics Data System (ADS)
Schnecker, Jörg; Calderon, Francisco; Cavigelli, Michel; Lehman, Michael; Tiemann, Lisa; Grandy, Stuart
2017-04-01
Future climate scenarios indicate more frequent and stronger extreme weather events. This includes more severe droughts but also an increase in heavy rain events and flooding. Agricultural systems are of special interest in this context because of their role in food security but also because of their potentially changing role in global carbon and nutrient cycling under these extreme conditions. Plant diversification strategies like more complex crop rotations which support more diverse soil microbial communities with higher functional redundancy might be more resistant to drought and flooding and could help to reduce impacts on microbial carbon and nutrient cycling. To test how crop diversification affects the response of soil microbial processes to drought and flooding and reoccurring drought and flooding, we manipulated water regimes in lab incubation experiments using soils from four long term rotation experiments across the USA, including a low (one or two crops) vs. high (>3 crops) diversity rotations at each site. The sites range from low precipitation (Colorado), over intermediate precipitation (Michigan and South Dakota) to high precipitation in Maryland. Replicate sets of samples were either allowed to dry out, were gradually flooded or kept at a constant water content (control). We monitored CO2 production during five stress cycles. Additionally, we determined microbial biomass, enzyme activities and N pools during the first and last stress cycle in soils from the precipitation extremes. After a total incubation length of 165 days and five stress cycles only the soils from short rotations in Maryland and South Dakota that had been subjected to reoccurring drought showed significantly less cumulative CO2 loss compared to their respective controls. All the other sites and rotation length did not significantly differ from control when subjected to reoccurring drought or flooding. A Principal component analysis using all measured parameters of Colorado and Maryland soils showed a clear clustering of samples by site and in case of Maryland also by rotation length before the first stress. During the stress, samples were significantly separated by the treatment (drought and flooding). Immediately after the stress, samples again clustered by site and rotation length. After four stress cycles, soils from the long rotation in Colorado were the only samples that did not show a significant response to the laboratory treatments anymore. Our results indicate that agricultural soils, irrespective of the climatic region they are from and the rotation regime, are highly susceptible to changes in water content, especially drought. We did however also found that all tested soils were quickly recovering from the applied stress treatment and that plant diversification might help to increase the microbial resistance to water stress in certain soil systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Ahmad, S; Alsbou, N
Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embeddedmore » into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract actual length, size and CT-numbers distorted by motion in CBCT imaging. The model provides further information about motion of the target.« less
High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grijalva, R. L.; Sanemitsu, S. K.
1978-11-01
Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less
Oral surgical handpiece use time parameters.
Roberts, Howard W; Cohen, Mark E; Murchison, David F
2005-07-01
To evaluate the clinical usage time parameters of handpieces used in oral surgical procedures. One hundred randomly selected clinical oral surgery exodontia procedures were timed to record lengths of continuous segments of both handpiece use and non-usage. Providers with experience ranging from general dentists to board certified oral surgeons were timed during surgical exodontia treatment involving 1 to 4 teeth of various complexities. Usage times were compared with manufacturers' recommendations that on times should not exceed 20 seconds in any 50-second interval (20/50 rule). Handpiece run time increased with the number of teeth and surgical case complexity (both P < .001) but was unrelated to operator experience (P = .763), in a 3-predictor model (R2 = 0.20; P < .001). Ninety-four of the 100 cases experienced at least 1 second in violation of the 20/50 rule and 42% of all run seconds were in violation. Clinicians should be aware of recommended handpiece duty use cycles. Manufacturers' recommendations about handpiece use time cycles do not reflect actual clinical usage. Under the conditions of this study, actual surgical handpiece use time was not correlated with user experience. Less experienced providers did require longer to complete treatment, but increased treatment times were due to time spent that did not require surgical handpiece use.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.
2000-01-01
The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.
Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya
2017-07-01
All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.
Life Cycle Costs in Education: Operations & Maintenance Considered.
ERIC Educational Resources Information Center
Moussatche, Helena; Languell-Urquhart, Jennifer; Woodson, Carol
2000-01-01
Discusses life cycle cost analysis when deciding on flooring finishes and examines operations and maintenance cost effectiveness relative to hard, resilient, and soft flooring. A chart of evaluated flooring materials' characteristics, appropriate maintenance procedures, and recommended frequency is included. (GR)
Combined cycle comes to the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.
Cycle-time equation for the Koller K300 cable yarder operating on steep slopes in the Northeast
Neil K. Huyler; Chris B. LeDoux
1997-01-01
Describes a delay-free-cycle time equation for the Koller K300 skyline yarder operating on steep slopes in the Northeast. Using the equation, the average delay-free-cycle time was 5.72 minutes. This means that about 420 cubic feet of material per hour can be produced. The important variables used in the equation were slope yarding distance, lateral yarding distance,...
High frequency pulsed electromigration
NASA Astrophysics Data System (ADS)
Malone, David Wayne
Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of treatment conditions, but there was an increased incidence of damage farther downwind with decreasing duty cycle. This tendency and the deviation from the average current density model for small duty cycles were explained in terms of the Blech length, its dependence on microstructure and duty cycle, and its impact on the relative rates of damage and recovery.
Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, A.; Walkowicz, K.
In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices ormore » existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations. Based on the results of these analyses, high, low, and average vehicle dynamics requirements were determined, resulting in the selection of representative standard chassis dynamometer test cycles for each condition. In this paper, the methodology and accompanying results of the large-scale duty-cycle statistical analysis are presented, including graphical and tabular representations of a number of relationships between key duty-cycle metrics observed within the larger data set. In addition to presenting the results of this analysis, conclusions are drawn and presented regarding potential applications of advanced vehicle technology as it relates specifically to school buses.« less
Mulford, Jonathan S; Watson, Anna; Broe, David; Solomon, Michael; Loefler, Andreas; Harris, Ian
2016-03-01
The primary objective of the study was to determine if local infiltration anaesthetic (LIA) reduced total length of hospital stay in total knee arthroplasty (TKA) patients. The study also examined whether LIA improves early pain management, patient satisfaction and range of motion in TKA patients. We conducted a randomized controlled double-blinded study. Fifty patients undergoing TKA were randomized to receive either placebo or LIA at the time of surgery and on the first day post-operatively. Pain scores, level of satisfaction and range of motion were recorded preoperatively and post-operatively. There was no statistical difference between the groups for length of stay, post-operative pain scores, satisfaction scores or range of motion 6 weeks post-operatively. This randomized double-blinded trial did not demonstrate a decrease in pain or reduction of length of stay due to local infiltration analgesia. © 2015 Royal Australasian College of Surgeons.
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
Analysis of the ITER central solenoid insert (CSI) coil stability tests
NASA Astrophysics Data System (ADS)
Savoldi, L.; Bonifetto, R.; Breschi, M.; Isono, T.; Martovetsky, N.; Ozeki, H.; Zanino, R.
2017-07-01
At the end of the test campaign of the ITER Central Solenoid Insert (CSI) coil in 2015, after 16,000 electromagnetic (EM) cycles, some tests were devoted to the study of the conductor stability, through the measurement of the Minimum Quench Energy (MQE). The tests were performed by means of an inductive heater (IH), located in the high-field region of the CSI and wrapped around the conductor. The calorimetric calibration of the IH is presented here, aimed at assessing the energy deposited in the conductor for different values of the IH electrical operating conditions. The MQE of the conductor of the ITER CS module 3L can be estimated as ∼200 J ± 20%, deposited on the whole conductor on a length of ∼10 cm (the IH length) in ∼40 ms, at current and magnetic field conditions relevant for the ITER CS operation. The repartition of the energy deposited in the conductor under the IH is computed to be ∼10% in the cable and 90% in the jacket by means of a 3D Finite Elements EM model. It is shown how this repartition implies that the bundle (cable + helium) heat capacity is fully available for stability on the time scale of the tested disturbances. This repartition is used in input to the thermal-hydraulic analysis performed with the 4C code, to assess the capability of the model to accurately reproduce the stability threshold of the conductor. The MQE computed by the code for this disturbance is in good agreement with the measured value, with an underestimation within 15% of the experimental value.
A helium-3/helium-4 dilution cryocooler for operation in zero gravity
NASA Technical Reports Server (NTRS)
Hendricks, John B.
1988-01-01
This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.
2014-01-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188
The ESS spoke cavity cryomodules
NASA Astrophysics Data System (ADS)
Bousson, Sebastien; Darve, Christine; Duthil, Patxi; Elias, Nuno; Molloy, Steve; Reynet, Denis; Thermeau, Jean-Pierre
2014-01-01
The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. This paper introduces the thermo-mechanical design and expected operation of the ESS spoke cavity cryomodules. These cryomodules contain two double spoke bulk Niobium cavities operating at 2 K and at a frequency of 352.21 MHz. The superconducting section of the Spoke Linac accelerates the beam from 90 MeV to 220 MeV. A Spoke Cavity Cryomodule Technology Demonstrator will be built and tested in order to validate the ESS series production.
The ESS elliptical cavity cryomodules
NASA Astrophysics Data System (ADS)
Darve, Christine; Bosland, Pierre; Devanz, Guillaume; Olivier, Gilles; Renard, Bertrand; Thermeau, Jean-Pierre
2014-01-01
The European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries and is expected to be up to 30 times brighter than today's leading facilities and neutron sources. The ESS will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. A 5 MW long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms, the repetition frequency is 14 Hz (4 % duty cycle), and the beam current is 62.5 mA. The superconducting section of the Linac accelerates the beam from 80 MeV to 2.0 GeV. It is composed of one string of spoke cavity cryomodule and two strings of elliptical cavity cryomodules. These cryomodules contain four elliptical Niobium cavities operating at 2 K and at a frequency of 704.42 MHz. This paper introduces the thermo-mechanical design, the prototyping and the expected operation of the ESS elliptical cavity cryomodules. An Elliptical Cavity Cryomodule Technology Demonstrator (ECCTD) will be built and tested in order to validate the ESS series production.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...
2015-10-06
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Energy Expenditure of Trotting Gait Under Different Gait Parameters
NASA Astrophysics Data System (ADS)
Chen, Xian-Bao; Gao, Feng
2017-07-01
Robots driven by batteries are clean, quiet, and can work indoors or in space. However, the battery endurance is a great problem. A new gait parameter design energy saving strategy to extend the working hours of the quadruped robot is proposed. A dynamic model of the robot is established to estimate and analyze the energy expenditures during trotting. Given a trotting speed, optimal stride frequency and stride length can minimize the energy expenditure. However, the relationship between the speed and the optimal gait parameters is nonlinear, which is difficult for practical application. Therefore, a simplified gait parameter design method for energy saving is proposed. A critical trotting speed of the quadruped robot is found and can be used to decide the gait parameters. When the robot is travelling lower than this speed, it is better to keep a constant stride length and change the cycle period. When the robot is travelling higher than this speed, it is better to keep a constant cycle period and change the stride length. Simulations and experiments on the quadruped robot show that by using the proposed gait parameter design approach, the energy expenditure can be reduced by about 54% compared with the 100 mm stride length under 500 mm/s speed. In general, an energy expenditure model based on the gait parameter of the quadruped robot is built and the trotting gait parameters design approach for energy saving is proposed.
Correlation of normal-range FMR1 repeat length or genotypes and reproductive parameters.
Maslow, Bat-Sheva L; Davis, Stephanie; Engmann, Lawrence; Nulsen, John C; Benadiva, Claudio A
2016-09-01
This study aims to ascertain whether the length of normal-ranged CGG repeats on the FMR1 gene correlates with abnormal reproductive parameters. We performed a retrospective, cross-sectional study of all FMR1 carrier screening performed as part of routine care at a large university-based fertility center from January 2011 to March 2014. Correlations were performed between normal-range FMR1 length and baseline serum anti-Müllerian hormone (AMH), cycle day 3 follicle stimulating hormone (FSH), ovarian volumes (OV), antral follicle counts (AFC), and incidence of diminished ovarian reserve (DOR), while controlling for the effect of age. Six hundred three FMR1 screening results were collected. One subject was found to be a pre-mutation carrier and was excluded from the study. Baseline serum AMH, cycle day 3 FSH, OV, and AFC data were collected for the 602 subjects with normal-ranged CGG repeats. No significant difference in median age was noted amongst any of the FMR1 repeat genotypes. No significant correlation or association was found between any allele length or genotype, with any of the reproductive parameters or with incidence of DOR at any age (p > 0.05). However, subjects who were less than 35 years old with low/low genotype were significantly more likely to have below average AMH levels compared to those with normal/normal genotype (RR 3.82; 95 % CI 1.38-10.56). This large study did not demonstrate any substantial association between normal-range FMR1 repeat lengths and reproductive parameters.
Probing cooperative force generation in collective cancer invasion
NASA Astrophysics Data System (ADS)
Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo
2017-08-01
Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.
Advanced regenerative absorption refrigeration cycles
Dao, Kim
1990-01-01
Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).
Sunspot Activity Near Cycle Minimum and What it Might Suggest for Cycle 24, the Next Sunspot Cycle
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2009-01-01
In late 2008, 12-month moving averages of sunspot number, number of spotless days, number of groups, area of sunspots, and area per group were reflective of sunspot cycle minimum conditions for cycle 24, these values being of or near record value. The first spotless day occurred in January 2004 and the first new-cycle, high-latitude spot was reported in January 2008, although old-cycle, low-latitude spots have continued to be seen through April 2009, yielding an overlap of old and new cycle spots of at least 16 mo. New-cycle spots first became dominant over old-cycle spots in September 2008. The minimum value of the weighted mean latitude of sunspots occurred in May 2007, measuring 6.6 deg, and the minimum value of the highest-latitude spot followed in June 2007, measuring 11.7 deg. A cycle length of at least 150 mo is inferred for cycle 23, making it the longest cycle of the modern era. Based on both the maximum-minimum and amplitude-period relationships, cycle 24 is expected to be only of average to below-average size, peaking probably in late 2012 to early 2013, unless it proves to be a statistical outlier.
Some single-piston closed-cycle machines and Peter Tailer's thermal lag engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, C.D.
1993-01-01
Peter Tailer has devised, built, and operated a beautifully simple engine with a closed working gas cycle, external heating, and only a single piston. The aim of this paper is to cast some light on the possible modes of operation for his machine. The methods develops to analyze certain aspects of Stirling cycle engines, and especially the thermodynamic losses incurred in systems that are neither perfectly isothermal nor perfectly adiabatic, can be applied to Tailer's system. The results identify two idealized cycles fr such machines; relate those cycles to a single piston, ported cylinder machine proposed earlier; and offer amore » possible explanation for the success of the thermal lag engine.« less
Sorting signed permutations by short operations.
Galvão, Gustavo Rodrigues; Lee, Orlando; Dias, Zanoni
2015-01-01
During evolution, global mutations may alter the order and the orientation of the genes in a genome. Such mutations are referred to as rearrangement events, or simply operations. In unichromosomal genomes, the most common operations are reversals, which are responsible for reversing the order and orientation of a sequence of genes, and transpositions, which are responsible for switching the location of two contiguous portions of a genome. The problem of computing the minimum sequence of operations that transforms one genome into another - which is equivalent to the problem of sorting a permutation into the identity permutation - is a well-studied problem that finds application in comparative genomics. There are a number of works concerning this problem in the literature, but they generally do not take into account the length of the operations (i.e. the number of genes affected by the operations). Since it has been observed that short operations are prevalent in the evolution of some species, algorithms that efficiently solve this problem in the special case of short operations are of interest. In this paper, we investigate the problem of sorting a signed permutation by short operations. More precisely, we study four flavors of this problem: (i) the problem of sorting a signed permutation by reversals of length at most 2; (ii) the problem of sorting a signed permutation by reversals of length at most 3; (iii) the problem of sorting a signed permutation by reversals and transpositions of length at most 2; and (iv) the problem of sorting a signed permutation by reversals and transpositions of length at most 3. We present polynomial-time solutions for problems (i) and (iii), a 5-approximation for problem (ii), and a 3-approximation for problem (iv). Moreover, we show that the expected approximation ratio of the 5-approximation algorithm is not greater than 3 for random signed permutations with more than 12 elements. Finally, we present experimental results that show that the approximation ratios of the approximation algorithms cannot be smaller than 3. In particular, this means that the approximation ratio of the 3-approximation algorithm is tight.
Guzel, Yilmaz; Aba, Yilda Arzu; Yakin, Kayhan
2017-01-01
Occult primary ovarian insufficiency (also known as incipient ovarian failure or diminished ovarian reserve) is defined as serum AMH level ≤1.1ng/mL in women under age 30. Limited data is available regarding the prevalence of occult POI, the preceding menstrual characteristics and its natural course in otherwise healthy young females. We aimed in this prospective observational study to determine the prevalence of occult POI in young females (< age 30) screened with serum AMH measurement; and analyze the patterns of change in their menstruation at initial assessment and one-year follow-up in relation to the changes in ovarian reserve quantitatively assessed with AMH and AFC. 963 young female college students under age 30 voluntarily participated in this study. 43 of them (4.4%) were diagnosed with occult POI as their AMH levels were ≤ 1.1ng/mL. Thirty-eight (83.4%) of them have regular cycles and denied any menstrual irregularity in the last 12 months. This rate was not statistically different from 7.3% of those with AMH>1.1ng/mL who reported at least one abnormal menstrual cycle in the last year (p = 0.36). Cycle length was significantly shorter in females with AMH ≤ 1.1ng/mL compared to those with AMH>1.1ng/mL (25.1±3.2 vs. 31.2±2.8 respectively, p<0.001). Karyotype, FMR-1 mutation analyses and auto-antibody screening returned normal in all. At one-year follow-up AMH, AFC and mean cycle length were further reduced compared to their values at initial assessment. Now, a greater proportion of the participants with occult POI were menstruating regularly at every 21 days compared to the initial evaluation one year ago (39.5% vs. 13.9% respectively, p = 0.013). Twenty-five underwent oocyte cryopreservation. These findings underscore the importance of screening young females with AMH for possible occult POI. It also emphasizes that young females with critically diminished ovarian reserve may continue to menstruate regularly without any characteristic menstrual abnormality other than shortening of cycle length. PMID:29176793
Guzel, Yilmaz; Aba, Yilda Arzu; Yakin, Kayhan; Oktem, Ozgur
2017-01-01
Occult primary ovarian insufficiency (also known as incipient ovarian failure or diminished ovarian reserve) is defined as serum AMH level ≤1.1ng/mL in women under age 30. Limited data is available regarding the prevalence of occult POI, the preceding menstrual characteristics and its natural course in otherwise healthy young females. We aimed in this prospective observational study to determine the prevalence of occult POI in young females (< age 30) screened with serum AMH measurement; and analyze the patterns of change in their menstruation at initial assessment and one-year follow-up in relation to the changes in ovarian reserve quantitatively assessed with AMH and AFC. 963 young female college students under age 30 voluntarily participated in this study. 43 of them (4.4%) were diagnosed with occult POI as their AMH levels were ≤ 1.1ng/mL. Thirty-eight (83.4%) of them have regular cycles and denied any menstrual irregularity in the last 12 months. This rate was not statistically different from 7.3% of those with AMH>1.1ng/mL who reported at least one abnormal menstrual cycle in the last year (p = 0.36). Cycle length was significantly shorter in females with AMH ≤ 1.1ng/mL compared to those with AMH>1.1ng/mL (25.1±3.2 vs. 31.2±2.8 respectively, p<0.001). Karyotype, FMR-1 mutation analyses and auto-antibody screening returned normal in all. At one-year follow-up AMH, AFC and mean cycle length were further reduced compared to their values at initial assessment. Now, a greater proportion of the participants with occult POI were menstruating regularly at every 21 days compared to the initial evaluation one year ago (39.5% vs. 13.9% respectively, p = 0.013). Twenty-five underwent oocyte cryopreservation. These findings underscore the importance of screening young females with AMH for possible occult POI. It also emphasizes that young females with critically diminished ovarian reserve may continue to menstruate regularly without any characteristic menstrual abnormality other than shortening of cycle length.
NASA Technical Reports Server (NTRS)
1981-01-01
The engine operating characteristics were examined. Inlet pressure effects, tank pressurization effects, steady-state specific impulse, and the steady-state cycle were studied. The propellant flow schematic and operating sequence are presented. Engine hardware drawings are included.
Garth, A K; Newsome, C M; Simmance, N; Crowe, T C
2010-08-01
Malnutrition and its associated complications are a considerable issue for surgical patients with upper gastrointestinal and colorectal cancer. The present study aimed to determine whether specific perioperative nutritional practices and protocols are associated with improved patient outcomes in this group. Patients admitted for elective upper gastrointestinal or colorectal cancer surgery (n = 95) over a 19-month period underwent a medical history audit assessing weight changes, nutritional intake, biochemistry, post-operative complications and length of stay. A subset of patients (n = 25) underwent nutritional assessment by subjective global assessment prior to surgery in addition to assessment of post-operative medical outcomes, nutritional intake and timing of dietetic intervention. Mean (SD) length of stay for patients was 14.0 (12.2) days, with complication rates at 35%. Length of stay was significantly longer in patients who experienced significant preoperative weight loss compared to those who did not [17.0 (15.8) days versus 10.0 (6.8) days, respectively; P < 0.05]. Low albumin and post-operative weight loss were also predictive of increased length of stay. Of patients who underwent nutritional assessment, 32% were classified as mild-moderately malnourished and 16% severely malnourished. Malnourished patients were hospitalised twice as long as well-nourished patients [15.8 (12.8) days versus 7.6 (3.5) days; P < 0.05]. Time taken [6.9 (3.6) days] to achieve adequate nutrition post surgery was a factor in post-operative outcomes, with a positive correlation with length of stay (r = 0.493; P < 0.01), a negative correlation with post-operative weight change (r = -0.417; P < 0.05) and a greater risk of complications (52% versus 13%; P < 0.01). Malnutrition is prevalent among surgical patients with gastrointestinal cancer. Poor nutritional status coupled with delayed and inadequate post-operative nutrition practices are associated with worse clinical outcomes.
Tree Diamter Effects on Cost and Productivity of Cut-to-Length Systems
Matthew A. Holtzscher; Bobby L. Lanford
1997-01-01
Currently, there is a lack of economic information concerning cut-to-length harvesting systems. This study examined and measured the different costs of operating cut-to-length logging equipment over a range of average stand diameters at breast height. Three different cut-to-length logging systems were examined in this study. Systems included: 1) felier-buncher/manual/...
ERIC Educational Resources Information Center
Lancy, David; And Others
Reported are the results of an experiment in which twelve different conservation of length tasks, indicative of passage from Piaget's pre-operational to concrete operations stages of cognitive development, were administered to a sample of individuals from Imbonggu-speaking people, a remote and traditional society in Papua New Guinea. Individuals…
NASA Astrophysics Data System (ADS)
Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus
2015-08-01
Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
NASA Technical Reports Server (NTRS)
Fatig, Michael
1993-01-01
Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.