NASA Astrophysics Data System (ADS)
Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.
2017-12-01
This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.
These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less
Current Status of The Romanian National Deep Geological Repository Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radu, M.; Nicolae, R.; Nicolae, D.
2008-07-01
Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvementmore » in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)« less
2010-06-01
surface directly (vertically) above the hypocenter (United States Geological Survey , 2009). A graphical depiction of epicenter and hypocenter appears...to their focal depth: shallow (70-300 km), intermediate (70-300 km), and deep (300-700 km) (United States Geological Survey , 1989a). The concepts of...magnitude (Mb), and moment magnitude (MW) scales (Papazachos & Papazachou, 2003, p. 39; United States Geological Survey , 2009c). All these measurement
Deep-sea geohazards in the South China Sea
NASA Astrophysics Data System (ADS)
Wu, Shiguo; Wang, Dawei; Völker, David
2018-02-01
Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.
Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Bebout, John W.
1980-01-01
The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, S.; Jivkov, A.P.
2013-07-01
Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier systemmore » will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive transport model) to examine the long term behaviour of deep geological repositories with media property change under complex geochemical conditions. (authors)« less
A. V. Peyve — the founder of the concept of deep faults
NASA Astrophysics Data System (ADS)
Sherman, S. I.
2009-03-01
The further development of Peyve’s concept of deep faults in the Earth’s crust and brittle part of the lithosphere is discussed. Three aspects are accentuated in this paper: (1) the modern definition of the term deep fault; (2) the parameters of deep faults as ruptures of the geological medium and three-dimensional, often boundary, geological bodies; and (3) reactivation of deep faults, including the development of this process in real time. Peyve’s idea of deep faults readily fitted into the concept of new global tectonics (plate tectonics). This was facilitated, first of all, by the extensive efforts made to elaborate Peyve’s ideas by a large group of researchers at the Geological Institute of the Russian Academy of Sciences (GIN RAS) and other scientists. At present, the term deep fault has been extended and transformed to cover three-dimensional geological bodies; the geological and geophysical properties and parameters of these bodies, as well as their reactivation (recurrent activation) in real time, have been studied.
Geologic and operational summary, COST No. G-2 well, Georges Bank area, North Atlantic OCS
Amato, Roger V.; Simonis, Edvardas K.
1980-01-01
The Continental Offshore Stratigraphic Test (COST) No. G-2 well is the second deep well to be drilled in the Georges Bank Basin and the third in a series of COST wells on the Atlantic Outer Continental Shelf (OCS). The G-2 was drilled by Ocean Production Company, acting as the operator for 19 participating companies between January 6 and August 30, 1977. The semisubmersible rig Ocean Victory was used to drill the well to a depth of 21,874 feet at a location 132 statute miles east-southeast of Nantucket Island in 272 feet of water. An earlier deep Stratigraphic test, the COST No. G-l well, was drilled 42 statute miles west of the G-2 well, to a depth of 16,071 feet in 1976 (fig. 1). Geological and engineering data obtained from the well were used by companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for lease sale 42 held on December 18, 1979. The Stratigraphic test was intentionally drilled away from any potential petroleum-bearing feature, but in a block bordering several tracts that were included in the sale area.
Measuring Student Understanding of Geological Time
ERIC Educational Resources Information Center
Dodick, Jeff; Orion, Nir
2003-01-01
There have been few discoveries in geology more important than "deep time"--the understanding that the universe has existed for countless millennia, such that man's existence is confined to the last milliseconds of the metaphorical geological clock. The influence of deep time is felt in a variety of sciences including geology, cosmology,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Robert; Payne, William; Kirksey, Jim
2015-06-01
The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO 2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.
Aqueous alteration of VHTR fuels particles under simulated geological conditions
NASA Astrophysics Data System (ADS)
Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd
2014-05-01
Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.
Site Selection for Hvdc Ground Electrodes
NASA Astrophysics Data System (ADS)
Freire, P. F.; Pereira, S. Y.
2014-12-01
High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the inversion of the combined deep, near-surface and shallow apparent resistivity curves, results in the layered crust resistivity models. These models will allow for the preliminary interference studies, that will result on the selection of the final electrode site (one for each converter substation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
NASA Astrophysics Data System (ADS)
Mao, N. H.; Ramirez, A. L.
1980-10-01
Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.
Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.
Hollenbach, D F; Herndon, J M
2001-09-25
Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.
A history of early geologic research in the Deep River Triassic Basin, North Carolina
Clark, T.W.
1998-01-01
The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.
NASA Astrophysics Data System (ADS)
Heinz, W. F.
1988-12-01
Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.
Potential restrictions for CO2 sequestration sites due to shale and tight gas production.
Elliot, T R; Celia, M A
2012-04-03
Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.
Challenges of constructing salt cavern gas storage in China
NASA Astrophysics Data System (ADS)
Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui
2017-11-01
After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.
Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field
Hollenbach, D. F.; Herndon, J. M.
2001-01-01
Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483
NASA Astrophysics Data System (ADS)
Ladevèze, P.; Séjourné, S.; Rivard, C.; Lavoie, D.; Lefebvre, R.; Rouleau, A.
2018-03-01
In the St. Lawrence sedimentary platform (eastern Canada), very little data are available between shallow fresh water aquifers and deep geological hydrocarbon reservoir units (here referred to as the intermediate zone). Characterization of this intermediate zone is crucial, as the latter controls aquifer vulnerability to operations carried out at depth. In this paper, the natural fracture networks in shallow aquifers and in the Utica shale gas reservoir are documented in an attempt to indirectly characterize the intermediate zone. This study used structural data from outcrops, shallow observation well logs and deep shale gas well logs to propose a conceptual model of the natural fracture network. Shallow and deep fractures were categorized into three sets of steeply-dipping fractures and into a set of bedding-parallel fractures. Some lithological and structural controls on fracture distribution were identified. The regional geologic history and similarities between the shallow and deep fracture datasets allowed the extrapolation of the fracture network characterization to the intermediate zone. This study thus highlights the benefits of using both datasets simultaneously, while they are generally interpreted separately. Recommendations are also proposed for future environmental assessment studies in which the existence of preferential flow pathways and potential upward fluid migration toward shallow aquifers need to be identified.
Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions
NASA Astrophysics Data System (ADS)
Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.
2017-12-01
The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.
Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.
Pang, Bo; Becker, Frank
2017-04-28
Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage
NASA Astrophysics Data System (ADS)
Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve
2014-11-01
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Geolab Results from Three Years of Analog Mission Tests
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.
2013-01-01
GeoLab is a prototype glovebox for geological sample examination that was, until November 2012, fully integrated into NASA's Deep Space Habitat Analog Testbed [1,2]. GeoLab allowed us to test science operations related to contained sample examination during simulated exploration missions. The facility, shown in Figure 1 and described elsewhere [1-4], was designed for fostering the development of both instrument technology and operational concepts for sample handling and examination during future missions [3-5]. Even though we recently deintegrated the glovebox from the Deep Space Habitat (Fig. 2), it continues to provide a high-fidelity workspace for testing instruments that could be used for sample characterization. As a testbed, GeoLab supports the development of future science operations that will enhance the early scientific returns from exploration missions, and will help ensure selection of the best samples for Earth return.
Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.
Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T
2016-01-01
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wobber, F. J. (Principal Investigator); Martin, K. R.; Amato, R. V.; Leshendok, T.
1973-01-01
The author has identified the following significant results. The applications of ERTS-1 imagery for geological fracture mapping regardless of season has been repeatedly confirmed. The enhancement provided by a differential cover of snow increases the number and length of fracture-lineaments which can be detected with ERTS-1 data and accelerates the fracture mapping process for a variety of practical applications. The geological mapping benefits of the program will be realized in geographic areas where data are most needed - complex glaciated terrain and areas of deep residual soils. ERTS-1 derived fracture-lineament maps which provide detail well in excess of existing geological maps are not available in the Massachusetts-Connecticut area. The large quantity of new data provided by ERTS-1 may accelerate and improve field mapping now in progress in the area. Numerous other user groups have requested data on the techniques. This represents a major change in operating philosophy for groups who to data judged that snow obscured geological detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Long-term viability of carbon sequestration in deep-sea sediments
NASA Astrophysics Data System (ADS)
Teng, Y.; Zhang, D.
2017-12-01
Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO2, due to the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multi-physics process of injection and post-injection fate of CO2 and the feasibility of sub-seabed disposal of CO2 under different geological and operational conditions have not been well studied. On the basis of a detailed study of the coupled processes, we investigate whether storing CO2 into deep-sea sediments is viable, efficient, and secure over the long term. Also studied are the evolution of the multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency during the upward migration of the injected CO2. It is shown that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces the permeability and finally becomes an impermeable seal, thus limiting the movement of CO2 towards the seafloor. Different flow patterns at varied time scales are identified through analyzing the mass distribution of CO2 in different phases over time. Observed is the formation of a fluid inclusion, which mainly consists of liquid CO2 and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO2 and CO2 hydrate finally dissolve into the pore water through diffusion of the CO2 component. Sensitivity analyses are performed on storage efficiency under variable geological and operational conditions. It is found that under a deep-sea setting, CO2 sequestration in intact marine sediments is generally safe and permanent.
Bathymetry and geology of Greenlandic fjords from Operation IceBridge airborne gravimetry
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Dube, J.; McLeish, M.; Burton, B. L.
2011-12-01
The Greenland Ice Sheet is drained by outlet glaciers that commonly flow into long, deep fjords. Glacier flow is controlled in part by the topography and geology of the glacier bed, and is also affected by the interaction between ice and sea water in the fjords. This interaction depends on the bathymetry of the fjords, and particularly on the presence of bathymetric sills, which can control the influx of warm, saline water towards the grounding zone. The bathymetry and geology of these fjords provide boundary conditions for models of the behaviour of the glaciers and ice sheet. Greenlandic fjords can be over 100 km long and up to 1000 m deep, with sills a few hundred metres above the bottom of the fjord. Where bathymetry is not well known, the scale of these features makes them appropriate targets for aerogravity surveys. Where bathymetry is known, aerogravity can provide information on the geology of the fjord, but the sometimes narrow, sinuous fjords present challenges for both data acquisition and interpretation. In 2010 and 2011 Operation IceBridge flew the Sander Geophysics AIRGrav system along the axes of more than 40 outlet glaciers distributed around the coast of Greenland. The AIRGrav system has high precision, fast recovery from turns and the capacity for draped flights, all of which improve the quality of data acquisition along fjord axes. Operation IceBridge survey flights are conducted at or lower than 500 m above ground surface, at speeds of ~140 m/s, allowing full amplitude resolution of features larger than ~5 km, and detection of smaller scale features. Fjord axis data are commonly of lower quality than data from grid-based gravity surveys. Interpretation of these data is improved by combining repeated survey lines from both seasons as well as incorporating other datasets, such as radar, and magnetic data from Operation IceBridge, digital elevation models and geological maps. While most fjords were surveyed by a single axial track, surveys of Petermann Glacier include parallel flow lines, allowing new constraints on the bathymetry under its floating ice to be more reliably modelled. This work is a preliminary review of the fjord axes surveyed by Operation IceBridge and presents models of representative fjords. The surveys include major features, such as the fjord in front of Kangerdlugssuaq Glacier and under the the floating ice in front of Petermann, 79 N and Zachariae Glaciers and results identify the limits and applications of IceBridge aerogravity in the Greenland fjords.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Research on geological hazard identification based on deep learning
NASA Astrophysics Data System (ADS)
Zhu, Cheng; Cheng, Tao
2018-05-01
Geological hazards such as landslides, debris flows and collapses are potential hazards affecting the safety of nearby roads and people. Land and Resources Bureau and other relevant departments to undertake the responsibility of prevention and control of geological disasters, an important body, how to deal with the characteristics of sudden geological disasters in the region, according to pre-established emergency measures quickly and accurately survey, is an important issue to be solved. Based on the analysis of the types and effects of typical geological disasters, this paper studies the relevant methods of identifying typical geological disasters through artificial neural networks, and proposes and designs intelligent geological survey methods and systems based on deep learning to provide relevant departments such as Land and Resources Bureau Related Mountain Geological Survey and Information Support.
Advantages and limitations of remotely operated sea floor drill rigs
NASA Astrophysics Data System (ADS)
Freudenthal, T.; Smith, D. J.; Wefer, G.
2009-04-01
A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.
NASA Astrophysics Data System (ADS)
Cheek, Kim A.
2013-07-01
Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.
Drilling a deep geologic test well at Hilton Head Island, South Carolina
Schultz, Arthur P.; Seefelt, Ellen L.
2011-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.
European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science
1990-02-01
Exploitation and Optimum Use of discussed the relationship of the Framework program to Biological Resources the 1992 single European market. This...operation: Shared-cost contracts]. hancement of food quality; (2) food hygiene, safety, and D. The Exploitation and optimum use or Biological toxicology...Table 9), and dis- bracing the biological sciences, agriculture, geologi- semination of research results (see Table 10). cal, and marine and deep sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
2013-08-05
Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deepmore » geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.« less
78 FR 16713 - Board Meeting; April 16, 2013; Richland, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... in a repository. Pursuant to its authority under section 5051 of Public Law 100-203, Nuclear Waste... facility in preparation for eventual disposal in a deep geologic repository. State, local, and regional... DOE's work related to the potential direct disposal in a deep geologic repository of existing SNF...
Understanding wetland sub-surface hydrology using geologic and isotopic signatures
NASA Astrophysics Data System (ADS)
Sikdar, P. K.; Sahu, P.
2009-07-01
This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW) - a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also present in groundwater of various depths. Therefore, aquifers of wetland and surrounding urban areas which are heavily dependent on groundwater are vulnerable to pollution. In the area south of ECW isotope data indicates no interaction between shallow and deep aquifer and hence this area may be a better location to treat sewage water than within ECW. To reduce the threat of pollution in ECW's aquifer, surface water-groundwater interaction should be minimized by regulating tubewell operation time, introducing treated surface water supply system and artificial recharging of the aquifer.
NASA Astrophysics Data System (ADS)
Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.
2006-12-01
The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds, and sea bed morphology in water depths less than 5-m. The ASV is a catamaran-based platform, 10 feet in length, 4 feet in width, and approximately 260 lbs in weight. The vehicle is operated remotely through a wireless modem network enabling real-time monitoring of data acquisition. The ASV is navigated using RTK, and heave, pitch and roll are recorded with onboard motion sensors. Additional sensors, such as ADCPs, can also be housed within the vehicle. The ASV is able to operate in previously inaccessible areas, and will not only augment existing shallow-water research capabilities, but will also improve our understanding of the geologic controls to modern beach behavior and coastal evolution.
Special Issue on Earth Science: The View From '76
ERIC Educational Resources Information Center
Geotimes, 1976
1976-01-01
Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…
Data to Support Development of Geologic Framework Models for the Deep Borehole Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Frank Vinton; Kelley, Richard E.
This report summarizes work conducted in FY2017 to identify and document publically available data for developing a Geologic Framework Model (GFM) for the Deep Borehole Field Test (DBFT). Data was collected for all four of the sites being considered in 2017 for a DBFT site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong
Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel andmore » other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)« less
Undersea research vehicle for 20,000-ft depths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-05-01
This article describes the design and operation of a remotely operated underwater vehicle called RUM III. The vehicle is capable of working to depths of 20,000 feet and is designed to do more work at greater depths than any other unmanned research vehicle. RUM III is about the size of a compact car and its design provides deep ocean research capabilities now only available with manned submersibles, and does so without the limitations of manned devices. It is suitable for a variety of geological, geophysical and ecological studies, and can also be used by scientists to conduct detailed investigations inmore » regions of the ocean floor that are relatively easy to see with cameras and sonar, but difficult to sample directly because of hostile deep-sea environments. RUM III is light enough to sit and maneuver on soft ocean-bottom sediments.« less
Muon Tomography for Geological Repositories.
NASA Astrophysics Data System (ADS)
Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.
2015-12-01
Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.
Deployment of the Oklahoma borehole seismic experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P.E.; Rock, D.W.
1989-01-20
This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted inmore » a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.« less
Kalyzhnaya, O V; Itskovich, V B
2014-07-01
The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-09-01
The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short-more » and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a successful implementation of final dispositioning.« less
CO2 Storage related Groundwater Impacts and Protection
NASA Astrophysics Data System (ADS)
Fischer, Sebastian; Knopf, Stefan; May, Franz; Rebscher, Dorothee
2016-03-01
Injection of CO2 into the deep subsurface will affect physical and chemical conditions in the storage environment. Hence, geological CO2 storage can have potential impacts on groundwater resources. Shallow freshwater can only be affected if leakage pathways facilitate the ascent of CO2 or saline formation water. Leakage associated with CO2 storage cannot be excluded, but potential environmental impacts could be reduced by selecting suitable storage locations. In the framework of risk assessment, testing of models and scenarios against operational data has to be performed repeatedly in order to predict the long-term fate of CO2. Monitoring of a storage site should reveal any deviations from expected storage performance, so that corrective measures can be taken. Comprehensive R & D activities and experience from several storage projects will enhance the state of knowledge on geological CO2 storage, thus enabling safe storage operations at well-characterised and carefully selected storage sites while meeting the requirements of groundwater protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.
2012-07-01
A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using themore » approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)« less
3D Geological Model for "LUSI" - a Deep Geothermal System
NASA Astrophysics Data System (ADS)
Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.
2016-04-01
Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.
Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions
NASA Technical Reports Server (NTRS)
Langhoff, Stephanie R. (Editor)
2008-01-01
The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.
Burns, Erick; Gannett, Marshall W.; Sherrod, David R.; Keith, Mackenzie K.; Curtis, Jennifer A.; Bartolino, James R.; Engott, John A.; Scandella, Benjamin P.; Stern, Michelle A.; Flint, Alan L.
2017-01-01
Sufficient temperatures to generate steam likely exist under most of the dominantly volcanic terrains of southeast Oregon, northeast California, and southeast Idaho, USA, but finding sufficient permeability to allow efficient advective heat exchange is an outstanding challenge. A new thematic interpretation of existing state-level geologic maps provides an updated and refined distribution of the composition and age of geologic units for the purposes of assessing the implications for measurement and development of geothermal resources. This interpretation has been developed to better understand geothermal and hydrologic resources of the region. Comparison of the new geologic categories with available hydrologic data shows that younger volcanogenic terrains tend to have higher primary permeability than older terrains. Decrease in primary permeability with age is attributable to weathering and hydrothermal alteration of volcanogenic deposits to pore-filling clays and deposition of secondary deposits (e.g., zeolites). Spring density as a function of geology and precipitation can be used to infer groundwater flow path length within the upper aquifers. Beneath the upper aquifers, we postulate that, due to accelerated hydrothermal alteration at temperatures ~>30 °C, primary permeability at depths of geothermal interest will be limited, and that secondary permeability is a more viable target for hydrothermal fluid withdrawal. Because open fractures resulting from tensile stresses will affect all geologic layers, regions with a significant amount of groundwater flow through shallow, structurally controlled secondary permeability may overlay zones of deep secondary permeability. Regardless of whether the shallow permeability is connected with the deep permeability, shallow groundwater flow can mask the presence of deep hydrothermal flow, resulting in blind geothermal systems. Ideally, hydraulic connectivity between shallow and deep secondary permeability is limited, so that shallow groundwater does not cool potential geothermal reservoirs.
NASA Astrophysics Data System (ADS)
Sokolov, S. Yu.; Moroz, E. A.; Abramova, A. S.; Zarayskaya, Yu. A.; Dobrolubova, K. O.
2017-07-01
On cruises 25 (2007) and 28 (2011) of the R/V Akademik Nikolai Strakhov in the northern part of the Barents Sea, the Geological Institute, Russian Academy of Sciences, conducted comprehensive research on the bottom relief and upper part of the sedimentary cover profile under the auspices of the International Polar Year program. One of the instrument components was the SeaBat 8111 shallow-water multibeam echo sounder, which can map the acoustic field similarly to a side scan sonar, which records the response both from the bottom and from the water column. In the operations area, intense sound scattering objects produced by the discharge of deep fluid flows are detected in the water column. The sound scattering objects and pockmarks in the bottom relief are related to anomalies in hydrocarbon gas concentrations in bottom sediments. The sound scattering objects are localized over Triassic sequences outcropping from the bottom. The most intense degassing processes manifest themselves near the contact of the Triassic sequences and Jurassic clay deposits, as well as over deep depressions in a field of Bouguer anomalies related to the basement of the Jurassic-Cretaceous rift system
Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.
Poirot-Delpech, Sophie; Raineau, Laurence
2016-12-01
The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.
ERIC Educational Resources Information Center
White, Stan M.
1979-01-01
Drilling during 1978 focused on three major geologic problems: the nature and origin of the oceanic crust, the nature and geologic history of the active continental margins, and the oceanic paleoenvironment. (Author/BB)
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE
The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION
The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...
Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China
NASA Astrophysics Data System (ADS)
Lin, W.; Gan, H.
2017-12-01
Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.
Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis; Taylor, David J.
1997-01-01
Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.
Gal, Frédérick; Joublin, Franck; Haas, Hubert; Jean-Prost, Véronique; Ruffier, Véronique
2011-02-01
The south east basin of France shelters deep CO₂ reservoirs often studied with the aim of better constraining geological CO₂ storage operations. Here we present new soil gas data, completing an existing dataset (CO₂, ²²²Rn, ⁴He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO₂ reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO₂ concentrations. Fine grained clayey soils preferentially favoured the existence of ²²²Rn but not CO₂. Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO₂ and ²²²Rn concentrations still exist, it is suggested that ²²²Rn migration is also CO₂ dependent in non-leaking areas--diffusion dominated systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)
The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S
2016-11-15
Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Trend, Roger David
2001-01-01
Studies (n=51) inservice school teachers with regard to their orientations toward geoscience phenomena in general and deep time in particular. Aims to identify the nature of idiosyncratic conceptions of deep time and propose a curricular Deep Time Framework for teacher education. (Contains 29 references.) (Author/YDS)
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
Yearly report, Yucca Mountain project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brune, J.N.
1992-09-30
We proposed to (1) Develop our data logging and analysis equipment and techniques for analyzing seismic data from the Southern Great Basin Seismic Network (SGBSN), (2) Investigate the SGBSN data for evidence of seismicity patterns, depth distribution patterns, and correlations with geologic features (3) Repair and maintain our three broad band downhole digital seismograph stations at Nelson, nevada, Troy Canyon, Nevada, and Deep Springs, California (4) Install, operate, and log data from a super sensitive microearthquake array at Yucca Mountain (5) Analyze data from micro-earthquakes relative to seismic hazard at Yucca Mountain.
NASA Astrophysics Data System (ADS)
Camilli, R.; Macelloni, L.; Asper, V.; Woolsey, M.; Williams, J.; Diercks, A.; Lutken, C. B.; Sleeper, K.
2009-12-01
A chemical and bathymetric survey was conducted in June 2009 at a known gas hydrate site approximately 900 meters deep in the Gulf of Mexico Mississippi Canyon 118 block. This survey used the EagleRay autonomous underwater vehicle equipped with a TETHYS in-situ mass spectrometer and EM 2000 multibeam sonar. Results indicate previously unobserved active sea floor methane seeps that correlate with bathymetric depressions and a geologic fault. These data suggest linkage of the methane cold seeps to an underlying thermogenic hydrocarbon reservoir.
Scenario simulation based assessment of subsurface energy storage
NASA Astrophysics Data System (ADS)
Beyer, C.; Bauer, S.; Dahmke, A.
2014-12-01
Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC-processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.
Thakur, P; Ballard, S; Hardy, R
2014-11-04
Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed trace amounts of 241Am and 239+240Pu, at ratios reflecting the suspect waste stream. The highest activity detected offsite was 115.2 μBq/m3 for 241Am and 10.2 μBq/m3 for 239+240 Pu. These concentrations in air were very small, localized, and below any level of public health or environmental concern.
Macrostrat and GeoDeepDive: A Platform for Geological Data Integration and Deep-Time Research
NASA Astrophysics Data System (ADS)
Husson, J. M.; Peters, S. E.; Ross, I.; Czaplewski, J. J.
2016-12-01
Characterizing the quantity, lithology, age, and properties of rocks and sediments in the upper crust is central to many questions in Earth science. Although a large number of geological maps, regional syntheses, and sample-based measurements have been published in a variety of formats, there is no system for integrating and accessing rock record-derived data or for facilitating the large-scale quantitative interrogation of the physical, chemical, and biological properties of Earth's crust. Here we describe two data resources that aim to overcome some of these limitations: 1) Macrostrat, a geospatial database and supporting cyberinfrastructure that is designed to enable quantitative analyses of the entire assemblage of surface and subsurface sedimentary, igneous and metamorphic rocks, and 2) GeoDeepDive, a digital library and high throughput computing system designed to facilitate the location and extraction of information and data from the published literature. Macrostrat currently contains general summaries of the age and lithology of rocks and sediments in the upper crust at 1,474 regions in North and Central America, the Caribbean, New Zealand, and the deep sea. Distributed among these geographic regions are nearly 34,000 lithologically and chronologically-defined geological units, many of which are linked to a bedrock geologic map database with more than 1.7 million globally distributed units. Sample-derived data, including fossil occurrences in the Paleobiology Database and more than 180,000 geochemical and outcrop-derived measurements are linked to Macrostrat units and/or lithologies within those units. The rock names, lithological terms, and geological time intervals that are applied to Macrostrat units define a hierarchical, spatially and temporally indexed vocabulary that is leveraged by GeoDeepDive in order to provide researchers access to data within the scientific literature as it is published and ingested into the infrastructure. All data in Macrostrat are accessible via an Application Programming Interface, which enables the development of mobile and analytical applications. The GeoDeepDive infrastructure also supports the development and execution of applications that are tailored to the specific, literature-based data location and extraction needs of geoscientists.
USGS advances in integrated, high-resolution sea-floor mapping: inner continental shelf to estuaries
Denny, J.F.; Schwab, W.C.; Twichell, D.C.; O'Brien, T.F.; Danforth, W.W.; Foster, D.S.; Bergeron, E.; Worley, C.W.; Irwin, B.J.; Butman, B.; Valentine, P.C.; Baldwin, W.E.; Morton, R.A.; Thieler, E.R.; Nichols, D.R.; Andrews, B.D.
2007-01-01
The U.S. Geological Survey (USGS) has been involved in geological mapping of the sea floor for the past thirty years. Early geophysical and acoustic mapping efforts using GLORIA (Geologic LOng Range Inclined ASDIC) a long-range sidescan-sonar system, provided broad-scale imagery of deep waters within the U.S. Exclusive Economic Zone (EEZ). In the early 1990's, research emphasis shifted from deep- to shallow-water environments to address pertinent coastal research and resource management issues. Use of shallow-water, high-resolution geophysical systems has enhanced our understanding of the processes shaping shallow marine environments. However, research within these shallow-water environments continues to present technological challenges.
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
From the Seafloor to the Pool: Teaching Science in Idaho Using GIS and Lessons from the Undersea
NASA Astrophysics Data System (ADS)
Dodds, J.; Glickson, D.; Robigou, V.
2006-12-01
My selection for the NSF-funded 2005 REVEL* Project provided me an opportunity to become a member of the scientific team on an international, deep-sea research cruise in the N.E. Pacific Ocean. REVEL is a professional development program for K-12 teachers ready for the challenge of bringing discovery in the classroom and inquiry into science teaching and learning through the practice of oceanographic research. I was chosen to be aboard the R/V Thompson during the VISIONS '05, an interdisciplinary research cruise that used the Jason 2 remotely-operated vehicle and the autonomous vehicle ABE to collect co-registered geological, chemical, biological, and physical observations of the seafloor. In collaboration with scientists, I analyzed and interpreted high-resolution bathymetric data and dive observations collected in the Main Endeavour hydrothermal vent field of the Juan de Fuca Ridge. I will present the results obtained during Jason 2 dive 177, which visited several sites in the field. After analyzing the bathymetric data in ArcGIS, I used the ArcMap application to overlay the well-navigated dive 177. I precisely documented 15 hours of new geological observations, fluid and biology sampling, and instrument deployments and spatially associated them with the co-registered high-resolution bathymetric and morphologic data.This research project supports my exploration of spatial conceptualization in geography and geology. Although my students in Idaho do not have access to the sea, they can utilize the skills they gain from seafloor studies to collect data in our local environment, and make their own observations and interpretations of the landscape and its geological history. In addition, this work supports the mission of researchers, who need accurately-located, co-registered data sets to best plan integrative science to better understand the interaction between geological, chemical, physical and biological processes in deep-sea, remote, volcanic environments. During the research cruise, my 9th grade students in Twin Falls followed my work at sea via the web and through a live, high-definition broadcast from the ship to land. They studied seafloor hydrothermal systems in the classroom. When I returned to school, all students were ready to build their own ROVs. The semester-long project included planning their work, crafting their own questions, doing research on deep-sea technology, confronting unpredictable challenges and collaboratively solving problems as scientists would do for the success of a seagoing expedition. Their effort culminated in a community event, the ROV competition at the local YMCA pool. Several talented and experienced 9th students shared their knowledge of the deep-sea ecological environment and expertise in deep-sea technology with 4th graders. I am now combining my GIS expertise with experience of the deep-sea to foster students' interest in GIS and its applications to regional projects such as the water quality of their region. Students this year will investigate invasive species along Rock Creek, the same study area as their water quality project. They will use GIS software to map specific plant species that will be useful to the Twin Falls County Parks Department. Students will also continue to have opportunities to design, construct, and test ROVs after school. This will allow students from other classes and grade levels to participate in this learning-by-design project. * Research and Education: Volcanoes, Exploration, and Life http://www.visions05.washington.edu/
NASA Astrophysics Data System (ADS)
Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.
2017-12-01
A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to pumping and underground construction. This work offers ideas and proposed solutions on how some of the challenges in describing fractured rock hydrogeology can be tackled.
Canada's Deep Geological Repository For Used Nuclear Fuel -The Geoscientific Site Evaluation Process
NASA Astrophysics Data System (ADS)
Hirschorn, S.; Ben Belfadhel, M.; Blyth, A.; DesRoches, A. J.; McKelvie, J. R. M.; Parmenter, A.; Sanchez-Rico Castejon, M.; Urrutia-Bustos, A.; Vorauer, A.
2014-12-01
The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The suitability of candidate areas will be assessed in a stepwise manner over a period of many years and include three main steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations. The Preliminary Assessment is conducted in two phases. NWMO has completed Phase 1 preliminary assessments for the first eight communities that entered into this step. While the Phase 1 desktop geoscientific assessments showed that each of the eight communities contains general areas that have the potential to satisfy the geoscientific safety requirements for hosting a deep geological repository, the assessment identified varying degrees of geoscientific complexity and uncertainty between communities, reflecting their different geological settings and structural histories. Phase 2 activities will include a sequence of high-resolution airborne geophysical surveys and focused geological field mapping to ground-truth lithology and structural features, followed by limited deep borehole drilling and testing. These activities will further evaluate the site's ability to meet the safety functions that a site would need to ultimately satisfy in order to be considered suitable. This paper provides an update on the site evaluation process and describes the approach, methods and criteria that are being used to conduct the geoscientific Preliminary Assessments.
Initial public perceptions of deep geological and oceanic disposal of carbon dioxide.
Palmgren, Claire R; Morgan, M Granger; Bruine de Bruin, Wändi; Keith, David W
2004-12-15
Two studies were conducted to gauge likely public perceptions of proposals to avoid releasing carbon dioxide from power plants to the atmosphere by injecting it into deep geological formations or the deep ocean. Following a modified version of the mental model interview method, Study 1 involved face-to-face interviews with 18 nontechnical respondents. Respondents shared their beliefs after receiving basic information about the technologies and again after getting specific details. Many interviewees wanted to frame the issue in the broader context of alternative strategies for carbon management, but public understanding of mitigation strategies is limited. The second study, administered to a sample of 126 individuals, involved a closed-form survey that measured the prevalence of general beliefs revealed in study 1 and also assessed the respondent's views of these technologies. Study results suggest that the public may develop misgivings about deep injection of carbon dioxide because it can be seen as temporizing and perhaps creating future problems. Ocean injection was seen as more problematic than geological injection. An approach to public communication and regulation that is open and respectful of public concerns is likely to be a prerequisite to the successful adoption of this technology.
The Archean geology of the Godthabsfjord Region, southern west Greenland (includes excursion guide)
NASA Technical Reports Server (NTRS)
Mcgregor, V. R.; Nutman, A. P.; Friend, C. R. L.
1986-01-01
The part of the West Greenland Archean gneiss complex centered around Godthabsfjord and extending from Isukasia in the north to south Faeringehavn is studied. Extensive outcrops of 3800 to 3400 Ma rocks can provide some direct evidence of conditions and processes that operated on the Earth in the early Archean. However, the ways in which primary characteristics have been modified by later deformation, metamorphism, and chemical changes are first taken into account. The rocks exposed are the products of two major phases of accretion of continental crust, at 3800 to 3700 Ma and 3100 to 29 Ma. The main features of these two accretion phases are similar, but careful study of the least modified rocks may reveal differences related to changes in the Earth in the intervening period. The combination of excellent exposure over an extensive area, relatively detailed geological mapping of much of the region, and a considerable volume of isotopic and other geochemical data gives special insights into processes that operated at moderately deep levels of the crust in the Archean. Of particular interest is the effect of late Archean granulite facies metamorphism on early Archean rocks, especially the extent to which isotope systems were disturbed. Similar processes may well have partly or wholly destroyed evidence of more ancient components of other high grade terrains. This account does not attempt to be an exhaustive review of all work carried out on the geology of the region. Rather, it attempts to summarize aspects of the geology and some interest in the context of early crustal genesis.
NASA Astrophysics Data System (ADS)
Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.
2014-06-01
Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.
NASA Astrophysics Data System (ADS)
Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.
2014-12-01
In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.
Overview of environmental and hydrogeologic conditions at Dillingham, Alaska
Palcsak, Betty B.; Dorava, Joseph M.
1994-01-01
The remote city of Dillingham is at the northern end of Bristol Bay in southwestern Alaska. The hydrology of the area is strongly affected by the mild maritime climate and local geologic conditions. Dillingham residents obtain drinking water from both deep and shallow aquifers composed of gravels and sands and separated by layers of clay underlying the community. Alternative sources of drinking water are limited to the development of new wells because surface-water sources are of inadequate quantity or quality or are located at too great a distance from the population. The Federal Aviation Administration owns or operates airway support facilities in Dillingham and wishes to consider the severity of contamination and the current environmental setting when they evaluate options for compliance with environmental regulations at their facilities. This report describes the climate. vegetation, geology, soils, ground-water and surface-water hydrology, and flood potential of the areas surrounding the Federal Aviation Administration facilities near Dillingham.
Geology and biology of North Pacific cold seep communities
NASA Astrophysics Data System (ADS)
Robison, Bruce H.; Greene, H. Gary
Because of crushing pressure, low temperature, and stygian darkness, the floor of the deep sea is one of the most hostile habitats on Earth. Until recently it was widely believed that the base of the food chain for all deep-sea communities was plant life in the ocean's sunlit upper layer. With the discovery of hydrothermal vent and cold-seep communities, which are based on chemical rather than solar energy, those beliefs were overturned. New studies focused on the animals that inhabit cold seep regions have begun to throw light on the geological basis of chemosynthetic communities. The initial results suggest a strong relationship between geologically determined fluid flux, and the diversity and abundance of animals at the seeps.
Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy
2017-12-11
The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.
NASA Astrophysics Data System (ADS)
Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.
2017-04-01
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
System to provide 3D information on geological anomaly zone in deep subsea
NASA Astrophysics Data System (ADS)
Kim, W.; Kwon, O.; Kim, D.
2017-12-01
The study on building the ultra long and deep subsea tunnel of which length is 50km and depth is 200m at least, respectively, is underway in Korea. To analyze the geotechnical information required for designing and building subsea tunnel, topographic/geologiccal information analysis using 2D seabed geophysical prospecting and topographic, geologic, exploration and boring data were analyzed comprehensively and as a result, automation method to identify the geological structure zone under seabed which is needed to design the deep and long seabed tunnel was developed using geostatistical analysis. In addition, software using 3D visualized ground information to provide the information includes Gocad, MVS, Vulcan and DIMINE. This study is intended to analyze the geological anomaly zone for ultra deep seabed l and visualize the geological investigation result so as to develop the exclusive system for processing the ground investigation information which is convenient for the users. Particularly it's compatible depending on file of geophysical prospecting result and is realizable in Layer form and for 3D view as well. The data to be processed by 3D seabed information system includes (1) deep seabed topographic information, (2) geological anomaly zone, (3) geophysical prospecting, (4) boring investigation result and (5) 3D visualization of the section on seabed tunnel route. Each data has own characteristics depending on data and interface to allow interlocking with other data is granted. In each detail function, input data is displayed in a single space and each element is selectable to identify the further information as a project. Program creates the project when initially implemented and all output from detail information is stored by project unit. Each element representing detail information is stored in image file and is supported to store in text file as well. It also has the function to transfer, expand/reduce and rotate the model. To represent the all elements in 3D visualized platform, coordinate and time information are added to the data or data group to establish the conceptual model as a whole. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government(Project Number: 13 Construction Research T01).
Viking Mars launch set for August 11
NASA Technical Reports Server (NTRS)
Panagakos, N.
1975-01-01
The 1975-1976 Viking Mars Mission is described in detail, from launch phase through landing and communications relay phase. The mission's scientific goals are outlined and the various Martian investigations are discussed. These investigations include: geological photomapping and seismology; high-resolution, stereoscopic horizon scanning; water vapor and thermal mapping; entry science; meteorology; atmospheric composition and atmospheric density; and, search for biological products. The configurations of the Titan 3/Centaur combined launch vehicles, the Viking orbiters, and the Viking landers are described; their subsystems and performance characteristics are discussed. Preflight operations, launch window, mission control, and the deep space tracking network are also presented.
Dartnell, Peter; Cochrane, Guy R.; Finlayson, David P.
2014-01-01
In 2011, scientists from the U.S. Geological Survey’s Coastal and Marine Geology Program acquired bathymetry and acoustic-backscatter data along the upper slope of the Farallon Escarpment and Rittenburg Bank within the Gulf of the Farallones National Marine Sanctuary offshore of the San Francisco Bay area. The surveys were funded by the National Oceanic and Atmospheric Administration’s Deep Sea Coral Research and Technology Program to identify potential deep sea coral habitat prior to planned sampling efforts. Bathymetry and acoustic-backscatter data can be used to map seafloor geology (rock, sand, mud), and slope of the sea floor, both of which are useful for the prediction of deep sea coral habitat. The data also can be used for the prediction of sediment and contaminant budgets and transport, and for the assessment of earthquake and tsunami hazards. The surveys were conducted aboard National Oceanic and Atmospheric Administration’s National Marine Sanctuary Program’s 67-foot-long research vessel Fulmar outfitted with a U.S. Geological Survey 100-kHz Reson 7111 multibeam-echosounder system. This report provides the bathymetry and backscatter data acquired during these surveys, interpretive seafloor character maps in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee metadata.
Deep drilling in the Chesapeake Bay impact structure - An overview
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.
2009-01-01
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.
2016-12-01
The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive track makes users experience a virtual dive survey. In addition, by synchronizing a virtual dive track with videos, it is easy to understand living organisms and geological environments of a dive point. Therefore, these functions will visually support understanding of deep-sea environments in lectures and educational activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James J.
Shaffer’s (2010) article reports on the long term impact of less than perfect retention of anthropogenic CO2 stored in deep geologic reservoirs and in the ocean. The central thesis of this article is predicated on two deeply flawed assumptions. The first and most glaring is the implicit assumption that society has only one means of reducing greenhouse gas emissions, carbon dioxide capture and storage (CCS). Secondly, there is absolutely no geophysical nor geomechanical basis for assuming an exponential decay of CO2 stored in deep geologic formations as done by Schaffer. Shaffer’s analysis of the impact of leakage from anthropogenic CO2more » stored in deep geologic reservoirs are based upon two fundamentally flawed assumptions and therefore the reported results as well as the public policy conclusions presented in the paper need to be read with this understanding in mind as far less CO2 stored below ground because society drew upon a broad portfolio of advanced energy technologies over the coming century coupled with a more technically accurate conceptualization of CO2 storage in the deep subsurface and the important role of secondary and tertiary trapping mechanisms would have yield a far less pessimistic view of the potential role that CCS can play in a broader portfolio of societal responses to the very serious threat posed by climate change.« less
Geologic history of the Black Hills caves, South Dakota
Palmer, Arthur N.; Palmer, Margaret; Paces, James B.
2016-01-01
The caves reveal four phases of calcite deposition: eogenetic ferroan calcite (Mississippian replacement of sulfates); white scalenohedra in paleovoids deposited during deep post-Mississippian burial; palisade crusts formed during blockage of springs by Oligocene–Miocene continental sediments; and laminated crusts from late Pleistocene water-table fluctuations. The caves reveal more than 300 m.y. of geologic history and a close relationship to regional geologic events.
NASA Astrophysics Data System (ADS)
Mosher, D. C.; Baldwin, K.; Gebhardt, C.
2016-12-01
Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.
Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L
2015-11-01
The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.
Process-based approach for the detection of CO2 injectate leakage
Romanak, Katherine; Bennett, Philip C.
2017-11-14
The present invention includes a method for distinguishing between a natural source of deep gas and gas leaking from a CO.sub.2 storage reservoir at a near surface formation comprising: obtaining one or more surface or near surface geological samples; measuring a CO.sub.2, an O.sub.2, a CH.sub.4, and an N.sub.2 level from the surface or near surface geological sample; determining the water vapor content at or above the surface or near surface geological samples; normalizing the gas mixture of the CO.sub.2, the O.sub.2, the CH.sub.4, the N.sub.2 and the water vapor content to 100% by volume or 1 atmospheric total pressure; determining: a ratio of CO.sub.2 versus N.sub.2; and a ratio of CO.sub.2 to N.sub.2, wherein if the ratio is greater than that produced by a natural source of deep gas CO.sub.2 or deep gas methane oxidizing to CO.sub.2, the ratio is indicative of gas leaking from a CO.sub.2 storage reservoir.
Βedrock instability of underground storage systems in the Czech Republic, Central Europe
NASA Astrophysics Data System (ADS)
Novakova, Lucie; Broz, Milan; Zaruba, Jiri; Sosna, Karel; Najser, Jan; Rukavickova, Lenka; Franek, Jan; Rudajev, Vladimir
2016-06-01
Underground storage systems are currently being used worldwide for the geological storage of natural gas (CH4), the geological disposal of CO2, in geothermal energy, or radioactive waste disposal. We introduce a complex approach to the risks posed by induced bedrock instabilities in deep geological underground storage sites. Bedrock instability owing to underground openings has been studied and discussed for many years. The Bohemian Massif in the Czech Republic (Central Europe) is geologically and tectonically complex. However, this setting is ideal for learning about the instability state of rock masses. Longterm geological and mining studies, natural and induced seismicity, radon emanations, and granite properties as potential storage sites for disposal of radioactive waste in the Czech Republic have provided useful information. In addition, the Czech Republic, with an average concentration radon of 140 Bq m-3, has the highest average radon concentrations in the world. Bedrock instabilities might emerge from microscale features, such as grain size and mineral orientation, and microfracturing. Any underground storage facility construction has to consider the stored substance and the geological settings. In the Czech Republic, granites and granitoids are the best underground storage sites. Microcrack networks and migration properties are rock specific and vary considerably. Moreover, the matrix porosity also affects the mechanical properties of the rocks. Any underground storage site has to be selected carefully. The authors suggest to study the complex set of parameters from micro to macroscale for a particular place and type of rock to ensure that the storage remains safe and stable during construction, operation, and after closure.
Towards a Geocognition of Geothermal Energy: an Evolving Research Partnership in South West England
NASA Astrophysics Data System (ADS)
Gibson, H.; Stewart, I. S.; Ledingham, P.
2017-12-01
The development and deployment of novel geological technologies in industry often raise anxiety in the public sphere. New technologies are intrinsically unfamiliar, not only to the public, but also to other technical specialists in the field. This can focus conflict and uncertainty around issues that may not actually be problematic, or obscure other issues that may actually warrant closer inspection. An example of an emergent geo-technology that has received little attention in the public or general technical spheres is the introduction of Enhanced Geothermal Power in the UK. In early 2018, a project testing the viability of deep geothermal heat and power will begin in Cornwall, England, and is likely to face contested issues of public perception that have confronted other novel geological technologies, such as Carbon Capture and Storage and hydraulic fracturing. To address concerns about how the UK public will conceptualise this new technology, the Cornish deep geothermal project has developed an innovative partnership between the industry partner operating the test drilling site and a geoscience cognition research partner. That research partner integrates geoscience, cognitive psychology and media communication specialists in a three-year project that will track evolving public perceptions of and community attitudes to geothermal energy; from initial community engagements to the drilling operations and, ultimately, to the operation of the facility. Key in this study will be an exploration of how the industrial partnership impacts and affects the research process as the site testing proceeds, but also how the research process can engage with issues of communication between the industrial partner and the public. Overall, the interdisciplinary research aims to better understand how public/industry partnerships develop and evolve over the lifetime of an active geo-energy project and thereby help inform and improve community-centred geo-communication around novel energy technologies in the future.
Pitt, William A.; Meyer, Frederick W.
1976-01-01
The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.
NASA Astrophysics Data System (ADS)
Urban, F. E.; Clow, G. D.; Meares, D. C.
2004-12-01
Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.
CO2 storage capacity estimation: Methodology and gaps
Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M.
2007-01-01
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales-in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers. ?? 2007 Elsevier Ltd. All rights reserved.
ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project
NASA Astrophysics Data System (ADS)
Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik
2013-04-01
The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.
NASA Astrophysics Data System (ADS)
Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.
2017-04-01
Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 63.112 Section 63.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Technical... repository operations area. The preclosure safety analysis of the geologic repository operations area must...
Computational Modeling of the Geologic Sequestration of Carbon Dioxide
Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...
Geophysical characterization of Range-Front Faults, Snake Valley, Nevada
Asch, Theodore H.; Sweetkind, Donald S.
2010-01-01
In September 2009, the U.S. Geological Survey, in cooperation with the National Park Service, collected audiomagnetotelluric (AMT) data along two profiles on the eastern flank of the Snake Range near Great Basin National Park to refine understanding of the subsurface geology. Line 1 was collected along Baker Creek, was approximately 6.7-km long, and recorded subsurface geologic conditions to approximately 800-m deep. Line 2, collected farther to the southeast in the vicinity of Kious Spring, was 2.8-km long, and imaged to depths of approximately 600 m. The two AMT lines are similar in their electrical response and are interpreted to show generally similar subsurface geologic conditions. The geophysical response seen on both lines may be described by three general domains of electrical response: (1) a shallow (mostly less than 100-200-m deep) domain of highly variable resistivity, (2) a deep domain characterized by generally high resistivity that gradually declines eastward to lower resistivity with a steeply dipping grain or fabric, and (3) an eastern domain in which the resistivity character changes abruptly at all depths from that in the western domain. The shallow, highly variable domain is interpreted to be the result of a heterogeneous assemblage of Miocene conglomerate and incorporated megabreccia blocks overlying a shallowly eastward-dipping southern Snake Range detachment fault. The deep domain of generally higher resistivity is interpreted as Paleozoic sedimentary rocks (Pole Canyon limestone and Prospect Mountain Quartzite) and Mesozoic and Cenozoic plutonic rocks occurring beneath the detachment surface. The range of resistivity values within this deep domain may result from fracturing adjacent to the detachment, the presence of Paleozoic rock units of variable resistivities that do not crop out in the vicinity of the lines, or both. The eastern geophysical domain is interpreted to be a section of Miocene strata at depth, overlain by Quaternary alluvial fill. These deposits lie east of a steeply east-dipping normal fault that cuts all units and has about 100 m of east-side-down offset.
NASA Astrophysics Data System (ADS)
Nomeli, Mohammad; Riaz, Amir
2017-11-01
CO2 storage in geological formations is one of the most promising solutions for mitigating the amount of greenhouse gases released into the atmosphere. One of the important issues for CO2 storage in subsurface environments is the sealing efficiency of low-permeable cap-rocks overlying potential CO2 storage reservoirs. A novel model is proposed to find the IFT of the systems (CO2/brine-salt) in a range of temperatures (300-373 K), pressures (50-250 bar), and up to 6 molal salinity applicable to CO2 storage in geological formations through a machine learning-assisted modeling of experimental data. The IFT between mineral surfaces and CO2/brine-salt solutions determines the efficiency of enhanced oil or gas recovery operations as well as our ability to inject and store CO2 in geological formations. Finally, we use the new model to evaluate the effects of formation depth on the actual efficiency of CO2 storage. The results indicate that, in the case of CO2 storage in deep subsurface environments as a global-warming mitigation strategy, CO2 storage capacity are improved with reservoir depth.
NASA Astrophysics Data System (ADS)
Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.
2015-12-01
Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.
Characterization Efforts in a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.
2016-12-01
The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, D.W.
1989-03-01
The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less
NASA Astrophysics Data System (ADS)
Kwon, Young Joo; Choi, Jong Won
This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.
Ganymede and Callisto: Beauty is only skin deep
NASA Technical Reports Server (NTRS)
Croft, S. K.
1985-01-01
Ganymede and Callisto, the two giant icy satellites of Jupiter, have very nearly the same size, composition, and location in the solar system, yet their surfaces are profoundly different. A new scenario of their geologic histories indicates that the differences may be only skin deep.
Vilarrasa, Victor; Carrera, Jesus
2015-01-01
Zoback and Gorelick [(2012) Proc Natl Acad Sci USA 109(26):10164–10168] have claimed that geologic carbon storage in deep saline formations is very likely to trigger large induced seismicity, which may damage the caprock and ruin the objective of keeping CO2 stored deep underground. We argue that felt induced earthquakes due to geologic CO2 storage are unlikely because (i) sedimentary formations, which are softer than the crystalline basement, are rarely critically stressed; (ii) the least stable situation occurs at the beginning of injection, which makes it easy to control; (iii) CO2 dissolution into brine may help in reducing overpressure; and (iv) CO2 will not flow across the caprock because of capillarity, but brine will, which will reduce overpressure further. The latter two mechanisms ensure that overpressures caused by CO2 injection will dissipate in a moderate time after injection stops, hindering the occurrence of postinjection induced seismicity. Furthermore, even if microseismicity were induced, CO2 leakage through fault reactivation would be unlikely because the high clay content of caprocks ensures a reduced permeability and increased entry pressure along the localized deformation zone. For these reasons, we contend that properly sited and managed geologic carbon storage in deep saline formations remains a safe option to mitigate anthropogenic climate change. PMID:25902501
Deep Borehole Field Test Laboratory and Borehole Testing Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.
2016-09-19
Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuelmore » and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).« less
Geological Sequestration of CO2 A Brief Overview and Potential for Application for Oklahoma
Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...
Preliminary geologic map of the Wadi As Sirhan Quadrangle, sheet 30C, Kingdom of Saudi Arabia
Meissner, C.R.; Griffin, M.B.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.
1990-01-01
Several deep drill holes in the Wadi as Sirhan depression have penetrated thick sequences of marine rocks that are potential sources of oil and gas. Geological and geophysical conditions are favorable for the accumulation of hydrocarbons, and additional exploration is recommended.
REGULATING THE ULTIMATE SINK: MANAGING THE RISKS OF GEOLOGIC CO2 STORAGE
The paper addresses the issue of geologic storage (GS) of carbon dioxide (CO2) and discusses the risks and regulatory history of deep underground waste injection on the U.S. mainland and surrounding continental shelf. The treatment focuses on the technical and regulatory aspects ...
United States Geological Survey Yearbook, fiscal year 1986
,
1987-01-01
This volume of the U.S. Geological Survey Yearbook is special, the first we have ever dedicated to an individual. While we were preparing that repost, Vincent E. McKelvey, eminent scientist and former Director of the Geological Survey died. Because of his deep devotion not only to his science but also to the agency and to the public that he served, we dedicate the 1986 Yearbook to Vince's memory.
Freifeld, Barry; Daley, Tom; Cook, Paul; ...
2014-12-31
Understanding the impacts caused by injection of large volumes of CO 2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO 2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Boreholemore » Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO 2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM work scope, the fibre-optic cable was able to also be used for the emergent technology of distributed acoustic sensing. The MBM monitoring string was installed in March, 2012. To date, the Citronelle MBM instruments continue to operate reliably. Results and lessons learned from the Citronelle MBM deployment are addressed along with examples of data being collected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouzounian, P.; Palmu, Marjatta; Eng, Torsten
2012-07-01
Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel,more » high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)« less
Robotic Sample Manipulator for Handling Astromaterials Inside the Geolab Microgravity Glovebox
NASA Technical Reports Server (NTRS)
Bell, Mary S.; Calaway, M. J.; Evans, C. A.; Li,Z.; Tong, S.; Zhong, Y.; Dahiwala, R.; Wang, L.; Porter, F.
2013-01-01
Future human and robotic sample return missions will require isolation containment systems with strict protocols and procedures for reducing inorganic and organic contamination. Robotic handling and manipulation of astromaterials may be required for preliminary examination inside such an isolation containment system. In addition, examination of astromaterials in microgravity will require constant contact to secure samples during manipulation. The National Space Grant Foundation exploration habitat (XHab) academic innovative challenge 2012 administered through the NASA advanced exploration systems (AES) deep space habitat (DSH) project awarded funding to the University of Bridgeport team to develop an engineering design for tools to facilitate holding and handling geological samples for analysis in a microgravity glovebox environment. The Bridgeport XHab team developed a robotic arm system with a three-finger gripper that could manipulate geologic samples within the existing GeoLab glovebox integrated into NASA's DSH called the GeoLab Robotic Sample Manipulator (see fig. 1 and 2). This hardware was deployed and tested during the 2012 DSH mission operations tests [1].
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
USDA-ARS?s Scientific Manuscript database
Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...
The Geology of Comet 19/P Borrelly
NASA Technical Reports Server (NTRS)
Britt, D. T.; Boice, D. C; Buratti, B. J.; Hicks, M. D.; Nelson, R. M.; Oberst, J.; Sandel, B. R.; Soderblom, L. A.; Stern, S. A.; Thomas, N.
2002-01-01
The Deep Space One spacecraft flew by Comet 19P/Borrelly on September 22, 2001 and returned a rich array of imagery with resolutions of up to 48 m/pixel. These images provide a window into the surface structure, processes, and geological history of a comet. Additional information is contained in the original extended abstract.
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.132 Additional design criteria for surface facilities in...
10 CFR 60.111 - Performance of the geologic repository operations area through permanent closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Performance of the geologic repository operations area... OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.111 Performance of the geologic repository operations area through permanent closure. (a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Operators Offshore, Inc.
The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less
NASA Astrophysics Data System (ADS)
Pulling, Azalie Cecile
The purpose of this study was to use deep time, that is geologic time as a mechanism to explore middle school students' understanding of the natural history of the earth and the evolution of life on earth. Geologic time is a logical precursor to middle school students' understanding of biological evolution. This exploratory, mixed model study used qualitative and quantitative methods in each stage of the research to explore sixth grade students, understanding of geologic time, their worldviews (e.g., conceptual ecology), and conceptual change. The study included fifty-nine students in the large group study and four case studies. The primary data collection instrument was the Geologic Timeline Survey. Additional data collection instruments and methods (e.g., concept evaluation statement, journal entries, word associations, interviews, and formal tests) were used to triangulate the study findings. These data were used to create narrative modal profiles of the categories of student thinking that emerged from the large group analysis: Middle School (MS) Scientists (correct science), MS Protoscientists (approaching correct science), MS Prescientists (dinosaur understanding), and MS Pseudoscientists (fundamental religious understanding). Case studies were used to provide a thick description of each category. This study discovered a pattern of student thinking about geologic time that moved along a knowledge continuum from pseudoscience (fundamental creationist understanding) to prescience (everyday-science understanding) to science (correct or approaching correct science). The researcher described the deep-seated misconceptions produced by the prescience thinking level, e.g., dinosaur misconceptions, and cautioned the science education community about using dinosaurs as a glamour-science topic. The most limiting conceptual frameworks found in this study were prescience (a dinosaur focus) and pseudoscience (a fundamental religious focus). An understanding of geologic time as Piaget's system of time (e.g., chronological ordering of events, before and after relationships, duration or evolutionary time) was a necessary conceptual framework for students to develop a scientific understanding of deep time. An examination of students, worldviews and the interface of science and religion indicated that students often successfully applied a demarcation between science and religion in their public thinking (e.g., the formal classroom setting), but in their private thinking, the demarcation was often blurred.
DFN Modeling for the Safety Case of the Final Disposal of Spent Nuclear Fuel in Olkiluoto, Finland
NASA Astrophysics Data System (ADS)
Vanhanarkaus, O.
2017-12-01
Olkiluoto Island is a site in SW Finland chosen to host a deep geological repository for high-level nuclear waste generated by nuclear power plants of power companies TVO and Fortum. Posiva, a nuclear waste management organization, submitted a construction license application for the Olkiluoto repository to the Finnish government in 2012. A key component of the license application was an integrated geological, hydrological and biological description of the Olkiluoto site. After the safety case was reviewed in 2015 by the Radiation and Nuclear Safety Authority in Finland, Posiva was granted a construction license. Posiva is now preparing an updated safety case for the operating license application to be submitted in 2022, and an update of the discrete fracture network (DFN) model used for site characterization is part of that. The first step describing and modelling the network of fractures in the Olkiluoto bedrock was DFN model version 1 (2009), which presented an initial understanding of the relationships between rock fracturing and geology at the site and identified the important primary controls on fracturing. DFN model version 2 (2012) utilized new subsurface data from additional drillholes, tunnels and excavated underground facilities in ONKALO to better understand spatial variability of the geological controls on geological and hydrogeological fracture properties. DFN version 2 connected fracture geometric and hydraulic properties to distinct tectonic domains and to larger-scale hydraulically conductive fault zones. In the version 2 DFN model, geological and hydrogeological models were developed along separate parallel tracks. The version 3 (2017) DFN model for the Olkiluoto site integrates geological and hydrogeological elements into a single consistent model used for geological, rock mechanical, hydrogeological and hydrogeochemical studies. New elements in the version 3 DFN model include a stochastic description of fractures within Brittle Fault Zones (BFZ), integration of geological and hydrostructural interpretations of BFZ, greater use of 3D geological models to better constrain the spatial variability of fracturing and fractures using hydromechanical principles to account for material behavior and in-situ stresses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Emergency plan for the geologic repository operations area... OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Emergency Planning Criteria § 63.161 Emergency plan for the geologic repository operations area through permanent...
Stamm, Robert G.
2018-06-08
BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.
Geological and biological heterogeneity of the Aleutian margin (1965-4822 m)
NASA Astrophysics Data System (ADS)
Rathburn, A. E.; Levin, L. A.; Tryon, M.; Gieskes, J. M.; Martin, J. B.; Pérez, M. E.; Fodrie, F. J.; Neira, C.; Fryer, G. J.; Mendoza, G.; McMillan, P. A.; Kluesner, J.; Adamic, J.; Ziebis, W.
2009-01-01
Geological, biological and biogeochemical characterization of the previously unexplored margin off Unimak Island, Alaska between 1965 and 4822 m water depth was conducted to examine: (1) the geological processes that shaped the margin, (2) the linkages between depth, geomorphology and environmental disturbance in structuring benthic communities of varying size classes and (3) the existence, composition and nutritional sources of methane seep biota on this margin. The study area was mapped and sampled using multibeam sonar, a remotely operated vehicle (ROV) and a towed camera system. Our results provide the first characterization of the Aleutian margin mid and lower slope benthic communities (microbiota, foraminifera, macrofauna and megafauna), recognizing diverse habitats in a variety of settings. Our investigations also revealed that the geologic feature known as the “Ugamak Slide” is not a slide at all, and could not have resulted from a large 1946 earthquake. However, sediment disturbance appears to be a pervasive feature of this margin. We speculate that the deep-sea occurrence of high densities of Elphidium, typically a shallow-water foraminiferan, results from the influence of sediment redeposition from shallower habitats. Strong representation of cumacean, amphipod and tanaid crustaceans among the Unimak macrofauna may also reflect sediment instability. Although some faunal abundances decline with depth, habitat heterogeneity and disturbance generated by canyons and methane seepage appear to influence abundances of biota in ways that supercede any clear depth gradient in organic matter input. Measures of sediment organic matter and pigment content as well as C and N isotopic signatures were highly heterogeneous, although the availability of organic matter and the abundance of microorganisms in the upper sediment (1-5 cm) were positively correlated. We report the first methane seep on the Aleutian slope in the Unimak region (3263-3285 m), comprised of clam bed, pogonophoran field and carbonate habitats. Seep foraminiferal assemblages were dominated by agglutinated taxa, except for habitats above the seafloor on pogonophoran tubes. Numerous infaunal taxa in clam bed and pogonophoran field sediments and deep-sea “reef” cnidarians (e.g., corals and hydroids) residing on rocks near seepage sites exhibited light organic δ 13C signatures indicative of chemosynthetic nutritional sources. The extensive geological, biogeochemical and biological heterogeneity as well as disturbance features observed on the Aleutian slope provide an attractive explanation for the exceptionally high biodiversity characteristic of the world’s continental margins.
Putting the Deep Biosphere and Gas Hydrates on the Map
ERIC Educational Resources Information Center
Sikorski, Janelle J.; Briggs, Brandon R.
2016-01-01
Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…
Theories of the Earth and the Nature of Science.
ERIC Educational Resources Information Center
Williams, James
1991-01-01
Describes the history of the science of geology. The author expounds upon the discovery of deep time and plate tectonics, explaining how the theory of deep time influenced the development of Darwin and Wallace's theory of evolution. Describes how the history of earth science helps students understand the nature of science. (PR)
Inagaki, F; Takai, K; Komatsu, T; Kanamatsu, T; Fujioka, K; Horikoshi, K
2001-12-01
A record of the history of the Earth is hidden in the Earth's crust, like the annual rings of an old tree. From very limited records retrieved from deep underground, one can infer the geographical, geological, and biological events that occurred throughout Earth's history. Here we report the discovery of vertically shifted community structures of Archaea in a typical oceanic subseafloor core sample (1410 cm long) recovered from the West Philippine Basin at a depth of 5719 m. Beneath a surface community of ubiquitous deep-sea archaea (marine crenarchaeotic group I; MGI), an unusual archaeal community consisting of extremophilic archaea, such as extreme halophiles and hyperthermophiles, was present. These organisms could not be cultivated, and may be microbial relicts more than 2 million years old. Our discovery of archaeal rDNA in this core sample, probably associated with the past terrestrial volcanic and submarine hydrothermal activities surrounding the West Philippine Basin, serves as potential geomicrobiological evidence reflecting novel records of geologic thermal events in the Pleistocene period concealed in the deep-sea subseafloor.
Apollo 15 crewmen riding lunar roving vehicle simulator during geology trip
1970-11-02
S70-53300 (2-3 Nov. 1970) --- Two Apollo 15 crew members, riding a Lunar Roving Vehicle (LRV) simulator, participate in geology training at the Cinder Lake crater field in Arizona. Astronaut David R. Scott, Apollo 15 commander, seated on the left; and to Scott's right is astronaut James B. Irwin, lunar module pilot. They have stopped at the rim of a 30-feet deep crater to look over the terrain. The simulator, called "Grover", was built by the United States Geological Survey.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... deep saline geologic formations for permanent geologic storage. DATES: DOE invites the public to...; or by fax (304) 285-4403. The Draft EIS is available on DOE's NEPA Web page at: http://nepa.energy.gov/DOE_NEPA_documents.htm ; and on the National Energy Technology Laboratory's Web page at: http...
GeoLab: A Geological Workstation for Future Missions
NASA Technical Reports Server (NTRS)
Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi
2014-01-01
The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.
Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3
Rosenbauer, Robert J.; Thomas, Burt
2010-01-01
Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.
Submersible observations along the southern Juan de Fuca Ridge: 1984 Alvin program.
Normark, William R.; Morton, Janet L.; Ross, Stephanie L.
1987-01-01
In September 1984, the research submersible Alvin provided direct observations of three major hydrothermal vent areas along the southernmost segment of the Juan de Fuca Ridge (JFR). The submersible operations focused on specific volcanologie, structural, and hydrothermal problems that had been identified during the preceding 4 years of photographic, dredging, acoustic imaging, and geophysical studies along a 12-km-long section of the ridge. A continuously maintained (from 1981 to the present) net of seafloor-anchored acoustic transponders allowed the observations from Alvin to be directly tied to all previous U.S. Geological Survey data sets and National Oceanic and Atmospheric Administration water column surveys from 1984 to the present. The three vent areas studied are the largest of at least six areas identified by previous deep-towed camera surveys that lie within a deep cleft, which marks the axis of symmetry of the JFR in this region. The cleft appears to be the locus of eruption for this segment of the JFR. The vent areas, at least in part, are localized near what appear to be previous volcanic eruptive centers marked by extensive lava lake collapse features adjacent to the cleft at these sites. Each hydrothermal area has several active discharge sites, and sulfide deposits occur as clusters (15–100 m2) of small chimneys, individual large chimneys, or clusters of large branched chimneys. We review the dive program and present a brief synthesis of the geology of the vent sites together with sample and track line compilations.
Industrial Program of Waste Management - Cigeo Project - 13033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butez, Marc; Bartagnon, Olivier; Gagner, Laurent
2013-07-01
The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less
Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong
2012-01-01
Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467
Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong
2012-01-01
Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.
NASA Astrophysics Data System (ADS)
Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta
2017-07-01
This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.
10 CFR 60.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General..., special nuclear, and byproduct material at a geologic repository operations area sited, constructed, or... at a geologic repository operations area sited, constructed, or operated at Yucca Mountain, Nevada...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.
2008-01-22
The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less
USDA-ARS?s Scientific Manuscript database
Previous work conducted by the Wisconsin Geological and Natural History Survey indicated that human enteric viruses from leaking sewers are present in several municipal wells in Madison, WI. These wells are the drinking water source for the City of Madison, are typically 700 to 900 feet deep, and pe...
10 CFR 60.130 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.130 General... for a high-level radioactive waste repository at a geologic repository operations area, and an... geologic repository operations area, must include the principal design criteria for a proposed facility...
How Old? Tested and Trouble-Free Ways to Convey Geologic Time
ERIC Educational Resources Information Center
Clary, Renee
2009-01-01
Geologic time, or the time frame of our planet's history, is several orders of magnitude greater than general human understanding of "time." When students hear that our planet has a 4.6-billion-year history, they do not necessarily comprehend the magnitude of deep time, the huge expanse of time that has passed from the origin of Earth through the…
Kolak, Jonathan J.
2006-01-01
Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.
Geoscientific Site Evaluation Approach for Canada's Deep Geological Repository for Used Nuclear Fuel
NASA Astrophysics Data System (ADS)
Sanchez-Rico Castejon, M.; Hirschorn, S.; Ben Belfadhel, M.
2015-12-01
The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO published and initiated a nine-step site selection process to find an informed and willing community to host a deep geological repository for Canada's used nuclear fuel. The site selection process is designed to address a broad range of technical and social, economic and cultural factors. The site evaluation process includes three main technical evaluation steps: Initial Screenings; Preliminary Assessments; and Detailed Site Characterizations, to assess the suitability of candidate areas in a stepwise manner over a period of many years. By the end of 2012, twenty two communities had expressed interest in learning more about the project. As of July 2015, nine communities remain in the site selection process. To date (July 2015), NWMO has completed Initial Screenings for the 22 communities that expressed interest, and has completed the first phase of Preliminary Assessments (desktop) for 20 of the communities. Phase 2 of the Preliminary Assessments has been initiated in a number of communities, with field activities such as high-resolution airborne geophysical surveys and geological mapping. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process.
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.
2017-12-01
The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.
NASA Astrophysics Data System (ADS)
Coleman, D. F.; Ten Brink, U. S.; Armstrong, R.; Chaytor, J. D.; Demopoulos, A. W.
2013-12-01
During October 2013, an ocean exploration project took place off the coast of Puerto Rico and the Virgin Islands. This project, a collaborative effort between the Ocean Exploration Trust, the US Geological Survey, the University of Puerto Rico at Mayaguez, the University of Rhode Island, and NOAA, was aimed at exploring regions of the US exclusive economic zone (EEZ) south of the Puerto Rico Trench axis, and north of Mona Island, Puerto Rico, and the US and British Virgin Islands, and portions of the Anegada Passage. The research vessel E/V Nautilus and the Hercules/Argus ROV system were used to expand the multibeam sonar bathymetric data coverage of the region, collect high definition video footage of seafloor features, and to collect biological and geological samples along selected transects. Particular areas of interest for targeted ROV dives included: the region where a large M7.2 1918 earthquake produced a tsunami that struck northwestern corner of Puerto Rico; a transect up the vertical wall of the Mona Rift (4000 to 1500 m depth); transects along the Septentrional fault system; dives in areas of suspected fluid flow through faults, fissures, and offshore Karst systems associated with the tilted carbonate platform north of Puerto Rico; dives in the Anegada Passage at the entry points for surface Atlantic waters that circulate into the Caribbean; and in regions to investigate and date sedimentary features offset by fault motion and potential tsunamigenic landslides. Biological sampling of many deep-sea benthic organisms (including deep water corals) have never been attempted before in this area. These samples are being used to understand more about the diversity, population dynamics, genetics, and habitat connectivity of these communities, and to provide an age constraint for disturbed sedimentary features. Until this cruise, the location and distribution of deep coral habitats in the US Caribbean was largely unknown. The available information on benthic communities associated with deep coral ecosystems in this region was mostly limited to taxonomic listings from incidental collections by fish traps, shrimp trawls and coral entanglement devices. We present the results of the first direct observations and sampling of these ecosystems.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, S.; Jivkov, A.P.
2012-07-01
Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes.more » The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)« less
Geology and deposits of the lunar Nectaris basin
NASA Technical Reports Server (NTRS)
Spudis, P. D.; Hawke, B. R.; Lucey, P. G.
1989-01-01
The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.
Geology and deposits of the lunar Nectaris basin
NASA Astrophysics Data System (ADS)
Spudis, P. D.; Hawke, B. R.; Lucey, P. G.
The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.
Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber
NASA Astrophysics Data System (ADS)
Tsuchiya, N.
2017-12-01
We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.
Submersible Research in Extreme Environments Using a Novel Light-Tethered Hybrid ROV
NASA Astrophysics Data System (ADS)
Bowen, A. D.; Fryer, P.; Shank, T.; Edwards, M.
2003-12-01
The Hybrid Remotely Operated Vehicle (HROV) will provide the U.S. oceanographic community with capable and cost-effective technology for routine access to the world's oceans to 11,000 meters. The hybrid vehicle design permits operation as an untethered, fully autonomous vehicle, and also as a self-powered ROV employing a 3mm diameter optical fiber tether for real-time telemetry of data and video to operators on a surface ship. Several environments that are currently inaccessible for detailed research have sufficiently mature and testable scientific problems that could be addressed using the HROV. The greatest depths on the surface of Earth are found in oceanic trenches. The complex effects of subduction of oceanic lithosphere beneath both continental and oceanic lithospheric plates are subjects of intense interest in the marine geological and geophysical community because they are prime areas where oceanic lithosphere is recycled back into the mantle. Recent studies of the Challenger Deep (CD) in the Mariana Trench show potential fluid conduits on the subducting plate that occur at depths greater than 10,000 m. The inner trench slope in the vicinity of the CD is a site where fluids derived from the down-going plate and talus from the overriding plate may be interacting. The processes of talus accumulation at this locality and the ultimate fate of the material may be critical to understanding the processes of tectonic erosion and of arc recycling in convergent plate margins. Also, the biology and microbiology of these sites is virtually unknown. The HROV will be ideally suited to conduct pioneering mapping and sampling of these seafloor environments. Over the past few decades, mid-ocean ridge studies have been enabled by deep submergence vehicle access and capabilities, and likewise, this branch of science has provided compelling need for the current family of synergistic deep submergence systems. With the recent identification and first-order mapping and dredging studies of ultra-slow spreading ridges in the Arctic, for instance, scientists are poised to make breakthroughs in our understanding of this important end-member of seafloor spreading environment. The ability to sample and observe detailed geological, biological and chemical processes occurring at these slowest spreading MORs will undoubtedly revolutionize our understanding of how seafloor spreading is manifested in these settings. In addition, we expect to find a host of novel biological communities and chemical-biochemical processes associated with recently discovered hydrothermal venting on Gakkel Ridge in the Arctic Ocean as a consequence of tectonic isolation starting in the late Mesozoic. It was not until the middle Miocene that deep water communication was reestablished with the north Atlantic and not until 3Ma with the north Pacific . Currently, Iceland essentially blocks potential migrations from the mid-Atlantic ridge to the Gakkel ridge. The HROV will be highly applicable to operations under-ice, such as those that will be required for survey, close-up inspection, and sampling of sites on the ultra slow spreading Gakkel Ridge in the Arctic Basin.
Scientific drilling projects in ancient lakes: Integrating geological and biological histories
NASA Astrophysics Data System (ADS)
Wilke, Thomas; Wagner, Bernd; Van Bocxlaer, Bert; Albrecht, Christian; Ariztegui, Daniel; Delicado, Diana; Francke, Alexander; Harzhauser, Mathias; Hauffe, Torsten; Holtvoeth, Jens; Just, Janna; Leng, Melanie J.; Levkov, Zlatko; Penkman, Kirsty; Sadori, Laura; Skinner, Alister; Stelbrink, Björn; Vogel, Hendrik; Wesselingh, Frank; Wonik, Thomas
2016-08-01
Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets to create an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep-drilling projects.
Microbial Ecosystems from the Deepest Regions of the Terrestrial Deep Biosphere
NASA Astrophysics Data System (ADS)
Moser, D. P.
2011-12-01
Although recent discoveries from four continents support the existence of microbial ecosystems across vast regions of our planet's inner space, very little is known about the abundance, distribution, diversity, or ultimate depth limit of subsurface microbial life. These deep lithospheric inhabitants must contend with a variety of potential challenges including high temperature, pressure and salinity, extreme isolation, and low energy flux. Interestingly, although deep microbial ecosystems are assumed to be energy and nutrient limited, it is often difficult to identify any one limiting substrate and the energy for deep life is often present in relative abundance (e.g. as geologically-produced hydrogen or other reduced gases). Recently, the concept of radiation-supported deep microbial ecosystems has gained traction in the literature. In particular, one bacterium, a Firmicute denoted Candidatus Desulforudis audaxviator, has been shown to be prominent, and in cases dominate, in deep fracture fluids from across the Witwatersrand basin of South Africa, where it appears to persist by utilizing H2 and SO42- derived from radiochemical reactions in U-rich host rock. Until recently, these mines were thought to define the geographic limit of this genus and species; however, our recent North American detection of D. audaxviator in radioactive subsurface water resulting from underground nuclear tests both supports earlier assertions concerning the radiochemical lifestyle of D. audaxviator and greatly expands its range. Results such as these suggest that novel modes of life operating without inputs from the photosphere are possible, and thus may have implications for the likelihood of detecting life off the Earth (e.g. in the Martian subsurface). In addition to underground nuclear detonation cavities, this talk will consider insights gained from ongoing microbial ecology assessments from several to date unexplored deep ecosystems accessed via deep mines in the Black Hills (USA) and Canadian Shield (Canada) and exploratory boreholes in the Southern Great Basin (USA). The tantalizing possibility that several of these new potential habitats have exceeded some limit for life will be also be explored.
NASA Astrophysics Data System (ADS)
Sikorski, J. J.; Briggs, B. R.
2014-12-01
The ocean is essential for life on our planet. It covers 71% of the Earth's surface, is the source of the water we drink, the air we breathe, and the food we eat. Yet, the exponential growth in human population is putting the ocean and thus life on our planet at risk. However, based on student evaluations from our introductory oceanography course it is clear that our students have deficiencies in ocean literacy that impact their ability to recognize that the ocean and humans are inextricably connected. Furthermore, life present in deep subsurface marine environments is also interconnected to the study of the ocean, yet the deep biosphere is not typically covered in undergraduate oceanography courses. In an effort to improve student ocean literacy we developed an instructional module on the deep biosphere focused on gas hydrate deposits. Specifically, our module utilizes Google Earth and cutting edge research about microbial life in the ocean to support three inquiry-based activities that each explore different facets of gas hydrates (i.e. environmental controls, biologic controls, and societal implications). The relevant nature of the proposed module also makes it possible for instructors of introductory geology courses to modify module components to discuss related topics, such as climate, energy, and geologic hazards. This work, which will be available online as a free download, is a solid contribution toward increasing the available teaching resources focused on the deep biosphere for geoscience educators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advanced Resources International
2010-01-31
Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.
1993-12-01
This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that maymore » have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.« less
NASA Astrophysics Data System (ADS)
Park, Y.-J.; Cornaton, F. J.; Normani, S. D.; Sykes, J. F.; Sudicky, E. A.
2008-04-01
F. J. Cornaton et al. (2008) introduced the concept of lifetime expectancy as a performance measure of the safety of subsurface repositories, on the basis of the travel time for contaminants released at a certain point in the subsurface to reach the biosphere or compliance area. The methodologies are applied to a hypothetical but realistic Canadian Shield crystalline rock environment, which is considered to be one of the most geologically stable areas on Earth. In an approximately 10 × 10 × 1.5 km3 hypothetical study area, up to 1000 major and intermediate fracture zones are generated from surface lineament analyses and subsurface surveys. In the study area, mean and probability density of lifetime expectancy are analyzed with realistic geologic and hydrologic shield settings in order to demonstrate the applicability of the theory and the numerical model for optimally locating a deep subsurface repository for the safe storage of spent nuclear fuel. The results demonstrate that, in general, groundwater lifetime expectancy increases with depth and it is greatest inside major matrix blocks. Various sources and aspects of uncertainty are considered, specifically geometric and hydraulic parameters of permeable fracture zones. Sensitivity analyses indicate that the existence and location of permeable fracture zones and the relationship between fracture zone permeability and depth from ground surface are the most significant factors for lifetime expectancy distribution in such a crystalline rock environment. As a consequence, it is successfully demonstrated that the concept of lifetime expectancy can be applied to siting and performance assessment studies for deep geologic repositories in crystalline fractured rock settings.
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
NASA Astrophysics Data System (ADS)
Vannier, Olivier; Braud, Isabelle; Anquetin, Sandrine
2013-04-01
The estimation of catchment-scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally done on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison of cumulated streamflow and precipitation to assess catchment-scale storage capacities. The DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber (Water Resources Research 13(3), 1977) to estimate water storage capacities and lateral saturated hydraulic conductivities of the non-documented deep horizons. The analysis is applied to a sample of twenty-three catchments (0.2 km² - 291 km²) located in the Cévennes-Vivarais region (south of France). In a regionalisation purpose, the obtained results are compared to the dominant catchments geology. This highlights a clear hierarchy between the different geologies present in the area. Hard crystalline rocks are found to be associated to the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be the less thick and the most conductive. Consequently, deep soil layers with thicknesses and hydraulic conductivities differing with the geology were added to a distributed hydrological model implemented over the Cévennes-Vivarais region. Preliminary simulations show a major improvement in terms of simulated discharge when compared to simulations done without deep soil layers. KEY WORDS: hydraulic soil properties, streamflow recession, deep soil horizons, soil databases, Boussinesq equation, storage capacity, regionalisation
NASA Astrophysics Data System (ADS)
Talasek, J.
2013-12-01
Imagining Deep Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term Deep Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and observations drawn from the study of the earth's structure and discovered fossilized flora and fauna. Deep time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as deep time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping and relating to a vast concept on a personal level. This exhibition explores the usefulness as well as the limitations of the visualization of deep time.
NASA Astrophysics Data System (ADS)
Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku
In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the electronic unit and the computer unit were stored in a spherical pressure vessel. The frequency output of the sidescan sonar is 330kHz, and the ranging distance is variable from 15m to 120m (one side).
The Geology of Yemen: An Annotated Bibliography of Yemen’s Geology, Geography and Earth Science
2012-01-01
pneumonia by improving maternal nutrition , health education, promoting breastfeeding, and preventing rickets and nutritional anaemia among the...Monitoring, Modeling, and Management. Merida, Yucatan , Mexico. Bauman, Paul, Sallomy, Janan, Lyness, Lucien, et al. 1996. “The Exploration for a Deep...shopping must also be educated on health and nutrition matters. Due to the traditional segregation of the sexes, this training will have to be
Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars
NASA Technical Reports Server (NTRS)
Allen, C.C.; Oehler, D.Z.; Baker, D.M.
2009-01-01
Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.
The Indian Ocean: The geology of its bordering lands and the configuration of its floor
Pepper, James F.; Everhart, Gail M.
1963-01-01
The ocean realm, which covers more than 70 percent of the earth's surface, contains vast areas that have scarcely been touched by exploration. The best known parts of the sea floor lie close to the borders of the continents, where numerous soundings have been charted as an aid to navigation. Yet, within this part of the sea floor, which constitutes a border zone between the toast and the ocean deeps, much more detailed information is needed about the character of the topography and geology. At many places, stratigraphic and structural features on the coast extend offshore, but their relationships to the rocks of the shelf and slope are unknown, and the geology of the coast must be projected seaward across the continental shelf and slope.The Indian Ocean, the third largest ocean of the world, has been selected for intensive study by an international group using all modern techniques to determine its physical characteristics. This report, with accompanying illustrations, has been prepared as a very generalized account of some aspects of the geology of the vast coastal areas of the northern Indian Ocean in relation to the bordering shelves and ocean deeps. Its general purpose is to serve as background reading.
Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.
2011-01-01
The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and guidelines for reporting estimates within the classification based on each project's status.
Contribution to Estimating Bearing Capacity of Pile in Clayey Soils
NASA Astrophysics Data System (ADS)
Drusa, Marián; Gago, Filip; Vlček, Jozef
2016-12-01
The estimation of real geotechnical parameters is key factor for safe and economic design of geotechnical structures. One of these are pile foundations, which require proper design and evaluation due to accessing more deep foundation soil and because remediation work of not bearable piles or broken piles is a crucial operation. For this reason, geotechnical field testing like cone penetration test (CPT), standard penetration (SPT) or dynamic penetration test (DP) are realized in order to receive continuous information about soil strata. Comparing with rotary core drilling type of survey with sampling, these methods are more progressive. From engineering geologist point of view, it is more important to know geological characterization of locality but geotechnical engineers have more interest above the real geotechnical parameters of foundation soils. The role of engineering geologist cannot be underestimated because important geological processes in origin or during history can explain behaviour of a geological environment. In effort to streamline the survey, investigation by penetration tests is done as it is able to provide enough information for designers. This paper deals with actual trends in pile foundation design; because there are no new standards and usable standards are very old. Estimation of the bearing capacity of a single pile can be demonstrated on the example of determination of the cone factor Nk from CPT testing. Then results were compared with other common methods.
Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound
Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.
1996-01-01
During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.
Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology
NASA Technical Reports Server (NTRS)
Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.
2016-01-01
McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).
NASA Astrophysics Data System (ADS)
Booth-Rea, Guillermo; Pérez-Peña, Vicente; Azañón, José Miguel; de Lis Mancilla, Flor; Morales, Jose; Stich, Daniel; Giaconia, Flavio
2014-05-01
Most of the geological features of the Betics and Rif have resulted from slab tearing, edge delamination and punctual slab breakoff events between offset STEP faults. New P-reciever function data of the deep structure under the Betics and Rif have helped to map the deep boundaries of slab tearing and rupture in the area. Linking surface geological features with the deep structure shows that STEP faulting under the Betics occurred along ENE-WSW segments offset towards the south, probably do to the westward narrowing of the Tethys slab. The surface expression of STEP faulting at the Betics consists of ENE-WSW dextral strike-slip fault segments like the Crevillente, Alpujarras or Torcal faults that are interrupted by basins and elongated extensional domes were exhumed HP middle crust occurs. Exhumation of deep crust erases the effects of strike-slip faulting in the overlying brittle crust. Slab tearing affected the eastern Betics during the Tortonian to Messinian, producing the Fortuna and Lorca basins, and later propagated westward generating the end-Messinian to Pleistocene Guadix-Baza basins and the Granada Pliocene-Pleistocene depocentre. At present slab tearing is occurring beneath the Málaga depression, where the Torcal dextral strike-slip fault ends in a region of active distributed shortening and where intermediate depth seismicity occurs. STEP fault migration has occurred at average rates between 2 and 4 cm/yr since the late Miocene, producing a wave of alternating uplift-subsidence pulses. These initiate with uplift related to slab flexure, subsidence related to slab-pull, followed by uplift after rupture and ending with thermal subsidence. This "yo-yo" type tectonic evolution leads to the generation of endorheic basins that later evolve to exhorheic when they are uplifted and captured above the region where asthenospheric upwelling occurs.
Internet-based information system of digital geological data providing
NASA Astrophysics Data System (ADS)
Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill
2015-04-01
One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements is the web-service, which realizes the interaction of all parts of the system and controls whole the way of the request from the user to the database and back, adopted to the GeoSciML and EarthResourceML view. The experience of creation the Internet-based information system of digital geological data providing, and also previous works, including the developing of web-service of NGKIS-system, allows to tell, that technological realization of presenting Russian geological-cartographical data with using of international standards is possible. While realizing, it could be some difficulties, associated with geological material depth. Russian informational geological model is more deep and wide, than foreign. This means the main problem of using international standards and formats: Russian geological data presentation is possible only with decreasing the data detalisation. But, such a problem becomes not very important, if the service publishes also Russian vocabularies, not associated with international vocabularies. In this case, the international format could be the interchange format to change data between Russian users. The integration into the international projects reaches developing of the correlation schemes between Russian and foreign classificators and vocabularies.
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
NASA Astrophysics Data System (ADS)
Purser, Autun; Kwasnitschka, Tom; Duda, Alexander; Schwendner, Jakob; Bamberg, Marlene; Sohl, Frank; Doya, Carol; Aguzzi, Jacopo; Best, Mairi; Llovet, Neus Campanya I.; Scherwath, Martin; Thomsen, Laurenz
2015-04-01
Cabled internet and power connectivity with the deep sea allow instruments to operate in the deep sea at higher temporal resolutions than was possible historically, with the reliance on battery life and data storage capacities. In addition to the increase in sensor temporal frequency, cabled infrastructures now allow remote access to and control of mobile platforms on the seafloor. Jacobs University Bremen, in combination with collaborators from the Robotic Exploration of Extreme Environments (ROBEX) project, CSIC Barcelona and Ocean Networks Canada have been operating tracked deep sea crawler vehicles at ~890 m depth at the dynamic Barkley Canyon methane seep site, Pacific Canada during the last ~4 years. The vehicle has been able to explore an area of ~50 m radius, allowing repeated visits to numerous microhabitats. Mounting a range of sensors, including temperature, pressure, conductivity, fluorescence, turbidity, flow and methane concentration sensors, as well as various camera systems a large dataset has been compiled. Several methane pockmarks are present in the survey area, and geological, biological and oceanographic changes have been monitored over a range of timescales. Several publications have been produced, and in this presentation we introduce further data currently under analysis. Cabled internet connectivity further allows mobile platforms to be used directly in education. As part of the ROBEX project, researchers and students from both terrestrial and planetary sciences are using the crawler in an ongoing study project. Students are introduced to statistical methods from both fields during the course and in later stages they can plan their own research using the in-situ crawler, and follow the progress of their investigations live, then analyse the collected data using the techniques introduced during the course. Cabled infrastructures offer a unique facility for spatial investigation of extreme ecosystems over time, and for the 'hands on' education of future students.
NASA Astrophysics Data System (ADS)
Kerrich, Robert; Polat, Ali
2006-03-01
Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons were intruded by voluminous norites from the Neoarchean through Proterozoic; norites are accounted for by melting of subduction metasomatized Archean continental lithospheric mantle (CLM). Deep CLM defines Archean cratons; it extends to ˜ 350 km, includes the diamond facies, and xenoliths signify a composition of the buoyant, refractory, residue of plume melting, a natural consequence of imbricated plateau-arc crust. Voluminous tonalites of Archean greenstone-granitoid terranes show a secular trend of increasing Mg#, Cr, Ni consistent with slab melts hybridizing with thicker mantle wedge as subduction angle steepens. Strike-slip faults of 1000 km scale; diachronous accretion of distinct tectonostratigraphic terranes; and broad Cordilleran-type orogens featuring multiple sutures, and oceanward migration of arcs, in the Archean Superior and Yilgarn cratons, are in common with the Altaid and Phanerozoic Cordilleran orogens. There is increasing geological evidence of the supercontinent cycle operating back to ˜ 2.7 Ga: Kenorland or Ur ˜ 2.7-2.4 Ga; Columbia ˜ 1.6-1.4 Ga; Rodinia ˜ 1100-750 Ma; and Pangea ˜ 230 Ma. High-resolution seismic reflection profiling of Archean terranes reveals a prevalence of low angle structures, and evidence for paleo-subduction zones. Collectively, the geological-geochemical-seismic records endorse the operation of plate tectonics since the early Archean.
NASA Astrophysics Data System (ADS)
Mauri, G.; Abdelfettah, Y.; Negro, F.; Schill, E.; Vuataz, F.
2011-12-01
The authorities of the canton of Neuchâtel, in the Western part of Switzerland, are willing to develop geothermal energy for district heating in the two main cities of the canton: Neuchâtel, located along the Lake of Neuchâtel, and La Chaux-de-Fonds situated in a high valley of the Jura Massif. The geology of both areas is linked to the Jura Range and present complex structures, where the landscape is composed of anticlines associated with overthrust faults, which are overcut by strike-slip fault and secondary faulting events. The rock formations go from the Trias, which forms the detachment layer, up to the Quaternary rock. Bedrocks are mainly composed of limestones and marls, which can reach a thickness of several hundreds meters. The three main deep aquifers investigated in this area, from the shallowest (≤ 400 m below surface) to deepest (< 2000 m), are the Malm, the Dogger and the Muschelkalk. The estimated temperatures, based on previous studies, should range between 20 to 65 oC, which are function of depth, elevation and groundwater velocity. The expected low temperature is mainly due to the presence of karstic systems, which drains the heat towards the low elevation of the basin. The present study is based on gravimetry surveys, 3D geological models and 3D gravimetry models to best characterize the underground structures and to find areas where the rock properties would be favourable to geothermal exploitation. This means targets where permeability and porosity are high in the potential aquifers, allowing a significant flow at the future production wells. The results indicate that gravity anomalies are associated with both shallow and deep geological structures in the two exploration sites and that high resolution of dense grid gravity measurements combined with realistic 3D models of the geological structures allow to characterize interesting features for deep geothermal exploration. Gravity corrections were carried out with a computing code using different DEM resolution ranging from a very high resolution (0.5 m pixel in the vicinity of each station) toward a lower resolution (25 m for the distal areas as far as 110 km away from each station). The bathymetry of the Lake of Neuchâtel (218 km2) has been used to correct gravity effects from the large volume of water along the Lake shore of Neuchâtel. The combination of 3D geological models with a high resolution gravity survey allows to better constrain the geometry of the Triassic formation, just above the detachment layer, as well to quantify the karstic processes, which could affect the three deep aquifers.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
Thorn, M C; Kelly, M; Rees, J H; Sánchez-Friera, P; Calvez, M
2002-09-01
Bioaccumulation and dosimetric models have been developed that allow the computation of dose rates to a wide variety of plants and animals in the context of the deep geological disposal of solid radioactive wastes. These dose rates can be compared with the threshold dose rates at which significant deleterious effects have been observed in field and laboratory observations. This provides a general indication of whether effects on ecosystems could be observable, but does not quantify the level of those effects. To address this latter issue, two indicator organisms were identified and exposure-response relationships were developed for endpoints of potential interest (mortality in conifers and the induction of skeletal malformations in rodents irradiated in utero). The bioaccumulation, dosimetry and exposure-response models were implemented and used to evaluate the potential significance of radionuclide releases from a proposed deep geological repository for radioactive wastes in France. This evaluation was undertaken in the context of a programme of assessment studies being performed by the Agence nationale pour la gestion des déchets radioactifs (ANDRA).
An interpretation model of GPR point data in tunnel geological prediction
NASA Astrophysics Data System (ADS)
He, Yu-yao; Li, Bao-qi; Guo, Yuan-shu; Wang, Teng-na; Zhu, Ya
2017-02-01
GPR (Ground Penetrating Radar) point data plays an absolutely necessary role in the tunnel geological prediction. However, the research work on the GPR point data is very little and the results does not meet the actual requirements of the project. In this paper, a GPR point data interpretation model which is based on WD (Wigner distribution) and deep CNN (convolutional neural network) is proposed. Firstly, the GPR point data is transformed by WD to get the map of time-frequency joint distribution; Secondly, the joint distribution maps are classified by deep CNN. The approximate location of geological target is determined by observing the time frequency map in parallel; Finally, the GPR point data is interpreted according to the classification results and position information from the map. The simulation results show that classification accuracy of the test dataset (include 1200 GPR point data) is 91.83% at the 200 iteration. Our model has the advantages of high accuracy and fast training speed, and can provide a scientific basis for the development of tunnel construction and excavation plan.
Ahmad, Zulfiqar; Akhter, Gulraiz; Ashraf, Arshad; Fryar, Alan
2010-11-01
A three-dimensional contaminant transport model has been developed to simulate and monitor the migration of disposal of hydrocarbon exploration produced water in Injection well at 2,100 m depth in the Upper Cretaceous Pab sandstone, Bhit area in Dadu district of Southern Pakistan. The regional stratigraphic and structural geological framework of the area, landform characteristics, meteorological parameters, and hydrogeological milieu have been used in the model to generate the initial simulation of steady-state flow condition in the underlying aquifer's layers. The geometry of the shallow and deep-seated characteristics of the geological formations was obtained from the drilling data, electrical resistivity sounding surveys, and geophysical well-logging information. The modeling process comprised of steady-state simulation and transient simulation of the prolific groundwater system of contamination transport after 1, 10, 30 years of injection. The contaminant transport was evaluated from the bottom of the injection well, and its short- and long-term effects were determined on aquifer system lying in varying hydrogeological and geological conditions.
Subsurface site conditions and geology in the San Fernando earthquake area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, C.M.; Johnson, J.A.; Kharraz, Y.
1971-12-01
The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less
1989-05-16
development and is manifested today in the Operational .Maneuver Group. As the name implies, the Soviet emphiasis is at the operational level. The mission of...high-intensity war! 10 answer this question I (1) analyze Soviet deep operations theory to determine how their concept developed and what they expect...USA, 32 pageF., In Soviet Army doctrine, deep operations has been a long time in development and is manifested today in the Operational Maneuver Group
ESONET , a milestone towards sustained multidisciplinary ocean observation.
NASA Astrophysics Data System (ADS)
Rolin, J.-F.
2012-04-01
At the end of a 4 year project dedicated to the constitution of a Network of Excellence (NoE) on subsea observatories in Europe, large expectations are still in the agenda. The economical crisis changes the infrastructure construction planning in many ways but the objectives are quite clear and may be reached at European scale. The overall objective of the ESONET NoE was to create an organisation able to implement, operate and maintain a sustainable underwater observation network, extending into deep water, capable of monitoring biological, geo-chemical, geological, geophysical and physical processes occurring throughout the water column, sea floor interface and solid earth below. This main objective of ESONET has been met by creating the network of 11 permanent underwater observation sites together with the "ESONET Vi" Virtual Institute organising the exchange of staff and joint experiments on EMSO large research infrastructure observatories. The development of recommendations on best practices, standardization and interoperability concepts concerning underwater observatory equipment, as synthetized by the so called ESONET Label document has been created. The ESONET Label is a set of criteria to be met by the deep-sea observatory equipment as well as recommended solutions and options to guarantee their optimal operation in the ocean over long time periods. ESONET contributes to the fixed point sustained observatory community which extends worldwide, is fully multidisciplinary and in its way may open a new page in ocean sciences history.
Manning, Andrew H.; Caine, Jonathan S.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine G.
2009-01-01
Handcart Gulch is an alpine watershed along the Continental Divide in the Colorado Rocky Mountain Front Range. It contains an unmined mineral deposit typical of many hydrothermal mineral deposits in the intermountain west, composed primarily of pyrite with trace metals including copper and molybdenum. Springs and the trunk stream have a natural pH value of 3 to 4. The U.S. Geological Survey began integrated research activities at the site in 2003 with the objective of better understanding geologic, geochemical, and hydrologic controls on naturally occurring acid-rock drainage in alpine watersheds. Characterizing the role of groundwater was of particular interest because mountain watersheds containing metallic mineral deposits are often underlain by complexly deformed crystalline rocks in which groundwater flow is poorly understood. Site infrastructure currently includes 4 deep monitoring wells high in the watershed (300– 1,200 ft deep), 4 bedrock (100–170 ft deep) and 5 shallow (10–30 ft deep) monitoring wells along the trunk stream, a stream gage, and a meteorological station. Work to date at the site includes: geologic mapping and structural analysis; surface sample and drill core mineralogic characterization; geophysical borehole logging; aquifer testing; monitoring of groundwater hydraulic heads and streamflows; a stream tracer dilution study; repeated sampling of surface and groundwater for geochemical analyses, including major and trace elements, several isotopes, and groundwater age dating; and construction of groundwater flow models. The unique dataset collected at Handcart Gulch has yielded several important findings about bedrock groundwater flow at the site. Most importantly, we find that bedrock bulk permeability is nontrivial and that bedrock groundwater apparently constitutes a substantial fraction of the hydrologic budget. This means that bedrock groundwater commonly may be an underappreciated component of the hydrologic system in studies of alpine watersheds. Additionally, despite the complexity of the fracture controlled aquifer system, it appears that it can be represented with a relatively simple conceptual model and can be treated as an equivalent porous medium at the watershed scale. Interpretation of existing data, collection of new monitoring data, and efforts to link geochemical and hydrologic processes through modeling are ongoing at the site.
Compilation of Reprints Number 63.
1986-03-01
Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG
Metropolitan Spokane Region Water Resources Study. Appendix B. Geology and Groundwater
1976-01-01
to develop and confirm map data. Engineering Geology. Large-scale (1:24,000) mapping of near- surface soil classification and drainage characteristics...of the great lava field. By the beginning of the Pleistocene Ice Age, a broad valley had developed at about 1600 feet altitude. This pre-glacial...has developed on re level basalt surfaces. In the southern and eastern portions of the study area, chemical alteration has caused deep decomposition
10 CFR 60.3 - License required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES General... byproduct material at a geologic repository operations area except as authorized by a license issued by the Commission pursuant to this part. (b) DOE shall not commence construction of a geologic repository operations...
A new towed platform for the unobtrusive surveying of benthic habitats and organisms
Zawada, David G.; Thompson, P.R.; Butcher, J.
2008-01-01
Maps of coral ecosystems are needed to support many conservation and management objectives, as well as research activities. Examples include ground-truthing aerial and satellite imagery, characterizing essential habitat, assessing changes, and monitoring the progress of restoration efforts. To address some of these needs, the U.S. Geological Survey developed the Along-Track Reef-Imaging System (ATRIS), a boat-based sensor package for mapping shallow-water benthic environments. ATRIS consists of a digital still camera, a video camera, and an acoustic depth sounder affixed to a moveable pole. This design, however, restricts its deployment to clear waters less than 10 m deep. To overcome this limitation, a towed version has been developed, referred to as Deep ATRIS. The system is based on a light-weight, computer-controlled, towed vehicle that is capable of following a programmed diving profile. The vehicle is 1.3 m long with a 63-cm wing span and can carry a wide variety of research instruments, including CTDs, fluorometers, transmissometers, and cameras. Deep ATRIS is currently equipped with a high-speed (20 frames · s-1) digital camera, custom-built light-emitting-diode lights, a compass, a 3-axis orientation sensor, and a nadir-looking altimeter. The vehicle dynamically adjusts its altitude to maintain a fixed height above the seafloor. The camera has a 29° x 22° field-of-view and captures color images that are 1360 x 1024 pixels in size. GPS coordinates are recorded for each image. A gigabit ethernet connection enables the images to be displayed and archived in real time on the surface computer. Deep ATRIS has a maximum tow speed of 2.6 m · s-1and a theoretical operating tow-depth limit of 27 m. With an improved tow cable, the operating depth can be extended to 90 m. Here, we present results from the initial sea trials in the Gulf of Mexico and Biscayne National Park, Florida, USA, and discuss the utility of Deep ATRIS for map-ping coral reef habitats. Several example mosaics illustrate the high-quality imagery that can be obtained with this system. The images also reveal the potential for unobtrusive animal observations; fish and sea turtles are unperturbed by the presence of Deep ATRIS
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... in support of oil and gas exploration and development, including electromagnetic surveys, deep... surveys, electromagnetic surveys, magnetic surveys, gravity surveys, remote sensing surveys, marine...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah
2013-07-01
The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safetymore » and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)« less
Teleseismic studies indicate existence of deep magma chamber below Yellowstone National Park
Iyer, H.M.
1974-01-01
The secrets of Yellowstone National Park's spectacular geysers and other hot water and steam phenomena are being explored by the U.S Geological Survey with the aid of distant earthquakes (teleseisms). For some time geologists have known that the remarkable array of steam and hot water displays, for which the park is internationally famous, is associated with intense volcanic activity that occurred in the reigon during the last 2 million years. The most recent volcanic eruption took place about 600,000 years ago creating a large caldera, or crater, 75 kilometers long and 50 kilometers wide. This caldera occupies most of the central part of the present-day park. geologists knew from studies of the surface geology that the volcanic activity which creates the present caldera was caused the present caldera was caused by a large body of magma, a mixture composed of molten rock, hot liquids, and gases, that had forced its way from the deep interior of the Earth into the upper mantle and crust below the Yellowstone area. The dimensions and depth below the surface of this magma body were largely unknown, however, because there was no way to "see" deep below the surface. A tool was needed that would enable earth scientists to look into the curst and upper mantle of the Earth. Such a tool became availabe with the installation by the Geological Survey of a network of seismograph stations in the park.
About the geologic map in the National Atlas of the United States of America
Reed, John C.; Bush, Charles A.
2007-01-01
Introduction The geologic map in the National Atlas of the United States of America shows the age, distribution, and general character of the rocks that underlie the Nation, including Alaska, Hawaii, Puerto Rico, and the Virgin Islands (but excluding other small island possessions). (The National Atlas of the United States can be accessed at URL http://nationalatlas.gov/natlas/Natlasstart.asp.) The map depicts the bedrock that lies immediately beneath soils or surficial deposits except where these deposits are so thick and extensive that the type of bedrock beneath them can only be inferred by deep drilling or geophysical methods, or both. Thus, it does not show the extensive glacial deposits of the North Central and Northeastern States, the deep residuum of the Southeastern and South Central States, the relatively thin alluvium along many major rivers and basins, and extensive eolian deposits on the high plains. However, it does show, in a general way, the thick alluvial deposits along the lower Mississippi River and on the Atlantic and Gulf Coastal Plains, and in the deep basins of the western cordillera. The rocks are classified as either sedimentary, volcanic, plutonic, or metamorphic, and their geologic ages are given in terms using a simplified version of the 1999 Geological Society of America geologic time scale. In some places rocks depicted as sedimentary are interlayered with volcanic rocks, including tuff, volcanic breccia, and volcanic flows. Conversely, many of the rocks shown as volcanic include interlayered sedimentary rocks. Plutonic rocks are classified by age and as granitic, intermediate, mafic, or ultramafic, but no similar classification has been attempted for the volcanic rocks in this version of the map. Where sedimentary or volcanic rocks have been metamorphosed but still retain clear evidence of their depositional age and origin, the extent of the metamorphism is shown by a pattern. Where the metamorphism has been so intense that the rocks bear little resemblance to the rocks from which they were derived, they are mapped as gneiss, but the age given is generally the age of the original rocks. The map in the National Atlas is a generalization of a new geologic map of North America that has recently been published by the Geological Society of America. The original compilation was prepared at a scale of 1:2,500,000 for publication at a scale of 1:5,000,000. This generalized version is intended for viewing at scales between about 1:10,000,000 and 1:7,500,000.
Scholl, David William
1978-01-01
The Geological Survey 's marine geology investigations in the Pacific-Arctic area are presented in this report in the context of the underlying socio-economic problem of expanding the domestic production of oil and gas and other mineral and hard- and soft-rock resources while maintaining acceptable standards in the marine environment. The primary mission of the Survey 's Pacific-Arctic Branch of Marine Geology is to provide scientifically interpreted information about the (1) resource potential, (2) geo-environmental setting, and (3) overall geologic characteristics of the continental margins (that is, the continental shelf, slope and rise) and adjacent deeper water and shallower coastal areas off California, Oregon, Washington, Alaska and Hawaii and also, where it is of interest to the U.S. Government, more remote deep-sea areas of the Pacific-Arctic realm. (Sinha-OEIS)
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Performance objectives for the geologic repository... (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA... repository operations area through permanent closure. (a) Protection against radiation exposures and releases...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Finley
The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climatemore » change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.« less
The Project for the Extension of the Continental Shelf - the Portuguese experience
NASA Astrophysics Data System (ADS)
Madureira, Pedro; Ribeiro, Luísa P.; Roque, Cristina; Henriques, Guida; Brandão, Filipe; Dias, Frederico; Simões, Maria; Neves, Mariana; Conceição, Patricia; Botelho Leal, Isabel; Emepc, Equipa
2017-04-01
Under the United Nations Convention on the Law of the Sea (UNCLOS), the continental shelf is a juridical term used to define a submarine area that extends throughout the natural prolongation of a land territory, where the coastal State exercises sovereign rights for the purpose of exploring it and exploiting its natural resources. Article 76 provides a methodology for determining the outer edge of the continental margin and to delineate the outer limits of the continental shelf. The task of preparing the Portuguese submission to the Commission on the Limits of the Continental Shelf was committed to the Task Group for the Extension of the Continental Shelf (EMEPC), which formally began its activity in January 2005. At that time, the existing national capacity to conduct such a task was very limited in its hydrographic, geological and geophysical components. A great effort has been made by Portugal to overcome these weaknesses and develop a strategy to submit the proposal for the extension of the continental shelf beyond 200 nautical miles on 11th May of 2009. The execution of the project involved the implementation of several complementary strategies including: 1) intensive bathymetric, geophysical and, locally, geological data acquisition; 2) acquisition/development of new stand-alone and ship mounted equipment; 3) interactions with universities and research institutes, with emphasis in R&D initiatives; 4) creation of critical mass in deep-sea research by promoting advanced studies on: International Law, Geophysics, Geology, Hydrography, Biology, amongst others; 5) promotion of the sea as a major national goal, coupled with an outreach strategy. Until now, more than 1050 days of surveying have resulted in a large scale seafloor mapping using two EM120 and one EM710 multibeam echosounders from Kongsberg mounted on two hydrographic vessels. The surveys follow IHO Order 2 Standard (SP44, 5th Edition) and cover an area over 2.6 million km2. A multichannel reflection and wide angle refraction seismic survey provided 2600 km of high quality MCS data, allowing an accurate imaging of the sediment cover. Also, the data collected under the project has been used to foster the collaboration with universities and research institutes and to support research projects and post graduate studies on the deep-sea. An educational strategy has been emplaced in order to promote Ocean Literacy among children and youngsters. Since 2008, EMEPC is responsible for the operation and maintenance of Luso, a work class ROV rated to 6,000 metres depth. More than 170 ROV dives allowed the direct observation of the deep-sea for almost 800 hours of video footages, which also provided key information on biodiversity and deep sea ecosystems, which stand as the base for the creation of a database on biological data and to develop a strategy to protect the marine environment. Portugal has now the capacity to access its entire maritime areas, reinforcing the knowledge on the natural processes that shape the deep-sea. Some views on the Portuguese interpretation and application of article 76 will be discussed based on the data gathered within the scope of the project, which is still ongoing.
How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
Exploration Criteria for Low Permeability Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D
1977-03-01
The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less
Summary and Review of the Tectonic Structure of Eurasia. Part 1
1980-12-05
DTIC TAB Just tIcjat DIstrju1j D it i AVi Dis a2 INTRODUCTION An extensive search of the available geologic and geo- physical literature dealing...with the crust and upper mantle properties of the U.S.S.R. and Eurasia has been conducted. During the past 25 years a vast amount of deep seismic...boundaries for these provinces were drawn after considering geologic evolution. Seismic activity, heat flow, Moho properties , crustal properties
2012-03-22
2003). This is particularly true at shallow depths where the shorter periods, which are primarily sensitive to upper crustal structures, are difficult...to measure, and especially true in tectonically and geologically complex areas. On the other hand, regional gravity inversions have the greatest...the slower deep crustal speeds into the Caspian region does not make sense geologically. These effects are driven by the simple Laplacian smoothness
CCS Activities Being Performed by the U.S. DOE
Dressel, Brian; Deel, Dawn; Rodosta, Traci; Plasynski, Sean; Litynski, John; Myer, Larry
2011-01-01
The United States Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. Its mission includes promoting scientific and technological innovations and transfer of knowledge for safe and permanent storage of CO2 in the subsurface. To accomplish its mission, DOE is characterizing and classifying potential geologic storage reservoirs in basins throughout the U.S. and Canada, and developing best practices for project developers, to help ensure the safety of future geologic storage projects. DOE’s Carbon Sequestration Program, Regional Carbon Sequestration Partnership (RCSP) Initiative, administered by the National Energy Technology Laboratory (NETL), is identifying, characterizing, and testing potential injection formations. The RCSP Initiative consists of collaborations among government, industry, universities, and international organizations. Through this collaborative effort, a series of integrated knowledge-based tools have been developed to help potential sequestration project developers. They are the Carbon Sequestration Atlas of the United States and Canada, National Carbon Sequestration Database and Geographic System (NATCARB), and best practice manuals for CCS including Depositional Reservoir Classification for CO2; Public Outreach and Education for Carbon Storage Projects; Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formation; Site Screening, Site Selection, and Initial Characterization of CO2 Storage in Deep Geologic Formations. DOE’s future research will help with refinement of these tools and additional best practice manuals (BPM) which focus on other technical aspects of project development. PMID:21556188
NASA Astrophysics Data System (ADS)
Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.
NASA Technical Reports Server (NTRS)
Paulson, R. W.
1974-01-01
The Earth Resources Technology Satellite Data Collection System has been shown to be, from the users vantage point, a reliable and simple system for collecting data from U.S. Geological Survey operational field instrumentation. It is technically feasible to expand the ERTS system into an operational polar-orbiting data collection system to gather data from the Geological Survey's Hydrologic Data Network. This could permit more efficient internal management of the Network, and could enable the Geological Survey to make data available to cooperating agencies in near-real time. The Geological Survey is conducting an analysis of the costs and benefits of satellite data-relay systems.
Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten
2013-07-08
Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).
Macrostrat: A Platform for Geological Data Integration and Deep-Time Earth Crust Research
NASA Astrophysics Data System (ADS)
Peters, Shanan E.; Husson, Jon M.; Czaplewski, John
2018-04-01
Characterizing the lithology, age, and physical-chemical properties of rocks and sediments in the Earth's upper crust is necessary to fully assess energy, water, and mineral resources and to address many fundamental questions. Although a large number of geological maps, regional geological syntheses, and sample-based measurements have been produced, there is no openly available database that integrates rock record-derived data, while also facilitating large-scale, quantitative characterization of the volume, age, and material properties of the upper crust. Here we describe Macrostrat, a relational geospatial database and supporting cyberinfrastructure that is designed to enable quantitative spatial and geochronological analyses of the entire assemblage of surface and subsurface sedimentary, igneous, and metamorphic rocks. Macrostrat contains general, comprehensive summaries of the age and properties of 33,903 lithologically and chronologically defined geological units distributed across 1,474 regions in North and South America, the Caribbean, New Zealand, and the deep sea. Sample-derived data, including fossil occurrences in the Paleobiology Database, more than 180,000 geochemical and outcrop-derived measurements, and more than 2.3 million bedrock geologic map units from over 200 map sources, are linked to specific Macrostrat units and/or lithologies. Macrostrat has generated numerous quantitative results and its infrastructure is used as a data platform in several independently developed mobile applications. It is necessary to expand geographic coverage and to refine age models and material properties to arrive at a more precise characterization of the upper crust globally and test fundamental hypotheses about the long-term evolution of Earth systems.
NONFUEL MINERAL RESOURCES OF THE PACIFIC EXCLUSIVE ECONOMIC ZONE.
Clague, David; Bischoff, James; Howell, David
1984-01-01
The Pacific Exclusive Economic Zone contains a variety of hard mineral resources. Sand and gravel and their associated placer deposits of heavy minerals are the most likely to be developed in the near future, but offshore and deep water deposits of phosphorite, abyssal manganese nodules, ferromanganese crusts enriched in cobalt, and massive sulfide deposits all represent future resources. The distribution, extent, and formation of these deposits are poorly understood and will be clarified only with additional exploration, framework geologic mapping, and study of the processes by which these resources form. It is pointed out that the initial discovery of most hard-mineral resources in the EEZ was made during routine scientific marine-geologic surveys aimed at understanding the framework geology and geologic processes of an offshore region.
Geologic constraints on clandestine nuclear testing in South Asia
Davis, Dan M.; Sykes, Lynn R.
1999-01-01
Cavity decoupling in salt is the most plausible means by which a nation could conduct clandestine testing of militarily significant nuclear weapons. The conditions under which solution-mined salt can be used for this purpose are quite restrictive. The salt must be thick and reasonably pure. Containment of explosions sets a shallow limit on depth, and cavity stability sets a deep limit. These constraints are met in considerably <1% of the total land area of India and Pakistan. Most of that area is too dry for cavity construction by solution mining; disposal of brine in rivers can be detected easily. Salt domes, the most favorable structures for constructing large cavities, are not present in India and Pakistan. Confidence that they are adhering to the Comprehensive Test Ban Treaty (CTBT) is enhanced by their geological conditions, which are quite favorable to verification, not evasion. Thus, their participation in the CTBT is constrained overwhelmingly by political, not scientific, issues. Confidence in the verification of the CTBT could be enhanced if India and Pakistan permitted stations of the various monitoring technologies that are now widely deployed elsewhere to be operated on their territories. PMID:10500134
French Geological Repository Project for High Level and Long-Lived Waste: Scientific Programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landais, P.; Lebon, P.; Ouzounian, G.
2008-07-01
The feasibility study presented in the Dossier 2005 Argile set out to evaluate the conditions for building, operating and managing a reversible disposal facility. The research was directed at demonstrating a potential for confining long-lived radioactive waste in a deep clay formation by establishing the feasibility of the disposal principle. Results have been enough convincing and a Planning Act was passed on 28 June, 2006. Decision in principle has been taken to dispose of intermediate and high level long-lived radioactive waste in a geological repository. An application file for a license to construct a disposal facility is requested by endmore » of 2014 and its commissioning is planned for 2025. Based on previous results as well as on recommendations made by various Dossier 2005 evaluators, a new scientific programme for 2006-2015 has been defined. It gives details of what will be covered over the 2006-2015 period. Particular emphasis is placed on consolidating scientific data, increasing understanding of certain mechanisms and using a scientific and technical integration approach. It aims at integrating scientific developments and engineering advances. The scientific work envisaged beyond 2006 has the benefit of a unique context, which is direct access to the geological medium over long timescales. It naturally extends the research carried out to date, and incorporates additional investigations of the geological medium, and the preparation of demonstration work especially through full-scale tests. Results will aim at improving the representation of repository evolutions over time, extract the relevant parameters for monitoring during the reversibility phases, reduce the parametric uncertainties and enhance the robustness of models for performance calculations and safety analyses. Structure and main orientation of the ongoing scientific programme are presented. (author)« less
NASA Astrophysics Data System (ADS)
Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.
2005-12-01
Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the deep geological disposal concept, besides containing the wastes with engineering methods such as the glassification of the radioactive wastes, the geological formation itself is expected to serve as a natural barrier that retards migration of radionuclides. To evaluate the long-term safety of deep geological disposal, a better understanding of the fate and transport of radionuclides in a geologically heterogeneous environment is necessary. To meet such requirements, a new analog test sandbox model system was developed. This model system allows the pore fluid flows to be controlled during the model tests and permits the study of flow and transport phenomena in the deformed heterogeneous model. One- or two-dimensional fluid flow is controlled using a side-wall piston. Deformation processes can be observed through a transparent front panel, and pore fluid movement can be also visualized using a color tracer. In this study, the scaling requirements for analog modeling, including pore water pressure, are discussed based on the theory of dimensional analysis, supplemented by data from a series of laboratory shear tests, and a detailed description of the model system. Preliminary experimental results are presented.
NASA Astrophysics Data System (ADS)
Petrov, O. V.; Morozov, A.; Shokalsky, S.; Leonov, Y.; Grikurov, G.; Poselov, V.; Pospelov, I.; Kashubin, S.
2011-12-01
In 2003 geological surveys of circum-arctic states initiated the international project "Atlas of Geological Maps of Circumpolar Arctic at 1:5 000000 scale". The project received active support of the UNESCO Commission for the Geological Map of the World (CGMW) and engaged a number of scientists from national academies of sciences and universities. Magnetic and gravity maps were prepared and printed by the Norwegian Geological Survey, and geological map was produced by the Geological Survey of Canada. Completion of these maps made possible compilation of a new Tectonic Map of the Arctic (TeMAr), and this work is now in progress with Russian Geological Research Institute (VSEGEI) in the lead of joint international activities. The map area (north of 60o N) includes three distinct roughly concentric zones. The outer onshore rim is composed of predominantly mature continental crust whose structure and history are illustrated on the map by the age of consolidation of craton basements and orogenic belts. The zone of offshore shelf basins is unique in dimensions with respect to other continental margins of the world. Its deep structure can in most cases be positively related to thinning and rifting of consolidated crust, sometimes to the extent of disruption of its upper layer, whereas the pre-rift evolution can be inferred from geophysical data and extrapolation of geological evidence from the mainland and island archipelagoes. The central Arctic core is occupied by abyssal deeps and intervening bathymetric highs. The Eurasia basin is commonly recognized as a typical oceanic opening separating the Barents-Kara and Lomonosov Ridge passive margins, but geodynamic evolution of Amerasia basin are subject to much controversy, despite significant intensification of earth science researchin the recent years. A growing support to the concept of predominance in the Amerasia basin of continental crust, particularly in the area concealed under High Arctic Large Igneous Province, is based on two lines of evidence: (1) seismic studies and gravity modeling of deep structure of the Earth's crust suggesting a continuity of its main layers from Central Arctic bathymetric highs to the adjoining shelves, and (2) geochrolology and isotope geochemistry of bottom rocks in the central Arctic Ocean indicating the likely occurrence here of Paleozoic supracrustal bedrock possibly resting on a Precambrian basement. In the process of compilation activities all possible effort will be made to reflect in the new international tectonic map our current understanding of present-day distribution of crust types in the Arctic. It will be illustrated by smaller-scale insets depicting, along with the crust types, additional information used for their recognition (e.g. depth to Moho, total sediment thickness, geotransects, etc. This will help to integrate geological history of Central Arctic Ocean with its continental rim and provide a sound basis for testing various paleogeodynamic models.
Earth Observations taken by the Expedition 25 crew
2010-09-30
ISS025-E-005538 (30 Sept. 2010) --- The Great Dyke of Zimbabwe, Africa is featured in this image photographed by an Expedition 25 crew member on the International Space Station. The Great Dyke of Zimbabwe is a prominent geological feature that extends for over 550 kilometers, varying from 3-12 kilometers in width across the center of the country northeast – southwest; the southern end of the Dyke is illustrated in this view. The Dyke (or Dike in American English) is a layered mafic intrusion of igneous, metal-bearing rock that has been dated using uranium-lead isotopes to approximately 2.5 billion years in age, according to scientists. It intrudes even older rocks of the African craton, or core of oldest rocks forming the continent; in cross section, the Great Dyke looks somewhat triangular or keel-shaped suggesting to geologists that it rose along deep faults associated with extension of the African crust. Layered mafic intrusions are usually associated with economically important metals such as chromium, nickel, copper, platinum, titanium, iron, vanadium and tin. Chromium, in the form of the mineral chromite and platinum are particularly abundant in the Great Dyke and actively mined. Younger faults have offset sections of the Dyke along its length – two of the most obvious faults in the image are indicated, with arrows showing the relative directions of offset relative to the main trend of the intrusion. While the Great Dyke and its metal ores are products of geologic processes operating in the deep past, more recent events have also left their mark on the landscape as illustrated by two large fire burn scars which are visible at top center.
NASA Astrophysics Data System (ADS)
Han, D.; Cao, G.; Currell, M. J.
2016-12-01
Understanding the mechanism of salt water transport in response to the exploitation of deep freshwater has long been one of the major regional environmental hydrogeological problems and scientific challenges in the North China Plain. It is also the key to a correct understanding of the sources of deep groundwater pumpage. This study will look at the Hengshui - Cangzhou region as a region with typical vertical salt water distribution, and high levels of groundwater exploitation, integrating a variety of techniques in geology, hydrogeology, geophysics, hydrodynamics, and hydrochemistry - stable isotopes. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. The project will characterize and depict the migration characteristics of salt water bodies and their relationship with the geological structure and deep ground water resources. The work will reveal the freshwater-saltwater interface shape; determine the mode and mechanism of hydrodynamic transport and salt transport; estimate the vertical migration time of salt water in a thick aquitard; and develop accurate hydrogeological conceptual models. This work will utilize groundwater variable density flow- solute transport numerical models to simulate the water and salt transport processes in vertical one-dimensional (typical bore) and two-dimensional (typical cross-section) space. Both inversion of the downward movement of saltwater caused by groundwater exploitation through history, and examining future saltwater migration trends under groundwater exploitation scenarios will be conducted, to quantitatively evaluate the impact of salt water migration to the deep groundwater body in the North China Plain. The research results will provide a scientific basis for the sustainable utilization of deep groundwater resources in this area.
Takai, Ken; Oida, Hanako; Suzuki, Yohey; Hirayama, Hisako; Nakagawa, Satoshi; Nunoura, Takuro; Inagaki, Fumio; Nealson, Kenneth H; Horikoshi, Koki
2004-04-01
Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the first of four volumes of the description of the CIRMIS Data System.« less
Seismotectonic zoning of Azerbaijan territory
NASA Astrophysics Data System (ADS)
Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad
2017-04-01
Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep structure of Greater and Lesser Caucasus, detailed description of the deep structure of Caspian zone, Kur and Caspian megadepressions, identification of nappe-folded structure of the Absheron Peninsula and the Absheron threshold at the border of Middle and South Caspian, justification of the possible hydrocarbon concentration at the tectonically stratified substantial complexes of mountain and foothill areas, etc. Based on the outcomes of implemented researches, some general conclusions and schemes were drawn for some parts of the project region within the plate tectonics conceptual frameworks, to include the territories of Lesser Caucasus and South Caspian. Analysis and comparison of these data with macroseismic and instrumental data allowed us to conduct seismotectonic studies in a region and develop a new scheme of seismotectonic map with outlined recent and forecasted seismic activity. There also correlated foci zones of earthquakes with subhorizontal and subvertical borders in earth crust, which shows their structure-dynamic relationship. In the one hand, the earthquake foci zones belong to the faults of the basement which extend to sedimentary cover and their intersection knots. On the other hand, there appearing inner-block seismogenic levels, namely, in seismic generation acts all the earth crust: tectonic stress results on movements along fault zones, as well as lateral displacements along non-stable contacts of the structure-substance complexes of different competency.
NASA Astrophysics Data System (ADS)
Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong
2018-02-01
The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.
Sampson, Jay A.
2006-01-01
Introduction: Magnetotelluric data were acquired during October 2001 by the U.S. Geological Survey (USGS) as part of a study to examine the structural nature of basins in the transition zone between the Sierra Nevada Mountains of California and the Basin and Range province of Nevada. Magnetotelluric (MT) geophysical studies assist the mapping of geologic structure and the inference of lithologic packages that are concealed beneath the Earth's surface. The Basin and Range province has a complicated geologic history, which includes extension and compression of the Earth's crust to form the basins and ranges that blanket much of Nevada. The basins and ranges in the vicinity of this study trend northeastward and are bounded by steeply dipping strike slip faults. Interestingly, deep east-west magnetic trends occur in the aeromagnetic data of this study area indicating that the northeast-trending basins and ranges represent only thin-skinned deformation at the surface with an underlying east-west structure. To investigate this issue, MT data were acquired at seven stations in eastern California, 20 km east of Mono Lake. The purpose of this report is to present a two-dimensional apparent resistivity model of the MT data acquired for this study.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-10-14
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-01-01
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431
Deep Borehole Disposal Safety Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.
This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept.more » It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.« less
Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques
Khalid Hussein
2012-02-01
This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.
Low Cost, Low Power, Passive Muon Telescope for Interrogating Martian Sub-Surface
NASA Technical Reports Server (NTRS)
Kedar, Sharon; Tanaka, Hirukui; Naudet, Charles; Plaut, Jeffrey J.; Jones, Cathleen E.; Webb, Frank H.
2012-01-01
It has been demonstrated on Earth that a low power, passive muon detector can penetrate deep into geological structures up to several kilometers in size providing high density images of their interiors. Muon tomography is an entirely new class of planetary instrumentation that is ideally suited to address key areas in Mars Science, such as: the search for life and habitable environments, the distribution and state of water and ice and the level of geologic activity on Mars today.
Decompression syndrome and the evolution of deep diving physiology in the Cetacea
NASA Astrophysics Data System (ADS)
Beatty, Brian Lee; Rothschild, Bruce M.
2008-09-01
Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.
Decompression syndrome and the evolution of deep diving physiology in the Cetacea.
Beatty, Brian Lee; Rothschild, Bruce M
2008-09-01
Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early "experiments" in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.
Nemec, Katherine; Antolino, Dominick J.; Turtora, Michael; Adam Foster,
2015-08-26
Results from the groundwater model and the stable isotope data analysis indicate the importance of considering geologic heterogeneity when investigating the relations between pumping and canal leakage, not only at this site, but also at other sites with similar heterogeneous geology. The model results were consistently sensitive to the hydrogeologic framework and changes in hydraulic conductivities. The model and the isotope data indicate that the majority of the groundwater/surface-water interactions occurred within the shallow flow zone. A relatively lower-permeability geologic layer occurring between the shallowest and deep preferential flow zones lessens the interactions between the production wells and the canal.
NASA Astrophysics Data System (ADS)
Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco
2016-04-01
This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper at ~1350 m of depth, properly associable to the geological bedrock, considering the transition between the pliocenic loose sediments and the miocenic marls observable from the available stratigraphy. Numerical 1D analyses, computed to obtain the theoretical Transfer Function at the site, support the correlation between the experimental amplification peak around 0.17 Hz and the hypothesized geological bedrock. In terms of site specific SHA, the UHS expressed in displacement (MRP: 475 years) shows a significant increase if the seismic input is located at the geological bedrock (~1350 m) instead of the seismic bedrock (~165 m). Even if this increase is not relevant for the studied site, since the seismic hazard is low, it could be significant in other part of the Po Plain, where the seismic hazard is medium-high. According to the HVSR results, obtained for other available Po Plain broadband stations, the considerations of this work could represent a warning for future seismic hazard investigations in other areas of the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McPherson, Brian J.; Grigg, Reid B.
Numerical simulation is an invaluable analytical tool for scientists and engineers in making predictions about of the fate of carbon dioxide injected into deep geologic formations for long-term storage. Current numerical simulators for assessing storage in deep saline formations have capabilities for modeling strongly coupled processes involving multifluid flow, heat transfer, chemistry, and rock mechanics in geologic media. Except for moderate pressure conditions, numerical simulators for deep saline formations only require the tracking of two immiscible phases and a limited number of phase components, beyond those comprising the geochemical reactive system. The requirements for numerically simulating the utilization and storagemore » of carbon dioxide in partially depleted petroleum reservoirs are more numerous than those for deep saline formations. The minimum number of immiscible phases increases to three, the number of phase components may easily increase fourfold, and the coupled processes of heat transfer, geochemistry, and geomechanics remain. Public and scientific confidence in the ability of numerical simulators used for carbon dioxide sequestration in deep saline formations has advanced via a natural progression of the simulators being proven against benchmark problems, code comparisons, laboratory-scale experiments, pilot-scale injections, and commercial-scale injections. This paper describes a new numerical simulator for the scientific investigation of carbon dioxide utilization and storage in partially depleted petroleum reservoirs, with an emphasis on its unique features for scientific investigations; and documents the numerical simulation of the utilization of carbon dioxide for enhanced oil recovery in the western section of the Farnsworth Unit and represents an early stage in the progression of numerical simulators for carbon utilization and storage in depleted oil reservoirs.« less
Origin of salt giants in abyssal serpentinite systems
NASA Astrophysics Data System (ADS)
Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.
2017-10-01
Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.
Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?
NASA Astrophysics Data System (ADS)
Colwell, F. S.; Thurber, A. R.
2016-12-01
Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.
NASA Astrophysics Data System (ADS)
Osei Tutu, A.; Webb, S. J.; Steinberger, B. M.; Rogozhina, I.
2017-12-01
The debate about the origin of the highlands in southern African has generated varying hypothesis, since the nominal processes for mountain building such as evidence of orogeny is not observed here at present-day. For example, some studies have suggested a pre-Paleozoic subduction under the southern Africa plate, might have caused the high topography, whiles other have proposed a large-scale buoyant flow coming from the mid-mantle over the African Large Low Share Velocity Province (LLSVP) as the source. A different school of thought is centered on a probable plume-lithosphere interaction in the early Miocene to late Pliocene. Using joint analysis of geodynamics and geophysical models with geological records; we seek to quantify both shallow and deep mantle density heterogeneities and viscosity structure to understand the tectonics of the southern Africa regional topography. We estimate uplift rates and change in lithosphere stress field for the past 200 Ma and compare with geological records considering first only shallow and deep contributions and their combined effect using a thermo-mechanical model with a free surface.
Two innovative pore pressure calculation methods for shallow deep-water formations
NASA Astrophysics Data System (ADS)
Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei
2017-11-01
There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.
NASA Technical Reports Server (NTRS)
Lunt, Daniel J.; Huber, Matthew; Anagnostou, Eleni; Baatsen, Michiel L. J.; Caballero, Rodrigo; DeConto, Rob; Dijkstra, Henk A.; Donnadieu, Yannick; Evans, David; Feng, Ran;
2017-01-01
Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( greater than 800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (approximately 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4(times) CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modeling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
Deep sub-seafloor prokaryotes stimulated at interfaces over geological time.
Parkes, R John; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Newberry, Carole J; Ferdelman, Timothy G; Kallmeyer, Jens; Jørgensen, Bo B; Aiello, Ivano W; Fry, John C
2005-07-21
The sub-seafloor biosphere is the largest prokaryotic habitat on Earth but also a habitat with the lowest metabolic rates. Modelled activity rates are very low, indicating that most prokaryotes may be inactive or have extraordinarily slow metabolism. Here we present results from two Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher (about 13-fold) and activity rates higher than or similar to near-surface values. Analysis of high-molecular-mass DNA confirmed the presence of viable prokaryotes and showed changes in biodiversity with depth that were coupled to geochemistry, including a marked community change at the 90-m interface. At the open ocean site, increases in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments (about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity associated with interfaces and are active over geological timescales.
Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle
Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.
2003-01-01
This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.
NASA Astrophysics Data System (ADS)
Brown, L. D.
2006-05-01
Given the 3D framework represented by EarthScope's USArray as it scans eastward, the strategic challenge falls to defining cost-effective deployments of FlexArray to address specific lithospheric targets. Previous deep geophysical surveys (e.g. COCORP, USGS, GLIMPCE, et al.) provide guidance not only in framing the geological issues involved, but in designing field experiments that overcome the limitations of previous work. Opportunities highlighted by these precursor studies include: a) Collisional sutures (e.g. Brunswick Anomaly/Suwannee terrane) which lie buried beneath overthrust terranes/ younger sedimentary covers. Signal penetration in previous controlled source surveys has been insufficient. High resolution passive surveys designed to map intralithospheric detachments, Moho, and mantle subduction scars is needed to validate the extrapolations of the existing upper crustal information; b) Intracratonic basins and domes (e.g. Michigan Basin, Adirondack Dome) are perhaps the greatest geological mystery hosted in the east. Previous geophysical studies have lacked the resolution or penetration needed to identify the buoyancy drivers presumed to be responsible for such structures. It is likely that these drivers lie in the upper mantle and will require detailed velocity imaging to recognized. c) Distributed shear fabrics are a defining characteristic of the deep crust in many deformation zones (e.g. Grenville Front). Detailed mapping of crustal anisotropy associated with such shear zones should help delineate ductile flow directions associated with the orogenies that accreted the eastern U.S. 3 component, 3D active+passive surveys are needed to obtain definitive remote measures of such vector characteristics in the deep crust. d) Extensive reflectors in the central U.S. may mark important buried Precambrian basins and/or sill complexes. If the latter, the magmatic roots of those systems remain unrecognized, as does their volumetric contribution to crustal growth. 3C expanding spreads to resolve lithology in the upper crust, coupled with passive imaging of potential mantle sources, are needed to evaluate the role of these sequences in mid Proterozoic continental evolution. Effective experiments must build upon existing data, be strategic in the selection of the various FlexArray tools available, and link operationally with the Bigfoot deployments in an appropriately staged fashion.
Deep Space Network equipment performance, reliability, and operations management information system
NASA Technical Reports Server (NTRS)
Cooper, T.; Lin, J.; Chatillon, M.
2002-01-01
The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.
NASA Astrophysics Data System (ADS)
Xiong, X.; Gao, R.; Li, Q.; Wang, H.
2012-12-01
The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.
Field testing of jet-grouted pile : [summary].
DOT National Transportation Integrated Search
2014-01-01
In many areas of Florida, local geology dictates the use of deep foundations for transportation structures bridges, noise walls, signage, etc. When concrete piles are used, they are either prestressed at the casting yard, cast in situ through a h...
Publications - GMC 64 | Alaska Division of Geological & Geophysical Surveys
sample from the AMOCO Production Company Cathedral River Unit #1 well Authors: Henning, Mitchel, and determination for a 10,650' deep cutting sample from the AMOCO Production Company Cathedral River Unit #1 well
Publications - GMC 398 | Alaska Division of Geological & Geophysical
DGGS GMC 398 Publication Details Title: Porosity and permeability, core sample photos from five Cook from five Cook Inlet basin wells: Deep Creek #1-RD, Foreland Channel State #1-A, Redoubt Unit #5A
Hernandez, Arnaldo José; Almeida, Adriano Marques de; Fávaro, Edmar; Sguizzato, Guilherme Turola
2012-09-01
To evaluate the association between tourniquet and total operative time during total knee arthroplasty and the occurrence of deep vein thrombosis. Seventy-eight consecutive patients from our institution underwent cemented total knee arthroplasty for degenerative knee disorders. The pneumatic tourniquet time and total operative time were recorded in minutes. Four categories were established for total tourniquet time: <60, 61 to 90, 91 to 120, and >120 minutes. Three categories were defined for operative time: <120, 121 to 150, and >150 minutes. Between 7 and 12 days after surgery, the patients underwent ascending venography to evaluate the presence of distal or proximal deep vein thrombosis. We evaluated the association between the tourniquet time and total operative time and the occurrence of deep vein thrombosis after total knee arthroplasty. In total, 33 cases (42.3%) were positive for deep vein thrombosis; 13 (16.7%) cases involved the proximal type. We found no statistically significant difference in tourniquet time or operative time between patients with or without deep vein thrombosis. We did observe a higher frequency of proximal deep vein thrombosis in patients who underwent surgery lasting longer than 120 minutes. The mean total operative time was also higher in patients with proximal deep vein thrombosis. The tourniquet time did not significantly differ in these patients. We concluded that surgery lasting longer than 120 minutes increases the risk of proximal deep vein thrombosis.
U.S. Geological Survey Near Real-Time Dst Index
Gannon, J.L.; Love, J.J.; Friberg, P.A.; Stewart, D.C.; Lisowski, S.W.
2011-01-01
The operational version of the United States Geological Survey one-minute Dst index (a global geomagnetic disturbance-intensity index for scientific studies and definition of space-weather effects) uses either four- or three-station input (including Honolulu, Hawaii; San Juan, Puerto Rico; Hermanus, South Africa; and Kakioka, Japan; or Honolulu, San Juan and Guam) and a method based on the U.S. Geological Survey definitive Dst index, in which Dst is more rigorously calculated. The method uses a combination of time-domain techniques and frequency-space filtering to produce the disturbance time series at an individual observatory. The operational output is compared to the U.S. Geological Survey one-minute Dst index (definitive version) and to the Kyoto (Japan) Final Dst to show that the U.S. Geological Survey operational output matches both definitive indices well.
Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.
2007-01-01
Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.
The geobiological nitrogen cycle: From microbes to the mantle.
Zerkle, A L; Mikhail, S
2017-05-01
Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N 2 is the dominant gas in Earth's atmosphere, and nitrogen is stored in all of Earth's geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrogen in the Earth system, large gaps remain in our knowledge of how the surface and deep nitrogen cycles have evolved over geologic time. Here, we discuss the current understanding (or lack thereof) for how the unique interaction of biological innovation, geodynamics, and mantle petrology has acted to regulate Earth's nitrogen cycle over geologic timescales. In particular, we explore how temporal variations in the external (biosphere and atmosphere) and internal (crust and mantle) nitrogen cycles could have regulated atmospheric pN 2 . We consider three potential scenarios for the evolution of the geobiological nitrogen cycle over Earth's history: two in which atmospheric pN 2 has changed unidirectionally (increased or decreased) over geologic time and one in which pN 2 could have taken a dramatic deflection following the Great Oxidation Event. It is impossible to discriminate between these scenarios with the currently available models and datasets. However, we are optimistic that this problem can be solved, following a sustained, open-minded, and multidisciplinary effort between surface and deep Earth communities. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.
Scanlon, Kathryn M.; Briere, Peter R.; Koenig, Christopher C.
1999-01-01
The Experimental Oculina Research Reserve (EORR) is located along the shelf edge off east-central Florida in water depths of about 60 to 100 meters. It is about 7.5 km wide and 43 km long and encompasses numerous high-relief rocky pinnacles where Oculina varicosa, a fragile deep-water coral, grows. These coral reefs have historically been the sites of prolific grouper spawning aggregations and have supported a large variety of other reef fish (Gilmore and Jones, 1992). Serious decline of the fishery in the area prompted the establishment of the EORR.The data presented in this open-file report were collected as part of a cooperative project between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program and the National Marine Fisheries Service (NMFS) of the National Oceanographic and Atmospheric Administration (NOAA). The project’s goal was to provide reconnaissance geologic maps of the Experimental Oculina Research Reserve and an unprotected control area north of the reserve to support the NMFS studies of grouper spawning aggregations. To accomplish this, we collected sidescan sonar data and sediment samples throughout both study areas and used video and observations from a manned submersible at selected sites. This report includes digital mosaics of the sidescan sonar data, tabulated sediment data, and interpretative maps of the seafloor geology. The video and submersible observations are not included in this report, but were used in the interpretation of the sidescan data.
Global pulses of organic carbon burial in deep-sea sediments during glacial maxima
Cartapanis, Olivier; Bianchi, Daniele; Jaccard, Samuel L.; Galbraith, Eric D.
2016-01-01
The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink. PMID:26923945
Eustatic control of turbidites and winnowed turbidites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, G.; Moiola, R.J.
1982-05-01
Global changes in sea level, primarily the results of tectonism and glaciation, control deep-sea sedimentation. During periods of low sea level the frequency of turbidity currents is greatly increased. Episodes of low sea level also cause vigorous contour currents, which winnow away the fines of turbidites. In the rock record, the occurrence of most turbidites and winnowed turbidities closely corresponds to global lowstands of paleo-sea level. This observation may be useful in predicting the occurrence of deep-sea reservoir facies in the geologic record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, M.S.; Gent, C.A.; Bradley, L.A.
1989-01-01
A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho
Publications - GMC 371 | Alaska Division of Geological & Geophysical
Property under Northwest Explorations joint venture ownership - (1970 to 2005) and plan of operation (2006 - (1970 to 2005) and plan of operation (2006): Alaska Division of Geological & Geophysical Surveys
NASA Technical Reports Server (NTRS)
Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert
1996-01-01
The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.
NASA Astrophysics Data System (ADS)
Klose, C. D.; Giese, R.; Löw, S.; Borm, G.
Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock fracturing than compression wave velocities. The velocity ratios indicate the mica content and the water content of the rocks.
Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.
Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F
2014-12-01
A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.
Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.
Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO
2014-10-24
A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.
Large-scale Thermo-Hydro-Mechanical Simulations in Complex Geological Environments
NASA Astrophysics Data System (ADS)
Therrien, R.; Lemieux, J.
2011-12-01
The study of a potential deep repository for radioative waste disposal in Canada context requires simulation capabilities for thermo-hydro-mechanical processes. It is expected that the host rock for the deep repository will be subjected to a variety of stresses during its lifetime such as in situ stresses in the rock, stressed caused by excavation of the repository and thermo-mechanical stresses. Another stress of concern for future Canadian climates will results from various episodes of glaciation. In that case, it can be expected that over 3 km of ice may be present over the land mass, which will create a glacial load that will be transmitted to the underlying geological materials and therefore impact their mechanical and hydraulic responses. Glacial loading will affect pore fluid pressures in the subsurface, which will in turn affect groundwater velocities and the potential migration of radionuclides from the repository. In addition, permafrost formation and thawing resulting from glacial advance and retreat will modify the bulk hydraulic of the geological materials and will have a potentially large impact on groundwater flow patterns, especially groundwater recharge. In the context of a deep geological repository for spent nuclear fuel, the performance of the repository to contain the spent nuclear fuel must be evaluated for periods that span several hundred thousand years. The time-frame for thermo-hydro-mechanical simulations is therefore extremely long and efficient numerical techniques must be developed. Other challenges are the representation of geological formations that have potentially complex geometries and physical properties and may contain fractures. The spatial extent of the simulation domain is also very large and can potentially reach the size of a sedimentary basin. Mass transport must also be considered because the fluid salinity in a sedimentary basin can be highly variable and the effect of fluid density on groundwater flow must be accounted for. Adding mass transport with density effect introduces further non-linearities in the governing equations, thus leading to increased simulation times. We will present challenges and current developments related to this topic in the Canadian context. Current efforts aim at improving simulation capabilities for large-scale 3D thermo-hydro-mechanical simulation in complex geologic materials. One topic of interest is to evaluate the appropriateness of simplifying the effect of glacial loading by using a one-dimensional hydro-mechanical representation that assumes purely vertical strain as opposed to the much more computationally intensive 3D representation.
A Classroom Demonstration of Thermohaline Circulation.
ERIC Educational Resources Information Center
Dudley, Walter C.
1984-01-01
Density-driven deep circulation is important in influencing geologic processes ranging from the dissolution of biogenic siliceous and calcareous sediments to the formation of erosional unconformities. A technique for dynamically demonstrating this process using an aquarium to enhance student understanding is described. (BC)
NASA Astrophysics Data System (ADS)
Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.
2011-12-01
This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the geological survey of China Dr. Wang Min, in two last years we are going to put into practice the following directions: 1. Study of deep processes and metallogeny of the northern passive and eastern active continental margins of Asia with using of new isotopic data along geotransects and the reprocessing of 3-component seismic data and 3D modeling of the region deep structure. 2. Correlation of the tectonic evolution of the Tibetan Plateau and Baikal rift system in Cenozoic, which is of great importance for understanding the geodynamic evolution of the Central Asia and seismic predictions. 3. Comparison of Siberian and Emeishan major volcanic provinces, accompanied with unique ore deposits. Last VSEGEI isotopic studies revealed the significant role of assimilation of metasedimentary upper crust rocks by mantle magma in the formation of unique Norilsk copper-nickel deposits. The results of the next stage of joint studies under the project will be presented at the 34th IGC, at which a scientific symposium "Geological and Metallogenic Responses to Deep Processes in Eastern Asia and Continental Margins" is to be held.
The Geomechanics of CO 2 Storage in Deep Sedimentary Formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny
2012-01-12
This study provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the Inmore » Salah CO 2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO 2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO 2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. In conclusion, for such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.« less
NASA Astrophysics Data System (ADS)
Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.
2003-04-01
With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as the measurement of in situ formation conditions. A wide- ranging science and engineering research program included the collection of gas-hydrate-bearing core samples and downhole geophysical logging. Laboratory and modeling studies undertaken during the field program, and subsequently as part of a post-field research program, will document the sedimentology, physical/petrophysical properties, geochemistry, geophysics, reservoir characteristics and production behavior of the Mallik gas hydrate accumulation. The research team, including some 100 participant scientists from over 20 institutes in 7 countries, expects to publish the scientific results in 2004.
NASA Astrophysics Data System (ADS)
Cantwell, K. L.; Kennedy, B. R.; Quattrini, A.; Cheadle, M. J.; Sowers, D.; Lobecker, E.; Ford, M.; Garcia-Moliner, G.; Gray, L. M.; Chaytor, J. D.; Demopoulos, A. W.
2016-02-01
From February to April 2015, NOAA Ship Okeanos Explorer, America's Ship for Ocean Exploration, surveyed unknown deep-sea ecosystems and potential geohazards off the coast of Puerto Rico and the US Virgin Islands. Over 37,500 km² of high-resolution multibeam sonar data was collected, revealing rugged canyons along shelf breaks, intricate incised channels, and large slumps and slope failures. Twelve remotely operated vehicle (ROV) dives, surveyed seamounts, escarpments, and submarine canyons at depths of 300-6,000 m. Additional ROV exploration of the water column occurred at depths of 800-1200 m. Dives included three of the deepest dives ever conducted in the Puerto Rico Trench and the first exploration of Exocet and Whiting seamounts. Discoveries included assemblages of deep-sea corals (>50 species), and observations of several rare and new species. For example, the seastar Laetmaster spectabilis had not been documented since its original description in 1881 and a new species of benthopelagic cydippid ctenophore was observed at 3900 m in the Aricebo Amphitheater. Other expedition highlights included two rarely observed blind octopods (Cirrothauma murrayi); novel observation of a symbiotic association between predatory tunicates with polychaete associates; and approximately 75 species of demersal fishes, including a new species of wrasse and the first records of Shaefer's anglerfish and the ateleopodid jellynose in Puerto Rican waters. ROV dives traversed elements of the complete geological succession from 1 km deep into the Cretaceous volcanic arc basement, across the carbonate platform sequence unconformity and into the uppermost Pliocene carbonates. Highlights included spectacular slope failure headwall scarps and sub-aerial karstic weathering of the youngest carbonates. All data collected during Océano Profundo 2015 are now publicly available through the National Archives and are awaiting further analysis by the scientific community.
NASA Astrophysics Data System (ADS)
Skinner, L. C.
2009-09-01
So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates). Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses) in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW), filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps) might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.
Site Characterization for a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.
2015-12-01
The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Thuy, Ben; Kiel, Steffen; Dulai, Alfréd; Gale, Andy S.; Kroh, Andreas; Lord, Alan R.; Numberger-Thuy, Lea D.; Stöhr, Sabine; Wisshak, Max
2014-01-01
Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic. PMID:24850917
Analytical and Numerical Models of Pressurization for CO2 Storage in Deep Saline Formations
NASA Astrophysics Data System (ADS)
Wildgust, N.; Cavanagh, A.
2010-12-01
Deep saline formations are expected to store gigatonnes of CO2 over the coming decades, making a significant contribution to greenhouse gas mitigation. At present, our experience of deep saline formation storage is limited to a small number of demonstration projects that have successfully injected megatonnes of captured CO2. However, concerns have been raised over pressurization, and related brine displacement, in deep saline formations, given the anticipated scale of future storage operations. Whilst industrial-scale demonstration projects such as Sleipner and In Salah have not experienced problems, generic flow models have indicated that, in some cases, pressure may be an issue. The problem of modeling deep saline formation pressurization has been approached in a number of different ways by researchers, with published analytical and numerical solutions showing a wide range of outcomes. The divergence of results (either supporting or negating the pressurization issue) principally reflects the a priori choice of boundary conditions. These approaches can be summed up as either 'open' or 'closed': a) open system models allow the formation pressure to dissipate laterally, resulting in reasonable storage scenarios; b) closed system models predict pressurization, resulting in a loss of injectivity and/or storage formation leakage. The latter scenario predicts that storage sites will commonly fail to accommodate injected CO2 at a rate sufficient to handle routine projects. Our models aim to demonstrate that pressurization, and the related brine displacement issue, need to be addressed at a regional scale with geologically accurate boundary conditions. Given that storage formations are unlikely to have zero-flow boundaries (closed system assumption), the boundary contribution to pressure relief from low permeability shales may be significant. At a field scale, these shales are effectively perfect seals with respect to multiphase flow, but are open with respect to single phase flow and pressure dissipation via brine displacement at a regional scale. This is sometimes characterized as a 'semi-closed' system. It follows that the rate at which pressure can be dissipated (and CO2 injected) is highly sensitive to the shale permeability. A common range from sub-millidarcy (10-17 m2) to sub-nanodarcy (10-22 m2) is considered, and the empirical relationships of permeability with respect to porosity and threshold pressure are reviewed in light of the regional scale of CO2 storage in deep saline formations. Our model indicates that a boundary permeability of about a microdarcy (10-18 m2) is likely to provide sufficient pressure dissipation via brine displacement to allow for routine geological storage. The models also suggest that nanodarcy shales (10-21 m2) will result in significant pressurization. There is regional evidence, from the North Sea, that typical shale permeabilities at depths associated with CO2 storage (1-3 km) are likely to favor storage, relegating pressurization to a manageable issue.
NASA Astrophysics Data System (ADS)
Huang, J.
2017-12-01
Northeast China is located in the composite part of Paleo Asia ocean and Pacific ocean Domain, it undergone multi-stage tectonism and has complicated geological structure. In this region, two major geologic and geophysical boundaries are distinct, the NNE-trending North South Gravity Lineament (NSGL) and Tanlu fault. With respect to North China Craton (NCC), Northeast China is more closely adjacent to the subduction zone of Pacific slab. Along the eastern boundary of Northeast China, the subducting Pacific plate approaches depths of 600 km, many deep earthquakes occurred here. This region becomes an ideal place to investigate deep structure related to deep subduction, deep earthquakes as well as intraplate volcanism. In this study, we determined high-resolution three dimensional P- and S-wave velocity models of the crust and upper mantle to 800 km depth by jointly inverting arrival times from local events and relative residuals from teleseismic events. Our results show that main velocity anomalies exhibited block feature and are generally oriented in NE to NNE direction, which is consistent with regional tectonic direction. The NSGL is characterized by a high-velocity (high-V) anomaly belt with a width of approximately 100 km, and the high-V anomaly extents to the bottom of upper mantle or mantle transition zone. The songliao basin, which is located between NSGL and Tanlu fault tectonic boundaries, obvious low-velocity anomaly extends to about depth of 200 km(. Under the Great Xing'an Range on the west side of NSGL, the low velocity extend to the lithosphere. Our results also show that most of deep earthquakes all occurred in deep subduction zone with high-velocity anomaly. Further, we also observed that extensive low velocity exists above deep-earthquakes zones, this result suggests that deep subduction of the Pacific slab maybe affect overlying lithosphere, resulting in the state of molten, semi-molten or high water.This research is supported by the National Science Foundation of China (91114204) and National Key R&D Plan (2017YFC0601406)
A brief geologic history of Volusia County, Florida
German, Edward R.
2009-01-01
Volusia County is in a unique and beautiful setting. This Florida landscape is characterized by low coastal plains bordered by upland areas of sandy ridges and many lakes. Beautiful streams and springs abound within the vicinity. Underneath the land surface is a deep layer of limestone rocks that stores fresh, clean water used to serve drinking and other needs. However, the landscape and the subsurface rocks have not always been as they appear today. These features are the result of environmental forces and processes that began millions of years ago and are still ongoing. This fact sheet provides a brief geologic history of the Earth, Florida, and Volusia County, with an emphasis on explaining why the Volusia County landscape and geologic structure exists as it does today.
Advances in Geologic Disposal System Modeling and Shale Reference Cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less
Silva, Marina Jardim E; Fernandes, Antonio Carlos Sequeira; Fonseca, Vera Maria Medina da
2013-06-01
The career of João Martins da Silva Coutinho is linked to the history of the Museu Nacional in Rio de Janeiro to whose collections (especially geological) he contributed scientific information and material. On the Brazilian scientific stage, Silva Coutinho took part in major exploratory commissions in the latter half of the nineteenth century, mainly in the Amazon and in the Northeast. He collected and sent samples to the Museu Nacional for analysis, establishing deep ties with the institution and its staff. The article presents his contributions through an analysis of these documents and an examination of the geological collections that he sent to the institution and that remain part of its holdings.
NASA Astrophysics Data System (ADS)
Furniss, Tom
2014-03-01
Rather than focussing on the relationship between science and literature, this article attempts to read scientific writing as literature. It explores a somewhat neglected element of the story of the emergence of geology in the late eighteenth century—James Hutton's unpublished accounts of the tours of Scotland that he undertook in the years 1785-1788 in search of empirical evidence for his theory of the earth. Attention to Hutton's use of literary techniques and conventions highlights the ways these texts dramatise the journey of scientific discovery and allow Hutton's readers to imagine that they were virtual participants in the geological quest, conducted by a savant whose self-fashioning made him a reliable guide through Scotland's geomorphology and the landscapes of deep time.
Species-energy relationship in the deep sea: A test using the Quaternary fossil record
Hunt, G.; Cronin, T. M.; Roy, K.
2005-01-01
Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.
2017-12-01
We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.
NASA Astrophysics Data System (ADS)
Cornaton, F. J.; Park, Y.-J.; Normani, S. D.; Sudicky, E. A.; Sykes, J. F.
2008-04-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.
Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California
NASA Astrophysics Data System (ADS)
Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.
2017-12-01
Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and geomorphologies, difficult to infer with the use of low-resolution data.
NASA Astrophysics Data System (ADS)
Rhzanov, Y.; Beaulieu, S.; Soule, S. A.; Shank, T.; Fornari, D.; Mayer, L. A.
2005-12-01
Many advances in understanding geologic, tectonic, biologic, and sedimentologic processes in the deep ocean are facilitated by direct observation of the seafloor. However, making such observations is both difficult and expensive. Optical systems (e.g., video, still camera, or direct observation) will always be constrained by the severe attenuation of light in the deep ocean, limiting the field of view to distances that are typically less than 10 meters. Acoustic systems can 'see' much larger areas, but at the cost of spatial resolution. Ultimately, scientists want to study and observe deep-sea processes in the same way we do land-based phenomena so that the spatial distribution and juxtaposition of processes and features can be resolved. We have begun development of algorithms that will, in near real-time, generate mosaics from video collected by deep-submergence vehicles. Mosaics consist of >>10 video frames and can cover 100's of square-meters. This work builds on a publicly available still and video mosaicking software package developed by Rzhanov and Mayer. Here we present the results of initial tests of data collection methodologies (e.g., transects across the seafloor and panoramas across features of interest), algorithm application, and GIS integration conducted during a recent cruise to the Eastern Galapagos Spreading Center (0 deg N, 86 deg W). We have developed a GIS database for the region that will act as a means to access and display mosaics within a geospatially-referenced framework. We have constructed numerous mosaics using both video and still imagery and assessed the quality of the mosaics (including registration errors) under different lighting conditions and with different navigation procedures. We have begun to develop algorithms for efficient and timely mosaicking of collected video as well as integration with navigation data for georeferencing the mosaics. Initial results indicate that operators must be properly versed in the control of the video systems as well as maintaining vehicle attitude and altitude in order to achieve the best results possible.
Exploring deep sea habitats for baseline characterization using NOAA Ship Okeanos Explorer
NASA Astrophysics Data System (ADS)
McKenna, L.; Cantwell, K. L.; Kennedy, B. R.; Lobecker, E.; Sowers, D.; Elliott, K.
2015-12-01
In 2015, NOAA Ship Okeanos Explorer, the only US federal ship dedicated to ocean exploration, systematically explored previously unknown deep sea ecosystems in the Caribbean and remote regions in the vicinity of the Hawaiian Islands. Initial characterization of these areas is essential in order to establish a baseline against which to assess potential future changes due to climate and anthropogenic change. In the Caribbean, over 37,500 sq km of previously unmapped seafloor were mapped with a high resolution multibeam revealing rugged canyons along shelf breaks, intricate incised channels, and complex tectonic features. 12 ROV dives, in the 300-6,000 m depth range, visually explored seamounts, escarpments, submarine canyons, and the water column revealing diverse ecosystems and habitats. Discoveries include large assemblages of deep sea corals, range extensions, and observations of several rare and potentially new organisms - including a seastar that had not been documented since its holotype specimen. In the Pacific, over 50,000 sq km of seafloor were mapped in high-resolution, revealing long linear ridge and tectonic fracture zone features, both peaked and flat-topped seamounts, and numerous features that appear to be volcanic in origin. To better understand ecosystem dynamics in depths greater than 2,000 m, the deepest ever ROV surveys and sampling were conducted in remote Pacific island marine sanctuaries and monuments. Novel observations include range extensions and exploration of dense deep sea coral and sponge habitat. Baseline habitat characterization was also conducted on seamounts within the Prime Crust Zone (PCZ), an area with the highest expected concentration of deep-sea minerals in the Pacific. The Hawaiian operations marked the first ever ROV sampling effort conducted onboard Okeanos, and several geological and biological samples are now available at museums and sample repositories in addition to all digital data available through the National Archives.
Subsurface storage of freshwater in south Florida; a prospectus
Merritt, M.L.; Meyer, F.W.; Sonntag, W.H.; Fitzpatrick, D.J.
1983-01-01
A method of increasing storage capacity for freshwater in south Florida is to use brackish artesian aquifers as reservoirs. In this way, water deficiencies occurring during the annual dry season can be offset by surplus water obtained during the wet season and injected underground. Most of south Florida is underlain by several deep, confined, carbonate waterbearing zones which might be suitable for freshwater storage. These zones are in the Avon Park, Ocala, Suwannee, Tampa, and Hawthorn Formations. Experimental freshwater injection systems have been operated at five locations with promising, but not fully definitive, results. A determination of the feasibility of freshwater injection at a selected site begins with an assessment of the local geologic suitability. Verification of feasibility, however, requires injection and recovery tests to be performed at the site. Recovery efficiency, a measure of the success of the operation, is the amount of potable water, expressed as a percentage of the volume injected, which can be recovered before its salinity, or the concentration of other chemical constituents present in the native aquifer water, increases to the point that the recovered water is no longer useable. (USGS)
3D numerical modelling of the thermal state of deep geological nuclear waste repositories
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.
2017-09-01
One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.
NASA Astrophysics Data System (ADS)
Audet, Pascal; Kim, YoungHee
2016-02-01
More than a decade after the discovery of deep episodic slow slip and tremor, or slow earthquakes, at subduction zones, much research has been carried out to investigate the structural and seismic properties of the environment in which they occur. Slow earthquakes generally occur on the megathrust fault some distance downdip of the great earthquake seismogenic zone in the vicinity of the mantle wedge corner, where three major structural elements are in contact: the subducting oceanic crust, the overriding forearc crust and the continental mantle. In this region, thermo-petrological models predict significant fluid production from the dehydrating oceanic crust and mantle due to prograde metamorphic reactions, and their consumption by hydrating the mantle wedge. These fluids are expected to affect the dynamic stability of the megathrust fault and enable slow slip by increasing pore-fluid pressure and/or reducing friction in fault gouges. Resolving the fine-scale structure of the deep megathrust fault and the in situ distribution of fluids where slow earthquakes occur is challenging, and most advances have been made using teleseismic scattering techniques (e.g., receiver functions). In this paper we review the teleseismic structure of six well-studied subduction zones (three hot, i.e., Cascadia, southwest Japan, central Mexico, and three cool, i.e., Costa Rica, Alaska, and Hikurangi) that exhibit slow earthquake processes and discuss the evidence of structural and geological controls on the slow earthquake behavior. We conclude that changes in the mechanical properties of geological materials downdip of the seismogenic zone play a dominant role in controlling slow earthquake behavior, and that near-lithostatic pore-fluid pressures near the megathrust fault may be a necessary but insufficient condition for their occurrence.
"The Oceans" not Withstanding: Scripps Geological-Geophysical Expeditions of the Golden Age
NASA Astrophysics Data System (ADS)
Fisher, R. L.
2002-12-01
"The Oceans: Their Physics, Chemistry, and General Biology," fully recognized and promoted the inherent unity of oceanography, the field itself, and of all components of the oceanic world. It covered well the wet pieces. However, except for sedimentary studies of the California borderland and reconnaissances of the Arctic, Mediterranean, and the South Atlantic, little was presented that could be parent to today's portrayals of marine geology and geophysics. The advances in those areas in the 1950's, 1960's, and early 1970's, by SIO scientists and those of several other institutions resulted from extended expeditionary studies, essential on-the-job field training of confident very young chief scientists, dogged pushing of traditional rough sampling methods to their limits, and the invention and lateral prompt application of precise electronic timing and sensing devices to shipboard observation of deep ocean seafloor/crustal elements. SIO's multifaceted expeditions of those years were conceived, planned and often lead by graduate students making thesis observations, assisted by their fellows as "warm bodies," perhaps with more senior staff scientists making specific collections at key localities. Education was real-time: discovering--reflection--discussion, and mutual tutoring. The principal factor that made such operation scientifically and educationally successful was SIO's then Director, Roger Revelle, a benevolent and trusting, but very perceptive, godfather.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byerly, D.W.
1976-06-01
The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Minemore » located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio.« less
Geologic Exploration Enabled by Optimized Science Operations on the Lunar Surface
NASA Astrophysics Data System (ADS)
Heldmann, J. L.; Lim, D. S. S.; Colaprete, A.; Garry, W. B.; Hughes, S. S.; Kobs Nawotniak, S.; Sehlke, A.; Neish, C.; Osinski, G. R.; Hodges, K.; Abercromby, A.; Cohen, B. A.; Cook, A.; Elphic, R.; Mallonee, H.; Matiella Novak, A.; Rader, E.; Sears, D.; Sears, H.; Finesse Team; Basalt Team
2017-10-01
We present detailed geologic field studies that can best be accomplished through in situ investigations on the Moon, and the associated recommendations for human and robotic mission capabilities and concepts of operations for lunar surface missions.
Microbial ecology of deep-water mid-Atlantic canyons
Kellogg, Christina A.
2011-01-01
The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.
Extraterrestrial demise of banded iron formations 1.85 billion years ago
Slack, J.F.; Cannon, W.F.
2009-01-01
In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.
10 CFR 60.134 - Design of seals for shafts and boreholes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60... the geologic repository's ability to meet the performance objectives or the period following permanent...
Atlantic deep water circulation during the last interglacial.
Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg
2018-03-13
Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.
Subduction processes related to the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya
2017-04-01
It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.
The significance of pockmarks to understanding fluid flow processes and geohazards
Hovland, M.; Gardner, J.V.; Judd, A.G.
2002-01-01
Underwater gas and liquid escape from the seafloor has long been treated as a mere curiosity. It was only after the advent of the side-scan sonar and the subsequent discovery of pockmarks that the scale of fluid escape and the moonlike terrain on parts of the ocean floor became generally known. Today, pockmarks ranging in size from the 'unit pockmark' (1-10 m wide, <0.6 m deep) to the normal pockmark (10-700 m wide, up to 45 m deep) are known to occur in most seas, oceans, lakes and in many diverse geological settings. In addition to indicating areas of the seabed that are 'hydraulically active', pockmarks are known to occur on continental slopes with gas hydrates and in association with slides and slumps. However, possibly their potentially greatest significance is as an indicator of deep fluid pressure build-up prior to earthquakes. Whereas only a few locations containing active (bubbling) pockmarks are known, those that become active a few days prior to major earthquakes may be important precursors that have been overlooked. Pockmark fields and individual pockmarks need to be instrumented with temperature and pressure sensors, and monitoring should continue over years. The scale of such research calls for a multinational project in several pockmark fields in various geological settings.
A three-dimensional geological reconstruction of Noctis Labyrinthus slope tectonics from CaSSIS data
NASA Astrophysics Data System (ADS)
Massironi, M. M.; Pozzobon, R. P.; Lucchetti, A. L.; Simioni, E. S.; Re, C. R.; Mudrič, T. M.; Pajola, M. P.; Cremonese, G. C.; Pommerol, A. P.; Salese, F. S.; Thomas, N. T.; Mege, D. M.
2017-09-01
In November 2016 the CaSSIS (Colour and Stereo Surface Imaging System) imaging system onboard the European Space Agency's ExoMars Trace Gas Orbiter (TGO) acquired 18 images (each composed by 30 framelets for each of the 4 colour channels) of the Martian surface. The first stereo- pairs were taken during the closest approach, at a distance of 520 km from the surface, over the Hebes Chasma and Noctis Labyrithus regions. In the latter case a DTM was prepared over a north facing slope bounding to the north a 2000 m deep depression and to the south a plateau complicated by extensional fault networks. Such slope is characterised by a downthrown block that can be interpreted as a Deep Seated Gravitational Slope Deformation (DSGSD) sensu. In this work we will present a 3D geological reconstruction of the phenomenon that allowed us to constrain the possible main sliding surface, the volumes involved in the gravitational process and the kinematics of the mass movement.
Microbial habitability of Europa sustained by radioactive sources.
Altair, Thiago; de Avellar, Marcio G B; Rodrigues, Fabio; Galante, Douglas
2018-01-10
There is an increasing interest in the icy moons of the Solar System due to their potential habitability and as targets for future exploratory missions, which include astrobiological goals. Several studies have reported new results describing the details of these moons' geological settings; however, there is still a lack of information regarding the deep subsurface environment of the moons. The purpose of this article is to evaluate the microbial habitability of Europa constrained by terrestrial analogue environments and sustained by radioactive energy provided by natural unstable isotopes. The geological scenarios are based on known deep environments on Earth, and the bacterial ecosystem is based on a sulfate-reducing bacterial ecosystem found 2.8 km below the surface in a basin in South Africa. The results show the possibility of maintaining the modeled ecosystem based on the proposed scenarios and provides directions for future models and exploration missions for a more complete evaluation of the habitability of Europa and of icy moons in general.
NASA Astrophysics Data System (ADS)
Tomaru, H.; Lu, Z.; Fehn, U.
2011-12-01
Because iodine has a strong association with organic matters in marine environments, pore waters in high methane potential region, in particular gas hydrate occurrences on the continental margins, are enriched significantly in iodine compared with seawater. Natural iodine system is composed of stable and radioactive species, I-129 (half-life of 15.7 Myr) has been used for estimating the age of source formations both for methane and iodine, because iodine can be liberated into pore water during the degradation of organic matter to methane in deep sediments. Here we present I-129 age data in pore waters collected from variety of gas hydrate occurrences on the continental margins. The I-129 ages in pore waters from these locations are significantly older than those of host sediments, indicating long-term transport and accumulation from deep/old sediments. The I-129 ages in the Japan Sea and Okhotsk Sea along the plate boundary between the North American and Amurian Plates correspond to the ages of initial spreading of these marginal seas, pointing to the massive deposition of organic matter for methane generation in deep sediments within limited periods. On the Pacific side of these areas, organic matter-rich back stop is responsible for methane in deep-seated gas hydrate deposits along the Nankai Trough. Deep coaly sequences responsible for deep conventional natural gas deposits are also responsible for overlying gas hydrate deposits off Shimokita Peninsula, NE Japan. Those in the Gulf of Mexico are correlative to the ages of sediments where the top of salt diapirs intrude. Marine sediments on the Pacific Plate subducting beneath the Australian Plate are likely responsible for the methane and iodine in the Hikurangi Trough, New Zealand. These ages reflect well the regional geological settings responsible for generation, transport, and accumulation of methane, I-129 is a key to understand the geological history of gas hydrate deposition.
SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)
NASA Astrophysics Data System (ADS)
Dong, S.; Li, T.
2010-12-01
China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in China. Some stress monitoring were centered in the Beijing and the southeastern margin of the Qinghai-Tibet Plateau regions. Also, SinoProbe begin to establish a high-performance calculation platform that will consider coupling processes between deformation and thermal evolution in the lithosphere. Meanwhile, data integration and data dissemination is going to stored. Finally, SinoProbe will also devote to develop new technologies, innovative methods, data integration platforms, and modern equipments for deep Earth and mineral-deposit explorations. In summary, SinoProbe is a multi-year and multidisciplinary research program to be carried in China with 9 projects and 49 sub-projects. It will integrate geological, geophysical, geochemical, and modern exploration technology to examine the deep Earth structures and their evolution in China. The results will undoubtedly contribute to the improvement of our current understanding of the Eurasia continent in particular and the Earth in general.
Pohn, Howard A.; Purdy, Terri L.
1982-01-01
Field studies of geologic structures in the Valley and Ridge and adjacent parts of the Appalachian Plateau provinces in Pennsylvania have shown a new type of structure, formerly poorly understood and frequently unmapped, is a significant indicator of deep-seated subsurface faulting. These structures, herein called disturbed zones, are formed by movement between closely spaced pairs of thrust faults. Disturbed zones are characterized at the surface by long, narrow, intensely folded and faulted zones of rocks in a relatively undisturbed stratigraphic sequence. These zones are frequently kilometers to tens of kilometers long and tens to hundreds of meters wide. Although disturbed zones generally occur in sequences of alternating siltstone and shale beds, they can also occur in other lithologies including massively-bedded sandstones and carbonates. Disturbed zones are not only easily recognized in outcrop but their presence can also be inferred on geologic maps by disharmonic fold patterns, which necessitates a detachment between adjacent units that show the disharmony. A number of geologic problems can be clarified by understanding the principles of the sequence of formation and the method of location of disturbed zones, including the interpretation of some published geologic cross sections and maps. The intense folding and faulting which accompanies the formation of a typical disturbed zone produces a region of fracture porosity which, if sealed off from the surface, might well serve as a commercially-exploitable hydrocarbon trap. We believe that the careful mapping of concentrations of disturbed zones can serve as an important exploration method which is much less expensive than speculation seismic lines.
Shallow End Response from ATEM
NASA Astrophysics Data System (ADS)
Vetrov, A.
2014-12-01
Different geological, hydrological, environmental and engineering targets are located shallow underground. The information collected with ATEM systems might be very useful for their study; although there are many deeper targets that the ATEM systems are traditionally used for. The idea to raise magnetic moment output and get deeper penetration response was one of the goals of ATEM systems development during the last decade. The shallow geology response was a trade for such systems, which sometimes were almost blind in the first hundred meter under surface. The possibility to achieve shallow end response from ATEM systems has become significant subject in last years. Several airborne TDEM systems got second higher frequency and lower magnetic moment signal to pick up shallow response together with deep one. Having a potential advantage such implementation raises complication and cost of the system. There's no need to receive 500 meter deep response when exploring shallow geology. P-THEM system having a compact size transmitter and relatively light weight is working on one base frequency at a time, but this frequency can be preset before a flight considering survey goals. A study of shallow geology response of the P-THEM system working on different base frequency has been conducted in 2014 in Ontario. The Alliston test area located in Southern Ontario has been flown with the P-THEM system working on base frequencies 30Hz and 90Hz. Results of the observations will be discussed in the presentation. The shallow end data can be used for mineral exploration applications and also for hydrological and environmental studies.
Deep seismic sounding in northern Eurasia
Benz, H.M.; Unger, J.D.; Leith, W.S.; Mooney, W.D.; Solodilov, L.; Egorkin, A.V.; Ryaboy, V.Z.
1992-01-01
For nearly 40 years, the former Soviet Union has carried out an extensive program of seismic studies of the Earth's crust and upper mantle, known as “Deep Seismic Sounding” or DSS [Piwinskii, 1979; Zverev and Kosminskaya, 1980; Egorkin and Pavlenkova, 1981; Egorkin and Chernyshov, 1983; Scheimer and Borg, 1985]. Beginning in 1939–1940 with a series of small-scale seismic experiments near Moscow, DSS profiling has broadened into a national multiinstitutional exploration effort that has completed almost 150,000 km of profiles covering all major geological provinces of northern Eurasia [Ryaboy, 1989].
NASA Astrophysics Data System (ADS)
Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.
2005-05-01
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.
Natural disasters and climate change call for the urgent decentralization of urban water systems.
Vázquez-Rowe, Ian; Kahhat, Ramzy; Lorenzo-Toja, Yago
2017-12-15
Lima is gradually upgrading its urban water cycle to comply with improved sanitation standards, with the aim of treating the entire flow of water and wastewater that it creates. However, this paper examines the basic characteristics of the main treatment systems that are currently in operation in the Peruvian capital, highlighting the myopic and inefficient nature of these investments. It digs deep in the debate between centralized and decentralized water management systems in a city that is exposed to numerous hydro-meteorological and geological hazards. Previous errors that have occurred in the developed world throughout the evolution process of the urban water cycle should be taken into consideration prior to any infrastructure development in emerging countries. For the particular case of Lima, special emphasis should be given to the resilience of its urban water system in order to guarantee rapid recovery after disaster events. Copyright © 2017 Elsevier B.V. All rights reserved.
Rodgers, J C; Kenney, J W
1997-02-01
The Department of Energy has constructed a deep geologic repository for defense transuranic waste disposal. The Waste Isolation Pilot Plant, located in Southeastern New Mexico, is slated to receive transuranic waste by truck delivery beginning in 1998. The Environmental Evaluation Group (EEG) provides an independent evaluation of the impact on the health and environment in New Mexico of the WIPP project. Since 1985, the EEG has operated a network of air monitoring sites around WIPP and in nearby communities. The radionuclide concentration data from these air samples have been assembled into a useful baseline data base after resolution of a number of methodological and quality assurance issues. Investigation thresholds for the principal radionuclides have been calculated from combined data collected from several sites. These action levels will provide a critical quantitative basis for decisions of whether future airborne radionuclide measurements are attributable to accidental releases.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
NASA Astrophysics Data System (ADS)
Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison
2014-05-01
Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.
GeoLab 2011: New Instruments and Operations Tested at Desert RATS
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Calaway, M. J.; Bell, M. S.
2012-01-01
GeoLab is a geological laboratory and testbed designed for supporting geoscience activities during NASA's analog demonstrations. Scientists at NASA's Johnson Space Center built GeoLab as part of a technology project to aid the development of science operational concepts for future planetary surface missions [1, 2, 3]. It is integrated into NASA's Habitat Demonstration Unit, a first generation exploration habitat test article. As a prototype workstation, GeoLab provides a high fidelity working space for analog mission crewmembers to perform in-situ characterization of geologic samples and communicate their findings with supporting scientists. GeoLab analog operations can provide valuable data for assessing the operational and scientific considerations of surface-based geologic analyses such as preliminary examination of samples collected by astronaut crews [4, 5]. Our analog tests also feed into sample handling and advanced curation operational concepts and procedures that will, ultimately, help ensure that the most critical samples are collected during future exploration on a planetary surface, and aid decisions about sample prioritization, sample handling and return. Data from GeoLab operations also supports science planning during a mission by providing additional detailed geologic information to supporting scientists, helping them make informed decisions about strategies for subsequent sample collection opportunities.
Ocean Networks Canada: Live Sensing of a Dynamic Ocean System
NASA Astrophysics Data System (ADS)
Heesemann, Martin; Juniper, Kim; Hoeberechts, Maia; Matabos, Marjolaine; Mihaly, Steven; Scherwath, Martin; Dewey, Richard
2013-04-01
Ocean Networks Canada operates two advanced cabled networks on the west coast of British Columbia. VENUS, the coastal network consisting of two cabled arrays with four Nodes reaching an isolated fjord (Saanich Inlet) and a busy shipping corridor near Vancouver (the Strait of Georgia) went into operation in February 2006. NEPTUNE Canada is the first operational deep-sea regional cabled ocean observatory worldwide. Since the first data began streaming to the public in 2009, instruments on the five active nodes along the 800 km cable loop have gathered a time-series documenting three years in the northeastern Pacific. Observations cover the northern Juan de Fuca tectonic plate from ridge to trench and the continental shelf and slope off Vancouver Island. The cabled systems provide power and high bandwidth communications to a wide range of oceanographic instrument systems which measure the physical, chemical, geological, and biological conditions of the dynamic earth-ocean system. Over the years significant challenges have been overcome and currently we have more than 100 instruments with hundreds of sensors reporting data in real-time. Salient successes are the first open-ocean seafloor to sea-surface vertical profiling system, three years of operation of Wally—a seafloor crawler that explores a hydrate mound, and a proven resilient cable design that can recover from trawler hits and major equipment meltdown with minimal loss of data. A network wide array of bottom mounted pressure recorders and seismometers recorded the passage of three major tsunamis, numerous earthquakes and frequent whale calls. At the Endeavour segment of the Juan de Fuca ridge high temperature and diffuse vent fluids were monitored and sampled using novel equipment, including high resolution active acoustics instrumentation to study plume dynamics at a massive sulfide hydrothermal vent. Also, four deep sea cabled moorings (300 m high) were placed in the precipitous bathymetry of the 2200 m deep axial valley. Close to shore, a three-dimensional imaging system monitors the growth of a sponge complex on the 20 m deep Folger pinnacle in the wave zone offshore Vancouver Island. Instruments monitoring the delta and estuarine dynamics of the Fraser River that empties into the eastern edge of the Strait of Georgia complete the picture of this northeast Pacific dynamic ocean system from an active spreading ridge, down to the abyss, along the hydrate-rich slope, and up to the coast. While the installation of the first phase of experiments is nearing completion, the cabled networks still provide ample opportunity for expansion and scientists from all over the world are invited to join our community and advance science by using the data that is publicly available at http://www.oceannetworks.ca/.
Riney, T. David; Pritchett, J.W.; Rice, L.F.
1982-01-01
Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa hydrothermal system that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the system are assembled and correlated. A conceptual model of the full system is developed and a subregion selected for quantitative modeling. By invoking the .Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid hydrothermal system, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the system demonstrate that the vertical formation permeability of the deep East Mesa system must be very low (kv ~ 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.
NASA Astrophysics Data System (ADS)
Richard, G. A.
2003-12-01
Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with Stony Brook's Department of Technology and Society. During the academic year, a college-level Earth science course is offered to tenth graders from Sayville, New York. In both programs, students conduct research projects as one of their primary responsibilities. In collaboration with the Museum of Long Island Natural Sciences on the Stony Brook campus, two programs have been developed that enable visiting K-12 school classes to investigate earthquakes and phenomena that operate in the Earth's deep interior. From 1997 to 1999, the weekly activity-based Science Enrichment for the Early Years (SEEY) program, focusing on common Earth materials and fundamental Earth processes, was conducted at a local pre-K school. Since 2002, ESERC has worked with the Digital Library for Earth System Education (DLESE) to organize the Skills Workshops for their Annual Meeting and with EarthScope for the development of their Education and Outreach Program Plan. Future education programs and tools developed through COMPRES partnerships will place an increased emphasis on deep Earth materials and phenomena.
NASA Astrophysics Data System (ADS)
Weiyi, Xie; Pengcheng
2018-03-01
The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.
NASA Astrophysics Data System (ADS)
Doshida, S.
2014-12-01
Various types of a landslide, such as a deep-seated landslide, a shallow landslide, and a debris flow, exist. And the risk and the damage area of a landslide change greatly with the types. Therefore it is very important to guess the type of a landslide generated in the future, in order to decrease the damage of a landslide. In this research, I investigated and studied the landslide disaster which occurred in the typhoon No.12 disaster in 2011 and the northern Kyusyu-island heavy rain disaster 2012, in Japan. The purpose of the study presumes the types of a landslide generated in the future by analyzing geographical and geological features. Many deep-seated landslides and shallow landslides (debris flows) occurred by the typhoon No.12, 2011 in Japan. The precipitation exceeds 1,800 mm in four days in part regionally. Landslides occurred frequently in the Totsukawa area (Northern part) and Nachi-Katsuura area (Southern part), both area were the precipitation of about 1000 mm in four days. In the Totsukawa area, deep-seated landslides occurred frequently, and in Nachi-Katsuura area, shallow landslides (debris flows) occurred frequently. On the other hand, many deep-seated landslides and shallow landslides occurred by the northern Kyusyu-island heavy rain disaster 2012 in Japan too. Landslides occurred frequently in the Hoshino village area (Northern part) and Asodani area (Southern part). In both area, the total precipitation exceeds 500 mm and the hourly precipitation is about 80 mm. In the Hoshino village area, deep-seated landslides occurred frequently, and in Asodani area, shallow landslides occurred frequently. The result compared with the deep-seated landslide area (Totsukawa and Hoshino village) and the shallow landslide area (Nachi-Katsuura and Asodani), area of landslide is larger and number of landslide is fewer in the deep-seated landslide area. In the shallow landslide area, the slope is steeper and the drainage network is more developed. It is surmised that these geographical differentiations are the geographical features formed of the past landslide. Therefore, it is important to read and analyze the past landslide disaster hysteresis from geographical feature for specifying the type of a landslide.
NASA Technical Reports Server (NTRS)
1979-01-01
Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.
30 CFR 580.41 - What types of geological data and information must I submit to BOEM?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (including geochemical) data and information describing each operation of analysis, processing, and... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What types of geological data and information... CONTINENTAL SHELF Data Requirements Geological Data and Information § 580.41 What types of geological data and...
30 CFR 580.41 - What types of geological data and information must I submit to BOEM?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (including geochemical) data and information describing each operation of analysis, processing, and... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What types of geological data and information... CONTINENTAL SHELF Data Requirements Geological Data and Information § 580.41 What types of geological data and...
Exploration of geomagnetic field anomaly with balloon for geophysical research
NASA Astrophysics Data System (ADS)
Jia, Wen-Kui
The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.
Unique deep-water ecosystems off the southeastern United States
Ross, Steve W.
2007-01-01
If nothing else, research in deep-sea environments teaches us how little we know about such important and productive habitats. The relatively recent discovery of hydrothermal-vent and cold-seep ecosystems illustrates this paucity of knowledge, and the subsequent explosion of research on these systems is a good example of the impact such concentrated efforts can have on marine sciences (see the March 2007 special issue of Oceanography on InterRidge, and Levin et al., 2007). The recent surge of interest in deep-sea corals is another example of how focused research on a particular subject can result in new perspectives on continental slope biotopes. Although deep-sea corals have been known for over 200 years, they were viewed as somewhat of a novelty, and research on them was sporadic, typically geologic, and usually only documented their occurrences (e.g., Stetson et al., 1962; Neumann et al., 1977; Paull et al., 2000).
Numerical Analysis on Seepage in the deep overburden CFRD
NASA Astrophysics Data System (ADS)
Zeyu, GUO; Junrui, CHAI; Yuan, QIN
2017-12-01
There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.
NASA Astrophysics Data System (ADS)
Turrin, B. D.; Turrin, M.
2012-12-01
After "What is this rock?" the most common questions that is asked of Geologists is "How old is this rock/fossil?" For geologists considering ages back to millions of years is routine. Sorting and cataloguing events into temporal sequences is a natural tendency for all humans. In fact, it is an everyday activity for humans, i.e., keeping track of birthdays, anniversaries, appointments, meetings, AGU abstract deadlines etc… However, the time frames that are most familiar to the non scientist (seconds, minutes, hours, days, years) generally extend to only a few decades or at most centuries. Yet the vast length of time covered by Earth's history, 4.56 billion years, greatly exceeds these timeframes and thus is commonly referred to as "Deep Time". This is a challenging concept for most students to comprehend as it involves temporal and abstract thinking, yet it is key to their successful understanding of numerous geologic principles. We have developed an outdoor learning activity for general Introductory Earth Science courses that incorporates several scientific and geologic concepts such as: linear distance or stratigraphic thickness representing time, learning about major events in Earth's history and locating them in a scaled temporal framework, field mapping, abstract thinking, scaling and dimensional analysis, and the principles of radio isotopic dating. The only supplies needed are readily available in local hardware stores i.e. a 300 ft. surveyor's tape marked in feet, and tenths and hundredths of a foot, and the student's own introductory geology textbook. The exercise employs a variety of pedagogical learning modalities, including traditional lecture-based, the use of Art/Drawing, use of Visualization, Collaborative learning, and Kinesthetic and Experiential learning. Initially the students are exposed to the concept of "Deep Time" in a short conventional introductory lecture; this is followed by a 'field day'. Prior to the field exercise, students work with their textbook selecting events is Earth History that they find interesting. Using the textbook and online resources they then draw figures that represent these events. The drawing exercise reinforces the learning by having students visualize (imprinting an image) of these geologic events. Once the students have produced their drawings, the outdoor field exercise follows. Working collaboratively, the students measure and lay out a scaled linear model representing 4.56 billion years of geologic time. They then organize and place their drawings in the proper sequence on the temporal model that they have created. Once all the drawings are in place they are able to visualize the expanse of time in Earth's history. Through comparing results from a pre-test to those from a post-test we can show the gains in student understanding of Deep Time, a concept that is central to many of our geologic understandings.
Operability engineering in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wilkinson, Belinda
1993-01-01
Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.
Development of a prototype real-time automated filter for operational deep space navigation
NASA Technical Reports Server (NTRS)
Masters, W. C.; Pollmeier, V. M.
1994-01-01
Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.
Statistical porcess control in Deep Space Network operation
NASA Technical Reports Server (NTRS)
Hodder, J. A.
2002-01-01
This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).
NASA Astrophysics Data System (ADS)
Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.
2001-12-01
Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.
Using geophysical data to assess scour development
Placzek, Gary; Haeni, Peter F.; Trent, Roy; ,
1993-01-01
The development of scour holes in the Connecticut River near the new Baldwin Bridge has been documented by comparing geophysical records collected before (1989), during (1990), and after (1992) bridge construction. Eight piers that support the 570-m (meter) span over the Connecticut River were protected by 12-m wide cofferdams during construction. The maximum flow during the study was equivalent to a 3-year recurrence-interval flood, indicating no significant floods. Fathometer data indicate that deep scour holes, 1.5 to 6.4 m deep, developed north of piers 6, 7, and 8. Scour holes, less than 1.3 m-deep, developed south of these piers. The deepest scour hole was north of pier 7, where data show a flat river bottom in 1989, a scour 3.3-m deep in 1990, and a scour hole 6.4-m deep in 1992. Continuous seismic-profiling (CSP) data show that a 1.5 -m deep scour hole north of pier 6 in 1990 was filled in with 1.5-m of material by 1992. No infilling was detected in the scour holes north of piers 7 and 8. Numerous subbottom reflectors from geologic layers, up to 7.6 -m deep were identified in the CSP records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...
This presentation by J.McIntosh, M.Schlegal, and B.Bates from the University of Arizona compares the chemical and isotope formation in fractured shales with shallow drift aquifers, coalbeds and other deep geologic formations, based on the Illinois basin.
Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.
ERIC Educational Resources Information Center
Hoffman, Darleane C.; Choppin, Gregory R.
1986-01-01
Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)
VISUAL3D - An EIT network on visualization of geomodels
NASA Astrophysics Data System (ADS)
Bauer, Tobias
2017-04-01
When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan Universität Leoben, Slovenian National Building and Civil Engineering Institute, Tallinn University of Technology and Turku University. The infrastructure within the network comprises different types of capturing and visualization hardware, ranging from high resolution cubes, VR walls, VR goggle solutions, high resolution photogrammetry, UAVs, lidar-scanners, and many more.
Publications - GMC 340 | Alaska Division of Geological & Geophysical
Inc. USGS Peard Test Well #1 (7839.3'-7867.4') and of the Husky NPR Operations Inc. USGS Tulageak Test permeability core analysis of the Husky NPR Operations Inc. USGS Peard Test Well #1 (7839.3'-7867.4') and of the Husky NPR Operations Inc. USGS Tulageak Test Well #1 (2948.8'): Alaska Division of Geological &
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bureau of Economic Geology
The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4Cmore » OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.« less
Clow, G.D.; Saltus, R.W.; Waddington, E.D.
1996-01-01
We describe a high-precision (0.1-1.0 mK) borehole-temperature (BT) logging system developed at the United States Geological Survey (USGS) for use in remote polar regions. We discuss calibration, operational and data-processing procedures, and present an analysis of the measurement errors. The system is modular to facilitate calibration procedures and field repairs. By interchanging logging cables and temperature sensors, measurements can be made in either shallow air-filled boreholes or liquid-filled holes up to 7 km deep. Data can be acquired in either incremental or continuous-logging modes. The precision of data collected by the new logging system is high enough to detect and quantify various thermal effects at the milli-Kelvin level. To illustrate this capability, we present sample data from the 3 km deep borehole at GISP2, Greenland, and from a 130m deep air-filled hole at Taylor Dome, Antarctica. The precision of the processed GTSP2 continuous temperature logs is 0.25-0.34 mK, while the accuracy is estimated to be 4.5 mK. The effects of fluid convection and the dissipation of the thermal disturbance caused by drilling the borehole are clearly visible in the data. The precision of the incremental Taylor Dome measurements varies from 0.11 to 0.32mK, depending on the wind strength during the experiments. With this precision, we found that temperature fluctuations and multi-hour trends in the BT measurements correlate well with atmospheric-pressure changes.
NASA Astrophysics Data System (ADS)
Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.
2017-11-01
Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.
Site Report for USGS Test Holes Drilled at Cape Charles, Northampton County, Virginia, in 2004
Gohn, Gregory S.; Sanford, Ward E.; Powars, David S.; Horton, J. Wright; Edwards, Lucy E.; Morin, Roger H.; Self-Trail, Jean M.
2007-01-01
The U.S. Geological Survey drilled two test holes near Cape Charles, Virginia, during May and June 2004, as part of an investigation of the buried, late Eocene Chesapeake Bay impact structure. The first hole is designated as the USGS-Sustainable Technology Park test hole #1 (USGS-STP1). This test hole was abandoned at a depth of 300 ft; cuttings samples were collected, but no cores or geophysical logs were acquired. The second hole is designated as the USGS-Sustainable Technology Park test hole #2 (USGS-STP2). This test hole was drilled to a depth of 2,699 ft. Cores were collected between depths of 1,401.7 ft and 1,420.7 ft and between 2,440.0 ft and 2,699.0 ft. Cuttings samples were collected from the uncored intervals below 280-ft depth. Interim sets of geophysical logs were acquired during the drilling operation, and one final set was acquired at the end of drilling. Two wells were installed in the USGS-STP2 test hole. The deep well (designated 62G-24) was screened between 2,260 ft and 2,280 ft, and the shallow well (designated 62G-25) was screened between 1,360 ft and 1,380 ft. Ground-water salinities stabilized at 40 parts per thousand for the deep well and 20 parts per thousand for the shallow well. The geologic section encountered in the test holes consists of three main units: (1) Eocene, Oligocene, Miocene, Pliocene, and Pleistocene sands and clays are present between land surface and a depth of 1,163 ft; (2) sediment-clast breccias of the impact structure are present between depths of 1,163 ft and 2,150 ft; and (3) crystalline-clast breccias and cataclastic gneiss of the impact structure are present between depths of 2,150 ft and 2,699 ft.
NASA Astrophysics Data System (ADS)
Ise, K.; Amano, Y.; Sasaki, Y.; Yoshikawa, H.
2014-12-01
The deep geological disposal system is regarded as the most secure and practical disposal method of high-level radioactive waste in the world. In this disposal system, preservation of reducing condition is one of the key requirements, because most of radionuclides have low solubilities in such condition. However, the host rocks near the shafts and galleries would be affected by oxidization during the construction and operation period of a repository (for about 50 years). Therefore, the recovery of reducing condition after closing the repository should be verified. During the recovery processes, it is considered that microbial activities play important roles, but the mechanisms are poorly understood. In this study, we monitored the changes in microbial communities by molecular method to evaluate microbial response toward the oxygen stress. The groundwater samples were collected from a borehole of 250 m depth at the Horonobe Underground Research Laboratory, for two years immediately after drilling of a borehole without any contamination as much as possible. Immediately after drilling of the borehole, the phylotype related to Arcobacter spp. was dominated about 65 % of the total clone library. Arcobacter spp. is known as sulfide oxidizer and which can growth chemoautotrophically. Half a year later, the phylotype related to Azoarcus spp. and Pseudomonas spp. known as nitrate reducing bacteria increased, instead of the phylotype related to Arcobacter spp. One year later, in addition to nitrate reducing bacteria, phylotype related to Dethiobacterspp. known as thiosulfate reducing bacteria was dominantly detected. Two years later, most of detected clones were related to uncultured species such as candidate division WS6 and JS1 which are detected frequently in deep-sea sediments. Our results indicate that these redox sequential reactions could contribute to the recovery and maintenance of reducing conditions and provide a conceptual model for evaluating the capacity to recover reducing conditions in subsurface environments after final geological disposal and the post-closure.
NASA Astrophysics Data System (ADS)
Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah
2008-11-01
Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.
NASA Astrophysics Data System (ADS)
Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas
2017-12-01
Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.
Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J
2012-01-01
A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Butler, D. K.
1982-03-01
This report reviews the scope of a research effort initiated in 1974 at the U.S. Army Engineer Waterways Experiment Station with the objectives of (a) assessing the state of the art in geophysical cavity detection and delineation methodology and (b) developing new methods and improving or adapting old methods for application to cavity detection and delineation. Two field test sites were selected: (a) the Medford Cave site with a relatively shallow (10- to 50-ft-deep) air-filled cavity system and (b) the Manatee Springs site with a deeper (approximately 100-ft-deep) water-filled cavity system. Results of field studies at the Medford Cave site are presented in this report: (a) the site geology, (b) the site topographic survey, (c) the site drilling program (boreholes for geophysical tests, for determination of a detailed geological cross section, and for verification of geophysical anomalies), (d) details of magnetic and microgravimetric surveys, and (e) correlation of geophysical results with known site geology. Qualitative interpretation guidelines using complementary geophysical techniques for site investigations in karst regions are presented. Including the results of electrical resistivity surveys conducted at the Medford Cave site, the qualitative guidelines are applied to four profile lines, and drilling locations are indicated on the profile plots of gravity, magnetic, and electrical resistivity data. Borehole logs are then presented for comparison with the predictions of the qualitative interpretation guidelines.
Mountain Building in the Uralides: Pangea to the Present
NASA Astrophysics Data System (ADS)
Brown, Dennis; Juhlin, Christopher; Puchkov, Victor
Extending for more than 2000 kilometers from the islands of Novaya Zemlya in the north to the Aral Sea in the south, the Uralide orogen forms the geographical and geological divide between Europe and Asia. For more than a century the Uralides have been one of the key areas of geological research in Russia, and have provided much of its mineral and petroleum wealth for the last 50 years. Nevertheless, the geology and tectonic evolution of the Uralide orogen were relatively unknown in the international literature until recently, when EUROPROBE and GEODE (European Science Foundation scientific programmes) brought together Russian, European, and American earth scientists to work in the Uralides project and the Urals Mineral Province project, respectively. Much of the recent research has focused around two deep seismic surveys, Europrobe's Seismic Reflection Profiling in the Urals (ESRU) survey in the Middle Urals and the multicomponent Urals Seismic Experiment and Integrated Studies (URSEIS) survey in the South Urals. These experiments were accompanied by a large number of geological, geochemical, geochronological, and geophysical studies.
NASA Astrophysics Data System (ADS)
Brown, Dennis; Juhlin, Christopher; Puchkov, Victor
Extending for more than 2000 kilometers from the islands of Novaya Zemlya in the north to the Aral Sea in the south, the Uralide orogen forms the geographical and geological divide between Europe and Asia. For more than a century the Uralides have been one of the key areas of geological research in Russia, and have provided much of its mineral and petroleum wealth for the last 50 years. Nevertheless, the geology and tectonic evolution of the Uralide orogen were relatively unknown in the international literature until recently, when EUROPROBE and GEODE (European Science Foundation scientific programmes) brought together Russian, European, and American earth scientists to work in the Uralides project and the Urals Mineral Province project, respectively. Much of the recent research has focused around two deep seismic surveys, Europrobe's Seismic Reflection Profiling in the Urals (ESRU) survey in the Middle Urals and the multicomponent Urals Seismic Experiment and Integrated Studies (URSEIS) survey in the South Urals. These experiments were accompanied by a large number of geological, geochemical, geochronological, and geophysical studies.
Geologic studies in Alaska by the U.S. Geological Survey, 1997
Kelley, Karen D.
1999-01-01
Geologic Framework studies provide background information that is the scientific basis for present and future studies of the environment, mineral and energy resources, paleoclimate, and hazards in Alaska. One paper presents the results of sedimentologic and paleontologic comparisons of lower Paleozoic, deep-water-facies rock units in central Alaska (Dumoulin and others). The authors show which of these units are likely to correlate with one another, suggest likely source regions, and provide a structural restoration of units that have been fragmented by large fault motions. A second framework paper provides a map, rock descriptions, and chemical compositions of volcanic rocks in a newly recognized, geologically young volcanic center in the Aleutian volcanic arc (Hildreth and others). A third paper presents an interesting summary of gravity changes that occurred in south-central Alaska during the great earthquake of 1964 and for the following 25 years (Barnes). Gravity changes correlate with land-elevation changes in some cases, but not in others, which means that different processes are responsible for the gravity changes.
NASA Technical Reports Server (NTRS)
1975-01-01
The objectives, functions, and organization of the Deep Space Network are summarized along with deep space station, ground communication, and network operations control capabilities. Mission support of ongoing planetary/interplanetary flight projects is discussed with emphasis on Viking orbiter radio frequency compatibility tests, the Pioneer Venus orbiter mission, and Helios-1 mission status and operations. Progress is also reported in tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.
Iris Transponder-Communications and Navigation for Deep Space
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.
2014-01-01
The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.
30 CFR 550.244 - What geological and geophysical (G&G) information must accompany the DPP or DOCD?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What geological and geophysical (G&G... Operations Coordination Documents (docd) § 550.244 What geological and geophysical (G&G) information must accompany the DPP or DOCD? The following G&G information must accompany your DPP or DOCD: (a) Geological...
30 CFR 550.244 - What geological and geophysical (G&G) information must accompany the DPP or DOCD?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What geological and geophysical (G&G... Operations Coordination Documents (docd) § 550.244 What geological and geophysical (G&G) information must accompany the DPP or DOCD? The following G&G information must accompany your DPP or DOCD: (a) Geological...
30 CFR 550.244 - What geological and geophysical (G&G) information must accompany the DPP or DOCD?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What geological and geophysical (G&G... Operations Coordination Documents (docd) § 550.244 What geological and geophysical (G&G) information must accompany the DPP or DOCD? The following G&G information must accompany your DPP or DOCD: (a) Geological...
Code of Federal Regulations, 2010 CFR
2010-01-01
... license with respect to a geologic repository. 51.109 Section 51.109 Energy NUCLEAR REGULATORY COMMISSION... Public hearings in proceedings for issuance of materials license with respect to a geologic repository... waste repository at a geologic repository operations area under parts 60 and 63 of this chapter, and in...
10 CFR 60.44 - Changes, tests, and experiments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORIES Licenses License Issuance and Amendment § 60.44 Changes, tests, and experiments. (a)(1) Following authorization to receive and possess source, special nuclear, or byproduct material at a geologic repository operations area, the DOE may (i) make changes in the geologic repository operations area as described in the...
10 CFR 60.31 - Construction authorization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORIES Licenses Construction Authorization § 60.31 Construction authorization. Upon review and... in a geologic repository operations area of the design proposed without unreasonable risk to the...: (1) DOE has described the proposed geologic repository including but not limited to: (i) The geologic...
Thermo-poroelastic response of an argillaceous limestone
NASA Astrophysics Data System (ADS)
Selvadurai, Patrick; Najari, Meysam
2016-04-01
Argillaceous limestones are now being considered by many countries that intend to develop deep geologic storage facilities for siting both high-level and intermediate- to low-level nuclear fuel wastes. In deep geologic settings for high level nuclear wastes, the heating due to radioactive decay is transmitted through an engineered barrier, which consists of the waste container and an engineered geologic barrier, which consists of an encapsulating compacted bentonite. The heat transfer process therefore leads to heating of the rock mass where the temperature of the rock is substantially lower than the surface temperature of the waste container. This permits the use of mathematical theories of poroelastic media where phase transformations, involving conversion of water to a vapour form are absent. While the thermo-poroelastic responses of geologic media such as granite and porous tuff have been investigated in the literature, the investigation of thermo-poroelastic responses of argillaceous limestones is relatively new. Argillaceous limestones are considered to be suitable candidates for siting deep geologic repositories owing to the ability to accommodate stress states with generation of severe defects that can influence their transmissivity characteristics. Also the clay fraction in such rocks can contribute to long term healing type phenomena, which is a considerable advantage. This research presents the results of a laboratory investigation and computational modelling of the same that examines the applicability of the theory of thermo-poroelasticity, which extend Biot's classical theory of poroelasticity to include uncoupled heat conduction. The experimental configuration involves the boundary heating of a cylinder of the Cobourg Limestone from southern Ontario, Canada. The cylinder measuring 150 mm in diameter and 278 mm in length contains an axisymmetric fluid-filled cylindrical cavity measuring 26 mm in diameter and 139 mm in length. Thermo-poroelastic effects are induced by instantaneously raising the boundary temperature of the cylinder from 25oC to either 40oC or 60oC. The thermo-poroelastic effects will lead to the generation of pore fluid pressures in the sealed cavity. The cavity fluid pressures will increase with time and will decay as the excess pressure diffuse into the argillaceous limestone. This pressure pulse signature is used to validate the applicability of a thermo-hydro-mechanical model, where the mechanical, physical and flow parameters used have been determined form separate tests. The correlation between the experimental results and the computational predictions are also assessed in terms of a sensitivity study where ranges of estimates are assigned for parameters with critical influences. _____________________________________________ 1 William Scott Professor and James McGill Professor 2 Post Doctoral Fellow
Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, James; Wright, Judith
2012-07-01
To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less
NASA Astrophysics Data System (ADS)
Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.
2005-12-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.
Interpretation of the 'Trans European Suture Zone' by a multiscale aeromagnetic dataset
NASA Astrophysics Data System (ADS)
Milano, Maurizio; Fedi, Maurizio
2015-04-01
One of the main goals in crustal geomagnetic prospecting is to obtain information about the sources of magnetic anomalies in order to model the geological structure of the Earth's crust. A "multiscale approach" is very useful to analyze, concurrently, the effects of sources placed at different depths, observing the potential field at various altitudes from the Earth's surface. The aim of this work is the study of the main geological structure of Central Europe, the "Trans European Suture Zone", using high-resolution aeromagnetic data. The 'TESZ' is the most prominent geological boundary in Europe, oriented NW-SE from the North Sea to the Black Sea and separating The Paleozoic platform in the south and west from the Precambrian East European craton. At high altitudes the European magnetic field is characterized by a large and extended magnetic low, which is related to the deep TESZ structure. The study of this anomaly field began by detecting the position of the anomaly sources using the properties of the Analytical Signal modulus (AS). The AS map presents anomalies in which the dipolar behavior of the magnetic anomaly field is substantially removed and the maxima are placed directly above the anomaly sources. The multiridge method has been applied to the Analytical Signal modulus in order to have information about the sources' depths in the TESZ region. Many profiles were tracked transversely to the fault line in order to map at depth the main magnetic discontinuities. Cause of the low heat flow of the Central Europe, we were able to get information also in the lower crust and to map the deep Moho discontinuity. Available geological sections based on seismic data show consistent results with our interpretation.
Hydrology of some deep mines in Precambrian rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yardley, D.H.
1975-10-01
A number of underground mines were investigated during the summer of 1975. All of them are in Precambrian rocks of the Lake Superior region. They represent a variety of geologic settings. The purpose of the investigations was to make a preliminary study of the dryness, or lack of dryness of these rocks at depth. In other words, to see if water was entering the deeper workings through the unmined rock by some means such as fracture or fault zones, joints or permeable zones. Water entering through old mine workings extending to, or very near to the surface, or from themore » drilling equipment, was of interest only insofar as it might mask any water whose source was through the hanging or footwall rocks. No evidence of running, seeping or moving water was seen or reported at depths exceeding 3,000 feet. At depths of 3,000 feet or less, water seepages do occur in some of the mines, usually in minor quantities but increased amounts occur as depth becomes less. Others are dry at 2,000 feet of depth. Rock movements associated with extensive mining should increase the local secondary permeability of the rocks adjoining the mined out zones. Also most ore bodies are located where there has been a more than average amount of faulting, fracturing, and folding during the geologic past. They tend to cluster along crustal flows. In general, Precambrian rocks of similar geology, to those seen, well away from zones that have been disturbed by extensive deep mining, and well away from the zones of more intense geologic activity ought to be even less permeable than their equivalents in a mining district.« less
Updating of the geological and geothermal research on Milos island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fytikas, M.
1989-01-01
The oldest geologic formations outcropping in Milos are an Alpine age crystalline basement and a transgressive marine Neogene sequence. The island is mainly volcanic. It belongs to the Aegean Active Arc, within which the Milos archipelago shows the most important volcanism in terms of quantity, variety of products and duration of activity (3.5-0.8 M.a.). There are no large central volcanic edifices but different, frequently coeval eruption centres. The initial and intermediate phases of activity were mainly pyroclastic and submarine, whereas the last one (0.1 M.a.) was subaerial and formed tuff rings, surge deposits and lava flows, all of homogenous rhyoliticmore » composition. Recent detailed studies have addressed the mechanism of feeding and the type of magmatic chambers beneath Milos. Distention tectonics have two main phases: an earlier one (Pliocene) with NE-SW direction and a much more intense recent (Quaternary) one, trending NW-SE. The geological, tectonic and magmatic activity favoured the formation of a high enthalpy geothermal field. Many fossil and active thermal manifestations exist: hot springs, fumaroles, hot grounds, phreatic explosion craters. The hydrothermal alteration of the volcanites produced, by self sealing, a perfect cover for the geothermal fluids. Geothermometry of the surface fluids indicated high values for the source temperatures and very high geothermal gradients in central and eastern Milos. Geothermally anomalous zones, defined by two different methods, together with superficial geological and tectonic information, permitted the location of sites for deep drilling. Five exploratory wells 1000-1400m deep gave satisfactory results of flow rate (40-120 t/h), temperature (300-320{sup 0}C) and enthalpy.« less
The KTB apatite fission-track profiles: Building on a firm foundation?
NASA Astrophysics Data System (ADS)
Wauschkuhn, B.; Jonckheere, R.; Ratschbacher, L.
2015-10-01
Deep boreholes serve as natural laboratories for testing thermochronometers under geological conditions. The Kontinentale Tiefbohrung (KTB) is an interesting candidate because the geological evidence suggests that approximate isothermal holding since the last documented exhumation in the Late Cretaceous to Palaeocene is a reasonable assumption for the thermal histories of the KTB samples. We report 30 new apatite fission-track ages and 50 new mean confined track lengths determined on cores from the 4 km deep pilot hole. The ϕ- and ζ-external detector ages are consistent with the population ages from earlier studies and together define a clear age profile. The mean track lengths from this and earlier studies reveal the effects of experimental factors. The measured age and length profiles are compared with the predictions of 24 annealing models for isothermal holding. There are clear discrepancies between the measured and calculated profiles. Down to 1.5 km depth, the measured mean track lengths are shorter than the predicted. The balance of methodological evidence indicates that this is due to seasoning, i.e., a shortening of the fossil confined tracks without attendant age reduction. From 2.5 to 4.0 km depth, the mean track lengths are longer than the predictions. This suggests that the bias model that weights the probabilities of observing tracks of different length and which is based on experiments relating surface track densities to mean track lengths is not appropriate for confined tracks. Experimental and methodological factors are sometimes difficult to disentangle, but present a sufficient margin for there to be no need to go against the independent geological evidence. Unknown geological events cannot be ruled out but their existence cannot be inferred from the fission-track data alone, much less can the nature or magnitude of such events be specified.
Melting mountains of Appalachia: exceptionally high weathering rates in mined watersheds
NASA Astrophysics Data System (ADS)
Ross, M. R.; Nippgen, F.; Hassett, B.; McGlynn, B. L.; Bernhardt, E. S.
2016-12-01
Mountaintop mining operations excavate ridges as deep as 200 m and bury adjacent valleys and streams beneath fractured bedrock and coal residues. Post-mining, landscapes have lower slopes, greatly increased water storage potential, and an abundance of acid-generating pyrite, which is intentionally mixed with neutralizing calcareous bedrock. Together these design features of mountaintop mined lands create ideal conditions for long water residence times and rapid weathering rates, leading to widely documented and substantial increases in streamwater ion concentrations. To date, these concentration changes have not been linked to rates of watershed scale element flux. In a paired catchment study, we documented a 4,000% increase in the export of total dissolved solids from a mined watershed, and estimate that pyrite and carbonate weathering in reclaimed mines can export 9,000 kg ha-1 y-1 of dissolved rock to receiving streams. Such high rates of element flux after a disturbance are not only much higher than other watershed disturbances, but are among the highest rates of weathering ever reported globally. Sulfuric acid weathering of carbonate rock drives these patterns of chemical erosion. This strong acid weathering changes Appalachian geology from a slight net geologic CO2 sink-sequestering 800-1,500 kg CO2 km-2 yr-1 through carbonic acid weathering of carbonates-to a substantial net geologic source of CO2, releasing 170,000 kg CO2 km-2 yr-1. Over the more than 4,000 km2 area of Central Appalachia that has undergone mountaintop mining, this rapid weathering represents 4 million tons of dissolved rock being delivered to the streams of West Virginia, potentially releasing 680,000 tons of CO2 in the process.
Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration
NASA Astrophysics Data System (ADS)
Newell, P.; Martinez, M. J.; Bishop, J. E.
2014-12-01
Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Jallouli, Chokri; Mogren, Saad; Mickus, Kevin; Turki, Mohamed Moncef
2013-11-01
The Atlas orogeny in northern Algeria and Tunisia led to the destruction of Tethys oceanic lithosphere and cumulated in a collision of microplates rifted off the European margin with the North African continental margin. The location of the boundary between African plate and Kabylian microplate is expressed in northern Algeria by a crustal wedge with double vergence of thrust sheets, whereas in northern Tunisia the geologic environment is more complex and the location of the plate boundary is ambiguous. In this study, we analyzed gravity data to constrain the crustal structure along the northern margin of Tunisia. The analysis includes a separation of regional and residual gravity anomalies and the application of gradient operators to locate density contrast boundaries. The horizontal gradient magnitude and directional gradient highlight a prominent regional E-W gravity gradient in the northern Tunisian Atlas interpreted as a deep fault (active since at least the Early Mesozoic) having a variable kinematic activity depending on the tectonic regime in the region. The main E-W gravity gradient separates two blocks having different gravitational and seismic responses. The southern block has numerous gravity lineaments trending in different directions implying several density variations within the crust, whereas the northern block shows a long-wavelength negative gravity anomaly with a few lineaments. Taking into account the geologic context of the Western Mediterranean region, we consider the E-W prominent feature as the boundary between African plate and Kabylian microplate in northern Tunisia that rifted off Europe. This hypothesis fits most previous geological and geophysical studies and has an important impact on the petroleum and mineral resource prospection as these two blocks were separated by an ocean and they did not belong to the same margin.
Execution of deep dipole geoelectrical soundings in areas of geothermal interest. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patella, D.
It is suggested that deep geoelectrical problems may be resolved by carrying out dipole soundings in the field and applying a quantitative interpretation in the Schlumberger domain. The 'transformation' of original field dipole sounding curves into equivalent Schlumberger curves is outlined for the cases of layered structures and arbitrary underground structures. Theoretical apparent resistivity curves are derived for soundings over bidimensional structures. Following a summary of the geological features of the Travale-Radicondoli geothermal area of Italy, the dipole sounding method employed for this field study and the means of collecting and analyzing the data, are outlined.
Gibson, Russell
1956-01-01
A series of twenty-nine geological spot examinations of mines and prospects in Iran were carried out by Dr. Russell Gibson, Geologist, U.S. Geological Survey between February 1954 and June 1955. These studies were under the joint auspices of the U.S. Operation Mission of the International Cooperation Administration and the Iranian Ministry of National Economy. Dr. Gibson acted as Advisor in economic geology to both the Mission and the Government of Iran during this period. All mine or prospect visits including those two properties owned by private operators were made at the request of the agencies of the Government of Iran.
NASA Astrophysics Data System (ADS)
Kurtz, N.; Marks, N.; Cooper, S. K.
2014-12-01
Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.
STEPPE: Supporting collaborative research and education on Earth's deep-time sedimentary crust.
NASA Astrophysics Data System (ADS)
Smith, D. M.
2014-12-01
STEPPE—Sedimentary geology, Time, Environment, Paleontology, Paleoclimate, and Energy—is a National Science Foundation supported consortium whose mission is to promote multidisciplinary research and education on Earth's deep-time sedimentary crust. Deep-time sedimentary crust research includes many specialty areas—biology, geography, ecology, paleontology, sedimentary geology, stratigraphy, geochronology, paleoclimatology, sedimentary geochemistry, and more. In fact, the diversity of disciplines and size of the community (roughly one-third of Earth-science faculty in US universities) itself has been a barrier to the formation of collaborative, multidisciplinary teams in the past. STEPPE has been working to support new research synergies and the development of infrastructure that will encourage the community to think about the big problems that need to be solved and facilitate the formation of collaborative research teams to tackle these problems. Toward this end, STEPPE is providing opportunities for workshops, working groups and professional development training sessions, web-hosting and database services and an online collaboration platform that facilitates interaction among participants, the sharing of documentation and workflows and an ability to push news and reports to group participants and beyond using social media tools. As such, STEPPE is working to provide an interactive space that will serve as both a gathering place and clearinghouse for information, allowing for broader integration of research and education across all STEPPE-related sub disciplines.
10 CFR 60.32 - Conditions of construction authorization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... GEOLOGIC REPOSITORIES Licenses Construction Authorization § 60.32 Conditions of construction authorization... changes to the features of the geologic repository and the procedures authorized. The restrictions that... setting as well as measures related to the design and construction of the geologic repository operations...
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, Y.; Zhang, X.; Du, C.
2009-12-01
The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering variables on model predictions. Results suggest that (1) a horizontal and vertical resolution of 1/75 and 1/5~1/2 porosity correlation length is needed, respectively, to accurately capture the flow physics and mass balance. (2) the most sensitive variables that have first order impact on model predictions (i.e., regional storage, local displacement efficiency) are boundary condition, vertical permeability, relative permeability hysteresis, and injection rate. However, all else being equal, formation brine salinity has the most important effects on the concentrations of all dissolved components. Future work will define and simulate reactions of acid gases with formation brines and rocks which are currently under laboratory investigations.
Sanford Underground Research Facility - The United State's Deep Underground Research Facility
NASA Astrophysics Data System (ADS)
Vardiman, D.
2012-12-01
The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser/LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.
NASA Astrophysics Data System (ADS)
Hachani, Fatma; Balti, Hadhemi; Kadri, Ali; Gasmi, Mohamed
2016-04-01
Located between eastern segments of the Atlas and Tell-Rif oro-genic belts, the "Dome zone" of northern Tunisia is characterized by the juxtaposition of various structures that mainly controlled the long geody-namic history of this part of the south-Tethyan Margin. To better understand the organization and deep extension of these structures, gravity data from the Teboursouk key area are proposed. These data include the plotting of Bouguer anomaly map and related parameters such as vertical and horizontal gradients, upward continuation and Euler solution. Compared to geological and structural maps available, they allow the identification of new deep structures and greater precision regarding the characteristics and organization of known ones; consequently, an updated structural pattern is proposed.
A Geologic Model for Eridania Basin on Ancient Mars
2017-10-06
This diagram illustrates an interpretation for the origin of some deposits in the Eridania basin of southern Mars as resulting from seafloor hydrothermal activity more than 3 billion years ago. The ground level depicted is an exaggerated topography of a transect about 280 miles (450 kilometers) long. Blue portions of the diagram depict water-depth estimates and the possibility of ice covering the ancient sea. Thick, clay-rich deposits (green) formed through hydrothermal alteration of volcanic materials in deep water, by this model. Notations indicate deep-water reactions of iron and magnesium ions with silicates, sulfides and carbonates. Deep-seated structural discontinuities could have facilitated the ascent of magma from a mantle source. Chloride deposits formed from evaporation of seawater at higher elevations in the basin. https://photojournal.jpl.nasa.gov/catalog/PIA22060
Optimizing and Quantifying CO 2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosshart, Nicholas W.; Ayash, Scott C.; Azzolina, Nicholas A.
In an effort to reduce carbon dioxide (CO 2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO 2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO 2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO 2 storage efficiency. CO 2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scalemore » CO 2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO 2 storage in these types of systems. CO 2 EOR occupies an important place in the realm of geologic storage of CO 2, as it is likely to be the primary means of geologic CO 2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO 2 storage efficiency factors using a unique industry database of CO 2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66,- and 209-foot) pay zones. The results of this work provide practical information that can be used to quantify CO 2 storage resource estimates in oil reservoirs during CO 2 EOR operations (as opposed to storage following depletion) and the uncertainty associated with those estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-08-01
An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
Solomon, Barry J.; Black, Bill D.; ,
1990-01-01
The study of Quaternary geology provides information to evaluate geologic conditions and identify geologic constraints on construction in the West Desert Hazardous Industry Area (WDHIA). The WDHIA includes portions of the Great Salt Lake Desert to the west, underlain by several thousand feet of sediments capped by saline mudflats, and Ripple Valley to the east, separated from the Desert by the Grayback Hills and underlain by several hundred feet of sediments in the Cedar Mountains piedmont zone. Quaternary surficial units include marginal, shore-zone, and deep-water lacustrine sediments deposited in Pleistocene Lake Bonneville; eolian deposits; and alluvial sediments. The level of Lake Bonneville underwent major oscillations resulting in the creation of four basin-wide shorelines, three of which are recognized in the WDHIA. Geologic hazards in the WDHIA include the possible contamination of ground water in basin-fill aquifers, debris flows and flash floods in the piedmont zone, and earthquakes and related hazards. Numerous factors contribute to unsafe foundation conditions. Silty and sandy sediments may be subject to liquefaction or hydrocompaction, clayey sediments and mud flats of the Great Salt Lake Desert may be subject to shrinking or swelling, and gypsiferous dunes and salt flats are subject to subsidence due to dissolution.
NASA Astrophysics Data System (ADS)
Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.
2017-07-01
The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.
A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.
Stolper, Daniel A; Keller, C Brenhin
2018-01-18
The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).
A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts
NASA Astrophysics Data System (ADS)
Stolper, Daniel A.; Keller, C. Brenhin
2018-01-01
The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).
Deep rock nuclear waste disposal test: design and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, Robert D.
1974-09-01
An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... GEOLOGIC REPOSITORIES Licenses Preapplication Review § 60.17 Contents of site characterization plan. The... construction authorization for a geologic repository operations area; (4) Criteria, developed pursuant to... area for the location of a geologic repository; and (5) Any other information which the Commission, by...
Geology as destiny: cold waters run deep in western Oregon.
Sally Duncan
2002-01-01
The summer of 2001 brought the second-worst drought on record in Oregon, resulting in historically low streamflows and reservoir levels, stressed aquatic ecosystems, and even dramatic confrontations between irrigators and federal resource agencies in the Klamath basin. These events underscore the critical and growing importance of water availability and allocation in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... submitted. Permittees are to be reimbursed also for the reasonable cost of processing geophysical information required to be submitted when processing is in a form or manner required by the Director, BOEM... G&G exploration, including deep stratigraphic tests/ revisions when necessary. 74 applications x $2...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
..., but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B... surveys [WAZ]), and ocean bottom surveys [OBS], and (2) high resolution surveys. Deep Seismic Surveys For... seismic surveys (2D, 3D, or WAZ) are typically deeper penetrating than high resolution surveys and may...
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.; ...
2017-08-18
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellett, Kevin M.; Middleton, Richard S.; Stauffer, Philip H.
The application of integrated system models for evaluating carbon capture and storage technology has expanded steadily over the past few years. To date, such models have focused largely on hypothetical scenarios of complex source-sink matching involving numerous large-scale CO 2 emitters, and high-volume, continuous reservoirs such as deep saline formations to function as geologic sinks for carbon storage. Though these models have provided unique insight on the potential costs and feasibility of deploying complex networks of integrated infrastructure, there remains a pressing need to translate such insight to the business community if this technology is to ever achieve a trulymore » meaningful impact in greenhouse gas mitigation. Here, we present a new integrated system modelling tool termed SimCCUS aimed at providing crucial decision support for businesses by extending the functionality of a previously developed model called SimCCS. The primary innovation of the SimCCUS tool development is the incorporation of stacked geological reservoir systems with explicit consideration of processes and costs associated with the operation of multiple CO 2 utilization and storage targets from a single geographic location. In such locations provide significant efficiencies through economies of scale, effectively minimizing CO 2 storage costs while simultaneously maximizing revenue streams via the utilization of CO 2 as a commodity for enhanced hydrocarbon recovery.« less
Stability of active mantle upwelling revealed by net characteristics of plate tectonics.
Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H
2013-06-27
Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.
NASA Astrophysics Data System (ADS)
Gautschi, Andreas
2017-09-01
In Switzerland, the Opalinus Clay - a Jurassic (Aalenian) claystone formation - has been proposed as the first-priority host rock for a deep geological repository for both low- and intermediate-level and high-level radioactive wastes. An extensive site and host rock investigation programme has been carried out during the past 30 years in Northern Switzerland, comprising extensive 2D and 3D seismic surveys, a series of deep boreholes within and around potential geological siting regions, experiments in the international Mont Terri Rock Laboratory, compilations of data from Opalinus Clay in railway and motorway tunnels and comparisons with similar rocks. The hydrogeological properties of the Opalinus Clay that are relevant from the viewpoint of long-term safety are described and illustrated. The main conclusions are supported by multiple lines of evidence, demonstrating consistency of conclusions based on hydraulic properties, porewater chemistry, distribution of natural tracers across the Opalinus Clay as well as small- and large-scale diffusion models and the derived conceptual understanding of solute transport.
NASA Astrophysics Data System (ADS)
Vopálka, D.; Lukin, D.; Vokál, A.
2006-01-01
Three new modules modelling the processes that occur in a deep geological repository have been prepared in the GoldSim computer code environment (using its Transport Module). These modules help to understand the role of selected parameters in the near-field region of the final repository and to prepare an own complex model of the repository behaviour. The source term module includes radioactive decay and ingrowth in the canister, first order degradation of fuel matrix, solubility limitation of the concentration of the studied nuclides, and diffusive migration through the surrounding bentonite layer controlled by the output boundary condition formulated with respect to the rate of water flow in the rock. The corrosion module describes corrosion of canisters made of carbon steel and transport of corrosion products in the near-field region. This module computes balance equations between dissolving species and species transported by diffusion and/or advection from the surface of a solid material. The diffusion module that includes also non-linear form of the interaction isotherm can be used for an evaluation of small-scale diffusion experiments.
Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer
Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi
2016-01-01
The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389
Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.
Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi
2016-03-07
The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.
NASA deep space network operations planning and preparation
NASA Technical Reports Server (NTRS)
Jensen, W. N.
1982-01-01
The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.
> Exploring the Scandinavian Mountain Belt by Deep Drilling (COSC)
NASA Astrophysics Data System (ADS)
Juhlin, C.; Gee, D. G.; Lorenz, H.; Pascal, C.; Pedersen, K.; Tsang, C.-F.
2012-04-01
The Collisional Orogeny in the Scandinavian Caledonides (COSC) project proposes to drill two fully cored scientific boreholes, both to c. 2.5 km depth, in the Swedish Caledonides, one near the town of Åre (COSC 1) and the other further east (COSC 2). Together they will provide a c. 5 km deep high-resolution mid-crustal section through this major mid-Palaeozoic orogen. Main project objectives include (i) improved understanding of mountain building processes (orogeny), (ii) investigation of the geothermal gradient and its response to palaeoclimatic influences, (iii) the hydrogeological-hydrochemical state of the mountain belt, (iv) the deep biosphere in the metamorphic rocks and crystalline basement, and (v) calibration of surface geophysics and geology. The Caledonide Orogen is comparable in size and many other respects to today's Himalayan mountain belt. Silurian collision with underthrusting of the paleo-continent Baltica below Laurentia resulted in widespread formation of eclogite. Major allochthons were transported many hundreds of kilometers onto the Baltoscandian Platform, including high-grade metamorphic rocks and migmatites which were generated during continental margin subduction and emplaced ductilely at mid-crustal levels. COSC will provide detailed insight into mid-Palaeozoic mountain building processes and further our understanding of past, present and future orogen dynamics. Located in a key-area for Caledonian geology, it is close to a major geophysical transect across the mountain belt which has been complemented recently with high-resolution reflection seismics and aerogeophysics for site-selection. The COSC research program is being developed by five working groups, geology, geophysics, geothermics, hydrogeology and microbiology. It has direct relevance for society by improving our understanding of mountain building processes, hydrological-hydrochemical regimes in mountain areas and Precambrian shields, deep subsurface conditions for underground engineering, ore genesis and assessment of geothermal potential. After a general scientific workshop supported by ICDP in 2010, the hydrogeological aspects of deep drilling were the topic of a separate workshop last year; orogen dynamics will provide a focus at EGU; and geothermics research will be addressed at a workshop in Autumn 2012. The geothermics workshop will be announced on the ICDP homepage. Partial funding for the drilling has been achieved through national sources and ICDP. Additional funding (c. 500000€) is being sought to allow drilling to commence in 2013. Scientific and financial partners, both from academia and industry, are welcome to the project. The presentation will review the current status of the COSC project and the research leading up to the site selection for COSC 1.
Stanley, D.L.
1995-01-01
The U.S. Geological Survey operates the National Field Quality Assurance Program to provide quality- assurance reference samples to field personnel who make water-quality field measurements. The program monitors the accuracy and precision of pH, specific conductance, and alkalinity field measurements. This report documents the operational procedures and quality-control techniques used in operating the quality-assurance program.
NASA Astrophysics Data System (ADS)
Bonté, Damien; Limberger, Jon; Lipsey, Lindsey; Cloetingh, Sierd; van Wees, Jan-Diederik
2016-04-01
Deep geothermal energy systems, mostly for the direct use of heat, have been attracting more and more interest in the past 10 years in Western Europe. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. To support the development of deep geothermal energy system, the scientific community has been working on tools that could be used to highlight area of potential interest for geothermal exploration. In the Netherlands, ThermoGIS is one such tool that has been developed to inform the general public, policy makers, and developers in the energy sector of the possibility of geothermal energy development. One major component incorporated in this tool is the temperature model. For the Netherlands, we created a thermal model at the lithospheric scale that focus on the sedimentary deposits for deep geothermal exploration. This regional thermal modelling concentrates on the variations of geological thermal conductivity and heat production both in the sediments and in the crust. In addition, we carried out special modelling in order to specifically understand convectivity in the basin, focusing on variations at a regional scale. These works, as well as recent improved of geological knowledge in the deeper part of the basin, show interesting evidence for geothermal energy development. At this scale, the aim of this work is to build on these models and, using data assimilation, to discriminate in the actual causes of the observed anomalies. The temperature results obtained for the Netherlands show some thermal patterns that relate to the variation of the thermal conductivity and the geometry of the sediments. There is also strong evidence to indicate that deep convective flows are responsible for thermal anomalies. The combination of conductive and local convective thermal patterns makes the deeper part of the Dutch sedimentary basin of great interest for the development of geothermal energy.
Deep-tow geophysical survey above large exhumed mantle domains of the eastern Southwest Indian ridge
NASA Astrophysics Data System (ADS)
Bronner, A.; Munschy, M.; Sauter, D.; Carlut, J.; Searle, R.; Cannat, M.
2012-04-01
The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the easternmost part of the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining multibeam bathymetric data, magnetic data, geology mapping from sidescan sonar (TOBI) images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the sidescan sonar images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. We investigate the possibility that magnetic anomalies are either caused by serpentinized peridotites and/or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may result from fluid-rock interactions along the detachment faults as well as from the occurrence of small sized and thin volcanic patches and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.
Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge
NASA Astrophysics Data System (ADS)
Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.
2011-12-01
The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this peculiar seafloor.
Hydrogeochemical signatures of thermal springs compared to deep formation water of North Germany
NASA Astrophysics Data System (ADS)
Bozau, Elke; van Berk, Wolfgang
2014-05-01
Thermal springs and hot deep formation waters can be used for geothermal energy production. Depending on the chemical composition of the used waters, geothermal power plants have to deal with scaling and corrosion effects. Therefore, the understanding of the hydrogeochemical behaviour of such waters can be helpful to enhance the efficiency of the energy production. This study is comparing hydrogeochemical characteristics of thermal springs in the Harz Mountains (North Germany) and deep formation water of the North German Basin. The Harz Mountains consist of uplifted Palaeozoic rocks, whereas the North German Basin consists of sedimentary layers of Permian, Mesozoic and Cenozoic age. Volcanic rocks are included in the Permian layers. The thickness of the sedimentary basin varies between 2 km and more than 8 km. The deep aquifers of the North German Basin are mostly not involved in the recent meteoric water cycle. Their waters have contents of Total Dissolved Solids (TDS) up to about 400 g/L. Thermal springs of the Harz Mountains are situated close to the main fracture system of the region. These springs are connected to the meteoric water cycle and display lower contents of TDS (< 25 g/L). In both geological systems the TDS content is increasing with depth and temperature. The elemental ratios of the waters (e.g., Na/Cl, Cl/Br, Na/Ca) indicate similar hydrogeochemical formation processes in the Harz Mountains and the North German Basin. The concentrations of calcium, sodium, and chloride differ due to salt dissolution and feldspar transformation (albitisation) in the thermal springs as well as in the deep formation waters. Based on today's knowledge hydrochemical and stratigraphical data from the North German Basin can be used to elucidate the geological origin of the thermal springs in the Harz Mountains. Acknowledgements. The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the Ministry of Science and Culture of the State of Lower Saxony and the company Baker Hughes.
Applications in Nuclear Energy Security
NASA Astrophysics Data System (ADS)
Sheffield, Richard
2009-05-01
A key roadblock to development of additional nuclear power capacity is a concern over management of nuclear waste. Nuclear waste is predominantly comprised of used fuel discharged from operating nuclear reactors. The roughly 100 operating US reactors currently produce about 20% of the US electricity and will create about 87,000 tons of such discharged or ``spent'' fuel over the course of their lifetimes. The long-term radioactivity of the spent fuel drives the need for deep geologic storage that remains stable for millions of years. Nearly all issues related to risks to future generations arising from long-term disposal of such spent nuclear fuel is attributable to approximately the 1% made up primarily of minor actinides. If we can reduce or eliminate this 1% of the spent fuel, then within a few hundred years the toxic nature of the spent fuel drops below that of the natural uranium ore that was originally mined for nuclear fuel. The minor actinides can be efficiently eliminated through nuclear transmutation using as a driver fast-neutrons produced by a spallation process initiated with a high-energy proton beam. This presentation will cover the system design considerations and issues of an accelerator driven transmutation system.
Opportunities and challenges in studies of deep life (Invited)
NASA Astrophysics Data System (ADS)
Edwards, K. J.
2010-12-01
Over the past two decades, there has been an increasing awareness within the geological, microbiological, and oceanographic communities of the potentially vast microbial biosphere that is harbored beneath the surface of the Earth. With this awareness has come a mounting effort to study this potential biome - to better quantify biomass abundance, activity, and biogeochemical activity. In the Earth system, the largest deep subsurface biome is also the least accessible - the deep ocean subsurface biosphere. The oceanic deep biosphere also has greatest potential for influencing global scale biogeochemical processes -the carbon and energy cycles for example, and other elemental cycles. To address these topics and mount interdisciplinary efforts to study the deep subsurface marine biosphere, we have recently formed a center in support integrative, collaborative investigations. The national science foundation Center for Dark Biosphere Investigations (C-DEBI), has been initiated for the explicit purpose of resolving the extent, function, dynamics and implications of the subseafloor biosphere. This talk will discuss C-DEBI science, with focus on some of the opportunities and challenges in the study of deep life in the ocean, and the role that C-DEBI will play in meeting them
... individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to delivery ... individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to delivery ...
Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011
Kellogg, Christina A.
2009-01-01
Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.
Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS
NASA Astrophysics Data System (ADS)
Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.
2014-12-01
There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.
Swiss Atlas of PHYsical properties of Rocks (SAPHYR)
NASA Astrophysics Data System (ADS)
Zappone, Alba; Kissling, Eduard
2015-04-01
The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology and data from boreholes and seismic surveys, combined with empirically determined pressure and temperature derivatives. The product is now almost ready for publication and an early version is presented here.
NASA Astrophysics Data System (ADS)
Faccenna, C.; Funiciello, F.
2012-04-01
EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to answer a key question in earth Sciences: how do deep and surface processes interact to shape and control the topographic evolution of our planet.
Human Health and Performance Considerations for Exploration of Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Kundrot, Craig; Steinberg, Susan; Charles, John
2010-01-01
This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and exploration tasks.
NASA Technical Reports Server (NTRS)
Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra
2015-01-01
The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..
Code of Federal Regulations, 2014 CFR
2014-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2014-01-01 2014-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2012-01-01 2012-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2013 CFR
2013-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2013-01-01 2013-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2011 CFR
2011-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2011-01-01 2011-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
NASA Astrophysics Data System (ADS)
Shahrokhi, H.; Malehmir, A.; Sopher, D.
2012-04-01
The BABEL project (Baltic And Bothnian Echoes from the Lithosphere) was a collaboration among British, Danish, Finnish, German and Swedish geoscientists to collect deep-crustal reflection and wide-angle refraction profiles in Baltic Shield and Gulf of Bothnia. The acquisition of 2,268km of deep marine reflection seismic data was carried out in 1989. The BABEL line 7 runs in E-W direction in the Bothnian Sea, north of the Åland islands and east of the city of Gävle. Several authors presented the seismic results but with a main focus of imaging and interpreting deep crustal geological structures and the nature and the depth of Moho discontinuity along line 7. Based on this seismic data, several publications about velocity distributions within the crust, the depth and texture of Moho discontinuity and seismic reflectivity patterns in the crust were presented. Some evidence from the reflection seismic data was also presented to suggest Early Proterozoic plate tectonics in the Baltic Shield. Previous seismic images of the BABEL line 7 reflection data show a dramatic change in the reflectivity pattern from weakly reflective lower crust in the west to a more reflective lower crust in the east, which was attributed to a change from a rigid crust to a plastic crust from the west to the east. The BABEL line 7 reflection data were acquired with a total profile length of 174km, a set of 48 airguns towed at 7.5m depth, and 3000m long streamer with 60 channels spaced with 50m intervals and towed at 15m depth. Seismic data were recorded for 25s using 4ms sampling interval and 75m shot interval. Seismic data is characterized by strong source-generated noise at shallow travel times and strong but randomly distributed spurious spikes at later arrival times. In this study, we have recovered and reprocessed the seismic data along BABEL line 7. Using modern processing and imaging techniques, which were not available at the time, and with a focus on the shallow parts of the seismic data, we have managed to reveal reflections as shallow as 1s in the data. Some of these reflections appear to be a continuation of deeper reflections but now they appear to reach to the surface, allowing correlation with the near-surface geology. At least two major moderately dipping shear zones are visible in the reprocessed data in comparison with the previous results. Deeper reflections are also improved which together with the improvements in the shallow parts of the data should allow small-scale geological structures encounter along the BABEL line 7 to be refined.
NASA Astrophysics Data System (ADS)
Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.
2011-12-01
Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of experiments that captures some of the complexities of the geologic heterogeneity and injection scenarios are planned in a 4.8 m long tank. To test the experimental methods and instrumentation, a set of preliminary experiments were conducted in a smaller tank with dimensions 90 cm x 60 cm. The tank was packed to represent both homogeneous and heterogeneous conditions. Using the surrogate fluids, different injection scenarios were tested. Images of the migration plume showed the critical role that heterogeneity plays in stable entrapment. Destructive sampling done at the end of the experiments provided data on the final saturation distributions. Preliminary analysis suggests the entrapment configuration is controlled by the large-scale heterogeneities as well as the pore-scale entrapment mechanisms. The data was used in modeling analysis that is presented in a companion abstract.
Field Test to Evaluate Deep Borehole Disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest; Brady, Patrick Vane.; Clark, Andrew Jordan
The U.S. Department of Energy (DOE) has embarked on the Deep Borehole Field Test (DBFT), which will investigate whether conditions suitable for disposal of radioactive waste can be found at a depth of up to 5 km in the earth’s crust. As planned, the DBFT will demonstrate drilling and construction of two boreholes, one for initial scientific characterization, and the other at a larger diameter such as could be appropriate for waste disposal (the DBFT will not involve radioactive waste). A wide range of geoscience activities is planned for the Characterization Borehole, and an engineering demonstration of test package emplacementmore » and retrieval is planned for the larger Field Test Borehole. Characterization activities will focus on measurements and samples that are important for evaluating the long-term isolation capability of the Deep Borehole Disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable DBFT site and a site management contractor is now underway. The concept of deep borehole disposal (DBD) for radioactive wastes is not new. It was considered by the National Academy of Science (NAS 1957) for liquid waste, studied in the 1980’s in the U.S. (Woodward–Clyde 1983), and has been evaluated by European waste disposal R&D programs in the past few decades (for example, Grundfelt and Crawford 2014; Grundfelt 2010). Deep injection of wastewater including hazardous wastes is ongoing in the U.S. and regulated by the Environmental Protection Agency (EPA 2001). The DBFT is being conducted with a view to use the DBD concept for future disposal of smaller-quantity, DOE-managed wastes from nuclear weapons production (i.e., Cs/Sr capsules and granular solid wastes). However, the concept may also have broader applicability for nations that have a need to dispose of limited amounts of spent fuel from nuclear power reactors. For such nations the cost for disposing of volumetrically limited waste streams could be lower than mined geologic repositories.« less
NASA Astrophysics Data System (ADS)
Delgado, José; García-Tortosa, Francisco J.; Garrido, Jesús; Giner, José; Lenti, Luca; López-Casado, Carlos; Martino, Salvatore; Peláez, José A.; Sanz de Galdeano, Carlos; Soler, Juan L.
2015-04-01
Landslides are a common ground effect induced by earthquakes of moderate to large magnitude. Most of them correspond to first-time instabilities induced by the seismic event, being the reactivation of pre-existing landslides less frequent in practice. The landslide of Güevejar (Granada province, S Spain) represents a case study of landslide that was reactivated, at least, two times by far field earthquakes: the Mw 8.7, 1755, Lisbon earthquake (with estimated epicentral distance of 680 km), and the Mw 6.5, 1884, Andalucia event (estimated epicentral distance of 45 km), but not by near field events of moderate magnitude (Mw < 6.0 and epicentral distances lower than 25 km). To study the seismic response of this landslide, a study has been conducted to elaborate an engineering-geological model. For this purpose, field work done included the elaboration of a detailed geological map (1:1000) of the landslide and surrounding areas, drilling of deep boreholes (80 m deep), down-hole measurement of both P and S wave velocities in the boreholes drilled, piezometric control of water table, MASW and ReMi profiles for determining the underlying structure of the sites tested (soil profile stratigraphy and the corresponding S-wave velocity of each soil level) and undisturbed sampling of the materials affected by the landslide. These samples were then tested in laboratory according to standard procedures for determination of both static (among which soil density, soil classification and shear strength) and dynamic properties (degradation curves for shear modulus and damping ratio with shear strain) of the landslide-involved materials. The model proposed corresponds to a complex landslide that combines a rototranslational mechanism with an earth-flow at its toe, which is characterized by a deep (> 50 m) sliding surface. The engineering-geological model constitutes the first step in an ongoing research devoted to understand how it could be reactivated during far field events. The authors would like to thank the ERDF of European Union for financial support via project "Monitorización sísmica de deslizamientos. Criterios de reactivación y alerta temprana" of the "Programa Operativo FEDER de Andalucía 2007-2015". We also thank all Public Works Agency and Ministry of Public Works and Housing of the Regional Government of Andalusia.
NASA Astrophysics Data System (ADS)
McGowran, Brian
2005-10-01
Using fossils to tell geological time, biostratigraphy balances biology with geology. In modern geochronology - meaning timescale-building and making correlations between oceans, continents and hemispheres - the microfossil record of speciations and extinctions is integrated with numerical dates from radioactive decay, geomagnetic reversals through time, and the cyclical wobbles of the earth-sun-moon system. This important modern synthesis follows the development of biostratigraphy from classical origins into petroleum exploration and deep-ocean drilling. It explores the three-way relationship between species of microorganisms, their environment and their evolution through time as expressed in skeletons preserved as fossils. This book is essential reading for advanced students and researchers working in basin analysis, sequence stratigraphy, palaeoceanography, palaeobiology and related fields. Now recognised as an important disciplinary subject, biostratigraphy is treated here in much greater detail than in other major modern texts Brings together biological and geological research in an accessible way Discusses applications as well as theory
International Collaboration Activities in Different Geologic Disposal Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, Jens
This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s Internationalmore » Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.« less
Practical modeling approaches for geological storage of carbon dioxide.
Celia, Michael A; Nordbotten, Jan M
2009-01-01
The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.
Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant
2009-01-01
From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.
Hydrogen-bearing iron peroxide and its implications to the deep Earth
NASA Astrophysics Data System (ADS)
Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.
2017-12-01
Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.
Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick
2016-10-11
Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This 'topographically-enhanced carbon pump' leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.
NASA Astrophysics Data System (ADS)
Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick
2016-10-01
Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.
Excess plutonium disposition: The deep borehole option
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, K.L.
1994-08-09
This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues relatedmore » to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.« less
NASA Astrophysics Data System (ADS)
Li, P.
2016-12-01
In this study, on the basis of 3,200 km shallow stratigraphic section and sidescan sonar data of the coastal area of the Yellow River Delta, we delineated and interpreted a total of seven types of typical hazardous geologies, including the hazardous geology in the shallow strata (buried ancient channel and strata disturbance) and hazardous geology in the seabed surface strata (pit, erosive residual body, sand patch, sand wave and scour channel). We selected eight parameters representing the development scale of the hazardous geology as the zoning indexes, including the number of hazardous geology types, pit depth, height of erosive residual body, length of scour channel, area of sand patch, length of sand wave, width of the buried ancient channel and depth of strata disturbance, and implemented the grid processing of the research area to calculate the arithmetic sum of the zoning indexes of each unit grid one by one. We then adopted the clustering analysis method to divide the near-shore waters of the Yellow River Delta into five hazardous geology areas, namely the serious erosion disaster area controlled by Diaokou lobe waves, hazardous geology area of multi-disasters under the combined action of the Shenxiangou lobe river wave flow, accumulation type hazardous geology area controlled by the current estuary river, hazardous geology area of single disaster in the deep water area and potential hazardous geology area of the Chengdao Oilfield. All four of the main factors affecting the development of hazardous geology, namely the diffusion and movement of sediment flux of the Yellow River water entering the sea, seabed stability, bottom sediment type and distribution, as well as the marine hydrodynamic characteristics, show significant regional differentiation characteristics and laws. These characteristics and laws are consistent with the above-mentioned zoning results, in which the distribution, scale and genetic mechanism of hazardous geology are considered comprehensively. This indicates that the hazardous geology zoning based on the cluster analysis is a new attempt in research regarding the hazardous geology zoning of the near-shore waters of the modern Yellow River Delta and that this type of zoning has a high level of reasonability.
Medium Deep High Temperature Heat Storage
NASA Astrophysics Data System (ADS)
Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo
2015-04-01
Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.
Deep mantle structure as a reference frame for movements in and on the Earth
Torsvik, Trond H.; van der Voo, Rob; Doubrovine, Pavel V.; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D.; Trønnes, Reidar G.; Webb, Susan J.; Bull, Abigail L.
2014-01-01
Earth’s residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core–mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth’s surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core–mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth’s mantle may have operated throughout the entire Phanerozoic. PMID:24889632
Deep mantle structure as a reference frame for movements in and on the Earth.
Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L
2014-06-17
Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.
Edge systems in the deep ocean
NASA Astrophysics Data System (ADS)
Coon, Andrew; Earp, Samuel L.
2010-04-01
DARPA has initiated a program to explore persistent presence in the deep ocean. The deep ocean is difficult to access and presents a hostile environment. Persistent operations in the deep ocean will require new technology for energy, communications and autonomous operations. Several fundamental characteristics of the deep ocean shape any potential system architecture. The deep sea presents acoustic sensing opportunities that may provide significantly enhanced sensing footprints relative to sensors deployed at traditional depths. Communication limitations drive solutions towards autonomous operation of the platforms and automation of data collection and processing. Access to the seabed presents an opportunity for fixed infrastructure with no important limitations on size and weight. Difficult access and persistence impose requirements for long-life energy sources and potentially energy harvesting. The ocean is immense, so there is a need to scale the system footprint for presence over tens of thousands and perhaps hundreds of thousands of square nautical miles. This paper focuses on the aspect of distributed sensing, and the engineering of networks of sensors to cover the required footprint.
30 CFR 250.415 - What must my casing and cementing programs include?
Code of Federal Regulations, 2010 CFR
2010-07-01
... included in API RP 65, Recommended Practice for Cementing Shallow Water Flow Zones in Deep Water Wells... and are in either of the following two areas: (1) An “area with an unknown shallow water flow potential” is a zone or geologic formation where neither the presence nor absence of potential for a shallow...
Near-Equatorial Deep Circulation in the Indian and Pacific Oceans
1990-09-01
Pacific Rise. 3.1 The Data Set A transpacific hydrographic cruise from the Philippines to Costa Rica was made on the R.V. Moana Wave from January to...Western Indian Ocean. Marine Geology , 33, 1-44. Joyce, T. M., B. A. Warren and L. D. Talley (1986) The geothermal heating of the abyssal subarctic Pacific
Using Google Earth to Teach the Magnitude of Deep Time
ERIC Educational Resources Information Center
Parker, Joel D.
2011-01-01
Most timeline analogies of geologic and evolutionary time are fundamentally flawed. They trade off the problem of grasping very long times for the problem of grasping very short distances. The result is an understanding of relative time with little comprehension of absolute time. Earlier work has shown that the distances most easily understood by…
This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA’s Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of ...
Students' Geocognition of Deep Time, Conceptualized in an Informal Educational Setting
ERIC Educational Resources Information Center
Clary, Renee M.; Brzusek, Robert F.; Wandersee, James H.
2009-01-01
Students in a Landscape Architecture Design 1 course (N = 25) at a research university in the southern US developed design solutions implementing geologic time for an informal education site. Those students who employed abstract metaphors for their designs (n = 8) were more successful than students who proceeded with a linear design construct.…
NASA Astrophysics Data System (ADS)
Lu, H.; Yi, D.
2010-12-01
The Deep Exploration is one of the important approaches to the Geoscience research. Since 1980s we had started it and achieved a lot of data. Researchers usually integrate both data of space exploration and deep exploration to study geological structures and represent the Earth’s subsurface, and analyze and explain on the base of integrated data. Due to the different exploration approach it results the heterogeneity of data, and therefore the data achievement is always of the import issue to make the researchers confused. The problem of data share and interaction has to be solved during the development of the SinoProbe research project. Through the research of domestic and overseas well-known exploration project and geosciences data platform, the subject explores the solution of data share and interaction. Based on SOA we present the deep exploration data share framework which comprises three level: data level is used for the solution of data store and the integration of the heterogeneous data; medial level provides the data service of geophysics, geochemistry, etc. by the means of Web service, and carry out kinds of application combination by the use of GIS middleware and Eclipse RCP; interaction level provides professional and non-professional customer the access to different accuracy data. The framework adopts GeoSciML data interaction approach. GeoSciML is a geosciences information markup language, as an application of the OpenGIS Consortium’s (OGC) Geography Markup Language (GML). It transfers heterogeneous data into one earth frame and implements inter-operation. We dissertate in this article the solution how to integrate the heterogeneous data and share the data in the project of SinoProbe.
NASA Astrophysics Data System (ADS)
Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre
Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.
A gas sampling system for withdrawing humid gases from deep boreholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.
A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less
Reinterpretation of the Burmester core, Bonneville basin, Utah
Oviatt, Charles G.; Thompson, R.S.; Kaufman, D.S.; Bright, Jordon; Forester, R.M.
1999-01-01
Initial interpretation of the sediments from the Burmester core (Eardley et al. (1973). Geological Society of America Bulletin 84, 211-216) indicated that 17 deep-lake cycles, separated by shallow-lake and soil-forming intervals, occurred in the Bonneville basin during the Brunhes Chron (the last 780 x 103 yr). Our re-examination of the core, along with new sedimentological, geochronological, and paleontological data, indicate that only four deep-lake cycles occurred during this period, apparently correlative with marine oxygen-isotope stages 2, 6, 12, and 16. This interpretation suggests that large lakes formed in the Bonneville basin only during the most extensive of the Northern Hemisphere glaciations.
NASA Astrophysics Data System (ADS)
Klimchouk, Alexander; Auler, Augusto S.; Bezerra, Francisco H. R.; Cazarin, Caroline L.; Balsamo, Fabrizio; Dublyansky, Yuri
2016-01-01
This study is focused on speleogenesis of the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR), the longest caves in South America occurring in the Neoproterozoic Salitre Formation in the São Francisco Craton, NE Brazil. We employ a multidisciplinary approach integrating detailed speleomorphogenetic, lithostratigraphic and geological structure studies in order to reveal the origin of the caves, their functional organization and geologic controls on their development. The caves developed in deep-seated confined conditions by rising flow. The overall fields of passages of TBV and TBR caves represent a speleogenetically exploited large NE-SW-trending fracture corridor associated with a major thrust. This corridor vertically extends across the Salitre Formation allowing the rise of deep fluids. In the overall ascending flow system, the formation of the cave pattern was controlled by a system of sub-parallel anticlines and troughs with NNE-SSW dominant orientation, and by vertical and lateral heterogeneities in fracture distribution. Three cave-stratigraphic stories reflect the actual hydrostratigraphy during the main phase of speleogenesis. Cavities at different stories are distinct in morphology and functioning. The gross tree-dimensional pattern of the system is effectively organized to conduct rising flow in deep-seated confined conditions. Cavities in the lower story developed as recharge components to the system. A laterally extensive conduit network in the middle story formed because the vertical flow from numerous recharge points has been redirected laterally along the highly conductive unit, occurring below the major seal - a scarcely fractured unit. Rift-like and shaft-like conduits in the upper story developed along fracture-controlled outflow paths, breaching the integrity of the major seal, and served as outlets for the cave system. The cave system represents a series of vertically organized, functionally largely independent clusters of cavities developed within individual ascending flow cells. Lateral integration of clusters occurred due to hydrodynamic interaction between the flow cells in course of speleogenetic evolution and change of boundary conditions. The main speleogenetic phase, during which the gross cave pattern has been established and the caves acquired most of their volume, was likely related to rise of deep fluids at about 520 Ma or associated with rifting and the Pangea break-up in Triassic-Cretaceous. This study highlights the importance of speleogenetic studies for interpreting porosity and permeability features in carbonate reservoirs.
Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science
NASA Astrophysics Data System (ADS)
Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.
2014-12-01
Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the interactive presentation ("A Little") and the movie ("Quite a Bit"). We conclude that our content for digital globes is effective in teaching the STEM principles and exciting viewers about the deep ocean frontier. We attribute this success to the tight collaboration between scientists, educators, and graphic artists in developing the content for public audiences.
NASA Astrophysics Data System (ADS)
Braitenberg, Carla; Mariani, Patrizia
2015-04-01
The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies based on age determination and mineral composition of rock samples propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events which induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Therefore gravity can be used as a globally available supportive tool for interpolation of isolated samples. Applying geodynamic plate reconstructions to the GOCE gravity field places today's observed field at the pre-breakup position. In order to test the possible deep control of the crustal features, the same reconstruction is applied to the seismic velocity models, and a joint gravity-velocity analysis is performed. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105 Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th International GOCE User Workshop, 25 - 28 November 2014. Braitenberg, C. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J.Appl. Earth Observ. Geoinf. 35, 88-95. http://dx.doi.org/10.1016/j.jag.2014.01.013 Braitenberg, C. (2015). A grip on geological units with GOCE, IAG Symp. 141, in press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.
2006-07-08
The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less
LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Halsey, W G
2011-03-02
This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for minedmore » geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.« less
NASA Astrophysics Data System (ADS)
Crumpler, L. S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R. V.; Bell, J. F., III; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N. A.; Haldemann, A.; Lewis, Kevin W.; Wang, A. E.; Schröder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, R.; Guinness, E. A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhöfer, G.; McEwen, A.; Rice, J. W., Jr.; Rice, M.; deSouza, P.; Hurowitz, J.
2011-07-01
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.
Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W.; Rice, M.; deSouza, P.; Hurowitz, J.
2011-01-01
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.
NASA Astrophysics Data System (ADS)
Jia, D.; Feng, Y.; Liu, J.; Yao, X.; Zhang, Z.; Ye, T.
2017-12-01
1. Working BackgroundCurrent Status of Geological Prospecting: Detecting boundaries and bottoms, making ore search nearby; Seeing the stars, not seeing the Moon; Deep prospecting, undesirable results. The reasons of these problems are the regional metallogenic backgroud unclear and the metallogenic backgroud of the exploration regions unknown. Accordingly, Development and Research Center, CGS organized a geological setting research, in detail investigate metallogenic geological features and acquire mineralization information. 2. Technical SchemeCore research content is prediction elements of Metallogenic Structure. Adopt unified technical requirements from top to bottom, and technical route from bottom to top; Divide elements of mineral forecast and characteristics of geological structure into five elements for research and expression; Make full use of geophysical, geochemical and remote sensing inferences for the interpretation of macro information. After eight years the great project was completed. 3. Main AchievementsInnovation of basic maps compilation content of geological background, reinforce of geological structure data base of potentiality valuation. Preparation of geotectonic facies maps in different scales and professions, providing brand-new geologic background for potentiality assessment, promoting Chinese geotectonic research to the new height. Preparation of 3,375 geological structure thematic base maps of detecting working area in 6 kinds of prediction methods, providing base working maps, rock assemblage, structure of the protolith of geologic body / mineralization / ore controlling for mineral prediction of 25 ores. Enrichment and development of geotectonic facies analysis method, establishment of metallogenic background research thoughts and approach system for assessment of national mineral resources potentiality for the first time. 4. Application EffectOrientation——More and better results with less effort. Positioning——Have a definite object in view. Heart calm down——Confidence.
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Kraft, Toni; Diehl, Tobias; Wiemer, Stefan
2017-04-01
The St. Gallen deep geothermal project in 2013 was the second geothermal project in Switzerland with the objective of power production after the Enhanced Geothermal System in Basel in 2006. In St. Gallen, the seismic risk was expected to be smaller than in Basel, since the hydrothermal resource was an aquifer at a depth of about 4 km, not expected to require permeability enhancement and associated hydroshearing of the rock. However, after an injectivity test and two acid stimulations, unexpected gas release from an unidentified source forced the operators to inject drilling mud into the well to fight the gas kick. Subsequently, several seismic events were induced, the largest one having a local magnitude of 3.5, which was distinctly felt by the nearby living population. Even though the induced seismicity could not be handled properly, the community still strongly supported the geothermal project. The project was however halted because the target formation was not as permeable as required to deliver sufficient power. Still, controlling induced seismicity during deep geothermal projects is a key factor to successfully operate future geothermal projects. Hence, it is crucial to understand the physical relations of fluid injection, pressure and stress response at reservoir depth as well as associated induced seismicity. To date, these processes are yet not fully understood. In this study, we aim at developing a hydro-mechanical model reproducing the main features of the induced seismic sequence at the St. Gallen geothermal site. Here, we present the conceptual model and preliminary results accounting for hydraulic and mechanical parameters from the geothermal well, geological information from a seismic survey conducted in the St. Gallen region, and actual fluid injection rates from the injectivity tests. In a future step, we are going to use this model to simulate the physical interaction of injected fluid, gas release, hydraulic response of the rock, and induced seismicity during the St. Gallen project. The results will then allow us to more accurately estimate the seismic hazard for future geothermal projects.
10 CFR 60.137 - General requirements for performance confirmation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Performance Confirmation Requirements § 60.137 General requirements for performance confirmation. The geologic repository operations area shall be designed so as to...
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.
2012-01-01
Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.
An Integrated Geologic Framework for EarthScope's USArray
NASA Astrophysics Data System (ADS)
Tikoff, Basil; van der Pluijm, Ben; Hibbard, Jim; Keller, George Randy; Mogk, David; Selverstone, Jane; Walker, Doug
2006-06-01
The GeoFrame initiative is a new geologic venture that focuses on the construction, stabilization, and modification of the North American continent through time. The initiative's goals can be achieved through systematic integration of geologic knowledge-and particularly geologic time-with the unprecedented Earth imaging to be collected under the USArray program of EarthScope (http://www.earthscope.org/usarray). The GeoFrame initiative encourages a cooperative community approach to collecting and sharing data and will take a coast-to-coast perspective of the continent, focusing not only on the major geologic provinces, but also on the boundaries between these provinces. GeoFrame also offers a tangible, `you can see it and touch it' basis for a national approach to education and outreach in the Earth sciences. The EarthScope project is a massive undertaking to investigate the structure and evolution of the North American continent. Sponsored by the U.S. National Science Foundation (NSF), EarthScope uses modern observational, analytical, and telecommunications technologies to establish fundamental and applied research in the Earth's dynamics, contributing to natural resource exploration and development, the mitigation of geologic hazards and risk, and a greater public understanding of solid Earth systems. One part of this project is USArray, a moving, continent-scale network of seismic stations designed to provide a foundation for the study of the lithosphere and deep Earth.
California State Waters Map Series--Hueneme Canyon and vicinity, California
Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Clahan, Kevin B.; Sliter, Ray W.; Wong, Florence L.; Yoklavich, Mary M.; Normark, William R.
2012-01-01
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Hueneme Canyon and vicinity map area lies within the eastern Santa Barbara Channel region of the Southern California Bight. The area is part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation - at least 90° - since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area, which is offshore of the Oxnard plain and west of and along the trend of the south flank of the Santa Monica Mountains, lies at the east end of the Santa Barbara littoral cell, characterized by west-to-east littoral transport of sediment derived mainly from coastal watersheds. The Hueneme Canyon and vicinity map area in California's State Waters is characterized by two major physiographic features: (1) the nearshore continental shelf, and (2) the Hueneme and Mugu Submarine Canyon system, which, in the map area, includes Hueneme Canyon and parts of three smaller, unnamed headless canyons incised into the shelf southeast of Hueneme Canyon. The shelf is underlain by tens of meters of interbedded upper Quaternary shelf, estuarine, and fluvial deposits that formed as sea level fluctuated in the last several hundred thousand years. Hueneme Canyon extends about 15 km offshore from its canyon head near the dredged navigation channel of the Port of Hueneme. The canyon is relatively deep (about 150 m at the California's State Waters limit) and steep (canyon flanks as steep as 25° to 30°). Historically, Hueneme Canyon functioned as the eastern termination of the Santa Barbara littoral cell by trapping all eastward littoral drift, not only feeding the large Hueneme submarine fan but acting as the major conduit of sediment to the deep Santa Monica Basin; however, recent dredging programs needed to maintain Channel Islands Harbor and the Port of Hueneme have moved the nearshore sediment trapped by jetties and breakwaters to an area southeast of the Hueneme Canyon head. Seafloor habitats in the broad Santa Barbara Channel region consist of significant amounts of soft sediment and isolated areas of rocky habitat that support kelp-forest communities nearshore and rocky-reef communities in deep water. The potential marine benthic habitat types mapped in the Hueneme Canyon and vicinity map area are related directly to the geomorphology and sedimentary processes that are the result of its Quaternary geologic history. The two basic megahabitats in the map area are Shelf (continental shelf) and Flank (continental slope). The flat seafloor of the continental shelf in the Hueneme Canyon and vicinity map area is dynamic, as indicated by mobile sand sheets and coarser grained scour depressions. The active Hueneme Canyon provides considerable relief to the continental shelf in the map area, and its irregular morphology of eroded walls, landslide scarps, and deposits and gullies provide promising habitat for groundfish, crabs, shrimp, and other marine benthic organisms. Most invertebrates observed in the map area during camera ground-truth field operations are found on the edge of Hueneme Canyon, which may be an important area of recruitment and retention to other invertebrates and fishes. The smaller, more subtle, nonactive headless canyons located primarily on the continental slope also offer relief that provides habitat for groundfish and other organisms.
Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.
2009-01-01
Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.
Hypogene caves of the central Appalachian Shenandoah Valley in Virginia
Doctor, Daniel H.; Orndorff, Wil
2017-01-01
Several caves in the Shenandoah Valley in Virginia show evidence for early hypogenic conduit development with later-enhanced solution under partly confined phreatic conditions guided by geologic structures. Many (but not all) of these caves have been subsequently invaded by surface waters as a result of erosion and exhumation. Those not so affected are relict phreatic caves, bearing no relation to modern drainage patterns. Field and petrographic evidence shows that carbonate rocks hosting certain relict phreatic caves were dolomitized and/or silicified by early hydrothermal fluid migration in zones that served to locally enhance rock porosity, thus providing preferential pathways for later solution by groundwater flow, and making the surrounding bedrock more resistant to surficial weathering to result in caves that reside within isolated hills on the land surface. Features suggesting that deep phreatic processes dominated the development of these relict caves include (1) cave passage morphologies indicative of ascending fluids, (2) cave plans of irregular pattern, reflecting early maze or anastomosing development, (3) a general lack of cave breakdown and cave streams or cave stream deposits, and (4) calcite wall and pool coatings within isolated caves intersecting the local water table, and within unroofed caves at topographic locations elevated well above the local base level. Episodes of deep karstification were likely separated by long periods of geologic time, encompassing multiple phases of sedimentary fill and excavation within caves, and reflect a complex history of deep fluid migration that set the stage for later shallow speleogenesis that continues today.
Parnell, John; McMahon, Sean
2016-01-01
The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907
Karst geomorphology and hydrology of the Shenandoah Valley near Harrisonburg, Virginia
Doctor, Daniel H.; Orndorff, Wil; Maynard, Joel; Heller, Matthew J.; Casile, Gerolamo C.
2014-01-01
The karst of the central Shenandoah Valley has characteristics of both shallow and deep phreatic formation. This field guide focuses on the region around Harrisonburg, Virginia, where a number of these karst features and their associated geologic context can be examined. Ancient, widespread alluvial deposits cover much of the carbonate bedrock on the western side of the valley, where shallow karstification has resulted in classical fluviokarst development. However, in upland exposures of carbonate rock, isolated caves exist atop hills not affected by surface processes other than exposure during denudation. The upland caves contain phreatic deposits of calcite and fine-grained sediments. They lack any evidence of having been invaded by surface streams. Recent geologic mapping and LIDAR (light detection and ranging) elevation data have enabled interpretive association between bedrock structure, igneous intrusions, silicification and brecciation of host carbonate bedrock, and the location of several caves and karst springs. Geochemistry, water quality, and water temperature data support the broad categorization of springs into those affected primarily by shallow near-surface recharge, and those sourced deeper in the karst aquifer. The deep-seated karst formation occurred in the distant past where subvertical fracture and fault zones intersect thrust faults and/or cross-strike faults, enabling upwelling of deep-circulating meteoric groundwater. Most caves formed in such settings have been overprinted by later circulation of shallow groundwater, thus removing evidence of the history of earliest inception; however, several caves do preserve evidence of an earlier formation.
Microbial growth under a high-pressure CO2 environment
NASA Astrophysics Data System (ADS)
Thompson, J. R.; Hernandez, H. H.
2009-12-01
Carbon capture and storage (CCS) of CO2 has the potential to significantly reduce the emission of greenhouse gasses associated with fossil fuel combustion. The largest potential for storing captured CO2 in the United Sates is in deep geologic saline formations. Currently, little is known about the effects of CO2 storage on biologically active microbial communities found in the deep earth biosphere. Therefore, to investigate how deep earth microbial communities will be affected by the storage of CO2, we have built a high-pressure microbial growth system in which microbial samples are subjected to a supercritical CO2 (scCO2) environment. Recently we have isolated a microbial consortium that is capable of growth and extracellular matrix production in nutrient media under a supercritical CO2 headspace. This consortium was cultivated from hydrocarbon residues associated with saline formation waters and includes members of the gram-positive Bacillus genus. The cultivation of actively growing cells in an environment containing scCO2 is unexpected based on previous experimental evidence of microbial sterilization attributed to the acidic, desiccating, and solvent-like properties of scCO2. Such microbial consortia have potential for development as (i) biofilm barriers for geological carbon-dioxide sequestration, and as (ii) agents of biocatalysis in environmentally-friendly supercritical (sc) CO2 solvent systems. The discovery that microbes can remain biologically active, and grow, in these environments opens new frontiers for the use of self-regenerating biological systems in engineering applications.
NASA Astrophysics Data System (ADS)
Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.
2013-11-01
Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos
2006-06-30
Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbonmore » storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.« less
Armored instrumentation cable for geothermal well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, B.R.; Johnson, J.; Todd, B.
1981-01-01
Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electricalmore » insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, D.R.; Wilson, C.A.
1991-01-01
A logbook program was initiated to determine the relative abundance of selected fish species around oil and gas platforms off the Louisiana coast. Logbooks were maintained by 55 anglers and 10 charterboat operators from March 1987 to March 1988. A total of 36,839 fish were caught representing over 46 different species. Principal component analysis (PCA) grouped the seventeen most abundant species into reef fish, pelagic fish, bluefish-red drum, Atlantic croaker-silver/sand seatrout, and cobia-shark-blue runner associations. Multiple regression analyses were used to compare PCA groupings to physical platform, temporal, geological, and angler characteristic variables and their interactions. Reef fish, Atlantic croaker,more » and silver/sand seatrout abundances were highest near large, structurally complex platforms in relatively deep water. High spotted seatrout abundances were correlated with small, unmanned oil and gas platforms in shallow water. Pelagic fish, bluefish, red drum, cobia, and shark abundances were not related to the physical parameters of the platforms.« less
Water resources activities in Kentucky, 1986
Faust, R. J.
1986-01-01
The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)
3DD - Three Dimensional Disposal of Spent Nuclear Fuel - 12449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorakova, Marketa; Slovak, Jiri
2012-07-01
Three dimensional disposal is being considered as a way in which to store long-term spent nuclear fuel in underground disposal facilities in the Czech Republic. This method involves a combination of the two most common internationally recognised disposal methods in order to practically apply the advantages of both whilst, at the same time, eliminating their weaknesses; the method also allows easy removal in case of potential re-use. The proposed method for the disposal of spent nuclear fuel will reduce the areal requirements of future deep geological repositories by more than 30%. It will also simplify the container handling process bymore » using gravitational forces in order to meet requirements concerning the controllability of processes and ensuring operational and nuclear safety. With regard to the issue of the efficient potential removal of waste containers, this project offers an ingenious solution which does not disrupt the overall stability of the original disposal complex. (authors)« less
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, Kevin G.
2018-05-01
The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.
Assessing environmental risk of the retired filter bed area, Battelle West Jefferson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.F.; Thompson, M.D.; Glennon, M.A.
1997-04-01
Initial investigations conducted by the U.S. Department of Energy, Chicago Operations Office, and by Argonne National Laboratory used seismic refraction profiling, electrical resistivity depth sounding, conductivity profiling, magnetic gradiometry, and ground-penetrating radar to study environmental geophysics in the area of the Battelle West Jefferson site`s radiologically contaminated retired filter beds. The investigators used a combination of nonintrusive technologies and innovative drilling techniques to assess environmental risk at the filter beds and to improve understanding of the geology of the Big Darby Creek floodplain. The geophysical investigation, which showed that the preferred groundwater pathway is associated with a laterally extensive depositmore » of silty sand to sand that is less than 12 ft deep in the floodplain area, also guided the location of cone penetrometer test sites and piezometer installation. Cone penetrometer testing was useful for comparing continuous logging data with surface geophysical data in establishing correlations among unconsolidated materials.« less
Quantifying Conditions for Fault Self-Sealing in Geologic Carbon Sequestration
NASA Astrophysics Data System (ADS)
McPherson, B. J. O. L.; Patil, V.; Moore, J.; Trujillo, E. M.
2015-12-01
Injecting anthropogenic CO2 into a subsurface reservoir for sequestration will impact the reservoir significantly, including its geochemistry, porosity and permeability. If a fault or fracture penetrates the reservoir, CO2-laden brine may migrate into that fault, eventually sealing it via precipitation or opening it up via dissolution. The goal of this study was to identify and quantify such conditions of fault self-sealing or self-enhancing. We found that the dimensionless Damköhler number (Da), the ratio of reaction rate to advection rate, provides a meaningful framework for characterizing the propensity of (fault) systems to seal or open up. We developed our own framework wherein Damköhler numbers evolve spatiotemporally as opposed to the traditional single Da value approach. Our approach enables us to use the Damköhler for characterization of complex multiphase and multimineral reactive transport problems. We applied this framework to 1D fault models with eight conditions derived from four geologic compositions and two reservoir conditions. The four geologic compositions were chosen such that three out of them were representative of distinct geologic end-members (sandstone, mudstone and dolomitic limestone) and one was a mixed composition based on an average of three end-member compositions. The two sets of P-T conditions chosen included one set corresponding to CO2 in a gaseous phase ("shallow conditions") and the other corresponding to supercritical phase CO2 ("deep conditions"). Simulation results suggest that fault sealing via carbonate precipitation was a possibility for shallow conditions within limestone and mixed composition settings. The concentration of cations in the water was found to be an important control on the carbonate precipitation. The deep conditions models did not forecast self-sealing via carbonates. Sealing via clay precipitation is a likely possibility, but the 1000 year time-frame may be short for such. Model results indicated a range of Da values within which substantial reductions of fault porosity (meaning self-sealing) could be expected. A key conclusion suggested by the results of this study is that carbonate precipitation in the near-surface (top ~50-100 m) depths of a fault is the most likely mechanism of "self-sealing" for most geological settings.
Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.
NASA Astrophysics Data System (ADS)
Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.
2016-12-01
A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from architectural information. These predictions are tied to existing S2S analyses to constrain submarine channel and fan dimensions in ancient and subsurface systems. Predictions of sediment budgets in deep marine systems rely on integration of fundamental issues in turbulent particle suspension into geological models of turbidite systems.
Relationship between deep structure and oil-gas in the eastern Tarim Basin
NASA Astrophysics Data System (ADS)
Yu, Changqing; Qu, Chen; Han, Jianguang
2017-04-01
The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D magnetotelluric data (Yang et al., 2012) and micro seismic wave field information recognition technology in the eastern Tarim Basin. Combining the information of the deep faults, tectonic evolution characteristics of the study area and the physical changes from geological data, we analyze the relationship between the change of the physical structure and the oil and gas, and predict the favorable oil and gas area and the exploration target area by information extraction, processing and interpretation analysis based on integrated geophysical technology. References 1. Hou, Z. Z., W. C. Yang, 2011, multi scale gravity field inversion and density structure in Tarim Basin: Chinese science, 41, 29-39. 2. Yang W. C., J. L. Wang, H. Z. Zhong, 2012, The main port of the Tarim Basin Analysis of magnetic field and magnetic source structure: Chinese Journal of Geophysics, 55, 1278-1287.
NASA Astrophysics Data System (ADS)
Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.
2015-12-01
Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.
DSMS science operations concept
NASA Technical Reports Server (NTRS)
Connally, M. J.; Kuiper, T. B.
2001-01-01
The Deep Space Mission System (DSMS) Science Operations Concept describes the vision for enabling the use of the DSMS, particularly the Deep Space Network (DSN) for direct science observations in the areas of radio astronomy, planetary radar, radio science and VLBI.
Geology and paleontology of five cores from Screven and Burke counties, eastern Georgia
Edwards, Lucy E.
2001-01-01
Five deep stratigraphic test holes were drilled from 1991 to 1993 in support of multidisciplinary investigations to determine the stratigraphy of Upper Cretaceous and Tertiary sediments of the coastal plain in east-central Georgia. Cored sediment and geological logs from the Millhaven test hole in Screven County and the Girard and Millers Pond test holes in Burke County are the primary sources of lithologic and paleontologic information from this report. Lithologic and paleontologic information from the Thompson Oak and McBean test holes in Burke County supplements the discussion of stratigraphy and sedimentation in the updip part of the study area near the Millers Pond test hole.
10 CFR 60.18 - Review of site characterization activities. 2
Code of Federal Regulations, 2010 CFR
2010-01-01
... IN GEOLOGIC REPOSITORIES Licenses Preapplication Review § 60.18 Review of site characterization... its progress in developing the design of a geologic repository operations area appropriate for the...
Digital photogrammetry at the U.S. Geological Survey
Greve, Clifford W.
1995-01-01
The U.S. Geological Survey is converting its primary map production and revision operations to use digital photogrammetric techniques. The primary source of data for these operations is the digital orthophoto quadrangle derived from National Aerial Photography Program images. These digital orthophotos are used on workstations that permit comparison of existing vector and raster data with the orthophoto and interactive collection and revision of the vector data.
The deep space network, volume 7
NASA Technical Reports Server (NTRS)
1972-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Space Flight Operations Facility are described.
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-01-01
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-12-08
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca L, H.L.; de la Pena L, A.; Puente C, I.
This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field.more » In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.« less
Singh, Harnarayan; Patir, Rana; Vaishya, Sandeep; Miglani, Rahul; Kaur, Amandeep
2018-06-01
Minimally invasive transportal resection of deep intracranial lesions has become a widely accepted surgical technique. Many disposable, mountable port systems are available in the market for this purpose, like the ViewSite Brain Access System. The objective of this study was to find a cost-effective substitute for these systems. Deep-seated brain lesions were treated with a port system made from disposable syringes. The syringe port could be inserted through minicraniotomies placed and planned with navigation. All deep-seated lesions like ventricular tumours, colloid cysts, deep-seated gliomas, and basal ganglia hemorrhages were treated with this syringe port system and evaluated for safety, operative site hematomas, and blood loss. 62 patients were operated on during the study period from January 2015 to July 2017, using this innovative syringe port system for deep-seated lesions of the brain. No operative site hematoma or contusions were seen along the port entry site and tract. Syringe port is a cost-effective and safe alternative to the costly disposable brain port systems, especially for neurosurgical setups in developing countries for minimally invasive transportal resection of deep brain lesions. Copyright © 2018 Elsevier Inc. All rights reserved.
Deep Borehole Field Test Research Activities at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy
The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less
NASA Astrophysics Data System (ADS)
Wilke, Thomas; Wagner, Bernd; Albrecht, Christian; Levkov, Zlatko; Francke, Alexander; Hauffe, Torsten; Cvetkoska, Aleksandra; Jovanovska, Elena; Zhang, Xiaosen; Reed, Jane M.; Wagner-Cremer, Friederike; Stelbrink, Björn; Viehberg, Finn
2015-04-01
Ancient Lake Ohrid on the Balkan Peninsula constitutes the oldest and most biodiverse lake in Europe. The processes generating this extraordinary species richness with a high share of endemic taxa, however, are poorly understood. In order to unravel the geological and biological history of the lake and to study, among others, the influence of major geological and environmental events on the evolution of endemic taxa, an international research initiative - the SCOPSCO project - was launched. The project combines sedimentological, tephro-stratigraphical, seismic and paleontological (diatoms, mollusks, ostracods) studies of lake sediment cores with molecular-dating and empirical modelling approaches applied to extant taxa. Preliminary analyses of sediment core and borehole logging data from drill sites with a maximum penetration depth of 569 m below lake floor and an overall recovery of > 95 % indicate that Lake Ohrid is roughly 1.3 to 1.5 My old. Intriguingly, these data fully reinforce the results of molecular clock analyses conducted prior to the drilling operation. Moreover, the combined geological and biological studies suggest that the extraordinary biodiversity in Lake Ohrid is largely driven by 1) the long and continuous existence of the lake, 2) the lack of catastrophic events (e.g., desiccation, full glaciation or salinization) during its lifetime potentially causing massive extinctions, 3) the high buffer capacity of the lake to environmental change and/or the high resilience of its taxa, and 4) distinct turnovers in species composition over time promoting frequency dependent selection. The cumulative effect of these factors, in turn, resulted in overall low extinction rates and continuous speciation and radiation events. These findings not only shed new light on patterns and processes of evolution in Europe's oldest lake, they also show that data from sediment cores can contribute to a better understanding of the driving forces of biotic evolution. Moreover, Lake Ohrid appears to be a first class example for studying the link between geological and biological evolution in highly isolated ecosystems over comparatively long time scales.
High power laser downhole cutting tools and systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O
Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2015-01-01
Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.
Migration of carbon dioxide (CO2) from deep storage formations into shallow drinking water aquifers is a possible system failure related to geologic CO2 sequestration. A CO2 leak may cause mineral precipitation/dissolution reactions, changes in a...
Gardner, J.V.; Cacchione, D.A.; Drake, D.E.; Edwards, B.D.; Field, M.E.; Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.; Masson, D.G.; McCulloch, D.S.; Grim, M.S.
1993-01-01
Paskevich, V.F., Wong, F.L., O?Malley, J.J., Stevenson, A.J., and Gutmacher, C.E., 2011, GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas: U.S. Geological Survey Open-File Report 2010?1332, available at http://pubs.usgs.gov/of/2010/1332/.
Feng, Zhuo
2017-09-11
Land plants are one of the major constituents of terrestrial ecosystems on Earth, and play an irreplaceable role in human activities today. If we are to understand the extant plants, it is imperative that we have some understanding of the fossil plants from the deep geological past, particularly those that occurred during their early evolutionary history, in the late Palaeozoic. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... that the waste in the FTF: (1) Does not require permanent isolation in a deep geologic repository for... pursuant to a State approved closure plan or State-issued permit; or (3)(B) exceeds concentration limits... 10 CFR part 61, Subpart C; pursuant to a State-approved closure plan or State-issued [[Page 20376...
Briggs, Scott; McKelvie, Jennifer; Sleep, Brent; Krol, Magdalena
2017-12-01
The use of a deep geological repository (DGR) for the long-term disposal of used nuclear fuel is an approach currently being investigated by several agencies worldwide, including Canada's Nuclear Waste Management Organization (NWMO). Within the DGR, used nuclear fuel will be placed in copper-coated steel containers and surrounded by a bentonite clay buffer. While copper is generally thermodynamically stable, corrosion can occur due to the presence of sulphide under anaerobic conditions. As such, understanding transport of sulphide through the engineered barrier system to the used fuel container is an important consideration in DGR design. In this study, a three-dimensional (3D) model of sulphide transport in a DGR was developed. The numerical model is implemented using COMSOL Multiphysics, a commercial finite element software package. Previous sulphide transport models of the NWMO repository used a simplified one-dimensional system. This work illustrates the importance of 3D modelling to capture non-uniform effects, as results showed locations of maximum sulphide flux are 1.7 times higher than the average flux to the used fuel container. Copyright © 2017. Published by Elsevier B.V.
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Diffusive counter dispersion of mass in bubbly media.
Goldobin, Denis S; Brilliantov, Nikolai V
2011-11-01
We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles are immovably trapped in a porous matrix by surface-tension forces, the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. Essentially, the gas solution is in local thermodynamic equilibrium with vapor phase all over the system, i.e., the solute concentration equals the solubility. When temperature and/or pressure gradients are applied, diffusion fluxes appear and these fluxes are faithfully determined by the temperature and pressure fields, not by the local solute concentration, which is enslaved by the former. We derive the equations governing such systems, accounting for thermodiffusion and gravitational segregation effects, which are shown not to be neglected for geological systems-marine sediments, terrestrial aquifers, etc. The results are applied for the treatment of non-high-pressure systems and real geological systems bearing methane or carbon dioxide, where we find a potential possibility of the formation of gaseous horizons deep below a porous medium surface. The reported effects are of particular importance for natural methane hydrate deposits and the problem of burial of industrial production of carbon dioxide in deep aquifers.
BIOMETORE Project - Studying the Biodiversity in the Northeastern Atlantic Seamounts
NASA Astrophysics Data System (ADS)
Dos Santos, A.; Biscoito, M.; Campos, A.; Tuaty Guerra, M.; Meneses, G.; Santos, A. M. P. A.
2016-02-01
Understanding the deep-sea ecosystem functioning is a key issue in the study of ocean sciences. Bringing together researchers from several scientific domains, the BIOMETORE project aims to the increase knowledge on deep-sea ecosystems and biodiversity at the Atlantic seamounts of the Madeira-Tore and Great Meteor geological complexes. The project outputs will provide important information for the understanding and sustainable management of the target seamount ecosystems, thus contributing to fulfill knowledge gaps on their biodiversity, from bacteria to mammals, and food webs, as well as to promote future sustainable fisheries and sea-floor integrity. The plan includes the realization of eight multidisciplinary surveys, four done during the summer of 2015 and another four planned for the same season of 2016, in target seamounts: the Gorringe bank, the Josephine, and others in the Madeira-Tore, and selected ones in the Greta Meteor (northeastern Atlantic Ocean). The surveys cover a number of scientific areas in the domains of oceanography, ecology, integrative taxonomy, geology, fisheries and spatial mapping. We present and discuss BIOMETORE developments, the preliminary results from the four 2015 summer surveys, and the planning of the next four surveys.
Results from Field Testing the RIMFAX GPR on Svalbard.
NASA Astrophysics Data System (ADS)
Hamran, S. E.; Amundsen, H. E. F.; Berger, T.; Carter, L. M.; Dypvik, H.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Nunes, D. C.; Paige, D. A.; Plettemeier, D.; Russell, P.
2017-12-01
The Radar Imager for Mars' Subsurface Experiment - RIMFAX is a Ground Penetrating Radar being developed for NASÁs MARS 2020 rover mission. The principal goals of the RIMFAX investigation are to image subsurface structures, provide context for sample sites, derive information regarding subsurface composition, and search for ice or brines. In meeting these goals, RIMFAX will provide a view of the stratigraphic section and a window into the geological and environmental history of Mars. To verify the design an Engineering Model (EM) of the radar was tested in the field in the spring 2017. Different sounding modes on the EM were tested in different types of subsurface geology on Svalbard. Deep soundings were performed on polythermal glaciers down to a couple of hundred meters. Shallow soundings were used to map a ground water table in the firn area of a glacier. A combination of deep and shallow soundings was used to image buried ice under a sedimentary layer of a couple of meters. Subsurface sedimentary layers were imaged down to more than 20 meters in sand stone permafrost. This presentation will give an overview of the RIMFAX investigation, describe the development of the radar system, and show results from field tests of the radar.
Processing and attenuation of noise in deep seismic-reflection data from the Gulf of Maine
Hutchinson, D.R.; Lee, M.W.
1989-01-01
The U.S. Geological Survey deep crustal studies reflection profile across the Gulf of Maine off southeastern New England was affected by three sources of noise: side-scattered noise, multiples, and 20-Hz whale sounds. The special processing most effective in minimizing this noise consisted of a combination of frequency-wavenumber (F-K) filtering, predictive deconvolution, and spectral whitening, each applied in the shot domain (prestack). Application of the F-K filter to remove side-scatter noise in the poststack domain resulted in a much poorer quality profile. The prestack noise suppression processing techniques resulted in a reflection profile with good signal-to-noise ratios and reliable strong reflections, especially at depths equivalent to the lower crust (24-34 km). Certain geologic features, such as a buried rift basin and a crustal fault are resolved much better within the upper crust after this processing. Finite difference migration of these data using realistic velocities produced excellent results. Migration was essential to distinguish between abundant dipping and subhorizontal reflections in the lower crust as well as to show an essentially transparent upper mantle. ?? 1989 Kluwer Academic Publishers.
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
Process-based approach for the detection of deep gas invading the surface
Romanak, Katherine; Bennett, Philip C.
2017-05-09
The present invention includes a method for determining the level of deep gas in a near surface formation that includes: measuring CO.sub.2, O.sub.2, CH.sub.4, and N.sub.2 levels in percent by volume from one or more surface or near surface geological samples; adding the water vapor content to the measured CO.sub.2, O.sub.2, CH.sub.4, and N.sub.2 levels in percent by volume; normalizing the gas mixture to 100% by volume or 1 atmospheric total pressure; and determining the ratios of: O.sub.2 versus CO.sub.2 to distinguish in-situ vadose zone CO.sub.2 from exogenous deep leakage CO.sub.2; CO.sub.2 versus N.sub.2 to distinguish whether CO.sub.2 is being removed from the near surface formation or CO.sub.2 is added from an exogenous deep leakage input; or CO.sub.2 versus N.sub.2/O.sub.2 to determine the degree of oxygen influx, consumption, or both; wherein the ratios are indicative of natural in situ CO.sub.2 or CO.sub.2 from the exogenous deep leakage input.
Research and Teaching About the Deep Earth
NASA Astrophysics Data System (ADS)
Williams, Michael L.; Mogk, David W.; McDaris, John
2010-08-01
Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.
NASA Astrophysics Data System (ADS)
Haslinger, Edith; Goldbrunner, Johann; Dietzel, Martin; Leis, Albrecht; Boch, Ronny; Knauss, Ralf; Hippler, Dorothee; Shirbaz, Andrea; Fröschl, Heinz; Wyhlidal, Stefan; Plank, Otmar; Gold, Marlies; Elster, Daniel
2017-04-01
During the exploitation of thermal water for the use in a geothermal plant a series of hydrochemical reactions such as solution and precipitation processes (scaling) or corrosion processes can be caused by pressure and temperature changes and degassing of the thermal water. Operators of hydrogeothermal plants are often confronted with precipitations in water-bearing parts of their plant, such as heat exchangers and pipes, which result in considerable costs for cleaning or remediation or the use of inhibitors. In the worst case, scaling and corrosion can lead to the abandonment of the system. The effects of the fluids on the technical facilities of hydrogeothermal plants are usually difficult to predict. This applies in particular to the long-term effects in the exploitation and use as well as the aspect of the reinjection of the fluids. In publications and guides for thermal water use in Austria, it is emphasized that the hydrochemical conditions have to be checked during the operation of geothermal plants, but precise directives and thus guidance for operators as well as a scientific investigations on this topic are almost completely missing today. The aim of the research project NoScale was the assessment of deep thermal water bodies in different geological reservoirs in Austria and Bavaria and therefore different hydrochemical compositions with regard to their scaling and corrosion potential in geothermal use. In the course of parallel chemical and mineralogical laboratory investigations, conclusions were drawn about the effects of thermal water on different technical components of hydrogeothermal plants and on the other hand a data basis for the model simulation of the relevant hydrochemical processes was developed. Subsequently, on the basis of detailed hydrochemical model calculations, possible effects of the use of the thermal waters on the technical components of the geothermal plants were shown. This approach of complex process modeling, detailed laboratory studies and experimental approaches has not been followed in Austria so far. The research results contribute significantly to the increased visibility of potential risks of the exploitation and use of thermal water. Thus, the project NoScale supports the operators of hydrogeothermal plants to assess risks of scaling in corrosion already in the pre-drilling phase, which leads to a much more energy and cost efficient operation.
NASA Astrophysics Data System (ADS)
Shi, L.; Guo, L.; Meng, X.; Yao, C.
2010-12-01
North China is one of the most tectonically important regions in the world to study important continent geodynamics issues such as intraplate earthquakes, volcanism and continent-continent collision. The North China Craton, covering most of North China, bounded by complicated fault systems and orogenic belts, is one of the oldest cratons on the Earth, and is unique in its tectonic reactivation in the Late Mesozoic and Cenozoic. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of North China. We analyzed the regional gravity and magnetic data of this region using new data enhancement techniques to understand the regional geological structures. The satellite-derived free-air gravity anomalies with a resolution of 1 arc-minute were assembled from the Scripps Institution of Oceanography, and were then reduced to obtain Complete Bouguer Gravity Anomalies (CBGA). The Magnetic Anomalies (MA) with a resolution of 2 arc-minutes were assembled from the World Digital Magnetic Anomaly Map. The CBGA and the MA were then gridded on a regular grid, the MA were subsequently reduced to the magnetic pole. Then the data were processed with standard techniques to attenuate the high-frequency noise and analyze the regional and residual anomalies. Specially, we calculated the tilt-angle derivatives of the data. We then calculated the directional horizontal derivatives of the tilt-angle derivatives along different directions. This special processing derived clearer geological structures with more details. From the results of the preliminary processing, we analyzed the main deep faults and tectonic units distributed in this region. In the future, the interpretation of the CBGA and the MA with constraints of other geophysical methods will be performed for better understanding the deep structure of this region. Acknowledgment: We acknowledge the financial support of SinoProbe-01-05, the Fundamental Research Funds for the Central Universities (2010ZY26), and the National Natural Science Foundation of China (40904033).
Integrated geophysical study of the northeastern margin of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shi, L.; Meng, X.; Guo, L.
2011-12-01
Tibetan Plateau, the so-called "Roof of the World", is a direct consequence of collision of the Indian plate with the Eurasian plate starting in the early Cenozoic time. The continent-continent collision is still going on. The northeastern margin of Tibetan Plateau is the front part of the Tibetan Plateau extends to mainland and favorable area for studying uplift and deformation of the Tibetan Plateau. In the past decades, a variety of geophysical methods were conducted to study geodynamics and geological tectonics of this region. We assembled satellite-derived free-air gravity anomalies with a resolution of one arc-minute from the Scripps Institution of Oceanography, and reduced them to obtain Complete Bouguer Gravity Anomalies. Then we gridded Complete Bouguer Gravity Anomalies on a regular grid, and subsequently processed them with the preferential continuation method to attenuate high-frequency noise and analyzed regional and residual anomalies. We also calculated tilt-angle derivative of Complete Bouguer Gravity Anomalies to derive clearer geological structures with more details. Then we calculated the depth distribution of the Moho discontinuity surface in this area by 3D density interface inversion. From the results of preliminary processing, we analyzed the main deep faults and geological tectonics in this region. We extracted seven important profiles' data of Complete Bouguer Gravity Anomalies in this area, and then did forward modeling and inversion on each profile with constraints of geological information and other geophysical data. In the future, we will perform 3D constrained inversion of Complete Bouguer Gravity Anomalies in this region for better understanding deep structure and tectonics of the northeastern margin of Tibetan Plateau. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26 2011PY0184), and the National Natural Science Foundation of China (40904033).
Geologic map of the MTM 85200 quadrangle, Olympia Rupes region of Mars
Skinner, James A.; Herkenhoff, Kenneth E.
2012-01-01
The north polar region of Mars is dominated by Planum Boreum, a roughly circular, domical plateau that rises >2,500 m above the surrounding lowland. Planum Boreum is >1,500 km in diameter, contains deep, curvilinear troughs and chasmata, isolated cavi, and marginal scarps and slopes. The north polar plateau is surrounded by low-lying and nearly horizontal plains of various surface texture, geologic origin, and stratigraphic significance. The MTM 85200 quadrangle spans 5° of latitude (lat 82.5° to 87.5° N.) and 40° of longitude (long 140° to 180° E.) within the eastern hemisphere of Mars. The quadrangle includes the high-standing Planum Boreum, curvilinear troughs of Boreales Scopuli, deep, sinuous scarps of Olympia Rupes, isolated and coalesced depressions of Olympia Cavi, margins of the circular polar erg Olympia Undae, and low-standing Olympia Planum. The surface of Planum Boreum within the MTM 85200 quadrangle is characterized by smoothly sculptured landforms with shallow slopes and variable relief at kilometer scales. Areas that are perennially covered with bright frost are generally smooth and planar at 100-m scales. However, MGS MOC and MRO HiRISE images show that much of the icy polar plateau is rough at decameter scale. The Martian polar plateaus are likely to contain a record of global climate history for >107 to as much as ~3 x 109 years. This record is partly observable as rhythmically layered deposits exposed in the curvilinear troughs of the north polar plateau, Planum Boreum. The north polar layered deposits are widely interpreted to be among the most youthful bedrock deposits on the Martian surface. These materials and their stratigraphic and structural relations provide a glimpse into some of the more recent geologic processes that have occurred on Mars. The ability of the massive polar deposits to periodically trap and release both volatiles and lithic particles may represent a globally important, recurring geologic process for Mars.
NASA Astrophysics Data System (ADS)
Ishii, T.
2015-12-01
The Pacific plate is surrounded by circum-Pacific active margin, along which volcanic and seismic activities are very high. Ultra-Mega-Earthquakes (=UMEs, M>9.0) are occasionally observed along the margin, where sedimentary rocks of subducting slaves contact with the accreted sedimentary rocks of subducted slaves. But, those UME have never been occured along western Pacific islandarc-trench system including Izu-Ogasawara (=Bonin)-Mariana-Yap-Palau-Philippine-Tonga-Kermadec Trenches. I assume that the geological and petrological characteristics of the subduction boundaries are very important to understand those different seismic activities. Along the above mentioned trench inner wall, especially in the southern Mariana, mantle peridotites are widely distributed. Subducting slave contacts directly with the olivine dominant mantle peridotites of subducted slave, serpentinite layer can be deposited easily under hydrous oceanic sub-bottom environment and very slippery subduction boundaries are left along the subduction zone.On the other hand, those geological evidences give us some ideas on how to avoid UMEs in the Japanese Islands along Japan Trench and Nankai Trough in future. We will be able to change artificially from normal subduction boundaries with asperity zone into slippery subduction boundaries with serpentine layer, by means of serpentine mud injection toward the subduction boundaries interior by combining the following improved drilling technologies A and B. (A) Deep Sea Drilling Vessel CHIKYU has a drilling ability to reach subduction boundary with asperity zone in the Nankai Trough. (B) Advanced drilling technology in the shale gas industry is tremendous, that is, after one vertical deep drilling, horizontal drilling towards several direction are performed, then shale gas is collected by hydraulic fracturing method. I hope that, after several generations, our posterity will be able to avoid UMEs by continuous serpentine mud injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, S
2007-10-03
Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climatemore » Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).« less
Chan, Anne Y Y; Yeung, Jonas H M; Mok, Vincent C T; Ip, Vincent H L; Wong, Adrian; Kuo, S H; Chan, Danny T M; Zhu, X L; Wong, Edith; Lau, Claire K Y; Wong, Rosanna K M; Tang, Venus; Lau, Christine; Poon, W S
2014-12-01
To present the result and experience of subthalamic nucleus deep brain stimulation for Parkinson's disease. Case series. Prince of Wales Hospital, Hong Kong. A cohort of patients with Parkinson's disease received subthalamic nucleus deep brain stimulation from September 1998 to January 2010. Patient assessment data before and after the operation were collected prospectively. Forty-one patients (21 male and 20 female) with Parkinson's disease underwent bilateral subthalamic nucleus deep brain stimulation and were followed up for a median interval of 12 months. For the whole group, the mean improvements of Unified Parkinson's Disease Rating Scale (UPDRS) parts II and III were 32.5% and 31.5%, respectively (P<0.001). Throughout the years, a multidisciplinary team was gradually built. The deep brain stimulation protocol evolved and was substantiated by updated patient selection criteria and outcome assessment, integrated imaging and neurophysiological targeting, refinement of surgical technique as well as the accumulation of experience in deep brain stimulation programming. Most of the structural improvement occurred before mid-2005. Patients receiving the operation before June 2005 (19 cases) and after (22 cases) were compared; the improvements in UPDRS part III were 13.2% and 55.2%, respectively (P<0.001). There were three operative complications (one lead migration, one cerebral haematoma, and one infection) in the group operated on before 2005. There was no operative mortality. The functional state of Parkinson's disease patients with motor disabilities refractory to best medical treatment improved significantly after subthalamic nucleus deep brain stimulation. A dedicated multidisciplinary team building, refined protocol for patient selection and assessment, improvement of targeting methods, meticulous surgical technique, and experience in programming are the key factors contributing to the improved outcome.
Publications - GMC 354 | Alaska Division of Geological & Geophysical
DGGS GMC 354 Publication Details Title: XRF Analyses of Husky Oil NPR Operations Inc U.S. Geological Statewide Bibliographic Reference Advanced Instrumentation Laboratory, 2008, XRF Analyses of Husky Oil NPR
Moore, Thomas E.; Pitman, Janet K.; Moore, Thomas E.; Gautier, D.L.
2018-01-26
The Jan Mayen Microcontinent encompasses a rectangular, mostly submarine fragment of continental crust that lies north of Iceland in the middle of the North Atlantic Ocean. These continental rocks were rifted away from the eastern margin of Greenland as a consequence of a westward jump of spreading centers from the now-extinct Aegir Ridge to the currently active Kolbeinsey Ridge in the Oligocene and early Miocene. The microcontinent is composed of the high-standing Jan Mayen Ridge and a series of smaller ridges that diminish southward in elevation and includes several deep basins that are underlain by strongly attenuated continental crust. The geology of this area is known principally from a loose collection of seismic reflection and refraction lines and several deep-sea scientific drill cores.The Jan Mayen Microcontinent petroleum province encompasses the entire area of the microcontinent and was defined as a single assessment unit (AU). Although its geology is poorly known, the microcontinent is thought to consist of late Paleozoic and Mesozoic rift basin stratigraphic sequences similar to those of the highly prospective Norwegian, North Sea, and Greenland continental margins. The prospectivity of the AU may be greatly diminished, however, by pervasive extensional deformation, basaltic magmatism, and exhumation that accompanied two periods of continental rifting and breakup in the Paleogene and early Neogene. The overall probability of at least one petroleum accumulation of >50 million barrels of oil equivalent was judged to be 5.6 percent. As a consequence of the low level of probability, a quantitative assessment of this AU was not conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.
Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the majormore » structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.« less