Sample records for operating nuclear reactors

  1. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear... requirements for immediate notification of the NRC by licensed operating nuclear power reactors are contained...

  2. 10 CFR 140.72 - Indemnity agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (issued pursuant to part 50 of this chapter) authorizing the licensee to operate the nuclear reactor... the licensee to possess and store special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of an operating license for the reactor...

  3. 10 CFR 140.72 - Indemnity agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (issued pursuant to part 50 of this chapter) authorizing the licensee to operate the nuclear reactor... the licensee to possess and store special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of an operating license for the reactor...

  4. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  5. 10 CFR 50.60 - Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...

  6. 75 FR 12311 - FirstEnergy Nuclear Operating Company; Notice of Consideration of Issuance of Amendment to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... INFORMATION CONTACT: Michael Mahoney, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346] FirstEnergy Nuclear Operating Company; Notice of...

  7. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...

  8. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear power reactor licensee licensed under §§ 50.21(b) or 50.22 holding an operating license under this part...

  9. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear...

  10. 10 CFR 50.72 - Immediate notification requirements for operating nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Immediate notification requirements for operating nuclear power reactors. 50.72 Section 50.72 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF... notification requirements for operating nuclear power reactors. (a) General requirements. 1 (1) Each nuclear...

  11. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  12. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  13. Reactor engineering support of operations at the Davis-Besse nuclear power station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, D.B.

    1995-12-31

    Reactor engineering functions differ greatly from unit to unit; however, direct support of the reactor operators during reactor startups and operational transients is common to all units. This paper summarizes the support the reactor engineers provide the reactor operators during reactor startups and power changes through the use of automated computer programs at the Davis-Besse nuclear power station.

  14. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple... construct and operate nuclear power reactors of identical design (“common design”) to be located at multiple...

  15. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  16. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  17. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding ten kilowatts; (2) In the amount of $1,500,000 for each nuclear reactor he is authorized to operate at... amount of $2,500,000 for each nuclear reactor other than a testing reactor or a reactor licensed under...

  18. 10 CFR 2.1115 - Designation of issues for adjudicatory hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... at Civilian Nuclear Power Reactors § 2.1115 Designation of issues for adjudicatory hearing. (a) After... reactor already licensed to operate at the site, or any civilian nuclear power reactor for which a... the issuance of a construction permit or operating license for a civilian nuclear power reactor at...

  19. 75 FR 5357 - In the Matter of Entergy Nuclear Operations, Inc., et al.; Order Extending the Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ...). Pilgrim is a boiling water nuclear reactor that is owned by Entergy Nuclear and operated by ENO. The... Generating Unit No. 1 (IP1). IP1 is a pressurized water nuclear reactor that is owned by ENIP2 and maintained... nuclear reactors that are owned by ENIP2 and ENIP3, respectively, and operated by ENO. The facilities are...

  20. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophymore » on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.« less

  1. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the design...

  2. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the design...

  3. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites Section 101... nuclear power reactors of essentially the same design to be located at different sites. 1 1 If the design...

  4. 78 FR 71675 - Update of the Office of Nuclear Reactor Regulation's Electronic Operating Reactor Correspondence

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... correspondence to addressees and subscribers through a computer-based email distribution system. Since then, the... Electronic Operating Reactor Correspondence The U.S. Nuclear Regulatory Commission (NRC) is issuing this... available operating reactor licensing correspondence, effective December 9, 2013. Official agency records...

  5. 10 CFR 140.52 - Indemnity agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) authorizing the licensee to operate the nuclear reactor involved; or (2) The effective date of the license... material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after... 10 Energy 2 2014-01-01 2014-01-01 false Indemnity agreements. 140.52 Section 140.52 Energy NUCLEAR...

  6. 10 CFR 140.52 - Indemnity agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) authorizing the licensee to operate the nuclear reactor involved; or (2) The effective date of the license... material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after... 10 Energy 2 2010-01-01 2010-01-01 false Indemnity agreements. 140.52 Section 140.52 Energy NUCLEAR...

  7. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  8. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  9. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...

  10. 78 FR 73898 - Operator Licensing Examination Standards for Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment. SUMMARY: The U.S..., Revision 10, ``Operator Licensing Examination Standards for Power Reactors.'' DATES: Submit comments [email protected] . Both of the Office of New Reactors; or Timothy Kolb, Office of Nuclear Reactor Regulation, U...

  11. 76 FR 69296 - University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-407, NRC-2011-0153] University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed Facility Operating License No. R-126 AGENCY... University of Utah (UU, the licensee), which authorizes continued operation of the UU TRIGA Nuclear Reactor...

  12. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note: A nuclear reactor... core of a nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2...

  13. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  14. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  15. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  16. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  17. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  18. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  19. 76 FR 14436 - University of Wisconsin, University of Wisconsin Nuclear Reactor; Notice of Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ..., University of Wisconsin Nuclear Reactor; Notice of Issuance of Environmental Assessment and Finding of No... operation of the University of Wisconsin Nuclear Reactor. This action is necessary to add supplemental... of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001...

  20. 10 CFR 52.167 - Issuance of manufacturing license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...

  1. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  2. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, Robert W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  3. Space nuclear reactors — A post-operational disposal strategy

    NASA Astrophysics Data System (ADS)

    Angelo, Joseph A.; Buden, David

    If 100-kWe and multimegawatt-electric class space nuclear reactors are to play a significant role in humanity's push into cislunar and heliocentric space in the next millennium, the obvious advantages of space nuclear power plants should not be denied to space mission planners due to a failure to develop internationally-acceptable post-operational disposal strategies for spent reactor cores. This is true whether the space reactor has shut down at the end of its normal mission lifetime or in response to an onboard system failure/emergency which causes a premature mission termination. Up until now the great majority of aerospace nuclear safety efforts have concentrated on prelaunch, launch and reactor startup activities. In fact, with the exception of the development of the "nuclear safe orbit" (NSO) concept, little technical attention has yet been given to the post-operational disposal of future space reactors. This paper describes the technical alternatives available for the safe, acceptable disposal of space reactors that could be used in a wide variety of space applications in the 21st Century. Post-operational core radioactivity levels for typical advanced design (hundred kWe-class) space reactors are presented as a function of decay time and contrasted to the spent core radionuclide inventory of the SNAP-10A system, the only nuclear reactor operated in space by the United States. The role of a permanent space station, smart robotic systems, and an operating lunar base in support of spent core disposal strategies is also presented, including use of a selected portion of the lunar surface as an internationally-designated spent reactor core repository.

  4. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  5. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  6. Expanded scope of training and education programs at the UFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernetson, W.G.; Whaley, P.M.

    1985-01-01

    Historically, the University of Florida Training Reactor (UFTR) has been used to train both hot and cold license reactor operator candidates in intensive two- and three-week training programs consisting of a correlated set of classroom lectures, hands-on reactor operations, and laboratory exercises. These training programs provide nuclear plant operating staff with fundamental operational experience in understanding, controlling, and evaluating subcritical multiplication, reactivity effects, reactivity manipulations, and reactor operations; a sufficient number of startups and shutdowns is also assured. The UDTR is also used in a nuclear engineering course entitled ''Principles of Nuclear Reactor Operations.'' The purpose of this paper ismore » to report the results of efforts to redirect and refine tractor operations educational and training programs at the UFTR.« less

  7. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  8. Autonomous Control of Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that maymore » be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.« less

  9. 78 FR 37591 - Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point Unit 2, LLC, Issuance of Director...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0284; Docket No. 50-247; License No. DPR-26] Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point Unit 2, LLC, Issuance of Director's Decision Notice is hereby given that the Deputy Director, Reactor Safety Programs, Office of Nuclear Reactor...

  10. 75 FR 76498 - Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... Company, Davis-Besse Nuclear Power Station; Environmental Assessment And Finding of No Significant Impact... operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS), located in Ottawa County, Ohio. In... the reactor coolant pressure boundary of light-water nuclear power reactors provide adequate margins...

  11. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  12. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  13. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  14. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  15. 10 CFR 52.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authorization means the authorization provided by the Director of New Reactors or the Director of Nuclear... identical nuclear reactors (modules) and each module is a separate nuclear reactor capable of being operated... nuclear power reactor of the type described in 10 CFR 50.22. The approval may be for either the final...

  16. Problems and Delays Overshadow NRC's Initial Success in Improving Reactor Operators' Capabilities.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    The nuclear power plant accident at Three Mile Island raised many questions concerning the safety of nuclear power plant operations and the ability of nuclear plant reactor operators to respond to abnormal or accident conditions. In response, the Nuclear Regulatory Commission (NRC) developed a plan, which included short- and long-term actions to…

  17. 76 FR 26320 - Entergy Operations, Inc.; Biweekly Notice; Notice of Issuance of Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; telephone (301..., Office of Nuclear Reactor Regulation. [FR Doc. 2011-11107 Filed 5-5-11; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0071; Docket No. 50-382] Entergy Operations, Inc...

  18. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  19. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  20. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  1. 10 CFR 50.30 - Filing of application; oath or affirmation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Reactor Regulation, Director, Office of New Reactors, or Director, Office of Nuclear Material Safety and... Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation, or the Director..., operating license, early site permit, combined license, or manufacturing license for a nuclear power reactor...

  2. Nuclear Technology Series. Nuclear Reactor (Plant) Operator Trainee. A Suggested Program Planning Guide. Revised June 80.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…

  3. Mission design considerations for nuclear risk mitigation

    NASA Technical Reports Server (NTRS)

    Stancati, Mike; Collins, John

    1993-01-01

    Strategies for the mitigation of the nuclear risk associated with two specific mission operations are discussed. These operations are the safe return of nuclear thermal propulsion reactors to earth orbit and the disposal of lunar/Mars spacecraft reactors.

  4. 75 FR 16517 - FirstEnergy Nuclear Operating Company; Environmental Assessment and Finding of No Significant Impact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Perry. FOR FURTHER INFORMATION CONTACT: Michael Mahoney, Office of Nuclear Reactor Regulation, U.S... Nuclear Reactor Regulation. [FR Doc. 2010-7331 Filed 3-31-10; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-440; NRC-2010-0124] FirstEnergy Nuclear Operating...

  5. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  6. 76 FR 11521 - Prairie Island Nuclear Generating Plant, Unit 1, Northern States Power Company-Minnesota; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ..., Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001..., Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2011-4557 Filed 3-1... NUCLEAR REGULATORY COMMISSION [Docket No. 50-282; NRC-2011-0040] Prairie Island Nuclear Generating...

  7. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  8. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  9. 10 CFR 140.12 - Amount of financial protection required for other reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reactors. (a) Each licensee is required to have and maintain financial protection for each nuclear reactor... of financial protection required for any nuclear reactor under this section be less than $4,500,000... chapter to operate two or more nuclear reactors at the same location, the total financial protection...

  10. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0010] Knowledge and Abilities Catalog for Nuclear Power... comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant... developed using this Catalog along with the Operator Licensing Examination Standards for Power Reactors...

  11. Function of university reactors in operator licensing training for nuclear utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1985-11-01

    The director of the Division of the US Nuclear Regulatory Commission in generic letter 84-10, dated April 26, 1984, spoke the requirement that applicants for senior reactor operator licenses for power reactors shall have performed then reactor startups. Simulator startups were not acknowledged. Startups performed on a university reactor are acceptable. The content and results of a five-day program combining instruction and experiments with the Rensselaer reactor are summarized.

  12. Reactor operation environmental information document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselow, J.S.; Price, V.; Stephenson, D.E.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimalmore » impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.« less

  13. 10 CFR 140.94 - Appendix D-Form of indemnity agreement with Federal agencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (hereinafter referred to as the Act). Article I As used in this agreement, 1. Nuclear reactor, byproduct... irradiated or to be irradiated by, the nuclear reactor or reactors subject to the license or licenses... construction of a nuclear reactor with respect to which no operating license has been issued by the Nuclear...

  14. 78 FR 17450 - Entergy Nuclear Operations, Inc.; Entergy Operations, Inc.; Biweekly Notice; Notice of Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... INFORMATION CONTACT: Nageswaran Kalyanam, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory..., Office of Nuclear Reactor Regulation. [FR Doc. 2013-06510 Filed 3-20-13; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0012] [Docket Nos. 50-458, 50-155, 72-043, 50-003, 50-247...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenka, L.; Rataj, J.; Frybort, J.

    Research reactors play an important role in providing key personnel of nuclear power plants a hands-on experience from operation and experiments at nuclear facilities. Training of NPP (Nuclear Power Plant) staff is usually deeply theoretical with an extensive utilisation of simulators and computer visualisation. But a direct sensing of the reactor response to various actions can only improve the personnel awareness of important aspects of reactor operation. Training Reactor VR-1 and its utilization for training of NPP operators and other professionals from Czech Republic and Slovakia is described. Typical experimental exercises and good practices in organization of a training programmore » are demonstrated. (authors)« less

  16. Nuclear Engineering Technologists in the Nuclear Power Era

    ERIC Educational Resources Information Center

    Wang, C. H.; And Others

    1974-01-01

    Describes manpower needs in nuclear engineering in the areas of research and development, architectural engineering and construction supervision, power reactor operations, and regulatory tasks. Outlines a suitable curriculum to prepare students for the tasks related to construction and operation of power reactors. (GS)

  17. 78 FR 69139 - Physical Security-Design Certification and Operating Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... scheduled to close on October 30, 2013. The Nuclear Energy Institute (NEI) submitted a letter on October 9... NUCLEAR REGULATORY COMMISSION [NRC-2013-0225] Physical Security--Design Certification and Operating Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan--draft section...

  18. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  19. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  20. 78 FR 57904 - Request for a License To Export; Reactor Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export; Reactor Components Pursuant to 10..., systems, related reactors. operation of AP- XR177, 11006121. equipment, and 1000 (design) spare parts. nuclear reactors. Dated this 16th day of September 2013 in Rockville, Maryland. For The Nuclear Regulatory...

  1. Nuclear Propulsion for Space, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.; Schwenk, Francis C.

    The operation of nuclear rockets with respect both to rocket theory and to various fuels is described. The development of nuclear reactors for use in nuclear rocket systems is provided, with the Kiwi and NERVA programs highlighted. The theory of fuel element and reactor construction and operation is explained with particular reference to rocket…

  2. Measurement instruments for automatically monitoring the water chemistry of reactor coolant at nuclear power stations equipped with VVER reactors. Selection of measurement instruments and experience gained from their operation at Russian and foreign NPSs

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. A.

    2007-12-01

    An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.

  3. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  4. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  5. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  6. 10 CFR 50.69 - Risk-informed categorization and treatment of structures, systems and components for nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., systems and components for nuclear power reactors. 50.69 Section 50.69 Energy NUCLEAR REGULATORY..., systems and components for nuclear power reactors. (a) Definitions. Risk-Informed Safety Class (RISC)-1... holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder...

  7. 10 CFR 140.13 - Amount of financial protection required of certain holders of construction permits and combined...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., possession and storage only of special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of either an operating license under 10 CFR part 50 or... NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS...

  8. 10 CFR 140.13 - Amount of financial protection required of certain holders of construction permits and combined...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., possession and storage only of special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of either an operating license under 10 CFR part 50 or... NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS...

  9. 10 CFR 140.13 - Amount of financial protection required of certain holders of construction permits and combined...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., possession and storage only of special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of either an operating license under 10 CFR part 50 or... NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS...

  10. 10 CFR 140.13 - Amount of financial protection required of certain holders of construction permits and combined...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., possession and storage only of special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of either an operating license under 10 CFR part 50 or... NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS...

  11. 10 CFR 140.13 - Amount of financial protection required of certain holders of construction permits and combined...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., possession and storage only of special nuclear material at the site of the nuclear reactor for use as fuel in operation of the nuclear reactor after issuance of either an operating license under 10 CFR part 50 or... NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS...

  12. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  13. Autonomous Control of Space Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.

  14. 75 FR 42469 - Firstenergy Nuclear Operating Company; Request for Licensing Action

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... nuclear plant in Ohio, preventing the reactor from restarting until such time that the NRC determines... Commission's regulations. The request has been referred to the Director of the Office of Nuclear Reactor... of Nuclear Reactor Regulation. [FR Doc. 2010-17834 Filed 7-20-10; 8:45 am] BILLING CODE 7590-01-P ...

  15. Seed and blanket fuel arrangement for dual-phase nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, S.P.; Fawcett, R.M.

    1992-09-22

    This patent describes a fuel management method for a dual-phase nuclear reactor, it comprises: installing a fuel bundle at a first core location accessed by coolant through a relatively small aperture, each of the bundles having a predetermined group of fuel elements; operating the reactor a first time; shutting down the reactor; reinstalling the fuel bundle at a second core location accessed by coolant through a relatively large aperture; and operating the reactor a second time.

  16. Non-equilibrium radiation nuclear reactor

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T. (Inventor)

    1978-01-01

    An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

  17. 77 FR 30435 - In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [Docket No. PRM-50-105; NRC-2012-0056] In-core Thermocouples at Different Elevations and Radial Positions in Reactor Core AGENCY: Nuclear Regulatory Commission... of operating licenses for nuclear power plants (``NPP'') to operate NPPs with in-core thermocouples...

  18. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  19. Analysis of space reactor system components: Investigation through simulation and non-nuclear testing

    NASA Astrophysics Data System (ADS)

    Bragg-Sitton, Shannon M.

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable ambitious space exploration missions. The natural space radiation environment provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Applying the approximate proton source in geosynchronous orbit during a solar particle event, investigation using MCNPX 2.5.b for proton transport through the SAFE-400 heat pipe cooled reactor indicates an incoming secondary neutron current of (1.16 +/- 0.03) x 107 n/s at the core-reflector interface. This neutron current may affect reactor operation during low power maneuvers (e.g., start-up) and may provide a sufficient reactor start-up source. It is important that a reactor control system be designed to automatically adjust to changes in reactor power levels, maintaining nominal operation without user intervention. A robust, autonomous control system is developed and analyzed for application during reactor start-up, accounting for fluctuations in the radiation environment that result from changes in vehicle location or to temporal variations in the radiation field. Development of a nuclear reactor for space applications requires a significant amount of testing prior to deployment of a flight unit. High confidence in fission system performance can be obtained through relatively inexpensive non-nuclear tests performed in relevant environments, with the heat from nuclear fission simulated using electric resistance heaters. A series of non-nuclear experiments was performed to characterize various aspects of reactor operation. This work includes measurement of reactor core deformation due to material thermal expansion and implementation of a virtual reactivity feedback control loop; testing and thermal hydraulic characterization of the coolant flow paths for two space reactor concepts; and analysis of heat pipe operation during start-up and steady state operation.

  20. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  1. 75 FR 68629 - Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating; License No. R-37 The U.S. Nuclear... Institute of Technology (the licensee), which authorizes continued operation of the Massachusetts Institute...

  2. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  3. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki; Anshari, Rio

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less

  4. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  5. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  6. 76 FR 16842 - Request for a License To Export Reactor Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export Reactor Components Pursuant to 10.... Mechanical Corporation. coolant pump 1000 (design) maintenance, and systems, related reactors. operation of AP- equipment, and 1000 (design) spare parts. nuclear reactors. February 10, 2011 February 23, 2011...

  7. The optimization of nuclear power plants operation modes in emergency situations

    NASA Astrophysics Data System (ADS)

    Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.

    2018-01-01

    An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.

  8. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  9. VVER Reactor Safety in Eastern Europe and Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Demetra

    2012-02-01

    VVER Soviet-designed reactors that operate in Eastern Europe and former Soviet republics have heightened international concern for years due to major safety deficiencies. The governments of countries with VVER reactors have invested millions of dollars toward improving the safety of their nuclear power plants. Most of these reactors will continue to operate for the foreseeable future since they provide urgently-needed electrical power. Given this situation, this paper assesses the radiological consequences of a major nuclear accident in Eastern Europe. The paper also chronicles the efforts launched by the international nuclear community to improve the safety of the reactors and notes the progress made so far through extensive collaborative efforts in Armenia, Bulgaria, the Czech Republic, Hungary, Kazakhstan, Lithuania, Russia, Slovakia, and Ukraine to reduce the risks of nuclear accidents. Western scientific and technical staff collaborated with these countries to improve the safety of their reactor operations by strengthening the ability of the regulator to perform its oversight function, installing safety equipment and technologies, investing time in safety training, and working diligently to establish an enduring safety culture. Still, continued safety improvement efforts are necessary to ensure safe operating practices and achieve timely phase-out of older plants.

  10. Assessment of nuclear reactor concepts for low power space applications

    NASA Technical Reports Server (NTRS)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  11. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  12. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  13. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  14. 10 CFR 1.32 - Office of the Executive Director for Operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Nuclear Reactor Regulation, the Office of New Reactors, the Office of Nuclear Material Safety and... Section 1.32 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION... Nuclear Regulatory Research, the Office of Nuclear Security and Incident Response, and the NRC Regional...

  15. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a singlemore » operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.« less

  16. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  17. Study Neutronic of Small Pb-Bi Cooled Non-Refuelling Nuclear Power Plant Reactor (SPINNOR) with Hexagonal Geometry Calculation

    NASA Astrophysics Data System (ADS)

    Nur Krisna, Dwita; Su'ud, Zaki

    2017-01-01

    Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.

  18. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  19. Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander

    2017-09-01

    The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.

  20. ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlmeister, J E; Haberer, W V; Casey, D F

    1960-12-15

    The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less

  1. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  2. Spent Nuclear Fuel Disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C.

    One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less

  3. Spent Nuclear Fuel Disposition

    DOE PAGES

    Wagner, John C.

    2016-05-22

    One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less

  4. 10 CFR 72.210 - General license issued.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...

  5. 10 CFR 72.210 - General license issued.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General License for Storage of Spent Fuel at Power Reactor Sites § 72.210 General license issued. A general license is... reactor sites to persons authorized to possess or operate nuclear power reactors under 10 CFR part 50 or...

  6. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  7. 78 FR 46255 - Revisions to Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... environmental effect of renewing the operating license of a nuclear power plant. This document is necessary to..., Environmental impact statement, Nuclear materials, Nuclear power plants and reactors, Reporting and... Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction AGENCY: Nuclear...

  8. 10 CFR 2.403 - Notice of proposed action on applications for operating licenses pursuant to appendix N of 10 CFR...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operating licenses for nuclear power reactors, if the Commission has not found that a hearing is in the public interest, the Commission, the Director, Office of New Reactors or Director, Office of Nuclear... licenses pursuant to appendix N of 10 CFR part 50. 2.403 Section 2.403 Energy NUCLEAR REGULATORY COMMISSION...

  9. 10 CFR 2.403 - Notice of proposed action on applications for operating licenses pursuant to appendix N of 10 CFR...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this chapter for operating licenses for nuclear power reactors, if the Commission has not found that a..., Office of Nuclear Reactor Regulation, as appropriate will, prior to acting thereon, cause to be published... licenses pursuant to appendix N of 10 CFR part 50. 2.403 Section 2.403 Energy NUCLEAR REGULATORY COMMISSION...

  10. 10 CFR 2.403 - Notice of proposed action on applications for operating licenses pursuant to appendix N of 10 CFR...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this chapter for operating licenses for nuclear power reactors, if the Commission has not found that a..., Office of Nuclear Reactor Regulation, as appropriate will, prior to acting thereon, cause to be published... licenses pursuant to appendix N of 10 CFR part 50. 2.403 Section 2.403 Energy NUCLEAR REGULATORY COMMISSION...

  11. 10 CFR 2.403 - Notice of proposed action on applications for operating licenses pursuant to appendix N of 10 CFR...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operating licenses for nuclear power reactors, if the Commission has not found that a hearing is in the public interest, the Commission, the Director, Office of New Reactors or Director, Office of Nuclear... licenses pursuant to appendix N of 10 CFR part 50. 2.403 Section 2.403 Energy NUCLEAR REGULATORY COMMISSION...

  12. 10 CFR 2.403 - Notice of proposed action on applications for operating licenses pursuant to appendix N of 10 CFR...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this chapter for operating licenses for nuclear power reactors, if the Commission has not found that a..., Office of Nuclear Reactor Regulation, as appropriate will, prior to acting thereon, cause to be published... licenses pursuant to appendix N of 10 CFR part 50. 2.403 Section 2.403 Energy NUCLEAR REGULATORY COMMISSION...

  13. Method of controlling crystallite size in nuclear-reactor fuels

    DOEpatents

    Lloyd, Milton H.; Collins, Jack L.; Shell, Sam E.

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  14. Method of controlling crystallite size in nuclear-reactor fuels

    DOEpatents

    Lloyd, M.H.; Collins, J.L.; Shell, S.E.

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  15. Development of an advanced antineutrino detector for reactor monitoring

    DOE PAGES

    Classen, T.; Bernstein, A.; Bowden, N. S.; ...

    2014-11-05

    We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less

  16. Light Water Reactor Sustainability Program Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less

  17. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    PubMed

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A prototype experiment for cooperative monitoring of nuclear reactors with cubic meter scale antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.

    2005-09-01

    Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.

  19. The Birth of Nuclear-Generated Electricity

    DOE R&D Accomplishments Database

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  20. Double-clad nuclear fuel safety rod

    DOEpatents

    McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan

    1984-01-01

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  1. Double-clad nuclear-fuel safety rod

    DOEpatents

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  2. Energy from nuclear fission()

    NASA Astrophysics Data System (ADS)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  3. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  4. Comparison of ENDF/B-VII.1 and JEFF-3.2 in VVER-1000 operational data calculation

    NASA Astrophysics Data System (ADS)

    Frybort, Jan

    2017-09-01

    Safe operation of a nuclear reactor requires an extensive calculational support. Operational data are determined by full-core calculations during the design phase of a fuel loading. Loading pattern and design of fuel assemblies are adjusted to meet safety requirements and optimize reactor operation. Nodal diffusion code ANDREA is used for this task in case of Czech VVER-1000 reactors. Nuclear data for this diffusion code are prepared regularly by lattice code HELIOS. These calculations are conducted in 2D on fuel assembly level. There is also possibility to calculate these macroscopic data by Monte-Carlo Serpent code. It can make use of alternative evaluated libraries. All calculations are affected by inherent uncertainties in nuclear data. It is useful to see results of full-core calculations based on two sets of diffusion data obtained by Serpent code calculations with ENDF/B-VII.1 and JEFF-3.2 nuclear data including also decay data library and fission yields data. The comparison is based directly on fuel assembly level macroscopic data and resulting operational data. This study illustrates effect of evaluated nuclear data library on full-core calculations of a large PWR reactor core. The level of difference which results exclusively from nuclear data selection can help to understand the level of inherent uncertainties of such full-core calculations.

  5. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour

    NASA Astrophysics Data System (ADS)

    Darmawan, R.

    2018-01-01

    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  6. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOEpatents

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  7. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOEpatents

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  8. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-09-25

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in amore » remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.« less

  9. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    ScienceCinema

    None

    2018-01-16

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  10. Tritium release during nuclear power operation in China.

    PubMed

    Yang, D J; Chen, X Q; Li, B

    2012-06-01

    Overviews were evaluated of tritium releases and related doses to the public from airborne and liquid effluents from nuclear power plants on the mainland of China before 2009. The differences between tritium releases from various nuclear power plants were also evaluated. The tritium releases are mainly from liquid pathways for pressurised water reactors, but tritium releases between airborne and liquid effluents are comparable for heavy water reactors. The airborne release from a heavy water reactor is obviously higher than that from a pressurised water reactor.

  11. Nuclear Security: Action May Be Needed to Reassess the Security of NRC-Licensed Research Reactors. Report to the Ranking Member, Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives. GAO-08-403

    ERIC Educational Resources Information Center

    Aloise, Gene

    2008-01-01

    There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…

  12. Experiences in utilization of research reactors in Yugoslavia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copic, M.; Gabrovsek, Z.; Pop-Jordanov, J.

    1971-06-15

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied bymore » means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro envisage the role of research reactors in the promotion of nuclear power programs in relation to the size of the program, the competence of domestic industries and the degree of independence where fuel supply is concerned. (author)« less

  13. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-286; NRC-2013-0063] Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public Comment Period AGENCY: Nuclear Regulatory... FURTHER INFORMATION CONTACT: Douglas V. Pickett, Senior Project Manager, Office of Nuclear Reactor...

  14. Nuclear reactors built, being built, or planned 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical datamore » that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.« less

  15. Problems and prospects connected with development of high-temperature filtration technology at nuclear power plants equipped with VVER-1000 reactors

    NASA Astrophysics Data System (ADS)

    Shchelik, S. V.; Pavlov, A. S.

    2013-07-01

    Results of work on restoring the service properties of filtering material used in the high-temperature reactor coolant purification system of a VVER-1000 reactor are presented. A quantitative assessment is given to the effect from subjecting a high-temperature sorbent to backwashing operations carried out with the use of regular capacities available in the design process circuit in the first years of operation of Unit 3 at the Kalinin nuclear power plant. Approaches to optimizing this process are suggested. A conceptual idea about comprehensively solving the problem of achieving more efficient and safe operation of the high-temperature active water treatment system (AWT-1) on a nuclear power industry-wide scale is outlined.

  16. ETRCF, TRA654, INTERIOR. REACTOR OPERATED IN WATERFILLED TANK. CAMERA LOOKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR-CF, TRA-654, INTERIOR. REACTOR OPERATED IN WATER-FILLED TANK. CAMERA LOOKS DOWN FROM ABOVE UPON LATER (NON-NUCLEAR) EXPERIMENTAL GEAR. INL NEGATIVE NO. HD24-1-1. Mike Crane, Photographer, ca. 2003 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. SHIPPINGPORT OPERATIONS FROM POWER OPERATION AFTER FIRST REFUELING TO SECOND REFUELING, MAY 6, 1960 TO AUGUST 16, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    A report of Shippingport operation during Seed 2 lifetime is presented. The information is primarily confined to the nuclear portion of the operation. A general review of station performance is given along with details of reactor physics, reactor thermal and hydraulic performance, reactor plant performance and modifications, operational chemistry, and radioactive contamination experience. (J.R.D.)

  18. 78 FR 9745 - Kewaunee Power Station; Application for Amendment to Facility Operating License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... FURTHER INFORMATION CONTACT: Karl Feintuch, Project Manager, Office of Nuclear Reactor Regulation, U.S... Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2013-03037 Filed 2-8-13; 8:45 am] BILLING CODE... NUCLEAR REGULATORY COMMISSION [Docket No. 50-305; NRC-2013-0028] Kewaunee Power Station...

  19. SCW Pressure-Channel Nuclear Reactor Some Design Features

    NASA Astrophysics Data System (ADS)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soubies, B.; Henry, J.Y.; Le Meur, M.

    1300 MWe pressurised water reactors (PWRs), like the 1400 MWe reactors, operate with microprocessor-based safety systems. This is particularly the case for the Digital Integrated Protection System (SPIN), which trips the reactor in an emergency and sets in action the safeguard functions. The softwares used in these systems must therefore be highly dependable in the execution of their functions. In the case of SPIN, three players are working at different levels to achieve this goal: the protection system manufacturer, Merlin Gerin; the designer of the nuclear steam supply system, Framatome; the operator of the nuclear power plants, Electricite de Francemore » (EDF), which is also responsible for the safety of its installations. Regulatory licenses are issued by the French safety authority, the Nuclear Installations Safety Directorate (French abbreviation DSIN), subsequent to a successful examination of the technical provisions adopted by the operator. This examination is carried out by the IPSN and the standing group on nuclear reactors. This communication sets out: the methods used by the manufacturer to develop SPIN software for the 1400 MWe PWRs (N4 series); the approach adopted by the IPSN to evaluate the safety software of the protection system for the N4 series of reactors.« less

  1. Thermionic reactors for space nuclear power

    NASA Technical Reports Server (NTRS)

    Homeyer, W. G.; Merrill, M. H.; Holland, J. W.; Fisher, C. R.; Allen, D. T.

    1985-01-01

    Thermionic reactor designs for a variety of space power applications spanning the range from 5 kWe to 3 MWe are described. In all of these reactors, nuclear heat is converted directly to electrical energy in thermionic fuel elements (TFEs). A circulating reactor coolant carries heat from the core of TFEs directly to a heat rejection radiator system. The recent design of a thermionic reactor to meet the SP-100 requirements is emphasized. Design studies of reactors at other power levels show that the same TFE can be used over a broad range in power, and that design modifications can extend the range to many megawatts. The design of the SP-100 TFE is similar to that of TFEs operated successfully in test reactors, but with design improvements to extend the operating lifetime to seven years.

  2. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  3. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliancemore » with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.« less

  4. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  5. Small-scale nuclear reactors for remote military operations: opportunities and challenges

    DTIC Science & Technology

    2015-08-25

    study – Report was published in March 2011  CNA study identified challenges to deploy small modular reactors (SMRs) at a base – Identified First-of...forward operating bases. The availability of deployable, cost-effective, regulated, and secure small modular reactors with a modest output electrical...defense committees on the challenges, operational requirements, constraints, cost, and life cycle analysis for a small modular reactor of less than 10

  6. Nuclear power industry: Tendencies in the world and Ukraine

    NASA Astrophysics Data System (ADS)

    Babenko, V. A.; Jenkovszky, L. L.; Pavlovych, V. N.

    2007-11-01

    This review deals with new trends in nuclear reactors physics. It opens by an easily understood introduction to nuclear fission energy physics, starting with some history, including the achievements of the Kharkov nuclear physics school. Attention has been given to the development of fission theory, the Strutinsky theory, and the possible use of "nonstandard" fissile elements. The evolution of the design of nuclear reactors, including the merits and demerits of various structures used worldwide, is given in detail. A detailed description of nuclear power plants operating in Ukraine and their (large!) contribution to Ukraine's total electricity production as compared with other countries is presented. A comparative evaluation of different energy sources influencing environment contamination and the pollution caused by the Chernobyl accident are presented. The lessons of the Chernobyl accident are summarized, including the features of the shelter ("Sarkofag") covering the remaining of the power plant fourth block and some examples of calculations of the radioactive evolution of the station's fuel-containing mass (by authors of the present review). The evolution of traditional nuclear reactors designs set forth under the separate heading of next-generation reactors including new projects such as subcritical assemblies controlled by an external beam of particles (neutrons and protons). The Feoktistov reactor operation and the possibility of its realization are discussed among the new ideas.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, E.O.; Kuklin, A.N.; Mityaev, Yu.I.

    The nuclear power plants with boiling water reactors of improved safety are being developed. There is 26 years of operating experience with the plant VK-50 in Dimitrovgrad. The design and operation of the BWR reactors are described.

  8. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  9. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  10. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  11. Small reactor power system for space application

    NASA Technical Reports Server (NTRS)

    Shirbacheh, M.

    1987-01-01

    A development history and comparative performance capability evaluation is presented for spacecraft nuclear powerplant Small Reactor Power System alternatives. The choice of power conversion technology depends on the reactor's operating temperature; thermionic, thermoelectric, organic Rankine, and Alkali metal thermoelectric conversion are the primary power conversion subsystem technology alternatives. A tabulation is presented for such spacecraft nuclear reactor test histories as those of SNAP-10A, SP-100, and NERVA.

  12. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled reactor that was operated from... the safeguards contingency plan.'' Part 73 of 10 CFR, ``Physical Protection of Plant and Materials... physical protection system which will have capabilities for the protection of special nuclear material at...

  13. 76 FR 62095 - Exelon Generation Company, LLC; Notice of Withdrawal of Application for Amendment to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Licensing Branch III-2, Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-373 and 50-374; NRC-2011-0234] Exelon Generation.... Nuclear Regulatory Commission (NRC, the Commission) has granted the request of Exelon Generation Company...

  14. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  15. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  16. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  17. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based onmore » the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.« less

  18. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    NASA Astrophysics Data System (ADS)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  19. A National Natural Laboratory.

    ERIC Educational Resources Information Center

    Cohn, Jeffrey P.

    1994-01-01

    Describes the Savannah River Site, a national environmental research park that shelters wild animals and idle nuclear reactors. Outlines research conducted at the site that focuses on the recovery of ecosystems after disturbance related to the operation of nuclear reactors and other land uses. (LZ)

  20. Challenges to deployment of twenty-first century nuclear reactor systems

    PubMed Central

    2017-01-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors. PMID:28293142

  1. Environmental Information Document: L-reactor reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1982-04-01

    Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.

  2. Challenges to deployment of twenty-first century nuclear reactor systems.

    PubMed

    Ion, Sue

    2017-02-01

    The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.

  3. METHOD AND APPARATUS FOR EARTH PENETRATION

    DOEpatents

    Adams, W.M.

    1963-12-24

    A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)

  4. Flexible robotic entry device for a nuclear materials production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckendorn, F.M. II

    1988-01-01

    The Savannah River Laboratory has developed and is implementing a flexible robotic entry device (FRED) for the nuclear materials production reactors now operating at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique smart tether method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. This system makes it possible to use FRED under all operating and standby conditions, including those where radio/microwave transmissions are not possible or permitted, and increases the quantity of data available.

  5. Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palabrica, R.J.

    1981-01-01

    The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

  6. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  7. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  8. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  9. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  10. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors.more » The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)« less

  11. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  12. 75 FR 57535 - Northern States Power Company-Minnesota Notice of Issuance of Amendments to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... issuance. FOR FURTHER INFORMATION CONTACT: Thomas J. Wengert, Office of Nuclear Reactor Regulation, U.S... Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2010-23516 Filed 9-20-10; 8:45 am] BILLING CODE... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2010-0290] Northern States Power...

  13. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  14. Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    2015-01-01

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less

  15. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  16. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less

  17. Nuclear Power Now and in the Near Future

    NASA Astrophysics Data System (ADS)

    Burchill, William

    2006-04-01

    The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.

  18. Passive heat transfer means for nuclear reactors

    DOEpatents

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  19. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  20. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    NASA Astrophysics Data System (ADS)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  1. 75 FR 36126 - Office of New Reactors; Proposed Revision to Standard Review Plan Section 13.6.1, Revision 1 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0228] Office of New Reactors; Proposed Revision to Standard Review Plan Section 13.6.1, Revision 1 on Physical Security--Combined License and Operating...), Section 13.6.1 on ``Physical Security--Combined License and Operating Reactors,'' (Agencywide Documents...

  2. 76 FR 73720 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0272] Knowledge and Abilities Catalog for Nuclear Power...) is issuing for public comment a draft NUREG, NUREG-2103, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Westinghouse AP1000 Pressurized-Water Reactors. DATES: Submit...

  3. 75 FR 14208 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... for all operating nuclear power plants, but noted that the Commission's regulations provide mechanisms...: June 4, 2009, letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The... hereafter in effect. The facility consists of a boiling-water reactor located in Plymouth County...

  4. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21).

  5. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  6. 77 FR 66492 - Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point 2, LLC, and Entergy Nuclear Indian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-003, 50-247, 50-286; NRC-2012-0265: License Nos.: DPR- 5, DPR-26, and DPR-64] Entergy Nuclear Operations, Inc., Entergy Nuclear Indian Point 2, LLC, and Entergy Nuclear Indian Point 3, LLC; Issuance of Director's Decision Notice is hereby given that the Director, Office of Nuclear Reactor Regulation...

  7. NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Hundal, Rolv

    1994-07-01

    Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.

  8. NASA Reactor Facility Hazards Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  9. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclearmore » science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.« less

  10. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  11. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOEpatents

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  12. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents SECTION I. Introduction. Section 50.34a provides that an application for a construction...

  13. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power Reactor Effluents SECTION I. Introduction. Section 50.34a provides that an application for a construction...

  14. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Ioffe, B. L.; Kochurov, B. P.

    2012-02-01

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of 235U. It operates in the open-cycle mode involving 233U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  15. Nuclear reactors built, being built, or planned 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables ofmore » the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.« less

  16. A simulator-based nuclear reactor emergency response training exercise.

    PubMed

    Waller, Edward; Bereznai, George; Shaw, John; Chaput, Joseph; Lafortune, Jean-Francois

    Training offsite emergency response personnel basic awareness of onsite control room operations during nuclear power plant emergency conditions was the primary objective of a week-long workshop conducted on a CANDU® virtual nuclear reactor simulator available at the University of Ontario Institute of Technology, Oshawa, Canada. The workshop was designed to examine both normal and abnormal reactor operating conditions, and to observe the conditions in the control room that may have impact on the subsequent offsite emergency response. The workshop was attended by participants from a number of countries encompassing diverse job functions related to nuclear emergency response. Objectives of the workshop were to provide opportunities for participants to act in the roles of control room personnel under different reactor operating scenarios, providing a unique experience for participants to interact with the simulator in real-time, and providing increased awareness of control room operations during accident conditions. The ability to "pause" the simulator during exercises allowed the instructors to evaluate and critique the performance of participants, and to provide context with respect to potential offsite emergency actions. Feedback from the participants highlighted (i) advantages of observing and participating "hands-on" with operational exercises, (ii) their general unfamiliarity with control room operational procedures and arrangements prior to the workshop, (iii) awareness of the vast quantity of detailed control room procedures for both normal and transient conditions, and (iv) appreciation of the increased workload for the operators in the control room during a transient from normal operations. Based upon participant feedback, it was determined that the objectives of the training had been met, and that future workshops should be conducted.

  17. Control rod calibration and reactivity effects at the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos

    2014-11-11

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less

  18. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  19. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  20. Isotopic composition and neutronics of the Okelobondo natural reactor

    NASA Astrophysics Data System (ADS)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve geochemical models of the solubility-limiting phase. A study of the competing effects of radiation damage and annealing in a U-bearing crystal of zircon shows that low temperature annealing in actinide-bearing phases is significant in the annealing of radiation damage.

  1. Light Water Reactor Sustainability Program: Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy’s 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less

  2. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  3. 75 FR 14209 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... compliance date for all operating nuclear power plants, but noted that the Commission's regulations provide...: June 4, 2009, letter from R.W. Borchardt, NRC, to M.S. Fertel, Nuclear Energy Institute). The licensee... Commission) now or hereafter in effect. The facility consists of a boiling-water reactor located in Windham...

  4. Control console replacement at the WPI Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  5. Nuclear reactors built, being built, or planned, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor ismore » an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  6. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    DOE PAGES

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...

    2017-03-26

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less

  7. Fuel leak detection apparatus for gas cooled nuclear reactors

    DOEpatents

    Burnette, Richard D.

    1977-01-01

    Apparatus is disclosed for detecting nuclear fuel leaks within nuclear power system reactors, such as high temperature gas cooled reactors. The apparatus includes a probe assembly that is inserted into the high temperature reactor coolant gaseous stream. The probe has an aperture adapted to communicate gaseous fluid between its inside and outside surfaces and also contains an inner tube for sampling gaseous fluid present near the aperture. A high pressure supply of noncontaminated gas is provided to selectively balance the pressure of the stream being sampled to prevent gas from entering the probe through the aperture. The apparatus includes valves that are operable to cause various directional flows and pressures, which valves are located outside of the reactor walls to permit maintenance work and the like to be performed without shutting down the reactor.

  8. Multiphysics Object-Oriented Simulation Environment (MOOSE)

    ScienceCinema

    None

    2017-12-09

    Nuclear reactor operators can expand safety margins with more precise information about how materials behave inside operating reactors. INL's new simulation platform makes such studies easier & more informative by letting researchers "plug-n-play" their mathematical models, skipping years of computer code development.

  9. COST FUNCTION STUDIES FOR POWER REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heestand, J.; Wos, L.T.

    1961-11-01

    A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)

  10. Licensed operating reactors: Status summary report, data as of December 31, 1995. Volume 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    The US Nuclear Regulatory Commission`s monthly summary of licensed nuclear power reactor data is based primarily on the operating data report submitted by licensees for each unit. This report is divided into two sections: the first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1 availability factors, capacity factors, and forced outage rates are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensees and notes to the use of weighted averages and starting dates other than commercial operation are provided.

  11. Evaluation Metrics Applied to Accident Tolerant Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuelsmore » and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less

  12. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    NASA Astrophysics Data System (ADS)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  13. The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments

    NASA Astrophysics Data System (ADS)

    Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.

    The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.

  14. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Guidez, Joel; Saturnin, Anne

    2017-11-01

    During the operation of a nuclear reactor, the external individual doses received by the personnel are measured and recorded, in conformity with the regulations in force. The sum of these measurements enables an evaluation of the annual collective dose expressed in man·Sv/year. This information is a useful tool when comparing the different design types and reactors. This article discusses the evolution of the collective dose for several types of reactors, mainly based on publications from the NEA and the IAEA. The spread of good practices (optimization of working conditions and of the organization, sharing of lessons learned, etc.) and ongoing improvements in reactor design have meant that over time, the doses of various origins received by the personnel have decreased. In the case of sodium-cooled fast reactors (SFRs), the compilation and summarizing of various documentary resources has enabled them to be situated and compared to other types of reactors of the second and third generations (respectively pressurized water reactors in operation and EPR under construction). From these results, it can be seen that the doses received during the operation of SFR are significantly lower for this type of reactor.

  15. Fukushima Daiichi Information Repository FY13 Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Phelan, Cherie; Schwieder, Dave

    The accident at the Fukushima Daiichi nuclear power station in Japan is one of the most serious in commercial nuclear power plant operating history. Much will be learned that may be applicable to the U.S. reactor fleet, nuclear fuel cycle facilities, and supporting systems, and the international reactor fleet. For example, lessons from Fukushima Daiichi may be applied to emergency response planning, reactor operator training, accident scenario modeling, human factors engineering, radiation protection, and accident mitigation; as well as influence U.S. policies towards the nuclear fuel cycle including power generation, and spent fuel storage, reprocessing, and disposal. This document describesmore » the database used to establish a centralized information repository to store and manage the Fukushima data that has been gathered. The data is stored in a secured (password protected and encrypted) repository that is searchable and available to researchers at diverse locations.« less

  16. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1993-10-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  17. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  18. A Compilation of Boiling Water Reactor Operational Experience for the United Kingdom's Office for Nuclear Regulation's Advanced Boiling Water Reactor Generic Design Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Timothy A.; Liao, Huafei

    2014-12-01

    United States nuclear power plant Licensee Event Reports (LERs), submitted to the United States Nuclear Regulatory Commission (NRC) under law as required by 10 CFR 50.72 and 50.73 were evaluated for reliance to the United Kingdom’s Health and Safety Executive – Office for Nuclear Regulation’s (ONR) general design assessment of the Advanced Boiling Water Reactor (ABWR) design. An NRC compendium of LERs, compiled by Idaho National Laboratory over the time period January 1, 2000 through March 31, 2014, were sorted by BWR safety system and sorted into two categories: those events leading to a SCRAM, and those events which constitutedmore » a safety system failure. The LERs were then evaluated as to the relevance of the operational experience to the ABWR design.« less

  19. Results of operation and current safety performance of nuclear facilities located in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. M.; Khvostova, M. S.

    2016-12-01

    After the NPP radiation accidents in Russia and Japan, a safety statu of Russian nuclear power plants causes concern. A repeated life time extension of power unit reactor plants, designed at the dawn of the nuclear power engineering in the Soviet Union, power augmentation of the plants to 104-109%, operation of power units in a daily power mode in the range of 100-70-100%, the use of untypical for NPP remixed nuclear fuel without a careful study of the results of its application (at least after two operating periods of the research nuclear installations), the aging of operating personnel, and many other management actions of the State Corporation "Rosatom", should attract the attention of the Federal Service for Ecological, Technical and Atomic Supervision (RosTekhNadzor), but this doesn't happen. The paper considers safety issues of nuclear power plants operating in the Russian Federation. The authors collected statistical information on violations in NPP operation over the past 25 years, which shows that even after repeated relaxation over this period of time of safety regulation requirements in nuclear industry and highly expensive NPP modernization, the latter have not become more safe, and the statistics confirms this. At a lower utilization factor high-power pressure-tube reactors RBMK-1000, compared to light water reactors VVER-440 and 1000, have a greater number of violations and that after annual overhauls. A number of direct and root causes of NPP mulfunctions is still high and remains stable for decades. The paper reveals bottlenecks in ensuring nuclear and radiation safety of nuclear facilities. Main outstanding issues on the storage of spent nuclear fuel are defined. Information on emissions and discharges of radioactive substances, as well as fullness of storages of solid and liquid radioactive waste, located at the NPP sites are presented. Russian NPPs stress test results are submitted, as well as data on the coming removal from operation of NPP units is analyzed.

  20. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  1. 10 CFR 73.60 - Additional requirements for physical protection at nonpower reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nonpower reactors. 73.60 Section 73.60 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... requirements for physical protection at nonpower reactors. Each nonpower reactor licensee who, pursuant to the... nonpower reactors licensed to operate at or above a power level of 2 megawatts thermal. [38 FR 35430, Dec...

  2. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  3. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  4. Radial blanket assembly orificing arrangement

    DOEpatents

    Patterson, J.F.

    1975-07-01

    A nuclear reactor core for a liquid metal cooled fast breeder reactor is described in which means are provided for increasing the coolant flow through the reactor fuel assemblies as the reactor ages by varying the coolant flow rate with the changing coolant requirements during the core operating lifetime. (auth)

  5. Spent nuclear fuel discharges from US reactors 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactivemore » Waste Management.« less

  6. Improving online risk assessment with equipment prognostics and health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Liu, Xiaotong; Briere, Chris

    The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less

  7. 1996 NRC annual report. Volume 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-10-01

    This 22nd annual report of the US Nuclear Regulatory Commission (NRC) describes accomplishments, activities, and plans made during Fiscal Year 1996 (FH 1996)--October 1, 1995, through September 30, 1996. Significant activities that occurred early in FY 1997 are also described, particularly changes in the Commission and organization of the NRC. The mission of the NRC is to ensure that civilian uses of nuclear materials in the US are carried out with adequate protection of public health and safety, the environment, and national security. These uses include the operation of nuclear power plants and fuel cycle plants and medical, industrial, andmore » research applications. Additionally, the NRC contributes to combating the proliferation of nuclear weapons material worldwide. The NRC licenses and regulates commercial nuclear reactor operations and research reactors and other activities involving the possession and use of nuclear materials and wastes. It also protects nuclear materials used in operation and facilities from theft or sabotage. To accomplish its statutorily mandated regulatory mission, the NRC issues rules and standards, inspects facilities and operations, and issues any required enforcement actions.« less

  8. Development concept for a small, split-core, heat-pipe-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Lantz, E.; Breitwieser, R.; Niederauer, G. F.

    1974-01-01

    There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.

  9. 75 FR 9620 - Southern Nuclear Operating Company, Inc.; Edwin I. Hatch Nuclear Plant, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... industry request to extend the rule's compliance date for all operating nuclear power plants, but noted... M.S. Fertel, Nuclear Energy Institute). The licensee's request for an exemption is therefore... effect. The facility consists of two boiling-water reactors located in Appling County, Georgia. 2.0...

  10. The Angra Neutrino Project: precise measurement of {theta}{sub 13} and safeguards applications of neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casimiro, E.; Anjos, J. C.

    2009-04-20

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  11. The Angra Neutrino Project: precise measurement of θ13 and safeguards applications of neutrino detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2009-04-01

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  12. 10 CFR 2.400 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to construct and/or operate nuclear power reactors of identical design to be located at multiple... Procedures Applicable to Proceedings for the Issuance of Licenses To Construct and/or Operate Nuclear Power... 10 Energy 1 2010-01-01 2010-01-01 false Scope of subpart. 2.400 Section 2.400 Energy NUCLEAR...

  13. Flexible Robotic Entry Device for nuclear materials production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckendorn, F.M.

    1988-01-01

    The Savannah River Laboratory (SRL) has developed and is implementing a Flexible Robotic Entry Device (FRED) for the nuclear materials production reactors at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique ''smart tether'' method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. 3 figs.

  14. REACTOR FUEL ELEMENTS TESTING CONTAINER

    DOEpatents

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  15. A brief history of design studies on innovative nuclear reactors

    NASA Astrophysics Data System (ADS)

    Sekimoto, Hiroshi

    2014-09-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  16. Nuclear reactors built, being built, or planned, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristicmore » and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  17. Nuclear reactors built, being built, or planned: 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristicmore » and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).« less

  18. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FACILITIES Pt. 50, App.N Appendix N to Part 50—Standardization of Nuclear Power Plant Designs: Permits To..., apply to construction permits and operating licenses subject to this appendix N. 2. Applications for...

  19. Topics in nuclear power

    NASA Astrophysics Data System (ADS)

    Budnitz, Robert J.

    2015-03-01

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of "significant events" since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its "lessons learned" have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  20. Topics in nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budnitz, Robert J.

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs formore » large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.« less

  1. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  2. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...

  3. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Pt. 52, App. N...

  4. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.

  5. Radiological effluents released and public doses from nuclear power plants in Korea.

    PubMed

    Son, Jung Kwon; Kim, Hee Geun; Kong, Tae Young; Ko, Jong Hyun; Lee, Goung Jin

    2013-08-01

    As of the end of 2010, there were 20 commercially operating nuclear reactors in Korea. Releases of radioactive effluents from nuclear power plants (NPPs) have increased continuously; the total radioactivity of effluent amount released in 2010 was 547.12 TBq. From 2001 to 2010, the annual average radioactivity of gaseous and liquid effluents per reactor was 11.61 TBq for pressurised water reactors and 118.12 TBq for pressurised heavy water reactors. Most of the radioactivity from gaseous and liquid effluents came from tritium. Based on the results of release trends and analyses, the characteristics of effluents have been investigated to improve the management of radioactive effluents from NPPs.

  6. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  7. Tory II-A: a nuclear ramjet test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, J.W.

    Declassified 28 Nov 1973. The first test reactor in the Pluto program, leading to development of a nuclear ramjet engine, is called Tory II-A. While it is not an actual prototype engine, this reactor embodies a core design which is considered feasible for an engine, and operation of the reactor will provide a test of that core type as well as more generalized values in reactor design and testing. The design of Tory II-A and construction of the reactor and of its test facility are described. Operation of the Tory II-A core at a total power of 160 megawatts, withmore » 800 pounds of air per second passing through the core and emerging at a temperature of 2000 deg F, is the central objective of the test program. All other reactor and facility components exist to support operation of the core, and preliminary steps in the test program itself will be directed primarily toward ensuring attalnment of full-power operation and collection of meaningful data on core behavior during that operation. The core, 3 feet in diameter and 41/2 feet long, will be composed of bundled ceramic tubes whose central holes will provide continuous air passages from end to end of the reactor. These tubes are to be composed of a homogeneous mixture of UO/sub 2/ fuel and BeO moderator, compacted and sintered to achieve high strength and density. (30 references) (auth)« less

  8. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  9. Lessons from Fukushima for Improving the Safety of Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Lyman, Edwin

    2012-02-01

    The March 2011 accident at the Fukushima Daiichi nuclear power plant has revealed serious vulnerabilities in the design, operation and regulation of nuclear power plants. While some aspects of the accident were plant- and site-specific, others have implications that are broadly applicable to the current generation of nuclear plants in operation around the world. Although many of the details of the accident progression and public health consequences are still unclear, there are a number of lessons that can already be drawn. The accident demonstrated the need at nuclear plants for robust, highly reliable backup power sources capable of functioning for many days in the event of a complete loss of primary off-site and on-site electrical power. It highlighted the importance of detailed planning for severe accident management that realistically evaluates the capabilities of personnel to carry out mitigation operations under extremely hazardous conditions. It showed how emergency plans rooted in the assumption that only one reactor at a multi-unit site would be likely to experience a crisis fail miserably in the event of an accident affecting multiple reactor units simultaneously. It revealed that alternate water injection following a severe accident could be needed for weeks or months, generating large volumes of contaminated water that must be contained. And it reinforced the grim lesson of Chernobyl: that a nuclear reactor accident could lead to widespread radioactive contamination with profound implications for public health, the economy and the environment. While many nations have re-examined their policies regarding nuclear power safety in the months following the accident, it remains to be seen to what extent the world will take the lessons of Fukushima seriously and make meaningful changes in time to avert another, and potentially even worse, nuclear catastrophe.

  10. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiff, Scott D.; Dazeley, Steven; Reyna, David

    The current state-of-the-art in antineutrino detection is such that it is now possible to remotely monitor the operational status, power levels and fissile content of nuclear reactors in real-time. This non-invasive and incorruptible technique has been demonstrated at civilian power reactors in both Russia and the United States and has been of interest to the IAEA Novel Technologies Unit for several years. Expert's meetings were convened at IAEA headquarters in 2003 and again in 2008. The latter produced a report in which antineutrino detection was called a 'highly promising technology for safeguards applications' at nuclear reactors and several near-term goalsmore » and suggested developments were identified to facilitate wider applicability. Over the last few years, we have been working to achieve some of these goals and improvements. Specifically, we have already demonstrated the successful operation of non-toxic detectors and most recently, we are testing a transportable, above-ground detector system, which is fully contained within a standard 6 meter ISO container. If successful, such a system could allow easy deployment at any reactor facility around the world. As well, our previously demonstrated ability to remotely monitor the data and respond in real-time to reactor operational changes could allow the verification of operator declarations without the need for costly site-visits. As the global nuclear power industry expands around the world, the burden on maintaining operational histories and safeguarding inventories will increase greatly. Such a system for providing remote data to verify operator's declarations could greatly reduce the need for frequent site inspections while still providing a robust warning of anomalies requiring further investigation.« less

  12. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  13. Control console replacement at the WPI Reactor. [Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less

  14. 75 FR 38564 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Plant Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the Subcommittee on Plant Operations and Fire Protection The ACRS Subcommittee on Plant Operations and Fire Protection will hold a meeting on July 29, 2010, at the U.S. NRC Region IV, Texas Health Resources Tower, 612...

  15. Why SRS Matters - L Area

    ScienceCinema

    Hunt, Paul

    2018-06-22

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features L Area's mission and operations. The L reactor, the former production reactor, now serves as a basin for the storage of used nuclear fuel.

  16. Nuclear Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  17. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOEpatents

    Boardman, Charles E.; Hunsbedt, Anstein; Hui, Marvin M.

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  18. Computer modeling and simulators as part of university training for NPP operating personnel

    NASA Astrophysics Data System (ADS)

    Volman, M.

    2017-01-01

    This paper considers aspects of a program for training future nuclear power plant personnel developed by the NPP Department of Ivanovo State Power Engineering University. Computer modeling is used for numerical experiments on the kinetics of nuclear reactors in Mathcad. Simulation modeling is carried out on the computer and full-scale simulator of water-cooled power reactor for the simulation of neutron-physical reactor measurements and the start-up - shutdown process.

  19. 75 FR 15749 - Entergy Operations, Inc., Grand Gulf Nuclear Station, Unit 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... request to extend the rule's compliance date for all operating nuclear power plants, but noted that the... (Nuclear Energy Institute) dated June 4, 2009. The licensee's request for an exemption is therefore...) now or hereafter in effect. The facility consists of a boiling-water reactor located in Claiborne...

  20. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  1. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  2. A CAMAC based real-time noise analysis system for nuclear reactors

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Özer

    1987-05-01

    A CAMAC based real-time noise analysis system was designed for the TRIGA MARK II nuclear reactor at the Institute for Nuclear Energy, Istanbul. The input analog signals obtained from the radiation detectors are introduced to the system through CAMAC interface. The signals converted into digital form are processed by a PDP-11 computer. The fast data processing based on auto/cross power spectral density computations is carried out by means of assembly written FFT algorithms in real-time and the spectra obtained are displayed on a CAMAC driven display system as an additional monitoring device. The system has the advantage of being software programmable and controlled by a CAMAC system so that it is operated under program control for reactor surveillance, anomaly detection and diagnosis. The system can also be used for the identification of nonstationary operational characteristics of the reactor in long term by comparing the noise power spectra with the corresponding reference noise patterns prepared in advance.

  3. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly Cummins; Igor Bolshinsky; Ken Allen

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required tomore » complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.« less

  4. METHOD OF OPERATING NUCLEAR REACTORS

    DOEpatents

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  5. Systems and methods for dismantling a nuclear reactor

    DOEpatents

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  6. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  7. 75 FR 54657 - University of Florida; University of Florida Training Reactor; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... operation of the UFTR to routinely provide teaching, research, and services to numerous institutions for a... confinement. The Nuclear Reactor Building and its annex, the Nuclear Sciences Center, are located in an area... primary system consisting of a 200-gallon coolant storage tank, a heat removal system, and a processing...

  8. 78 FR 79501 - Tennessee Valley Authority, Exemption From the Requirement To Submit an Annual Update to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ..., Maryland 20852. FOR FURTHER INFORMATION CONTACT: Anthony Minarik, Office of New Reactors, U.S. Nuclear... advanced pressurized water reactors to be constructed and operated at the Bellefonte site, located near the... 052000-15). The NRC docketed the Bellefonte Nuclear Plant, Units 3 and 4 (BLN 3&4) COL application on...

  9. SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data

    DOE PAGES

    Michel-Sendis, F.; Gauld, I.; Martinez, J. S.; ...

    2017-08-02

    SFCOMPO-2.0 is the new release of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) database of experimental assay measurements. These measurements are isotopic concentrations from destructive radiochemical analyses of spent nuclear fuel (SNF) samples. We supplement the measurements with design information for the fuel assembly and fuel rod from which each sample was taken, as well as with relevant information on operating conditions and characteristics of the host reactors. These data are necessary for modeling and simulation of the isotopic evolution of the fuel during irradiation. SFCOMPO-2.0 has been developed and is maintained by the OECDmore » NEA under the guidance of the Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF), which is part of the NEA Working Party on Nuclear Criticality Safety (WPNCS). Significant efforts aimed at establishing a thorough, reliable, publicly available resource for code validation and safety applications have led to the capture and standardization of experimental data from 750 SNF samples from more than 40 reactors. These efforts have resulted in the creation of the SFCOMPO-2.0 database, which is publicly available from the NEA Data Bank. Our paper describes the new database, and applications of SFCOMPO-2.0 for computer code validation, integral nuclear data benchmarking, and uncertainty analysis in nuclear waste package analysis are briefly illustrated.« less

  10. SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel-Sendis, F.; Gauld, I.; Martinez, J. S.

    SFCOMPO-2.0 is the new release of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) database of experimental assay measurements. These measurements are isotopic concentrations from destructive radiochemical analyses of spent nuclear fuel (SNF) samples. We supplement the measurements with design information for the fuel assembly and fuel rod from which each sample was taken, as well as with relevant information on operating conditions and characteristics of the host reactors. These data are necessary for modeling and simulation of the isotopic evolution of the fuel during irradiation. SFCOMPO-2.0 has been developed and is maintained by the OECDmore » NEA under the guidance of the Expert Group on Assay Data of Spent Nuclear Fuel (EGADSNF), which is part of the NEA Working Party on Nuclear Criticality Safety (WPNCS). Significant efforts aimed at establishing a thorough, reliable, publicly available resource for code validation and safety applications have led to the capture and standardization of experimental data from 750 SNF samples from more than 40 reactors. These efforts have resulted in the creation of the SFCOMPO-2.0 database, which is publicly available from the NEA Data Bank. Our paper describes the new database, and applications of SFCOMPO-2.0 for computer code validation, integral nuclear data benchmarking, and uncertainty analysis in nuclear waste package analysis are briefly illustrated.« less

  11. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  12. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  13. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, M. L.; Peko, D.; Farmer, M.

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less

  14. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, M. L.

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safetymore » initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.« less

  15. Multi-physics design and analyses of long life reactors for lunar outposts

    NASA Astrophysics Data System (ADS)

    Schriener, Timothy M.

    Future human exploration of the solar system is likely to include establishing permanent outposts on the surface of the Moon. These outposts will require reliable sources of electrical power in the range of 10's to 100's of kWe to support exploration and resource utilization activities. This need is best met using nuclear reactor power systems which can operate steadily throughout the long ˜27.3 day lunar rotational period, irrespective of location. Nuclear power systems can potentially open up the entire lunar surface for future exploration and development. Desirable features of nuclear power systems for the lunar surface include passive operation, the avoidance of single point failures in reactor cooling and the integrated power system, moderate operating temperatures to enable the use of conventional materials with proven irradiation experience, utilization of the lunar regolith for radiation shielding and as a supplemental neutron reflector, and safe post-operation decay heat removal and storage for potential retrieval. In addition, it is desirable for the reactor to have a long operational life. Only a limited number of space nuclear reactor concepts have previously been developed for the lunar environment, and these designs possess only a few of these desirable design and operation features. The objective of this research is therefore to perform design and analyses of long operational life lunar reactors and power systems which incorporate the desirable features listed above. A long reactor operational life could be achieved either by increasing the amount of highly enriched uranium (HEU) fuel in the core or by improving the neutron economy in the reactor through reducing neutron leakage and parasitic absorption. The amount of fuel in surface power reactors is constrained by the launch safety requirements. These include ensuring that the bare reactor core remains safely subcritical when submerged in water or wet sand and flooded with seawater in the unlikely event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete Element Method (DEM) analysis in lunar gravity. In addition, this research addresses the post-operation storage of the SCoRe and PeBR concepts, below the lunar surface, to determine the time required for the radioactivity in the used fuel to decrease to a low level to allow for its safe recovery. The SCoRe and PeBR concepts are designed to operate at coolant temperatures ≤ 900 K and use conventional stainless steels and superalloys for the structure in the reactor core and power system. They are emplaced below grade on the Moon to take advantage of the regolith as a supplemental neutron reflector and as shielding of the lunar outpost from the reactors' neutron and gamma radiation.

  16. Nuclear Technology Series. Course 7: Reactor Operations.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  17. Autonomous Control of Space Reactor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichman, K.; Tsao, J.; Mayfield, M.

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRCmore » and the International Piping Integrity Research Group is also briefly summarized.« less

  19. Enhancement of NRC station blackout requirements for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50,more » Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)« less

  20. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  1. Nuclear Reactor Safety--The APS Submits its Report

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Presents the summary section of the American Physical Society (APS) report on the safety features of the light-water reactor, reviews the design, construction, and operation of a reactor and outlines the primary engineered safety features. Summarizes the major recommendations of the study group. (GS)

  2. A brief history of design studies on innovative nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USAmore » and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  4. Safety and Regulatory Issues of the Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian; Worrall, Andrew; Powers, Jeffrey

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less

  5. The Sustainable Nuclear Future: Fission and Fusion E.M. Campbell Logos Technologies

    NASA Astrophysics Data System (ADS)

    Campbell, E. Michael

    2010-02-01

    Global industrialization, the concern over rising CO2 levels in the atmosphere and other negative environmental effects due to the burning of hydrocarbon fuels and the need to insulate the cost of energy from fuel price volatility have led to a renewed interest in nuclear power. Many of the plants under construction are similar to the existing light water reactors but incorporate modern engineering and enhanced safety features. These reactors, while mature, safe and reliable sources of electrical power have limited efficiency in converting fission power to useful work, require significant amounts of water, and must deal with the issues of nuclear waste (spent fuel), safety, and weapons proliferation. If nuclear power is to sustain its present share of the world's growing energy needs let alone displace carbon based fuels, more than 1000 reactors will be needed by mid century. For this to occur new reactors that are more efficient, versatile in their energy markets, require minimal or no water, produce less waste and more robust waste forms, are inherently safe and minimize proliferation concerns will be necessary. Graphite moderated, ceramic coated fuel, and He cooled designs are reactors that can satisfy these requirements. Along with other generation IV fast reactors that can further reduce the amounts of spent fuel and extend fuel resources, such a nuclear expansion is possible. Furthermore, facilities either in early operations or under construction should demonstrate the next step in fusion energy development in which energy gain is produced. This demonstration will catalyze fusion energy development and lead to the ultimate development of the next generation of nuclear reactors. In this presentation the role of advanced fission reactors and future fusion reactors in the expansion of nuclear power will be discussed including synergies with the existing worldwide nuclear fleet. )

  6. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less

  7. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.

    PubMed

    Hollenbach, D F; Herndon, J M

    2001-09-25

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  8. ALARA Council: Sharing our resources and experiences to reduce doses at Commonwealth Edison Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rescek, F.

    1995-03-01

    Commonwealth Edison Company is an investor-owned utility company supplying electricity to over three million customers (eight million people) in Chicago and northern Illinois, USA. The company operates 16 generating stations which have the capacity to produce 22,522 megawatts of electricity. Six of these generating stations, containing 12 nuclear units, supply 51% of this capacity. The 12 nuclear units are comprised of four General Electric boiling water (BWR-3) reactors, two General Electric BWR-5 reactors, and six Westinghouse four-loop pressurized water reactors (PWR). In August 1993, Commonwealth Edison created an ALARA Council with the responsibility to provide leadership and guidance that resultsmore » in an effective ALARA Culture within the Nuclear Operations Division. Unlike its predecessor, the Corporate ALARA Committee, the ALARA Council is designed to bring together senior managers from the six nuclear stations and corporate to create a collaborative effort to reduce occupational doses at Commonwealth Edison`s stations.« less

  9. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  10. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant... that the applicant wishes to have the application considered under 10 CFR part 52, appendix N, and must...

  11. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    PubMed

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES to absorb the decay heat of the reactor fuel while cooling the PAHTR after an emergency shutdown. The simulated reactivity insertion accident assessment determined the maximum allowable reactivity insertion to the PAHTR as a function of shutdown response times.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 60%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to grow by about 24% from 2013 to 2040 . At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license, for a total of 60 years of operation (the oldest commercial plants in the Unitedmore » States reached their 40th anniversary in 2009). Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity for 40- and 60-year license periods. If current operating nuclear power plants do not operate beyond 60 years (and new nuclear plants are not built quickly enough to replace them), the total fraction of generated electrical energy from nuclear power will rapidly decline. That decline will be accelerated if plants are shut down before 60 years of operation. Decisions on extended operation ultimately rely on economic factors; however, economics can often be improved through technical advancements. The U.S. Department of Energy Office of Nuclear Energy's 2010 Research and Development Roadmap (2010 Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: 1. Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; 2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; 3. Develop sustainable nuclear fuel cycles; and 4. Understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.« less

  14. Tritium leak triggers reactor shutdown in the US

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2010-04-01

    A US state has voted against renewing the operating licence for its only working nuclear reactor after a leak of tritium was found in the 38-year-old power plant. The decision in late February by Vermont's senate to close the 650 MW Vermont Yankee reactor has cast a shadow over the Obama administration's plans to encourage the construction of more nuclear power plants to meet the country's increasing electricity demands. The plant currently provides one-third of the state's electricity demands.

  15. 78 FR 35990 - All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0128] All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos. (As Shown In Attachment 1), License Nos. (As Shown In Attachment 1), EA-13-109; Order Modifying Licenses With Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident...

  16. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOEpatents

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  17. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  18. Current status of SPINNORs designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki

    2010-06-22

    This study discuss about the SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) and the VSPINNOR (Very Small Power Reactor, Indonesia, No On-site Refuelling) which are small lead-bismuth cooled nuclear power reactors with fast neutron spectrum that could be operated for more than 10 or 15 years without on-site refuelling. They are based on the concept of a long-life core reactor developed in Indonesia since early 1990 in collaboration with the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (RLNR TITech). The reactor cores are designed to have near zero (less then one effective delayed neutron fraction)more » burn-up reactivity swing during the whole course of their operation to avoid a possibility of prompt criticality accident. The basic concept is that central region of the reactor core is filled with fertile (blanket) material. During the reactor operation fissile material accumulates in this central region, which helps to compensate fissile material loss in the peripheral core region and also contributes to negative coolant loss reactivity effect. A concept of high fuel volume fraction in the core is applied to achieve smaller size of a critical reactor. In this paper we consider to add Np-237 to the fuel to enhance non proliferation characteristics of the systems. The effect of Np-237 amount variation is discussed.« less

  19. Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, David

    The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less

  20. U.S./CIS eye joint nuclear rocket venture

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcilwain, Melvin C.; Smetanikov, Vladimir; D'Yakov, Evgenij K.; Pavshuk, Vladimir A.

    1993-01-01

    An account is given of the significance for U.S. spacecraft development of a nuclear thermal rocket (NTR) reactor concept that has been developed in the (formerly Soviet) Commonwealth of Independent States (CIS). The CIS NTR reactor employs a hydrogen-cooled zirconium hydride moderator and ternary carbide fuels; the comparatively cool operating temperatures associated with this design promise overall robustness.

  1. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  2. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  3. Damper mechanism for nuclear reactor control elements

    DOEpatents

    Taft, William Elwood

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.

  4. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Amounts of financial protection for certain reactors. 140... reactors. (a) Each licensee is required to have and maintain financial protection: (1) In the amount of $1,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding...

  5. 10 CFR 140.11 - Amounts of financial protection for certain reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Amounts of financial protection for certain reactors. 140... reactors. (a) Each licensee is required to have and maintain financial protection: (1) In the amount of $1,000,000 for each nuclear reactor he is authorized to operate at a thermal power level not exceeding...

  6. A liquid-metal filling system for pumped primary loop space reactors

    NASA Astrophysics Data System (ADS)

    Crandall, D. L.; Reed, W. C.

    Some concepts for the SP-100 space nuclear power reactor use liquid metal as the primary coolant in a pumped loop. Prior to filling ground engineering test articles or reactor systems, the liquid metal must be purified and circulated through the reactor primary system to remove contaminants. If not removed, these contaminants enhance corrosion and reduce reliability. A facility was designed and built to support Department of Energy Liquid Metal Fast Breeder Reactor tests conducted at the Idaho National Engineering Laboratory. This test program used liquid sodium to cool nuclear fuel in in-pile experiments; thus, a system was needed to store and purify sodium inventories and fill the experiment assemblies. This same system, with modifications and potential changeover to lithium or sodium-potassium (NaK), can be used in the Space Nuclear Power Reactor Program. This paper addresses the requirements, description, modifications, operation, and appropriateness of using this liquid-metal system to support the SP-100 space reactor program.

  7. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A. C.; Ball, M. R.; Novog, D. R.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxidemore » fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The New York Power Authority (NYPA) and Entergy Corp. of New Orleans, La., announced recently the signing of a memorandum of understanding as a step toward a contract for Entergy to provide management services to NYPA`s two nuclear power plants. The agreement is the first of its kind. NYPA is the nation`s largest state-owned electric utility and supplier of one-quarter of New York`s electricity. Its nuclear plants are Indian Point 3 (IP3) in Buchanan, Westchester County, and James A. FitzPatrick in Scriba, Oswego County. Entergy is a utility holding company and its subsidiary, Entergy Operations Inc., is widely recognized asmore » one of the leading nuclear operators in the United States. {open_quotes}NYPA`s nuclear plants are assets that belong to the people of New York,{close_quotes} said C.D. {open_quotes}Rapp{close_quotes} Rappleyea, NYPA`s chairman and CEO. {open_quotes}Our alliance with Entergy can provide the people of this state with added assurance that these plants will operate with the highest level of safety and efficiency.{close_quotes} FitzPatrick, an 800 MW boiling water reactor, has operated since 1975 and IP3, a 980 MW pressurized water reactor, since 1976. Although both are currently running well, they have had problems in recent years, and IP3 is on the US Nuclear Regulatory Commission`s (NRC) list of plants requiring increased regulatory attention. Entergy operated both types of reactors, has three single-unit sites like NYPA`s and is experienced in operating plants for different utility owners.« less

  9. Operators in the Plum Brook Reactor Facility Control Room

    NASA Image and Video Library

    1970-03-21

    Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.

  10. VENTED FUEL ELEMENT FOR GAS-COOLED NEUTRONIC REACTORS

    DOEpatents

    Furgerson, W.T.

    1963-12-17

    A hollow, porous-walled fuel element filled with fissionable fuel and provided with an outlet port through its wall is described. In operation in a gas-cooled reactor, the element is connected, through its outlet port, to the vacuum side of a pump that causes a portion of the coolant gas flowing over the exterior surface of the element to be drawn through the porous walls thereof and out through the outlet port. This continuous purging gas flow sweeps away gaseous fission products as they are released by the fissioning fuel. (AEC) A fuel element for a nuclear reactor incorporating a body of metal of melting point lower than the temperature of operation of the reactor and a nuclear fuel in finely divided form dispersed in the body of metal as a settled slurry is presented. (AEC)

  11. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOEpatents

    Christiansen, D.W.; Schively, D.P.

    1982-01-19

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  12. An adaptive load-following control system for a space nuclear power system

    NASA Astrophysics Data System (ADS)

    Metzger, John D.; El-Genk, Mohamed S.

    An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.

  13. The Nuclear Renaissance in the U.S.

    ScienceCinema

    Buongiorno, Jacopo

    2018-04-23

    Nuclear power currently provides 20% of the electricity generation in the U.S. and about 16% worldwide.  As a carbon-free energy source, nuclear is receiving a lot of attention by industry, lawmakers and environmental groups, as they attempt to resolve the issue of man-made climate change.  For the first time in 30 years several U.S. electric utilities have applied for construction and operation licenses of new nuclear power plants.  This talk will review the safety, operational and economic record of the existing U.S. commercial reactor fleet, will provide an overview of the reactor designs considered for the new wave of plant construction, and will discuss several research projects being conducted at the Massachusetts Institute of Technology to support the expansion of nuclear power in the U.S. and overseas.

  14. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.L.; Gallaher, R.B.

    1977-08-02

    This bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1976. The report includes 1,253 abstracts that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes ofmore » failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Three of the unique events that occurred during the year are reviewed in detail.« less

  15. Annotated bibliography of safety-related occurrences in boiling-water nuclear power plants as reported in 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at boiling-water reactor nuclear power plants in 1975. The report includes 1169 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables that summarize the information contained in the bibliography are provided. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures,more » deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction). Seven of the unique events that occurred during the year are reviewed in detail.« less

  16. Method for automatically scramming a nuclear reactor

    DOEpatents

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2005-12-27

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  17. Annotated bibliography of safety-related occurrences in pressurized-water nuclear power plants as reported in 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.L.; Gallaher, R.B.

    1976-07-01

    The bibliography presented contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at pressurized-water reactor nuclear power plants in 1975. The report includes 1097 abstracts, arranged alphabetically by reactor name and then chronologically for each reactor, that describe incidents, failures, and design or construction deficiencies experienced at the facilities. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables summarizing the information contained in the bibliography are presented. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, andmore » the time of occurrence (i.e., during refueling, operation, testing, or construction). A few of the unique events that occurred during the year are reviewed in detail.« less

  18. Annotated bibliography of safety-related occurrences in pressurized-water nuclear power plants as reported in 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.L.; Gallaher, R.B.

    1977-08-01

    The bibliography contains 100-word abstracts of reports to the U.S. Nuclear Regulatory Commission concerning operational events that occurred at pressurized-water reactor nuclear power plants in 1976. Included are 1264 abstracts that describe incidents, failures, and design construction deficiencies experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Key-word and permuted-title indexes are provided to facilitate location of the subjects of interest, and tables summarizing the information contained in the bibliography are presented. The information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and themore » time of occurrence (i.e., during refueling, operation, testing, or construction). A few of the unique events that occurred during the year are reviewed in detail.« less

  19. Nuclear fuel requirements for the American economy - A model

    NASA Astrophysics Data System (ADS)

    Curtis, Thomas Dexter

    A model is provided to determine the amounts of various fuel streams required to supply energy from planned and projected nuclear plant operations, including new builds. Flexible, user-defined scenarios can be constructed with respect to energy requirements, choices of reactors and choices of fuels. The model includes interactive effects and extends through 2099. Outputs include energy provided by reactors, the number of reactors, and masses of natural Uranium and other fuels used. Energy demand, including electricity and hydrogen, is obtained from US DOE historical data and projections, along with other studies of potential hydrogen demand. An option to include other energy demand to nuclear power is included. Reactor types modeled include (thermal reactors) PWRs, BWRs and MHRs and (fast reactors) GFRs and SFRs. The MHRs (VHTRs), GFRs and SFRs are similar to those described in the 2002 DOE "Roadmap for Generation IV Nuclear Energy Systems." Fuel source choices include natural Uranium, self-recycled spent fuel, Plutonium from breeder reactors and existing stockpiles of surplus HEU, military Plutonium, LWR spent fuel and depleted Uranium. Other reactors and fuel sources can be added to the model. Fidelity checks of the model's results indicate good agreement with historical Uranium use and number of reactors, and with DOE projections. The model supports conclusions that substantial use of natural Uranium will likely continue to the end of the 21st century, though legacy spent fuel and depleted uranium could easily supply all nuclear energy demand by shifting to predominant use of fast reactors.

  20. Topics in Nuclear Power

    NASA Astrophysics Data System (ADS)

    Budnitz, Robert J.

    2011-11-01

    The 104 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of "significant events" since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and some designers are taking a second look at the economies of smaller, modular reactors.

  1. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  2. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  3. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  4. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  5. 10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...

  6. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  7. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  8. 10 CFR 51.23 - Temporary storage of spent fuel after cessation of reactor operation-generic determination of no...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Temporary storage of spent fuel after cessation of reactor operation-generic determination of no significant environmental impact. 51.23 Section 51.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED...

  9. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  10. Production assurance program strategy for N Reactor balance of plant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.D.; Bitten, E.J.; Keenan, J.P.

    1986-03-18

    A production assurance program has been established for N Reactor, a dual purpose reactor plant, operated to produce special nuclear materials and steam for electricity. N Reactor, which began operation in December 1963, is now approaching the end of its design life. This paper describes the two phase program for Balance of Plant (BOP) systems. The Phase I evaluation has been completed and indications are that the lifetime of systems and components could be extended by implementing appropriate surveillance, operations and maintenance strategies. In Phase II, a thorough evaluation of components and systems is underway and action items are beingmore » identified which will allow component and system extended operation.« less

  11. Operational performance of the three bean salad control algorithm on the ACRR (Annular Core Research Reactor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, R.M.; Madaras, J.J.; Trowbridge, F.R. Jr.

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.

  12. Safety features of subcritical fluid fueled systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, C.R.

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less

  13. Preliminary design studies on a nuclear seawater desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less

  14. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less

  15. 75 FR 27368 - Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ...., Aerotest Radiography and Research Reactor; Notice of Consideration of Approval of Transfer and Conforming Amendment, Opportunity for a Hearing, and Order Imposing Procedures for Access to Sensitive Unclassified Non... Manager, Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...

  16. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  17. 10 CFR Appendix N to Part 50 - Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Standardization of Nuclear Power Plant Designs: Permits To Construct and Licenses To Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. N Appendix N to Par...

  18. All About MOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-07-29

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  19. Focused technology: Nuclear propulsion

    NASA Technical Reports Server (NTRS)

    Miller, Thomas J.

    1991-01-01

    The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.

  20. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    NASA Astrophysics Data System (ADS)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  1. All About MOX

    ScienceCinema

    None

    2018-01-16

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  2. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  3. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  4. On a distinctive feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets

    NASA Astrophysics Data System (ADS)

    Trifonenkov, A. V.; Trifonenkov, V. P.

    2017-01-01

    This article deals with a feature of problems of calculating time-average characteristics of nuclear reactor optimal control sets. The operation of a nuclear reactor during threatened period is considered. The optimal control search problem is analysed. The xenon poisoning causes limitations on the variety of statements of the problem of calculating time-average characteristics of a set of optimal reactor power off controls. The level of xenon poisoning is limited. There is a problem of choosing an appropriate segment of the time axis to ensure that optimal control problem is consistent. Two procedures of estimation of the duration of this segment are considered. Two estimations as functions of the xenon limitation were plot. Boundaries of the interval of averaging are defined more precisely.

  5. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    PubMed Central

    Hollenbach, D. F.; Herndon, J. M.

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483

  6. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  7. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  8. Eddy Current Flow Measurements in the FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Deborah L.; Polzin, David L.; Omberg, Ronald P.

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuablemore » information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.« less

  9. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    NASA Astrophysics Data System (ADS)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  10. Utility operations review of North Carolina State University BSNE curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, E.A.; Faggart, E.M.; Jackson, G.D.

    1988-01-01

    The industry advisors group of the North Carolina State University (NCSU) Department of Nuclear Engineering raised the question of how well the curriculum for a bachelor of science in nuclear engineering (BSNE) meets the needs of educating students to enter the nuclear operations field. The concern was that the nuclear industry has evolved from a design to an operations mode, but that the BSNE curriculum may not have responded to this evolution. To address this issue, a group of four persons qualified as senior reactor operators with operational experience from different utilities was selected. The authors are the members ofmore » this review group. All are degreed personnel, with three BSNE graduates from NCSU, and all have participated in nuclear plant startups and currently work at nuclear plant sites. The group prepared by reviewing the curriculum before arriving on campus, including the report developed for the Accreditation Board for Engineering and Technology. During our two-day campus visit, we reviewed course materials, interviewed professors, and toured laboratory and reactor facilities in order to get more insight into the breadth and thrust of the BSNE curriculum. The observations and recommendations contained in this paper were developed based on these reviews and discussions and represent the opinions of the authors and not necessarily their companies.« less

  11. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  12. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... Power Station, Unit 1; Exemption From Certain Security Requirements 1.0 Background Exelon Nuclear is the licensee and holder of Facility Operating License No. DPR-2 issued for Dresden Nuclear Power Station (DNPS... protection of licensed activities in nuclear power reactors against radiological sabotage,'' paragraph (b)(1...

  13. 10 CFR 51.53 - Postconstruction environmental reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... renewal of a license to operate a nuclear power plant under part 54 of this chapter shall submit with its... for a nuclear power reactor shall submit this report only in connection with the first licensing action authorizing full-power operation. In this report, the applicant shall discuss the same matters...

  14. 75 FR 15746 - Entergy Operations, Inc., Waterford Steam Electric Station, Unit 3; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... operating nuclear power plants, but noted that the Commission's regulations provide mechanisms for..., letter from R. W. Borchardt, NRC, to M. S. Fertel, Nuclear Energy Institute). The licensee's request for..., the Commission) now or hereafter in effect. The facility consists of one pressurized-water reactor...

  15. 77 FR 14445 - Application for a License To Export Steel Forging

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ...) 415-1677, to request a digital ID certificate and allow for the creation of an electronic docket. In...Energy Nuclear Operating Co Reactor vessel One The reactor vessel Spain. December 15, 2011 head steel...

  16. Operations of a TRIGA reactor at a small private liberal arts college

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, L.B.

    A small private liberal arts college is not a very representative place to have a TRIGA reactor. Reed is a wholly undergraduate institution with a strong emphasis in the traditional liberal arts and fundamental sciences. Many of the larger state universities provide an excellence in nuclear science which is often presented to students in a somewhat distant manner. By providing a reactor that was immediately accessible to undergraduate students it has been realized that the excitement attendant with nuclear science would be available to them in an immediate hands-on manner.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghina, L.O.B.; Bellini, I.W.

    The main works and modifications performed on the Argonaut reactor of the Instituto de Engenharia Nuclear after 4 years of operation are described. New positioning and holding system for the fuel elements and graphite wedges for the reactor brought appreciable stability to the operation. The removal of the plastic layer, printing and inspection of the corrosion of the elements plater are also described. (INIS)

  18. Initial conceptual design study of self-critical nuclear pumped laser systems

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  19. Flow instability in particle-bed nuclear reactors

    NASA Technical Reports Server (NTRS)

    Kerrebrock, J. L.; Kalamas, J.

    1993-01-01

    A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.

  20. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOEpatents

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  1. PROCESS FOR COOLING A NUCLEAR REACTOR

    DOEpatents

    Borst, L.B.

    1962-12-11

    This patent relates to the operation of a reactor cooled by liquid sulfur dioxide. According to the invention the pressure on the sulfur dioxide in the reactor is maintained at least at the critical pressure of the sulfur dioxide. Heating the sulfur dioxide to its critical temperature results in vaporization of the sulfur dioxide without boiling. (AEC)

  2. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  3. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  4. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less

  5. Of Ashes and Atoms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.

  6. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, Willaim; Strydom, G.; Kane, J.

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less

  7. Introduction to special session on "ultrasonic transducers for harsh environments

    NASA Astrophysics Data System (ADS)

    Tittmann, B. R.; Reinhardt, B.; Daw, J.

    2018-04-01

    This work describes the results of experiments conducted as part of an instrumented lead test in-core in a nuclear reactor with the piezoelectric and magnetostrictive materials. The experiments exposed AlN, ZnO, BiT, Remendur, and Galfenol to more neutron radiation than found in the literature. The magnetostrictive sensors produce stable ultrasonic pulse-echoes throughout much of the irradiation. The BiT transducers could operate up until approximate 5 × 10^20 n/cm^2 (E>1MeV). The piezoelectric AlN operated well during the entire experiment. The results imply that now available are candidates for operation in harsh environments found in nuclear reactors and steam generator plants.

  8. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)

  9. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Richard Thomas

    2008-01-01

    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system.more » Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures. Additionally, many Generation IV (Gen IV) reactor concepts have goals for optimizing investment recovery and economic efficiency that promote significant reductions in plant operations and maintenance staff over current-generation nuclear power plants. To accomplish these Gen IV goals and also address the SRPS remote-siting challenges, higher levels of automation, fault tolerance, and advanced diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. Essentially, the SRPS control system for several anticipated terrestrial applications can benefit from the kind of operational autonomy that is necessary for deep space and planetary SRPS-enabled missions. Investigation of the state of the technology for autonomous control confirmed that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. As an example, NASA has pursued autonomy for spacecraft and surface exploration vehicles (e.g., rovers) to reduce mission costs, increase efficiency for communications between ground control and the vehicle, and enable independent operation of the vehicle during times of communications blackout. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and fully automated control of normal SRPS operations is clearly feasible. However, the space-based and remote terrestrial applications of SRPS modules require autonomous capabilities that can accommodate nonoptimum operations when degradation, failure, and other off-normal events challenge the performance of the reactor while immediate human intervention is not possible. The independent action provided by autonomous control, which is distinct from the more limited self action of automated control, can satisfy these conditions. Key characteristics that distinguish autonomous control include: (1) intelligence to confirm system performance and detect degraded or failed conditions, (2) optimization to minimize stress on SRPS components and efficiently react to operational events without compromising system integrity, (3) robustness to accommodate uncertainties and changing conditions, and (4) flexibility and adaptability to accommodate failures through reconfiguration among available control system elements or adjustment of control system strategies, algorithms, or parameters.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.

    Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasingmore » out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.« less

  11. Preparation of the Second Shipment of Spent Nuclear Fuel from the Ustav Jaderneho Vyzkumu Rez (UJV Rez), a.s., Czech Republic to the Russian Federation for Reprocessing - 13478

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trtilek, Radek; Podlaha, Josef

    After more than 50 years of operation of the LVR-15 research reactor operated by the UJV Rez, a. s. (formerly Nuclear Research Institute - NRI), a large amount of the spent nuclear fuel (SNF) of Russian origin has been accumulated. In 2005 UJV Rez, a. s. jointed the Russian Research Reactor Fuel Return (RRRFR) program under the United States (US) - Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF). In 2007 the first shipment of SNF was realized. In 2011, preparation of the secondmore » shipment of spent fuel from the Czech Republic started. The experience obtained from the first shipment will be widely used, but some differences must be taken into the account. The second shipment will be realized in 2013 and will conclude the return transport of all, both fresh and spent, high-enriched nuclear fuel from the Czech Republic to the Russian Federation. After the shipment is completed, there will be only low-enriched nuclear fuel on the territory of the Czech Republic, containing maximum of 20% of U-235, which is the conventionally recognized limit between the low- and high-enriched nuclear materials. The experience (technical, organizational, administrative, logistic) obtained from the each SNF shipment as from the Czech Republic as from other countries using the Russian type research reactors are evaluated and projected onto preparation of next shipment of high enriched nuclear fuel back to the Russian Federation. The results shown all shipments provided by the UJV Rez, a. s. in the frame of the GTRI Program have been performed successfully and safely. It is expected the experience and results will be applied to preparation and completing of the Chinese Miniature Neutron Source Reactors (MNSR) Spent Nuclear Fuel Repatriation in the near future. (authors)« less

  12. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Randy L; Harrison, Thomas J

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical ofmore » commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.« less

  13. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Manymore » research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.« less

  14. Environmental radiation protection studies related to nuclear industries, using AMS

    NASA Astrophysics Data System (ADS)

    Hellborg, Ragnar; Erlandsson, Bengt; Faarinen, Mikko; Hâkansson, Helena; Hâkansson, Kjell; Kiisk, Madis; Magnusson, Carl-Erik; Persson, Per; Skog, Göran; Stenström, Kristina; Mattsson, Sören; Thornberg, Charlotte

    2001-07-01

    14C is produced in nuclear reactors during normal operation and part of it is continuously released into the environment. Because of the biological importance of carbon and the long physical half-life of 14C it is of interest to study these releases. The 14C activity concentrations in the air and vegetation around some Swedish as well as foreign nuclear facilities have been measured by accelerator mass spectrometry (AMS). 59Ni is produced by neutron activation in the stainless steel close to the core of a nuclear reactor. The 59Ni levels have been measured in order to be able to classify the different parts of the reactor with respect to their content of long-lived radionuclides before final storage. The technique used to measure 59Ni at a small accelerator such as the Lund facility has been developed over the past few years and material from the Swedish nuclear industry has been analyzed.

  15. Calculation of energetic characteristics of C-14 emitted from Beloyarsk nuclear power plant plume with fast neutron reactor

    NASA Astrophysics Data System (ADS)

    Kolotkov, Gennady A.; Penin, Sergei

    2017-11-01

    The paper examines an update of comparative analysis of radionuclides released into the atmosphere from Beloyarsk nuclear power plant with fast-neutron reactor for nine years in a row, from 2008 to 2016. It has been shown that the main radionuclides throw out into the atmosphere from Beloyarsk nuclear power plant are beta-active radionuclides. Based on data releases of the RPA "Typhoon", it has been conclude that radiation situation become worse insignificantly; beside on the new reactor BN-800 was put in operation in 2016. Using Spencer-Fano's equation, it was carried out the summary spectrum of emitted radionuclides. On example of Beloyarsk nuclear power plant, it was considered a question about ability of remote detection of raised radioactivity in the atmospheric radioactive plume. It has been shown that it possible to detect raised radioactivity in the emission plume from Beloyarsk nuclear power plant.

  16. Using the sound of nuclear energy

    DOE PAGES

    Garrett, Steven; Smith, James; Smith, Robert; ...

    2016-08-01

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  17. Using the sound of nuclear energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Steven; Smith, James; Smith, Robert

    The generation of sound by heat has been documented as an “acoustical curiosity” since a Buddhist monk reported the loud tone generated by a ceremonial rice-cooker in his diary, in 1568. Over the last four decades, significant progress has been made in understanding “thermoacoustic processes,” enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-poweredmore » and can wirelessly transmit the temperature and reactor power level by generation of a pure tone which can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor’s coolant temperature and that the amplitude (above an onset threshold) is related to the reactor’s operating power level. Furthermore, these signals can be detected even in the presence of substantial background noise generated by the reactor’s fluid pumps.« less

  18. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  19. Generation-IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    McFarlane, Harold

    2008-05-01

    Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.

  20. Manned space flight nuclear system safety. Volume 5: Nuclear System safety guidelines. Part 1: Space base nuclear safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space base nuclear system safety are presented. Guidelines and requirements are presented for the space base subsystems, nuclear hardware (reactor, isotope sources, dynamic generator equipment), experiments, interfacing vehicles, ground support systems, range safety and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  1. Manned space flight nuclear system safety. Voluem 5: Nuclear system safety guidelines. Part 2: Space shuttle/nuclear payloads safety

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and operations guidelines and requirements developed in the study of space shuttle nuclear system transportation are presented. Guidelines and requirements are presented for the shuttle, nuclear payloads (reactor, isotope-Brayton and small isotope sources), ground support systems and facilities. Cross indices and references are provided which relate guidelines to each other, and to substantiating data in other volumes. The guidelines are intended for the implementation of nuclear safety related design and operational considerations in future space programs.

  2. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  3. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  4. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  5. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOEpatents

    Schreiber, Roger B.; Fero, Arnold H.; Sejvar, James

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  6. 10 CFR 55.59 - Requalification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Requalification. 55.59 Section 55.59 Energy NUCLEAR... reactor startups to include a range that reactivity feedback from nuclear heat addition is noticeable and... outside containment). (AA) A nuclear instrumentation failure. (ii) Each licensed operator and senior...

  7. The future of nuclear power: A world-wide perspective

    NASA Astrophysics Data System (ADS)

    Aktar, Ismail

    This study analyzes the future of commercial nuclear electric generation worldwide using the Environmental Kuznets Curve (EKC) concept. The Tobit panel data estimation technique is applied to analyze the data between 1980 and 1998 for 105 countries. EKC assumes that low-income countries increase their nuclear reliance in total electric production whereas high-income countries decrease their nuclear reliance. Hence, we expect that high-income countries should shut down existing nuclear reactors and/or not build any new ones. We encounter two reasons for shutdowns: economic or political/environmental concerns. To distinguish these two effects, reasons for shut down are also investigated by using the Hazard Model technique. Hence, the load factor of a reactor is used as an approximation for economic reason to shut down the reactor. If a shut downed reactor had high load factor, this could be attributable to political/environmental concern or else economic concern. The only countries with nuclear power are considered in this model. The two data sets are created. In the first data set, the single entry for each reactor is created as of 1998 whereas in the second data set, the multiple entries are created for each reactor beginning from 1980 to 1998. The dependent variable takes 1 if operational or zero if shut downed. The empirical findings provide strong evidence for EKC relationship for commercial nuclear electric generation. Furthermore, higher natural resources suggest alternative electric generation methods rather than nuclear power. Economic index as an institutional variable suggests higher the economic freedom, lower the nuclear electric generation as expected. This model does not support the idea to cut the carbon dioxide emission via increasing nuclear share. The Hazard Model findings suggest that higher the load factor is, less likely the reactor will shut down. However, if it is still permanently closed downed, then this could be attributable to political hostility against nuclear power. There are also some projections indicating which reactors are most/least likely to be shut downed from the logit model. We also project which countries are most likely to increase/decrease their nuclear reliance from the residuals of EKC model.

  8. 78 FR 5840 - Notice of License Termination for University of Illinois Advanced TRIGA Reactor, License No. R-115

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... University of Illinois Advanced TRIGA Reactor, License No. R-115 The U.S. Nuclear Regulatory Commission (NRC) is noticing the termination of Facility Operating License No. R-115, for the University of Illinois... Operating License No. R-115 is terminated. The above referenced documents may be examined, and/or copied for...

  9. A Research Reactor Concept to Support NTP Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.

    2014-01-01

    In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.

  10. Dynamic characteristics of a VK-50 reactor operating under conditions of the loss of a normal feedwater flow

    NASA Astrophysics Data System (ADS)

    Semidotskiy, I. I.; Kurskiy, A. S.

    2013-12-01

    The paper describes the conditions of the ATWS type with virtually complete cessation of the feed-water flow at the operating power level of a reactor of the VK-50 type. Under these conditions, the role of spatial kinetics in the system of feedback between thermohydraulic and nuclear processes with bulk boiling of the coolant in the reactor core is clearly seen. This feature determines the specific character of experimental data obtained and the suitability of their use for verification of the associated codes used for calculating water-water reactors.

  11. CONTROL FOR NEUTRONIC REACTOR

    DOEpatents

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  12. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  13. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  14. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  15. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  16. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  17. 10 CFR 140.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Scope. 140.2 Section 140.2 Energy NUCLEAR REGULATORY... there has been an extraordinary nuclear occurrence. The form of nuclear energy liability policy for... license issued under 10 CFR parts 50, 52, or 54 to operate a nuclear reactor, and (2) With respect to an...

  18. 10 CFR 140.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Scope. 140.2 Section 140.2 Energy NUCLEAR REGULATORY... there has been an extraordinary nuclear occurrence. The form of nuclear energy liability policy for... license issued under 10 CFR parts 50, 52, or 54 to operate a nuclear reactor, and (2) With respect to an...

  19. 10 CFR 140.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Scope. 140.2 Section 140.2 Energy NUCLEAR REGULATORY... there has been an extraordinary nuclear occurrence. The form of nuclear energy liability policy for... license issued under 10 CFR parts 50, 52, or 54 to operate a nuclear reactor, and (2) With respect to an...

  20. 10 CFR 140.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Scope. 140.2 Section 140.2 Energy NUCLEAR REGULATORY... there has been an extraordinary nuclear occurrence. The form of nuclear energy liability policy for... license issued under 10 CFR parts 50, 52, or 54 to operate a nuclear reactor, and (2) With respect to an...

  1. 10 CFR 140.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Scope. 140.2 Section 140.2 Energy NUCLEAR REGULATORY... there has been an extraordinary nuclear occurrence. The form of nuclear energy liability policy for... license issued under 10 CFR parts 50, 52, or 54 to operate a nuclear reactor, and (2) With respect to an...

  2. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in themore » tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).« less

  3. Research reactor decommissioning experience - concrete removal and disposal -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Mark R.; Gardner, Frederick W.

    1990-07-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less

  4. An unexpected rise in strontium-90 in US deciduous teeth in the 1990s.

    PubMed

    Mangano, Joseph J; Gould, Jay M; Sternglass, Ernest J; Sherman, Janette D; McDonnell, William

    2003-12-30

    For several decades, the United States has been without an ongoing program measuring levels of fission products in the body. Strontium-90 (Sr-90) concentrations in 2089 deciduous (baby) teeth, mostly from persons living near nuclear power reactors, reveal that average levels rose 48.5% for persons born in the late 1990s compared to those born in the late 1980s. This trend represents the first sustained increase since the early 1960s, before atmospheric weapons tests were banned. The trend was consistent for each of the five states for which at least 130 teeth are available. The highest averages were found in southeastern Pennsylvania, and the lowest in California (San Francisco and Sacramento), neither of which is near an operating nuclear reactor. In each state studied, the average Sr-90 concentration is highest in counties situated closest to nuclear reactors. It is likely that, 40 years after large-scale atmospheric atomic bomb tests ended, much of the current in-body radioactivity represents nuclear reactor emissions.

  5. Non-Nuclear Validation Test Results of a Closed Brayton Cycle Test-Loop

    NASA Astrophysics Data System (ADS)

    Wright, Steven A.

    2007-01-01

    Both NASA and DOE have programs that are investigating advanced power conversion cycles for planetary surface power on the moon or Mars, or for next generation nuclear power plants on earth. Although open Brayton cycles are in use for many applications (combined cycle power plants, aircraft engines), only a few closed Brayton cycles have been tested. Experience with closed Brayton cycles coupled to nuclear reactors is even more limited and current projections of Brayton cycle performance are based on analytic models. This report describes and compares experimental results with model predictions from a series of non-nuclear tests using a small scale closed loop Brayton cycle available at Sandia National Laboratories. A substantial amount of testing has been performed, and the information is being used to help validate models. In this report we summarize the results from three kinds of tests. These tests include: 1) test results that are useful for validating the characteristic flow curves of the turbomachinery for various gases ranging from ideal gases (Ar or Ar/He) to non-ideal gases such as CO2, 2) test results that represent shut down transients and decay heat removal capability of Brayton loops after reactor shut down, and 3) tests that map a range of operating power versus shaft speed curve and turbine inlet temperature that are useful for predicting stable operating conditions during both normal and off-normal operating behavior. These tests reveal significant interactions between the reactor and balance of plant. Specifically these results predict limited speed up behavior of the turbomachinery caused by loss of load, the conditions for stable operation, and for direct cooled reactors, the tests reveal that the coast down behavior during loss of power events can extend for hours provided the ultimate heat sink remains available.

  6. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  7. Boronline, a new generation of boron meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirat, P.

    2011-07-01

    Rolls-Royce is a global business providing integrated power systems for use on land, at sea and in the air. The Group has a balanced business portfolio with leading market positions - civil aerospace, defence aerospace, marine and energy Rolls-Royce understands the challenges of design, procurement, manufacture, operation and in-service support of nuclear reactor plants, with over 50 years of experience through the Royal Navy submarine programme. Rolls-Royce can therefore offer full product life-cycle management for new civil nuclear installations, as well as support to existing installations, including plant lifetime extensions. Rolls-Royce produced for 40 years, Instrumentation and Control (I andmore » C) systems of and associated services for nuclear reactors in Europe, including 58 French reactors and others situated in the United States and in others countries, such as China. Rolls-Royce equipped in this domain 200 nuclear reactors in 20 countries. Among all of its nuclear systems, Rolls Royce is presenting to the conference its new generation of on-line boron measurement system, so called Boronline. (authors)« less

  8. Methods and strategies for future reactor safety goals

    NASA Astrophysics Data System (ADS)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk-informed analyses and discussions. This dissertation examines potential approaches to updating the safety goals that include the establishment of new quantitative safety goal associated with the comparative risk of generating electricity by viable competing technologies and modifications of the goals to account for multi-plant reactor sites, and issues associated with the use of safety goals in both initial licensing and operational decision making. This research develops a new quantitative health objective that uses a comparable benefit risk metric based on the life-cycle risk of the construction, operation and decommissioning of a comparable non-nuclear electric generation facility, as well as the risks associated with mining and transportation. This dissertation also evaluates the effects of using various methods for aggregating site risk as a safety metric, as opposed to using single plant safety goals. Additionally, a number of important assumptions inherent in the current safety goals, including the effect of other potential negative societal effects such as the generation of greenhouse gases (e.g., carbon dioxide) have on the risk of electric power production and their effects on the setting of safety goals, is explored. Finally, the role risk perception should play in establishing safety goals has been explored. To complete this evaluation, a new method to analytically compare alternative technologies of generating electricity was developed, including development of a new way to evaluate risk perception, and a new method was developed for evaluating the risk at multiple units on a single site. To test these modifications to the safety goals a number of possible reactor designs and configurations were evaluated using these new proposed safety goals to determine the goals' usefulness and utility. The results of the analysis showed that the modifications provide measures that more closely evaluate the potential risk to the public from the operation of nuclear power plants than the current safety goals, while still providing a straight-forward process for assessment of reactor design and operation.

  9. Expert system for online surveillance of nuclear reactor coolant pumps

    DOEpatents

    Gross, Kenny C.; Singer, Ralph M.; Humenik, Keith E.

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  10. 10 CFR 51.95 - Postconstruction environmental impact statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the storage of spent fuel for the nuclear power plant within the scope of the generic determination in... a license to store spent fuel at a nuclear power reactor after expiration of the operating or... Section 51.95 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...

  11. 10 CFR 51.95 - Postconstruction environmental impact statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the storage of spent fuel for the nuclear power plant within the scope of the generic determination in... a license to store spent fuel at a nuclear power reactor after expiration of the operating or... Section 51.95 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...

  12. 10 CFR 50.57 - Issuance of operating license. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... contested activity sought to be authorized. The Director of Nuclear Reactor Regulation will make findings on... Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance... presiding officer will issue an order in accordance with § 2.319(p) authorizing the Director of Nuclear...

  13. 10 CFR 50.57 - Issuance of operating license. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contested activity sought to be authorized. The Director of Nuclear Reactor Regulation will make findings on... Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance... presiding officer will issue an order in accordance with § 2.319(p) authorizing the Director of Nuclear...

  14. 10 CFR 50.57 - Issuance of operating license. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contested activity sought to be authorized. The Director of Nuclear Reactor Regulation will make findings on... Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance... presiding officer will issue an order in accordance with § 2.319(p) authorizing the Director of Nuclear...

  15. 10 CFR 50.57 - Issuance of operating license. 1

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contested activity sought to be authorized. The Director of Nuclear Reactor Regulation will make findings on... Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance... presiding officer will issue an order in accordance with § 2.319(p) authorizing the Director of Nuclear...

  16. 10 CFR 50.57 - Issuance of operating license. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... contested activity sought to be authorized. The Director of Nuclear Reactor Regulation will make findings on... Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Issuance... presiding officer will issue an order in accordance with § 2.319(p) authorizing the Director of Nuclear...

  17. Satellite nuclear power station: An engineering analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  18. Feasibility Study of a Nuclear-Stirling Power Plant for the Jupiter Icy Moons Orbiter

    NASA Astrophysics Data System (ADS)

    Schmitz, Paul C.; Schreiber, Jeffrey G.; Penswick, L. Barry

    2005-02-01

    NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant - RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This paper will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. Stirling convertors have a long heritage operating in both power generation and the cooler industry, and are currently in use in a wide variety of applications. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor in the 1980's and early 1990's. The baseline RPP considered in this study consists of four dual-opposed Stirling convertors connected to the reactor by a liquid lithium loop. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste heat is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared radiator. The radiator consists of two coplanar wings, which would be deployed after the reactor is in space. For this study design, the radiators would be located behind the conical radiation shield of the reactor and fan out as the radiator's distance from the reactor increases. System trades were performed to vary cycle state point temperatures and convertor design as well as power output. Other redundancy combinations were considered to understand the affects of convertor size and number of spares to the system mass.

  19. Feasibility Study of a Nuclear-Stirling Power Plant for the Jupiter Icy Moons Orbiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Paul C.; Schreiber, Jeffrey G.; Penswick, L. Barry

    2005-02-06

    NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant - RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This papermore » will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. Stirling convertors have a long heritage operating in both power generation and the cooler industry, and are currently in use in a wide variety of applications. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor in the 1980's and early 1990's. The baseline RPP considered in this study consists of four dual-opposed Stirling convertors connected to the reactor by a liquid lithium loop. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste heat is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared radiator. The radiator consists of two coplanar wings, which would be deployed after the reactor is in space. For this study design, the radiators would be located behind the conical radiation shield of the reactor and fan out as the radiator's distance from the reactor increases. System trades were performed to vary cycle state point temperatures and convertor design as well as power output. Other redundancy combinations were considered to understand the affects of convertor size and number of spares to the system mass.« less

  20. Muon trackers for imaging a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kume, N.; Miyadera, H.; Morris, C. L.

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  1. Muon trackers for imaging a nuclear reactor

    DOE PAGES

    Kume, N.; Miyadera, H.; Morris, C. L.; ...

    2016-09-21

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  2. Radioactive and other environmental threats to the United States and the Arctic resulting from past Soviet activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Earlier this year the Senate Intelligence Committee began to receive reports from environmental and nuclear scientists in Russia detailing the reckless nuclear waste disposal practices, nuclear accidents and the use of nuclear detonations. We found that information disturbing to say the least. Also troubling is the fact that 15 Chernobyl style RBMK nuclear power reactors continue to operate in the former Soviet Union today. These reactors lack a containment structure and they`re designed in such a way that nuclear reaction can actually increase when the reactor overheats. As scientists here at the University of Alaska have documented, polar air massesmore » and prevailing weather patterns provide a pathway for radioactive contaminants from Eastern Europe and Western Russia, where many of these reactors are located. The threats presented by those potential radioactive risks are just a part of a larger Arctic pollution problem. Every day, industrial activities of the former Soviet Union continue to create pollutants. I think we should face up to the reality that in a country struggling for economic survival, environment protection isn`t necessarily the high priority. And that could be very troubling news for the Arctic in the future.« less

  3. Neutron induced fission of 237Np - status, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Goverdovski, Andrei; Furman, Walter; Kopatch, Yury; Shcherbakov, Oleg; Hambsch, Franz-Josef; Oberstedt, Stephan; Oberstedt, Andreas

    2018-03-01

    Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated) in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel ("waste"), the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ), has not been updated for decades.

  4. Reactor shutdown experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cletcher, J.W.

    1995-10-01

    This is a regular report of summary statistics relating to recent reactor shutdown experience. The information includes both number of events and rates of occurence. It was compiled from data about operating events that were entered into the SCSS data system by the Nuclear Operations Analysis Center at the Oak ridge National Laboratory and covers the six mont period of July 1 to December 31, 1994. Cumulative information, starting from May 1, 1994, is also reported. Updates on shutdown events included in earlier reports is excluded. Information on shutdowns as a function of reactor power at the time of themore » shutdown for both BWR and PWR reactors is given. Data is also discerned by shutdown type and reactor age.« less

  5. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less

  6. Annual Report to Congress of the Atomic Energy Commission for 1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1970-01-31

    The document represents the 1969 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1969'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Byproduct Nuclear Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Space Nuclear Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  7. Annual Report to Congress of the Atomic Energy Commission for 1968

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1969-01-31

    The document represents the 1968 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with ''An Introduction to the Atomic Energy Programs during 1968'' followed by 17 Chapters, 8 appendices and an index. Chapters are as follows: (1) Source, Special, and Nuclear Byproduct Materials; (2) Nuclear Materials Safeguards; (3) The Nuclear Defense Effort; (4) Naval Propulsion Reactors; (5) Reactor Development and Technology; (6) Licensing and Regulating the Atom; (7) Operational and Public Safety; (8) Nuclear Rocket Propulsion; (9) Specialized Nuclear Power; (10) Isotopic Radiation Applications; (11) Peaceful Nuclear Explosives; (12) International Affairs and Cooperation; (13) Informationalmore » and Related Activities; (14) Nuclear Education and Training; (15) Biomedical and Physical Research; (16) Industrial Participation Aspects; and, (17) Administrative and Management Matters.« less

  8. RADON LEVELS AND ЕQUIVALENT DOSE RATES AT THE IRT-SOFIA RESEARCH REACTOR SITE.

    PubMed

    Krezhov, Kiril; Mladenov, Aleksander; Dimitrov, Dobromir

    2018-06-11

    Results from radon measurements by active sampling of indoor air in the buildings within the Nuclear Scientific Experimental and Educational Centre (NSEEC) protected site at the Institute for Nuclear Research and Nuclear Energy (INRNE) are presented. The inspected buildings included in this report are the IRT research reactor structure and several auxiliary formations wherein the laundry facilities and the gamma irradiator GOU-1 (60Co source) are installed as well as the Central Alarm Station (CAS) premises. Besides the reactor hall and the primary cooling loop area, special attention was given to the premises of the First Class Radiochemical Laboratory in the IRT reactor basement. Determination of radon concentration distribution in the premises of the constructions within the site is an important part of radiation surveillance during the operation and maintenance of the NSEEC facilities as well as for their involvement in the educational activities at INRNE.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Barrett; Shannon Bragg-Sitton

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less

  10. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  11. Operational performance of the three bean salad control algorithm on the ACRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, R.M.; Madaras, J.J.; Trowbridge, F.R. Jr.

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute.

  12. Operational performance of the three bean salad control algorithm on the ACRR

    NASA Astrophysics Data System (ADS)

    Ball, Russell M.; Madaras, John J.; Trowbridge, F. Ray; Talley, Darren G.; Parma, Edward J.

    1991-01-01

    Experimental tests on the Annular Core Research Reactor have confirmed that the ``Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute.

  13. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Projectmore » (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerczak, Tyler J.; Smith, Kurt R.; Petrie, Christian M.

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Departmentmore » of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.« less

  15. AECL's Lawson optimistic about company, nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, E.

    1993-01-27

    Atomic Energy of Canada Ltd. is hopeful its sale of two heavy water reactors to South Korea last September represents the end of a two-year dry spell and the beginning of better times for Canadian nuclear power research. In an hour-long interview in the company's Rockville, Md., office, AECL's newly appointed chairman, Donald Lawson, discussed his outlook for the sale of plants and services worldwide and the company's efforts to license the approximately 400 megawatt CANDU-3 nuclear plant for use in the United States. AECL's CANDU reactors offer users a number of advantages. In particular, they burn natural uranium, makingmore » it possible to load while operating, and have one of the best operating records of any commercial plant design around today.« less

  16. 77 FR 75451 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... upgraded licenses or license renewals to operate the controls at a nuclear reactor facility. This... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0184] Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: Nuclear Regulatory...

  17. SFCOMPO 2.0 - A relational database of spent fuel isotopic measurements, reactor operational histories, and design data

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, Franco; Martinez-González, Jesus; Gauld, Ian

    2017-09-01

    SFCOMPO-2.0 is a database of experimental isotopic concentrations measured in destructive radiochemical analysis of spent nuclear fuel (SNF) samples. The database includes corresponding design description of the fuel rods and assemblies, relevant operating conditions and characteristics of the host reactors necessary for modelling and simulation. Aimed at establishing a thorough, reliable, and publicly available resource for code and data validation of safety-related applications, SFCOMPO-2.0 is developed and maintained by the OECD Nuclear Energy Agency (NEA). The SFCOMPO-2.0 database is a Java application which is downloadable from the NEA website.

  18. Fission-powered in-core thermoacoustic sensor

    DOE PAGES

    Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.; ...

    2016-04-07

    A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. Furthermore, these signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.

  19. Fission-powered in-core thermoacoustic sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Steven L.; Smith, James A.; Smith, Robert W. M.

    2016-04-04

    A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps.

  20. Nuclear physics research operation. Monthly report, November 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, J.E.

    1958-12-10

    This report is a summary of projects worked on in support of the production reactors at Hanford. The projects include criticality studies, from tasks associated with fuel element reprocessing to shipments of slightly enriched uranium. They include studies of neutron cross sections for different reactions and neutron flux measurements in different reactor locations, as well as design studies for future reactor projects.

  1. Israel’s Attack on Osiraq: A Model for Future Preventive Strikes?

    DTIC Science & Technology

    2005-07-01

    Chauvet . Shamir told Chauvet , “Israel holds France exclusively responsible for the results liable to arise from operation of the reactor and misuse...of the nuclear fuel.” Chauvet argued, “Acquisition of nuclear arms would be lunacy on the part of Iraq. After all, Israel’s Jewish and Arab...McKinnon, the tapes from aircraft number seven and eight reveal the reactor dome completely caved in and a destroyed cooling pool.57 However

  2. Method for improving performance of irradiated structural materials

    DOEpatents

    Megusar, Janez; Harling, Otto K.; Grant, Nicholas J.

    1989-01-01

    Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

  3. The near boiling reactor: Conceptual design of a small inherently safe nuclear reactor to extend the operational capability of the Victoria Class submarine

    NASA Astrophysics Data System (ADS)

    Cole, Christopher J. P.

    Nuclear power has several unique advantages over other air independent energy sources for nuclear combat submarines. An inherently safe, small nuclear reactor, capable of supply the hotel load of the Victoria Class submarines, has been conceptually developed. The reactor is designed to complement the existing diesel electric power generation plant presently onboard the submarine. The reactor, rated at greater than 1 MW thermal, will supply electricity to the submarine's batteries through an organic Rankine cycle energy conversion plant at 200 kW. This load will increase the operational envelope of the submarine by providing up to 28 continuous days submerged, allowing for an enhanced indiscretion ratio (ratio of time spent on the surface versus time submerged) and a limited under ice capability. The power plant can be fitted into the existing submarine by inserting a 6 m hull plug. With its simplistic design and inherent safety features, the reactor plant will require a minimal addition to the crew. The reactor employs TRISO fuel particles for increased safety. The light water coolant remains at atmospheric pressure, exiting the core at 96°C. Burn-up control and limiting excess reactivity is achieved through movable reflector plates. Shut down and regulatory control is achieved through the thirteen hafnium control rods. Inherent safety is achieved through the negative prompt and delayed temperature coefficients, as well as the negative void coefficient. During a transient, the boiling of the moderator results in a sudden drop in reactivity, essentially shutting down the reactor. It is this characteristic after which the reactor has been named. The design of the reactor was achieved through modelling using computer codes such as MCNP5, WIMS-AECL, FEMLAB, and MicroShield5, in addition to specially written software for kinetics, heat transfer and fission product poisoning calculations. The work has covered a broad area of research and has highlighted additional areas that should be investigated. These include developing a detailed point nodel kinetic model coupled with a finite element heat transfer model, undertaking radiation protection shielding calculations in accordance with international and national regulations, and exploring the effects of advanced fuels.

  4. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  5. The Fukushima Nuclear Disaster and the U.S. Customs and Border Protection Response

    NASA Astrophysics Data System (ADS)

    McCormick, Kathy

    2013-10-01

    On 3/11/11, the reactors at the Fukushima Nuclear Plant in Japan were damaged by a magnitude 9.0 earthquake. Of the six reactors at the site, three were in operation prior to the event, and were automatically shut-down during the earthquake. Emergency cooling systems came online and were subsequently destroyed by a tsunami generated by the earthquake. For the operating reactors, all the reactor cores were exposed, resulting in overheating and the release of steam and hydrogen gas to the containment vessels, several of which subsequently exploded, releasing radioactivity into the atmosphere. The cores of the operating reactors melted down, and radioactive water was released to the ocean in cooling efforts. The primary radiation concerns in the United States from the disaster were radioactive plumes driven by westerly winds and contaminated commercial products and travelers. In the United States, one of the primary governmental organizations to respond to the disaster was U.S. Customs and Border Protection (CBP), which has responsibility to oversee the safety and security of cargo and travelers entering the United States. This talk will describe the various types of radioactive commodities and events encountered by CBP in the U.S. from the Fukushima disaster. Thanks to the CBP Teleforensics Center for their assistance with this presentation.

  6. Online monitoring of the Osiris reactor with the Nucifer neutrino detector

    NASA Astrophysics Data System (ADS)

    Boireau, G.; Bouvet, L.; Collin, A. P.; Coulloux, G.; Cribier, M.; Deschamp, H.; Durand, V.; Fechner, M.; Fischer, V.; Gaffiot, J.; Gérard Castaing, N.; Granelli, R.; Kato, Y.; Lasserre, T.; Latron, L.; Legou, P.; Letourneau, A.; Lhuillier, D.; Mention, G.; Mueller, Th. A.; Nghiem, T.-A.; Pedrol, N.; Pelzer, J.; Pequignot, M.; Piret, Y.; Prono, G.; Scola, L.; Starzinski, P.; Vivier, M.; Dumonteil, E.; Mancusi, D.; Varignon, C.; Buck, C.; Lindner, M.; Bazoma, J.; Bouvier, S.; Bui, V. M.; Communeau, V.; Cucoanes, A.; Fallot, M.; Gautier, M.; Giot, L.; Guilloux, G.; Lenoir, M.; Martino, J.; Mercier, G.; Milleto, T.; Peuvrel, N.; Porta, A.; Le Quéré, N.; Renard, C.; Rigalleau, L. M.; Roy, D.; Vilajosana, T.; Yermia, F.; Nucifer Collaboration

    2016-06-01

    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second-shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides a new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the International Agency for Atomic Energy to enhance the safeguards of civil nuclear reactors. Deployed at only 7.2 m away from the compact Osiris research reactor core (70 MW) operating at the Saclay research center of the French Alternative Energies and Atomic Energy Commission, the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the ˜0.85 m3 detector remotely operating at a shallow depth equivalent to ˜12 m of water and under intense background radiation conditions. Based on 145 (106) days of data with the reactor on (off), leading to the detection of an estimated 40760 ν¯ e , the mean number of detected antineutrinos is 281 ±7 (stat )±18 (syst )ν¯ e/day , in agreement with the prediction of 277 ±23 ν¯ e/day . Because of the large background, no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.

  7. RADIATION FACILITY FOR NUCLEAR REACTORS

    DOEpatents

    Currier, E.L. Jr.; Nicklas, J.H.

    1961-12-12

    A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

  8. Annual Report to Congress of the Atomic Energy Commission for 1965

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8)more » Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.« less

  9. An Expert Elicitation of the Proliferation Resistance of Using Small Modular Reactors (SMR) for the Expansion of Civilian Nuclear Systems.

    PubMed

    Siegel, Jonas; Gilmore, Elisabeth A; Gallagher, Nancy; Fetter, Steve

    2018-02-01

    To facilitate the use of nuclear energy globally, small modular reactors (SMRs) may represent a viable alternative or complement to large reactor designs. One potential benefit is that SMRs could allow for more proliferation resistant designs, manufacturing arrangements, and fuel-cycle practices at widespread deployment. However, there is limited work evaluating the proliferation resistance of SMRs, and existing proliferation assessment approaches are not well suited for these novel arrangements. Here, we conduct an expert elicitation of the relative proliferation resistance of scenarios for future nuclear energy deployment driven by Generation III+ light-water reactors, fast reactors, or SMRs. Specifically, we construct the scenarios to investigate relevant technical and institutional features that are postulated to enhance the proliferation resistance of SMRs. The experts do not consistently judge the scenario with SMRs to have greater overall proliferation resistance than scenarios that rely on conventional nuclear energy generation options. Further, the experts disagreed on whether incorporating a long-lifetime sealed core into an SMR design would strengthen or weaken proliferation resistance. However, regardless of the type of reactor, the experts judged that proliferation resistance would be enhanced by improving international safeguards and operating several multinational fuel-cycle facilities rather than supporting many more national facilities. © 2017 Society for Risk Analysis.

  10. ORNL experience and perspectives related to processing of thorium and 233U for nuclear fuel

    DOE PAGES

    Croff, Allen G.; Collins, Emory D.; Del Cul, G. D.; ...

    2016-05-01

    Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Here, lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.

  11. Licensed operating reactors: Status summary report data as of December 31, 1991. Volume 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-03-01

    The Nuclear Regulatory Commission`s annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar year 1991) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1more » capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided.« less

  12. Licensed operating reactors. Status summary report data as of 12-31-94: Volume 19

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Nuclear Regulatory Commission`s annual summary of licensed nuclear power reactor data is based primarily on the report of operating data submitted by licensees for each unit for the month of December because that report contains data for the month of December, the year to date (in this case calendar year 1994) and cumulative data, usually from the date of commercial operation. The data is not independently verified, but various computer checks are made. The report is divided into two sections. The first contains summary highlights and the second contains data on each individual unit in commercial operation. Section 1more » capacity and availability factors are simple arithmetic averages. Section 2 items in the cumulative column are generally as reported by the licensee and notes as to the use of weighted averages and starting dates other than commercial operation are provided.« less

  13. A feasibility assessment of installation, operation and disposal options for nuclear reactor power system concepts for a NASA growth space station

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.; Heller, Jack A.

    1987-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational disposition, and safety issues. A previous NASA sponsored study, which showed the advantages of space station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide the feasibility of each combination.

  14. Nuclear Energy Policy

    DTIC Science & Technology

    2010-05-27

    small modular reactors and extend the lives and improve the operation of existing commercial nuclear power plants. 40 Interdisciplinary MIT Study, The Future of Nuclear Power, Massachusetts Institute of Technology, 2003, p. 79. 41 Gronlund, Lisbeth, David Lochbaum, and Edwin Lyman, Nuclear Power in a Warming World, Union of Concerned Scientists, December 2007. 42 Travis Madsen, Tony Dutzik, and Bernadette Del Chiaro, et al., Generating Failure: How Building Nuclear Power Plants

  15. Nuclear Physics Made Very, Very Easy

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1968-01-01

    The fundamental approach to nuclear physics was prepared to introduce basic reactor principles to various groups of non-nuclear technical personnel associated with NERVA Test Operations. NERVA Test Operations functions as the field test group for the Nuclear Rocket Engine Program. Nuclear Engine for Rocket Vehicle Application (NERVA) program is the combined efforts of Aerojet-General Corporation as prime contractor, and Westinghouse Astronuclear Laboratory as the major subcontractor, for the assembly and testing of nuclear rocket engines. Development of the NERVA Program is under the direction of the Space Nuclear Propulsion Office, a joint agency of the U.S. Atomic Energy Commission and the National Aeronautics and Space Administration.

  16. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  17. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  18. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOEpatents

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  19. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOEpatents

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Chen, Tianyi

    Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, andmore » thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.« less

  1. Reactor Monitoring with Antineutrinos - A Progress Report

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    2012-08-01

    The Reactor Safeguards regime is the name given to a set of protocols and technologies used to monitor the consumption and production of fissile materials in nuclear reactors. The Safeguards regime is administered by the International Atomic Energy Agency (IAEA), and is an essential component of the global Treaty on Nuclear Nonproliferation, recently renewed by its 189 remaining signators. (The 190th, North Korea, withdrew from the Treaty in 2003). Beginning in Russia in the 1980s, a number of researchers worldwide have experimentally demonstrated the potential of cubic meter scale antineutrino detectors for non-intrusive real-time monitoring of fissile inventories and power output of reactors. The detectors built so far have operated tens of meters from a reactor core, outside of the containment dome, largely unattended and with remote data acquisition for an entire 1.5 year reactor cycle, and have achieved levels of sensitivity to fissile content of potential interest for the IAEA safeguards regime. In this article, I will describe the unique advantages of antineutrino detectors for cooperative monitoring, consider the prospects and benefits of increasing the range of detectability for small reactors, and provide a partial survey of ongoing global research aimed at improving near-field and far field monitoring and discovery of nuclear reactors.

  2. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  3. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  4. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Howard, Richard H.; Rader, Jordan D.

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less

  5. 10 CFR 140.51 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this chapter authorizing operation of nuclear reactors. Note: Federal agencies are not required to... 10 Energy 2 2014-01-01 2014-01-01 false Scope. 140.51 Section 140.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS Provisions Applicable Only...

  6. 10 CFR 140.51 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this chapter authorizing operation of nuclear reactors. Note: Federal agencies are not required to... 10 Energy 2 2010-01-01 2010-01-01 false Scope. 140.51 Section 140.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS Provisions Applicable Only...

  7. 10 CFR 140.51 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this chapter authorizing operation of nuclear reactors. Note: Federal agencies are not required to... 10 Energy 2 2012-01-01 2012-01-01 false Scope. 140.51 Section 140.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS Provisions Applicable Only...

  8. 10 CFR 140.51 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this chapter authorizing operation of nuclear reactors. Note: Federal agencies are not required to... 10 Energy 2 2011-01-01 2011-01-01 false Scope. 140.51 Section 140.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS Provisions Applicable Only...

  9. 10 CFR 140.51 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this chapter authorizing operation of nuclear reactors. Note: Federal agencies are not required to... 10 Energy 2 2013-01-01 2013-01-01 false Scope. 140.51 Section 140.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL PROTECTION REQUIREMENTS AND INDEMNITY AGREEMENTS Provisions Applicable Only...

  10. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE PAGES

    Melin, Alexander M.; Kisner, Roger A.

    2018-04-03

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  11. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  12. Design and analysis of a nuclear reactor core for innovative small light water reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  13. Nuclear Reactors for Space Power, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  14. 10 CFR 20.2206 - Reports of individual monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2206 Reports...) Operate a nuclear reactor designed to produce electrical or heat energy pursuant to § 50.21(b) or § 50.22... nuclear material in a quantity exceeding 5,000 grams of contained uranium-235, uranium-233, or plutonium...

  15. 10 CFR 20.2206 - Reports of individual monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2206 Reports...) Operate a nuclear reactor designed to produce electrical or heat energy pursuant to § 50.21(b) or § 50.22... nuclear material in a quantity exceeding 5,000 grams of contained uranium-235, uranium-233, or plutonium...

  16. 10 CFR 20.2206 - Reports of individual monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2206 Reports...) Operate a nuclear reactor designed to produce electrical or heat energy pursuant to § 50.21(b) or § 50.22... nuclear material in a quantity exceeding 5,000 grams of contained uranium-235, uranium-233, or plutonium...

  17. 76 FR 60091 - Notice of Availability of Environmental Assessment and Finding of No Significant Impact for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-407; NRC-2011-0153] Notice of Availability of Environmental Assessment and Finding of No Significant Impact for the University of Utah Nuclear Reactor Facility; Facility Operating License No. R-126 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of...

  18. Non-nuclear Testing of Reactor Systems in the Early Flight Fission Test Facilities (EFF-TF)

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the &sign and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are "non-nuclear" in nature (e.g. system s nuclear operations are understood). For many systems. thermal simulators can he used to closely mimic fission heat deposition. Axial power profile, radial power profile. and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other NASA centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004.

  19. Applications in Nuclear Energy Security

    NASA Astrophysics Data System (ADS)

    Sheffield, Richard

    2009-05-01

    A key roadblock to development of additional nuclear power capacity is a concern over management of nuclear waste. Nuclear waste is predominantly comprised of used fuel discharged from operating nuclear reactors. The roughly 100 operating US reactors currently produce about 20% of the US electricity and will create about 87,000 tons of such discharged or ``spent'' fuel over the course of their lifetimes. The long-term radioactivity of the spent fuel drives the need for deep geologic storage that remains stable for millions of years. Nearly all issues related to risks to future generations arising from long-term disposal of such spent nuclear fuel is attributable to approximately the 1% made up primarily of minor actinides. If we can reduce or eliminate this 1% of the spent fuel, then within a few hundred years the toxic nature of the spent fuel drops below that of the natural uranium ore that was originally mined for nuclear fuel. The minor actinides can be efficiently eliminated through nuclear transmutation using as a driver fast-neutrons produced by a spallation process initiated with a high-energy proton beam. This presentation will cover the system design considerations and issues of an accelerator driven transmutation system.

  20. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

Top