Sample records for operating parameters impact

  1. Simulating environmental and psychological acoustic factors of the operating room.

    PubMed

    Bennett, Christopher L; Dudaryk, Roman; Ayers, Andrew L; McNeer, Richard R

    2015-12-01

    In this study, an operating room simulation environment was adapted to include quadraphonic speakers, which were used to recreate a composed clinical soundscape. To assess validity of the composed soundscape, several acoustic parameters of this simulated environment were acquired in the presence of alarms only, background noise only, or both. These parameters were also measured for comparison from size-matched operating rooms at Jackson Memorial Hospital. The parameters examined included sound level, reverberation time, and predictive metrics of speech intelligibility in quiet and noise. It was found that the sound levels and acoustic parameters were comparable between the simulated environment and the actual operating rooms. The impact of the background noise on the perception of medical alarms was then examined, and was found to have little impact on the audibility of the alarms. This study is a first in kind report of a comparison between the environmental and psychological acoustical parameters of a hospital simulation environment and actual operating rooms.

  2. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  3. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  4. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK.

    PubMed

    Astaraie-Imani, Maryam; Kapelan, Zoran; Fu, Guangtao; Butler, David

    2012-12-15

    Climate change and urbanisation are key factors affecting the future of water quality and quantity in urbanised catchments and are associated with significant uncertainty. The work reported in this paper is an evaluation of the combined and relative impacts of climate change and urbanisation on the receiving water quality in the context of an Integrated Urban Wastewater System (IUWS) in the UK. The impacts of intervening system operational control parameters are also investigated. Impact is determined by a detailed modelling study using both local and global sensitivity analysis methods together with correlation analysis. The results obtained from the case-study analysed clearly demonstrate that climate change combined with increasing urbanisation is likely to lead to worsening river water quality in terms of both frequency and magnitude of breaching threshold dissolved oxygen and ammonium concentrations. The results obtained also reveal the key climate change and urbanisation parameters that have the largest negative impact as well as the most responsive IUWS operational control parameters including major dependencies between all these parameters. This information can be further utilised to adapt future IUWS operation and/or design which, in turn, should make these systems more resilient to future climate and urbanisation changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Parameter Impact on Sharing Studies Between UAS CNPC Satellite Transmitters and Terrestrial Systems

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2015-01-01

    In order to provide a control and non-payload communication (CNPC) link for civil-use unmanned aircraft systems (UAS) when operating in beyond-line-of-sight (BLOS) conditions, satellite communication links are generally required. The International Civil Aviation Organization (ICAO) has determined that the CNPC link must operate over protected aviation safety spectrum allocations. Although a suitable allocation exists in the 5030-5091 MHz band, no satellites provide operations in this band and none are currently planned. In order to avoid a very lengthy delay in the deployment of UAS in BLOS conditions, it has been proposed to use existing satellites operating in the Fixed Satellite Service (FSS), of which many operate in several spectrum bands. Regulatory actions by the International Telecommunications Union (ITU) are needed to enable such a use on an international basis, and indeed Agenda Item (AI) 1.5 for the 2015 World Radiocommunication Conference (WRC) was established to decide on the enactment of possible regulatory provisions. As part of the preparation for AI 1.5, studies on the sharing FSS bands between existing services and CNPC for UAS are being contributed by NASA and others. These studies evaluate the potential impact of satellite CNPC transmitters operating from UAS on other in-band services, and on the potential impact of other in-band services on satellite CNPC receivers operating on UAS platforms. Such studies are made more complex by the inclusion of what are essentially moving FSS earth stations, compared to typical sharing studies between fixed elements. Hence, the process of determining the appropriate technical parameters for the studies meets with difficulty. In order to enable a sharing study to be completed in a less-than-infinite amount of time, the number of parameters exercised must be greatly limited. Therefore, understanding the impact of various parameter choices is accomplished through selectivity analyses. In the case of sharing studies for AI 1.5, identification of worst-case parameters allows the studies to be focused on worst-case scenarios with assurance that other parameter combinations will yield comparatively better results and therefore do not need to be fully analyzed. In this paper, the results of such sensitivity analyses are presented for the case of sharing between UAS CNPC satellite transmitters and terrestrial receivers using the Fixed Service (FS) operating in the same bands, and the implications of these analyses on sharing study results.

  6. Environmental Impact of Buildings--What Matters?

    PubMed

    Heeren, Niko; Mutel, Christopher L; Steubing, Bernhard; Ostermeyer, York; Wallbaum, Holger; Hellweg, Stefanie

    2015-08-18

    The goal of this study was to identify drivers of environmental impact and quantify their influence on the environmental performance of wooden and massive residential and office buildings. We performed a life cycle assessment and used thermal simulation to quantify operational energy demand and to account for differences in thermal inertia of building mass. Twenty-eight input parameters, affecting operation, design, material, and exogenic building properties were sampled in a Monte Carlo analysis. To determine sensitivity, we calculated the correlation between each parameter and the resulting life cycle inventory and impact assessment scores. Parameters affecting operational energy demand and energy conversion are the most influential for the building's total environmental performance. For climate change, electricity mix, ventilation rate, heating system, and construction material rank the highest. Thermal inertia results in an average 2-6% difference in heat demand. Nonrenewable cumulative energy demand of wooden buildings is 18% lower, compared to a massive variant. Total cumulative energy demand is comparable. The median climate change impact is 25% lower, including end-of-life material credits and 22% lower, when credits are excluded. The findings are valid for small offices and residential buildings in Switzerland and regions with similar building culture, construction material production, and climate.

  7. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  8. Small-signal modeling with direct parameter extraction for impact ionization effect in high-electron-mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn

    2015-11-21

    Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less

  9. Impact of Reactor Operating Parameters on Cask Reactivity in BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R; Ade, Brian J

    This paper discusses the effect of reactor operating parameters used in fuel depletion calculations on spent fuel cask reactivity, with relevance for boiling-water reactor (BWR) burnup credit (BUC) applications. Assessments that used generic BWR fuel assembly and spent fuel cask configurations are presented. The considered operating parameters, which were independently varied in the depletion simulations for the assembly, included fuel temperature, bypass water density, specific power, and operating history. Different operating history scenarios were considered for the assembly depletion to determine the effect of relative power distribution during the irradiation cycles, as well as the downtime between cycles. Depletion, decay,more » and criticality simulations were performed using computer codes and associated nuclear data within the SCALE code system. Results quantifying the dependence of cask reactivity on the assembly depletion parameters are presented herein.« less

  10. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.

  11. Environmental impact assessment of coal power plants in operation

    NASA Astrophysics Data System (ADS)

    Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan

    2017-11-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  12. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  13. Impact of spinal anaesthesia on peri-operative lung volumes in obese and morbidly obese female patients.

    PubMed

    Regli, A; von Ungern-Sternberg, B S; Reber, A; Schneider, M C

    2006-03-01

    Although obesity predisposes to postoperative pulmonary complications, data on the relationship between body mass index (BMI) and peri-operative respiratory performance are limited. We prospectively studied the impact of spinal anaesthesia, obesity and vaginal surgery on lung volumes measured by spirometry in 28 patients with BMI 30-40 kg.m(-2) and in 13 patients with BMI > or = 40 kg.m(-2). Vital capacity, forced vital capacity, forced expiratory volume in 1 s, mid-expiratory and peak expiratory flows were measured during the pre-operative visit (baseline), after effective spinal anaesthesia with premedication, and after the operation at 20 min, 1 h, 2 h, and 3 h (after mobilisation). Spinal anaesthesia and premedication were associated with a significant decrease in spirometric parameters. Spinal anaesthesia and premedication were associated with a significant decrease in spirometric parameters; mean (SD) vital capacities were - 19% (6.4) in patients with BMI 30-40 kg.m(-2) and - 33% (9.0) in patients with BMI > 40 kg.m(-2). The decrease of lung volumes remained constant for 2 h, whereas 3 h after the operation and after mobilisation, spirometric parameters significantly improved in all patients. This study showed that both spinal anaesthesia and obesity significantly impaired peri-operative respiratory function.

  14. Study of short-haul aircraft operating economics. Phase 2: An analysis of the impact of jet modernization on local service airline operating costs

    NASA Technical Reports Server (NTRS)

    Andrastek, D. A.

    1976-01-01

    The objectives of this phase of the study were (1) to assess the 10 year operating cost trends of the local service airlines operating in the 1965 through 1974 period, (2) to glean from these trends the technological and operational parameters which were impacted most significantly by the transition to newer pure jet, short haul transports, and effected by changing fuel prices and cost of living indices, and (3) to develop, construct, and evaluate an operating cost forecasting model which would incorporate those factors which best predicted airline total operating cost behavior over that 10-year period.

  15. The Impact of Item Position Change on Item Parameters and Common Equating Results under the 3PL Model

    ERIC Educational Resources Information Center

    Meyers, Jason L.; Murphy, Stephen; Goodman, Joshua; Turhan, Ahmet

    2012-01-01

    Operational testing programs employing item response theory (IRT) applications benefit from of the property of item parameter invariance whereby item parameter estimates obtained from one sample can be applied to other samples (when the underlying assumptions are satisfied). In theory, this feature allows for applications such as computer-adaptive…

  16. Impact of signal scattering and parametric uncertainties on receiver operating characteristics

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Breton, Daniel J.; Hart, Carl R.; Pettit, Chris L.

    2017-05-01

    The receiver operating characteristic (ROC curve), which is a plot of the probability of detection as a function of the probability of false alarm, plays a key role in the classical analysis of detector performance. However, meaningful characterization of the ROC curve is challenging when practically important complications such as variations in source emissions, environmental impacts on the signal propagation, uncertainties in the sensor response, and multiple sources of interference are considered. In this paper, a relatively simple but realistic model for scattered signals is employed to explore how parametric uncertainties impact the ROC curve. In particular, we show that parametric uncertainties in the mean signal and noise power substantially raise the tails of the distributions; since receiver operation with a very low probability of false alarm and a high probability of detection is normally desired, these tails lead to severely degraded performance. Because full a priori knowledge of such parametric uncertainties is rarely available in practice, analyses must typically be based on a finite sample of environmental states, which only partially characterize the range of parameter variations. We show how this effect can lead to misleading assessments of system performance. For the cases considered, approximately 64 or more statistically independent samples of the uncertain parameters are needed to accurately predict the probabilities of detection and false alarm. A connection is also described between selection of suitable distributions for the uncertain parameters, and Bayesian adaptive methods for inferring the parameters.

  17. Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1.

    PubMed

    Zahel, Thomas; Marschall, Lukas; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Mueller, Eric M; Murphy, Patrick; Natschläger, Thomas; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-12

    Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0). However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.

  18. Study of a dry room in a battery manufacturing plant using a process model

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  19. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts.

  20. Study of a dry room in a battery manufacturing plant using a process model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volumemore » of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.« less

  1. Financial Indicators of Reduced Impact Logging Performance in Brazil: Case Study Comparisons

    Treesearch

    Thomas P. Holmes; Frederick Boltz; Douglas R. Carter

    2001-01-01

    Indicators of financial performance are compared for three case studies in the Brazilian Amazon. Each case study presents parameters obtained from monitoring initial harvest entries into primary forests for reduced impact logging (RIL) and conventional logging (CL) operations. Differences in cost definitions and data collection protocols complicate the analysis, and...

  2. A Framework to Assess the Cumulative Hydrological Impacts of Dams on flow Regime

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, D.

    2016-12-01

    In this study we proposed a framework to assess the cumulative impact of dams on hydrological regime, and the impacts of the Three Gorges Dam on flow regime in Yangtze River were investigated with the framework. We reconstructed the unregulated flow series to compare with the regulated flow series in the same period. Eco-surplus and eco-deficit and the Indicators of Hydrologic Alteration parameters were used to examine the hydrological regime change. Among IHA parameters, Wilcoxon signed-rank test and Principal Components Analysis identified the representative indicators of hydrological alterations. Eco-surplus and eco-deficit showed that the reservoir also changed the seasonal regime of the flows in autumn and winter. Annual extreme flows and October flows changes lead to negative ecological implications downstream from the Three Gorges Dam. Ecological operation for the Three Gorges Dam is necessary to mitigate the negative effects on the river ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation.

  3. Imaging Performance Analysis of Simbol-X with Simulations

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    Simbol-X is an X-Ray telescope operating in formation flight. It means that its optical performances will strongly depend on the drift of the two spacecrafts and its ability to measure these drifts for image reconstruction. We built a dynamical ray tracing code to study the impact of these parameters on the optical performance of Simbol-X (see Chauvin et al., these proceedings). Using the simulation tool we have developed, we have conducted detailed analyses of the impact of different parameters on the imaging performance of the Simbol-X telescope.

  4. Vulnerability of manned spacecraft to crew loss from orbital debris penetration

    NASA Technical Reports Server (NTRS)

    Williamsen, J. E.

    1994-01-01

    Orbital debris growth threatens the survival of spacecraft systems from impact-induced failures. Whereas the probability of debris impact and spacecraft penetration may currently be calculated, another parameter of great interest to safety engineers is the probability that debris penetration will cause actual spacecraft or crew loss. Quantifying the likelihood of crew loss following a penetration allows spacecraft designers to identify those design features and crew operational protocols that offer the highest improvement in crew safety for available resources. Within this study, a manned spacecraft crew survivability (MSCSurv) computer model is developed that quantifies the conditional probability of losing one or more crew members, P(sub loss/pen), following the remote likelihood of an orbital debris penetration into an eight module space station. Contributions to P(sub loss/pen) are quantified from three significant penetration-induced hazards: pressure wall rupture (explosive decompression), fragment-induced injury, and 'slow' depressurization. Sensitivity analyses are performed using alternate assumptions for hazard-generating functions, crew vulnerability thresholds, and selected spacecraft design and crew operations parameters. These results are then used to recommend modifications to the spacecraft design and expected crew operations that quantitatively increase crew safety from orbital debris impacts.

  5. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.

    2015-02-28

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less

  6. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  7. A review of pharmaceutical extrusion: critical process parameters and scaling-up.

    PubMed

    Thiry, J; Krier, F; Evrard, B

    2015-02-01

    Hot melt extrusion has been a widely used process in the pharmaceutical area for three decades. In this field, it is important to optimize the formulation in order to meet specific requirements. However, the process parameters of the extruder should be as much investigated as the formulation since they have a major impact on the final product characteristics. Moreover, a design space should be defined in order to obtain the expected product within the defined limits. This gives some freedom to operate as long as the processing parameters stay within the limits of the design space. Those limits can be investigated by varying randomly the process parameters but it is recommended to use design of experiments. An examination of the literature is reported in this review to summarize the impact of the variation of the process parameters on the final product properties. Indeed, the homogeneity of the mixing, the state of the drug (crystalline or amorphous), the dissolution rate, the residence time, can be influenced by variations in the process parameters. In particular, the impact of the following process parameters: temperature, screw design, screw speed and feeding, on the final product, has been reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  9. Information content in reflected signals during GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Aparicio, Josep M.; Cardellach, Estel; Rodríguez, Hilda

    2018-04-01

    The possibility of extracting useful information about the state of the lower troposphere from the surface reflections that are often detected during GPS radio occultations (GPSRO) is explored. The clarity of the reflection is quantified, and can be related to properties of the surface and the low troposphere. The reflected signal is often clear enough to show good phase coherence, and can be tracked and processed as an extension of direct non-reflected GPSRO atmospheric profiles. A profile of bending angle vs. impact parameter can be obtained for these reflected signals, characterized by impact parameters that are below the apparent horizon, and that is a continuation at low altitude of the standard non-reflected bending angle profile. If there were no reflection, these would correspond to tangent altitudes below the local surface, and in particular below the local mean sea level. A forward operator is presented, for the evaluation of the bending angle of reflected GPSRO signals, given atmospheric properties as described by a numerical weather prediction system. The operator is an extension, at lower impact parameters, of standard bending angle operators, and reproduces both the direct and reflected sections of the measured profile. It can be applied to the assimilation of the reflected section of the profile as supplementary data to the direct section. Although the principle is also applicable over land, this paper is focused on ocean cases, where the topographic height of the reflecting surface, the sea level, is better known a priori.

  10. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  11. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  12. Mathematical model for carbon dioxide evolution from the thermophilic composting of synthetic food wastes made of dog food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.I.; Tsai, J.J.; Wu, K.H.

    2005-07-01

    The impacts of the aeration and the agitation on the composting process of synthetic food wastes made of dog food were studied in a laboratory-scale reactor. Two major peaks of CO{sub 2} evolution rate were observed. Each peak represented an independent stage of composting associated with the activities of thermophilic bacteria. CO{sub 2} evolutions known to correlate well with microbial activities and reactor temperatures were fitted successfully to a modified Gompertz equation, which incorporated three biokinetic parameters, namely, CO{sub 2} evolution potential, specific CO{sub 2} evolution rate, and lag phase time. No parameters that describe the impact of operating variablesmore » are involved. The model is only valid for the specified experimental conditions and may look different with others. The effects of operating parameters such as aeration and agitation were studied statistically with multivariate regression technique. Contour plots were constructed using regression equations for the examination of the dependence of CO{sub 2} evolution potentials on aeration and agitation. In the first stage, a maximum CO{sub 2} evolution potential was found when the aeration rate and the agitation parameter were set at 1.75 l/kg solids-min and 0.35, respectively. In the second stage, a maximum existed when the aeration rate and the agitation parameter were set at 1.8 l/kg solids-min and 0.5, respectively. The methods presented here can also be applied for the optimization of large-scale composting facilities that are operated differently and take longer time.« less

  13. Use of an Expansion Tube to Examine Scramjet Combustion at Hypersonic Velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, Oussama; Bakos, Robert J.; Chinitz, Wallace; Pulsonetti, Maria V; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Math numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansio tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the lase named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  14. Use of an expansion tube to examine scramjet combustion at hypersonic velocities

    NASA Technical Reports Server (NTRS)

    Rizkalla, O.; Bakos, R. J.; Pulsonetti, M.; Chinitz, Wallace; Erdos, John I.

    1989-01-01

    Combustion testing at total enthalpy conditions corresponding to flight Mach numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansion tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the last-named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.

  15. Thermal oil recovery method using self-contained windelectric sets

    NASA Astrophysics Data System (ADS)

    Belsky, A. A.; Korolyov, I. A.

    2018-05-01

    The paper reviews challenges associated with questions of efficiency of thermal methods of impact on productive oil strata. The concept of using electrothermal complexes with WEG power supply for the indicated purposes was proposed and justified, their operating principles, main advantages and disadvantages, as well as a schematechnical solution for the implementation of the intensification of oil extraction, were considered. A mathematical model for finding the operating characteristics of WEG is presented and its main energy parameters are determined. The adequacy of the mathematical model is confirmed by laboratory simulation stand tests with nominal parameters.

  16. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  17. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  18. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  19. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  20. Wind Plant Performance Prediction (WP3) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Anna

    The methods for analysis of operational wind plant data are highly variable across the wind industry, leading to high uncertainties in the validation and bias-correction of preconstruction energy estimation methods. Lack of credibility in the preconstruction energy estimates leads to significant impacts on project financing and therefore the final levelized cost of energy for the plant. In this work, the variation in the evaluation of a wind plant's operational energy production as a result of variations in the processing methods applied to the operational data is examined. Preliminary results indicate that selection of the filters applied to the data andmore » the filter parameters can have significant impacts in the final computed assessment metrics.« less

  1. Impact of operating conditions on the acetylene contamination in the cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yunfeng; St-Pierre, Jean

    2017-12-01

    Realistically, proton exchange membrane fuel cells (PEMFCs) are operated under varying operating conditions that potentially impact the acetylene contamination reactions. In this paper, the effects of the cell operating conditions on the acetylene contamination in PEMFCs are investigated under different current densities and temperatures with different acetylene concentrations in the cathode. Electrochemical impedance spectroscopy is applied during the constant-current operation to analyze the impacts of the operating conditions on the acetylene electrochemical reactions. The experimental results indicate that higher acetylene concentrations, higher current densities and lower cell temperatures decrease the cell performance more. In particular, cathode poisoning becomes more severe at medium cell current densities. The cell cathode potentials at such current densities are not sufficient to completely oxidize the intermediate or sufficiently low to completely reduce the adsorbed acetylene. Based on these investigations, the possible condition-dependent limitations of the acetylene concentration and cell operating voltage are proposed for insight into the acetylene contamination mitigation stratagem. Regarding the barrier conditions, the acetylene reactions change abruptly, and adjusting the cell operation parameters to change the acetylene adsorbate and intermediate accumulation conditions to induce complete oxidation or reduction conditions may mitigate the severe acetylene contamination effects on PEMFCs.

  2. Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Jackson, Dennis G.; Dickson, John O.

    A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that addressmore » the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.« less

  3. Development of a subway operation incident delay model using accelerated failure time approaches.

    PubMed

    Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang

    2014-12-01

    This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, M.; Keyser, D.

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology,more » as well as the parameters and references used to develop the cost data contained in the model.« less

  5. Impact-induced acceleration by obstacles

    NASA Astrophysics Data System (ADS)

    Corbin, N. A.; Hanna, J. A.; Royston, W. R.; Singh, H.; Warner, R. B.

    2018-05-01

    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls faster than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Edward K.; Cornish, Neil J.

    Massive black hole binaries are key targets for the space based gravitational wave Laser Interferometer Space Antenna (LISA). Several studies have investigated how LISA observations could be used to constrain the parameters of these systems. Until recently, most of these studies have ignored the higher harmonic corrections to the waveforms. Here we analyze the effects of the higher harmonics in more detail by performing extensive Monte Carlo simulations. We pay particular attention to how the higher harmonics impact parameter correlations, and show that the additional harmonics help mitigate the impact of having two laser links fail, by allowing for anmore » instantaneous measurement of the gravitational wave polarization with a single interferometer channel. By looking at parameter correlations we are able to explain why certain mass ratios provide dramatic improvements in certain parameter estimations, and illustrate how the improved polarization measurement improves the prospects for single interferometer operation.« less

  7. An Empirical Investigation of the Potential Impact of Item Misfit on Test Scores. Research Report. ETS RR-17-60

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Robin, Frederic

    2017-01-01

    In this study, we examined the potential impact of item misfit on the reported scores of an admission test from the subpopulation invariance perspective. The target population of the test consisted of 3 major subgroups with different geographic regions. We used the logistic regression function to estimate item parameters of the operational items…

  8. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  9. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  10. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  11. A flowsheet model of a well-mixed fluidized bed dryer: Applications in controllability assessment and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langrish, T.A.G.; Harvey, A.C.

    2000-01-01

    A model of a well-mixed fluidized-bed dryer within a process flowsheeting package (SPEEDUP{trademark}) has been developed and applied to a parameter sensitivity study, a steady-state controllability analysis and an optimization study. This approach is more general and would be more easily applied to a complex flowsheet than one which relied on stand-alone dryer modeling packages. The simulation has shown that industrial data may be fitted to the model outputs with sensible values of unknown parameters. For this case study, the parameter sensitivity study has found that the heat loss from the dryer and the critical moisture content of the materialmore » have the greatest impact on the dryer operation at the current operating point. An optimization study has demonstrated the dominant effect of the heat loss from the dryer on the current operating cost and the current operating conditions, and substantial cost savings (around 50%) could be achieved with a well-insulated and airtight dryer, for the specific case studied here.« less

  12. Impact of system parameter selection on radar sensor performance in automotive applications

    NASA Astrophysics Data System (ADS)

    Blöecher, H.-L.; Andres, M.; Fischer, C.; Sailer, A.; Goppelt, M.; Dickmann, J.

    2012-09-01

    The paper deals with the investigation of relevant boundary conditions to be considered in order to operate 77/79 GHz narrow and ultra wide band automotive radar sensors in the automotive platform and the automotive environment.

  13. FLORIDA LARGE BUILDING STUDY - POLK COUNTY ADMINISTRATION BUILDING

    EPA Science Inventory

    The report describes an extensive characterization and parameter assessment study of a single, large building in Bartow, FL, with the purpose of assessing the impact on radon entry of design, construction, and operating features of the building, particularly the mechanical subsys...

  14. Improvement of human operator vibroprotection system in the utility machine

    NASA Astrophysics Data System (ADS)

    Korchagin, P. A.; Teterina, I. A.; Rahuba, L. F.

    2018-01-01

    The article is devoted to an urgent problem of improving efficiency of road-building utility machines in terms of improving human operator vibroprotection system by determining acceptable values of the rigidity coefficients and resistance coefficients of operator’s cab suspension system elements and those of operator’s seat. Negative effects of vibration result in labour productivity decrease and occupational diseases. Besides, structure vibrations have a damaging impact on the machine units and mechanisms, which leads to reducing an overall service life of the machine. Results of experimental and theoretical research of operator vibroprotection system in the road-building utility machine are presented. An algorithm for the program to calculate dynamic impacts on the operator in terms of different structural and performance parameters of the machine and considering combination of external pertrubation influences was proposed.

  15. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    PubMed

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of Titanium Oxide Layers Formation Produced by Nanosecond Laser Coloration

    NASA Astrophysics Data System (ADS)

    Brihmat-Hamadi, F.; Amara, E. H.; Kellou, H.

    2017-06-01

    Laser marking technique is used to produce colors on titanium while scanning a metallic sample under normal atmospheric conditions. To proceed with different operating conditions related to the laser beam, the parameters of a Q-switched diode-pumped Nd:YAG ( λ = 532 nm) laser, with a pulse duration of τ = 5 ns, are varied. The effect on the resulting mark quality is the aim of the present study which is developed to determine the influence of the operating parameters ( i.e., pulse frequency, beam scanning speed, and pumping intensity) and furthermore their combination, such as the accumulated fluences and the overlapping rate of laser impacts. From the obtained experimental results, it is noted that the accumulated fluences and the scanning speed are the most influential operating parameters during laser marking, since they have a strong effect on the surface roughness and reflectance, and the occurrence of many oxide phases such as TiO, Ti2O3, TiO2 ( γ- phase, anatase, and rutile).

  17. MSL-RAD Cruise Operations Concept

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Zeitlin, Cary; Hassler, Donald; Weigle, Gerald E.; Boettcher, Stephan; Martin, Cesar; Wimmer-Schweingrubber, Robert

    2012-01-01

    The Mars Science Laboratory (MSL) payload includes the Radiation Assessment Detector (RAD) instrument, intended to fully characterize the radiation environment for the MSL mission. The RAD instrument operations concept is intended to reduce impact to spacecraft resources and effort for the MSL operations team. By design, RAD autonomously performs regular science observations without the need for frequent commanding from the Rover Compute Element (RCE). RAD operates with pre-defined "sleep" and "observe" periods, with an adjustable duty cycle for meeting power and data volume constraints during the mission. At the start of a new science observation, RAD performs a pre-observation activity to assess count rates for selected RAD detector elements. Based on this assessment, RAD can enter "solar event" mode, in which instrument parameters (including observation duration) are selected to more effectively characterize the environment. At the end of each observation period, RAD stores a time-tagged, fixed length science data packet in its non-volatile mass memory storage. The operating cadence is defined by adjustable parameters, also stored in non-volatile memory within the instrument. Periodically, the RCE executes an on-board sequence to transfer RAD science data packets from the instrument mass storage to the MSL downlink buffer. Infrequently, the RAD instrument operating configuration is modified by updating internal parameter tables and configuration entries.

  18. The Impact of Uncertain Physical Parameters on HVAC Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai

    HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units.more » These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.« less

  19. Impact of longitudinal flying qualities upon the design of a transport with active controls

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed with relaxed static stability. Additionally, a number of handling quality related design constants were studied with respect to their impact to the design.

  20. How should epistemic uncertainty in modelling water resources management problems shape evaluations of their operations?

    NASA Astrophysics Data System (ADS)

    Dobson, B.; Pianosi, F.; Reed, P. M.; Wagener, T.

    2017-12-01

    In previous work, we have found that water supply companies are typically hesitant to use reservoir operation tools to inform their release decisions. We believe that this is, in part, due to a lack of faith in the fidelity of the optimization exercise with regards to its ability to represent the real world. In an attempt to quantify this, recent literature has studied the impact on performance from uncertainty arising in: forcing (e.g. reservoir inflows), parameters (e.g. parameters for the estimation of evaporation rate) and objectives (e.g. worst first percentile or worst case). We suggest that there is also epistemic uncertainty in the choices made during model creation, for example in the formulation of an evaporation model or aggregating regional storages. We create `rival framings' (a methodology originally developed to demonstrate the impact of uncertainty arising from alternate objective formulations), each with different modelling choices, and determine their performance impacts. We identify the Pareto approximate set of policies for several candidate formulations and then make them compete with one another in a large ensemble re-evaluation in each other's modelled spaces. This enables us to distinguish the impacts of different structural changes in the model used to evaluate system performance in an effort to generalize the validity of the optimized performance expectations.

  1. An Assessment of Regional Variations in Martian Modified Impact Crater Morphology

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Bandeira, Lourenço.; Howard, Alan D.

    2018-03-01

    Impact craters on Mars have been extensively modified by ancient geologic processes that may have included rainfall and surface runoff, snow and ice, denudation by lava flows, burial by eolian material, or others. Many of these processes can leave distinct signatures on the morphometry of the modified impact crater as well as the surrounding landscape. To look for signs of potential regional differences in crater modification processes, we conducted an analysis of different morphometric parameters related to modified impact craters located in the Margaritifer Sinus, Sinus Sabaeus, Iapygia, Mare Tyrrhenum, Aeolis, and Eridania quadrangles, including depth, crater wall slope, crater floor slope, the curvature between the interior wall and the crater floor slope, and the curvature between the interior wall and surrounding landscape. A Welch's t test analysis comparing these parameters shows that fresh impact craters (Type 4) have consistent morphologies regardless of their geographic location examined in this study, which is not unexpected. Modified impact craters both in the initial (Type 3) and terminal stages (Type 1) of modification also have statistically consistent morphologies. This would suggest that the processes that operated in the late Noachian were globally ubiquitous, and that modified craters eventually reached a stable crater morphology. However, craters preserved in advanced (but not terminal) stages of modification (Type 2) have morphologies that vary across the quadrangles. It is possible that these variations reflect spatial differences in the types and intensity of geologic processes that operated during the Noachian, implying that the ancient climate also varied across regions.

  2. Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. SLM stands poised to revolutionize propulsion manufacturing, but there are a number of technical questions that must be addressed in order to achieve rapid, efficient fabrication and ensure adequate performance of parts manufactured using this process in safety-critical flight applications. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this work is to characterize the impact of higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. In phase I of this work, density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, hatch spacing, and layer thickness) and material consolidation (assessed in terms of as-built density and porosity). Phase II additionally considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the same higher energy parameter regime considered in the phase I work. Density and microstructure represent the "first-gate" metrics for determining the adequacy of the SLM process in this parameter range and, as a critical initial indicator of material quality, will factor into a follow-on DOE that assesses the impact of these parameters on mechanical properties. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  3. LIME SPRAY DRYER FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL

    EPA Science Inventory

    The report describes a lime spray dryer/baghouse (FORTRAN) computer model that simulates SO2 removal and permits study of related impacts on design and economics as functions of design parameters and operating conditions for coal-fired electric generating units. The model allows ...

  4. Evaluation of airfield pavement evenness

    NASA Astrophysics Data System (ADS)

    Pietruszewski, Paweł; Poświata, Adam; Wesołowski, Mariusz

    2018-05-01

    The evenness of airfield pavements is one of the basic operating parameters, which characterize them. The evenness determines not only comfort of traffic along an airfield pavement, but also influences the size of dynamic effect on the pavement, hence, the safety of air operations. In addition, the evenness condition changing as a result of dynamic loads, adverse weather conditions or inappropriate airfield pavement construction technology, lead to deviations from the desired condition in the form of longitudinal and transverse unevenness. As a result, systematic and correct performance of tests is a very significant and required factor impacting the improvement of traffic safety on airfield pavements. If the data obtained through the measurements are not sufficiently reliable, they may consequently lead to making incorrect decisions, which can ultimately impact the safety of air operations.

  5. Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Augustine, C.; Goldberg, M.

    2012-09-01

    The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less

  6. Prototype Environmental Assessment of the impacts of siting and construction of an SPS ground receiving station

    NASA Technical Reports Server (NTRS)

    Hill, J.

    1980-01-01

    A prototype assessment of the environmental impacts of siting and constructing a Satellite Power System (SPS) Ground Receiving Station (GRS) is reported. The objectives of the study were: (1) to develop an assessment of the nonmicrowave related impacts of the reference system SPS GRS on the natural environment; (2) to assess the impacts of GRS construction and operations in the context of actual baseline data for a site in the California desert; and (3) to identify critical GRS characteristics or parameters that are most significant in terms of the natural environment.

  7. Characterization of breakdown behavior of diamond Schottky barrier diodes using impact ionization coefficients

    NASA Astrophysics Data System (ADS)

    Driche, Khaled; Umezawa, Hitoshi; Rouger, Nicolas; Chicot, Gauthier; Gheeraert, Etienne

    2017-04-01

    Diamond has the advantage of having an exceptionally high critical electric field owing to its large band gap, which implies its high ability to withstand high voltages. At this maximum electric field, the operation of Schottky barrier diodes (SBDs), as well as FETs, may be limited by impact ionization, leading to avalanche multiplication, and hence the devices may breakdown. In this study, three of the reported impact ionization coefficients for electrons, αn, and holes, αp, in diamond at room temperature (300 K) are analyzed. Experimental data on reverse operation characteristics obtained from two different diamond SBDs are compared with those obtained from their corresponding simulated structures. Owing to the crucial role played by the impact ionization rate in determining the carrier transport, the three reported avalanche parameters implemented affect the behavior not only of the breakdown voltage but also of the leakage current for the same structure.

  8. Forecasting Propagation and Evolution of CMEs in an Operational Setting: What Has Been Learned

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Kuznetsova, M. Masha; Lee, Hyesook; hide

    2013-01-01

    One of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  9. Forecasting propagation and evolution of CMEs in an operational setting: What has been learned

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Macneice, Peter; Odstrcil, Dusan; Mays, M. L.; Rastaetter, Lutz; Pulkkinen, Antti; Taktakishvili, Aleksandre; Hesse, Michael; Masha Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna

    2013-10-01

    of the major types of solar eruption, coronal mass ejections (CMEs) not only impact space weather, but also can have significant societal consequences. CMEs cause intense geomagnetic storms and drive fast mode shocks that accelerate charged particles, potentially resulting in enhanced radiation levels both in ions and electrons. Human and technological assets in space can be endangered as a result. CMEs are also the major contributor to generating large amplitude Geomagnetically Induced Currents (GICs), which are a source of concern for power grid safety. Due to their space weather significance, forecasting the evolution and impacts of CMEs has become a much desired capability for space weather operations worldwide. Based on our operational experience at Space Weather Research Center at NASA Goddard Space Flight Center (http://swrc.gsfc.nasa.gov), we present here some of the insights gained about accurately predicting CME impacts, particularly in relation to space weather operations. These include: 1. The need to maximize information to get an accurate handle of three-dimensional (3-D) CME kinetic parameters and therefore improve CME forecast; 2. The potential use of CME simulation results for qualitative prediction of regions of space where solar energetic particles (SEPs) may be found; 3. The need to include all CMEs occurring within a 24 h period for a better representation of the CME interactions; 4. Various other important parameters in forecasting CME evolution in interplanetary space, with special emphasis on the CME propagation direction. It is noted that a future direction for our CME forecasting is to employ the ensemble modeling approach.

  10. Statistical analysis of general aviation VG-VGH data

    NASA Technical Reports Server (NTRS)

    Clay, L. E.; Dickey, R. L.; Moran, M. S.; Payauys, K. W.; Severyn, T. P.

    1974-01-01

    To represent the loads spectra of general aviation aircraft operating in the Continental United States, VG and VGH data collected since 1963 in eight operational categories were processed and analyzed. Adequacy of data sample and current operational categories, and parameter distributions required for valid data extrapolation were studied along with envelopes of equal probability of exceeding the normal load factor (n sub z) versus airspeed for gust and maneuver loads and the probability of exceeding current design maneuver, gust, and landing impact n sub z limits. The significant findings are included.

  11. Using radar-derived parameters to forecast lightning cessation for nonisolated storms

    NASA Astrophysics Data System (ADS)

    Davey, Matthew J.; Fuelberg, Henry E.

    2017-03-01

    Lightning impacts operations at the Kennedy Space Center (KSC) and other outdoor venues leading to injuries, inconvenience, and detrimental economic impacts. This research focuses on cases of "nonisolated" lightning which we define as one cell whose flashes have ceased although it is still embedded in weak composite reflectivity (Z ≥ 15 dBZ) with another cell that is still producing flashes. The objective is to determine if any radar-derived parameters provide useful information about the occurrence of lightning cessation in remnant storms. The data set consists of 50 warm season (May-September) nonisolated storms near KSC during 2013. The research utilizes the National Lightning Detection Network, the second generation Lightning Detection and Ranging network, and polarized radar data. These data are merged and analyzed using the Warning Decision Support System-Integrated Information at 1 min intervals. Our approach only considers 62 parameters, most of which are related to the noninductive charging mechanism. They included the presence of graupel at various thermal altitudes, maximum reflectivity of the decaying storm at thermal altitudes, maximum connecting composite reflectivity between the decaying cell and active cell, minutes since the previous flash, and several others. Results showed that none of the parameters reliably indicated lightning cessation for even our restrictive definition of nonisolated storms. Additional research is needed before cessation can be determined operationally with the high degree of accuracy required for safety.

  12. In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, Eric

    2015-10-13

    An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less

  13. On the theory of multi-pulse vibro-impact mechanisms

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Metrikin, V. S.; Nikiforova, I. V.; Ipatov, A. A.

    2017-11-01

    This paper presents a mathematical model of a new multi-striker eccentric shock-vibration mechanism with a crank-sliding bar vibration exciter and an arbitrary number of pistons. Analytical solutions for the parameters of the model are obtained to determine the regions of existence of stable periodic motions. Under the assumption of an absolutely inelastic collision of the piston, we derive equations that single out a bifurcational unattainable boundary in the parameter space, which has a countable number of arbitrarily complex stable periodic motions in its neighbourhood. We present results of numerical simulations, which illustrate the existence of periodic and stochastic motions. The methods proposed in this paper for investigating the dynamical characteristics of the new crank-type conrod mechanisms allow practitioners to indicate regions in the parameter space, which allow tuning these mechanisms into the most efficient periodic mode of operation, and to effectively analyze the main changes in their operational regimes when the system parameters are changed.

  14. Effects of the Fuel Price Increase on the Operating Cost of Freight Transport Vehicles

    NASA Astrophysics Data System (ADS)

    Gohari, Adel; Matori, Nasir; Yusof, Khamaruzaman Wan; Toloue, Iraj; Myint, Kin Cho

    2018-03-01

    One of the most important criteria in freight modal choices is the transport operating cost in which fuel price changes has a significant effect on it. This paper presents the impact of fuel price increases on the operating cost of the different transport modes for the containerized freight transportation. In this study, an operating cost equation was applied to compare the operating cost of different freight transport vehicles as well as evaluation of the operating cost changes across a range of fuel prices between the current price and one-hundred percent increase. The equation consists of influential parameters such as fuel cost, driver wage and maintenance cost of a vehicle. It has been concluded that the effect of the fuel price increase on the operating cost of different freight transportation modes is not in the same rate. According to equation and effective parameters considered, comparing the results showed that truck has the highest cost, train has the largest increase in price. Finally, the ship is the most influenced vehicle in terms of operating cost percentage increase when the rate of fuel price increase, followed by train and truck.

  15. Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications

    NASA Astrophysics Data System (ADS)

    Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.

    2018-01-01

    The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.

  16. Comparison of the fractional power motor with cores made of various magnetic materials

    NASA Astrophysics Data System (ADS)

    Gmyrek, Zbigniew; Lefik, Marcin; Cavagnino, Andrea; Ferraris, Luca

    2017-12-01

    The optimization of the motor cores, coupled with new core shapes as well as powering the motor at high frequency are the primary reasons for the use of new materials. The utilization of new materials, like SMC (soft magnetic composite), reduce the core loss and/or provide quasi-isotropic core's properties in any magnetization direction. Moreover, the use of SMC materials allows for avoiding degradation of the material portions, resulting from punching process, thereby preventing the deterioration of operating parameters of the motor. The authors examine the impact of technological parameters on the properties of a new type of SMC material and analyze the possibility of its use as the core of the fractional power motor. The result of the work is an indication of the shape of the rotor core made of a new SMC material to achieve operational parameters similar to those that have a motor with a core made of laminations.

  17. The qualitative assessment of pneumatic actuators operation in terms of vibration criteria

    NASA Astrophysics Data System (ADS)

    Hetmanczyk, M. P.; Michalski, P.

    2015-11-01

    The work quality of pneumatic actuators can be assessed in terms of multiple criteria. In the case of complex systems with pneumatic actuators retained at end positions (with occurrence of piston impact in cylinder covers) the vibration criteria constitute the most reliable indicators. The paper presents an impact assessment on the operating condition of the rodless pneumatic cylinder regarding to selected vibrational symptoms. On the basis of performed analysis the authors had shown meaningful premises allowing an evaluation of the performance and tuning of end position damping piston movement with usage the most common diagnostic tools (portable vibration analyzers). The presented method is useful in tuning of parameters in industrial conditions.

  18. Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks

    NASA Astrophysics Data System (ADS)

    Karpov, Kirill; Fedotova, Irina; Siemens, Eduard

    2017-07-01

    In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.

  19. Evaluation of Signal Regeneration Impact on the Power Efficiency of Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Pavlovs, D.; Bobrovs, V.; Parfjonovs, M.; Alsevska, A.; Ivanovs, G.

    2017-10-01

    Due to potential economic benefits and expected environmental impact, the power consumption issue in wired networks has become a major challenge. Furthermore, continuously increasing global Internet traffic demands high spectral efficiency values. As a result, the relationship between spectral efficiency and energy consumption of telecommunication networks has become a popular topic of academic research over the past years, where a critical parameter is power efficiency. The present research contains calculation results that can be used by optical network designers and operators as guidance for developing more power efficient communication networks if the planned system falls within the scope of this paper. The research results are presented as average aggregated traffic curves that provide more flexible data for the systems with different spectrum availability. Further investigations could be needed in order to evaluate the parameters under consideration taking into account particular spectral parameters, e.g., the entire C-band.

  20. Brain injury prediction: assessing the combined probability of concussion using linear and rotational head acceleration.

    PubMed

    Rowson, Steven; Duma, Stefan M

    2013-05-01

    Recent research has suggested possible long term effects due to repetitive concussions, highlighting the importance of developing methods to accurately quantify concussion risk. This study introduces a new injury metric, the combined probability of concussion, which computes the overall risk of concussion based on the peak linear and rotational accelerations experienced by the head during impact. The combined probability of concussion is unique in that it determines the likelihood of sustaining a concussion for a given impact, regardless of whether the injury would be reported or not. The risk curve was derived from data collected from instrumented football players (63,011 impacts including 37 concussions), which was adjusted to account for the underreporting of concussion. The predictive capability of this new metric is compared to that of single biomechanical parameters. The capabilities of these parameters to accurately predict concussion incidence were evaluated using two separate datasets: the Head Impact Telemetry System (HITS) data and National Football League (NFL) data collected from impact reconstructions using dummies (58 impacts including 25 concussions). Receiver operating characteristic curves were generated, and all parameters were significantly better at predicting injury than random guessing. The combined probability of concussion had the greatest area under the curve for all datasets. In the HITS dataset, the combined probability of concussion and linear acceleration were significantly better predictors of concussion than rotational acceleration alone, but not different from each other. In the NFL dataset, there were no significant differences between parameters. The combined probability of concussion is a valuable method to assess concussion risk in a laboratory setting for evaluating product safety.

  1. Application of quality by design principles to the development and technology transfer of a major process improvement for the manufacture of a recombinant protein.

    PubMed

    Looby, Mairead; Ibarra, Neysi; Pierce, James J; Buckley, Kevin; O'Donovan, Eimear; Heenan, Mary; Moran, Enda; Farid, Suzanne S; Baganz, Frank

    2011-01-01

    This study describes the application of quality by design (QbD) principles to the development and implementation of a major manufacturing process improvement for a commercially distributed therapeutic protein produced in Chinese hamster ovary cell culture. The intent of this article is to focus on QbD concepts, and provide guidance and understanding on how the various components combine together to deliver a robust process in keeping with the principles of QbD. A fed-batch production culture and a virus inactivation step are described as representative examples of upstream and downstream unit operations that were characterized. A systematic approach incorporating QbD principles was applied to both unit operations, involving risk assessment of potential process failure points, small-scale model qualification, design and execution of experiments, definition of operating parameter ranges and process validation acceptance criteria followed by manufacturing-scale implementation and process validation. Statistical experimental designs were applied to the execution of process characterization studies evaluating the impact of operating parameters on product quality attributes and process performance parameters. Data from process characterization experiments were used to define the proven acceptable range and classification of operating parameters for each unit operation. Analysis of variance and Monte Carlo simulation methods were used to assess the appropriateness of process design spaces. Successful implementation and validation of the process in the manufacturing facility and the subsequent manufacture of hundreds of batches of this therapeutic protein verifies the approaches taken as a suitable model for the development, scale-up and operation of any biopharmaceutical manufacturing process. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  2. The Tracking Meteogram, an AWIPS II Tool for Time-Series Analysis

    NASA Technical Reports Server (NTRS)

    Burks, Jason Eric; Sperow, Ken

    2015-01-01

    A new tool has been developed for the National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS) II through collaboration between NASA's Short-term Prediction Research and Transition (SPoRT) and the NWS Meteorological Development Laboratory (MDL). Referred to as the "Tracking Meteogram", the tool aids NWS forecasters in assessing meteorological parameters associated with moving phenomena. The tool aids forecasters in severe weather situations by providing valuable satellite and radar derived trends such as cloud top cooling rates, radial velocity couplets, reflectivity, and information from ground-based lightning networks. The Tracking Meteogram tool also aids in synoptic and mesoscale analysis by tracking parameters such as the deepening of surface low pressure systems, changes in surface or upper air temperature, and other properties. The tool provides a valuable new functionality and demonstrates the flexibility and extensibility of the NWS AWIPS II architecture. In 2014, the operational impact of the tool was formally evaluated through participation in the NOAA/NWS Operations Proving Ground (OPG), a risk reduction activity to assess performance and operational impact of new forecasting concepts, tools, and applications. Performance of the Tracking Meteogram Tool during the OPG assessment confirmed that it will be a valuable asset to the operational forecasters. This presentation reviews development of the Tracking Meteogram tool, performance and feedback acquired during the OPG activity, and future goals for continued support and extension to other application areas.

  3. Environmental parameters of shuttle support for life sciences experiments

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.

    1976-01-01

    The environments provided by the Orbiter vehicle and by the Spacelab will differ substantially from the environment provided by prior spacecraft. The specific design limits for each environmental parameter and expected operating characteristics are presented for both the Orbiter and the Spacelab. The environments are compared with those of earlier spacecraft and with the normal earth laboratory. Differences between the spacecraft environments and the normal laboratory environment and the impact of these differences on experiments and equipment design are discussed.

  4. Modeling Longitudinal Dynamics in the Fermilab Booster Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostiguy, Jean-Francois; Bhat, Chandra; Lebedev, Valeri

    2016-06-01

    The PIP-II project will replace the existing 400 MeV linac with a new, CW-capable, 800 MeV superconducting one. With respect to current operations, a 50% increase in beam intensity in the rapid cycling Booster synchrotron is expected. Booster batches are combined in the Recycler ring; this process limits the allowed longitudinal emittance of the extracted Booster beam. To suppress eddy currents, the Booster has no beam pipe; magnets are evacuated, exposing the beam to core laminations and this has a substantial impact on the longitudinal impedance. Noticeable longitudinal emittance growth is already observed at transition crossing. Operation at higher intensitymore » will likely necessitate mitigation measures. We describe systematic efforts to construct a predictive model for current operating conditions. A longitudinal only code including a laminated wall impedance model, space charge effects, and feedback loops is developed. Parameter validation is performed using detailed measurements of relevant beam, rf and control parameters. An attempt is made to benchmark the code at operationally favorable machine settings.« less

  5. Parametric study of STOL short-haul engine cycles and operational techniques to minimize community noise impact

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effect of aircraft operational techniques in the terminal area on community noise impact of future short-haul aircraft was investigated. These operational techniques affected altitude, flap retraction rate, thrust cutback altitude, amount of thrust cutback, and amount of turning. During landing the parameters varied were glide slope angle, change in slope angle (two segment approach), and flap extension rate. One mechanical-flap (MF) aircraft and one externally-blown-flap (EBF) aircraft were used to study by noise impact at four U.S. airports, Hanscom Field (Boston); Washington National; Midway (Chicago); and Orange County (California). With the exception of Washington National (DCA), the study showed that a reduction of approximately 40 percent in the number of people highly annoyed (as defined in the study) can be obtained by using these operational techniques. At DCA the number of people highly annoyed using the standard procedure was quite low, but it is significant that the minimumimpact case for Runway 36 reduced the number of people highly annoyed to zero using a power cutback and a turning departure path. The evaluation procedures and methodology developed in this study represents an advance in acoustical state-of-the-art and should provide an effective and useful tool for determining aircraft noise impact upon the airport community.

  6. Justification of parameters and selection of equipment for laboratory researches of a rammer's operating element dynamics in a soil foundation of a tank for oil and oil products storage

    NASA Astrophysics Data System (ADS)

    Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.

    2017-08-01

    The development of technology for a directional soil compaction of tank foundations for oil and oil products storage is a relevant problem which solution will enable simultaneously provide required operational characteristics of a soil foundation and reduce time and material costs to prepare the foundation. The impact dynamics of rammers' operating elements on the soil foundation is planned to specify in the course of laboratory studies. A specialized technique is developed to justify the parameters and select the equipment for laboratory researches. The usage of this technique enabled us to calculate dimensions of the models, of a test bench and specifications of the recording equipment, and a lighting system. The necessary equipment for laboratory studies was selected. Preliminary laboratory tests were carried out. The estimate of accuracy for planned laboratory studies was given.

  7. Switch Panel wear loading - a parametric study regarding governing train operational factors

    NASA Astrophysics Data System (ADS)

    Hiensch, E. J. M.; Burgelman, N.

    2017-09-01

    The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel-rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel-rail interface is heavily loaded.

  8. Influence plots for LASSO

    DOE PAGES

    Jang, Dae -Heung; Anderson-Cook, Christine Michaela

    2016-11-22

    With many predictors in regression, fitting the full model can induce multicollinearity problems. Least Absolute Shrinkage and Selection Operation (LASSO) is useful when the effects of many explanatory variables are sparse in a high-dimensional dataset. Influential points can have a disproportionate impact on the estimated values of model parameters. Here, this paper describes a new influence plot that can be used to increase understanding of the contributions of individual observations and the robustness of results. This can serve as a complement to other regression diagnostics techniques in the LASSO regression setting. Using this influence plot, we can find influential pointsmore » and their impact on shrinkage of model parameters and model selection. Lastly, we provide two examples to illustrate the methods.« less

  9. Influence plots for LASSO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Dae -Heung; Anderson-Cook, Christine Michaela

    With many predictors in regression, fitting the full model can induce multicollinearity problems. Least Absolute Shrinkage and Selection Operation (LASSO) is useful when the effects of many explanatory variables are sparse in a high-dimensional dataset. Influential points can have a disproportionate impact on the estimated values of model parameters. Here, this paper describes a new influence plot that can be used to increase understanding of the contributions of individual observations and the robustness of results. This can serve as a complement to other regression diagnostics techniques in the LASSO regression setting. Using this influence plot, we can find influential pointsmore » and their impact on shrinkage of model parameters and model selection. Lastly, we provide two examples to illustrate the methods.« less

  10. Impact of preoperative antithrombotic therapy on blood management after implantation of primary total knee arthroplasty

    PubMed Central

    Leitner, Lukas; Musser, Ewald; Kastner, Norbert; Friesenbichler, Jörg; Hirzberger, Daniela; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick

    2016-01-01

    Red blood cell concentrates (RCC) substitution after total knee arthroplasty (TKA) is correlated with multifold of complications and an independent predictor for higher postoperative mortality. TKA is mainly performed in elderly patients with pre-existing polymorbidity, often requiring permanent preoperative antithrombotic therapy (PAT). The aim of this retrospective analysis was to investigate the impact of demand for PAT on inpatient blood management in patients undergoing TKA. In this study 200 patients were retrospectively evaluated after TKA for differences between PAT and non-PAT regarding demographic parameters, preoperative ASA score > 2, duration of operation, pre-, and intraoperative hemoglobin level, and postoperative parameters including amount of wound drainage, RCC requirement, and inpatient time. In a multivariate logistic regression analysis the independent influences of PAT, demographic parameters, ASA score > 2, and duration of the operation on RCC demand following TKA were analyzed. Patients with PAT were significantly older, more often had an ASA > 2 at surgery, needed a higher number of RCCs units and more frequently and had lower perioperative hemoglobin levels. Multivariate logistic regression revealed PAT was an independent predictor for RCC requirement. PAT patients are more likely to require RCC following TKA and should be accurately monitored with respect to postoperative blood loss. PMID:27488941

  11. Impact of preoperative antithrombotic therapy on blood management after implantation of primary total knee arthroplasty.

    PubMed

    Leitner, Lukas; Musser, Ewald; Kastner, Norbert; Friesenbichler, Jörg; Hirzberger, Daniela; Radl, Roman; Leithner, Andreas; Sadoghi, Patrick

    2016-08-04

    Red blood cell concentrates (RCC) substitution after total knee arthroplasty (TKA) is correlated with multifold of complications and an independent predictor for higher postoperative mortality. TKA is mainly performed in elderly patients with pre-existing polymorbidity, often requiring permanent preoperative antithrombotic therapy (PAT). The aim of this retrospective analysis was to investigate the impact of demand for PAT on inpatient blood management in patients undergoing TKA. In this study 200 patients were retrospectively evaluated after TKA for differences between PAT and non-PAT regarding demographic parameters, preoperative ASA score > 2, duration of operation, pre-, and intraoperative hemoglobin level, and postoperative parameters including amount of wound drainage, RCC requirement, and inpatient time. In a multivariate logistic regression analysis the independent influences of PAT, demographic parameters, ASA score > 2, and duration of the operation on RCC demand following TKA were analyzed. Patients with PAT were significantly older, more often had an ASA > 2 at surgery, needed a higher number of RCCs units and more frequently and had lower perioperative hemoglobin levels. Multivariate logistic regression revealed PAT was an independent predictor for RCC requirement. PAT patients are more likely to require RCC following TKA and should be accurately monitored with respect to postoperative blood loss.

  12. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    PubMed

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  13. Cost related sensitivity analysis for optimal operation of a grid-parallel PEM fuel cell power plant

    NASA Astrophysics Data System (ADS)

    El-Sharkh, M. Y.; Tanrioven, M.; Rahman, A.; Alam, M. S.

    Fuel cell power plants (FCPP) as a combined source of heat, power and hydrogen (CHP&H) can be considered as a potential option to supply both thermal and electrical loads. Hydrogen produced from the FCPP can be stored for future use of the FCPP or can be sold for profit. In such a system, tariff rates for purchasing or selling electricity, the fuel cost for the FCPP/thermal load, and hydrogen selling price are the main factors that affect the operational strategy. This paper presents a hybrid evolutionary programming and Hill-Climbing based approach to evaluate the impact of change of the above mentioned cost parameters on the optimal operational strategy of the FCPP. The optimal operational strategy of the FCPP for different tariffs is achieved through the estimation of the following: hourly generated power, the amount of thermal power recovered, power trade with the local grid, and the quantity of hydrogen that can be produced. Results show the importance of optimizing system cost parameters in order to minimize overall operating cost.

  14. Push the flash floating gate memories toward the future low energy application

    NASA Astrophysics Data System (ADS)

    Della Marca, V.; Just, G.; Regnier, A.; Ogier, J.-L.; Simola, R.; Niel, S.; Postel-Pellerin, J.; Lalande, F.; Masoero, L.; Molas, G.

    2013-01-01

    In this paper the energy consumption of flash floating gate cell, during a channel hot electron operation, is investigated. We characterize the device using different ramp and box pulses on control gate, to find the best solution to have low energy consumption and good cell performances. We use a new dynamic method to measure the drain current absorption in order to evaluate the impact of different bias conditions, and to study the cell behavior. The programming window and the energy consumption are considered as fundamental parameters. Using this dynamic technique, three zones of work are found; it is possible to optimize the drain voltage during the programming operation to minimize the energy consumption. Moreover, the cell's performances are improved using the CHISEL effect, with a reverse body bias. After the study concerning the programming pulses adjusting, we show the results obtained by increasing the channel doping dose parameter. Considering a channel hot electron programming operation, it is important to focus our attention on the bitline leakage consumption contribution. We measured it for the unselected bitline cells, and we show the effects of the lightly doped drain implantation energy on the leakage current. In this way the impact of gate induced drain leakage in band-to-band tunneling regime decreases, improving the cell's performances in a memory array.

  15. Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density.

    PubMed

    Magaril, Elena

    2016-04-01

    The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.

  16. Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Two studies were conducted to determine if accumulating water quality parameters would negatively impact rainbow trout Oncorhynchus mykiss health and welfare within water recirculation aquaculture systems (WRAS) that were operated at low and near-zero water exchange, with and without ozonation, and ...

  17. Sensor-Web Operations Explorer

    NASA Technical Reports Server (NTRS)

    Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard

    2008-01-01

    Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.

  18. SCIAMACHY In-orbit Operations until 2013

    NASA Astrophysics Data System (ADS)

    Gottwald, Manfred; Krieg, Eckhart; Lichtenberg, Günter; Noël, Stefan; Bramstedt, Klaus; Bovensmann, Heinrich

    In 2010 ENVISAT enters its next mission extension phase when a manoeuvre transfers the plat-form from its nominal into a modified orbit. This modified orbit is not only characterized by the lower altitude but also by slightly drifting parameters such as e.g. the inclination or the Mean Local Solar Time at ascending node crossing. Thus all SCIAMACHY measurements requiring an accurate pointing knowledge are affected. How the line-of-sight evolves along the orbit de-pends on orbit altitude and orbital period. Therefore adjustments to SCIAMACHY's on-board instrument configuration are necessary reflecting this orbit chance. Based on a detailed analysis simulating SCIAMACHY operations in the modified orbit until the end of 2013, the impacts on nadir, limb and solar and lunar occultation measurements when orbiting the Earth at a reduced altitude was studied. By modifying SCIAMACHY's configuration these impacts can be compensated for. Thus the current performance of instrument operations, including the pointing knowledge, can be maintained. It ensures acquisition of high quality measurement data for the entire duration of the mission. This presentation describes how the instrument will be configured for achieving successful operations until the end of 2013. In addition a brief outlook is given how the drifting modified orbit may impact an operations phase even beyond 2013 and potential corrective countermeasures.

  19. Environmental analysis of a construction and demolition waste recycling plant in Portugal--Part II: Environmental sensitivity analysis.

    PubMed

    Coelho, André; de Brito, Jorge

    2013-01-01

    Part I of this study deals with the primary energy consumption and CO(2)eq emissions of a 350 tonnes/h construction and demolition waste (CDW) recycling facility, taking into account incorporated, operation and transportation impacts. It concludes that the generated impacts are mostly concentrated in operation and transportation, and that the impacts prevented through material recycling can be up to one order of magnitude greater than those generated. However, the conditions considered for the plant's operation and related transportation system may, and very likely will, vary in the near future, which will affect its environmental performance. This performance is particularly affected by the plant's installed capacity, transportation fuel and input CDW mass. In spite of the variations in overall primary energy and CO(2)eq balances, the prevented impacts are always higher than the generated impacts, at least by a factor of three and maybe even as high as 16 times in particular conditions. The analysis indicates environmental performance for variations in single parameters, except for the plant's capacity, which was considered to vary simultaneously with all the others. Extreme best and worst scenarios were also generated to fit the results into extreme limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Impact factors and the optimal parameter of acoustic structure quantification in the assessment of liver fibrosis.

    PubMed

    Huang, Yang; Liu, Guang-Jian; Liao, Bing; Huang, Guang-Liang; Liang, Jin-Yu; Zhou, Lu-Yao; Wang, Fen; Li, Wei; Xie, Xiao-Yan; Wang, Wei; Lu, Ming-De

    2015-09-01

    The aims of the present study are to assess the impact factors on acoustic structure quantification (ASQ) ultrasound and find the optimal parameter for the assessment of liver fibrosis. Twenty healthy volunteers underwent ASQ examinations to evaluate impact factors in ASQ image acquisition and analysis. An additional 113 patients with liver diseases underwent standardized ASQ examinations, and the results were compared with histologic staging of liver fibrosis. We found that the right liver displayed lower values of ASQ parameters than the left (p = 0.000-0.021). Receive gain experienced no significant impact except gain 70 (p = 0.193-1.000). With regard to different diameter of involved vessels in regions of interest, the group ≤2.0 mm differed significantly with the group 2.1-5.0 mm (p = 0.000-0.033) and the group >5.0 mm (p = 0.000-0.062). However, the region of interest size (p = 0.438-1.000) and depth (p = 0.072-0.764) had no statistical impact. Good intra- and inter-operator reproducibilities were found in both image acquisitions and offline image analyses. In the liver fibrosis study, the focal disturbance ratio had the highest correlation with histologic fibrosis stage (r = 0.67, p < 0.001). In conclusion, the testing position, receive gain and involved vessels were the main factors in ASQ examinations and focal disturbance ratio was the optimal parameter in the assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Clinical laboratory as an economic model for business performance analysis

    PubMed Central

    Buljanović, Vikica; Patajac, Hrvoje; Petrovečki, Mladen

    2011-01-01

    Aim To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Methods Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. Conclusion The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal period. PMID:21853546

  2. Clinical laboratory as an economic model for business performance analysis.

    PubMed

    Buljanović, Vikica; Patajac, Hrvoje; Petrovecki, Mladen

    2011-08-15

    To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal period.

  3. A Two-Stage Method to Determine Optimal Product Sampling considering Dynamic Potential Market

    PubMed Central

    Hu, Zhineng; Lu, Wei; Han, Bing

    2015-01-01

    This paper develops an optimization model for the diffusion effects of free samples under dynamic changes in potential market based on the characteristics of independent product and presents a two-stage method to figure out the sampling level. The impact analysis of the key factors on the sampling level shows that the increase of the external coefficient or internal coefficient has a negative influence on the sampling level. And the changing rate of the potential market has no significant influence on the sampling level whereas the repeat purchase has a positive one. Using logistic analysis and regression analysis, the global sensitivity analysis gives a whole analysis of the interaction of all parameters, which provides a two-stage method to estimate the impact of the relevant parameters in the case of inaccuracy of the parameters and to be able to construct a 95% confidence interval for the predicted sampling level. Finally, the paper provides the operational steps to improve the accuracy of the parameter estimation and an innovational way to estimate the sampling level. PMID:25821847

  4. Dynamic analysis of Free-Piston Stirling Engine/Linear Alternator-load system-experimentally validated

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of variations in system parameters on the dynamic behavior of the Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporate both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. A state-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  5. Dynamic analysis of free-piston Stirling engine/linear alternator-load system - Experimentally validated

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of a variations in system parameters on the dynamic behavior of a Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporates both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. State-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  6. Evaluation of Postoperative Hydronephrosis Following Ureteroscopy in Pediatric Population: Incidence and Predictors.

    PubMed

    Gökce, Mehmet Ilker; Telli, Onur; Özkıdık, Mete; Akıncı, Aykut; Hajıyev, Perviz; Soygür, Tarkan; Burgu, Berk

    2016-07-01

    To identify the incidence and associated factors of the postoperative hydronephrosis in pediatric patients who underwent ureterorenoscopy (URS) for renal or ureteral stones. We evaluated the results of 116 patients who underwent semirigid or flexible URS retrospectively. Primary end points of the study were to determine the incidence of postoperative hydronephrosis and factors associated with the development of postoperative hydronephrosis. Logistic regression analysis was used to define factors associated with the presence of hydronephrosis. Mean age of the population was 9.5 years and mean stone size was 9.4 mm. Hydronephrosis was detected in 32 (27.6%) patients. Stone-free status was achieved in 101 (87%) patients. Univariate analysis revealed history of ipsilateral URS, duration of operation, presence of impacted stone, development of ureteral injury during operation, and presentation with a renal colic episode as the parameter associated with increased risk of hydronephrosis. History of ipsilateral URS (odds ratio: 1.664, P = .027), presence of impacted stones (odds ratio: 1.788, P = .014), and development of ureteral injury during operation (odds ratio: 1.106, P = .039) were found to be the independent markers of developing postoperative hydronephrosis in a multivariate analysis. Ipsilateral hydronephrosis following URS develops in a significant portion of patients. In patients with history of ipsilateral procedure and those with an impacted stone and had ureteral injury, the risk of postoperative hydronephrosis is higher; therefore, physicians should keep these parameters in mind in the decision-making process of selective imaging postoperatively. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Optimizing coagulation-adsorption for haloform and TOC (Total Organic Carbon) reduction

    NASA Astrophysics Data System (ADS)

    Semmens, M. J.; Hohenstein, G.; Staples, A.; Norgaard, G.; Ayers, K.; Tyson, M. P.

    1983-05-01

    The removal of organic matter from Mississippi River water by coagulation and softening processes and the influence of operating parameters upon the removal process are examined. Furthermore, since activated carbon is typically employed to reduce organic concentrations, the effectiveness of various pretreatments are evaluated for their impact upon carbon bed life and the product water quality.

  8. Minimization of operational impacts on spectrophotometer color measurements for cotton

    USDA-ARS?s Scientific Manuscript database

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  9. Extending the performance of KrF laser for microlithography by using novel F2 control technology

    NASA Astrophysics Data System (ADS)

    Zambon, Paolo; Gong, Mengxiong; Carlesi, Jason; Padmabandu, Gunasiri G.; Binder, Mike; Swanson, Ken; Das, Palash P.

    2000-07-01

    Exposure tools for 248nm lithography have reached a level of maturity comparable to those based on i-line. With this increase in maturity, there is a concomitant requirement for greater flexibility from the laser by the process engineers. Usually, these requirements pertain to energy, spectral width and repetition rate. By utilizing a combination of laser parameters, the process engineers are often able to optimize throughput, reduce cost-of-operation or achieve greater process margin. Hitherto, such flexibility of laser operation was possible only via significant changes to various laser modules. During our investigation, we found that the key measure of the laser that impacts the aforementioned parameters is its F2 concentration. By monitoring and controlling its slope efficiency, the laser's F2 concentration may be precisely controlled. Thus a laser may tune to operate under specifications as diverse as 7mJ, (Delta) (lambda) FWHM < 0.3 pm and 10mJ, (Delta) (lambda) FWHM < 0.6pm and still meet the host of requirements necessary for lithography. We discus this new F2 control technique and highlight some laser performance parameters.

  10. Combustor Operability and Performance Verification for HIFiRE Flight 2

    NASA Technical Reports Server (NTRS)

    Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark

    2011-01-01

    As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.

  11. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  12. Selection of the battery pack parameters for an electric vehicle based on performance requirements

    NASA Astrophysics Data System (ADS)

    Koniak, M.; Czerepicki, A.

    2017-06-01

    Each type of vehicle has specific power requirements. Some require a rapid charging, other make long distances between charges, but a common feature is the longest battery life time. Additionally, the battery is influenced by factors such as temperature, depth of discharge and the operation current. The article contain the parameters of chemical cells that should be taken into account during the design of the battery for a specific application. This is particularly important because the batteries are not properly matched and can wear prematurely and cause an additional costs. The method of selecting the correct cell type should take previously discussed features and operating characteristics of the vehicle into account. The authors present methods of obtaining such characteristics along with their assessment and examples. Also there has been described an example of the battery parameters selection based on design assumptions of the vehicle and the expected performance characteristics. Selecting proper battery operating parameters is important due to its impact on the economic result of investments in electric vehicles. For example, for some Li-Ion technologies, the earlier worn out of batteries in a fleet of cruise boats or buses having estimated lifetime of 10 years is not acceptable, because this will cause substantial financial losses for the owner of the rolling stock. The presented method of choosing the right cell technology in the selected application, can be the basis for making the decision on future battery technical parameters.

  13. Batch and continuous production of stable dense suspensions of drug nanoparticles in a wet stirred media mill

    NASA Astrophysics Data System (ADS)

    Afolabi, Afola we mi

    One way to improve the bioavailability of poorly water-soluble drugs is to reduce particle size of drug crystals down to nanoscale via wet stirred media milling. An increase in total surface area per mass loading of the drug and specific surface area as well as reduced external mass transfer resistance allow a faster dissolution of the poorly-water soluble drug from nanocrystals. To prevent aggregation of nanoparticles, polymers and surfactants are dissolved in water acting as stabilizers via adsorption onto the drug crystals. In the last two decades, ample experimental data were generated in the area of wet stirred media milling for the production of drug nanoparticle suspensions. However, a fundamental scientific/engineering understanding of various aspects of this process is still lacking. These challenges include elucidation of the governing mechanism(s) during nanoparticle formation and physical stabilization of the nanosuspension with the use of polymers and surfactants (formulation parameters), understanding the impact of process parameters in the context of first-principle-based models, and production of truly nanosized drug particles (10-100 nm) with acceptable physical stability and minimal contamination with the media. Recirculation mode of milling operation, where the drug suspension in a holding tank continuously circulates through the stirred media mill, has been commonly used in lab, pilot, and commercial scales. Although the recirculation is continuous, the recirculation operation mode is overall a batch operation, requiring significant number of batches for a large-volume pharmaceutical product. Hence, development and investigation of a truly continuous process should offer significant advantages. To explain the impact of some of the processing parameters, stress intensity and stress number concepts were widely used in literature, which do not account for the effect of suspension viscosity explicitly. The impact of the processing parameters has not been explained in a predictive and reliable manner. In this dissertation, a comprehensive investigation of the production of Griseofulvin nanosuspensions in a wet stirred media mill operating in both the recirculation and continuous modes has been conducted to address the aforementioned fundamental challenges. Griseofulvin has been selected as a model poorly water-soluble BCS Class II drug. Impact of various formulation parameters such as stabilizer type and loading as well as processing parameters such as rotor speed, bead loading, bead size, suspension flow rate and drug loading was studied. A major novelty of the present contribution is that the impact of processing and formulation parameters has been analyzed and interpreted using a combined experimental-theoretical (microhydrodynamic model) approach. Such a comprehensive approach allowed us to intensify the process for the production of sub-100 nm drug particles, which could not be produced with top-down approaches in the literature so far. In addition, a multi-pass mode of continuous operation was developed and the so-called "Rehbinder effect", which has not been shown for the breakage of drug particles, was also elucidated. The dissertation work (1) indicated the need for a minimum polymeric stabilizer-to-drug ratio for proper stabilization of drug nanosuspensions as dictated by polymer adsorption and synergistic interactions between a polymeric stabilizer and a surfactant, (2) demonstrated the existence of an optimum polymer concentration from a breakage rate perspective in the presence of a surfactant, which results from the competing effects of viscous dampening and enhanced steric stabilization at higher polymer concentration, (3) developed fundamental understanding of the breakage dynamics-processing-formulation relationships and rationalized preparation of a single highly drug- loaded batch (20% or higher) instead of multiple dilute batches, (4) designed an intensified process for faster preparation of sub-100 nm particles with reduced specific energy consumption and media wear (i.e. minimal drug contamination), and (5) provided first evidence for the proof of Rehbinder effect during the milling of drugs. Not only do the polymers and surfactants allow proper physical stabilization of the nanoparticles in the suspensions, but they also do facilitate drug particle breakage. This dissertation also discusses applications of nanosuspensions and practical issues encountered during wet media milling.

  14. Conjugated dynamic modeling on vanadium redox flow battery with non-constant variance for renewable power plant applications

    NASA Astrophysics Data System (ADS)

    Siddiquee, Abu Nayem Md. Asraf

    A parametric modeling study has been carried out to assess the impact of change in operating parameters on the performance of Vanadium Redox Flow Battery (VRFB). The objective of this research is to develop a computer program to predict the dynamic behavior of VRFB combining fluid mechanics, reaction kinetics, and electric circuit. The computer program was developed using Maple 2015 and calculations were made at different operating parameters. Modeling results show that the discharging time increases from 2.2 hours to 6.7 hours when the concentration of V2+ in electrolytes increases from 1M to 3M. The operation time during the charging cycle decreases from 6.9 hours to 3.3 hours with the increase of applied current from 1.85A to 3.85A. The modeling results represent that the charging and discharging time were found to increase from 4.5 hours to 8.2 hours with the increase in tank to cell ratio from 5:1 to 10:1.

  15. The reliability analysis of a separated, dual fail operational redundant strapdown IMU. [inertial measurement unit

    NASA Technical Reports Server (NTRS)

    Motyka, P.

    1983-01-01

    A methodology for quantitatively analyzing the reliability of redundant avionics systems, in general, and the dual, separated Redundant Strapdown Inertial Measurement Unit (RSDIMU), in particular, is presented. The RSDIMU is described and a candidate failure detection and isolation system presented. A Markov reliability model is employed. The operational states of the system are defined and the single-step state transition diagrams discussed. Graphical results, showing the impact of major system parameters on the reliability of the RSDIMU system, are presented and discussed.

  16. Research of Modulation of Bilateral Frequency Difference Based on Load Mode

    NASA Astrophysics Data System (ADS)

    Lin, Shenghong; Mao, Chizu; Zhu, Jianquan; Lu, Junyu

    2017-05-01

    Owning to high reliability, simple operation and easy acquirement of signals, modulation of bilateral frequency difference (MBFD) in HVDC is worthy for application in practical engineering. With the example of an AC/DC hybrid network and the software PSD-BPA, this paper analyses the effect of MBFD to DC block. The modulators parameters are setting by means of simulation. Two types of loads modes are considered to research the impact of them on simulation. The results indicate that in cooperation with operation modes adjusting at AC system, MBFD will effectively release the impact from DC block and shortage of reactive power caused by rapid variation of DC power owning to modulation. To achieve the best effect, only modulators of some HVDC systems instead of all of them are opened.

  17. Enhanced methods for determining operational capabilities and support costs of proposed space systems

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This report documents the work accomplished during the first two years of research to provide support to NASA in predicting operational and support parameters and costs of proposed space systems. The first year's research developed a methodology for deriving reliability and maintainability (R & M) parameters based upon the use of regression analysis to establish empirical relationships between performance and design specifications and corresponding mean times of failure and repair. The second year focused on enhancements to the methodology, increased scope of the model, and software improvements. This follow-on effort expands the prediction of R & M parameters and their effect on the operations and support of space transportation vehicles to include other system components such as booster rockets and external fuel tanks. It also increases the scope of the methodology and the capabilities of the model as implemented by the software. The focus is on the failure and repair of major subsystems and their impact on vehicle reliability, turn times, maintenance manpower, and repairable spares requirements. The report documents the data utilized in this study, outlines the general methodology for estimating and relating R&M parameters, presents the analyses and results of application to the initial data base, and describes the implementation of the methodology through the use of a computer model. The report concludes with a discussion on validation and a summary of the research findings and results.

  18. Wind loading analysis and strategy for deflection reduction on HET wide field upgrade

    NASA Astrophysics Data System (ADS)

    South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.

    2010-07-01

    Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.

  19. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  20. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less

  1. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  2. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Marshall

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on modelmore » add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.« less

  3. VLBI-derived troposphere parameters during CONT08

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.

    2011-07-01

    Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.

  4. Radiative Impacts of Cloud Heterogeneity and Overlap in an Atmospheric General Circulation Model

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Lee, D.; Sud, Y. C.; Suarez, M. J.

    2012-01-01

    The radiative impacts of introducing horizontal heterogeneity of layer cloud condensate, and vertical overlap of condensate and cloud fraction are examined with the aid of a new radiation package operating in the GEOS-5 Atmospheric General Circulation Model. The impacts are examined in terms of diagnostic top-of-the-atmosphere shortwave (SW) and longwave (LW) cloud radiative effect (CRE) calculations for a range of assumptions and parameter specifications about the overlap. The investigation is conducted for two distinct cloud schemes, the one that comes with the standard GEOS-5 distribution, and another which has been recently used experimentally for its enhanced GEOS-5 distribution, and another which has been recently used experimentally for its enhanced cloud microphysical capabilities; both are coupled to a cloud generator allowing arbitrary cloud overlap specification. We find that cloud overlap radiative impacts are significantly stronger for the operational cloud scheme for which a change of cloud fraction overlap from maximum-random to generalized results to global changes of SW and LW CRE of approximately 4 Watts per square meter, and zonal changes of up to approximately 10 Watts per square meter. This is because of fewer occurrences compared to the other scheme of large layer cloud fractions and of multi-layer situations with large numbers of atmospheric being simultaneously cloudy, conditions that make overlap details more important. The impact on CRE of the details of condensate distribution overlap is much weaker. Once generalized overlap is adopted, both cloud schemes are only modestly sensitive to the exact values of the overlap parameters. We also find that if one of the CRE components is overestimated and the other underestimated, both cannot be driven towards observed values by adjustments to cloud condensate heterogeneity and overlap alone.

  5. The impact of the condenser on cytogenetic image quality in digital microscope system.

    PubMed

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.

  6. Factors defining value and direction of thermal pressure between the mine shafts and impact of the general mine natural draught on ventilation process of underground mining companies

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. V.; Alymenko, N. I.; Kamenskikh, A. A.; Alymenko, D. N.; Nikolaev, V. A.; Petrov, A. I.

    2017-10-01

    The article specifies measuring data of air parameters and its volume flow in the shafts and on the surface, collected in BKPRU-2 (Berezniki potash plant and mine 2) («Uralkali» PJSC) in normal operation mode, after shutdown of the main mine fan (GVU) and within several hours. As a result of the test it has been established that thermal pressure between the mine shafts is active continuously regardless of the GVU operation mode or other draught sources. Also it has been discovered that depth of the mine shafts has no impact on thermal pressure value. By the same difference of shaft elevation marks and parameters of outer air between the shafts, by their different depth, thermal pressure of the same value will be active. Value of the general mine natural draught defined as an algebraic sum of thermal pressure values between the shafts depends only on the difference of temperature and pressure of outer air and air in the shaft bottoms on condition of shutdown of the air handling system (unit-heaters, air conditioning systems).

  7. Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet

    NASA Astrophysics Data System (ADS)

    Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Véronique; Tazibt, Abdel

    2011-01-01

    Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

  8. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  9. Halogenation of Hydraulic Fracturing Additives in the Shale Well Parameter Space

    NASA Astrophysics Data System (ADS)

    Sumner, A. J.; Plata, D.

    2017-12-01

    Horizontal Drilling and Hydraulic fracturing (HDHF) involves the deep-well injection of a `fracking fluid' composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. The potential impacts of HDHF operations on water resources and ecosystems are numerous, and analyses of flowback samples revealed organic compounds from both geogenic and anthropogenic sources. Furthermore, halogenated chemicals were also detected, and these compounds are rarely disclosed, suggesting the in situ halogenation of reactive additives. To test this transformation hypothesis, we designed and operated a novel high pressure and temperature reactor system to simulate the shale well parameter space and investigate the chemical reactivity of twelve commonly disclosed and functionally diverse HDHF additives. Early results revealed an unanticipated halogenation pathway of α-β unsaturated aldehyde, Cinnamaldehyde, in the presence of oxidant and concentrated brine. Ongoing experiments over a range of parameters informed a proposed mechanism, demonstrating the role of various shale-well specific parameters in enabling the demonstrated halogenation pathway. Ultimately, these results will inform a host of potentially unintended interactions of HDHF additives during the extreme conditions down-bore of a shale well during HDHF activities.

  10. Noise pollution effect in flour factory on workers' hearing in Lamerd City.

    PubMed

    Mohammadizadeh, M; Ahmadi, S H; Sekhavati, E; Ahani-Jegar, K

    2015-01-01

    Introduction: Noise pollution is one of the most important problems in industry that has an effect on the auditory system and other physiological parameters, as well as persons in noise exposure situations. While noise-induced hearing loss is preventable, once acquired, hearing loss is permanent and irreversible. Methodology: In the current study, noise in various sections of Flour Company in Lamerd estimated via the audio recorder, which revealed that the operators' expression remained larger than the state criterion; hence, the perception experiment (audio recorder) was performed on the operators and its outcomes were examined via utilizing SPSS 16 of version. Findings: Overall, Pearson relationship r = 0.453 discovered among job reports and the performance decline between all operators by significant stage p≤0.05. Moreover, T-test applied to examine noise impact on operators included in boisterous rooms (mean more than 85 dB) also average=26. 71 and regular deviation=11.72 got (p≤0.05) that was greater than 25db (as the standard hearing threshold). Conclusion: The outcomes of audio measuring and T-test revealed that the noise corruption has an impact on the hearing of bodies operating in noisy rooms.

  11. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Goldberg, Marshall

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output frommore » total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.« less

  12. Optimal timing for performing hysterectomy according to different phase of menstrual cycle: Which is best?

    PubMed

    Kim, Jeong Jin; Kang, Jun Hyeok; Lee, Kyo Won; Kim, Kye Hyun; Song, Taejong

    2017-05-01

    The aim of this study was to determine whether the different phases of the menstrual cycle could affect operative bleeding in women undergoing laparoscopic hysterectomy. This was a retrospective comparative study. Based on the adjusted day of menstrual cycle, 212 women who underwent laparoscopic hysterectomy were classified into three groups: the follicular phase (n = 51), luteal phase group (n = 125), and menstruation group (n = 36). The primary outcome measure was the operative bleeding. There was no difference in the baseline characteristics of the patients belonging to the three groups. For the groups, there were no significant differences in operative bleeding (p = .469) and change in haemoglobin (p = .330), including operative time, length of hospital stay and complications. The menstrual cycle did not affect the operative bleeding and other parameters. Therefore, no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding. Impact statement What is already known on this subject: the menstrual cycle results in periodic changes in haemostasis and blood flow in the reproductive organs. What the results of this study add: the menstrual cycle did not affect the operative bleeding and other operative parameters during laparoscopic hysterectomy. What the implications are of these findings for clinical practice and/or further research: no phase of the menstrual cycle could be considered as an optimal timing for performing laparoscopic hysterectomy with minimal operative bleeding.

  13. Precision constraints on the top-quark effective field theory at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Durieux, G.

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the $e^+e^-\\to bW^+\\:\\bar bW^-$ process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  14. Systems and methods for optimal power flow on a radial network

    DOEpatents

    Low, Steven H.; Peng, Qiuyu

    2018-04-24

    Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.

  15. Laser Threat Analysis System (LTAS)

    NASA Astrophysics Data System (ADS)

    Pfaltz, John M.; Richardson, Christina E.; Ruiz, Abel; Barsalou, Norman; Thomas, Robert J.

    2002-11-01

    LTAS is a totally integrated modeling and simulation environment designed for the purpose of ascertaining the susceptibility of Air Force pilots and air crews to optical radiation threats. Using LTAS, mission planners can assess the operational impact of optically directed energy weapons and countermeasures. Through various scenarios, threat analysts are able to determine the capability of laser threats and their impact on operational missions including the air crew's ability to complete their mission effectively. Additionally, LTAS allows the risk of laser use on training ranges and the requirement for laser protection to be evaluated. LTAS gives mission planners and threat analysts complete control of the threat environment including threat parameter control and placement, terrain mapping (line-of-site), atmospheric conditions, and laser eye protection (LEP) selection. This report summarizes the design of the final version of LTAS, and the modeling methodologies implemented to accomplish analysis.

  16. Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems.

    PubMed

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu

    2017-01-03

    Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.

  17. Improving Fermi Orbit Determination and Prediction in an Uncertain Atmospheric Drag Environment

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Newman, Clark P.; Slojkowski, Steven E.; Carpenter, J. Russell

    2014-01-01

    Orbit determination and prediction of the Fermi Gamma-ray Space Telescope trajectory is strongly impacted by the unpredictability and variability of atmospheric density and the spacecraft's ballistic coefficient. Operationally, Global Positioning System point solutions are processed with an extended Kalman filter for orbit determination, and predictions are generated for conjunction assessment with secondary objects. When these predictions are compared to Joint Space Operations Center radar-based solutions, the close approach distance between the two predictions can greatly differ ahead of the conjunction. This work explores strategies for improving prediction accuracy and helps to explain the prediction disparities. Namely, a tuning analysis is performed to determine atmospheric drag modeling and filter parameters that can improve orbit determination as well as prediction accuracy. A 45% improvement in three-day prediction accuracy is realized by tuning the ballistic coefficient and atmospheric density stochastic models, measurement frequency, and other modeling and filter parameters.

  18. Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic.

    PubMed

    Mertaniemi, Henrikki; Forchheimer, Robert; Ikkala, Olli; Ras, Robin H A

    2012-11-08

    When water droplets impact each other while traveling on a superhydrophobic surface, we demonstrate that they are able to rebound like billiard balls. We present elementary Boolean logic operations and a flip-flop memory based on these rebounding water droplet collisions. Furthermore, bouncing or coalescence can be easily controlled by process parameters. Thus by the controlled coalescence of reactive droplets, here using the quenching of fluorescent metal nanoclusters as a model reaction, we also demonstrate an elementary operation for programmable chemistry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The impact of integrated water management on the Space Station propulsion system

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1987-01-01

    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  20. Quantum Computing Architectural Design

    NASA Astrophysics Data System (ADS)

    West, Jacob; Simms, Geoffrey; Gyure, Mark

    2006-03-01

    Large scale quantum computers will invariably require scalable architectures in addition to high fidelity gate operations. Quantum computing architectural design (QCAD) addresses the problems of actually implementing fault-tolerant algorithms given physical and architectural constraints beyond those of basic gate-level fidelity. Here we introduce a unified framework for QCAD that enables the scientist to study the impact of varying error correction schemes, architectural parameters including layout and scheduling, and physical operations native to a given architecture. Our software package, aptly named QCAD, provides compilation, manipulation/transformation, multi-paradigm simulation, and visualization tools. We demonstrate various features of the QCAD software package through several examples.

  1. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    NASA Astrophysics Data System (ADS)

    Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.

    2015-07-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.

  2. Damping torque analysis of VSC-based system utilizing power synchronization control

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.

    2017-05-01

    Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.

  3. A thermodynamic approach for selecting operating conditions in the design of reversible solid oxide cell energy systems

    NASA Astrophysics Data System (ADS)

    Wendel, Christopher H.; Kazempoor, Pejman; Braun, Robert J.

    2016-01-01

    Reversible solid oxide cell (ReSOC) systems are being increasingly considered for electrical energy storage, although much work remains before they can be realized, including cell materials development and system design optimization. These systems store electricity by generating a synthetic fuel in electrolysis mode and subsequently recover electricity by electrochemically oxidizing the stored fuel in fuel cell mode. System thermal management is improved by promoting methane synthesis internal to the ReSOC stack. Within this strategy, the cell-stack operating conditions are highly impactful on system performance and optimizing these parameters to suit both operating modes is critical to achieving high roundtrip efficiency. Preliminary analysis shows the thermoneutral voltage to be a useful parameter for analyzing ReSOC systems and the focus of this study is to quantitatively examine how it is affected by ReSOC operating conditions. The results reveal that the thermoneutral voltage is generally reduced by increased pressure, and reductions in temperature, fuel utilization, and hydrogen-to-carbon ratio. Based on the thermodynamic analysis, many different combinations of these operating conditions are expected to promote efficient energy storage. Pressurized systems can achieve high efficiency at higher temperature and fuel utilization, while non-pressurized systems may require lower stack temperature and suffer from reduced energy density.

  4. Merits of full flow vs. conventional staged combustion cycles for reusable launch vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Peery, Steven D.; Parsley, Randy C.

    1996-03-01

    This paper provides a comparison between full-flow and conventional staged combustion thermodynamic O2/H2 rocket engine cycles for Reusable Launch Vehicle, RLV, single-stage-to-orbit applications. The impact of the cycle thermodynamics, component configuration, and component operating parameters on engine performance and weight for the two approaches is presented. Both cycles were modeled with equivalent technology turbomachinery and chamber/nozzle RLV life requirements. The first order impact of cycle selection, pump exit pressure, and turbine temperature on the empty weight of an SSTO Reusable Launch Vehicle is presented.

  5. Numerical Study of Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad

    2017-01-01

    A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.

  6. Evaluation of study design variables and their impact on food-maintained operant responding in mice.

    PubMed

    Haluk, Desirae M; Wickman, Kevin

    2010-03-05

    Operant conditioning paradigms are useful for studying factors involved in reward, particularly when combined with the tools of genetic manipulation in mice. Published operant studies involving mice vary widely with respect to design, and insight into the consequences of design choices on performance in mice is limited. Here, we evaluated the impact of five design variables on the performance of inbred male mice in operant tasks involving solid food pellets as reinforcing agents. We found that the use of lever-press or nose-poke during FR1 sessions did not impact the performance of C57BL/6 mice, but that the lever-press approach correlated with enhanced performance during PR testing. While FR1 session duration had a notable impact on the rate of acquisition of food-maintained responding, performance during FR1 and PR sessions was largely unaffected. Higher order schedules of reinforcement (FR3 and FR5) led to elevated responding during both FR and PR sessions, and improved the correspondence between rewards earned and consumed. Single and group-housed mice performed indistinguishably during FR1 and PR sessions, while environmental enrichment combined with group housing accelerated the rate of acquisition of food-maintained responding while decreasing responding during PR testing. Finally, while C57BL/6 and 129/Sv mice exhibited comparable behavior during FR1 sessions, C57BL/6 mice tended to acquire food-maintained responding faster than 129/Sv counterparts, and exhibited elevated responding during PR testing. Altogether, our findings indicate that while operant performance for food in mice is relatively insensitive to many study parameters, experimental outcomes can be shaped predictably with proper design decisions. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Design and analysis of a nuclear reactor core for innovative small light water reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, Alexey I.

    In order to address the energy needs of developing countries and remote communities, Oregon State University has proposed the Multi-Application Small Light Water Reactor (MASLWR) design. In order to achieve five years of operation without refueling, use of 8% enriched fuel is necessary. This dissertation is focused on core design issues related with increased fuel enrichment (8.0%) and specific MASLWR operational conditions (such as lower operational pressure and temperature, and increased leakage due to small core). Neutron physics calculations are performed with the commercial nuclear industry tools CASMO-4 and SIMULATE-3, developed by Studsvik Scandpower Inc. The first set of results are generated from infinite lattice level calculations with CASMO-4, and focus on evaluation of the principal differences between standard PWR fuel and MASLWR fuel. Chapter 4-1 covers aspects of fuel isotopic composition changes with burnup, evaluation of kinetic parameters and reactivity coefficients. Chapter 4-2 discusses gadolinium self-shielding and shadowing effects, and subsequent impacts on power generation peaking and Reactor Control System shadowing. The second aspect of the research is dedicated to core design issues, such as reflector design (chapter 4-3), burnable absorber distribution and programmed fuel burnup and fuel use strategy (chapter 4-4). This section also includes discussion of the parameters important for safety and evaluation of Reactor Control System options for the proposed core design. An evaluation of the sensitivity of the proposed design to uncertainty in calculated parameters is presented in chapter 4-5. The results presented in this dissertation cover a new area of reactor design and operational parameters, and may be applicable to other small and large pressurized water reactor designs.

  8. Cost evaluation to optimise radiation therapy implementation in different income settings: A time-driven activity-based analysis.

    PubMed

    Van Dyk, Jacob; Zubizarreta, Eduardo; Lievens, Yolande

    2017-11-01

    With increasing recognition of growing cancer incidence globally, efficient means of expanding radiotherapy capacity is imperative, and understanding the factors impacting human and financial needs is valuable. A time-driven activity-based costing analysis was performed, using a base case of 2-machine departments, with defined cost inputs and operating parameters. Four income groups were analysed, ranging from low to high income. Scenario analyses included department size, operating hours, fractionation, treatment complexity, efficiency, and centralised versus decentralised care. The base case cost/course is US$5,368 in HICs, US$2,028 in LICs; the annual operating cost is US$4,595,000 and US$1,736,000, respectively. Economies of scale show cost/course decreasing with increasing department size, mainly related to the equipment cost and most prominent up to 3 linacs. The cost in HICs is two or three times as high as in U-MICs or LICs, respectively. Decreasing operating hours below 8h/day has a dramatic impact on the cost/course. IMRT increases the cost/course by 22%. Centralising preparatory activities has a moderate impact on the costs. The results indicate trends that are useful for optimising local and regional circumstances. This methodology can provide input into a uniform and accepted approach to evaluating the cost of radiotherapy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational datamore » available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.« less

  10. Mathematical model for the analysis of structure and optimal operational parameters of a solid oxide fuel cell generator

    NASA Astrophysics Data System (ADS)

    Coralli, Alberto; Villela de Miranda, Hugo; Espiúca Monteiro, Carlos Felipe; Resende da Silva, José Francisco; Valadão de Miranda, Paulo Emílio

    2014-12-01

    Solid oxide fuel cells are globally recognized as a very promising technology in the area of highly efficient electricity generation with a low environmental impact. This technology can be advantageously implemented in many situations in Brazil and it is well suited to the use of ethanol as a primary energy source, an important feature given the highly developed Brazilian ethanol industry. In this perspective, a simplified mathematical model is developed for a fuel cell and its balance of plant, in order to identify the optimal system structure and the most convenient values for the operational parameters, with the aim of maximizing the global electric efficiency. In this way it is discovered the best operational configuration for the desired application, which is the distributed generation in the concession area of the electricity distribution company Elektro. The data regarding this configuration are required for the continuation of the research project, i.e. the development of a prototype, a cost analysis of the developed system and a detailed perspective of the market opportunities in Brazil.

  11. Parameters affecting of Akkuyu's safety assessment for severe core damages

    NASA Astrophysics Data System (ADS)

    Kavun, Yusuf; Karasulu, Muzaffer

    2015-07-01

    We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents) and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO) is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the "what went wrong " scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors'like in TMI); Operator errors combined with design deficiencies(like in Chernobyl) and natural disasters( like in Fukushima) and found operator errors to be more probable event on the Akkuyu's postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  12. Assessment of space sensors for ocean pollution monitoring

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.

    1980-01-01

    Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.

  13. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  14. Estimating model parameters for an impact-produced shock-wave simulation: Optimal use of partial data with the extended Kalman filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Jim; Flicker, Dawn; Ide, Kayo

    2006-05-20

    This paper builds upon our recent data assimilation work with the extended Kalman filter (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman filter for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in optimizing a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from amore » single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter optimization using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The optimally estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the optimized model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the optimized parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand.« less

  15. SEASAT - A candidate ocean industry economic verification experiments

    NASA Technical Reports Server (NTRS)

    Miller, B. P.

    1976-01-01

    The economic benefits of an operational SEASAT system are discussed in the areas of marine transportation, offshore oil and natural gas exploration and development, ocean fishing, and Arctic operations. A description of the candidate economic verification experiments which could be performed with SEASAT-A is given. With the exception of the area of Arctic operations, experiments have been identified in each of the areas of ocean based activity that are expected to show an economic impact from the use of operational SEASAT data. Experiments have been identified in the areas of the offshore oil and natural gas industry, as well as ice monitoring and coastal zone applications. Emphasis has been placed on the identification and the development of those experiments which meet criteria for: (1) end user participation; (2) SEASAT-A data utility; (3) measurability of operational parameters to demonstrate economic effect; and (4) non-proprietary nature of results.

  16. Development of a Higher Fidelity Model for the Cascade Distillation Subsystem (CDS)

    NASA Technical Reports Server (NTRS)

    Perry, Bruce; Anderson, Molly

    2014-01-01

    Significant improvements have been made to the ACM model of the CDS, enabling accurate predictions of dynamic operations with fewer assumptions. The model has been utilized to predict how CDS performance would be impacted by changing operating parameters, revealing performance trade-offs and possibilities for improvement. CDS efficiency is driven by the THP coefficient of performance, which in turn is dependent on heat transfer within the system. Based on the remaining limitations of the simulation, priorities for further model development include: center dot Relaxing the assumption of total condensation center dot Incorporating dynamic simulation capability for the buildup of dissolved inert gasses in condensers center dot Examining CDS operation with more complex feeds center dot Extending heat transfer analysis to all surfaces

  17. ASRM test report: Autoclave cure process development

    NASA Technical Reports Server (NTRS)

    Nachbar, D. L.; Mitchell, Suzanne

    1992-01-01

    ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.

  18. Energy use in the marine transportation industry. Task III. Efficiency improvements. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-02

    Research and development areas that hold promise for maritime energy conservation are identified and evaluated. The methodology used is discussed in Chapter II. The technology base of the commercial marine transportation industry relating to energy usage is made up of: main propulsion plants, propulsors, hydrodynamics, vessel operations, and fuels. Fifteen specific program areas in the first four generic technologies are identified and are evaluated. An economic and energy impact analysis and technological risk assessment was performed on the specific program areas and the results are summarized in Chapter III. The first five appendices address the generic technologies. The sixth appendixmore » contains the baseline operating and cost parameters against which the 15 program areas were evaluated, and the last appendix contains sample printouts of the MTEM model used to evaluate the energy consumption and economic impacts associated with the candidate technology areas. (MCW)« less

  19. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  20. Catalyst Residence Time Distributions in Riser Reactors for Catalytic Fast Pyrolysis. Part 2: Pilot-Scale Simulations and Operational Parameter Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, Thomas D.; Ziegler, Jack L.; Pannala, Sreekanth

    2017-02-21

    Here, wsing the validated simulation model developed in part one of this study for biomass catalytic fast pyrolysis (CFP), we assess the functional utility of using this validated model to assist in the development of CFP processes in fluidized catalytic cracking (FCC) reactors to a commercially viable state. Specifically, we examine the effects of mass flow rates, boundary conditions (BCs), pyrolysis vapor molecular weight variation, and the impact of the chemical cracking kinetics on the catalyst residence times. The factors that had the largest impact on the catalyst residence time included the feed stock molecular weight and the degree ofmore » chemical cracking as controlled by the catalyst activity. Lastly, because FCC reactors have primarily been developed and utilized for petroleum cracking, we perform a comparison analysis of CFP with petroleum and show the operating regimes are fundamentally different.« less

  1. The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System

    PubMed Central

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284

  2. Environmental parameters of the Tennessee River in Alabama. 1: Thermal stratification

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Thermal stratification data of a transect across Wheeler Reservoir are correlated with the climatological data at the time of sampling. This portion of the Tennessee River is used as a heat sink for the effluent from the three reactor Browns Ferry Nuclear Power Plant. The transect sampling line is 1.3 miles below this point of effluence. Data are presented by weekly samplings for one year prior to plant operations. Post-operational data are presented with one reactor in operation and with two reactors in partial operation. Data gathering was terminated when the plant ceased operations. The results indicate that the effluent for partial plant operation were inconclusive. As a result, recommendations include continuing the sampling when the plant resumes operation at full capacity. Recommendations also include developing math models with the presented thermal and climatological data to be used for predicting the effluent impact in the river with varying climatological conditions and also to predict the effectiveness of the cooling towers.

  3. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    PubMed

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  4. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators

    PubMed Central

    Yin, Kedong; Yang, Benshuo

    2018-01-01

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making. PMID:29364849

  5. Impact response of graphite-epoxy flat laminates using projectiles that simulate aircraft engine encounters

    NASA Technical Reports Server (NTRS)

    Preston, J. L., Jr.; Cook, T. S.

    1975-01-01

    An investigation of the response of a graphite-epoxy material to foreign object impact was made by impacting spherical projectiles of gelatin, ice, and steel normally on flat panels. The observed damage was classified as transverse (stress wave delamination and cracking), penetrative, or structural (gross failure): the minimum, or threshold, velocity to cause each class of damage was established as a function of projectile characteristics. Steel projectiles had the lowest transverse damage threshold, followed by gelatin and ice. Making use of the threshold velocities and assuming that the normal component of velocity produces the damage in nonnormal impacts, a set of impact angles and velocities was established for each projectile material which would result in damage to composite fan blades. Analysis of the operating parameters of a typical turbine fan blade shows that small steel projectiles are most likely to cause delamination and penetration damage to unprotected graphite-epoxy composite fan blades.

  6. Integrated approach for stress based lifing of aero gas turbine blades

    NASA Astrophysics Data System (ADS)

    Abu, Abdullahi Obonyegba

    In order to analyse the turbine blade life, the damage due to the combined thermal and mechanical loads should be adequately accounted for. This is more challenging when detailed component geometry is limited. Therefore, a compromise between the level of geometric detail and the complexity of the lifing method to be implemented would be necessary. This research focuses on how the life assessment of aero engine turbine blades can be done, considering the balance between available design inputs and adequate level of fidelity. Accordingly, the thesis contributes to developing a generic turbine blade lifing method that is based on the engine thermodynamic cycle; as well as integrating critical design/technological factors and operational parameters that influence the aero engine blade life. To this end, thermo-mechanical fatigue was identified as the critical damage phenomenon driving the life of the turbine blade.. The developed approach integrates software tools and numerical models created using the minimum design information typically available at the early design stages. Using finite element analysis of an idealised blade geometry, the approach captures relevant impacts of thermal gradients and thermal stresses that contribute to the thermo-mechanical fatigue damage on the gas turbine blade. The blade life is evaluated using the Neu/Sehitoglu thermo-mechanical fatigue model that considers damage accumulation due to fatigue, oxidation, and creep. The leading edge is examined as a critical part of the blade to estimate the damage severity for different design factors and operational parameters. The outputs of the research can be used to better understand how the environment and the operating conditions of the aircraft affect the blade life consumption and therefore what is the impact on the maintenance cost and the availability of the propulsion system. This research also finds that the environmental (oxidation) effect drives the blade life and the blade coolant side was the critical location. Furthermore, a parametric and sensitivity study of the Neu/Sehitoglu model parameters suggests that in addition to four previously reported parameters, the sensitivity of the phasing to oxidation damage would be critical to overall blade life..

  7. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  8. The Da Vinci Xi and robotic radical prostatectomy-an evolution in learning and technique.

    PubMed

    Goonewardene, S S; Cahill, D

    2017-06-01

    The da Vinci Xi robot has been introduced as the successor to the Si platform. The promise of the Xi is to open the door to new surgical procedures. For robotic-assisted radical prostatectomy (RARP)/pelvic surgery, the potential is better vision and longer instruments. How has the Xi impacted on operative and pathological parameters as indicators of surgical performance? This is a comparison of an initial series of 42 RARPs with the Xi system in 2015 with a series using the Si system immediately before Xi uptake in the same calendar year, and an Si series by the same surgeon synchronously as the Xi series using operative time, blood loss, and positive margins as surrogates of surgical performance. Subjectively and objectively, there is a learning curve to Xi uptake in longer operative times but no impact on T2 positive margins which are the most reflective single measure of RARP outcomes. Subjectively, the vision of the Xi is inferior to the Si system, and the integrated diathermy system and automated setup are quirky. All require experience to overcome. There is a learning curve to progress from the Si to Xi da Vinci surgical platforms, but this does not negatively impact the outcome.

  9. 40 CFR 60.2944 - What operating parameter monitoring equipment must I install, and what operating parameters must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What operating parameter monitoring equipment must I install, and what operating parameters must I monitor? 60.2944 Section 60.2944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Operator...

  10. Modelling the competition of planktonic and sessile aerobic heterotrophs for complementary nutrients in biofilm reactor.

    PubMed

    Lu, T; Saikaly, P E; Oerther, D B

    2007-01-01

    A comprehensive, simplified microbial biofilm model was developed to evaluate the impact of bioreactor operating parameters on changes in microbial population abundance. Biofilm simulations were conducted using three special cases: fully penetrated, internal mass transfer resistance and external mass transfer resistance. The results of model simulations showed that for certain operating conditions, competition for growth limiting nutrients generated oscillations in the abundance of planktonic and sessile microbial populations. These oscillations resulted in the violation of the competitive exclusion principle where the number of microbial populations was greater than the number of growth limiting nutrients. However, the operating conditions which impacted microbial community diversity were different for the three special cases. Comparing the results of model simulations for dispersed-growth, biofilms and bioflocs showed that oscillations and microbial community diversity were a function of competition as well as other key features of the ecosystem. The significance of the current study is that it is the first to examine competition as a mechanism for controlling microbial community diversity in biofilm reactors.

  11. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: Study on influencing factors and impact on symbiotic microbial ecology.

    PubMed

    Ye, Jianfeng; Liang, Junyu; Wang, Liang; Markou, Giorgos; Jia, Qilong

    2018-03-01

    Wastewater treatment technology with better energy efficiency and recyclability is in urgent demand. Photo-Sequencing batch reactor (SBR), which introduces microalgae into conventional SBR, is considered to have more potential for resource recycling. In this study, a photo-SBR was evaluated through the manipulation of several key operational parameters, i.e., aeration strength, light supply intensity and time per cycle, and solid retention time (SRT). The algal-bacterial symbiotic system had the potential of removing COD, NH 4 + -N and TN with limited aeration, representing the advantage of energy-saving by low aeration requirement. Maintaining appropriate proportion of microalgae in the symbiotic system is critical for good system performance. Introducing microalgae into conventional SBR has obvious impact on the original microbial ecology. When the concentration of microalgae is too high (>4.60 mg Chl/L), the inhibition on certain phyla of bacteria, e.g., Bacteroidetes and Actinobacteria, would become prominent and not conducive to the stable operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. OTF CCSDS Mission Operations Prototype Parameter Service. Phase I: Exit Presentation

    NASA Technical Reports Server (NTRS)

    Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.

    2009-01-01

    This slide presentation reviews the prototype of phase 1 of the parameter service design of the CCSDS mission operations. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement the Parameter Service (2) Demonstrate interoperability between Houston MCC and a CCSDS Mission Operations compliant mission operations center (3) Utilize Mission Operations Common Architecture. THe parameter service design, interfaces, and structures are described.

  13. Transumbilical Thoracoscopy Versus Conventional Thoracoscopy for Lung Wedge Resection: Safety and Efficacy in a Live Canine Model.

    PubMed

    Chen, Tzu-Ping; Yen-Chu; Wu, Yi-Cheng; Yeh, Chi-Ju; Liu, Chien-Ying; Hsieh, Ming-Ju; Yuan, Hsu-Chia; Ko, Po-Jen; Liu, Yun-Hen

    2015-12-01

    Transumbilical single-port surgery has been associated with less postoperative pain and offers better cosmetic outcomes than conventional 3-port laparoscopic surgery. This study compares the safety and efficacy of transumbilical thoracoscopy and conventional thoracoscopy for lung wedge resection. The animals (n = 16) were randomly assigned to the transumbilical thoracoscopic approach group (n = 8) or conventional thoracoscopic approach group (n = 8). Transumbilical lung resection was performed via an umbilical incision and a diaphragmatic incision. In the conventional thoracoscopic group, lung resection was completed through a thoracic incision. For both procedures, we compared the surgical outcomes, for example, operating time and operative complications; physiologic parameters, for example, respiratory rate and body temperature; inflammatory parameters, for example, white blood cell count; and pulmonary parameters, for example, arterial blood gas levels. The animals were euthanized 2 weeks after the surgery for gross and histologic evaluations. The lung wedge resection was successfully performed in all animals. There was no significant difference in the mean operating times or complications between the transumbilical and the conventional thoracoscopic approach groups. With regard to the physiologic impact of the surgeries, the transumbilical approach was associated with significant elevations in body temperature on postoperative day 1, when compared with the standard thoracoscopic approach. This study suggests that both approaches for performing lung wedge resection were comparable in efficacy and postoperative complications. © The Author(s) 2014.

  14. Uncertainty quantification and risk analyses of CO2 leakage in heterogeneous geological formations

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Murray, C. J.; Rockhold, M. L.

    2012-12-01

    A stochastic sensitivity analysis framework is adopted to evaluate the impact of spatial heterogeneity in permeability on CO2 leakage risk. The leakage is defined as the total mass of CO2 moving into the overburden through the caprock-overburden interface, in both gaseous and liquid (dissolved) phases. The entropy-based framework has the ability to quantify the uncertainty associated with the input parameters in the form of prior pdfs (probability density functions). Effective sampling of the prior pdfs enables us to fully explore the parameter space and systematically evaluate the individual and combined effects of the parameters of interest on CO2 leakage risk. The parameters that are considered in the study include: mean, variance, and horizontal to vertical spatial anisotropy ratio for caprock permeability, and those same parameters for reservoir permeability. Given the sampled spatial variogram parameters, multiple realizations of permeability fields were generated using GSLIB subroutines. For each permeability field, a numerical simulator, STOMP, (in the water-salt-CO2-energy operational mode) is used to simulate the CO2 migration within the reservoir and caprock up to 50 years after injection. Due to intensive computational demand, we run both a scalable version simulator eSTOMP and serial STOMP on various supercomputers. We then perform statistical analyses and summarize the relationships between the parameters of interest (mean/variance/anisotropy ratio of caprock and reservoir permeability) and CO2 leakage ratio. We also present the effects of those parameters on CO2 plume radius and reservoir injectivity. The statistical analysis provides a reduced order model that can be used to estimate the impact of heterogeneity on caprock leakage.

  15. Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Krol, M.; Daemi, N.

    2017-12-01

    Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.

  16. A downscaling method for the assessment of local climate change

    NASA Astrophysics Data System (ADS)

    Bruno, E.; Portoghese, I.; Vurro, M.

    2009-04-01

    The use of complimentary models is necessary to study the impact of climate change scenarios on the hydrological response at different space-time scales. However, the structure of GCMs is such that their space resolution (hundreds of kilometres) is too coarse and not adequate to describe the variability of extreme events at basin scale (Burlando and Rosso, 2002). To bridge the space-time gap between the climate scenarios and the usual scale of the inputs for hydrological prediction models is a fundamental requisite for the evaluation of climate change impacts on water resources. Since models operate a simplification of a complex reality, their results cannot be expected to fit with climate observations. Identifying local climate scenarios for impact analysis implies the definition of more detailed local scenario by downscaling GCMs or RCMs results. Among the output correction methods we consider the statistical approach by Déqué (2007) reported as a ‘Variable correction method' in which the correction of model outputs is obtained by a function build with the observation dataset and operating a quantile-quantile transformation (Q-Q transform). However, in the case of daily precipitation fields the Q-Q transform is not able to correct the temporal property of the model output concerning the dry-wet lacunarity process. An alternative correction method is proposed based on a stochastic description of the arrival-duration-intensity processes in coherence with the Poissonian Rectangular Pulse scheme (PRP) (Eagleson, 1972). In this proposed approach, the Q-Q transform is applied to the PRP variables derived from the daily rainfall datasets. Consequently the corrected PRP parameters are used for the synthetic generation of statistically homogeneous rainfall time series that mimic the persistency of daily observations for the reference period. Then the PRP parameters are forced through the GCM scenarios to generate local scale rainfall records for the 21st century. The statistical parameters characterizing daily storm occurrence, storm intensity and duration needed to apply the PRP scheme are considered among STARDEX collection of extreme indices.

  17. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part II. Practical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are increasingly used to carry out analyses in organic/hydro-organic matrices. The introduction of such matrices into ICP sources is particularly challenging and can be the cause of numerous drawbacks. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP sources. Part I provided theoretical considerations associated with the physico-chemical properties of such matrices, in an attempt to understand the induced phenomena. Part II of this tutorial review is dedicated to more practical considerations on instrumentation, instrumental and operating parameters, as well as analytical strategies for elemental quantification in such matrices. Two important issues are addressed in this part: the first concerns the instrumentation and optimization of instrumental and operating parameters, pointing out (i) the description, benefits and drawbacks of different kinds of nebulization and desolvation devices and the impact of more specific instrumental parameters such as the injector characteristics and the material used for the cone; and, (ii) the optimization of operating parameters, for both ICP-OES and ICP-MS. Even if it is at the margin of this tutorial review, Electrothermal Vaporization and Laser Ablation will also be shortly described. The second issue is devoted to the analytical strategies for elemental quantification in such matrices, with particular insight into the isotope dilution technique, particularly used in speciation analysis by ICP-coupled separation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Modified arytenoid adduction for cancer-related unilateral vocal fold paralysis.

    PubMed

    Shi, J; Chen, S; Chen, D; Wang, W; Xia, S; Zheng, H

    2011-02-01

    (1) To evaluate the efficacy of modified arytenoid adduction in the management of patients with symptomatic cancer-related unilateral vocal fold paralysis, and (2) to assess the impact of this treatment on patients' quality of life. Forty-two patients with cancer-related unilateral vocal fold paralysis underwent modified arytenoid adduction between February 2001 and December 2008. Of these, 37 patients were enrolled in this retrospective study (one patient died of primary disease and four were lost to follow up). Laryngostroboscopy was performed to evaluate vocal fold orientation and mobility. Pre- and post-operative assessment of subjective and objective voice, aerodynamic parameters, and quality of life were also undertaken, and aspiration was subjectively rated. Laryngostroboscopic findings indicated a significant post-operative improvement in vocal fold posterior glottal closure and vertical gap. Significant improvements in voice quality, aerodynamic parameters and quality of life were noted three months post-operatively in all patients (p < 0.01). The overall success rate for swallowing rehabilitation was 94.6 per cent (35/37). Subjective aspiration ratings decreased significantly post-operatively, compared with pre-operative values (p < 0.01). No major complication occurred in any patient, except for dyspnoea in one patient. Modified arytenoid adduction is an effective and reliable medialisation technique which can restore satisfactory voice quality, prevent aspiration and lead to a better quality of life for patients with cancer-related unilateral vocal fold paralysis.

  19. Columbia River : Select Area Fishery Evaluation project : 1995-96 Annual Reports.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1998-06-01

    Water quality monitoring was conducted from November 1994 through October 1996 at five Oregon and three Washington select area study sites in the lower Columbia River. Physicochemical monitoring and aquatic biomonitoring programs were established to profile baseline parameters at each study site and document differences between study sites. Data collected at study sites where fish rearing operations were initiated indicate a potential negative impact on the surrounding benthic invertebrate communities.

  20. Ground Vehicle System Integration (GVSI) and Design Optimization Model.

    DTIC Science & Technology

    1996-07-30

    number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will

  1. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration.

    PubMed

    Ajao, Olumoye; Rahni, Mohamed; Marinova, Mariya; Chadjaa, Hassan; Savadogo, Oumarou

    2017-12-15

    Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  2. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration

    PubMed Central

    Rahni, Mohamed; Marinova, Mariya; Chadjaa, Hassan; Savadogo, Oumarou

    2017-01-01

    Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate. PMID:29244761

  3. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    PubMed

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are higher than emissions associated with transportation. Sensitivity analyses for key parameters including digester PS:WAS and sludge retention time, and assumed biosolids nitrogen content and agricultural availability also provide additional robustness and comprehensiveness to our inventory data and will facilitate more customised user analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A multi-particle crushing apparatus for studying rock fragmentation due to repeated impacts

    NASA Astrophysics Data System (ADS)

    Huang, S.; Mohanty, B.; Xia, K.

    2017-12-01

    Rock crushing is a common process in mining and related operations. Although a number of particle crushing tests have been proposed in the literature, most of them are concerned with single-particle crushing, i.e., a single rock sample is crushed in each test. Considering the realistic scenario in crushers where many fragments are involved, a laboratory crushing apparatus is developed in this study. This device consists of a Hopkinson pressure bar system and a piston-holder system. The Hopkinson pressure bar system is used to apply calibrated dynamic loads to the piston-holder system, and the piston-holder system is used to hold rock samples and to recover fragments for subsequent particle size analysis. The rock samples are subjected to three to seven impacts under three impact velocities (2.2, 3.8, and 5.0 m/s), with the feed size of the rock particle samples limited between 9.5 and 12.7 mm. Several key parameters are determined from this test, including particle size distribution parameters, impact velocity, loading pressure, and total work. The results show that the total work correlates well with resulting fragmentation size distribution, and the apparatus provides a useful tool for studying the mechanism of crushing, which further provides guidelines for the design of commercial crushers.

  5. A Validation Study of Merging and Spacing Techniques in a NAS-Wide Simulation

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2011-01-01

    In November 2010, Intelligent Automation, Inc. (IAI) delivered an M&S software tool to that allows system level studies of the complex terminal airspace with the ACES simulation. The software was evaluated against current day arrivals in the Atlanta TRACON using Atlanta's Hartsfield-Jackson International Airport (KATL) arrival schedules. Results of this validation effort are presented describing data sets, traffic flow assumptions and techniques, and arrival rate comparisons between reported landings at Atlanta versus simulated arrivals using the same traffic sets in ACES equipped with M&S. Initial results showed the simulated system capacity to be significantly below arrival capacity seen at KATL. Data was gathered for Atlanta using commercial airport and flight tracking websites (like FlightAware.com), and analyzed to insure compatible techniques were used for result reporting and comparison. TFM operators for Atlanta were consulted for tuning final simulation parameters and for guidance in flow management techniques during high volume operations. Using these modified parameters and incorporating TFM guidance for efficiencies in flowing aircraft, arrival capacity for KATL was matched for the simulation. Following this validation effort, a sensitivity study was conducted to measure the impact of variations in system parameters on the Atlanta airport arrival capacity.

  6. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio,more » cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.« less

  7. Control area trends: Principles and responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, L.R.

    1995-04-01

    Two trends impacting the control of interconnected system operations are on a collision course. Like two strong weather fronts, the combination of these trends can generate tornados or gentle rain. Better system control and improved system security can be the result if there is productive cooperation, commitment, communication, and control. Computers and communication networks are the tools used to turn the momentum of these two trends to the advantage of the industry. But before the first line of software can be written, the cooperation, commitment, and communication of the interested parties must establish the parameters for future system control andmore » operations. This article examines how the control of interconnected system operations is being affected by the consolidation of control areas and the introduction of new control areas.« less

  8. Impact of adenotonsillectomy on vocal emission in children.

    PubMed

    Dimatos, Spyros Cardoso; Neves, Luciano Rodrigues; Beltrame, Jéssica Monique; Azevedo, Renata Rangel; Pignatari, Shirley Shizue Nagata

    2016-01-01

    Adenotonsillectomy is the most common surgery performed by otolaryngologists in pediatric age, and one of the most frequently asked questions about the postoperative period is whether there is a potential for change in vocal pattern of these children. To evaluate the impact of adenotonsillectomy in the voice emission pattern of children with hypertrophy of palatine and pharyngeal tonsils. This is a prospective study in which we carried out perceptual auditory assessments and acoustic analysis of 26 children with adenotonsillar hypertrophy at three time points: before surgery, one month and three months after surgery. The following acoustic parameters were estimated using the Praat software: fundamental frequency, jitter, shimmer, and harmonic-noise ratio. A statistically significant change was found between shimmer and harmonic-noise ratio during vowel /u/ production between the preoperative and 1st month postoperative time points. No significant differences were detected for acoustic parameters between preoperative analysis and that of the 3rd month post-operation. Transient changes in acoustic parameters occur in children with adenotonsillar hypertrophy submitted to adenotonsillectomy, progressing to normalization in the 3rd postoperative month. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  9. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  10. Benthic foraminiferal responses to operational drill cutting discharge in the SW Barents Sea - a case study.

    NASA Astrophysics Data System (ADS)

    Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje

    2016-04-01

    Petroleum related exploration activities started in the Barents Sea 1980, reaching 97 exploration wells drilled per January 2013. The biggest operational discharge from drilling operations in the Barents Sea is the release of drill cuttings (crushed seabed and/or bedrock) and water based drilling muds including the commonly used weighing material barite (BaSO4). Barium (Ba), a constituent of barite, does not degrade and can be used to evaluate dispersion and accumulation of drill waste. The environmental impact associated with exploration drilling within the Goliat Field, SW Barents Sea in 2006 was evaluated via a multiproxy investigation of local sediments. The sediments were retrieved in November 2014 at ~350 meters water depth and coring sites were selected at distances of 5, 30, 60, 125 and 250 meters from the drill hole in the eastward downstream direction. The dispersion pattern of drill waste was estimated via measurements of sediment parameters including grain size distribution and water content in addition to heavy metal and total organic carbon contents. The environmental impact was evaluated via micro faunal analysis based on benthic foraminiferal (marine shell bearing protists) fauna composition and concentration changes. Observing the sediment parameters, most notably Ba levels, reveals that dispersion of drill waste was limited to <125 meters from the drill site with drill waste thicknesses decreasing downstream. The abruptness and quantity of drill waste sedimentation initially smothered the foraminiferal fauna at ≤ 30 meters from the drill site, while at a distance of 60 meters, the fauna seemingly survived and bioturbation persisted. Analysis of the live (Nov 2014) foraminiferal fauna reveals a natural species composition at all distances from the drill site within the top sediments (0-5 cm core depth). Furthermore, the fossil foraminiferal fauna composition found within post-impacted top sediment sections, particularly in the cores situated at 30 and 60 meters from the drill site, suggests that reestablishment of the foraminiferal fauna likely commenced shortly after cessation of drilling activity.

  11. Local Sensitivity of Predicted CO 2 Injectivity and Plume Extent to Model Inputs for the FutureGen 2.0 site

    DOE PAGES

    Zhang, Z. Fred; White, Signe K.; Bonneville, Alain; ...

    2014-12-31

    Numerical simulations have been used for estimating CO2 injectivity, CO2 plume extent, pressure distribution, and Area of Review (AoR), and for the design of CO2 injection operations and monitoring network for the FutureGen project. The simulation results are affected by uncertainties associated with numerous input parameters, the conceptual model, initial and boundary conditions, and factors related to injection operations. Furthermore, the uncertainties in the simulation results also vary in space and time. The key need is to identify those uncertainties that critically impact the simulation results and quantify their impacts. We introduce an approach to determine the local sensitivity coefficientmore » (LSC), defined as the response of the output in percent, to rank the importance of model inputs on outputs. The uncertainty of an input with higher sensitivity has larger impacts on the output. The LSC is scalable by the error of an input parameter. The composite sensitivity of an output to a subset of inputs can be calculated by summing the individual LSC values. We propose a local sensitivity coefficient method and applied it to the FutureGen 2.0 Site in Morgan County, Illinois, USA, to investigate the sensitivity of input parameters and initial conditions. The conceptual model for the site consists of 31 layers, each of which has a unique set of input parameters. The sensitivity of 11 parameters for each layer and 7 inputs as initial conditions is then investigated. For CO2 injectivity and plume size, about half of the uncertainty is due to only 4 or 5 of the 348 inputs and 3/4 of the uncertainty is due to about 15 of the inputs. The initial conditions and the properties of the injection layer and its neighbour layers contribute to most of the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume size. The three most sensitive inputs for injectivity were the horizontal permeability of Mt Simon 11 (the injection layer), the initial fracture-pressure gradient, and the residual aqueous saturation of Mt Simon 11, while those for the plume area were the initial salt concentration, the initial pressure, and the initial fracture-pressure gradient. The advantages of requiring only a single set of simulation results, scalability to the proper parameter errors, and easy calculation of the composite sensitivities make this approach very cost-effective for estimating AoR uncertainty and guiding cost-effective site characterization, injection well design, and monitoring network design for CO2 storage projects.« less

  12. Structural Integrity of Gas-Filled Composite Overwrapped Pressure Vessels Subjected to Orbital Debris Impact

    NASA Astrophysics Data System (ADS)

    Telichev, Igor; Cherniaev, Aleksandr

    Gas-filled pressure vessels are extensively used in spacecraft onboard systems. During operation on the orbit they exposed to the space debris environment. Due to high energies they contain, pressure vessels have been recognized as the most critical spacecraft components requiring protection from orbital debris impact. Major type of pressurized containers currently used in spacecraft onboard systems is composite overwrapped pressure vessels (COPVs) manufactured by filament winding. In the present work we analyze the structural integrity of vessels of this kind in case of orbital debris impact at velocities ranging from 2 to 10 km/s. Influence of such parameters as projectile energy, shielding standoff, internal pressure and filament winding pattern on COPVs structural integrity has been investigated by means of numerical and physical experiments.

  13. Design and simulation of a MEM pressure microgripper based on electrothermal microactuators

    NASA Astrophysics Data System (ADS)

    Tecpoyotl-T., Margarita; Vargas Ch., Pedro; Koshevaya, Svetlana; Cabello-R., Ramón; Ocampo-D., Alejandra; Vera-D., J. Gerardo

    2016-09-01

    Design and simulation of a novel pressure microgripper based on Microelectromechanical, MEM technology, and composed by several electrothermal microactuators were carried out in order to increment the displacement and the cutoff force. The implementation of an element of press or gripping in the arrow of chevron actuator was implemented to supply stability in the manipulation of micro-objects. Each device of the microgripper and its fundamental equations will be described. The fundamental parameters to understand the operation and behaviour of the device are analyzed through sweeps of temperature (from 30 °C up to 100 °C) and voltage (from 0.25 V up to 5 V), showing the feasibility to operate the microgripper with electrical or thermal feeding. The design and simulation were development with Finite Element Method (FEM) in Ansys-Workbench 16.0. In this work, the fundamental parameters were calculated in Ansys-Workbench. It is shown, that structural modifications have great impact in the displacement and the cut-off force of the microgripper.

  14. Guidelines for Developing Spacecraft Structural Requirements: A Thermal and Environmental Perspective

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Day, Greg; Gill, Larry

    2004-01-01

    Spacecraft are typically designed with a primary focus on weight in order to meet launch vehicle performance parameters. However, for pressurized and/or man-rated spacecraft, it is also necessary to have an understanding of the vehicle operating environments to properly size the pressure vessel. Proper sizing of the pressure vessel requires an understanding of the space vehicle's life cycle and compares the physical design optimization (weight and launch "cost") to downstream operational complexity and total life cycle cost. This paper will provide an overview of some major environmental design drivers and provide examples for calculating the optimal design pressure versus a selected set of design parameters related to thermal and environmental perspectives. In addition, this paper will provide a generic set of cracking pressures for both positive and negative pressure relief valves that encompasses worst case environmental effects for a variety of launch / landing sites. Finally, several examples are included to highlight pressure relief set points and vehicle weight impacts for a selected set of orbital missions.

  15. Effective sextic superpotential and B-L violation in NMSGUT

    NASA Astrophysics Data System (ADS)

    Aulakh, C. S.; Awasthi, R. L.; Krishna, Shri

    2017-10-01

    We list operators of the superpotential of the effective MSSM that emerge from the NMSGUT up to sextic degree. We give illustrative expressions for the coefficients in terms of NMSGUT parameters. We also estimate the impact of GUT scale threshold corrections on these effective operators in view of the demonstration that B violation via quartic superpotential terms can be suppressed to acceptable levels after including such corrections in the NMSGUT. We find a novel B, B-L violating quintic operator that leads to the decay mode n→ e^- K^+. We also remark that the threshold corrections to the Type-I seesaw mechanism make the deviation of right-handed neutrino masses from the GUT scale more natural while Type-II seesaw neutrino masses, which earlier tended to utterly negligible receive threshold enhancement. Our results are of relevance for analysing B-L violating operator-based, sphaleron-safe, baryogenesis.

  16. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  17. Summary of inorganic compositional data for groundwater, soil-water, and surface-water samples collected at the Headgate Draw subsurface drip irrigation site, Johnson County, Wyoming

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupancic, John W.

    2011-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  18. The physiology of spacecraft and space suit atmosphere selection

    NASA Astrophysics Data System (ADS)

    Waligora, J. M.; Horrigan, D. J.; Nicogossian, A.

    The majority of the environmental factors which comprise the spacecraft and space suit environments can be controlled at "Earth normal" values, at optimum values, or at other values decided upon by spacecraft designers. Factors which are considered in arriving at control values and control ranges of these parameters include physiological, engineering, operational cost, and safety considerations. Several of the physiologic considerations, including hypoxia and hyperoxia, hypercapnia, temperature regulation, and decompression sickness are identified and their impact on space craft and space suit atmosphere selection are considered. The past experience in controlling these parameters in U.S. and Soviet spacecraft and space suits and the associated physiological responses are reviewed. Current areas of physiological investigation relating to environmental factors in spacecraft are discussed, particularly decompression sickness which can occur as a result of change in pressure from Earth to spacecraft or spacecraft to space suit. Physiological considerations for long-term lunar or Martian missions will have different impacts on atmosphere selection and may result in the selection of atmospheres different than those currently in use.

  19. 40 CFR 60.3043 - What operating parameter monitoring equipment must I install, and what operating parameters must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What operating parameter monitoring equipment must I install, and what operating parameters must I monitor? 60.3043 Section 60.3043 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission...

  20. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    NASA Astrophysics Data System (ADS)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  1. Integrating artificial and human intelligence into tablet production process.

    PubMed

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  2. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    PubMed

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  3. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    PubMed Central

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  4. A systematic review on the efficiency of cerium-impregnated activated carbons for the removal of gas-phase, elemental mercury from flue gas.

    PubMed

    Sowlat, Mohammad Hossein; Kakavandi, Babak; Lotfi, Saeedeh; Yunesian, Masud; Abdollahi, Mohammad; Rezaei Kalantary, Roshanak

    2017-05-01

    In the present systematic review, we aimed to collect and analyze all the relevant evidence on the efficiency of cerium-impregnated versus virgin-activated carbons (ACs) for the removal of gas-phase elemental mercury (Hg 0 ) from the flue gas of coal-fired power plants and to assess the effect of different calcination and operational parameters on their efficiency. A total of eight relevant papers (out of 1193 hits produced by the search) met the eligibility criteria and were included in the study. Results indicated that the Hg 0 adsorption capacity of cerium-impregnated ACs is significantly higher than that of virgin ACs, depending highly on the impregnation and operational parameters. It was noticed that although cerium-impregnated ACs possessed smaller surface areas and pore volumes, their Hg 0 removal efficiencies were still higher than their virgin counterparts. An increased Hg 0 removal efficiency was in general found by increasing the operational adsorption temperature as high as 150-170 °C. Studies also indicated that NO, SO 2 , and HCl have promoting impacts on the Hg 0 removal efficiency of Ce-impregnated ACs, while H 2 O has an inhibitory effect.

  5. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.

  6. Influence of characteristics of time series on short-term forecasting error parameter changes in real time

    NASA Astrophysics Data System (ADS)

    Klevtsov, S. I.

    2018-05-01

    The impact of physical factors, such as temperature and others, leads to a change in the parameters of the technical object. Monitoring the change of parameters is necessary to prevent a dangerous situation. The control is carried out in real time. To predict the change in the parameter, a time series is used in this paper. Forecasting allows one to determine the possibility of a dangerous change in a parameter before the moment when this change occurs. The control system in this case has more time to prevent a dangerous situation. A simple time series was chosen. In this case, the algorithm is simple. The algorithm is executed in the microprocessor module in the background. The efficiency of using the time series is affected by its characteristics, which must be adjusted. In the work, the influence of these characteristics on the error of prediction of the controlled parameter was studied. This takes into account the behavior of the parameter. The values of the forecast lag are determined. The results of the research, in the case of their use, will improve the efficiency of monitoring the technical object during its operation.

  7. Dichroic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment * Effect of Thickness * Impact of Order Parameter * Impact of the Host * Impact of Polarizer * Colour Applications * Multiplexing * QUARTER WAVE PLATE DICHROIC DISPLAYS * Operational Principle and Display Configuration11-13 * Electro-Optical Performance * DYE-DOPED TN DISPLAYS * Threshold Characteristic, Contrast Ratio and Switching Speed * PHASE CHANGE EFFECT DICHROIC LCDs * Theoretical Background * Threshold Characteristic and Molecular Orientation * MOLECULAR ORIENTATION DURING FIELD-INDUCED PHASE TRANSITION WITH HOMOGENEOUS WALL ALIGNMENT * MOLECULAR ORIENTATION DURING FIELD-INDUCED PHASE TRANSITION WITH HOMEOTROPIC WALL ALIGNMENT * Contrast Ratio, Transmission, Brightness and Switching Speed3,7,10,198-214 * Memory or Reminiscent Contrast * Electro-optical Performance vs. Temperature * Multiplexing Phase Change Dichroic LCDs * DOUBLE CELL DICHROIC LCDs3,9,14-17,232-234 * Double Cell Nematic Dichroic LCD3,8,9,14,15,233 * Double Cell One Pitch Cholesteric LCD16,17 * Double Cell Phase Change Dichroic LCD214,232 * POSITIVE MODE DICHROIC LCDS3,8,9 * Positive Mode Heilmeier Cells3,8,9,43,77,78,235-238 * USING PLEOCHROIC DYES3,8,9,43,235-238 * USING NEGATIVE DICHROIC DYES3,8,9,63,77,78156 * DUAL FREQUENCY ADDRESSED DICHROIC DISPLAYS75,238 * Positive Mode Dichroic LCDs Using λ/4 Plate * Positive Mode Double Cell Dichroic LCD * Positive Mode Dichroic LCDs Using Special Electrode patterns7,8,239-241 * Positive Mode Phase Change Dichroic LCDs3,8,9,230,243-248 * Dichroic LCDs Using an Admixture of Pleochroic and Negative Dichroic Dyes78,118 * SUPERTWIST DICHROIC EFFECT (SDE) DISPLAYS21-23 * FERROELECTRIC DICHROIC LCDs24-27 * Devices Using A Single Polarizer * Devices Using No Polarizer24-27 * POLYMER DISPERSED DICHROIC LCDs28-30,252-259 * DICHROIC POLYMER LIQUID CRYSTAL DISPLAYS * Heilmeier Type Displays * Guest-Host Cell Using an Admixture Of L.C. Polymer and Low Molecular Weight Liquid Crysta As Host * Polymeric Ferroelectric Dichroic LCDs * SMECTIC A DICHROIC LCDs * Laser Addressed Dichroic SA Displays * Thermally and Electrically Addressed Dichroic SA Displays * FLUORESCENT DICHROIC LCDs * ACKNOWLEDGEMENTS * REFERENCES

  8. Economic evaluation of flying-qualities design criteria for a transport configured with relaxed static stability

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Direct constrained parameter optimization was used to optimally size a medium range transport for minimum direct operating cost. Several stability and control constraints were varied to study the sensitivity of the configuration to specifying the unaugmented flying qualities of transports designed to take maximum advantage of relaxed static stability augmentation systems. Additionally, a number of handling qualities related design constants were studied with respect to their impact on the design.

  9. Multinational Experiment 7. Outcome 3 - Cyber Domain. Objective 3.3: Concept Framework Version 3.0

    DTIC Science & Technology

    2012-10-03

    experimentation in order to give some parameters for Decision Makers’ actions. A.5 DIFFERENT LEGAL FRAMEWORKS The juridical framework to which we refer, in...material effects (e.g. psychological impact), economic et al, or, especially in the military field, it may affect Operational Security (OPSEC). 7...not expected at all to be run as a mechanistic tool that produces univocal outputs on the base of juridically qualified inputs, making unnecessary

  10. Vibro-Acoustic Analysis of an Aircraft Maintenance Dock

    DTIC Science & Technology

    1992-08-01

    evaluated. This evaluation resulted in a table of allowable number of cycles of operation to produce the same impact on the facility as the original...for 18 Gage Galvanized Steel Walls of HV Ducts 209 H13 Summary of Calculated Vibration Response Parameters at Base of HV 217 H 14 Engine Power Level...The reverberant sound field due to the acoustic energy remaining within the AMD after the first reflection of the direct sound. The direct sound field

  11. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less

  12. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  13. The heat rate index indicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasasso, M.; Runyan, B.; Napoli, J.

    1995-06-01

    This paper describes a method of tracking unit performance through the use of a reference number called the Heat Rate Index Indicator. The ABB Power Plant Controls OTIS performance monitor is used to determine when steady load conditions exist and then to collect controllable and equipment loss data which significantly impact thermal efficiency. By comparing these loss parameters to those found during the previous heat balance, it is possible to develop a new adjusted heat rate curve. These impacts on heat rate are used to changes the shape of the tested heat rate curve by the appropriate percentages over amore » specified load range. Mathcad is used to determine the Heat Rate Index by integrating for the areas beneath the adjusted heat rate curve and a heat rate curve that represents the unit`s ideal heat rate curve is the Heat Rate Index. An index of 1.0 indicates that the unit is operating at an ideal efficiency, while an index of less than 1.0 indicates that the unit is operating at less than ideal conditions. A one per cent change in the Heat Rate Index is equivalent to a one percent change in heat rate. The new shape of the adjusted heat rate curve and the individual curves generated from the controllable and equipment loss parameters are useful for determining performance problems in specific load ranges.« less

  14. The impact of the driving frequency on the output flux of high-power InGaAlP-LEDs during high-current pulsed operation

    NASA Astrophysics Data System (ADS)

    Schulz, Benjamin; Morgott, Stefan

    2017-09-01

    Direct red light-emitting diodes based on InGaAlP comprise a strong temperature sensitivity regarding their output flux. In étendue-limited applications, like digital projectors, these LEDs are usually driven at current densities exceeding 3 A/mm2 in pulsed mode. The losses inside the semiconductor lead to a large amount of heat, which has to be removed most efficiently by a heatsink to keep the junction temperature as low as possible and therefore to obtain the maximum output flux. One important performance parameter is the thermal resistance Rth of the LED, which has been improved during the last few years, e.g. by the development of new high-power chips and packages. In our present approach, we investigated the influence of the driving frequency - which is closely related to the thermal impedance Zth - on the luminous and the radiant flux of red LEDs. A simulation model based on the electro-thermal analogies was implemented in SPICE and the optical and electrical characteristics of one LED type (OSRAM OSTAR Projection Power LE A P1W) were measured under application-related driving conditions while varying the parameters frequency, duty cycle, forward current, and heatsink temperature. The experimental results show clearly that the luminous and the radiant flux go up when the driving frequency is increased while the other parameters are maintained. Moreover, it can be noticed that the degree of this effect depends on the other parameters. The largest impact can be observed at the lowest tested duty cycle (30 %) and the highest tested current density (4 A/mm2) and heatsink temperature (80 °C). At this operating point, the luminous and the radiant flux increase by 20 % and 14 % respectively when raising the frequency from 240 Hz to 1920 Hz.

  15. Cargo Logistics Airlift Systems Study (CLASS). Volume 4: Future requirements of dedicated freighter aircraft to year 2008

    NASA Technical Reports Server (NTRS)

    Burby, R. J.

    1979-01-01

    The 1978 fleet operations are extended to the year 1992, thus providing an evaluation of current aircraft types in meeting the ensuing increased market demand. Possible changes in the fleet mix and the resulting economic situation are defined in terms of the number of units of each type aircraft and the resulting growth in operational frequency. Among the economic parameters considered are the associated investment required by the airline, the return on investment to the airline, and the accompanying levels of cash flow and operating income. Against this background the potential for a derivative aircraft to enter fleet operations in 1985 is defined as a function of payload size and as affected by 1980 technology. In a similar manner, the size and potential for a new dedicated 1990 technology, freighter aircraft to become operational in 1995 is established. The resulting aircraft and fleet operational and economic characteristics are evaluated over the period 1994 to 2008. The impacts of restricted growth in operational frequency, reduced market demand, variations in aircraft configurations, and military participation, are assessed.

  16. Land use impact on water quality: valuing forest services in terms of the water supply sector.

    PubMed

    Fiquepron, Julien; Garcia, Serge; Stenger, Anne

    2013-09-15

    The aim of this paper is to quantify the impact of the forest on raw water quality within the framework of other land uses. On the basis of measurements of quality parameters that were identified as being the most problematic (i.e., pesticides and nitrates), we modeled how water quality is influenced by land uses. In order to assess the benefits provided by the forest in terms of improved water quality, we used variations of drinking water prices that were determined by the operating costs of water supply services (WSS). Given the variability of links between forests and water quality, we chose to cover all of France using data observed in each administrative department (France is divided into 95 départements), including a description of WSS and information on land uses. We designed a model that describes the impact of land uses on water quality, as well as the operation of WSS and prices. This bioeconomic model was estimated by the generalized method of moments (GMM) to account for endogeneity and heteroscedasticity issues. We showed that the forest has a positive effect on raw water quality compared to other land uses, with an indirect impact on water prices, making them lower for consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Operational Improvements From the In-Trail Procedure in the North Atlantic Organized Track System

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan C.; Bussink, Frank J. L.; Graff, Thomas J.; Murdoch, Jennifer L.; Jones, Kenneth M.

    2008-01-01

    This paper explains the computerized batch processing experiment examining the operational impacts of the introduction of Automatic Dependent Surveillance-Broadcast (ADS-B) equipment and the In-Trail Procedure (ITP) to the North Atlantic Organized Track System (NATOTS). This experiment was conducted using the Traffic Manager (TMX), a desktop simulation capable of simulating airspace environments and aircraft operations. ADS-B equipment can enable the use of new ground and airborne procedures, such as the ITP. The ITP is among the first of these new procedures, which will make use of improved situation awareness in the local surrounding airspace of ADS-B equipped aircraft to enable more efficient oceanic flight level changes. The data collected were analyzed with respect to multiple operationally relevant parameters including fuel burn, request approval rates, and the distribution of fuel savings. This experiment showed that through the use of ADS-B or ADS-B and the ITP that operational improvements and benefits could be achieved.

  18. Operational Improvements From Using the In-Trail Procedure in the North Atlantic Organized Track System

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan C.; Bussink, Frank J.; Graff, Thomas J.; Jones, Kenneth M.

    2009-01-01

    This paper explains the computerized batch processing experiment examining the operational impacts of the introduction of Automatic Dependent Surveillance-Broadcast (ADS-B) equipment and the In-Trail Procedure (ITP) to the North Atlantic Organized Track System. This experiment was conducted using the Traffic Manager (TMX), a desktop simulation capable of simulating airspace environments and aircraft operations. ADS-B equipment can enable the use of new ground and airborne procedures, such as the ITP. ITP is among the first of these new procedures, which will make use of improved situation awareness in the local surrounding airspace of ADS-B equipped aircraft to enable more efficient oceanic flight level changes. The collected data were analyzed with respect to multiple operationally relevant parameters including fuel burn, request approval rates, and the distribution of fuel savings. This experiment showed that through the use of ADS-B or ADS-B and the ITP that operational improvements and benefits could be achieved.

  19. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    NASA Technical Reports Server (NTRS)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk calculation procedure.

  20. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  1. A feasibility study of ion implantation techniques for mass spectrometer calibration

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; Krycuk, G. A.; Schatz, J. G., Jr.; White, F. A.; Wood, G. M.

    1978-01-01

    An experimental study was undertaken to examine the feasibility of using ion-implanted filaments doped with either an alkali metal or noble gas for in situ recalibration of onboard mass spectrometers during extended space missions. Implants of rubidium and krypton in rhenium ribbon filaments were subsequently tested in a bakeable 60 deg sector mass spectrometer operating in the static mode. Surface ionization and electron impact ion sources were both used, each yielding satisfactory results. The metallic implant with subsequent ionization provided a means of mass scale calibration and determination of system operating parameters, whereas the noble gas thermally desorbed into the system was more suited for partial pressure and sensitivity determinations.

  2. Inflight alignment of payload inertial reference from Shuttle navigation system

    NASA Astrophysics Data System (ADS)

    Treder, A. J.; Norris, R. E.; Ruprecht, R.

    Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.

  3. Biomechanical study of anterior spinal instrumentation configurations

    PubMed Central

    Cloutier, Luc P.; Grimard, Guy

    2007-01-01

    The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240

  4. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgett, Eric; Al-Sheikhly, Mohamad; Summers, Christopher

    An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high-fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In addition tomore » pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles. Significant work has been done over the last few years on the use of nanoparticle-based scintillators. Through the use of metamaterials, the PIs aim to develop planar neutron detectors and large-volume neutron detectors. These detectors will have high efficiencies for neutron detection and will have a high gamma discrimination capability.« less

  6. Expression of vascular endothelial growth factor in Juvenile Angiofibroma.

    PubMed

    Hota, Ashutosh; Sarkar, Chitra; Gupta, Siddhartha Datta; Kumar, Rakesh; Bhalla, Ashu Seith; Thakar, Alok

    2015-06-01

    To examine Juvenile Angiofibroma (JA) tissue for expression of vascular endothelial growth factor (VEGF), and to explore its relationship with puberty status, stage, recurrence and the intraoperative blood loss. Retrospective cohort study of 36 histologically proven cases of JA. Minimum follow up period was 3 years. VEGF expression on tumor cells assessed by immunohistochemistry and graded on two criteria--percentage of cells expressing positivity and the intensity of positivity. These two parameters assessed for impact on puberty status, stage, recurrence, and blood loss. VEGF expression noted on the tumor endothelial cells in 36/36, and on the tumor stromal cells in 34/36. The percentage of cells expressing VEGF and the intensity of expression were not significantly related to puberty status, tumor stage, recurrence, or intra-operative blood loss (p values 0.3-1.0). VEGF expression is near universal in JA. Such expression is independent of puberty status and stage, and does not impact on intra operative blood loss and recurrence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  8. Demonstrative fractional order - PID controller based DC motor drive on digital platform.

    PubMed

    Khubalkar, Swapnil W; Junghare, Anjali S; Aware, Mohan V; Chopade, Amit S; Das, Shantanu

    2017-09-21

    In industrial drives applications, fractional order controllers can exhibit phenomenal impact due to realization through digital implementation. Digital fractional order controllers have created wide scope as it possess the inherent advantages like robustness against the plant parameter variation. This paper provides brief design procedure of fractional order proportional-integral-derivative (FO-PID) controller through the indirect approach of approximation using constant phase technique. The new modified dynamic particle swarm optimization (IdPSO) technique is proposed to find controller parameters. The FO-PID controller is implemented using floating point digital signal processor. The building blocks are designed and assembled with all peripheral components for the 1.5kW industrial DC motor drive. The robust operation for parametric variation is ascertained by testing the controller with two separately excited DC motors with the same rating but different parameters. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. 40 CFR 60.58c - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....57c(d), the owner or operator shall maintain all operating parameter data collected; (xvii) For...) Identification of calendar days for which data on emission rates or operating parameters specified under... operating parameters not measured, reasons for not obtaining the data, and a description of corrective...

  10. Space shuttle environmental control/life support systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study analyzes and defines a baseline Environmental Control/Life Support System (EC/LSS) for a four-man, seven-day orbital shuttle. In addition, the impact of various mission parameters, crew size, mission length, etc. are examined for their influence on the selected system. Pacing technology items are identified to serve as a guide for application of effort to enhance the total system optimization. A fail safe-fail operation philosophy was utilized in designing the system. This has resulted in a system that requires only one daily routine operation. All other critical item malfunctions are automatically resolved by switching to redundant modes of operation. As a result of this study, it is evident that a practical, flexible, simple and long life, EC/LSS can be designed and manufactured for the shuttle orbiter within the time phase required.

  11. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

    PubMed Central

    Jasulaneca, Liga; Kosmaca, Jelena; Meija, Raimonds; Andzane, Jana

    2018-01-01

    This review summarizes relevant research in the field of electrostatically actuated nanobeam-based nanoelectromechanical (NEM) switches. The main switch architectures and structural elements are briefly described and compared. Investigation methods that allow for exploring coupled electromechanical interactions as well as studies of mechanically or electrically induced effects are covered. An examination of the complex nanocontact behaviour during various stages of the switching cycle is provided. The choice of the switching element and the electrode is addressed from the materials perspective, detailing the benefits and drawbacks for each. An overview of experimentally demonstrated NEM switching devices is provided, and together with their operational parameters, the reliability issues and impact of the operating environment are discussed. Finally, the most common NEM switch failure modes and the physical mechanisms behind them are reviewed and solutions proposed. PMID:29441272

  12. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  13. The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments

    NASA Astrophysics Data System (ADS)

    Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.

    2003-06-01

    We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.

  14. Experiments on water detritiation and cryogenic distillation at TLK; Impact on ITER fuel cycle subsystems interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristescu, I.; Cristescu, I. R.; Doerr, L.

    2008-07-15

    The ITER Isotope Separation System (ISS) and Water Detritiation System (WDS) should be integrated in order to reduce potential chronic tritium emissions from the ISS. This is achieved by routing the top (protium) product from the ISS to a feed point near the bottom end of the WDS Liquid Phase Catalytic Exchange (LPCE) column. This provides an additional barrier against ISS emissions and should mitigate the memory effects due to process parameter fluctuations in the ISS. To support the research activities needed to characterize the performances of various components for WDS and ISS processes under various working conditions and configurationsmore » as needed for ITER design, an experimental facility called TRENTA representative of the ITER WDS and ISS protium separation column, has been commissioned and is in operation at TLK The experimental program on TRENTA facility is conducted to provide the necessary design data related to the relevant ITER operating modes. The operation availability and performances of ISS-WDS have impact on ITER fuel cycle subsystems with consequences on the design integration. The preliminary experimental data on TRENTA facility are presented. (authors)« less

  15. Partially Turboelectric Aircraft Drive Key Performance Parameters

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.

    2017-01-01

    The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.

  16. Estimating Phenomenological Parameters in Multi-Assets Markets

    NASA Astrophysics Data System (ADS)

    Raffaelli, Giacomo; Marsili, Matteo

    Financial correlations exhibit a non-trivial dynamic behavior. This is reproduced by a simple phenomenological model of a multi-asset financial market, which takes into account the impact of portfolio investment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected by investment based on it. Such a feedback on correlations gives rise to an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. We discuss how the model's parameter can be estimated in real market data with a maximum likelihood principle. This confirms the main conclusion that real markets operate close to a dynamically unstable point.

  17. Should the parameters of a BCI translation algorithm be continually adapted?

    PubMed

    McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R

    2011-07-15

    People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor.

    PubMed

    Silva, Ana F; Antunes, Sílvia; Saunders, Aaron; Freitas, Filomena; Vieira, Anabela; Galinha, Claudia F; Nielsen, Per H; Barreto Crespo, Maria Teresa; Carvalho, Gilda

    2016-10-01

    Membrane bioreactors (MBRs) are an advanced technology for wastewater treatment whose wide application has been hindered by rapid fouling of the membranes. MBRs can be operated with long sludge retention time (SRT), a crucial parameter impacting microbial selection in the reactor. This also affects filtration performance, since a major fouling agent are the extracellular polymeric substances (EPS). In this study, the impact of the SRT on the ecophysiology of the MBRs and, consequently, on membrane fouling was evaluated. A MBR was operated under a SRT of 60 days followed by a SRT of 20 days. A comprehensive analysis of the microbial community structure and EPS proteins and polysaccharide profiles of the mixed liquor and cake layer was carried out throughout both operation periods. The results of this study showed that the imposition of a shorter SRT led to a shift in the dominant bacterial populations. The mixed liquor and cake layer communities were very different, with Actinomycetales order standing out in the cake layer at SRT of 20 days. Overall, higher EPS concentrations (particularly proteins) were found at this SRT. Furthermore, EPS profiles were clearly affected by the SRT: it was possible to correlate a group of soluble EPS proteins with the SRT of 60 days, and a lower sludge age led to a lower diversity of polysaccharide sugar monomers, with an increase of glucose and galactose in the cake layer. This study improves our knowledge regarding the molecular reasons for fouling, which may contribute to improve MBR design and operation.

  19. Rapid impact testing for quantitative assessment of large populations of bridges

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin

    2011-04-01

    Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.

  20. Defining process design space for monoclonal antibody cell culture.

    PubMed

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  1. Ionisation induced collapse of minihaloes

    NASA Astrophysics Data System (ADS)

    Back, Trevor

    2013-08-01

    In order to analyse the turbine blade life, the damage due to the combined thermal and mechanical loads should be adequately accounted for. This is more challenging when detailed component geometry is limited. Therefore, a compromise between the level of geometric detail and the complexity of the lifing method to be implemented would be necessary. This research focuses on how the life assessment of aero engine turbine blades can be done, considering the balance between available design inputs and adequate level of fidelity. Accordingly, the thesis contributes to developing a generic turbine blade lifing method that is based on the engine thermodynamic cycle; as well as integrating critical design/technological factors and operational parameters that influence the aero engine blade life. To this end, thermo-mechanical fatigue was identified as the critical damage phenomenon driving the life of the turbine blade.. The developed approach integrates software tools and numerical models created using the minimum design information typically available at the early design stages. Using finite element analysis of an idealised blade geometry, the approach captures relevant impacts of thermal gradients and thermal stresses that contribute to the thermo-mechanical fatigue damage on the gas turbine blade. The blade life is evaluated using the Neu/Sehitoglu thermo-mechanical fatigue model that considers damage accumulation due to fatigue, oxidation, and creep. The leading edge is examined as a critical part of the blade to estimate the damage severity for different design factors and operational parameters. The outputs of the research can be used to better understand how the environment and the operating conditions of the aircraft affect the blade life consumption and therefore what is the impact on the maintenance cost and the availability of the propulsion system. This research also finds that the environmental (oxidation) effect drives the blade life and the blade coolant side was the critical location. Furthermore, a parametric and sensitivity study of the Neu/Sehitoglu model parameters suggests that in addition to four previously reported parameters, the sensitivity of the phasing to oxidation damage would be critical to overall blade life..

  2. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  3. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial.

    PubMed

    Kim, Jaeyoun; Soref, Richard; Buchwald, Walter R

    2010-08-16

    We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.

  4. Visible and infrared imaging radiometers for ocean observations

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1977-01-01

    The current status of visible and infrared sensors designed for the remote monitoring of the oceans is reviewed. Emphasis is placed on multichannel scanning radiometers that are either operational or under development. Present design practices and parameter constraints are discussed. Airborne sensor systems examined include the ocean color scanner and the ocean temperature scanner. The costal zone color scanner and advanced very high resolution radiometer are reviewed with emphasis on design specifications. Recent technological advances and their impact on sensor design are examined.

  5. Asteroid (21) Lutetia: Semi-Automatic Impact Craters Detection and Classification

    NASA Astrophysics Data System (ADS)

    Jenerowicz, M.; Banaszkiewicz, M.

    2018-05-01

    The need to develop an automated method, independent of lighting and surface conditions, for the identification and measurement of impact craters, as well as the creation of a reliable and efficient tool, has become a justification of our studies. This paper presents a methodology for the detection of impact craters based on their spectral and spatial features. The analysis aims at evaluation of the algorithm capabilities to determinate the spatial parameters of impact craters presented in a time series. In this way, time-consuming visual interpretation of images would be reduced to the special cases. The developed algorithm is tested on a set of OSIRIS high resolution images of asteroid Lutetia surface which is characterized by varied landforms and the abundance of craters created by collisions with smaller bodies of the solar system.The proposed methodology consists of three main steps: characterisation of objects of interest on limited set of data, semi-automatic extraction of impact craters performed for total set of data by applying the Mathematical Morphology image processing (Serra, 1988, Soille, 2003), and finally, creating libraries of spatial and spectral parameters for extracted impact craters, i.e. the coordinates of the crater center, semi-major and semi-minor axis, shadow length and cross-section. The overall accuracy of the proposed method is 98 %, the Kappa coefficient is 0.84, the correlation coefficient is ∼ 0.80, the omission error 24.11 %, the commission error 3.45 %. The obtained results show that methods based on Mathematical Morphology operators are effective also with a limited number of data and low-contrast images.

  6. Analytical impact time and angle guidance via time-varying sliding mode technique.

    PubMed

    Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong

    2016-05-01

    To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Cost estimation and analysis using the Sherpa Automated Mine Cost Engineering System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stebbins, P.E.

    1993-09-01

    The Sherpa Automated Mine Cost Engineering System is a menu-driven software package designed to estimate capital and operating costs for proposed surface mining operations. The program is engineering (as opposed to statistically) based, meaning that all equipment, manpower, and supply requirements are determined from deposit geology, project design and mine production information using standard engineering techniques. These requirements are used in conjunction with equipment, supply, and labor cost databases internal to the program to estimate all associated costs. Because virtually all on-site cost parameters are interrelated within the program, Sherpa provides an efficient means of examining the impact of changesmore » in the equipment mix on total capital and operating costs. If any aspect of the operation is changed, Sherpa immediately adjusts all related aspects as necessary. For instance, if the user wishes to examine the cost ramifications of selecting larger trucks, the program not only considers truck purchase and operation costs, it also automatically and immediately adjusts excavator requirements, operator and mechanic needs, repair facility size, haul road construction and maintenance costs, and ancillary equipment specifications.« less

  8. An approach to optimize sample preparation for MALDI imaging MS of FFPE sections using fractional factorial design of experiments.

    PubMed

    Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter

    2016-09-01

    A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended.

  9. Impact of state updating and multi-parametric ensemble for streamflow hindcasting in European river basins

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.

    2015-12-01

    Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.

  10. Effects of 3D Earth structure on W-phase CMT parameters

    NASA Astrophysics Data System (ADS)

    Morales, Catalina; Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo

    2017-04-01

    The source inversion of the W-phase has demonstrated a great potential to provide fast and reliable estimates of the centroid moment tensor (CMT) for moderate to large earthquakes. It has since been implemented in different operational environments (NEIC-USGS, PTWC, etc.) with the aim of providing rapid CMT solutions. These solutions are in particular useful for tsunami warning purposes. Computationally, W-phase waveforms are usually synthetized by summation of normal modes at long period (100 - 1000 s) for a spherical Earth model (e.g., PREM). Although the energy of these modes mainly stays in the mantle where lateral structural variations are relatively small, the impact of 3D heterogeneities on W-phase solutions have not yet been quantified. In this study, we investigate possible bias in W-phase source parameters due to unmodeled lateral structural heterogeneities. We generate a simulated dataset consisting of synthetic seismograms of large past earthquakes that accounts for the Earth's 3D structure. The W-phase algorithm is then used to invert the synthetic dataset for earthquake CMT parameters with and without added noise. Results show that the impact of 3D heterogeneities is generally larger for surface-waves than for W-phase waveforms. However, some discrepancies are noted between inverted W-phase parameters and target values. Particular attention is paid to the possible bias induced by the unmodeled 3D structure into the location of the W-phase centroid. Preliminary results indicate that the parameter that is most susceptible to 3D Earth structure seems to be the centroid depth.

  11. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  12. Interference and Compatibility Studies Between Satellite Service Systems and Systems Using High Altitude Platform Stations

    NASA Astrophysics Data System (ADS)

    Milas, Vasilis; Koletta, Maria; Constantinou, Philip

    2003-07-01

    This paper provides the results of interference and compatibility studies in order to assess the sharing conditions between Fixed Satellite Service (FSS) and Fixed Service provided by High Altitude Platform Stations (HAPS) in the same operational frequency bands and discusses the most important operational parameters that have an impact on the interference calculations. To characterize interference phenomena between the two systems carrier to interference (C/I) ratios are evaluated. Simulation results under the scenario of a realistic deployment of HAPS and the use of different satellite configurations are presented. An interesting result derived from the simulations is that FSS/GSO Earth Stations and HAPS ground stations may coexist in the HAPS coverage area under certain considerations.

  13. Cryogenic wind tunnels: Problems of continuous operation at low temperatures

    NASA Technical Reports Server (NTRS)

    Faulmann, D.

    1986-01-01

    The design of a cryogenic wind tunnel which operates continuously, and is capable of attaining transonic speeds at generating pressures of about 3 bars is described. Its stainless steel construction with inside insulation allows for very rapid temperature variations promoted by rapid changes in the liquid nitrogen flow. A comparative study of temperature measuring probes shows a good reliability of thin sheet thermocouples. To measure fluctuations, only a cold wire makes it possible to record frequencies of about 300 Hz. The use of an integral computer method makes it possible to determine the impact of the wall temperature ratio to the adiabatic wall temperature for the various parameters characterizing the boundary layer. These cases are processed with positive and negative pressure gradients.

  14. New modeling method for the dielectric relaxation of a DRAM cell capacitor

    NASA Astrophysics Data System (ADS)

    Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon

    2018-02-01

    This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.

  15. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    NASA Astrophysics Data System (ADS)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  16. The value of compressed air energy storage in energy and reserve markets

    DOE PAGES

    Drury, Easan; Denholm, Paul; Sioshansi, Ramteen

    2011-06-28

    Storage devices can provide several grid services, however it is challenging to quantify the value of providing several services and to optimally allocate storage resources to maximize value. We develop a co-optimized Compressed Air Energy Storage (CAES) dispatch model to characterize the value of providing operating reserves in addition to energy arbitrage in several U.S. markets. We use the model to: (1) quantify the added value of providing operating reserves in addition to energy arbitrage; (2) evaluate the dynamic nature of optimally allocating storage resources into energy and reserve markets; and (3) quantify the sensitivity of CAES net revenues tomore » several design and performance parameters. We find that conventional CAES systems could earn an additional 23 ± 10/kW-yr by providing operating reserves, and adiabatic CAES systems could earn an additional 28 ± 13/kW-yr. We find that arbitrage-only revenues are unlikely to support a CAES investment in most market locations, but the addition of reserve revenues could support a conventional CAES investment in several markets. Adiabatic CAES revenues are not likely to support an investment in most regions studied. As a result, modifying CAES design and performance parameters primarily impacts arbitrage revenues, and optimizing CAES design will be nearly independent of dispatch strategy.« less

  17. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Operating Parameter Levels 4 Table 4 to..., Table 4 Table 4 to Subpart OOO of Part 63—Operating Parameter Levels Device Parameters to be monitored... concentration level or reading at outlet of device Maximum organic HAP concentration or reading a 25 to 50 mm...

  18. Modeling Weather Impact on Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Kulkarni, Deepak

    2011-01-01

    Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.

  19. Using of material-technological modelling for designing production of closed die forgings

    NASA Astrophysics Data System (ADS)

    Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.

    2017-02-01

    Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.

  20. [Hand surgery in the German DRG System 2007].

    PubMed

    Franz, D; Windolf, J; Kaufmann, M; Siebert, C H; Roeder, N

    2007-05-01

    Hand surgery often needs only a short length of stay in hospital. Patients' comorbidity is low. Many hand surgery procedures do not need inpatient structures. Up until 2006 special procedures of hand surgery could not be coded. The DRG structure did not separate very complex and less complex operations. Specialized hospitals needed a proper case allocation of their patients within the G-DRG system. The DRG structure concerning hand surgery increased in version 2007 of the G-DRG system. The main parameter of DRG splitting is the complexity of the operation. Furthermore additional criteria such as more than one significant OR procedure, the patients' age, or special diagnoses influence case allocation. A special OPS code for complex cases treated with hand surgery was implemented. The changes in the DRG structure and the implementation of the new OPS code for complex cases establish a strong basis for the identification of different patient costs. Different case allocation leads to different economic impacts on departments of hand surgery. Whether the new OPS code becomes a DRG splitting parameter has to be calculated by the German DRG Institute for further DRG versions.

  1. The symmetry and mass of halo Coronal Mass Ejections (CMEs) as quantitative predictors for severe space weather at Earth.

    NASA Astrophysics Data System (ADS)

    Fuselier, S.; Allegrini, F.; Bzowski, M.; Dayeh, M. A.; Desai, M. I.; Funsten, H. O.; Galli, A.; Heirtzler, D.; Janzen, P. H.; Kubiak, M. A.; Kucharek, H.; Lewis, W. S.; Livadiotis, G.; McComas, D. J.; Moebius, E.; Petrinec, S. M.; Quinn, M. S.; Schwadron, N.; Sokol, J. M.; Trattner, K. J.

    2014-12-01

    The Bureau of Meteorology's Space Weather Service operates an alert service for severe space weather events. The service relies on a statistical model which ingests observations of M and X class solar flares at or shortly after the time of the flare to predict the occurrence and severity of terrestrial impacts with a lead time of 1 to 4 days. This model has been operational since 2012 and caters to the needs of critical infrastructure groups in the Australian region. This paper reports on improvements to the forecast model by including SOHO LASCO coronagraph observations of Coronal Mass Ejections (CMEs). The coronagraphs are analysed to determine the Earthward direction parameter and the integrated intensity as a measure of the CME mass. Both of these parameters can help to predict whether a CME will be geo-effective. This work aims to increase the accuracy of the model predictions and lower the rate of false positives, as well as providing an estimate of the expected level of geomagnetic storm intensity.

  2. The symmetry and mass of halo Coronal Mass Ejections (CMEs) as quantitative predictors for severe space weather at Earth.

    NASA Astrophysics Data System (ADS)

    Freeland, L. E.; Terkildsen, M. B.

    2015-12-01

    The Bureau of Meteorology's Space Weather Service operates an alert service for severe space weather events. The service relies on a statistical model which ingests observations of M and X class solar flares at or shortly after the time of the flare to predict the occurrence and severity of terrestrial impacts with a lead time of 1 to 4 days. This model has been operational since 2012 and caters to the needs of critical infrastructure groups in the Australian region. This paper reports on improvements to the forecast model by including SOHO LASCO coronagraph observations of Coronal Mass Ejections (CMEs). The coronagraphs are analysed to determine the Earthward direction parameter and the integrated intensity as a measure of the CME mass. Both of these parameters can help to predict whether a CME will be geo-effective. This work aims to increase the accuracy of the model predictions and lower the rate of false positives, as well as providing an estimate of the expected level of geomagnetic storm intensity.

  3. Shale Gas Exploration and Exploitation Induced Risks - SHEER

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Cesca, Simone; Gunning, Andrew; jaroslawsky, Janusz; Garcia-Aristizabal, Alexander; Westwood, Rachel; Gasparini, Paolo

    2017-04-01

    Shale gas operations may affect the quality of air, water and landscapes; furthermore, it can induce seismic activity, with the possible impacts on the surrounding infrastructure. The SHEER project aims at setting up a probabilistic methodology to assess and mitigate the short and the long term environmental risks connected to the exploration and exploitation of shale gas. In particular we are investigating risks associated with groundwater contamination, air pollution and induced seismicity. A shale gas test site located in Poland (Wysin) has been monitored before, during and after the fracking operations with the aim of assessing environmental risks connected with groundwater contamination, air pollution and earthquakes induced by fracking and injection of waste water. The severity of each of these hazards depends strongly on the unexpected enhanced permeability pattern, which may develop as an unwanted by-product of the fracking processes and may become pathway for gas and fluid migration towards underground water reservoirs or the surface. The project is devoted to monitor and understand how far this enhanced permeability pattern develops both in space and time. The considered hazards may be at least partially inter-related as they all depend on this enhanced permeability pattern. Therefore they are being approached from a multi-hazard, multi parameter perspective. We expect to develop methodologies and procedures to track and model fracture evolution around shale gas exploitation sites and a robust statistically based, multi-parameter methodology to assess environmental impacts and risks across the operational lifecycle of shale gas. The developed methodologies are going to be applied and tested on a comprehensive database consisting of seismicity, changes of the quality of ground-waters and air, ground deformations, and operational data collected from the ongoing monitoring episode (Wysin) and past episodes: Lubocino (Poland), Preese Hall (UK), Oklahoma (USA), Groningen Field (Netherlands), Gross Schönebeck (Germany), The Geysers (USA), Cooper Basin(Australia). Best practices to be applied in Europe to monitor and minimize any environmental impacts will be worked out with the involvement of governmental decisional bodies, private industries and experts This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project n.640896, funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1

  4. Biogas production from wheat straw and manure--impact of pretreatment and process operating parameters.

    PubMed

    Risberg, Kajsa; Sun, Li; Levén, Lotta; Horn, Svein Jarle; Schnürer, Anna

    2013-12-01

    Non-treated or steam-exploded straw in co-digestion with cattle manure was evaluated as a substrate for biogas production compared with manure as the sole substrate. All digestions were performed in laboratory-scale CSTR reactors (5L) operating with an organic loading late of approximately 2.8 g VS/L/day, independent of substrate mixture. The hydraulic retention was 25 days and an operating temperature of 37, 44 or 52°C. The co-digestion with steam exploded straw and manure was evaluated with two different mixtures, with different proportion. The results showed stable performance but low methane yields (0.13-0.21 N L CH4/kg VS) for both manure alone and in co-digestion with the straw. Straw appeared to give similar yield as manure and steam-explosion treatment of the straw did not increase gas yields. Furthermore, there were only slight differences at the different operating temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Operation and design selection of high temperature superconducting magnetic bearings

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Riedel, T.; Rothfeld, R.; Wippich, D.; Goebel, B.

    2004-10-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN2 for cooling down, and about 0.2 l LN2 h-1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings.

  6. Parametric Modeling of the Safety Effects of NextGen Terminal Maneuvering Area Conflict Scenarios

    NASA Technical Reports Server (NTRS)

    Rogers, William H.; Waldron, Timothy P.; Stroiney, Steven R.

    2011-01-01

    The goal of this work was to analytically identify and quantify the issues, challenges, technical hurdles, and pilot-vehicle interface issues associated with conflict detection and resolution (CD&R)in emerging operational concepts for a NextGen terminal aneuvering area, including surface operations. To this end, the work entailed analytical and trade studies focused on modeling the achievable safety benefits of different CD&R strategies and concepts in the current and future airport environment. In addition, crew-vehicle interface and pilot performance enhancements and potential issues were analyzed based on review of envisioned NextGen operations, expected equipage advances, and human factors expertise. The results of perturbation analysis, which quantify the high-level performance impact of changes to key parameters such as median response time and surveillance position error, show that the analytical model developed could be useful in making technology investment decisions.

  7. Impact of a variational objective analysis scheme on a regional area numerical model: The Italian Air Force Weather Service experience

    NASA Astrophysics Data System (ADS)

    Bonavita, M.; Torrisi, L.

    2005-03-01

    A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.

  8. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    PubMed Central

    Abd El-Salam, Magda M.; I. Abu-Zuid, Gaber

    2014-01-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes. PMID:26199748

  9. Impact of landfill leachate on the groundwater quality: A case study in Egypt.

    PubMed

    Abd El-Salam, Magda M; I Abu-Zuid, Gaber

    2015-07-01

    Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69) indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  10. BWR station blackout: A RISMC analysis using RAVEN and RELAP5-3D

    DOE PAGES

    Mandelli, D.; Smith, C.; Riley, T.; ...

    2016-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates and improved operations. In order to evaluate the impact of these factors on the safety of the plant, the Risk-Informed Safety Margin Characterization (RISMC) project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions and accident scenarios. This paper presents a case study in order to show the capabilities of the RISMC methodology to assess impact of power uprate of a Boiling Watermore » Reactor system during a Station Black-Out accident scenario. We employ a system simulator code, RELAP5-3D, coupled with RAVEN which perform the stochastic analysis. Furthermore, our analysis is performed by: 1) sampling values from a set of parameters from the uncertainty space of interest, 2) simulating the system behavior for that specific set of parameter values and 3) analyzing the outcomes from the set of simulation runs.« less

  11. Effectiveness of the 3D Monitor System for Medical Education During Neurosurgical Operation.

    PubMed

    Wanibuchi, Masahiko; Komatsu, Katsuya; Akiyama, Yukinori; Mikami, Takeshi; Mikuni, Nobuhiro

    2018-01-01

    Three-dimensional (3D) graphics are used in the medical field, especially during surgery. Although 3D monitoring is useful for medical education, its effectiveness needs to be objectively evaluated. The aim of this study was to investigate the efficacy of 3D monitoring in the surgical education of medical students. A questionnaire on high-definition 3D monitoring was given to fifth-year medical students in a 6-year program. Sixty-four students wore polarized glasses and observed a microsurgical operation through a 3D monitor. The questionnaire contained questions on stereopsis, neurosurgical interest, visual impact, comprehension of surgical anatomy and procedures, optical sharpness, active learning enhancement, and eye exhaustion. These parameters were evaluated on a 5-point scale that spanned negative and positive scores. The average score of each parameter ranged from 3.13 to 3.78, except for eye exhaustion, which was 0.88. The items for which the students reported positive perceptions (scores of 4 or 5) were stereopsis (67.2% of students), neurosurgical interest (62.5%), visual impact and optical sharpness (60.9% for both), active learning enhancement (57.8%), and comprehension of surgical anatomy (50.0%) and procedures (42.2%). By contrast, only eye exhaustion was evaluated negatively (26.6%). The use of 3D monitoring systems in medical education offers the advantage of stereopsis and contributes to surgical training. However, improvements are required to decrease eye exhaustion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Impact of flying qualities on mission effectiveness for helicopter air combat

    NASA Technical Reports Server (NTRS)

    Harris, T. M.; Beerman, D. A.; Bivens, C. C.

    1984-01-01

    Battlefield nap-of-the-earth (NOE) helicopter operations are vital for a use of the helicopter in a high-threat environment. As the pilot's workload in this flight regime is very high, the helicopter's handling qualities become an important factor. The present investigation is concerned with overall mission effectiveness, flying qualities, and their interaction with other parameters. A description is presented of a study which generated a significant amount of date relating the importance of flying qualities to the ability to perform several specific mission tasks. It was found that flying qualities do have a major impact on the ability to perform a specific mission. The impact of flying qualities on Scout helicopter mission effectiveness is mainly related to the probability of being detected. The flying qualities effect most critical to the Scout mission was found to be precision of hover control.

  13. Verification of Advances in a Coupled Snow-runoff Modeling Framework for Operational Streamflow Forecasts

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration's (NOAA's) River Forecast Centers (RFCs) issue hydrologic forecasts related to flood events, reservoir operations for water supply, streamflow regulation, and recreation on the nation's streams and rivers. The RFCs use the National Weather Service River Forecast System (NWSRFS) for streamflow forecasting which relies on a coupled snow model (i.e. SNOW17) and rainfall-runoff model (i.e. SAC-SMA) in snow-dominated regions of the US. Errors arise in various steps of the forecasting system from input data, model structure, model parameters, and initial states. The goal of the current study is to undertake verification of potential improvements in the SNOW17-SAC-SMA modeling framework developed for operational streamflow forecasts. We undertake verification for a range of parameters sets (i.e. RFC, DREAM (Differential Evolution Adaptive Metropolis)) as well as a data assimilation (DA) framework developed for the coupled models. Verification is also undertaken for various initial conditions to observe the influence of variability in initial conditions on the forecast. The study basin is the North Fork America River Basin (NFARB) located on the western side of the Sierra Nevada Mountains in northern California. Hindcasts are verified using both deterministic (i.e. Nash Sutcliffe efficiency, root mean square error, and joint distribution) and probabilistic (i.e. reliability diagram, discrimination diagram, containing ratio, and Quantile plots) statistics. Our presentation includes comparison of the performance of different optimized parameters and the DA framework as well as assessment of the impact associated with the initial conditions used for streamflow forecasts for the NFARB.

  14. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Andrew; Todosow, Michael

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less

  15. Dependence of the multiplicities of secondary particles on the impact parameter in collisions of high-energy neon and iron nuclei with photoemulsion nuclei

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Kosmach, V. F.; Likhachev, A. YU.; Benton, E. V.; Crawford, H. J.

    1995-01-01

    A method is proposed for finding the dependence of mean multiplicities of secondaries on the nucleus-collision impact parameter from the data on the total interaction ensemble. The impact parameter has been shown to completely define the mean characteristics of an individual interaction event. A difference has been found between experimental results and the data calculated in terms of the cascade-evaporation model at impact-parameter values below 3 fm.

  16. Operational stability prediction in milling based on impact tests

    NASA Astrophysics Data System (ADS)

    Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor

    2018-03-01

    Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.

  17. The status of membrane bioreactor technology.

    PubMed

    Judd, Simon

    2008-02-01

    In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.

  18. Impact detection and analysis/health monitoring system for composites

    NASA Astrophysics Data System (ADS)

    Child, James E.; Kumar, Amrita; Beard, Shawn; Qing, Peter; Paslay, Don G.

    2006-05-01

    This manuscript includes information from test evaluations and development of a smart event detection system for use in monitoring composite rocket motor cases for damaging impacts. The primary purpose of the system as a sentry for case impact event logging is accomplished through; implementation of a passive network of miniaturized piezoelectric sensors, logger with pre-determined force threshold levels, and analysis software. Empirical approaches to structural characterizations and network calibrations along with implementation techniques were successfully evaluated, testing was performed on both unloaded (less propellants) as well as loaded rocket motors with the cylindrical areas being of primary focus. The logged test impact data with known physical network parameters provided for impact location as well as force determination, typically within 3 inches of actual impact location using a 4 foot network grid and force accuracy within 25%of an actual impact force. The simplistic empirical characterization approach along with the robust / flexible sensor grids and battery operated portable logger show promise of a system that can increase confidence in composite integrity for both new assets progressing through manufacturing processes as well as existing assets that may be in storage or transportation.

  19. Recent Developments in Gun Operating Techniques at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1996-01-01

    This paper describes recent developments in gun operating techniques at the Ames ballistic range complex. This range complex has been in operation since the early 1960s. Behavior of sabots during separation and projectile-target impact phenomena have long been observed by means of short-duration flash X-rays: new versions allow operation in the lower-energy ("soft") X-ray range and have been found to be more effective than the earlier designs. The dynamics of sabot separation is investigated in some depth from X-ray photographs of sabots launched in the Ames 1.0 in and 1.5 in guns; the sabot separation dynamics appears to be in reasonably good agreement with standard aerodynamic theory. Certain sabot packages appear to suffer no erosion or plastic deformation on traversing the gun barrel, contrary to what would be expected. Gun erosion data from the Ames 0.5 in, 1.0 in, and 1.5 in guns is examined in detail and can be correlated with a particular non- dimensionalized powder mass parameter. The gun erosion increases very rapidly as this parameter is increased. Representative shapes of eroded gun barrels are given. Guided by a computational fluid dynamics (CFD) code, the operating conditions of the Ames 0.5 in and 1.5 in guns were modified. These changes involved: (1) reduction in the piston mass, powder mass and hydrogen fill pressure and (2) reduction in pump tube volume, while maintaining hydrogen mass. These changes resulted in muzzle velocity increases of 0.5-0.8 km/sec, achieved simultaneously with 30-50 percent reductions in gun erosion.

  20. Effects of High Pressure ORE Grinding on the Efficiency of Flotation Operations

    NASA Astrophysics Data System (ADS)

    Saramak, Daniel; Krawczykowska, Aldona; Młynarczykowska, Anna

    2014-10-01

    This article discusses issues related to the impact of the high pressure comminution process on the efficiency of the copper ore flotation operations. HPGR technology improves the efficiency of mineral resource enrichment through a better liberation of useful components from waste rock as well as more efficient comminution of the material. Research programme included the run of a laboratory flotation process for HPGR crushing products at different levels of operating pressures and moisture content. The test results showed that products of the high-pressure grinding rolls achieved better recoveries in flotation processes and showed a higher grade of useful components in the flotation concentrate, in comparison to the ball mill products. Upgrading curves have also been marked in the following arrangement: the content of useful component in concentrate the floatation recovery. All upgrading curves for HPGR products had a more favourable course in comparison to the curves of conventionally grinded ore. The results also indicate that various values of flotation recoveries have been obtained depending on the machine operating parameters (i.e. the operating pressure), and selected feed properties (moisture).

  1. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  2. Reptiles and amphibians

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.; Perrow, Martin

    2017-01-01

    Summary – We reviewed all the peer-reviewed scientific publications we could find on the known and potential effects of wind farm development, operation, maintenance, and decommissioning on reptiles and amphibians (collectively herpetofauna) worldwide. Both groups are declining globally due to a multitude of threats including energy development. Effect studies were limited to the long-term research by the authors on Agassiz’s Desert Tortoise ecology and behavior at single operational wind farm in California, US and an analysis of the effects of wind farm installation on species richness of vertebrates including reptiles and amphibians in northwestern Portugal. Research on Agassiz’s Desert Tortoise found few demonstrable differences in biological parameters between populations in the wind farm and those in more natural habitats. High reproductive output is due to the regional climate and not to the presence or operation of the wind farm. Site operations have resulted in death and injury to a small number of adult tortoises and over the long-term tortoises now appear to avoid the areas of greatest turbine concentration. Research in Portugal using models and simulations based on empirical data show that vertebrate species richness (including herpetofauna) decreased by almost 20% after the installation of only two large monopole turbines per 250 x 250 m plot. Knowledge of the known responses of herpetofauna to various disturbances allows identification of potential impacts from construction material acquisition in offsite areas, mortality and stress due to impacts of roads and related infrastructure, destruction and modification of habitat, habitat fragmentation and barriers to gene flow, noise, vibration, electromagnetic field generation, heat from buried high voltage transmission lines, alteration of local and regional climate, predator attraction, and increased risk of fire. Research on herpetofauna lags far behind what is needed and, in particular, before-after-control-impact studies are critically needed to identify cause and effect relationships in order to develop effective mitigation strategies for any negative impacts.

  3. Impact of mixing chemically heterogeneous groundwaters on the sustainability of an open-loop groundwater heat pump

    NASA Astrophysics Data System (ADS)

    Burté, L.; Farasin, J.; Cravotta, C., III; Gerard, M. F.; Cotiche Baranger, C.; Aquilina, L.; Le Borgne, T.

    2017-12-01

    Geothermal systems using shallow aquifers are commonly used for heating and cooling. The sustainability of these systems can be severely impacted by the occurrence of clogging process. The geothermal loop operation (including pumping of groundwater, filtering and heat extraction through exchangers and cooled water injection) can lead to an unexpected biogeochemical reactivity and scaling formation that can ultimately lead to the shutdown of the geothermal doublet. Here, we report the results of investigations carried out on a shallow geothermal doublet (< 40 m depth) affected by rapid clogging processes linked to iron and manganese oxidation. Using a reactive transport model, we determine the parameters controlling clogging. To characterize the biogeochemical processes induced by the operation of the production well, we combined hydrodynamic measurements by flowmeter and in-situ chemical depth profiles. We thus investigated the chemical heterogeneity into the pumping well as a function of the operating conditions (static or dynamic). Hydrochemical data collected at the pumping well showed that groundwater was chemically heterogeneous long the 11 meters well screen. While the aquifer was dominantly oxic, a localized inflow of anoxic water was detected and evaluated to produce about 40% of the total flow . The mixture of chemically heterogeneous water induced by pumping lead to the oxidation of reductive species and thus to the formation of biogenic precipitates responsible for clogging. The impact of pumping waters of different redox potential and chemical characteristics was quantified by numerical modeling using PHREEQC. These results shows that natural chemical heterogeneity can occur at a small scale in heterogeneous aquifers and highlight the importance of their characterization during the production well testing and the geothermal loop operation in order to take preventive measures to avoid clogging.

  4. Modeling carbon dioxide, pH, and un-ionized ammonia relationships in serial reuse systems

    USGS Publications Warehouse

    Colt, J.; Watten, B.; Rust, M.

    2009-01-01

    In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity-pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air-water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air-water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.

  5. Modeling Carbon Dioxide, pH and Un-Ionized Ammonia Relationships in Serial Reuse Systems

    USGS Publications Warehouse

    Watten, Barnaby J.; Rust, Michael; Colt, John

    2009-01-01

    In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity–pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air–water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air–water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.

  6. Detailed characterisation of Si Gate-All-Around Nanowire MOSFETs at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Boudier, D.; Cretu, B.; Simoen, E.; Veloso, A.; Collaert, N.

    2018-05-01

    In this work, Gate-All-Around Nanowire MOSFETs have been studied at very low temperatures. DC behaviors have been investigated in the linear operation and saturation regions, giving access to several analog parameters. Static characteristics at 4.2 K and low polarization exhibit step- like variations of the drain current, which can be linked to energy subband scattering. First results on the impact of quantum transport mechanism on the low frequency noise are shown. Finally the low frequency noise spectroscopy has led to the identification of silicon film traps.

  7. Status report on GELNG (gelled LNG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudnicki, M.; Hoffman, L.C.; Vander Wall, E.M.

    1980-01-01

    Over the past 2 years, Aerojet's research on characterizing the process, flow, and use properties of gelled LNG has covered (1) its safety-enhancement potential, (2) the economics and preliminary design of an industrial-scale gelation system, and (3) the design of a portable gelator for larger scale (40 m/sup 3/) spill tests. The technical results thus far continue to support the conclusion that GELNG would substantially reduce spill hazards. Operating parameters would not be significantly changed by gelation, and the cost impact on delivered LNG appears to be small (about 5%).

  8. MAMS: High resolution atmospheric moisture/surface properties

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Guillory, Anthony R.; Suggs, Ron; Atkinson, Robert J.; Carlson, Grant S.

    1991-01-01

    Multispectral Atmospheric Mapping Sensor (MAMS) data collected from a number of U2/ER2 aircraft flights were used to investigate atmospheric and surface (land) components of the hydrologic cycle. Algorithms were developed to retrieve surface and atmospheric geophysical parameters which describe the variability of atmospheric moisture, its role in cloud and storm development, and the influence of surface moisture and heat sources on convective activity. Techniques derived with MAMS data are being applied to existing satellite measurements to show their applicability to regional and large process studies and their impact on operational forecasting.

  9. Optimization Study of the Ames 0.5 Two-Stage Light Gas Gun

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1996-01-01

    There is a need for more faithful simulation of space debris impacts on various space vehicles. Space debris impact velocities can range up to 14 km/sec and conventional two-stage light gas guns with moderately heavy saboted projectiles are limited to launch velocities of 7-8 km/sec. Any increases obtained in the launch velocities will result in more faithful simulations of debris impacts. It would also be valuable to reduce the maximum gun and projectile base pressures and the gun barrel erosion rate. In this paper, the results of a computational fluid dynamics (CFD) study designed to optimize the performance of the NASA Ames 0.5' gun by systematically varying seven gun operating parameters are reported. Particularly beneficial effects were predicted to occur if (1) the piston mass was decreased together with the powder mass and the hydrogen fill pressure and (2) the pump tube length was decreased. The optimum set of changes in gun operating conditions were predicted to produce an increase in muzzle velocity of 0.7-1.0 km/sec, simultaneously with a substantial decrease in gun erosion. Preliminary experimental data have validated the code predictions. Velocities of up to 8.2 km/sec with a 0.475 cm diameter saboted aluminum sphere have been obtained, along with large reductions in gun erosion rates.

  10. NH3 Abatement in Fluidized Bed Co-Gasification of RDF and Coal

    NASA Astrophysics Data System (ADS)

    Gulyurtlu, I.; Pinto, Filomena; Dias, Mário; Lopes, Helena; André, Rui Neto; Cabrita, I.

    Gasification of wastes may come out as an alternative technology to produce a gas with many potential applications, from direct burning in a boiler or motor to the production of synthetic chemicals and hydrogen. High tar production and high operational costs are preventing gasification wider dissemination. Besides these problems, the presence of NH3 in the syngas may have a negative impact as it can be converted into nitrogen oxides if the gas is further burnt. To reduce NH3 formation it is required a full understanding of how operational parameters contribute to the formation/reduction of this pollutant. A full studyon the effect of fuel composition, temperature and equivalence ratio on the formation of NH3 is given. Experimental results are compared to theoretical ones obtained with FactSage software. It is also analyzed the effect of feedstock mineral matterin NH3 release during gasification. Toaccomplish a significant decrease in the release of NH3, different catalysts and sorbents were tested with the aim of achieving high energy conversions and low environmental impact.

  11. Study of Vapour Cloud Explosion Impact from Pressure Changes in the Liquefied Petroleum Gas Sphere Tank Storage Leakage

    NASA Astrophysics Data System (ADS)

    Rashid, Z. A.; Suhaimi Yeong, A. F. Mohd; Alias, A. B.; Ahmad, M. A.; AbdulBari Ali, S.

    2018-05-01

    This research was carried out to determine the risk impact of Liquefied Petroleum Gas (LPG) storage facilities, especially in the event of LPG tank explosion. In order to prevent the LPG tank explosion from occurring, it is important to decide the most suitable operating condition for the LPG tank itself, as the explosion of LPG tank could affect and cause extensive damage to the surrounding. The explosion of LPG tank usually occurs due to the rise of pressure in the tank. Thus, in this research, a method called Planas-Cuchi was applied to determine the Peak Side-On Overpressure (Po) of the LPG tank during the occurrence of explosion. Thermodynamic properties of saturated propane, (C3H8) have been chosen as a reference and basis of calculation to determine the parameters such as Explosion Energy (E), Equivalent Mass of TNT (WTNT), and Scaled Overpressure (PS ). A cylindrical LPG tank in Feyzin Refinery, France was selected as a case study in this research and at the end of this research, the most suitable operating pressure of the LPG tank was determined.

  12. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  13. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  14. 40 CFR 60.2945 - Is there a minimum amount of operating parameter monitoring data I must obtain?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parameter monitoring data I must obtain? 60.2945 Section 60.2945 Protection of Environment ENVIRONMENTAL... Operator Training and Qualification Monitoring § 60.2945 Is there a minimum amount of operating parameter monitoring data I must obtain? (a) Except for monitor malfunctions, associated repairs, and required quality...

  15. 40 CFR 60.2945 - Is there a minimum amount of operating parameter monitoring data I must obtain?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... parameter monitoring data I must obtain? 60.2945 Section 60.2945 Protection of Environment ENVIRONMENTAL... Operator Training and Qualification Monitoring § 60.2945 Is there a minimum amount of operating parameter monitoring data I must obtain? (a) Except for monitor malfunctions, associated repairs, and required quality...

  16. 40 CFR 60.2945 - Is there a minimum amount of operating parameter monitoring data I must obtain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... parameter monitoring data I must obtain? 60.2945 Section 60.2945 Protection of Environment ENVIRONMENTAL... Operator Training and Qualification Monitoring § 60.2945 Is there a minimum amount of operating parameter monitoring data I must obtain? (a) Except for monitor malfunctions, associated repairs, and required quality...

  17. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    NASA Astrophysics Data System (ADS)

    Datta, D.

    2010-10-01

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  18. Experimental verification of internal parameter in magnetically coupled boost used as PV optimizer in parallel association

    NASA Astrophysics Data System (ADS)

    Sawicki, Jean-Paul; Saint-Eve, Frédéric; Petit, Pierre; Aillerie, Michel

    2017-02-01

    This paper presents results of experiments aimed to verify a formula able to compute duty cycle in the case of pulse width modulation control for a DC-DC converter designed and realized in laboratory. This converter, called Magnetically Coupled Boost (MCB) is sized to step up only one photovoltaic module voltage to supply directly grid inverters. Duty cycle formula will be checked in a first time by identifying internal parameter, auto-transformer ratio, and in a second time by checking stability of operating point on the side of photovoltaic module. Thinking on nature of generator source and load connected to converter leads to imagine additional experiments to decide if auto-transformer ratio parameter could be used with fixed value or on the contrary with adaptive value. Effects of load variations on converter behavior or impact of possible shading on photovoltaic module are also mentioned, with aim to design robust control laws, in the case of parallel association, designed to compensate unwanted effects due to output voltage coupling.

  19. Engineering trade studies for a quantum key distribution system over a 30  km free-space maritime channel.

    PubMed

    Gariano, John; Neifeld, Mark; Djordjevic, Ivan

    2017-01-20

    Here, we present the engineering trade studies of a free-space optical communication system operating over a 30 km maritime channel for the months of January and July. The system under study follows the BB84 protocol with the following assumptions: a weak coherent source is used, Eve is performing the intercept resend attack and photon number splitting attack, prior knowledge of Eve's location is known, and Eve is allowed to know a small percentage of the final key. In this system, we examine the effect of changing several parameters in the following areas: the implementation of the BB84 protocol over the public channel, the technology in the receiver, and our assumptions about Eve. For each parameter, we examine how different values impact the secure key rate for a constant brightness. Additionally, we will optimize the brightness of the source for each parameter to study the improvement in the secure key rate.

  20. On the performance of energy detection-based CR with SC diversity over IG channel

    NASA Astrophysics Data System (ADS)

    Verma, Pappu Kumar; Soni, Sanjay Kumar; Jain, Priyanka

    2017-12-01

    Cognitive radio (CR) is a viable 5G technology to address the scarcity of the spectrum. Energy detection-based sensing is known to be the simplest method as far as hardware complexity is concerned. In this paper, the performance of spectrum sensing-based energy detection technique in CR networks over inverse Gaussian channel for selection combining diversity technique is analysed. More specifically, accurate analytical expressions for the average detection probability under different detection scenarios such as single channel (no diversity) and with diversity reception are derived and evaluated. Further, the detection threshold parameter is optimised by minimising the probability of error over several diversity branches. The results clearly show the significant improvement in the probability of detection when optimised threshold parameter is applied. The impact of shadowing parameters on the performance of energy detector is studied in terms of complimentary receiver operating characteristic curve. To verify the correctness of our analysis, the derived analytical expressions are corroborated via exact result and Monte Carlo simulations.

  1. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable time stepping schemes make the model unnecessarily fragile in predictive mode, undermining validation assessments and operational use. Erroneous or misleading conclusions of model analysis and prediction arising from numerical artifacts in hydrological models are intolerable, especially given that robust numerics are accepted as mainstream in other areas of science and engineering. We hope that the vivid empirical findings will encourage the conceptual hydrological community to close its Pandora's box of numerical problems, paving the way for more meaningful model application and interpretation.

  2. Understanding facilities design parameters for a remanufacturing system

    NASA Astrophysics Data System (ADS)

    Topcu, Aysegul; Cullinane, Thomas

    2005-11-01

    Remanufacturing is rapidly becoming a very important element in the economies of the world. Products such as washing machines, clothes driers, automobile parts, cell phones and a wide range of consumer durable goods are being reclaimed and sent through processes that restore these products to levels of operating performance that are as good or better than their new product performance. The operations involved in the remanufacturing process add several new dimensions to the work that must be performed. Disassembly is an operation that rarely appears on the operations chart of a typical production facility. The inspection and test functions in remanufacturing most often involve several more tasks than those involved in the first time manufacturing cycle. A close evaluation of most any remanufacturing operation reveals several points in the process in which parts must be cleaned, tested and stored. Although several researchers have focused their work on optimizing the disassembly function and the inspection, test and store functions, very little research has been devoted to studying the impact of the facilities design on the effectiveness of the remanufacturing process. The purpose of this paper will be to delineate the differences between first time manufacturing operations and remanufacturing operations for durable goods and to identify the features of the facilities design that must be considered if the remanufacturing operations are to be effective.

  3. Influence of Constraint in Parameter Space on Quantum Games

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Jun; Fang, Xi-Ming

    2004-04-01

    We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.

  4. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally separated from each other geographically and in altitude during tenninal airspace approach and departure operations, and each use a different arrival runway. AvTeminal implements its unique Focal-point Scheduling Process to sequence, space and delay aircraft to resolve spacing and overtake conflicts among flights in the airspace and airport system serving KEWR. This Process effectively models integrated arrival and departure operations. AvTerminal assesses acceptance rates and delay magnitude and causality at selected locations, including en route outer boundary fixes, tenninal airspace arrival and departure boundary fixes, terminal airspace arrival merge and departure diverge fixes, and runway landing and takeoff runways. The analysis compares the resulting capacity impacts, flight delays and delay sources between CESTOL and conventional KEWR operations. AvTerminal quantitative results showed that CESTOL has significant capability to increase airport arrival acceptance rates (35-40% at KEWR) by taking advantage of otherwise underused airspace and runways where available. The study extrapolates the AvTerminal-derived KEWR peak arrival and departure acceptance rates to estimate capacity parameter values for each of the OEP airports in the ACES modeling of traffic through the entire NAS network. The extrapolations of acceptance rates allow full, partial or no achievement of CESTOL capacity gains at an OEP airport as determined by assessments of the degree to which local procedures allow leveraging of CESTOL capabilities. These assessments consider each OEP airport's runway geometries, runway system configurations, airport and airspace operations, and potential CESTOL traffic loadings. The ACES modeling, simulates airport and airspace spacing constraints imposed by airport runway system, terminal and en route air traffic control and traffic flow management operations using airport acceptance rates representing conventional-aircraft-only and CESTOL-mixed operations. CEOL aircraft are assumed to have Mach 0.8, and alternatively Mach 0.7, cruise speeds to examine compatibility with conventional aircraft operations in common airspace. The ACES results provides estimates of CESTOL delay impact NAS-wide and at OEP airports due to changes in OEP airport acceptance rates and changes in en route airspace potential conflict rates. Preliminary results show meaningful nationwide delay reductions (20%) due to CESTOL operations at 34 major domestic airports.

  5. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  6. Using system-of-systems simulation modeling and analysis to measure energy KPP impacts for brigade combat team missions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Craig R.; Welch, Kimberly M.; Kerper, Jessica

    2010-06-01

    The Department of Defense's (DoD) Energy Posture identified dependence of the US Military on fossil fuel energy as a key issue facing the military. Inefficient energy consumption leads to increased costs, effects operational performance and warfighter protection through large and vulnerable logistics support infrastructures. Military's use of energy is a critical national security problem. DoD's proposed metrics Fully Burdened Cost of Fuel and Energy Efficiency Key Performance Parameter (FBCF and Energy KPP) are a positive step to force energy use accountability onto Military programs. The ability to measure impacts of sustainment are required to fully measure Energy KPP. Sandia's workmore » with Army demonstrates the capability to measure performance which includes energy constraint.« less

  7. The Impact of Housing on the Characteristics of Ceramic Pressure Sensors—An Issue of Design for Manufacturability

    PubMed Central

    Santo Zarnik, Marina; Belavic, Darko; Novak, Franc

    2015-01-01

    An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor’s characteristics. PMID:26694386

  8. Sustainable Mining Land Use for Lignite Based Energy Projects

    NASA Astrophysics Data System (ADS)

    Dudek, Michal; Krysa, Zbigniew

    2017-12-01

    This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.

  9. [Environmental impact of a public hospital in the city of Lima, Peru].

    PubMed

    Bambarén-Alatrista, Celso; Alatrista-Gutiérrez de Bambarén, María del Socorro

    2014-01-01

    The operation of hospitals produces negative effects on the environment which contributes to air pollution and climate change. The institution in this study is a category III health care facility located in the city of Lima. It generates 4.89 kg/bed/day of solid waste, and consumes 1.36 m3/bed/day of water; 25.22 kWh/bed/day of electricity, and 2.76 liters/bed/day of fuel. The level of PM10 and measured parameters of disposal to the public network are within legal limits, while mobile source noise exceeds the maximum allowable limit. The institution releases into the atmosphere 2,291 tons of CO2 equivalents per year. In conclusion, the institution studied generates a negative impact on the environment.

  10. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro‐bioreactor system

    PubMed Central

    Velugula‐Yellela, Sai Rashmika; Williams, Abasha; Trunfio, Nicholas; Hsu, Chih‐Jung; Chavez, Brittany; Yoon, Seongkyu

    2017-01-01

    Monoclonal antibody production in commercial scale cell culture bioprocessing requires a thorough understanding of the engineering process and components used throughout manufacturing. It is important to identify high impact components early on during the lifecycle of a biotechnology‐derived product. While cell culture media selection is of obvious importance to the health and productivity of mammalian bioreactor operations, other components such as antifoam selection can also play an important role in bioreactor cell culture. Silicone polymer‐based antifoams were known to have negative impacts on cell health, production, and downstream filtration and purification operations. High throughput screening in micro‐scale bioreactors provides an efficient strategy to identify initial operating parameters. Here, we utilized a micro‐scale parallel bioreactor system to study an IgG1 producing CHO cell line, to screen Dynamis, ProCHO5, PowerCHO2, EX‐Cell Advanced, and OptiCHO media, and 204, C, EX‐Cell, SE‐15, and Y‐30 antifoams and their impacts on IgG1 production, cell growth, aggregation, and process control. This study found ProCHO5, EX‐Cell Advanced, and PowerCHO2 media supported strong cellular growth profiles, with an IVCD of 25‐35 × 106 cells‐d/mL, while maintaining specific antibody production (Qp > 2 pg/cell‐d) for our model cell line and a monomer percentage above 94%. Antifoams C, EX‐Cell, and SE‐15 were capable of providing adequate control of foaming while antifoam 204 and Y‐30 noticeably stunted cellular growth. This work highlights the utility of high throughput micro bioreactors and the importance of identifying both positive and negative impacts of media and antifoam selection on a model IgG1 producing CHO cell line. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:262–270, 2018 PMID:29086492

  11. Experimental and Numerical Study of Needle Peening Effects in Aluminium Alloy 2024-T3 Sheets

    NASA Astrophysics Data System (ADS)

    Mendez Romero, Julio Alberto

    Peening of metallic components is an effective treatment used in aerospace and automotive applications to improve fatigue properties or to blend and repair localized damage. This process is typically carried out using metallic airborne media, called shot. However, different processes make use of different media, such is the case of hard, pneumatically powered needles of needle peening equipment. In order to obtain a better understanding of the effects of needle peening in the same context as shot peening, this research work had as an objective to study in detail the behavior of the needle peening equipment in order to characterize the process, design an experimental campaign to measure the effects of needle peening on AA2024-T3 and to develop and validate a Finite Element (FE) model capable of replicating the results of needle peening. The needle peening equipment prototype, called SPIKERRTM, was developed by Shockform Aeronautique Inc. The equipment was characterized by utilizing high-speed camera recording in order to study its behaviour by varying the operating pressure. The obtained collection of images was ran through a newly developed digital image algorithm, so as to quantify the needles' velocity and frequency. The impact velocity and impact frequency were determined for different equipment operating parameters. It was concluded that both the average impact velocity and the impact frequency increase as the pressure becomes larger. Behaviour anomalies among the different needles, such as frequency and velocity variations, were brought to light; these conclusions could be of interest to the manufacturer. Ideally, all of the needles should behave as similarly as possible so as to produce a more uniform process. The response to needle peening of AA2024-T3 in 1.6 mm thick sheet form was studied by needle peening test specimens with dimensions of an Almen strips using the SPIKERRTM. AA2024-T3 was selected since it was extensively studied at Ecole Polytechnique de Montreal as part of previous shot peening research. Saturation tests were done to determine the deflection at saturation for different peening parameters. The specimen deflection was measured using the standard Almen gauge used as part of routinary process control. Due to the aluminium magnetic incompatibility with the Almen gauge, the deformed specimen profile was measured using a Coordinate Measuring Machine (CMM). Repeatability of the process was demonstrated and the deflection at saturation, as well as the saturation time, was obtained. The indentation diameters created by impacts for different operating pressures were measured using microscopic photography. It was determined that the specimen deformation, as well as the indentation diameter, is larger when the operating pressure increases. Treatment of the test samples using the same peening parameters resulted in a variable indentation diameter. This is explained by the velocity variations detected during the equipment characterization. The added value that needle peening could provide to existing peening techniques is that, in principle, uniformity in the indentation diameters is easier to achieve as all impacts are normal and there is no loss of energy due to media interaction. The last experimental test was to determine the induced residual stress by means of X-ray Diffraction (XRD) for one specimen at saturation. An FE model heavily inspired by previous shot peening modeling was developed to simulate needle peening. The parameters obtained during the characterization of the equipment were taken as boundary conditions. Initially, the case of a single impacts was studied. Good accordance between the simulated and the average experimental indentation diameters was obtained, except for the lowest pressure studied. The overestimation of the indentation diameter could stem from the method used to measure the simulated diameter. Coverage estimation, and therefore indentation diameters remain an open line of research in shot peening simulation. Using the same model, it was demonstrated that the induced stress profile changes in depth and magnitude as impact velocity increases. Finally, the same model was used to study the development of residual stresses after multiple stochastic impacts at different velocities. Saturation was determined by obtaining the arc height created as as consequence of inducing the stresses determined by the impact model and obtaining a regression model that would best fit through the multiple simulation results. The residual stress profile at saturation for one of the scenarios was compared against the XRD results from the sample peened at the same operating pressure. The model was able to predict the surface residual stress (187 MPa) within 1.6% of the experimental results (184 MPa). The results for the remainder of the cases studied were then compared against the deflection measured using the CMM. The maximum deflection difference between the predicted and the experimental results was of 2% for the sample for which the residual stress profile was confirmed. For the lowest air pressure, an overestimation of 50% was seen, however the difference between experimental and predicted results rests between 0.3% and 13.2% for the remainder of the cases. To conclude, the methodology presented proves that it is possible to predict the induced stresses by needle peening, which in hand can be used to predict sample deflection.

  12. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  13. Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface

    PubMed Central

    Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.

    2013-01-01

    Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650

  14. Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.

    2002-11-01

    Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.

  15. Effects of System Timing Parameters on Operator Performance in a Personnel Records Task

    DTIC Science & Technology

    1981-03-01

    work sampling, embedded performance measures, and operator satisfaction ratings) are needed to provide a complete analysis of the effects of the four...HFL-8 l-l/NPRDC-8 1-1 March 1981 EFFECTS OF SYSTEM TIMING PARAMETERS ON OPERATOR PERFORMANCE IN A PERSONNEL RECORDS TASK Robert C. Williges Beverly H...and Subtitle) S. TYPE OF REPORT & PERIOD COVERED EFFECTS OF SYSTEM TIMING PARAMETERS ON OPERATOR PERFORMANCE IN A PERSONNEL RECORDS TASK Final

  16. Characterizing the Circumgalactic Medium of Nearby Galaxies with HST/COS and HST/STIS Absorption-line Spectroscopy. II. Methods and Models

    NASA Astrophysics Data System (ADS)

    Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Pratt, Cameron T.; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.

    2017-05-01

    We present basic data and modeling for a survey of the cool, photoionized circumgalactic medium (CGM) of low-redshift galaxies using far-UV QSO absorption-line probes. This survey consists of “targeted” and “serendipitous” CGM subsamples, originally described in Stocke et al. (Paper I). The targeted subsample probes low-luminosity, late-type galaxies at z< 0.02 with small impact parameters (< ρ > =71 kpc), and the serendipitous subsample probes higher luminosity galaxies at z≲ 0.2 with larger impact parameters (< ρ > =222 kpc). Hubble Space Telescope and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper I, but this value is significantly smaller than that found by the COS-Halos survey. We trace much of this difference to the specific values of the low-z metagalactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain {log}(M/{M}⊙ )=10.5+/- 0.3, or ˜30% of the total baryon reservoir of an L≥slant {L}* , star-forming galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  17. Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kõuts, T.; Elken, J.; Raudsepp, U.

    An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to evaluate environmental impacts of three different deep-port construction options in Saaremaa, NW the Baltic Sea. Intensive campaign of field measurements, consisting the high-resolution surveys of thermohaline properties of water masses (CTD) and timeseries as well horisontal structure of currents were in good agreement with model calculations. Model system well simulated the transport of pollution by surface currents originating from potential port locations at NW coast of the Saaremaa. It allowed to choose the optimum location for port and give also some hindcasts for port construction and exploitation.

  18. A unitary convolution approximation for the impact-parameter dependent electronic energy loss

    NASA Astrophysics Data System (ADS)

    Schiwietz, G.; Grande, P. L.

    1999-06-01

    In this work, we propose a simple method to calculate the impact-parameter dependence of the electronic energy loss of bare ions for all impact parameters. This perturbative convolution approximation (PCA) is based on first-order perturbation theory, and thus, it is only valid for fast particles with low projectile charges. Using Bloch's stopping-power result and a simple scaling, we get rid of the restriction to low charge states and derive the unitary convolution approximation (UCA). Results of the UCA are then compared with full quantum-mechanical coupled-channel calculations for the impact-parameter dependent electronic energy loss.

  19. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives.

    PubMed

    Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G

    2013-01-25

    The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. A model for preemptive maintenance of medical linear accelerators-predictive maintenance.

    PubMed

    Able, Charles M; Baydush, Alan H; Nguyen, Callistus; Gersh, Jacob; Ndlovu, Alois; Rebo, Igor; Booth, Jeremy; Perez, Mario; Sintay, Benjamin; Munley, Michael T

    2016-03-10

    Unscheduled accelerator downtime can negatively impact the quality of life of patients during their struggle against cancer. Currently digital data accumulated in the accelerator system is not being exploited in a systematic manner to assist in more efficient deployment of service engineering resources. The purpose of this study is to develop an effective process for detecting unexpected deviations in accelerator system operating parameters and/or performance that predicts component failure or system dysfunction and allows maintenance to be performed prior to the actuation of interlocks. The proposed predictive maintenance (PdM) model is as follows: 1) deliver a daily quality assurance (QA) treatment; 2) automatically transfer and interrogate the resulting log files; 3) once baselines are established, subject daily operating and performance values to statistical process control (SPC) analysis; 4) determine if any alarms have been triggered; and 5) alert facility and system service engineers. A robust volumetric modulated arc QA treatment is delivered to establish mean operating values and perform continuous sampling and monitoring using SPC methodology. Chart limits are calculated using a hybrid technique that includes the use of the standard SPC 3σ limits and an empirical factor based on the parameter/system specification. There are 7 accelerators currently under active surveillance. Currently 45 parameters plus each MLC leaf (120) are analyzed using Individual and Moving Range (I/MR) charts. The initial warning and alarm rule is as follows: warning (2 out of 3 consecutive values ≥ 2σ hybrid) and alarm (2 out of 3 consecutive values or 3 out of 5 consecutive values ≥ 3σ hybrid). A customized graphical user interface provides a means to review the SPC charts for each parameter and a visual color code to alert the reviewer of parameter status. Forty-five synthetic errors/changes were introduced to test the effectiveness of our initial chart limits. Forty-three of the forty-five errors (95.6 %) were detected in either the I or MR chart for each of the subsystems monitored. Our PdM model shows promise in providing a means for reducing unscheduled downtime. Long term monitoring will be required to establish the effectiveness of the model.

  1. Approach guidance for outer planet pioneer missions

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1975-01-01

    Onboard optical approach guidance measurements for spin-stabilized Pioneer-type spacecraft are discussed. Approach guidance measurement accuracy requirements are outlined. The application concept and operation principle of the V-slit star tracker are discussed within the context of approach guidance measurements and measurables. It is shown that the accuracy of onboard optical approach guidance measurements is inherently coupled to the stability characteristics of the spacecraft spin axis. Geometrical and physical measurement parameters are presented for Pioneer entry probe missions to Uranus via Jupiter or Saturn flyby. The impact of these parameters on both sensor instrumentation and measurement system design is discussed. The need for sensing extended objects is shown. The feasibility of implementing an onboard approach guidance measurement system for Pioneer-type spacecraft is indicated. Two Pioneer 10 onboard measurement experiments performed in May-June 1974 are described.

  2. Mapping an operator's perception of a parameter space

    NASA Technical Reports Server (NTRS)

    Pew, R. W.; Jagacinski, R. J.

    1972-01-01

    Operators monitored the output of two versions of the crossover model having a common random input. Their task was to make discrete, real-time adjustments of the parameters k and tau of one of the models to make its output time history converge to that of the other, fixed model. A plot was obtained of the direction of parameter change as a function of position in the (tau, k) parameter space relative to the nominal value. The plot has a great deal of structure and serves as one form of representation of the operator's perception of the parameter space.

  3. Applications for General Purpose Command Buffers: The Emergency Conjunction Avoidance Maneuver

    USGS Publications Warehouse

    Scheid, Robert J; England, Martin

    2016-01-01

    A case study is presented for the use of Relative Operation Sequence (ROS) command buffers to quickly execute a propulsive maneuver to avoid a collision with space debris. In this process, a ROS is custom-built with a burn time and magnitude, uplinked to the spacecraft, and executed in 15 percent of the time of the previous method. This new process provides three primary benefits. First, the planning cycle can be delayed until it is certain a burn must be performed, reducing team workload. Second, changes can be made to the burn parameters almost up to the point of execution while still allowing the normal uplink product review process, reducing the risk of leaving the operational orbit because of outdated burn parameters, and minimizing the chance of accidents from human error, such as missed commands, in a high-stress situation. Third, the science impacts can be customized and minimized around the burn, and in the event of an abort can be eliminated entirely in some circumstances. The result is a compact burn process that can be executed in as few as four hours and can be aborted seconds before execution. Operational, engineering, planning, and flight dynamics perspectives are presented, as well as a functional overview of the code and workflow required to implement the process. Future expansions and capabilities are also discussed.

  4. The use of impact force as a scale parameter for the impact response of composite laminates

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Poe, C. C., Jr.

    1992-01-01

    The building block approach is currently used to design composite structures. With this approach, the data from coupon tests is scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low velocity impacts where the mass of the impacter is large and the size of the specimen is small. For large mass impacts of moderately thick (0.35 to 0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large mass test results can be applied directly to other plates of the same size.

  5. The use of impact force as a scale parameter for the impact response of composite laminates

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Poe, C. C., Jr.

    1992-01-01

    The building block approach is currently used to design composite structures. With this approach, the data from coupon tests are scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low-velocity impacts where the mass of the impacter is large, and the size of the specimen is small. For large-mass impacts of moderately thick (0.35-0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large-mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large-mass test results can be applied directly to other plates of the same thickness.

  6. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Cameron; Ludewigt, Bernhard; Valentine, John

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range ofmore » energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.« less

  7. SLS-SPEC-159 Cross-Program Design Specification for Natural Environments (DSNE) Revision E

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    2017-01-01

    The DSNE completes environment-related specifications for architecture, system-level, and lower-tier documents by specifying the ranges of environmental conditions that must be accounted for by NASA ESD Programs. To assure clarity and consistency, and to prevent requirements documents from becoming cluttered with extensive amounts of technical material, natural environment specifications have been compiled into this document. The intent is to keep a unified specification for natural environments that each Program calls out for appropriate application. This document defines the natural environments parameter limits (maximum and minimum values, energy spectra, or precise model inputs, assumptions, model options, etc.), for all ESD Programs. These environments are developed by the NASA Marshall Space Flight Center (MSFC) Natural Environments Branch (MSFC organization code: EV44). Many of the parameter limits are based on experience with previous programs, such as the Space Shuttle Program. The parameter limits contain no margin and are meant to be evaluated individually to ensure they are reasonable (i.e., do not apply unrealistic extreme-on-extreme conditions). The natural environments specifications in this document should be accounted for by robust design of the flight vehicle and support systems. However, it is understood that in some cases the Programs will find it more effective to account for portions of the environment ranges by operational mitigation or acceptance of risk in accordance with an appropriate program risk management plan and/or hazard analysis process. The DSNE is not intended as a definition of operational models or operational constraints, nor is it adequate, alone, for ground facilities which may have additional requirements (for example, building codes and local environmental constraints). "Natural environments," as the term is used here, refers to the environments that are not the result of intended human activity or intervention. It consists of a variety of external environmental factors (most of natural origin and a few of human origin) which impose restrictions or otherwise impact the development or operation of flight vehicles and destination surface systems.

  8. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  9. CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.

    2016-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.

  10. Robotic technologies of the Flight Telerobotic Servicer (FTS) including fault tolerance

    NASA Technical Reports Server (NTRS)

    Chladek, John T.; Craver, William M.

    1994-01-01

    The original FTS concept for Space Station Freedom (SSF) was to provide telerobotic assistance to enhance crew activity and safety and to reduce crew EVA (Extra Vehicular Activity) activity. The first flight of the FTS manipulator systems would demonstrate several candidate tasks and would verify manipulator performance parameters. These first flight tasks included unlocking a SSF Truss Joint, mating/demating a fluid coupling, contact following of a contour board, demonstrating peg-in-hole assembly, and grasping and moving a mass. Future tasks foreseen for the FTS system included ORU (Orbit Replaceable Unit) change-out, Hubble Space Telescope Servicing, Gamma Ray Observatory refueling, and several in-situ SSF servicing and maintenance tasks. Operation of the FTS was planned to evolve from teleoperation to fully autonomous execution of many tasks. This wide range of mission tasks combined with the desire to evolve toward fully autonomy forced several requirements which may seen extremely demanding to the telerobotics community. The FTS requirements appear to have been created to accommodate the open-ended evolution plan such that operational evolution would not be impeded by function limitations. A recommendation arising from the FTS program to remedy the possible impacts from such ambitious requirements is to analyze candidate robotic tasks. Based on these task analyses, operational impacts against development impacts were weighed prior to requirements definition. Many of the FTS requirements discussed in the following sections greatly influenced the development cost and schedule of the FTS manipulator. The FTS manipulator has been assembled at Martin Marietta and is currently in testing. Successful component tests indicate a manipulator which achieves unprecedented performance specifications.

  11. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  12. Learning Aggregation Operators for Preference Modeling

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç

    Aggregation operators are useful tools for modeling preferences. Such operators include weighted means, OWA and WOWA operators, as well as some fuzzy integrals, e.g. Choquet and Sugeno integrals. To apply these operators in an effective way, their parameters have to be properly defined. In this chapter, we review some of the existing tools for learning these parameters from examples.

  13. Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.

  14. Downhole telemetry system

    DOEpatents

    Normann, R.A.; Kadlec, E.R.

    1994-11-08

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  15. Downhole telemetry system

    DOEpatents

    Normann, Randy A.; Kadlec, Emil R.

    1994-01-01

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  16. [Effect of priming solution and ultrafiltration on post-operative bleeding and blood transfusion in cardiac surgery. Randomized controlled trial].

    PubMed

    Olmos Rodríguez, M; Ballester Hernández, J A; Arteta Bárcenas, M T; Rodríguez Cerezo, A; Vidarte Ortiz de Artiñano, M A; Veiga Alameda, C

    2015-02-01

    Assess the effectiveness of priming the extracorporeal circulation system with albumin-mannitol combined with ultrafiltration during extracorporeal circulation to reduce post-operative bleeding and transfusion requirements in heart surgery, as well as its impact on the fluid balance, coagulation and hematocrit parameters, re-operation for bleeding, ICU, and hospital length of stay. A total of 134 patients scheduled for heart surgery were randomized to receive Ringer's lactate 1,500mL in the priming reservoir (group C), or mannitol 20% 250mL, albumin 20% 150mL and Ringer's lactate 1,100mL combined with ultrafiltration (group T). Bleeding volume, transfusions, fluid balance, coagulation, and hematology parameters were determined until 48h in the post-operative period. There was a reduction of postoperative bleeding in group T, 1,165±789mL vs 992±662mL (P=.17), and red blood cell concentrate transfusions, 694±843mL vs 413±605mL (P=.03). Intra-operative and post-operative fluid balance was significantly less positive in group T, with an overall balance of 2,292±2,152mL vs 5,388±2,834mL (P<.001). There were higher values of hemoglobin and hematocrit, intraoperative (P<.001), on admission to ICU (P=.001), and at 6h (P=.05) in group T, and lower INR at 6h (P=.01) and 24h (P=.02). Re-operation rate and length of stay in ICU were higher in group C, but not statiscally significant. The priming of extracorporeal reservoir with mannitol, albumin, and Ringer's lactate, combined with ultrafiltration, significantly improves intra- and post-operative fluid balance, resulting in a reduction in blood transfusions, with no significant decrease in post-operative bleeding, re-operation bleeding rate, and length of stay in the ICU. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Development and validation of chemistry agnostic flow battery cost performance model and application to nonaqueous electrolyte systems: Chemistry agnostic flow battery cost performance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Alasdair; Thomsen, Edwin; Reed, David

    2016-04-20

    A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less

  18. Simulation model of a variable-speed pumped-storage power plant in unstable operating conditions in pumping mode

    NASA Astrophysics Data System (ADS)

    Martínez-Lucas, G.; Pérez-Díaz, J. I.; Sarasúa, J. I.; Cavazzini, G.; Pavesi, G.; Ardizzon, G.

    2017-04-01

    This paper presents a dynamic simulation model of a laboratory-scale pumped-storage power plant (PSPP) operating in pumping mode with variable speed. The model considers the dynamic behavior of the conduits by means of an elastic water column approach, and synthetically generates both pressure and torque pulsations that reproduce the operation of the hydraulic machine in its instability region. The pressure and torque pulsations are generated each from a different set of sinusoidal functions. These functions were calibrated from the results of a CFD model, which was in turn validated from experimental data. Simulation model results match the numerical results of the CFD model with reasonable accuracy. The pump-turbine model (the functions used to generate pressure and torque pulsations inclusive) was up-scaled by hydraulic similarity according to the design parameters of a real PSPP and included in a dynamic simulation model of the said PSPP. Preliminary conclusions on the impact of unstable operation conditions on the penstock fatigue were obtained by means of a Monte Carlo simulation-based fatigue analysis.

  19. Development and evaluation of the Stingray, an amphibious maritime interdiction operations unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Castelli, Robin

    2014-06-01

    The U.S. Navy and Marine Corps conduct thousands of Maritime Interdiction Operations (MIOs) every year around the globe. Navy Visit, Board, Search, and Seizure (VBSS) teams regularly board suspect ships and perform search operations, often in hostile environments. There is a need for a small tactical robot that can be deployed ahead of the team to provide enhanced situational awareness in these boarding, breaching, and clearing operations. In 2011, the Space and Naval Warfare Systems Center Pacific conducted user evaluations on a number of small throwable robots and sensors, verified the requirements, and developed the key performance parameters (KPPs) for an MIO robot. Macro USA Corporation was then tasked to design and develop two prototype systems, each consisting of one control/display unit and two small amphibious Stingray robots. Technical challenges included the combination paddle wheel/shock-absorbing wheel, the tradeoff between impact resistance, size, and buoyancy, and achieving adequate traction on wet surfaces. This paper describes the technical design of these robots and the results of subsequent user evaluations by VBSS teams.

  20. Methods for Processing and Interpretation of AIS Signals Corrupted by Noise and Packet Collisions

    NASA Astrophysics Data System (ADS)

    Poļevskis, J.; Krastiņš, M.; Korāts, G.; Skorodumovs, A.; Trokšs, J.

    2012-01-01

    The authors deal with the operation of Automatic Identification System (AIS) used in the marine traffic monitoring to broadcast messages containing information about the vessel: id, payload, size, speed, destination etc., meant primarily for avoidance of ship collisions. To extend the radius of AIS operation, it is envisaged to dispose its receivers on satellites. However, in space, due to a large coverage area, interfering factors are especially pronounced - such as packet collision, Doppler's shift and noise impact on AIS message receiving, pre-processing and decoding. To assess the quality of an AIS receiver's operation, a test was carried out in which, varying automatically frequency, amplitude, noise, and other parameters, the data on the ability of the receiver's ability to decode AIS signals are collected. In the work, both hardware- and software-based AIS decoders were tested. As a result, quite satisfactory statistics has been gathered - both on the common and the differing features of such decoders when operating in space. To obtain reliable data on the software-defined radio AIS receivers, further research is envisaged.

  1. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    PubMed

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.

  2. A Computational Framework for Quantifying and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Cioaca, Alexandru

    A deep scientific understanding of complex physical systems, such as the atmosphere, can be achieved neither by direct measurements nor by numerical simulations alone. Data assimila- tion is a rigorous procedure to fuse information from a priori knowledge of the system state, the physical laws governing the evolution of the system, and real measurements, all with associated error statistics. Data assimilation produces best (a posteriori) estimates of model states and parameter values, and results in considerably improved computer simulations. The acquisition and use of observations in data assimilation raises several important scientific questions related to optimal sensor network design, quantification of data impact, pruning redundant data, and identifying the most beneficial additional observations. These questions originate in operational data assimilation practice, and have started to attract considerable interest in the recent past. This dissertation advances the state of knowledge in four dimensional variational (4D-Var) data assimilation by developing, implementing, and validating a novel computational framework for estimating observation impact and for optimizing sensor networks. The framework builds on the powerful methodologies of second-order adjoint modeling and the 4D-Var sensitivity equations. Efficient computational approaches for quantifying the observation impact include matrix free linear algebra algorithms and low-rank approximations of the sensitivities to observations. The sensor network configuration problem is formulated as a meta-optimization problem. Best values for parameters such as sensor location are obtained by optimizing a performance criterion, subject to the constraint posed by the 4D-Var optimization. Tractable computational solutions to this "optimization-constrained" optimization problem are provided. The results of this work can be directly applied to the deployment of intelligent sensors and adaptive observations, as well as to reducing the operating costs of measuring networks, while preserving their ability to capture the essential features of the system under consideration.

  3. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measures that flow or pressure sensors, damper plates, automated damper switches and motors are operating... operating limit parameter, a rationale for why you chose the parameter, a description of the method used to...

  4. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measures that flow or pressure sensors, damper plates, automated damper switches and motors are operating... operating limit parameter, a rationale for why you chose the parameter, a description of the method used to...

  5. Use and Impact of Covariance Data in the Japanese Latest Adjusted Library ADJ2010 Based on JENDL-4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, K., E-mail: yokoyama.kenji09@jaea.go.jp; Ishikawa, M.

    2015-01-15

    The current status of covariance applications to fast reactor analysis and design in Japan is summarized. In Japan, the covariance data are mainly used for three purposes: (1) to quantify the uncertainty of nuclear core parameters, (2) to identify important nuclides, reactions and energy ranges which are dominant to the uncertainty of core parameters, and (3) to improve the accuracy of core design values by adopting the integral data such as the critical experiments and the power reactor operation data. For the last purpose, the cross section adjustment based on the Bayesian theorem is used. After the release of JENDL-4.0,more » a development project of the new adjusted group-constant set ADJ2010 was started in 2010 and completed in 2013. In the present paper, the final results of ADJ2010 are briefly summarized. In addition, the adjustment results of ADJ2010 are discussed from the viewpoint of use and impact of nuclear data covariances, focusing on {sup 239}Pu capture cross section alterations. For this purpose three kind of indices, called “degree of mobility,” “adjustment motive force,” and “adjustment potential,” are proposed.« less

  6. Crashworthiness of Aluminium Tubes; Part 2: Improvement of Hydroforming Operation to Increase Absorption Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert

    2007-05-17

    The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments onmore » hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.« less

  7. Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway.

    PubMed

    Sauterleute, Julian F; Hedger, Richard D; Hauer, Christoph; Pulg, Ulrich; Skoglund, Helge; Sundt-Hansen, Line E; Bakken, Tor Haakon; Ugedal, Ola

    2016-12-15

    Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat.

    PubMed

    Clemente-Suárez, Vicente J; Robles-Pérez, José J

    2013-09-01

    In current theaters of operation, soldiers had to face a different situation as symmetrical (defined battlefield) and asymmetrical combat (non-defined battlefield), especially in urban areas. The mechanical and organic responses of soldiers in these combats are poorly studied in specific literature. This research aimed to analyze physical, mechanical, and physiological parameters during symmetrical and asymmetrical combat simulations. We analyzed 20 soldiers from the Spanish Army and Spanish Forces and Security Corps (34.5 ± 4.2 years; 176.4 ± 8.4 cm; 74.6 ± 8.7 kg; 63.3 ± 8.0 kg muscular mass; 7.6 ± 3.2 kg fat mass) during a symmetric combat (traditional combat simulation) and during an asymmetrical combat (urban combat simulation). Heart rate (HR), speed, sprints, distances, impact, and body load parameters were measured by a GPS system and a HR belt. Results showed many differences between symmetrical and asymmetrical combat. Asymmetrical combat presented higher maximum velocity movement, number of sprints, sprint distance, and average HR. By contrary, symmetric combat presented higher number of impact and body load. This information could be used to improve specific training programs for each type of combat.

  9. Crashworthiness of Aluminium Tubes; Part 2: Improvement of Hydroforming Operation to Increase Absorption Energy

    NASA Astrophysics Data System (ADS)

    D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert; Williams, Bruce; Worswick, Michael

    2007-05-01

    The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments on hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.

  10. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  11. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  12. An Empirical Study of Design Parameters for Assessing Differential Impacts for Students in Group Randomized Trials.

    PubMed

    Jaciw, Andrew P; Lin, Li; Ma, Boya

    2016-10-18

    Prior research has investigated design parameters for assessing average program impacts on achievement outcomes with cluster randomized trials (CRTs). Less is known about parameters important for assessing differential impacts. This article develops a statistical framework for designing CRTs to assess differences in impact among student subgroups and presents initial estimates of critical parameters. Effect sizes and minimum detectable effect sizes for average and differential impacts are calculated before and after conditioning on effects of covariates using results from several CRTs. Relative sensitivities to detect average and differential impacts are also examined. Student outcomes from six CRTs are analyzed. Achievement in math, science, reading, and writing. The ratio of between-cluster variation in the slope of the moderator divided by total variance-the "moderator gap variance ratio"-is important for designing studies to detect differences in impact between student subgroups. This quantity is the analogue of the intraclass correlation coefficient. Typical values were .02 for gender and .04 for socioeconomic status. For studies considered, in many cases estimates of differential impact were larger than of average impact, and after conditioning on effects of covariates, similar power was achieved for detecting average and differential impacts of the same size. Measuring differential impacts is important for addressing questions of equity, generalizability, and guiding interpretation of subgroup impact findings. Adequate power for doing this is in some cases reachable with CRTs designed to measure average impacts. Continuing collection of parameters for assessing differential impacts is the next step. © The Author(s) 2016.

  13. Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems

    NASA Astrophysics Data System (ADS)

    Bartell, Richard J.; Perram, Glen P.; Fiorino, Steven T.; Long, Scott N.; Houle, Marken J.; Rice, Christopher A.; Manning, Zachary P.; Bunch, Dustin W.; Krizo, Matthew J.; Gravley, Liesebet E.

    2005-06-01

    The Air Force Institute of Technology's Center for Directed Energy has developed a software model, the High Energy Laser End-to-End Operational Simulation (HELEEOS), under the sponsorship of the High Energy Laser Joint Technology Office (JTO), to facilitate worldwide comparisons across a broad range of expected engagement scenarios of expected performance of a diverse range of weight-constrained high energy laser system types. HELEEOS has been designed to meet JTO's goals of supporting a broad range of analyses applicable to the operational requirements of all the military services, constraining weapon effectiveness through accurate engineering performance assessments allowing its use as an investment strategy tool, and the establishment of trust among military leaders. HELEEOS is anchored to respected wave optics codes and all significant degradation effects, including thermal blooming and optical turbulence, are represented in the model. The model features operationally oriented performance metrics, e.g. dwell time required to achieve a prescribed probability of kill and effective range. Key features of HELEEOS include estimation of the level of uncertainty in the calculated Pk and generation of interactive nomographs to allow the user to further explore a desired parameter space. Worldwide analyses are enabled at five wavelengths via recently available databases capturing climatological, seasonal, diurnal, and geographical spatial-temporal variability in atmospheric parameters including molecular and aerosol absorption and scattering profiles and optical turbulence strength. Examples are provided of the impact of uncertainty in weight-power relationships, coupled with operating condition variability, on results of performance comparisons between chemical and solid state lasers.

  14. Optical turbulence forecast: ready for an operational application

    NASA Astrophysics Data System (ADS)

    Masciadri, E.; Lascaux, F.; Turchi, A.; Fini, L.

    2017-04-01

    One of the main goals of the feasibility study MOSE (MOdelling ESO Sites) is to evaluate the performances of a method conceived to forecast the optical turbulence (OT) above the European Southern Observatory (ESO) sites of the Very Large Telescope (VLT) and the European Extremely Large Telescope (E-ELT) in Chile. The method implied the use of a dedicated code conceived for the OT called ASTRO-MESO-NH. In this paper, we present results we obtained at conclusion of this project concerning the performances of this method in forecasting the most relevant parameters related to the OT (CN^2, seeing ɛ, isoplanatic angle θ0 and wavefront coherence time τ0). Numerical predictions related to a very rich statistical sample of nights uniformly distributed along a solar year and belonging to different years have been compared to observations, and different statistical operators have been analysed such as the classical bias, root-mean-squared error, σ and more sophisticated statistical operators derived by the contingency tables that are able to quantify the score of success of a predictive method such as the percentage of correct detection (PC) and the probability to detect a parameter within a specific range of values (POD). The main conclusions of the study tell us that the ASTRO-MESO-NH model provides performances that are already very good to definitely guarantee a not negligible positive impact on the service mode of top-class telescopes and ELTs. A demonstrator for an automatic and operational version of the ASTRO-MESO-NH model will be soon implemented on the sites of VLT and E-ELT.

  15. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Future DUNE constraints on EFT

    NASA Astrophysics Data System (ADS)

    Falkowski, Adam; Grilli di Cortona, Giovanni; Tabrizi, Zahra

    2018-04-01

    In the near future, fundamental interactions at high-energy scales may be most efficiently studied via precision measurements at low energies. A universal language to assemble and interpret precision measurements is the so-called SMEFT, which is an effective field theory (EFT) where the Standard Model (SM) Lagrangian is extended by higher-dimensional operators. In this paper we investigate the possible impact of the DUNE neutrino experiment on constraining the SMEFT. The unprecedented neutrino flux offers an opportunity to greatly improve the current limits via precision measurements of the trident production and neutrino scattering off electrons and nuclei in the DUNE near detector. We quantify the DUNE sensitivity to dimension-6 operators in the SMEFT Lagrangian, and find that in some cases operators suppressed by an O(30) TeV scale can be probed. We also compare the DUNE reach to that of future experiments involving atomic parity violation and polarization asymmetry in electron scattering, which are sensitive to an overlapping set of SMEFT parameters.

  17. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai

    2011-01-01

    Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.

  18. Novel telementoring system for robot-assisted radical prostatectomy: impact on the learning curve.

    PubMed

    Hinata, Nobuyuki; Miyake, Hideaki; Kurahashi, Toshifumi; Ando, Makoto; Furukawa, Junya; Ishimura, Takeshi; Tanaka, Kazushi; Fujisawa, Masato

    2014-05-01

    To develop a Web-based audiovisual telementoring system for robot-assisted radical prostatectomy (RARP) and to assess the utility of this system. A telementoring system for RARP, consisting of a 3-dimensional high-definition view of the operating field, overview of the operating room, annotation function, and 2-channel audio feed with bidirectional connectivity between 2 institutions, was developed. The outcome of RARP performed for the initial 30 patients by 2 surgeons with telementoring was compared with that for 2 surgeons who received direct mentoring. This system was shown to function properly with an acceptable latency. There were no significant differences in several parameters reflecting surgical outcomes, including the operating time, complication rate, early continence status, and positive margin rate between the telementoring and direct mentoring groups. These findings suggest the usefulness of the telementoring system for promoting the spread of precise surgical techniques associated with RARP. To our knowledge, this is the first report concerning telementoring for robot-assisted surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Alternative Aviation Fuel Experiment (AAFEX)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  20. Evaluation and Analysis of the ANSI X3T9.5 (FDDI) PMD and Proposed SMF-PMD as Influenced by Various Fiber Link Characteristics

    NASA Technical Reports Server (NTRS)

    Wernicki, M. Chris

    1991-01-01

    The purpose of this project is to evaluate the operational parameters of the Kennedy Space Center (KSC) fiber optic cable plant. The evaluation is based on the Fiber Distributed Data Interface (FDDI) Physical Medium Dependent (PMD) and Single Mode Fiber (SMF) PMD standards. From the KSC fiber profile, it would be necessary to develop the modifications needed in existing FDDI PMD and proposed SMF-PMD standards to provide for FDDI implementation and operation at KSC. This analysis should examine the major factors that influence the operating conditions of the KSC fiber plant. These factors would include, but are not limited to the number and type of connectors, attenuation and dispersion characteristics of the fiber, non-standard fiber sizes, modal bandwidth, and many other relevant or significant fiber plant characteristics that effect FDDI characteristics. This analysis is needed to gain a better understanding of overall impact that each of these factors have on FDDI performance at KSC.

  1. Are short-term focused training courses on a phantom model using porcine gall bladder useful for trainees in acquiring basic laparoscopic skills?

    PubMed

    Bansal, Virinder Kumar; Panwar, Rajesh; Misra, Mahesh C; Bhattacharjee, Hemanga K; Jindal, Vikas; Loli, Athiko; Goswami, Amit; Krishna, Asuri; Tamang, Tseten

    2012-04-01

    The best training method in laparoscopic surgery has not been defined. We evaluated the efficacy of laparoscopic skills acquisition in a short-term focused program. Two hundred fifty-six participants undergoing training on a phantom model were divided into 2 groups. Group 1 had no exposure and group 2 had performed a few laparoscopic surgeries. Acquisition of laparoscopic skills was assessed by operation time and the modified Global Operative Assessment of Laparoscopic Skills (GOALS) scale. A questionnaire was sent to the participants after 3 to 6 months for assessment of impact of training. There was a statistically significant improvement in the assessed parameters and in the mean score of all 5 domains of GOALS. The participants in group 2 performed better than those in group 1 in the first case. The difference between both the groups disappeared after the training. Participants who responded to the questionnaire felt that training helped them in improving their performance in the operation theater.

  2. On-Orbit Operation and Performance of MODIS Blackbody

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Chang, T.; Barnes, W.

    2009-01-01

    MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.

  3. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.; Smith III, F. G.; McCabe, D. J.

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less

  4. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities

    USGS Publications Warehouse

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.

    1984-01-01

    Oil and gas exploration and production at marine sites has generated concern over potential environmental impacts resulting from the discharge of spent drilling muds and cuttings. This concern has led to a broad array of publicly and privately sponsored research. This report described a cooperative modeling effort designed to focus information resulting from this research through construction of explicit equations that simulate the potential impacts of discharge drilling fluids (muds) and cuttings on marine communities. The model is the result of collaboration among more than 30 scientists. The principal cooperating organizations were the E.S. Environmental Protection Agency, the U.S. Minerals Management Service, the Offshore Operators Committee, and the Alaska Oil and Gas Association. The overall simulation model can be conceptualized as three connected submodels: Discharge and Plume Fate, Sediment Redistribution, and Benthic Community Effects. On each day of simulation, these submodels are executed in sequence, with flows of information between submodels. The Benthic Community Effects submodel can be further divided into sections that calculate mortality due to burial, mortality due to toxicity, mortality due to resuspension disturbance, and growth of the community. The model represents a series of seven discrete 1-m2 plots at specified distances along a transect in one direction away from a discharge point. It consists of coupled difference equations for which parameter values can easily be set to evaluate different conditions or to examine the sensitivity of output to various assumptions. Sets of parameter values were developed to represent four general cases or scenarios: (1) a shallow (5 m), cold environment with ice cover during a substantial fraction of the year, such as might be encountered in the Beaufort Sea, Alaska; (2) a shallow (20 m), temperate environment, such as might be encountered in the Gulf of Mexico; (3) a deeper (80 m), temperate environment, such as might be encountered in the Gulf of Mexico; and (4) a very deep (1,000 m) environment, such as might be encountered on the Atlantic slope. The focus of the modeling effort was on the connection of a reasonable representation of physical fate to the biological responses of populations, rather than on highly detailed representations of individual processes. For example, the calculations of physical fate are not as detailed as those in the recently published model of Brandsma et al. (1983). The value of the model described herein is in the broad scope of processes that are explicitly represented and linked together. The model cannot be considered to produce reliable predictions of the quantitative impacts of discharged drilling fluids and cuttings on biological populations at a particular site. Limitations of the model in predicting integrated fate and effects can be traced to three general areas: level of refinement of the algorithms used in the model; lack of understanding of the processes determining fate and effects; and parameter and data values. Despite the limitations, several qualitative conclusions concerning both potential impacts and the importance of various remaining data gaps can be drawn from the modeling effort. These include: (1) Simple, unequivocal conclusions about fate and effects across geographical regions and drilling operations are difficult, if not misleading, due to the large amount of variability in characteristics of discharged materials (e.g., oil content and toxicity), discharge conditions (e.g., duration of drilling operations), physical environments (e.g., water depth, current direction, and sediment disturbance regimes), and biological communities (e.g., intrinsic growth rates). Different combinations of these characteristics can result in substantial differences in simulated environmental fate and biological effects. For examples, simulated recovery in some high-energy environments occurs within months after the cessation of discharge operations, even at heavily impacted sites, whereas simulated recover in some low-energy environments takes years at heavily impacted sites. (3) The volume of material discharged and duration of operations in the production drilling operations simulated by the model are sufficient to produce substantial simulated biological impacts at some plots, both in terms of differences from a control plot during the period of discharge operations, and in terms of the recovery period following the perturbations. Evaluation of the significance of potential effects involves the following factors: • Definition of a specific spatial and temporal reference frame (e.g., What is the natural variation? Is 1 year to be considered a "long" or "short" time? Is 50 m to be considered a "large" or "trivial" distance? • Consideration of rare or unique resources and particularly sensitive biotic assemblages. • Consideration of the potential for long term, cumulative effects. Some of these aspects are clearly beyond the scope of this modeling efforts (e.g., the model does not simulate the long term fate of resuspended material). The model does, however, contain an internal "reference frame" by comparison to simulated behavior at a control plot. The model, in general, simulates substantial "natural" variation at the reference or control plots, both over time, due to sediment disturbance events in medium to high energy environments, and over space, due to geographically varying conditions, such as water depth and current regime.

  5. Civil Tiltrotor Feasibility Study for the New York and Washington Terminal Areas

    NASA Technical Reports Server (NTRS)

    Stouffer, Virginia; Johnson, Jesse; Gribko, Joana; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    NASA tasked LMI to assess the potential contributions of a yet-undeveloped Civil Tiltrotor aircraft (CTR) in improving capacity in the National Airspace System in all weather conditions. The CTRs studied have assumed operating parameters beyond current CTR capabilities. LMI analyzed CTRs three ways: in fast-time terminal area modeling simulations of New York and Washington to determine delay and throughput impacts; in the Integrated Noise Model, to determine local environmental impact; and with an economic model, to determine the price viability of a CTR. The fast-time models encompassed a 250 nmi range and included traffic interactions from local airports. Both the fast-time simulation and the noise model assessed impacts from traffic levels projected for 1999, 2007, and 2017. Results: CTRs can reduce terminal area delays due to concrete congestion in all time frames. The maximum effect, the ratio of CTRs to jets and turboprop aircraft at a subject airport should be optimized. The economic model considered US traffic only and forecasted CTR sales beginning in 2010.

  6. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  7. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  8. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2015-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  9. Comparative life cycle assessment of battery storage systems for stationary applications.

    PubMed

    Hiremath, Mitavachan; Derendorf, Karen; Vogt, Thomas

    2015-04-21

    This paper presents a comparative life cycle assessment of cumulative energy demand (CED) and global warming potential (GWP) of four stationary battery technologies: lithium-ion, lead-acid, sodium-sulfur, and vanadium-redox-flow. The analyses were carried out for a complete utilization of their cycle life and for six different stationary applications. Due to its lower CED and GWP impacts, a qualitative analysis of lithium-ion was carried out to assess the impacts of its process chains on 17 midpoint impact categories using ReCiPe-2008 methodology. It was found that in general the use stage of batteries dominates their life cycle impacts significantly. It is therefore misleading to compare the environmental performance of batteries only on a mass or capacity basis at the manufacturing outlet ("cradle-to-gate analyses") while neglecting their use stage impacts, especially when they have different characteristic parameters. Furthermore, the relative ranking of batteries does not show a significant dependency on the investigated stationary application scenarios in most cases. Based on the results obtained, the authors go on to recommend the deployment of batteries with higher round-trip efficiency, such as lithium-ion, for stationary grid operation in the first instance.

  10. Laboratory investigation of dust impacts on antennas in space

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Malaspina, D.; Gruen, E.; Drake, K.

    2013-10-01

    Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements is performed to calibrate the impact charge generated from materials specific the STEREO spacecraft and will help to interpret electric field data.

  11. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method.

    PubMed

    Jiang, Zhinong; Mao, Zhiwei; Wang, Zijia; Zhang, Jinjie

    2017-12-15

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable.

  12. Evaluation of dispersive Bragg gratings (BG) structures for the processing of RF signals with large time delays and bandwidths

    NASA Astrophysics Data System (ADS)

    Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.

    2007-11-01

    The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.

  13. Evaluating Management Information Systems, A Protocol for Automated Peer Review Systems

    PubMed Central

    Black, Gordon C.

    1980-01-01

    This paper discusses key issues in evaluating an automated Peer Review System. Included are the conceptual base, design, steps in planning structural components, operation parameters, criteria, costs and a detailed outline or protocol for use in the evaluation. At the heart of the Peer Review System is the criteria utilized for measuring quality. Criteria evaluation should embrace, as a minimum, appropriateness, validity and reliability, and completemess or comprehensiveness of content. Such an evaluation is not complete without determining the impact (clinical outcome) of the service system or the patient and the population served.

  14. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  15. Propulsion system mathematical model for a lift/cruise fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Sellers, J. F.; Tinling, B. E.

    1980-01-01

    A propulsion system mathematical model is documented that allows calculation of internal engine parameters during transient operation. A non-realtime digital computer simulation of the model is presented. It is used to investigate thrust response and modulation requirements as well as the impact of duty cycle on engine life and design criteria. Comparison of simulation results with steady-state cycle deck calculations showed good agreement. The model was developed for a specific 3-fan subsonic V/STOL aircraft application, but it can be adapted for use with any similar lift/cruise V/STOL configuration.

  16. Some aspects of precise laser machining - Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  17. Phase 1: Definition of intercity transportation comparison framework. Volume 1: Summary. [operations research of passenger and freight transporatation systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A unified framework for comparing intercity passenger and freight transportation systems is presented. Composite measures for cost, service/demand, energy, and environmental impact were determined. A set of 14 basic measures were articulated to form the foundation for computing the composite measures. A parameter dependency diagram, constructed to explicitly interrelate the composite and basic measures is discussed. Ground rules and methodology for developing the values of the basic measures are provided and the use of the framework with existing cost and service data is illustrated for various freight systems.

  18. SCIAMACHY’s View of the Polar Atmosphere

    USGS Publications Warehouse

    Gottwald, M.; Krieg, E.; von Savigny, C.; Noël, S.; Reichl, A.; Bovensmann, H.; Burrows, J.P.

    2007-01-01

    The instrument SCIAMACHY onboard the European ENVISAT mission provides unique capabilities for deriving atmospheric geophysical parameters. Since its launch in early 2002 it has operated successfully in orbit. Due to ENVISAT’s high inclination orbit the polar regions are monitored continuously. We report here results about the status of the polar atmosphere in the past 5 years with special emphasis on the southern hemisphere. This part of the atmosphere is considered to be highly sensitive to anthropogenic impacts on the Earth system and thus to climate change. The acquired data permit retrieving information on the Earth’s atmosphere from troposphere up to the mesosphere

  19. Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation

    NASA Astrophysics Data System (ADS)

    Dabiri, Arman; Butcher, Eric A.; Nazari, Morad

    2017-02-01

    Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.

  20. Impact of fouling on the decline of aeration efficiency under different operational conditions at WRRFs.

    PubMed

    Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; Park, Hee-Deung; Kim, Taek-Seung; Baquero-Rodriguez, G Andres; Olson, Betty H; Rosso, Diego

    2018-10-15

    Biofilm formation influences the most energy-demanding process in the waste water treatment cycle. Biofilm growth on the surface of wastewater aeration diffusers in water resource recovery facilities (WRRFs) can increase the energy requirements up to 50% in less than 2 years. The impact of biofilms in aeration diffusers was quantified and assessed for first time using molecular tools (i.e., Energy-dispersive X-ray, Ra and RMS and Pyrosequencing) and state-of-the-art techniques (i.e., EPS quantification, Hydrophobicity and DNA quantification). To provide a better understanding and quantitative connections between biological activity and aeration energy efficiency, two replicates of the most common diffusers were installed and tested in two different operational conditions (higher and lower organic loading rate processes) during 15 months. Different scenarios and conditions provided for first time comprehensive understanding of the major factors contributing to diffuser fouling. The array of analysis suggested that higher loading conditions can promote specialized microbial populations to halve aeration efficiency parameters (i.e., αF) in comparison to lower loading conditions. Biofilms adapted to certain operational conditions can trigger changes in diffuser membrane properties (i.e., biological enhanced roughness and hydrophobicity) and enhance EPS growth rates. Improved understanding of the effects of scaling, biofouling, aging and microbial population shifts on the decrease in aeration efficiency is provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  2. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    PubMed

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  3. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  4. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    PubMed

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Predicting dredging-associated effects to coral reefs in Apra Harbor, Guam - Part 1: Sediment exposure modeling.

    PubMed

    Gailani, Joseph Z; Lackey, Tahirih C; King, David B; Bryant, Duncan; Kim, Sung-Chan; Shafer, Deborah J

    2016-03-01

    Model studies were conducted to investigate the potential coral reef sediment exposure from dredging associated with proposed development of a deepwater wharf in Apra Harbor, Guam. The Particle Tracking Model (PTM) was applied to quantify the exposure of coral reefs to material suspended by the dredging operations at two alternative sites. Key PTM features include the flexible capability of continuous multiple releases of sediment parcels, control of parcel/substrate interaction, and the ability to efficiently track vast numbers of parcels. This flexibility has facilitated simulating the combined effects of sediment released from clamshell dredging and chiseling within Apra Harbor. Because the rate of material released into the water column by some of the processes is not well understood or known a priori, the modeling approach was to bracket parameters within reasonable ranges to produce a suite of potential results from multiple model runs. Sensitivity analysis to model parameters is used to select the appropriate parameter values for bracketing. Data analysis results include mapping the time series and the maximum values of sedimentation, suspended sediment concentration, and deposition rate. Data were used to quantify various exposure processes that affect coral species in Apra Harbor. The goal of this research is to develop a robust methodology for quantifying and bracketing exposure mechanisms to coral (or other receptors) from dredging operations. These exposure values were utilized in an ecological assessment to predict effects (coral reef impacts) from various dredging scenarios. Copyright © 2015. Published by Elsevier Ltd.

  6. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  7. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    IPOST is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence fo trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the coat function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  8. Aquarium Microbiome Response to Ninety-Percent System Water Change: Clues to Microbiome Management

    PubMed Central

    Van Bonn, William; LaPointe, Allen; Gibbons, Sean M.; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack

    2016-01-01

    The bacterial community composition and structure of water from an established teleost fish system was examined before, during and after a major water change to explore the impact of such a water-change disturbance on the stability of the aquarium water microbiome. The diversity and evenness of the bacterial community significantly increased following the 90% water replacement. While the change in bacterial community structure was significant, it was slight, and was also weakly correlated with changes in physicochemical parameters. Interestingly there was a significant shift in the correlative network relationships between operational taxonomic units from before to after the water replacement. We suggest this shift in network structure is due to the turnover of many taxa during the course of water replacement. These observations will inform future studies into manipulation of the microbiome by changing system environmental parameter values to optimize resident animal health. PMID:26031788

  9. Interplanetary Program to Optimize Simulated Trajectories (IPOST). Volume 2: Analytic manual

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D.; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Space Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization is performed using the Stanford NPSOL algorithm. IPOST structure allows subproblems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  10. Study on Mine Emergency Mechanism based on TARP and ICS

    NASA Astrophysics Data System (ADS)

    Xi, Jian; Wu, Zongzhi

    2018-01-01

    By analyzing the experiences and practices of mine emergency in China and abroad, especially the United States and Australia, normative principle, risk management principle and adaptability principle of constructing mine emergency mechanism based on Trigger Action Response Plans (TARP) and Incident Command System (ICS) are summarized. Classification method, framework, flow and subject of TARP and ICS which are suitable for the actual situation of domestic mine emergency are proposed. The system dynamics model of TARP and ICS is established. The parameters such as evacuation ratio, response rate, per capita emergency capability and entry rate of rescuers are set up. By simulating the operation process of TARP and ICS, the impact of these parameters on the emergency process are analyzed, which could provide a reference and basis for building emergency capacity, formulating emergency plans and setting up action plans in the emergency process.

  11. Usage of neural network to predict aluminium oxide layer thickness.

    PubMed

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  12. Six-hourly time series of horizontal troposphere gradients in VLBI analyis

    NASA Astrophysics Data System (ADS)

    Landskron, Daniel; Hofmeister, Armin; Mayer, David; Böhm, Johannes

    2016-04-01

    Consideration of horizontal gradients is indispensable for high-precision VLBI and GNSS analysis. As a rule of thumb, all observations below 15 degrees elevation need to be corrected for the influence of azimuthal asymmetry on the delay times, which is mainly a product of the non-spherical shape of the atmosphere and ever-changing weather conditions. Based on the well-known gradient estimation model by Chen and Herring (1997), we developed an augmented gradient model with additional parameters which are determined from ray-traced delays for the complete history of VLBI observations. As input to the ray-tracer, we used operational and re-analysis data from the European Centre for Medium-Range Weather Forecasts. Finally, we applied those a priori gradient parameters to VLBI analysis along with other empirical gradient models and assessed their impact on baseline length repeatabilities as well as on celestial and terrestrial reference frames.

  13. Characterisation of soft magnetic materials by measurement: Evaluation of uncertainties up to 1.8 T and 9 kHz

    NASA Astrophysics Data System (ADS)

    Elfgen, S.; Franck, D.; Hameyer, K.

    2018-04-01

    Magnetic measurements are indispensable for the characterization of soft magnetic material used e.g. in electrical machines. Characteristic values are used as quality control during production and for the parametrization of material models. Uncertainties and errors in the measurements are reflected directly in the parameters of the material models. This can result in over-dimensioning and inaccuracies in simulations for the design of electrical machines. Therefore, existing influencing factors in the characterization of soft magnetic materials are named and their resulting uncertainties contributions studied. The analysis of the resulting uncertainty contributions can serve the operator as additional selection criteria for different measuring sensors. The investigation is performed for measurements within and outside the currently prescribed standard, using a Single sheet tester and its impact on the identification of iron loss parameter is studied.

  14. Aquarium microbiome response to ninety-percent system water change: Clues to microbiome management.

    PubMed

    Van Bonn, William; LaPointe, Allen; Gibbons, Sean M; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack

    2015-01-01

    The bacterial community composition and structure of water from an established teleost fish system was examined before, during and after a major water change to explore the impact of such a water-change disturbance on the stability of the aquarium water microbiome. The diversity and evenness of the bacterial community significantly increased following the 90% water replacement. While the change in bacterial community structure was significant, it was slight, and was also weakly correlated with changes in physicochemical parameters. Interestingly there was a significant shift in the correlative network relationships between operational taxonomic units from before to after the water replacement. We suggest this shift in network structure is due to the turnover of many taxa during the course of water replacement. These observations will inform future studies into manipulation of the microbiome by changing system environmental parameter values to optimize resident animal health. © 2015 Wiley Periodicals, Inc.

  15. Analysis of complex environment effect on near-field emission

    NASA Astrophysics Data System (ADS)

    Ravelo, B.; Lalléchère, S.; Bonnet, P.; Paladian, F.

    2014-10-01

    The article is dealing with uncertainty analyses of radiofrequency circuits electromagnetic compatibility emission based on the near-field/near-field (NF/NF) transform combined with stochastic approach. By using 2D data corresponding to electromagnetic (EM) field (X=E or H) scanned in the observation plane placed at the position z0 above the circuit under test (CUT), the X field map was extracted. Then, uncertainty analyses were assessed via the statistical moments from X component. In addition, stochastic collocation based was considered and calculations were applied to planar EM NF radiated by the CUTs as Wilkinson power divider and a microstrip line operating at GHz levels. After Matlab implementation, the mean and standard deviation were assessed. The present study illustrates how the variations of environmental parameters may impact EM fields. The NF uncertainty methodology can be applied to any physical parameter effects in complex environment and useful for printed circuit board (PCBs) design guideline.

  16. Influence parameters of impact grinding mills

    NASA Technical Reports Server (NTRS)

    Hoeffl, K.; Husemann, K.; Goldacker, H.

    1984-01-01

    Significant parameters for impact grinding mills were investigated. Final particle size was used to evaluate grinding results. Adjustment of the parameters toward increased charge load results in improved efficiency; however, it was not possible to define a single, unified set to optimum grinding conditions.

  17. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    NASA Astrophysics Data System (ADS)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  18. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  20. Application Possibility of Smartphone as Payload for Photogrammetric Uav System

    NASA Astrophysics Data System (ADS)

    Yun, M. H.; Kim, J.; Seo, D.; Lee, J.; Choi, C.

    2012-07-01

    Smartphone can not only be operated under 3G network environment anytime and anyplace but also cost less than the existing photogrammetric UAV since it provides high-resolution image, 3D location and attitude data on a real-time basis from a variety of built-in sensors. This study is aimed to assess the possibility of smartphone as a payload for photogrammetric UAV system. Prior to such assessment, a smartphone-based photogrammetric UAV system application was developed, through which real-time image, location and attitude data was obtained using smartphone under both static and dynamic conditions. Subsequently the accuracy assessment on the location and attitude data obtained and sent by this system was conducted. The smartphone images were converted into ortho-images through image triangulation. The image triangulation was conducted in accordance with presence or absence of consideration of the interior orientation (IO) parameters determined by camera calibration. In case IO parameters were taken into account in the static experiment, the results from triangulation for any smartphone type were within 1.5 pixel (RMSE), which was improved at least by 35% compared to when IO parameters were not taken into account. On the contrary, the improvement effect of considering IO parameters on accuracy in triangulation for smartphone images in dynamic experiment was not significant compared to the static experiment. It was due to the significant impact of vibration and sudden attitude change of UAV on the actuator for automatic focus control within the camera built in smartphone under the dynamic condition. This cause appears to have a negative impact on the image-based DEM generation. Considering these study findings, it is suggested that smartphone is very feasible as a payload for UAV system. It is also expected that smartphone may be loaded onto existing UAV playing direct or indirect roles significantly.

  1. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  2. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    NASA Astrophysics Data System (ADS)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective, stratiform and undefined). These are then used to obtain coherent parameter sets for the radar reflectivity-rainfall rate (Z-R) and radar reflectivity-attenuation (Z-k) relationship, specifically applicable for this event. By applying a single parameter set to correct for both sources of errors, the quality of the rainfall product improves further, leading to >80% of the observed accumulations. However, by differentiating between precipitation type no better results are obtained as when using the operational relationships. This leads to the question: how representative are local disdrometer observations to correct large scale weather radar measurements? In order to tackle this question a Monte Carlo approach was used to generate >10000 sets of the normalized dropsize distribution parameters and to assess their impact on the estimated precipitation amounts. Results show that a large number of parameter sets result in improved precipitation estimated by the weather radar closely resembling observations. However, these optimal sets vary considerably as compared to those obtained from the local disdrometer measurements.

  3. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating parameter...

  4. 40 CFR 63.1161 - Performance testing and test methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Facilities and Hydrochloric Acid Regeneration Plants § 63.1161 Performance testing and test methods. (a...) Establishment of hydrochloric acid regeneration plant operating parameters. (1) During the performance test for hydrochloric acid regeneration plants, the owner or operator shall establish site-specific operating parameter...

  5. Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications

    NASA Astrophysics Data System (ADS)

    Braun, Robert Joseph

    The advent of maturing fuel cell technologies presents an opportunity to achieve significant improvements in energy conversion efficiencies at many scales; thereby, simultaneously extending our finite resources and reducing "harmful" energy-related emissions to levels well below that of near-future regulatory standards. However, before realization of the advantages of fuel cells can take place, systems-level design issues regarding their application must be addressed. Using modeling and simulation, the present work offers optimal system design and operation strategies for stationary solid oxide fuel cell systems applied to single-family detached dwellings. A one-dimensional, steady-state finite-difference model of a solid oxide fuel cell (SOFC) is generated and verified against other mathematical SOFC models in the literature. Fuel cell system balance-of-plant components and costs are also modeled and used to provide an estimate of system capital and life cycle costs. The models are used to evaluate optimal cell-stack power output, the impact of cell operating and design parameters, fuel type, thermal energy recovery, system process design, and operating strategy on overall system energetic and economic performance. Optimal cell design voltage, fuel utilization, and operating temperature parameters are found using minimization of the life cycle costs. System design evaluations reveal that hydrogen-fueled SOFC systems demonstrate lower system efficiencies than methane-fueled systems. The use of recycled cell exhaust gases in process design in the stack periphery are found to produce the highest system electric and cogeneration efficiencies while achieving the lowest capital costs. Annual simulations reveal that efficiencies of 45% electric (LHV basis), 85% cogenerative, and simple economic paybacks of 5--8 years are feasible for 1--2 kW SOFC systems in residential-scale applications. Design guidelines that offer additional suggestions related to fuel cell-stack sizing and operating strategy (base-load or load-following and cogeneration or electric-only) are also presented.

  6. The effect of inflation rate on the cost of medical waste management system

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-11-01

    This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).

  7. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-Yag laser.

    PubMed

    Bertrand, C; Laplanche, O; Rocca, J P; Le Petitcorps, Y; Nammour, S

    2007-11-01

    The laser is a very attractive tool for joining dental metallic alloys. However, the choice of the setting parameters can hardly influence the welding performances. The aim of this research was to evaluate the impact of several parameters (pulse shaping, pulse frequency, focal spot size...) on the quality of the microstructure. Grade 1 titanium plates have been welded with a pulsed Nd-Yag laser. Suitable power, pulse duration, focal spot size, and flow of argon gas were fixed by the operator. Five different pulse shapes and three pulse frequencies were investigated. Two pulse shapes available on this laser unit were eliminated because they considerably hardened the metal. As the pulse frequency rose, the metal was more and more ejected, and a plasma on the surface of the metal increased the oxygen contamination in the welded area. Frequencies of 1 or 2 Hz are optimum for a dental use. Three pulse shapes can be used for titanium but the rectangular shape gives better results.

  8. Size-Related Changes in Foot Impact Mechanics in Hoofed Mammals

    PubMed Central

    Warner, Sharon Elaine; Pickering, Phillip; Panagiotopoulou, Olga; Pfau, Thilo; Ren, Lei; Hutchinson, John Richard

    2013-01-01

    Foot-ground impact is mechanically challenging for all animals, but how do large animals mitigate increased mass during foot impact? We hypothesized that impact force amplitude scales according to isometry in animals of increasing size through allometric scaling of related impact parameters. To test this, we measured limb kinetics and kinematics in 11 species of hoofed mammals ranging from 18–3157 kg body mass. We found impact force amplitude to be maintained proportional to size in hoofed mammals, but that other features of foot impact exhibit differential scaling patterns depending on the limb; forelimb parameters typically exhibit higher intercepts with lower scaling exponents than hind limb parameters. Our explorations of the size-related consequences of foot impact advance understanding of how body size influences limb morphology and function, foot design and locomotor behaviour. PMID:23382967

  9. System for controlling a hybrid energy system

    DOEpatents

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  10. Impact of Hospital-Employed Physician Assistants on a Level II Community-Based Orthopaedic Trauma System.

    PubMed

    Althausen, Peter L; Shannon, Steven; Owens, Brianne; Coll, Daniel; Cvitash, Michael; Lu, Minggen; O'Mara, Timothy J; Bray, Timothy J

    2016-12-01

    The American Academy of Orthopedic Surgeons and the Orthopedic Trauma Association have released guidelines for the provision of orthopedic trauma services such as adequate stipends, designated operating rooms, ancillary staff, and guaranteed reimbursement for indigent care. One recommendation included a provision for hospital-based physician assistants (PAs). Given current reimbursement arrangements, PA collections for billable services may not meet their salary and benefit expenses. However, their actions may indirectly affect emergency room, operating room, and hospital reimbursement and patient care itself. The purpose of our study is to define the true impact of hospitalbased PAs on orthopaedic trauma care at a level II community hospital. Retrospective case series. Level II trauma center. One thousand one hundred four trauma patients with orthopaedic injuries. PA involvement. Emergency room data such as triage time, time until seen by the orthopedic service, and total emergency room time was recorded. Operating room data such as time to surgery, set-up time, total operating time, and out of room time was entered as well. Charts were reviewed to determine if patients were given postoperative antibiotics and Deep Venous Thrombosis (DVT) prophylaxis. Intraoperative and postoperative complications were noted, and lengths of stay were calculated for all patients. At our institution, PA collections from patient care cover only 50% of their costs for salary and benefits. However, with PA involvement, trauma patients with orthopedic injuries were seen 205 minutes faster (P = 0.006), total Emergency Room (ER) time decreased 175 minutes (P = 0.0001), and time to surgery improved 360 minutes (P . 0.03). Operating room parameters were minimally improved, but postoperative DVT prophylaxis increased by a mean of 6.73% (P = 0.0084), postoperative antibiotic administration increased by 2.88% (P = 0.0302), and there was a 4.67% decrease in postoperative complications (P = 0.0034). Average length of stay decreased by 0.61 days (P = 0.27). Although the PA's collections do not cover their costs, the indirect economic and patient care impacts are clear. By increasing emergency room pull through and decreasing times to Operating Room (OR), operative times, lengths of stay, and complications, their existence is clearly beneficial to hospitals, physicians, and patients as well. Economic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  11. The impact of prism adaptation test on surgical outcomes in patients with primary exotropia.

    PubMed

    Kiyak Yilmaz, Ayse; Kose, Suheyla; Guven Yilmaz, Suzan; Uretmen, Onder

    2015-05-01

    We aimed to determine the impact of the preoperative prism adaptation test (PAT) on surgical outcomes in patients with primary exotropia. Thirty-eight consecutive patients with primary exotropia were enrolled. Pre-operative PAT was performed in 18 randomly selected patients (Group 1). Surgery was based on the angle of deviation at distance measured after PAT. The remaining 20 patients in whom PAT was not performed comprised Group 2. Surgery was based on the angle of deviation at distance in these patients. Surgical success was defined as ocular alignment within eight prism dioptres (PD) of orthophoria. Satisfactory motor alignment (± 8 PD) was achieved in 16 Group 1 patients (88.9 per cent) and 16 Group 2 patients (80 per cent) one year after surgery (p = 0.6; chi-square test). There were no statistically significant differences in demographic parameters, pre-operative and post-operative angle of deviation between the two groups (p > 0.05; Mann-Whitney U and chi-square tests). Nine patients in Group 1 (50 per cent) and two patients in Group 2 (10 per cent) had increased binocular vision one year post-operatively. A statistically significant difference was determined in terms of change in binocular single vision between the two groups (p = 0.01; chi-square test). Although the prism adaptation test did not lead to a significant increment in motor success, it may be helpful in achieving a more favourable functional surgical outcome in patients with primary exotropia. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  12. Comparison of the efficacy and safety of 2% lidocaine HCl with different epinephrine concentration for local anesthesia in participants undergoing surgical extraction of impacted mandibular third molars: A multicenter, randomized, double-blind, crossover, phase IV trial.

    PubMed

    Karm, Myong-Hwan; Park, Fiona Daye; Kang, Moonkyu; Kim, Hyun Jeong; Kang, Jeong Wan; Kim, Seungoh; Kim, Yong-Deok; Kim, Cheul-Hong; Seo, Kwang-Suk; Kwon, Kyung-Hwan; Kim, Chul-Hwan; Lee, Jung-Woo; Hong, Sung-Woon; Lim, Mi Hyoung; Nam, Seung Kwan; Cho, Jae Min

    2017-05-01

    The most commonly impacted tooth is the third molar. An impacted third molar can ultimately cause acute pain, infection, tumors, cysts, caries, periodontal disease, and loss of adjacent teeth. Local anesthesia is employed for removing the third molar. This study aimed to evaluate the efficacy and safety of 2% lidocaine with 1:80,000 or 1:200,000 epinephrine for surgical extraction of bilateral impacted mandibular third molars. Sixty-five healthy participants underwent surgical extraction of bilateral impacted mandibular third molars in 2 separate visits while under local anesthesia with 2% lidocaine with different epinephrine concentration (1:80,000 or 1:200,000) in a double-blind, randomized, crossover trial. Visual analog scale pain scores obtained immediately after surgical extraction were primarily evaluated for the 2 groups receiving different epinephrine concentrations. Visual analog scale pain scores were obtained 2, 4, and 6 hours after administering an anesthetic. Onset and duration of analgesia, onset of pain, intraoperative bleeding, operator's and participant's overall satisfaction, drug dosage, and hemodynamic parameters were evaluated for the 2 groups. There were no statistically significant differences between the 2 groups in any measurements except hemodynamic factors (P >.05). Changes in systolic blood pressure and heart rate following anesthetic administration were significantly greater in the group receiving 1:80,000 epinephrine than in that receiving 1:200,000 epinephrine (P ≤.01). The difference in epinephrine concentration between 1:80,000 and 1:200,000 in 2% lidocaine liquid does not affect the medical efficacy of the anesthetic. Furthermore, 2% lidocaine with 1:200,000 epinephrine has better safety with regard to hemodynamic parameters than 2% lidocaine with 1:80,000 epinephrine. Therefore, we suggest using 2% lidocaine with 1:200,000 epinephrine rather than 2% lidocaine with 1:80,000 epinephrine for surgical extraction of impacted mandibular third molars in hemodynamically unstable patients.

  13. Comparison of the efficacy and safety of 2% lidocaine HCl with different epinephrine concentration for local anesthesia in participants undergoing surgical extraction of impacted mandibular third molars

    PubMed Central

    Karm, Myong-Hwan; Park, Fiona Daye; Kang, Moonkyu; Kim, Hyun Jeong; Kang, Jeong Wan; Kim, Seungoh; Kim, Yong-Deok; Kim, Cheul-Hong; Seo, Kwang-Suk; Kwon, Kyung-Hwan; Kim, Chul-Hwan; Lee, Jung-Woo; Hong, Sung-Woon; Lim, Mi Hyoung; Nam, Seung Kwan; Cho, Jae Min

    2017-01-01

    Abstract Background: The most commonly impacted tooth is the third molar. An impacted third molar can ultimately cause acute pain, infection, tumors, cysts, caries, periodontal disease, and loss of adjacent teeth. Local anesthesia is employed for removing the third molar. This study aimed to evaluate the efficacy and safety of 2% lidocaine with 1:80,000 or 1:200,000 epinephrine for surgical extraction of bilateral impacted mandibular third molars. Methods: Sixty-five healthy participants underwent surgical extraction of bilateral impacted mandibular third molars in 2 separate visits while under local anesthesia with 2% lidocaine with different epinephrine concentration (1:80,000 or 1:200,000) in a double-blind, randomized, crossover trial. Visual analog scale pain scores obtained immediately after surgical extraction were primarily evaluated for the 2 groups receiving different epinephrine concentrations. Visual analog scale pain scores were obtained 2, 4, and 6 hours after administering an anesthetic. Onset and duration of analgesia, onset of pain, intraoperative bleeding, operator's and participant's overall satisfaction, drug dosage, and hemodynamic parameters were evaluated for the 2 groups. Results: There were no statistically significant differences between the 2 groups in any measurements except hemodynamic factors (P >.05). Changes in systolic blood pressure and heart rate following anesthetic administration were significantly greater in the group receiving 1:80,000 epinephrine than in that receiving 1:200,000 epinephrine (P ≤.01). Conclusion: The difference in epinephrine concentration between 1:80,000 and 1:200,000 in 2% lidocaine liquid does not affect the medical efficacy of the anesthetic. Furthermore, 2% lidocaine with 1:200,000 epinephrine has better safety with regard to hemodynamic parameters than 2% lidocaine with 1:80,000 epinephrine. Therefore, we suggest using 2% lidocaine with 1:200,000 epinephrine rather than 2% lidocaine with 1:80,000 epinephrine for surgical extraction of impacted mandibular third molars in hemodynamically unstable patients. PMID:28538371

  14. A discrete element modelling approach for block impacts on trees

    NASA Astrophysics Data System (ADS)

    Toe, David; Bourrier, Franck; Olmedo, Ignatio; Berger, Frederic

    2015-04-01

    These past few year rockfall models explicitly accounting for block shape, especially those using the Discrete Element Method (DEM), have shown a good ability to predict rockfall trajectories. Integrating forest effects into those models still remain challenging. This study aims at using a DEM approach to model impacts of blocks on trees and identify the key parameters controlling the block kinematics after the impact on a tree. A DEM impact model of a block on a tree was developed and validated using laboratory experiments. Then, key parameters were assessed using a global sensitivity analyse. Modelling the impact of a block on a tree using DEM allows taking into account large displacements, material non-linearities and contacts between the block and the tree. Tree stems are represented by flexible cylinders model as plastic beams sustaining normal, shearing, bending, and twisting loading. Root soil interactions are modelled using a rotation stiffness acting on the bending moment at the bottom of the tree and a limit bending moment to account for tree overturning. The crown is taken into account using an additional mass distribute uniformly on the upper part of the tree. The block is represented by a sphere. The contact model between the block and the stem consists of an elastic frictional model. The DEM model was validated using laboratory impact tests carried out on 41 fresh beech (Fagus Sylvatica) stems. Each stem was 1,3 m long with a diameter between 3 to 7 cm. Wood stems were clamped on a rigid structure and impacted by a 149 kg charpy pendulum. Finally an intensive simulation campaign of blocks impacting trees was done to identify the input parameters controlling the block kinematics after the impact on a tree. 20 input parameters were considered in the DEM simulation model : 12 parameters were related to the tree and 8 parameters to the block. The results highlight that the impact velocity, the stem diameter, and the block volume are the three input parameters that control the block kinematics after impact.

  15. Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation.

    PubMed

    Nüsken, Kai-Dietrich; Dötsch, Jörg; Rauh, Manfred; Rascher, Wolfgang; Schneider, Holm

    2008-03-01

    Ligation of the uterine arteries (LIG) in rats serves as a model of intrauterine growth restriction and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia, and adiposity in the offspring. Its impact on lipid metabolism has been less well investigated. We compared parameters of glucose and lipid metabolism and glucocorticoid levels in the offspring of dams that underwent either LIG or sham operation (SOP) with those of untreated controls. Blood parameters including insulin, leptin, and visfatin as well as body weight, food intake, and creatinine clearance were recorded up to an age of 30 wk. Glucose tolerance tests were performed, and both leptin and visfatin expression in liver, muscle, and epididymal and mesenteric fat was quantified by RT-PCR. After catch-up growth, weight gain of all groups was similar, despite lower food intake of the LIG rats. LIG offspring showed impaired glucose tolerance from the age of 15 wk as well as elevated glycosylated hemoglobin and corticosterone levels. However, the body fat content of both LIG and SOP animals increased relative to controls, and both showed elevated triglyceride, total cholesterol, and leptin levels as well as a reduced proportion of high-density lipoprotein cholesterol. Thus, use of the LIG model requires both SOP and untreated controls. Although only LIG is associated with impaired glucose tolerance, pathogenic programming of the lipid metabolism can also be induced by SOP. Visfatin does not appear to be involved in the disturbed glucose metabolism after intrauterine growth restriction and may represent only a marker of fat accumulation.

  16. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  17. Sideways fall-induced impact force and its effect on hip fracture risk: a review.

    PubMed

    Nasiri Sarvi, M; Luo, Y

    2017-10-01

    Osteoporotic hip fracture, mostly induced in falls among the elderly, is a major health burden over the world. The impact force applied to the hip is an important factor in determining the risk of hip fracture. However, biomechanical researches have yielded conflicting conclusions about whether the fall-induced impact force can be accurately predicted by the available models. It also has been debated whether or not the effect of impact force has been considered appropriately in hip fracture risk assessment tools. This study aimed to provide a state-of-the-art review of the available methods for predicting the impact force, investigate their strengths/limitations, and suggest further improvements in modeling of human body falling. We divided the effective parameters on impact force to two categories: (1) the parameters that can be determined subject-specifically and (2) the parameters that may significantly vary from fall to fall for an individual and cannot be considered subject-specifically. The parameters in the first category can be investigated in human body fall experiments. Video capture of real-life falls was reported as a valuable method to investigate the parameters in the second category that significantly affect the impact force and cannot be determined in human body fall experiments. The analysis of the gathered data revealed that there is a need to develop modified biomechanical models for more accurate prediction of the impact force and appropriately adopt them in hip fracture risk assessment tools in order to achieve a better precision in identifying high-risk patients. Graphical abstract Impact force to the hip induced in sideways falls is affected by many parameters and may remarkably vary from subject to subject.

  18. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, Robert W.; McJeon, Haewon C.

    2015-05-01

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any.more » Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.« less

  19. Parameter Optimization of PAL-XFEL Injector

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik

    2018-05-01

    A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.

  20. Advanced interactive display formats for terminal area traffic control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.

    1996-01-01

    This report describes the basic design considerations for perspective air traffic control displays. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. Two distinct modes of MVPS operations are considered, both of which utilize manipulation pointers imbedded in the three-dimensional scene: (1) direct manipulation of the viewing parameters -- in this mode the manipulation pointers act like the control-input device, through which the viewing parameter changes are made. Part of the parameters are rate controlled, and part of them position controlled. This mode is intended for making fast, iterative small changes in the parameters. (2) Indirect manipulation of the viewing parameters -- this mode is intended primarily for introducing large, predetermined changes in the parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of the screen. This arrangement has been chosen in order to preserve the correspondence between the spatial lay-outs of the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer-generated scene. The proposed, continued research efforts will deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the air traffic control scene can be viewed for a given traffic situation. They determine whether a change in viewing parameter setting is required and determine the dynamic path along which the change to the new viewing parameter setting should take place.

  1. Respiration-Averaged CT for Attenuation Correction of PET Images – Impact on PET Texture Features in Non-Small Cell Lung Cancer Patients

    PubMed Central

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li

    2016-01-01

    Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Gutti, VeeraRajesh; Bosch, Walter

    Purpose: To quantify the potential impact of the Integrating the Healthcare Enterprise–Radiation Oncology Quality Assurance with Plan Veto (QAPV) on patient safety of external beam radiation therapy (RT) operations. Methods and Materials: An institutional database of events (errors and near-misses) was used to evaluate the ability of QAPV to prevent clinically observed events. We analyzed reported events that were related to Digital Imaging and Communications in Medicine RT plan parameter inconsistencies between the intended treatment (on the treatment planning system) and the delivered treatment (on the treatment machine). Critical Digital Imaging and Communications in Medicine RT plan parameters were identified.more » Each event was scored for importance using the Failure Mode and Effects Analysis methodology. Potential error occurrence (frequency) was derived according to the collected event data, along with the potential event severity, and the probability of detection with and without the theoretical implementation of the QAPV plan comparison check. Failure Mode and Effects Analysis Risk Priority Numbers (RPNs) with and without QAPV were compared to quantify the potential benefit of clinical implementation of QAPV. Results: The implementation of QAPV could reduce the RPN values for 15 of 22 (71%) of evaluated parameters, with an overall average reduction in RPN of 68 (range, 0-216). For the 6 high-risk parameters (>200), the average reduction in RPN value was 163 (range, 108-216). The RPN value reduction for the intermediate-risk (200 > RPN > 100) parameters was (0-140). With QAPV, the largest RPN value for “Beam Meterset” was reduced from 324 to 108. The maximum reduction in RPN value was for Beam Meterset (216, 66.7%), whereas the maximum percentage reduction was for Cumulative Meterset Weight (80, 88.9%). Conclusion: This analysis quantifies the value of the Integrating the Healthcare Enterprise–Radiation Oncology QAPV implementation in clinical workflow. We demonstrate that although QAPV does not provide a comprehensive solution for error prevention in RT, it can have a significant impact on a subset of the most severe clinically observed events.« less

  3. Dynamic Computation of Change Operations in Version Management of Business Process Models

    NASA Astrophysics Data System (ADS)

    Küster, Jochen Malte; Gerth, Christian; Engels, Gregor

    Version management of business process models requires that changes can be resolved by applying change operations. In order to give a user maximal freedom concerning the application order of change operations, position parameters of change operations must be computed dynamically during change resolution. In such an approach, change operations with computed position parameters must be applicable on the model and dependencies and conflicts of change operations must be taken into account because otherwise invalid models can be constructed. In this paper, we study the concept of partially specified change operations where parameters are computed dynamically. We provide a formalization for partially specified change operations using graph transformation and provide a concept for their applicability. Based on this, we study potential dependencies and conflicts of change operations and show how these can be taken into account within change resolution. Using our approach, a user can resolve changes of business process models without being unnecessarily restricted to a certain order.

  4. Estimation and correction of different flavors of surface observation biases in ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.

    2017-04-01

    The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More complex bias structure in experiments (2) and (3) are more difficult to estimate, but still possible. Estimated the parameter in experiments with unbiased observations results in spatial and temporal parameter variability about zero, and establishes a threshold on the accuracy of the parameter in further experiments. When the observations are biased, the mean parameter value is close to the true bias, but temporal and spatial variability in the parameter estimates is similar to the parameters used when estimating a zero bias in the observations. The distributions are related to other errors in the forecasts, indicating that the parameters are absorbing some of the forecast error from other sources. In this presentation we elucidate the reasons for the resulting parameter estimates, and their variability.

  5. Using global sensitivity analysis of demographic models for ecological impact assessment.

    PubMed

    Aiello-Lammens, Matthew E; Akçakaya, H Resit

    2017-02-01

    Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.

  6. Institutional environmental impact statement (space shuttle development and operations) amendment no. 1. [space shuttle operations at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.

  7. Influence of spray nozzle shape upon atomization process

    NASA Astrophysics Data System (ADS)

    Beniuga, Marius; Mihai, Ioan

    2016-12-01

    The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.

  8. Research on Thermodynamic Parameters of a Micro-Turbine for Standalone Cogeneration

    NASA Astrophysics Data System (ADS)

    Chekardovskiy, M. N.; Chekardovskiy, S. M.; Chekardovskaya, I. A.; Mihajlenko, A. I.

    2016-10-01

    In order to advance the heating and hot water systems in the Russian Federation we need to address the problem of introducing new sources of heat and electric energy. The paper overviews the relationship between the reliability, efficiency and diagnostic maintenance of the GMTU, the studies of rated and operating conditions of the GMTU, the development and improvement of methods for calculating rated and operating thermodynamic and diagnostic parameter of the unit. This resulted in developing a passport of thermodynamic parameters that can be compared to the parameters of the same units when they operate for the purpose of diagnosing their state.

  9. Reliability issues for a bolometer detector for ITER at high operating temperatures.

    PubMed

    Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H

    2012-10-01

    The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.

  10. 2007-2017: 10 years of IASI CO retrievals

    NASA Astrophysics Data System (ADS)

    George, M.; Clerbaux, C.; Hadji-Lazaro, J.; Pierre-Francois, C.; Hurtmans, D.; Edwards, D. P.; Worden, H. M.; Deeter, M. N.; Mao, D.; August, T.; Crapeau, M.

    2017-12-01

    Carbon monoxide (CO) is an important trace gas for understanding air quality and atmospheric composition. It is a good tracer of pollution plumes and atmospheric dynamics. IASI CO concentrations are retrieved from the radiance data using the Fast Operational Retrievals on Layers for IASI (FORLI) algorithm, based on the Optimal Estimation theory. The operational production is performed at EUMETSAT and the products are distributed in NRT via EUMETCast under the AC SAF auspices. We present here an analysis of 10 years of global distributions of CO. Improvements of the last FORLI-CO version (v20151001) will be shown. Updates in the auxiliary parameters (temperature, cloud information) have an impact on the retrieved product. Comparison with MOPITT CO data (v7T, record starting in 2000) was performed, both for partial and total columns. Harmonizing IASI and MOPITT CO products is challenging: a method using corrective factors (developed in the framework of the QA4ECV project) will be presented.

  11. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  12. Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2014-02-01

    Constructed wetlands remove trace organic contaminants via synergistic processes involving plant biomass that include hydrolysis, volatilization, sorption, biodegradation, and photolysis. Wetland design conditions, such as hydraulic loading rates (HLRs) and carbon loading rates (CLRs), influence these processes. Contaminant of emerging concern (CEC) removal by wetland plants was investigated at varying HLRs and CLRs. Rate constants and parameters obtained from batch-scale studies were used in a mechanistic model to evaluate the effect of these two loading rates on CEC removal. CLR significantly influenced CEC removal when wetlands were operated at HLR >5 cm/d. High values of CLR increased removal of estradiol and carbamazepine but lowered that of testosterone and atrazine. Without increasing the cumulative HLR, operating two wetlands in series with varying CLRs could be a way to improve CEC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of load transients on SOFC operation—current reversal on loss of load

    NASA Astrophysics Data System (ADS)

    Gemmen, Randall S.; Johnson, Christopher D.

    The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

  14. Prediction of alpha factor values for fine pore aeration systems.

    PubMed

    Gillot, S; Héduit, A

    2008-01-01

    The objective of this work was to analyse the impact of different geometric and operating parameters on the alpha factor value for fine bubble aeration systems equipped with EPDM membrane diffusers. Measurements have been performed on nitrifying plants operating under extended aeration and treating mainly domestic wastewater. Measurements performed on 14 nitrifying plants showed that, for domestic wastewater treatment under very low F/M ratios, the alpha factor is comprised between 0.44 and 0.98. A new composite variable (the Equivalent Contact Time, ECT) has been defined and makes it possible for a given aeration tank, knowing the MCRT, the clean water oxygen transfer coefficient and the supplied air flow rate, to predict the alpha factor value. ECT combines the effect on mass transfer of all generally accepted factors affecting oxygen transfer performances (air flow rate, diffuser submergence, horizontal flow). (c) IWA Publishing 2008.

  15. Availability analysis of the traveling-wave maser amplifiers in the deep space network. Part 1: The 70-meter antennas

    NASA Technical Reports Server (NTRS)

    Issa, T. N.

    1992-01-01

    The results of the reliability and availability analyses of the individual S- and X-band traveling-wave maser (TWM) assemblies and their operational configurations in the 70-meter antennas of NASA's Deep Space Network (DSN) are described. For the period 1990 through 1991, the TWM availability parameters for the Telemetry Data System are: mean time between failures (MTBF), 930 hr; mean time to restore services (MTTRS), 1.4 hr; and the average availability, 99.85 percent. In previously published articles, the performance analysis of the TWM assemblies was confined to the determination of the parameters specified above. However, as the mean down time (MDT) for the repair of TWM's increases, the levels of the TWM operational availabilities and MTTRS are adversely affected. A more comprehensive TWM availability analysis is presented to permit evaluation of both MTBF and MDT effects. Performance analysis of the TWM assemblies, based on their station monthly failure reports, indicates that the TWM's required MTBF and MDT levels of 3000 hr and 36 to 48 hr, respectively, have been achieved by the TWM's only at the Canberra Deep Space Station (DSS 43). The Markov Process technique is employed to develop suitable availability measures for the S- and X-band TWM configurations when each is operated in a two-assembly standby mode. The derived stochastic expressions allow for the evaluation of those configurations' simultaneous availability for the Antenna Microwave Subsystem. The application of these expressions to demonstrate the impact of various levels of TWM maintainability (or MDT) on their configurations' operational availabilities is presented for each of the 70-m antenna stations.

  16. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  17. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less

  18. Energy transfer and kinetics in mechanochemistry.

    PubMed

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  19. Climate Change Impacts at Department of Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotamarthi, Rao; Wang, Jiali; Zoebel, Zach

    This project is aimed at providing the U.S. Department of Defense (DoD) with a comprehensive analysis of the uncertainty associated with generating climate projections at the regional scale that can be used by stakeholders and decision makers to quantify and plan for the impacts of future climate change at specific locations. The merits and limitations of commonly used downscaling models, ranging from simple to complex, are compared, and their appropriateness for application at installation scales is evaluated. Downscaled climate projections are generated at selected DoD installations using dynamic and statistical methods with an emphasis on generating probability distributions of climatemore » variables and their associated uncertainties. The sites selection and selection of variables and parameters for downscaling was based on a comprehensive understanding of the current and projected roles that weather and climate play in operating, maintaining, and planning DoD facilities and installations.« less

  20. An investigation of prior knowledge in Automatic Music Transcription systems.

    PubMed

    Cazau, Dorian; Revillon, Guillaume; Krywyk, Julien; Adam, Olivier

    2015-10-01

    Automatic transcription of music is a long-studied research field with many operational systems available commercially. In this paper, a generic transcription system able to host various prior knowledge parameters has been developed, followed by an in-depth investigation of their impact on music transcription. Explicit links between musical knowledge and algorithmic formalism have been made. Musical knowledge covers classes of timbre, musicology, and playing style of an instrument repertoire. An evaluation sound corpus gathering musical pieces played by human performers from three different instrument repertoires, namely, classical piano, steel-string acoustic guitar, and the marovany zither from Madagascar, has been developed. The different components of musical knowledge have been successively incorporated in a complete transcription system, consisting mainly of a Probabilistic Latent Component Analysis algorithm post-processed with a Hidden Markov Model, and their impact on transcription results have been comparatively evaluated.

  1. Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT.

    PubMed

    Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel

    2010-02-01

    To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.

  2. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.

    PubMed

    Werle, Sebastian

    2014-10-01

    This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. © The Author(s) 2014.

  3. Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Taner, M. U.; Wi, S.; Brown, C.

    2017-12-01

    The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.

  4. A mobile test facility based on a magnetic cumulative generator to study the stability of the power plants under impact of lightning currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.

    The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less

  5. Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Bekele, E. G.; Nicklow, J. W.

    2005-12-01

    Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.

  6. A Remotely Operated Multiple Array Acoustic Range (ROMAAR) and its application for the measurement of airplane flyover noise footprints

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. H.

    1976-01-01

    The ROMAAR now in operation at NASA will allow direct measurement and display of aircraft noise in several measurement units during takeoff, landing, and flyby operations. This information, in addition to its application in terms of ground noise footprints, will also permit determination of the statistical variation of footprints or contours due to the atmosphere or aircraft operational parameters, and a measure of the impact of various noise reduction techniques and hardware on ground noise footprints. The methods, techniques, and equipment developed for the ROMAAR concept are applicable to CTOL, STOL, General Aviation, and VTOL aircraft. ROMAAR represents a unique combination of state of the art digital and analog noise recording methods, computer-controlled digital communications methods, radar-tracking facilities, quick-look weather capabilities, and a large data handling facility complemented by a large capacity curve fitting and plotting routine. The ROMAAR is set apart from the standard airport noise monitoring system by having the unique features mentioned above plus the fact that at present as many as 38 separate (but simultaneous) noise measurements can be made for each aircraft overflight.

  7. The impact of flying qualities on helicopter operational agility

    NASA Technical Reports Server (NTRS)

    Padfield, Gareth D.; Lappos, Nick; Hodgkinson, John

    1993-01-01

    Flying qualities standards are formally set to ensure safe flight and therefore reflect minimum, rather than optimum, requirements. Agility is a flying quality but relates to operations at high, if not maximum, performance. While the quality metrics and test procedures for flying, as covered for example in ADS33C, may provide an adequate structure to encompass agility, they do not currently address flight at high performance. This is also true in the fixed-wing world and a current concern in both communities is the absence of substantiated agility criteria and possible conflicts between flying qualities and high performance. AGARD is sponsoring a working group (WG19) title 'Operational Agility' that deals with these and a range of related issues. This paper is condensed from contributions by the three authors to WG19, relating to flying qualities. Novel perspectives on the subject are presented including the agility factor, that quantifies performance margins in flying qualities terms; a new parameter, based on maneuver acceleration is introduced as a potential candidate for defining upper limits to flying qualities. Finally, a probabilistic analysis of pilot handling qualities ratings is presented that suggests a powerful relationship between inherent airframe flying qualities and operational agility.

  8. Three-dimensional numerical investigation of the separation process in a vortex tube at different operating conditions

    NASA Astrophysics Data System (ADS)

    Rafiee, Seyed Ehsan; Sadeghiazad, M. M.

    2016-06-01

    Air separators provide safe, clean, and appropriate air flow to engines and are widely used in vehicles with large engines such as ships and submarines. In this operational study, the separation process inside a Ranque-Hilsch vortex tube cleaning (cooling) system is investigated to analyze the impact of the operating gas type on the vortex tube performance; the operating gases used are air, nitrogen, oxygen, carbon dioxide and nitrogen dioxide. The computational fluid dynamic model used is equipped with a three-dimensional structure, and the steady-state condition is applied during computations. The standard k-ɛ turbulence model is employed to resolve nonlinear flow equations, and various key parameters, such as hot and cold exhaust thermal drops, and power separation rates, are described numerically. The results show that nitrogen dioxide creates the greatest separation power out of all gases tested, and the numerical results are validated by good agreement with available experimental data. In addition, a comparison is made between the use of two different boundary conditions, the pressure-far-field and the pressure-outlet, when analyzing complex turbulent flows inside the air separators. Results present a comprehensive and practical solution for use in future numerical studies.

  9. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  10. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  11. PV systems photoelectric parameters determining for field conditions and real operation conditions

    NASA Astrophysics Data System (ADS)

    Shepovalova, Olga V.

    2018-05-01

    In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.

  12. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    NASA Astrophysics Data System (ADS)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  13. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are increasingly planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeorite impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. The Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeorite impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at NASA MSFC's Microlight Gas Gun Facility. The SSL-provided coupons consist of three strings, each string with two solar cells in series. Five impacts will be induced at various locations on a powered test coupon under different string voltage (0 volts - 150 volts) and string current (1.1 amperes - 1.65 amperes) conditions. The maximum specified test voltage and current represent margins of 1.5 times for both voltage and current. The test parameters are chosen to demonstrate new array design robustness to any ESD event caused by plasma plumes resulting from a simulated micrometeorite impact. A second unpowered coupon will undergo two impacts: one impact on the front side and one impact on the back side. Following the impact testing, the second coupon will be exposed to a thermal cycle test to determine possible damage propagation and further electrical degradation due to thermally-induced stress. The setup, checkout, and results from the impact testing are discussed. The challenges for impact testing include precise coupon alignment to control impact location; pressure management during the impact process; and measurement of the true transient electrical response during impact on the powered coupon. Results from pre- and post-test visual and electrical functional testing are also discussed.

  14. Historical data and analysis for the first five years of KSC STS payload processing

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1986-01-01

    General and specific quantitative and qualitative results were identified from a study of actual operational experience while processing 186 science, applications, and commercial payloads for the first 5 years of Space Transportation System (STS) operations at the National Aeronautics and Space Administration's (NASA) John F. Kennedy Space Center (KSC). All non-Department of Defense payloads from STS-2 through STS-33 were part of the study. Historical data and cumulative program experiences from key personnel were used extensively. Emphasis was placed on various program planning and events that affected KSC processing, payload experiences and improvements, payload hardware condition after arrival, services to customers, and the impact of STS operations and delays. From these initial considerations, operational drivers were identified, data for selected processing parameters collected and analyzed, processing criteria and options determined, and STS payload results and conclusions reached. The study showed a significant reduction in time and effort needed by STS customers and KSC to process a wide variety of payload configurations. Also of significance is the fact that even the simplest payloads required more processing resources than were initially assumed. The success to date of payload integration, testing, and mission operations, however, indicates the soundness of the approach taken and the methods used.

  15. Projection Operator: A Step Towards Certification of Adaptive Controllers

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    One of the major barriers to wider use of adaptive controllers in commercial aviation is the lack of appropriate certification procedures. In order to be certified by the Federal Aviation Administration (FAA), an aircraft controller is expected to meet a set of guidelines on functionality and reliability while not negatively impacting other systems or safety of aircraft operations. Due to their inherent time-variant and non-linear behavior, adaptive controllers cannot be certified via the metrics used for linear conventional controllers, such as gain and phase margin. Projection Operator is a robustness augmentation technique that bounds the output of a non-linear adaptive controller while conforming to the Lyapunov stability rules. It can also be used to limit the control authority of the adaptive component so that the said control authority can be arbitrarily close to that of a linear controller. In this paper we will present the results of applying the Projection Operator to a Model-Reference Adaptive Controller (MRAC), varying the amount of control authority, and comparing controller s performance and stability characteristics with those of a linear controller. We will also show how adjusting Projection Operator parameters can make it easier for the controller to satisfy the certification guidelines by enabling a tradeoff between controller s performance and robustness.

  16. Performance characterization of a Bosch CO sub 2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1980-01-01

    The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections.

  17. Chaos minimization in DC-DC boost converter using circuit parameter optimization

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Natarajan, Rajasekar; Gourav, Kumar; Padmavathi, P.

    2017-11-01

    DC-DC converters are prone to several types of nonlinear phenomena including bifurcation, quasi periodicity, intermittency and chaos. These undesirable effects must be controlled for periodic operation of the converter to ensure the stability. In this paper an effective solution to control of chaos in solar fed DC-DC boost converter is proposed. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The obtained results are compared with the operation of traditional boost converter. Further the obtained results with BFA optimized parameter ensures the operations of the converter are within the controllable region. To elaborate the study of bifurcation analysis with optimized and unoptimized parameters are also presented.

  18. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...

  19. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...

  20. 40 CFR 63.1447 - What are my operation and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., verify by appropriate measures that flow or pressure sensors, damper plates, automated damper switches... description of each selected operating limit parameter, a rationale for why you chose the parameter, a...

  1. Identifying and analyzing methods for reducing the energy consumption of helicopters

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Rosenstein, H. J.

    1976-01-01

    Reductions in helicopter energy consumption can be accomplished through the use of advanced technology in the areas of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural empty weight. Baseline helicopters incorporating technology were designed for a short range (200 n mi) and a very short haul (100 n mi) mission scenario. Parametric analyses were then conducted to determine the impact of technology improvement. Many of the parameters varied are interrelated. A summary of such interactions is presented, and some additional sensitivity values were added so that energy reduction and DOC as affected by the major technological factors or operational modes are clearly defined.

  2. Impact parameter determination in experimental analysis using a neural network

    NASA Astrophysics Data System (ADS)

    Haddad, F.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Natowitz, J. B.; Wada, R.; Xiao, B.; David, C.; Freslier, M.; Aichelin, J.

    1997-03-01

    A neural network is used to determine the impact parameter in 40Ca+40Ca reactions. The effect of the detection efficiency as well as the model dependence of the training procedure has been studied carefully. An overall improvement of the impact parameter determination of 25% is obtained using this technique. The analysis of Amphora 40Ca+40Ca data at 35 MeV per nucleon using a neural network shows two well-separated classes of events among the selected ``complete'' events.

  3. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  4. Analysis of sugar mill effluent and its influence on germination and growth of African marigold ( Tagetes erecta L.)

    NASA Astrophysics Data System (ADS)

    Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal

    2017-12-01

    Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.

  5. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  6. ASPECT spectral imaging satellite proposal to AIDA/AIM CubeSat payload

    NASA Astrophysics Data System (ADS)

    Kohout, Tomas; Näsilä, Antti; Tikka, Tuomas; Penttilä, Antti; Muinonen, Karri; Kestilä, Antti; Granvik, Mikael; Kallio, Esa

    2016-04-01

    ASPECT (Asteroid Spectral Imaging Mission) is a part of AIDA/AIM project and aims to study the composition of the Didymos binary asteroid and the effects of space weathering and shock metamorphism in order to gain understanding of the formation and evolution of the Solar System. The joint ESA/NASA AIDA (Asteroid Impact & Deflection Assessment) mission to binary asteroid Didymos consists of AIM (Asteroid Impact Mission, ESA) and DART (Double Asteroid Redirection Test, NASA). DART is targeted to impact Didymos secondary component (Didymoon) and serve as a kinetic impactor to demonstrate deflection of potentially hazardous asteroids. AIM will serve as an observational spacecraft to evaluate the effects of the impact and resulting changes in the Didymos dynamic parameters. The AIM mission will also carry two CubeSat miniaturized satellites, released in Didymoon proximity. This arrangement opens up a possibility for secondary scientific experiments. ASPECT is one of the proposed CubeSat payloads. Whereas Didymos is a space-weathered binary asteroid, the DART impactor is expected to produce a crater and excavate fresh material from the secondary component (Didymoon). Spectral comparison of the mature surface to the freshly exposed material will allow to directly deter-mine space weathering effects. It will be also possible to study spectral shock effects within the impact crater. ASPECT will also demonstrate for the first time the joint spacecraft - CubeSat operations in asteroid proximity and miniature spectral imager operation in deep-space environment. Science objectives: 1. Study of the surface composition of the Didymos system. 2. Photometric observations (and modeling) under varying phase angle and distance. 3. Study of space weathering effects on asteroids (comparison of mature / freshly exposed material). 4. Study of shock effects (spectral properties of crater interior). 5. Observations during the DART impact. Engineering objectives: 1. Demonstration of CubeSat semi-autonomous operations in deep space environment. 2. Navigation in the vicinity of a binary asteroid. 3. Demonstration of a satellite survival during impact. 4. Demonstration of joint spacecraft - CubeSat operations. ASPECT is a 3U CubeSat (size of 3 units, Fig. 1) equipped with a spectral imager from 500 nm to 1600 nm (spatial resolution < 2 m, spectral resolution 10 - 30 nm; VIS channel 512 x 512 pixels, NIR channel 256 x 256 pixels), and a non-imaging spectrometer from 1600 - 2500 nm. The design is based on the Aalto-1 CubeSat Spectral Imager heritage. ASPECT will also demonstrate the capabilities of a CubeSat and a miniature spectral imager for the first time in deep-space environment. Acknowledgements: This work is done under Sys-Nova: R&D Studies Competition for Innovation contract with ESA.

  7. Fault Diagnosis of Internal Combustion Engine Valve Clearance Using the Impact Commencement Detection Method

    PubMed Central

    Jiang, Zhinong; Wang, Zijia; Zhang, Jinjie

    2017-01-01

    Internal combustion engines (ICEs) are widely used in many important fields. The valve train clearance of an ICE usually exceeds the normal value due to wear or faulty adjustment. This work aims at diagnosing the valve clearance fault based on the vibration signals measured on the engine cylinder heads. The non-stationarity of the ICE operating condition makes it difficult to obtain the nominal baseline, which is always an awkward problem for fault diagnosis. This paper overcomes the problem by inspecting the timing of valve closing impacts, of which the referenced baseline can be obtained by referencing design parameters rather than extraction during healthy conditions. To accurately detect the timing of valve closing impact from vibration signals, we carry out a new method to detect and extract the commencement of the impacts. The results of experiments conducted on a twelve-cylinder ICE test rig show that the approach is capable of extracting the commencement of valve closing impact accurately and using only one feature can give a superior monitoring of valve clearance. With the help of this technique, the valve clearance fault becomes detectable even without the comparison to the baseline, and the changing trend of the clearance could be trackable. PMID:29244722

  8. Determination of noise and vibration impacts of construction and operation of the Second Avenue Subway

    NASA Astrophysics Data System (ADS)

    Pristera, Jessica L.

    2004-05-01

    An acoustical study was conducted to determine the potential for airborne noise and ground-borne noise and vibration impacts generated by construction and operation of the Second Avenue Subway. The study was performed in support of an environmental impact statement (EIS) that defined the areas along the proposed Second Avenue Subway corridor where any significiant impacts would occur as a result of construction activity and operation of the Second Avenue Subway. Using FTA guideline procedures, project-generated noise levels from subway construction and operations were determined. Construction noise levels exceeded operational noise levels. With limited alternative construction methods, practical mitigation methods were determined to reduce impacts.

  9. Age is a significant predictor of early and late improvement in semen parameters after microsurgical varicocele repair.

    PubMed

    Kimura, M; Nagao, K; Tai, T; Kobayashi, H; Nakajima, K

    2017-04-01

    Accumulating evidence indicates that varicocele repair improves sperm quality. However, longitudinal changes in sperm parameters and predictors of improved semen characteristics after surgery have not been fully investigated. We retrospectively reviewed data from 100 men who underwent microsurgical subinguinal varicocele repair at a single centre. Follow-up semen examinations were carried out at 3, 6 and 12 months post-operatively. Logistic regression was used to identify predictors of early (3 months) and late (≥6 months) improvement in semen parameters after varicocele repair. At 3 months post-operatively, 76.1% of the patients had improved total motile sperm counts, which continued to improve significantly up to 12 months post-operatively (p = .016). When comparing changes in semen parameters between younger (<37 years) and older (≥37 years) men, post-operative improvements in sperm concentration and motility were greater among younger men. Multivariate analysis showed that younger age was associated with early (p = .043) and late (p = .010) post-operative improvement in total motile sperm count. Our findings indicate that early varicocele repair improved semen parameters after surgery. © 2016 Blackwell Verlag GmbH.

  10. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  11. Hydraulic Fracturing and the Environment

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used in HF fluids are carcinogenic and may pose risk to humans. In addition, recovered HF fluids can be contaminated. We illustrate how different pathways can lead to the risk of aquifer contamination and consequently, risk to human health.

  12. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow recirculation extends through a mixing plane, however, which for the particular mixing-plane model used is now known to exaggerate the recirculation. In any case, the flow separation has relatively little impact on the computed rotor and FEGV flow fields.

  13. Applying operations research to optimize a novel population management system for cancer screening.

    PubMed

    Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J

    2014-02-01

    To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management.

  14. Operational Contract Support: Economic Impact Evaluation and Measures of Effectiveness

    DTIC Science & Technology

    2017-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT OPERATIONAL CONTRACT SUPPORT: ECONOMIC IMPACT EVALUATION AND MEASURES...DATES COVERED MBA professional report 4. TITLE AND SUBTITLE OPERATIONAL CONTRACT SUPPORT: ECONOMIC IMPACT EVALUATION AND MEASURES OF EFFECTIVENESS 5...evaluation, expeditionary economics , operational contract support, measure of effectiveness 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY

  15. Testing item response theory invariance of the standardized Quality-of-life Disease Impact Scale (QDIS(®)) in acute coronary syndrome patients: differential functioning of items and test.

    PubMed

    Deng, Nina; Anatchkova, Milena D; Waring, Molly E; Han, Kyung T; Ware, John E

    2015-08-01

    The Quality-of-life (QOL) Disease Impact Scale (QDIS(®)) standardizes the content and scoring of QOL impact attributed to different diseases using item response theory (IRT). This study examined the IRT invariance of the QDIS-standardized IRT parameters in an independent sample. The differential functioning of items and test (DFIT) of a static short-form (QDIS-7) was examined across two independent sources: patients hospitalized for acute coronary syndrome (ACS) in the TRACE-CORE study (N = 1,544) and chronically ill US adults in the QDIS standardization sample. "ACS-specific" IRT item parameters were calibrated and linearly transformed to compare to "standardized" IRT item parameters. Differences in IRT model-expected item, scale and theta scores were examined. The DFIT results were also compared in a standard logistic regression differential item functioning analysis. Item parameters estimated in the ACS sample showed lower discrimination parameters than the standardized discrimination parameters, but only small differences were found for thresholds parameters. In DFIT, results on the non-compensatory differential item functioning index (range 0.005-0.074) were all below the threshold of 0.096. Item differences were further canceled out at the scale level. IRT-based theta scores for ACS patients using standardized and ACS-specific item parameters were highly correlated (r = 0.995, root-mean-square difference = 0.09). Using standardized item parameters, ACS patients scored one-half standard deviation higher (indicating greater QOL impact) compared to chronically ill adults in the standardization sample. The study showed sufficient IRT invariance to warrant the use of standardized IRT scoring of QDIS-7 for studies comparing the QOL impact attributed to acute coronary disease and other chronic conditions.

  16. Optimizing conceptual aircraft designs for minimum life cycle cost

    NASA Technical Reports Server (NTRS)

    Johnson, Vicki S.

    1989-01-01

    A life cycle cost (LCC) module has been added to the FLight Optimization System (FLOPS), allowing the additional optimization variables of life cycle cost, direct operating cost, and acquisition cost. Extensive use of the methodology on short-, medium-, and medium-to-long range aircraft has demonstrated that the system works well. Results from the study show that optimization parameter has a definite effect on the aircraft, and that optimizing an aircraft for minimum LCC results in a different airplane than when optimizing for minimum take-off gross weight (TOGW), fuel burned, direct operation cost (DOC), or acquisition cost. Additionally, the economic assumptions can have a strong impact on the configurations optimized for minimum LCC or DOC. Also, results show that advanced technology can be worthwhile, even if it results in higher manufacturing and operating costs. Examining the number of engines a configuration should have demonstrated a real payoff of including life cycle cost in the conceptual design process: the minimum TOGW of fuel aircraft did not always have the lowest life cycle cost when considering the number of engines.

  17. Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

    NASA Astrophysics Data System (ADS)

    Steiakakis, Chrysanthos; Agioutantis, Zacharias; Apostolou, Evangelia; Papavgeri, Georgia; Tripolitsiotis, Achilles

    2016-01-01

    The geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions. This paper presents an integrated data management system which was developed over a number of years as well as the advantages through a specific application. The presented case study illustrates how the high production slopes of a mine that exceed depths of 100-120 m were successfully mined with an average displacement rate of 10- 20 mm/day, approaching an almost slow to moderate landslide velocity. Monitoring data of the past four years are included in the database and can be analyzed to produce valuable results. Time-series data correlations of movements, precipitation records, etc. are evaluated and presented in this case study. The results can be used to successfully manage mine operations and ensure the safety of the mine and the workforce.

  18. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt. 60... Sewage Sludge Incineration Units a For these operating parameters You must establish these operating...

  19. 40 CFR Table 4 to Subpart Mmmm of... - Model Rule-Operating Parameters for Existing Sewage Sludge Incineration Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Sewage Sludge Incineration Units a 4 Table 4 to Subpart MMMM of Part 60 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Existing Sewage Sludge Incineration Units Pt. 60... Sewage Sludge Incineration Units a For these operating parameters You must establish these operating...

  20. Impact of ISWEC sea wave energy converter on posidonia oceanica meadows assessed by satellite remote sensing in the coastal areas of Pantelleria island

    NASA Astrophysics Data System (ADS)

    Borfecchia, Flavio; Micheli, Carla; Belmonte, Alessandro; De Cecco, Luigi; Sannino, Gianmaria; Bracco, Giovanni; Mattiazzo, Giuliana; Vittoria Struglia, Maria

    2016-04-01

    Marine renewable energy extraction plays a key role both in energy security of small islands and in mitigation of climate change, but at the same time poses the important question of monitoring the effects of the interaction of such devices with the marine environment. In this work we present a new methodology, integrating satellite remote sensing techniques with in situ observations and biophysical parameters analysis, for the monitoring and mapping of Posidonia Oceanica (PO) meadows in shallow coastal waters. This methodology has been applied to the coastal area offshore Pantelleria Island (Southern Mediterranean) where the first Italian Inertial Sea Wave Energy Converter (ISWEC) prototype has been recently installed. The prototype, developed by the Polytechnic of Turin consists of a platform 8 meters wide, 15 meters long and 4.5 meters high, moored at about 800 meters from the shore and at 31 m depth. It is characterized by high conversion efficiency, resulting from its adaptability to different wave conditions, and a limited environmental impact due to its mooring innovative method with absence of fixed anchors to the seabed. The island of Pantelleria, is characterized by high transparency of coastal waters and PO meadows ecosystems with still significant levels of biodiversity and specific adaptation to accentuated hydrodynamics of these shores. Although ISWEC is a low-impact mooring inertial system able to ensure a reliable connection to the electric grid with minimal impact on seagrass growing in the seabed, the prototype installation and operation involves an interaction with local PO and seagrass meadows and possible water transparency decreasing. In this view monitoring of local PO ecosystem is mandatory in order to allow the detection of potential stress and damages due to ISWEC related activities and/or other factors. However, monitoring and collection of accurate and repetitive information over large areas of the necessary parameters by means of traditional methods (e.g. diving and plants counting), can be difficult and expensive. To overcome these limits we present an integrated methodology for effective monitoring and mapping of PO meadows using satellite/airborne EO (Earth Observation) techniques calibrated by means of sea truth measurements and laboratory genetics analyses. During last summer a sea truth campaign over the areas of interest has been performed and point measurements of several biophysical parameters (biomass, shoot density, cover) related to PO phenology has been acquired by means of original sampling method on the stations distributed along a bathymetry gradient starting from the ISWEC location, at 31 m. of depth. The Landsat 8 OLI with the Sentinel 2 MSI (recently made available within the Copernicus EU program) synchronous satellite multispectral data, including the entire coastal area of interest, were acquired and preprocessed with the objective to test their improved mapping capabilities of PO distribution and related biophysical parameters on the basis of the previously developed operative methods and near synchronous sea truth data. The processed point samples measurements were then exploited for multispectral data calibration, with the support of the statistic and bio-optical modelling approaches to obtain improved thematic maps of the local PO distributions.

  1. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    PubMed Central

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize the connection between the two systems. In addition, many other relevant AD process parameters, including sludge rheology, which need to be addressed, are also reviewed and presented. PMID:28952577

  2. National Synchrotron Light Source annual report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  3. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing.

    PubMed

    Koprowski, Robert

    2014-07-04

    Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%. The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design.

  4. Parameters for assessing the aquatic environmental impact of cosmetic products.

    PubMed

    Vita, N A; Brohem, C A; Canavez, A D P M; Oliveira, C F S; Kruger, O; Lorencini, M; Carvalho, C M

    2018-05-01

    The cosmetic industry's growing concern about the impact of its supply chain on the environment, sustainability of raw materials, and biodiversity increases the need to ensure that the final product has a lower environmental impact. The objective of this review is to summarize and compare the information available from international organizations and legislation regarding the main criteria used to assess raw materials for aquatic toxicity, as well as the most suitable alternative methods for obtaining assessment parameters. Using the literature available in databases, a review of the scientific literature and international legislation, this work discusses and compares the parameters established by international organizations such as the Environmental Protection Agency (EPA) and Cradle to Cradle (C2C), as well as European legislation, namely, European Regulation 1272/2008, for assessing environmental impact. Defining the ecotoxicity parameters of the main classes of raw materials in rinse-off cosmetic products can enable the development of products that are more environmentally sustainable, prioritizing substances with less environmental impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  6. Impact of Operating Room Environment on Postoperative Central Nervous System Infection in a Resource-Limited Neurosurgical Center in South Asia.

    PubMed

    Chidambaram, Swathi; Vasudevan, Madabushi Chakravarthy; Nair, Mani Nathan; Joyce, Cara; Germanwala, Anand V

    2018-02-01

    Postoperative central nervous system infections (PCNSIs) are serious complications following neurosurgical intervention. We previously investigated the incidence and causative pathogens of PCNSIs at a resource-limited, neurosurgical center in south Asia. This follow-up study was conducted to analyze differences in PCNSIs at the same institution following only one apparent change: the operating room air filtration system. This was a retrospective study of all neurosurgical cases performed between December 1, 2013, and March 31, 2016 at our center. Providers, patient demographic data, case types, perioperative care, rate of PCNSI, and rates of other complications were reviewed. These results were then compared with the findings of our previous study of neurosurgical cases between June 1, 2012, and June 30, 2013. All 623 neurosurgical operative cases over the study period were reviewed. Four patients (0.6%) had a PCNSI, and no patients had a positive cerebrospinal fluid (CSF) culture. In the previous study, among 363 cases, 71 patients (19.6%) had a PCNSI and 7 (1.9%) had a positive CSF culture (all Gram-negative organisms). The differences in both parameters are statistically significant (P < 0.001). Between the 2 studies, there was no change in treatment providers, case types, case durations, antibiotic administration practices, and patient demographics. The rates of PCNSI and positive CSF culture were significantly lower in our present cohort compared with the cohort in our previous study. The sole apparent change involves the air filtration system inside the neurosurgical operating rooms; this environmental change occurred during the 5 months between the 2 studies. This study demonstrates the impact of environmental factors in reducing infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Parameters estimation of sandwich beam model with rigid polyurethane foam core

    NASA Astrophysics Data System (ADS)

    Barbieri, Nilson; Barbieri, Renato; Winikes, Luiz Carlos

    2010-02-01

    In this work, the physical parameters of sandwich beams made with the association of hot-rolled steel, Polyurethane rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers are estimated using measured and numeric frequency response functions (FRFs). The mathematical models are obtained using the finite element method (FEM) and the Timoshenko beam theory. The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm (GA). The experimental data are obtained using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The parameters estimated are Young's modulus and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene.

  8. Objective assessment of quality of life in female patients after esthetic, non-oncologic or oncologic surgery of their mammary glands--reality and perspectives.

    PubMed

    Molov, Veselin V; Tepavicharova, Penka P; Deenichin, George P; Mitov, Franz S

    2005-01-01

    The World Health Organisation defines health as a state of complete physical, mental and social well-being, and not merely the absence of a disease or infirmity. The female breast, surgically considered as a "troubled organ", can be affected by disorders of various types. Its normal morphology can be changed by deformities which may have a serious impact on the mental state of female patients. Assessment of these deformities is essential when doctors should define the inclusion and exclusion criteria for each breast operation that has elements of esthetic surgery in it, the breast being indisputably a symbol of female beauty. When we consider the parameters of normal breast morphology, it is only proper to take into account their dependence on race, national culture, folk psychology, etc. For Bulgarian women, P. Tepavicharova has found that the distance from fossa jugularis to the nipple-areolar complex can have the following characteristic proportions: 15.5-17 cm for a woman 155-160 cm in height and with breast circumference of 75-80 cm; 17-18.5 cm for woman 160-165 cm in height and with breast circumference of 89-95 cm; and 18-20 cm for a woman 165-170 cm in height and with breast circumference of 95-100 cm. J. Lalardie points out that breast stability is determined by three principal factors: skin and its elasticity, the condition of the underlying collagenous structure of the breast, and the firm bond between the skin and fibrous elements. RB Brinks defines the four forms of ptosis of the breast: glandular ptosis, true ptosis, parenchymal maldistribution, and pseudoptosis. According to P. Tepavicharova, the violation of breast symmetry is the major factor triggering a sequence of psychosomatic reactions. The basic parameters of female breast morphology are the mammary base, mammary perimeter, the forward projection of the breast, symmetry, breast volume, and the state of the axillary extension. The major deviations from normal breast morphology that can have an impact on the quality of life are mammary ptosis, hypertrophy, asymmetry, and deformations of the breast shape as well as the operation cicatrices on the breast. An assessment of the association of the deviations from normal morphology with the correction to normal morphology (with or without dealing with a pathological process) and with the impact on the quality of life is a possible base for objective assessment of the latter parameter.

  9. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less

  10. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less

  11. Functional relationships of landfill and landraise capacity with design and operation parameters.

    PubMed

    Aivaliotis, Vassilis; Dokas, Ioannis; Hatzigiannakou, Maria; Panagiotakopoulos, Demetrios

    2004-08-01

    Solid waste management presses for effective landfill design and operation. While planning and operating a landfill (LF) or a landraise (LR), choices need to be made regarding: (1) LF-LR morphology (base shape, side slopes, final cover thickness, LR/LF height/depth); (2) cell geometry (height, length, slopes); and (3) operation parameters (waste density, working face length, cover thicknesses). These parameters affect LF/LR capacity, operation lifespan and construction/ operation costs. In this paper, relationships are generated between capacity (C, space available for waste) and the above parameters. Incorporating real data into simulation kgamma A1.38, runs, two types of functions are developed: first, C = where A is the LF/LR base area size and kgamma a base shape-dependent coefficient; and second, C = alpha(p,gamma,A) + delta(p,gamma,A)Xp for every parameter p, where Xp is the value of p and alpha(p,gamma,A) and delta(p,gamma,A) are parameter- and base (shape/size)-specific coefficients. Moreover, the relationship between LF depth and LR height that balances excavation volume with cover material, is identified. Another result is that, for a symmetrical combination of LF/LR, with base surface area shape between square and 1:2 orthogonal, and final density between 500 and 800 kg m(-3), waste quantity placed ranges from 1.76A1.38 to 2.55A1.38 tons. The significance of such functions is obvious, as they allow the analyst to investigate alternative LF/LR schemes and make trade-off analyses.

  12. Blood management and transfusion strategies in 600 patients undergoing total joint arthroplasty: an analysis of pre-operative autologous blood donation.

    PubMed

    Perazzo, Paolo; Viganò, Marco; De Girolamo, Laura; Verde, Francesco; Vinci, Anna; Banfi, Giuseppe; Romagnoli, Sergio

    2013-07-01

    Blood loss during total joint arthroplasty strongly influences the time to recover after surgery and the quality of the recovery. Blood conservation strategies such as pre-operative autologous blood donation and post-operative cell salvage are intended to avoid allogeneic blood transfusions and their associated risks. Although widely investigated, the real effectiveness of these alternative transfusion practices remains controversial. The surgery reports of 600 patients undergoing total joint arthroplasty (312 hip and 288 knee replacements) were retrospectively reviewed to assess transfusion needs and related blood management at our institute. Evaluation parameters included post-operative blood loss, haemoglobin concentration measured at different time points, ASA score, and blood transfusion strategies. Autologous blood donation increased the odds of receiving a red blood cell transfusion. Reinfusion by a cell salvage system of post-operative shed blood was found to limit adverse effects in cases of severe post-operative blood loss. The peri-operative net decrease in haemoglobin concentration was higher in patients who had predeposited autologous blood than in those who had not. The strengths of this study are the high number of cases and the standardised procedures, all operations having been performed by a single orthopaedic surgeon and a single anaesthesiologist. Our data suggest that a pre-operative autologous donation programme may often be useless, if not harmful. Conversely, the use of a cell salvage system may be effective in reducing the impact of blood transfusion on a patient's physiological status. Basal haemoglobin concentration emerged as a useful indicator of transfusion probability in total joint replacement procedures.

  13. Post-operative course of coronary artery bypass surgery patients who pre-donate autologous blood.

    PubMed

    Jovin, Ion S; Stelzig, Georg; Strelitz, Joachim C; Taborski, Uwe; Jovin, Angelika; Heidinger, Kathrin; Klövekorn, Wolf-Peter; Müller-Berghaus, Gert

    2003-12-01

    Pre-operative autologous blood donation is used to reduce the need of allogeneic blood in patients undergoing coronary bypass surgery operations, but it is not clear what impact the blood donation has on the post-operative course of these patients. We studied the post-operative course of 210 patients who pre-donated autologous blood before their coronary bypass operation (donors) and of 67 patients who were eligible to pre-donate but did not (controls). The clinical variables and the technical operative parameters of the patients in the two groups were similar. There was no significant difference between the duration of assisted ventilation post-operatively (756 +/- 197 vs. 802 +/- 395 min; P=0.54) or length of stay in the intensive care unit (1.8 +/- 1.1 vs. 1.7 +/- 0.9 days; P=0.52) of the two groups. The number of autologous units of packed red cells and of fresh frozen plasma (FFP) received by the donors was significantly higher than the number of units of allogeneic packed red cells (1.5 +/- 0.9 vs. 0.3 +/- 0.9; P=0.001) and the units of homologous FFP received by the controls (2.3 +/- 0.8 vs. 0.6 +/- 1; P=0.001). We found no evidence that autologous blood donation exerted a negative influence on the post-operative course of patients undergoing coronary bypass surgery. Patients who pre-donated blood received no allogeneic blood products, but the number of autologous blood products received by donors was higher than the number of blood products received by patients who did not pre-donate.

  14. Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings

    NASA Astrophysics Data System (ADS)

    Ozdemir, Ozan C.; Widener, Christian A.; Carter, Michael J.; Johnson, Kyle W.

    2017-10-01

    As the industrial application of the cold spray technology grows, the need to optimize both the cost and the quality of the process grows with it. Parameter selection techniques available today require the use of a coupled system of equations to be solved to involve the losses due to particle loading in the gas stream. Such analyses cause a significant increase in the computational time in comparison with calculations with isentropic flow assumptions. In cold spray operations, engineers and operators may, therefore, neglect the effects of particle loading to simplify the multiparameter optimization process. In this study, two-way coupled (particle-fluid) quasi-one-dimensional fluid dynamics simulations are used to test the particle loading effects under many potential cold spray scenarios. Output of the simulations is statistically analyzed to build regression models that estimate the changes in particle impact velocity and temperature due to particle loading. This approach eases particle loading optimization for more complete analysis on deposition cost and time. The model was validated both numerically and experimentally. Further numerical analyses were completed to test the particle loading capacity and limitations of a nozzle with a commonly used throat size. Additional experimentation helped document the physical limitations to high-rate deposition.

  15. Achieving Collective Impact: Reflections on Ten Years of the University of Georgia Archway Partnership

    ERIC Educational Resources Information Center

    Garber, Mel; Adams, Katherine R.

    2017-01-01

    Collective impact is a model for achieving tangible change and improvement in communities through a series of well-defined parameters of collaboration. This article provides a 10-year reflection on the University of Georgia Archway Partnership, a university-community collaboration, in the context of the parameters of collective impact. Emphasis is…

  16. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    DTIC Science & Technology

    2016-02-01

    that the stored lamp parameters match the desired flashlamp operating parameters. Then go back to the main menu and press “B” to select the desired...operating the laser at a high voltage, either press “STOP” on the flashlamp controller to discharge the capacitors or fire the laser a few times at

  17. The impact of long-lasting preemptive epidural analgesia before total hip replacement on the hormonal stress response. A prospective, randomized, double-blind study.

    PubMed

    Al Oweidi, Abdelkarim S; Klasen, Joachim; Al-Mustafa, Mahmoud M; Abu-Halaweh, Sami A; Al-Zaben, Khaled R; Massad, Islam M; Qudaisat, Ibrahim Y

    2010-06-01

    Recent studies suggest that preemptive analgesia may be effective in reducing postoperative pain. One physiologic explanation may be interference with the endogenous opioid response. We investigated whether long-lasting preoperative preemptive analgesia may have an effect on the hormonal stress response after total hip replacement. 42 patients scheduled for elective hip replacement for coxarthrosis were randomized to receive, on the day before the operation, either 5 ml*h(-1) ropivacaine 0.2% (study group, n = 21) or 5 ml*h(-1) saline (control group, n = 21). Postoperative analgesia was achieved in both groups by patient-controlled epidural analgesia (PCEA) with ropivacaine 0.2%. The main outcome measure was the concentration of authentic beta-endorphin [1-31] in plasma up to 4 days after surgery. Additional parameters included concentrations of adrenocorticotrope hormone and cortisol. Both groups were comparable concerning preoperative parameters and pain scores. Epidural blocks were sufficient in all patients for operative analgesia. Preemptive analgesia was performed for 11-20 hours in both groups and led to significantly decreased pain scores before surgery. Preemptive analgesia with epidural ropivacaine did not lead to decreased concentrations of beta-endorphin [1-31] before the start of surgery or in the postoperative period. Furthermore, no differences could be detected in the time course of beta-endorphin and adrenocorticotrope hormone after surgery. However, cortisol concentrations differed significantly between groups before the operation, but showed a comparable rise after surgery. Differences in postoperative pain after preemptive analgesia do not seem to be due to an altered endogenous opioid response.

  18. Impact of body mass index on perioperative outcomes of laparoscopic radical nephrectomy in Japanese patients with clinically localized renal cell carcinoma.

    PubMed

    Miyake, Hideaki; Muramaki, Mototsugu; Tanaka, Kazushi; Takenaka, Atsushi; Fujisawa, Masato

    2010-06-01

    The aim of this study was to review the association between body mass index (BMI) and perioperative outcomes of laparoscopic radical nephrectomy (LRN) in Japanese patients with renal cell carcinoma (RCC). This study included 108 consecutive Japanese patients undergoing LRN for RCC between April 2001 and March 2009. These patients were divided into the following two groups according to BMI: the non-obese group (n= 58, BMI 25 kg/m(2) or less) and the obese group (n= 50, BMI greater than 25 kg/m(2)). Perioperative outcomes between these two groups were retrospectively compared. There were no significant differences in clinicopathological parameters other than BMI between the non-obese and obese groups. There were no significant differences in operative time, estimated blood loss during LRN, and the incidences of open conversion and postoperative complications between these two groups. In addition, there were no significant differences in parameters related to postoperative recovery, including time to walk, time to oral intake and time until permission for discharge, between these two groups. However, significant trends toward a prolonged operative time (P= 0.0050) and increased blood loss (P= 0.012) during LRN in relation to BMI were documented by linear regression analyses. Although the degree of obesity in patients included in this study was comparatively slight, these findings suggest that LRN can be safely performed for patients with RCC irrespective of BMI. However, the difficulty of LRN may increase with BMI considering the trends toward longer operative time as well as greater blood loss.

  19. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  20. PYFLOW_2.0: a computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela

    2018-03-01

    This paper presents PYFLOW_2.0, a hazard tool for the calculation of the impact parameters of dilute pyroclastic density currents (DPDCs). DPDCs represent the dilute turbulent type of gravity flows that occur during explosive volcanic eruptions; their hazard is the result of their mobility and the capability to laterally impact buildings and infrastructures and to transport variable amounts of volcanic ash along the path. Starting from data coming from the analysis of deposits formed by DPDCs, PYFLOW_2.0 calculates the flow properties (e.g., velocity, bulk density, thickness) and impact parameters (dynamic pressure, deposition time) at the location of the sampled outcrop. Given the inherent uncertainties related to sampling, laboratory analyses, and modeling assumptions, the program provides ranges of variations and probability density functions of the impact parameters rather than single specific values; from these functions, the user can interrogate the program to obtain the value of the computed impact parameter at any specified exceedance probability. In this paper, the sedimentological models implemented in PYFLOW_2.0 are presented, program functionalities are briefly introduced, and two application examples are discussed so as to show the capabilities of the software in quantifying the impact of the analyzed DPDCs in terms of dynamic pressure, volcanic ash concentration, and residence time in the atmosphere. The software and user's manual are made available as a downloadable electronic supplement.

Top