Multiple operating system rotation environment moving target defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Nathaniel; Thompson, Michael
Systems and methods for providing a multiple operating system rotation environment ("MORE") moving target defense ("MTD") computing system are described. The MORE-MTD system provides enhanced computer system security through a rotation of multiple operating systems. The MORE-MTD system increases attacker uncertainty, increases the cost of attacking the system, reduces the likelihood of an attacker locating a vulnerability, and reduces the exposure time of any located vulnerability. The MORE-MTD environment is effectuated by rotation of the operating systems at a given interval. The rotating operating systems create a consistently changing attack surface for remote attackers.
Human Machine Interfaces for Teleoperators and Virtual Environments Conference
NASA Technical Reports Server (NTRS)
1990-01-01
In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.
An Expert System for Developing a Full Scale Development Statement of Work
1989-09-01
Transportability: 3.5.1.3* Specialty Engineering System Safety: Aerospace Meteorlogical Environment: Preservation, Packaging, and Packing... METEORLOGICAL ENVIRONMENT:’,tn). area is ’AEROSPACE METEORLOGICAL ENVIRONMENT’ ASK ( ’The system will require operation, non-operation, transport, and/or
An Operating Environment for the Jellybean Machine
1988-05-01
MODEL 48 5.4.4 Restarting a Context The operating system provides one primitive message (RESTART-CONTEXT) and two system calls (XFERID and XFER.ADDR) to...efficient, powerful services is reqired to support this "stem. To provide this supportive operating environment, I developed an operating system kernel that...serves many of the initial needs of our machine. This Jellybean Operating System Software provides an object- based storage model, where typed
40 CFR 267.198 - What are the general operating requirements for my tank systems?
Code of Federal Regulations, 2012 CFR
2012-07-01
... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 28 2012-07-01 2012-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 267.198 - What are the general operating requirements for my tank systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 267.198 - What are the general operating requirements for my tank systems?
Code of Federal Regulations, 2014 CFR
2014-07-01
... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 267.198 - What are the general operating requirements for my tank systems?
Code of Federal Regulations, 2013 CFR
2013-07-01
... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 267.198 - What are the general operating requirements for my tank systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...
Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.
2012-05-29
Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.
NASA Astrophysics Data System (ADS)
Hamilton, Marvin J.; Sutton, Stewart A.
A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
2017-06-01
implement human following on a mobile robot in an indoor environment . B. FUTURE WORK Future work that could be conducted in the realm of this thesis...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM by...FEASIBILITY OF CONDUCTING HUMAN TRACKING AND FOLLOWING IN AN INDOOR ENVIRONMENT USING A MICROSOFT KINECT AND THE ROBOT OPERATING SYSTEM 5. FUNDING NUMBERS
NASDA's Advanced On-Line System (ADOLIS)
NASA Technical Reports Server (NTRS)
Yamamoto, Yoshikatsu; Hara, Hideo; Yamada, Shigeo; Hirata, Nobuyuki; Komatsu, Shigenori; Nishihata, Seiji; Oniyama, Akio
1993-01-01
Spacecraft operations including ground system operations are generally realized by various large or small scale group work which is done by operators, engineers, managers, users and so on, and their positions are geographically distributed in many cases. In face-to-face work environments, it is easy for them to understand each other. However, in distributed work environments which need communication media, if only using audio, they become estranged from each other and lose interest in and continuity of work. It is an obstacle to smooth operation of spacecraft. NASDA has developed an experimental model of a new real-time operation control system called 'ADOLIS' (ADvanced On-Line System) adopted to such a distributed environment using a multi-media system dealing with character, figure, image, handwriting, video and audio information which is accommodated to operation systems of a wide range including spacecraft and ground systems. This paper describes the results of the development of the experimental model.
40 CFR 267.201 - What must I do when I stop operating the tank system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 28 2012-07-01 2012-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 267.201 - What must I do when I stop operating the tank system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 267.201 - What must I do when I stop operating the tank system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 267.201 - What must I do when I stop operating the tank system?
Code of Federal Regulations, 2011 CFR
2011-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 267.201 - What must I do when I stop operating the tank system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The paper discusses the importance of linking Ada Run Time Support Environments to the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). A non-stop network operating systems scenario is presented to serve as a forum for identifying the important issues. The network operating system exemplifies the issues involved in the NASA Space Station data management system.
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0
NASA Technical Reports Server (NTRS)
Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.
2001-01-01
A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.
System having unmodulated flux locked loop for measuring magnetic fields
Ganther, Jr., Kenneth R.; Snapp, Lowell D [Blue Springs, MO
2006-08-15
A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
NASA Technical Reports Server (NTRS)
1979-01-01
This specification establishes the natural and induced environments to which the power extension package may be exposed during ground operations and space operations with the shuttle system. Space induced environments are applicable at the Orbiter attach point interface location. All probable environments are systematically listed according to each ground and mission phase.
Methods and systems relating to an augmented virtuality environment
Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J
2014-05-20
Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E.; Leahy, Frank B.
2014-01-01
NASA is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development Program, which includes the Space Launch System (SLS) and MultiPurpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from prelaunch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting or exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds.
NASA Technical Reports Server (NTRS)
McLaughlin, Brian J.; Barrett, Larry K.
2012-01-01
Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.
Less than severe worst case accidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, G.A.
1996-08-01
Many systems can provide tremendous benefit if operating correctly, produce only an inconvenience if they fail to operate, but have extreme consequences if they are only partially disabled such that they operate erratically or prematurely. In order to assure safety, systems are often tested against the most severe environments and accidents that are considered possible to ensure either safe operation or safe failure. However, it is often the less severe environments which result in the ``worst case accident`` since these are the conditions in which part of the system may be exposed or rendered unpredictable prior to total system failure.more » Some examples of less severe mechanical, thermal, and electrical environments which may actually be worst case are described as cautions for others in industries with high consequence operations or products.« less
System and method of self-properties for an autonomous and automatic computer environment
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)
2010-01-01
Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test, analog data acquisition, and digital data acquisition from fault tolerant systems. In addition, a case study of an upset test methodology for a fault tolerant electromagnetic aircraft engine control system is presented.
Mars outpost - System and operations challenges
NASA Technical Reports Server (NTRS)
Roberts, Barney; Guerra, Lisa
1990-01-01
The paper addresses the challenges inherent in establishing an outpost on the planet Mars. For background purposes, the unique, remote Martian environment and the developmental phases of a settlement in such an environment are discussed. Challenges are identified in terms of surface systems and operations. Due to its importance to habitability, the life support system (LSS) is highlighted with various options identified. Operations for the Mars outpost, earth-based and local, are characterized by a decentralized concept. The challenge of integrating logistics analysis early in system design and operations strategy is also addressed. In order to understand and reduce the system and operations challenges, the application of terrestrial and lunar testbeds is explained.
Code of Federal Regulations, 2014 CFR
2014-07-01
... to Subpart OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2014 CFR
2014-07-01
...—Operating Limits if Using Add-On Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2014 CFR
2014-07-01
...—Operating Limits if Using Add-on Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Limits if Using Add-On Control Devices and Capture System If you are required to comply with operating... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
...—Operating Limits if Using Add-On Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
... to Subpart OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
...—Operating Limits if Using Add-on Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
... to Subpart OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you are required... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2012 CFR
2012-07-01
...—Operating Limits if Using Add-on Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Using Add-on Control Devices and Capture System If you are required to comply with operating limits by... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... OOOO of Part 63—Operating Limits if Using Add-On Control Devices and Capture System If you are required... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 2 Table 2 to Subpart OOOO of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Using Add-on Control Devices and Capture System If you are required to comply with operating limits by... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits if Using Add-on Control Devices and Capture System 1 Table 1 to Subpart SSSS of Part 63 Protection of Environment...
Code of Federal Regulations, 2013 CFR
2013-07-01
...—Operating Limits if Using Add-On Control Devices and Capture System If you are required to comply with... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Limits if Using Add-On Control Devices and Capture System If you are required to comply with operating... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits if Using Add-On Control Devices and Capture System 1 Table 1 to Subpart JJJJ of Part 63 Protection of Environment...
Test, Control and Monitor System (TCMS) operations plan
NASA Technical Reports Server (NTRS)
Macfarlane, C. K.; Conroy, M. P.
1993-01-01
The purpose is to provide a clear understanding of the Test, Control and Monitor System (TCMS) operating environment and to describe the method of operations for TCMS. TCMS is a complex and sophisticated checkout system focused on support of the Space Station Freedom Program (SSFP) and related activities. An understanding of the TCMS operating environment is provided and operational responsibilities are defined. NASA and the Payload Ground Operations Contractor (PGOC) will use it as a guide to manage the operation of the TCMS computer systems and associated networks and workstations. All TCMS operational functions are examined. Other plans and detailed operating procedures relating to an individual operational function are referenced within this plan. This plan augments existing Technical Support Management Directives (TSMD's), Standard Practices, and other management documentation which will be followed where applicable.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
Wang, Xianwen; Liu, Zhiguo; Zhang, Wenchang; Wu, Qingfu; Tan, Shulin
2013-08-01
We have designed a mobile operating room information management system. The system is composed of a client and a server. A client, consisting of a PC, medical equipments, PLC and sensors, provides the acquisition and processing of anesthesia and micro-environment data. A server is a powerful computer that stores the data of the system. The client gathers the medical device data by using the C/S mode, and analyzes the obtained HL7 messages through the class library call. The client collects the micro-environment information with PLC, and finishes the data reading with the OPC technology. Experiment results showed that the designed system could manage the patient anesthesia and micro-environment information well, and improve the efficiency of the doctors' works and the digital level of the mobile operating room.
Distributed expert systems for ground and space applications
NASA Technical Reports Server (NTRS)
Buckley, Brian; Wheatcraft, Louis
1992-01-01
Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.
PILOT: An intelligent distributed operations support system
NASA Technical Reports Server (NTRS)
Rasmussen, Arthur N.
1993-01-01
The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.
Subsea approach to work systems development
NASA Technical Reports Server (NTRS)
Gernhardt, M. L.; Frisbie, F. R.; Brown, C. E.
1988-01-01
Self-contained undersea working environments with applications to space station EVA environments are discussed. Physiological limitations include decompression, inert gas narcosis, high-pressure nervous system, gas toxicity, and thermal limitations. Work task requirements include drilling support, construction, inspection, and repair. Work systems include hyperbaric diving, atmospheric work systems, tele-operated work systems, and hybrid systems. Each type of work system is outlined in terms of work capabilities, special interface requirements, and limitations. Various operational philosophies are discussed. The evolution of work systems in the subsea industry has been the result of direct operational experience in a competitive market.
NASCAP modelling of high-voltage power system interactions with space charged-particle environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1979-01-01
A simple space power system operating in geosynchronous orbit was analyzed. This system consisted of two solar array wings and a central body. Each solar array wing was considered to be divided into three regions operating at 2000 volts. The center body was considered to be an electrical ground with the array voltages both positive and negative relative to ground. The system was analyzed for both a normal environment and a moderate geomagnetic substorm environment. Initial results indicate a high probability of arcing at the interconnects on the negative operating voltage wing. The dielectric strength of the substrate may be exceeded giving rise to breakdown in the bulk of the material. The geomagnetic substorm did not seem to increase the electrical gradients at the interconnects on the negative operating voltage wing but did increase the gradients on the positive operating voltage wing which could result in increased coupling current losses.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aircraft water system operations and maintenance plan. 141.804 Section 141.804 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system...
Client-Server: What Is It and Are We There Yet?
ERIC Educational Resources Information Center
Gershenfeld, Nancy
1995-01-01
Discusses client-server architecture in dumb terminals, personal computers, local area networks, and graphical user interfaces. Focuses on functions offered by client personal computers: individualized environments; flexibility in running operating systems; advanced operating system features; multiuser environments; and centralized data…
1990-04-23
developed Ada Real - Time Operating System (ARTOS) for bare machine environments(Target), ACW 1.1I0. " ; - -M.UIECTTERMS Ada programming language, Ada...configuration) Operating System: CSC developed Ada Real - Time Operating System (ARTOS) for bare machine environments Memory Size: 4MB 2.2...Test Method Testing of the MC Ado V1.2.beta/ Concurrent Computer Corporation compiler and the CSC developed Ada Real - Time Operating System (ARTOS) for
NASA Technical Reports Server (NTRS)
Barro, E.; Delbufalo, A.; Rossi, F.
1993-01-01
The definition of some modern high demanding space systems requires a different approach to system definition and design from that adopted for traditional missions. System functionality is strongly coupled to the operational analysis, aimed at characterizing the dynamic interactions of the flight element with its surrounding environment and its ground control segment. Unambiguous functional, operational and performance requirements are to be defined for the system, thus improving also the successive development stages. This paper proposes a Petri Nets based methodology and two related prototype applications (to ARISTOTELES orbit control and to Hermes telemetry generation) for the operational analysis of space systems through the dynamic modeling of their functions and a related computer aided environment (ISIDE) able to make the dynamic model work, thus enabling an early validation of the system functional representation, and to provide a structured system requirements data base, which is the shared knowledge base interconnecting static and dynamic applications, fully traceable with the models and interfaceable with the external world.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Xapsos, Michael
2008-01-01
This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.
Expert diagnostics system as a part of analysis software for power mission operations
NASA Technical Reports Server (NTRS)
Harris, Jennifer A.; Bahrami, Khosrow A.
1993-01-01
The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.
Knowledge representation in space flight operations
NASA Technical Reports Server (NTRS)
Busse, Carl
1989-01-01
In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.
Dynamic and adaptive policy models for coalition operations
NASA Astrophysics Data System (ADS)
Verma, Dinesh; Calo, Seraphin; Chakraborty, Supriyo; Bertino, Elisa; Williams, Chris; Tucker, Jeremy; Rivera, Brian; de Mel, Geeth R.
2017-05-01
It is envisioned that the success of future military operations depends on the better integration, organizationally and operationally, among allies, coalition members, inter-agency partners, and so forth. However, this leads to a challenging and complex environment where the heterogeneity and dynamism in the operating environment intertwines with the evolving situational factors that affect the decision-making life cycle of the war fighter. Therefore, the users in such environments need secure, accessible, and resilient information infrastructures where policy-based mechanisms adopt the behaviours of the systems to meet end user goals. By specifying and enforcing a policy based model and framework for operations and security which accommodates heterogeneous coalitions, high levels of agility can be enabled to allow rapid assembly and restructuring of system and information resources. However, current prevalent policy models (e.g., rule based event-condition-action model and its variants) are not sufficient to deal with the highly dynamic and plausibly non-deterministic nature of these environments. Therefore, to address the above challenges, in this paper, we present a new approach for policies which enables managed systems to take more autonomic decisions regarding their operations.
Alteration and Implementation of the CP/M-86 Operating System for a Multi-User Environment.
1982-12-01
THE CP/M-86 OPERATING SYSTEM FOR A MULTI-USER ENVIRONMENT by Thomas V. Almquist and David S. Stevens C-, December 1982 ,LU Thesis Advisor : U. R. Kodres...tool$ 044, robo O0eA 6^900091 Approved for public release; distribution unlimited Alteration and Implementation of the CP/M-86 Operating System for a...SCIENCE IN COMPUTER SCIENCE from the NAVAL POSTGRADUATE SCHOOL December 1982 Authors: Approved by: ..... .. . . . . . . . . Thesis Advisor Second
Research issues in implementing remote presence in teleoperator control
NASA Technical Reports Server (NTRS)
Corker, K.; Mishkin, A. H.; Lyman, J.
1981-01-01
The concept of remote presence in telemanipulation is presented. A conceptual design of a prototype teleoperator system incorporating remote presence is described. The design is presented in functional terms, sensor, display, and control subsystem. An intermediate environment, in which the human operator is made to feel present, is explicated. The intermediate environment differs from the task environment due to the quantity and type of information presented to an operator and due to scaling factors protecting the operator from the hazards of the task environment. Potential benefits of remote presence systems, both for manipulation and for the study of human cognition and preception are discussed.
2006-09-01
spiral development cycle involved transporting the software processes from a Windows XP / MATLAB environment to a Linux / C++ environment. This...tested on. Additionally, in the case of the GUMSTIX PC boards, the LINUX operating system is burned into the read-only memory. Lastly, both PC-104 and...both the real-time environment and the post-processed en - vironment. When the system operates in real-time mode, an output file is generated which
Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration
NASA Technical Reports Server (NTRS)
Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin
2012-01-01
NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.
The Challenge of Wireless Reliability and Coexistence.
Berger, H Stephen
2016-09-01
Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.
An open system approach to process reengineering in a healthcare operational environment.
Czuchry, A J; Yasin, M M; Norris, J
2000-01-01
The objective of this study is to examine the applicability of process reengineering in a healthcare operational environment. The intake process of a mental healthcare service delivery system is analyzed systematically to identify process-related problems. A methodology which utilizes an open system orientation coupled with process reengineering is utilized to overcome operational and patient related problems associated with the pre-reengineered intake process. The systematic redesign of the intake process resulted in performance improvements in terms of cost, quality, service and timing.
Democratizing Authority in the Built Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Michael P; Kolb, John; Chen, Kaifei
Operating systems and applications in the built environment have relied upon central authorization and management mechanisms which restrict their scalability, especially with respect to administrative overhead. We propose a new set of primitives encompassing syndication, security, and service execution that unifies the management of applications and services across the built environment, while enabling participants to individually delegate privilege across multiple administrative domains with no loss of security or manageability. We show how to leverage a decentralized authorization syndication platform to extend the design of building operating systems beyond the single administrative domain of a building. The authorization system leveraged ismore » based on blockchain smart contracts to permit decentralized and democratized delegation of authorization without central trust. Upon this, a publish/subscribe syndication tier and a containerized service execution environment are constructed. Combined, these mechanisms solve problems of delegation, federation, device protection and service execution that arise throughout the built environment. We leverage a high-fidelity city-scale emulation to verify the scalability of the authorization tier, and briefly describe a prototypical democratized operating system for the built environment using this foundation.« less
The structure of the clouds distributed operating system
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.
1989-01-01
A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.
Physical Origins of Space Weather Impacts: Open Physics Questions
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
2011-12-01
Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.
Human Performance Issues of Lunar-Sited Teleoperations
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Teleoperations in terrestrial environments present a number of challenges to system operators and designers. Transmission lags, restricted visual fields, and reduced or distorted tactile/kinesthetic feedback can compromise performance, especially for innerloop control tasks (e.g., vehicle or manipulator control). These problems are likely to be exacerbated in lunar operations, since teleoperation may occur across large distances. Further, the lunar environment will introduce unique concerns. For example, the teleoperated systems will reflect the reduced gravity of the moon. In addition to the novelty of these dynamics, operators will often have to cope with them while physically located in a terrestrial or microgravity environment. Similarly, the optical characteristics of the lunar environment differ from our usual experience (e.g., lack of atmospheric attenuation) in ways that may impact normative depth, distance, and motion perception. These human factors issues are related to the question of humans adapting to a lunar environment. However, teleoperations requires the operator to maintain functionality in both the control station and end-effector environments, defeating more straightforward environmental adaptation strategies.
Operating a petabyte class archive at ESO
NASA Astrophysics Data System (ADS)
Suchar, Dieter; Lockhart, John S.; Burrows, Andrew
2008-07-01
The challenges of setting up and operating a Petabyte Class Archive will be described in terms of computer systems within a complex Data Centre environment. The computer systems, including the ESO Primary and Secondary Archive and the associated computational environments such as relational databases will be explained. This encompasses the entire system project cycle, including the technical specifications, procurement process, equipment installation and all further operational phases. The ESO Data Centre construction and the complexity of managing the environment will be presented. Many factors had to be considered during the construction phase, such as power consumption, targeted cooling and the accumulated load on the building structure to enable the smooth running of a Petabyte class Archive.
Virtual operating room for team training in surgery.
Abelson, Jonathan S; Silverman, Elliott; Banfelder, Jason; Naides, Alexandra; Costa, Ricardo; Dakin, Gregory
2015-09-01
We proposed to develop a novel virtual reality (VR) team training system. The objective of this study was to determine the feasibility of creating a VR operating room to simulate a surgical crisis scenario and evaluate the simulator for construct and face validity. We modified ICE STORM (Integrated Clinical Environment; Systems, Training, Operations, Research, Methods), a VR-based system capable of modeling a variety of health care personnel and environments. ICE STORM was used to simulate a standardized surgical crisis scenario, whereby participants needed to correct 4 elements responsible for loss of laparoscopic visualization. The construct and face validity of the environment were measured. Thirty-three participants completed the VR simulation. Attendings completed the simulation in less time than trainees (271 vs 201 seconds, P = .032). Participants felt the training environment was realistic and had a favorable impression of the simulation. All participants felt the workload of the simulation was low. Creation of a VR-based operating room for team training in surgery is feasible and can afford a realistic team training environment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rosen, Robert; Korsmeyer, David J.
1993-01-01
The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.
Operational Analysis in the Launch Environment
NASA Technical Reports Server (NTRS)
James, George; Kaouk, Mo; Cao, Tim; Fogt, Vince; Rocha, Rodney; Schultz, Ken; Tucker, Jon-Michael; Rayos, Eli; Bell,Jeff; Alldredge, David;
2012-01-01
The launch environment is a challenging regime to work due to changing system dynamics, changing environmental loading, joint compression loads that cannot be easily applied on the ground, and control effects. Operational testing is one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these conditions easily. However, the most successful applications of Operational Modal Testing involve systems with good stationarity and long data acquisition times. This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal tools. This work is expected to produce a collection of operational tools that can be applied to non-stationary launch environment, experience dealing with launch data, and an expanding database of flight parameters such as damping. This paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional datasets as well as to begin to address issues raised in earlier launch analysis studies.
NASA Astrophysics Data System (ADS)
Tobiska, W.; Knipp, D. J.; Burke, W. J.; Bouwer, D.; Bailey, J. J.; Hagan, M. P.; Didkovsky, L. V.; Garrett, H. B.; Bowman, B. R.; Gannon, J. L.; Atwell, W.; Blake, J. B.; Crain, W.; Rice, D.; Schunk, R. W.; Fulgham, J.; Bell, D.; Gersey, B.; Wilkins, R.; Fuschino, R.; Flynn, C.; Cecil, K.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, S. I.; Wiley, S.; Holland, M.; Malone, K.
2013-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET's Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the 'weather' of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
Management accounting for advanced technological environments.
Kaplan, R S
1989-08-25
Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments.
23 CFR 752.8 - Privately operated information centers and systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...
23 CFR 752.8 - Privately operated information centers and systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...
23 CFR 752.8 - Privately operated information centers and systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...
23 CFR 752.8 - Privately operated information centers and systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...
23 CFR 752.8 - Privately operated information centers and systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Privately operated information centers and systems. 752... may permit privately operated information centers and systems which conform with the standards of this... AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers and...
A usability assessment on a virtual reality system for panic disorder treatment
NASA Astrophysics Data System (ADS)
Lee, Jaelin; Kawai, Takashi; Yoshida, Nahoko; Izawa, Shuhei; Nomura, Shinobu; Eames, Douglas; Kaiya, Hisanobu
2008-02-01
The authors have developed a virtual reality exposure system that reflects the Japanese culture and environment. Concretely, the system focuses on the subway environment, which is the environment most patients receiving treatment for panic disorder at hospitals in Tokyo, Japan tend to avoid. The system is PC based and features realistic video images and highly interactive functionality. In particular, the system enables instant transformation of the virtual space and allows situations to be freely customized according to the condition and symptoms expressed by each patient. Positive results achieved in therapy assessments aimed at patients with panic disorder accompanying agoraphobia indicate the possibility of indoor treatment. Full utilization of the functionality available requires that the interactive functions be easily operable. Accordingly, there appears to be a need for usability testing aimed at determining whether or not a therapist can operate the system naturally while focusing fully on treatment. In this paper, the configuration of the virtual reality exposure system focusing on the subway environment is outlined. Further, the results of usability tests aimed at assessing how naturally it can be operated while focusing fully on treatment are described.
NASA Technical Reports Server (NTRS)
Mccune, M. C.
1981-01-01
The advanced real time system (ARTS) was tested utilizing existing commercial system hardware and software which has been operating under advanced operating system (AOS) for several years in a multitasking, multiprocessing, and multiple computer environment. Experiences with ARTS in terms of compatibility with AOS, ease of transmission between AOS and ARTS, and functional areas of ARTS which were tested are discussed. Relative and absolute performance of ARTS versus AOS as measured in the system environment are also presented.
Intelligent tutoring in the spacecraft command/control environment
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.
1988-01-01
The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.
Linte, Cristian A; Moore, John; Wedlake, Chris; Bainbridge, Daniel; Guiraudon, Gérard M; Jones, Douglas L; Peters, Terry M
2009-03-01
An interventional system for minimally invasive cardiac surgery was developed for therapy delivery inside the beating heart, in absence of direct vision. A system was developed to provide a virtual reality (VR) environment that integrates pre-operative imaging, real-time intra-operative guidance using 2D trans-esophageal ultrasound, and models of the surgical tools tracked using a magnetic tracking system. Detailed 3D dynamic cardiac models were synthesized from high-resolution pre-operative MR data and registered within the intra-operative imaging environment. The feature-based registration technique was employed to fuse pre- and intra-operative data during in vivo intracardiac procedures on porcine subjects. This method was found to be suitable for in vivo applications as it relies on easily identifiable landmarks, and hence, it ensures satisfactory alignment of pre- and intra-operative anatomy in the region of interest (4.8 mm RMS alignment accuracy) within the VR environment. Our initial experience in translating this work to guide intracardiac interventions, such as mitral valve implantation and atrial septal defect repair demonstrated feasibility of the methods. Surgical guidance in the absence of direct vision and with no exposure to ionizing radiation was achieved, so our virtual environment constitutes a feasible candidate for performing various off-pump intracardiac interventions.
NASA Technical Reports Server (NTRS)
Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.
2014-01-01
The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Burns, H. D.; Clinton, R. G.; Schumacher, D.; Spann, J. F.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas.
Pilot workload, performance and aircraft control automation
NASA Technical Reports Server (NTRS)
Hart, S. G.; Sheridan, T. B.
1984-01-01
Conceptual and practical issues associated with the design, operation, and performance of advanced systems and the impact of such systems on the human operators are reviewed. The development of highly automated systems is driven by the availability of new technology and the requirement that operators safely and economically perform more and more activities in increasingly difficult and hostile environments. It is noted that the operators workload may become a major area of concern in future design considerations. Little research was done to determine how automation and workload relate to each other, although it is assumed that the abstract, supervisory, or management roles that are performed by operators of highly automated systems will impose increased mental workload. The relationship between performance and workload is discussed in relation to highly complex and automated environments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are operating correctly? 62.15185 Section 62.15185 Protection of Environment... make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems are operating correctly? 60.2940 Section 60.2940 Protection of Environment... monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b) Complete your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems are operating correctly? 60.3039 Section 60.3039 Protection of Environment... emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are operating correctly? 60.2940 Section 60.2940 Protection of Environment... monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b) Complete your...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are operating correctly? 60.2940 Section 60.2940 Protection of Environment... monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b) Complete your...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are operating correctly? 60.3039 Section 60.3039 Protection of Environment... emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems are operating correctly? 62.15185 Section 62.15185 Protection of Environment... make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems are operating correctly? 60.3039 Section 60.3039 Protection of Environment... emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b...
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are operating correctly? 60.3039 Section 60.3039 Protection of Environment... emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems are operating correctly? 62.15185 Section 62.15185 Protection of Environment... make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems are operating correctly? 60.3039 Section 60.3039 Protection of Environment... emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure carbon monoxide and oxygen. (b...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are operating correctly? 62.15185 Section 62.15185 Protection of Environment... make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems are operating correctly? 62.15185 Section 62.15185 Protection of Environment... make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring system...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring system...
Kawamura, Kazuya; Kobayashi, Yo; Fujie, Masakatsu G
2010-01-01
Tele-surgery enables medical care even in remote regions, and has been accomplished in clinical cases by means of dedicated communication lines. To make tele-surgery a more widespread method of providing medical care, a surgical environment needs to be made available using public lines of communication, such as the Internet. Moreover, a support system during surgery is required, as the use of surgical tools is performed in an environment subject to delay. In our research, we focus on the operability of specific tasks conducted by surgeons during a medical procedure, with the aim of clarifying, by means of a simulation, the optimum environment for robotic tele-surgery. In the study, we set up experimental systems using our proposed simulation system. In addition, we investigate the mental workloads on subjects and verify the effect of visual-assistance information as a pilot study. The operability of the task of gripping soft tissue was evaluated using a subjective workload assessment tool, the NASA Task Load Index. Results show that the tasks were completed, but the workload did not improve to less than 300ms and 400ms in the simulated environment. Verifying the effect of the support system was an important task under a more-than 200ms delay using this experiment, and future studies will evaluate the operability of the system under varying conditions of comfort. In addition, an intra-operative assistance system will be constructed using a simulation.
40 CFR 63.7945 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What are my monitoring installation, operation, and maintenance requirements? 63.7945 Section 63.7945 Protection of Environment ENVIRONMENTAL... Remediation Continuous Monitoring Systems § 63.7945 What are my monitoring installation, operation, and...
40 CFR 63.7945 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What are my monitoring installation, operation, and maintenance requirements? 63.7945 Section 63.7945 Protection of Environment ENVIRONMENTAL... Remediation Continuous Monitoring Systems § 63.7945 What are my monitoring installation, operation, and...
40 CFR 63.7945 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What are my monitoring installation, operation, and maintenance requirements? 63.7945 Section 63.7945 Protection of Environment ENVIRONMENTAL... Remediation Continuous Monitoring Systems § 63.7945 What are my monitoring installation, operation, and...
40 CFR 63.7945 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are my monitoring installation, operation, and maintenance requirements? 63.7945 Section 63.7945 Protection of Environment ENVIRONMENTAL... Remediation Continuous Monitoring Systems § 63.7945 What are my monitoring installation, operation, and...
40 CFR 63.7945 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 14 2013-07-01 2013-07-01 false What are my monitoring installation, operation, and maintenance requirements? 63.7945 Section 63.7945 Protection of Environment ENVIRONMENTAL... Remediation Continuous Monitoring Systems § 63.7945 What are my monitoring installation, operation, and...
NASA Technical Reports Server (NTRS)
Ewing, D. E.
1972-01-01
A modular approach for assessing the affects of radiation environments on man in operational systems has been developed. The feasibility of the model has been proved and the practicality has been assessed. It has been applied to one operational system to date and information obtained has been submitted to systems analysts and mission planners for the assessment of man's vulnerability and impact on systems survivability. In addition, the model has been developed so that the radiobiological data can be input to a sophisticated man-machine interface model to properly relate the radiobiological stress with other mission stresses including the effects of a degraded system.
Space Medicine in the Human System Integration Process
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.
2010-01-01
This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.
Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven; Ring, Robert
2016-01-01
Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system in which it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for suggesting epistemic component uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide one example for assigning environmental factors uncertainty when translating between operating environments for the microelectronic part-type components. The heuristic guidelines will be followed by uncertainty-importance routines to assess the need for more applicable data to reduce model uncertainty.
Tower-Related Major System Development Programs
DOT National Transportation Integrated Search
1978-03-01
This report is devoted to the present and near future states of the tower cab environment, addresses those MSDP systems which may have an impact on the current tower cab environment, systems and/or operations. The systems included are: Discrete Addre...
Flight Validation of Mars Mission Technologies
NASA Technical Reports Server (NTRS)
Eberspeaker, P. J.
2000-01-01
Effective exploration and characterization of Mars will require the deployment of numerous surface probes, tethered balloon stations and free-flying balloon systems as well as larger landers and orbiting satellite systems. Since launch opportunities exist approximately every two years it is extremely critical that each and every mission maximize its potential for success. This will require significant testing of each system in an environment that simulates the actual operational environment as closely as possible. Analytical techniques and laboratory testing goes a long way in mitigating the inherent risks associated with space exploration, however they fall sort of accurately simulating the unpredictable operational environment in which these systems must function.
Evaluation of teleoperated surgical robots in an enclosed undersea environment.
Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J
2009-05-01
The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.
Large space system: Charged particle environment interaction technology
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Grier, N. T.
1979-01-01
Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.
NASA Technical Reports Server (NTRS)
Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.
1973-01-01
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.
The UNIX Operating System: A Model for Software Design.
ERIC Educational Resources Information Center
Kernighan, Brian W.; Morgan, Samuel P.
1982-01-01
Describes UNIX time-sharing operating system, including the program environment, software development tools, flexibility and ease of change, portability and other advantages, and five applications and three nonapplications of the system. (JN)
Real-time, interactive, visually updated simulator system for telepresence
NASA Technical Reports Server (NTRS)
Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.
1991-01-01
Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.
Common spaceborne multicomputer operating system and development environment
NASA Technical Reports Server (NTRS)
Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.
1994-01-01
A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.
Novel graphical environment for virtual and real-world operations of tracked mobile manipulators
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.
1993-08-01
A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
Reliability, Safety and Error Recovery for Advanced Control Software
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2003-01-01
For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.
In-Pile Instrumentation Multi- Parameter System Utilizing Photonic Fibers and Nanovision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric
2015-10-13
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In additionmore » to pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles.« less
Low-Temperature Power Electronics Program
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott
1997-01-01
Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Capture Systems... 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits in the following table...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Operating Limits for Capture Systems... 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits in the following table...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operating Limits for Capture Systems... Subpart IIII of Part 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Operating Limits for Capture Systems... Subpart IIII of Part 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Operating Limits for Capture Systems... Subpart IIII of Part 63—Operating Limits for Capture Systems and Add-On Control Devices If you are required to comply with operating limits by § 63.3093, you must comply with the applicable operating limits...
NASA Technical Reports Server (NTRS)
Fisher, Scott S.
1986-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calendar quarter of initial operation of the aircraft. (e) Any changes to the aircraft water system... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aircraft water system operations and...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule...
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calendar quarter of initial operation of the aircraft. (e) Any changes to the aircraft water system... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aircraft water system operations and...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule...
40 CFR 60.753 - Operational standards for collection and control systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... such that all collected gases are vented to a control system designed and operated in compliance with... and control systems. 60.753 Section 60.753 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Municipal Solid Waste Landfills § 60.753 Operational standards for collection and control...
40 CFR 60.753 - Operational standards for collection and control systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... such that all collected gases are vented to a control system designed and operated in compliance with... and control systems. 60.753 Section 60.753 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Municipal Solid Waste Landfills § 60.753 Operational standards for collection and control...
40 CFR 60.753 - Operational standards for collection and control systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... such that all collected gases are vented to a control system designed and operated in compliance with... and control systems. 60.753 Section 60.753 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Municipal Solid Waste Landfills § 60.753 Operational standards for collection and control...
Head-mounted display systems and the special operations soldier
NASA Astrophysics Data System (ADS)
Loyd, Rodney B.
1998-08-01
In 1997, the Boeing Company, working with DARPA under the Smart Modules program and the US Army Soldier Systems Command, embarked on an advanced research and development program to develop a wearable computer system tailored for use with soldiers of the US Special Operations Command. The 'special operations combat management system' is a rugged advanced wearable tactical computer, designed to provide the special operations soldier with enhanced situation awareness and battlefield information capabilities. Many issues must be considered during the design of wearable computers for a combat soldier, including the system weight, placement on the body with respect to other equipment, user interfaces and display system characteristics. During the initial feasibility study for the system, the operational environment was examined and potential users were interviewed to establish the proper display solution for the system. Many display system requirements resulted, such as head or helmet mounting, Night Vision Goggle compatibility, minimal visible light emissions, environmental performance and even the need for handheld or other 'off the head' type display systems. This paper will address these issues and other end user requirements for display systems for applications in the harsh and demanding environment of the Special Operations soldier.
The US National Transonic Facility, NTF
NASA Technical Reports Server (NTRS)
Bruce, Walter E., Jr.; Gloss, Blair B.
1989-01-01
The construction of the National Transonic Facility was completed in September 1982 and the start-up and checkout of tunnel systems were performed over the next two years. In August 1984, the Operational Readiness Review (ORR) was conducted and the facility was declared operational for final checkout of cryogenic instrumentation and control systems, and for the aerodynamic calibration and testing to commence. Also, the model access system for the cryogenic mode of operation would be placed into operation along with tunnel testing. Since the ORR, a host of operating problems resulting from the cryogenic environment were identified and solved. These range from making mechanical and electrical systems functional to eliminating temperature induced model vibration to coping with the outgassing of moisture from the thermal insulation. Additionally, a series of aerodynamic tests have demonstrated data quality and provided research data on several configurations. Some of the more significant efforts are reviewed since the ORR and the NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality are summarized.
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the “weather” of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.
1992-03-01
This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
Evaluation of glucose controllers in virtual environment: methodology and sample application.
Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman
2004-11-01
Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.
The Triangle of the Space Launch System Operations
NASA Astrophysics Data System (ADS)
Fayolle, Eric
2010-09-01
Firemen know it as “fire triangle”, mathematicians know it as “golden triangle”, sailormen know it as “Bermuda triangle”, politicians know it as “Weimar triangle”… This article aims to present a new aspect of that shape geometry in the space launch system world: “the triangle of the space launch system operations”. This triangle is composed of these three following topics, which have to be taken into account for any space launch system operation processing: design, safety and operational use. Design performance is of course taking into account since the early preliminary phase of a system development. This design performance is matured all along the development phases, thanks to consecutives iterations in order to respect the financial and timing constraints imposed to the development of the system. This process leads to a detailed and precise design to assess the required performance. Then, the operational use phase brings its batch of constraints during the use of the system. This phase is conducted by specific procedures for each operation. Each procedure has sequences for each sub-system, which have to be conducted in a very precise chronological way. These procedures can be processed by automatic way or manual way, with the necessity or not of the implication of operators, and in a determined environment. Safeguard aims to verify the respect of the specific constraints imposed to guarantee the safety of persons and property, the protection of public health and the environment. Safeguard has to be taken into account above the operational constraints of any space operation, without forgetting the highest safety level for the operators of the space operation, and of course without damaging the facilities or without disturbing the external environment. All space operations are the result of a “win-win” compromise between these three topics. Contrary to the fire triangle where one of the topics has to be suppressed in order to avoid the combustion, no topics at all should be suppressed in the triangle of the space launch system operations. Indeed, if safeguard is not considered since the beginning of the development phase, this development will not take into account safeguard constraints. Then, the operational phase will become very difficult because unavailable, to respect safety rules required for the operational use phase of the system. Taking into account safeguard constraints in late project phases will conduct to very high operational constraints, sometimes quite disturbing for the operator, even blocking to be able to consider the operational use phase as mature and optimized. On the contrary, if design performance is not taken into account in order to favor safeguard aspect in the operational use phase, system design will not be optimized, what will lead to high planning and timing impacts. The examples detailed in this article show the compromise for what each designer should confront with during the development of any system dealing with the safety of persons and property, the protection of public health and the environment.
Ubiquitous Wireless Smart Sensing and Control
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston
NASA Technical Reports Server (NTRS)
Wagner, Raymond
2013-01-01
Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
A Systematic Approach for Engagement Analysis Under Multitasking Environments
NASA Technical Reports Server (NTRS)
Zhang, Guangfan; Leddo, John; Xu, Roger; Richey, Carl; Schnell, Tom; McKenzie, Frederick; Li, Jiang
2011-01-01
An overload condition can lead to high stress for an operator and further cause substantial drops in performance. On the other extreme, in automated systems, an operator may become underloaded; in which case, it is difficult for the operator to maintain sustained attention. When an unexpected event occurs, either internal or external to the automated system, a disengaged operation may neglect, misunderstand, or respond slowly/inappropriately to the situation. In this paper, we discuss a systematic approach monitor for extremes of cognitive workload and engagement in multitasking environments. Inferences of cognitive workload ar engagement are based on subjective evaluations, objective performance measures, physiological signals, and task analysis results. The systematic approach developed In this paper aggregates these types of information collected under the multitasking environment and can provide a real-time assessment or engagement.
Virtual interface environment workstations
NASA Technical Reports Server (NTRS)
Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.
1988-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.
Video Information Communication and Retrieval/Image Based Information System (VICAR/IBIS)
NASA Technical Reports Server (NTRS)
Wherry, D. B.
1981-01-01
The acquisition, operation, and planning stages of installing a VICAR/IBIS system are described. The system operates in an IBM mainframe environment, and provides image processing of raster data. System support problems with software and documentation are discussed.
A Down-to-Earth Educational Operating System for Up-in-the-Cloud Many-Core Architectures
ERIC Educational Resources Information Center
Ziwisky, Michael; Persohn, Kyle; Brylow, Dennis
2013-01-01
We present "Xipx," the first port of a major educational operating system to a processor in the emerging class of many-core architectures. Through extensions to the proven Embedded Xinu operating system, Xipx gives students hands-on experience with system programming in a distributed message-passing environment. We expose the software primitives…
DeRobertis, Christopher V.; Lu, Yantian T.
2010-02-23
A method, system, and program storage device for creating a new user account or user group with a unique identification number in a computing environment having multiple user registries is provided. In response to receiving a command to create a new user account or user group, an operating system of a clustered computing environment automatically checks multiple registries configured for the operating system to determine whether a candidate identification number for the new user account or user group has been assigned already to one or more existing user accounts or groups, respectively. The operating system automatically assigns the candidate identification number to the new user account or user group created in a target user registry if the checking indicates that the candidate identification number has not been assigned already to any of the existing user accounts or user groups, respectively.
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike
2008-10-01
A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.
STOL Traffic environment and operational procedures
NASA Technical Reports Server (NTRS)
Schlundt, R. W.; Dewolf, R. W.; Ausrotas, R. A.; Curry, R. E.; Demaio, D.; Keene, D. W.; Speyer, J. L.; Weinreich, M.; Zeldin, S.
1972-01-01
The expected traffic environment for an intercity STOL transportation system is examined, and operational procedures are discussed in order to identify problem areas which impact STOL avionics requirements. Factors considered include: traffic densities, STOL/CTOL/VTOL traffic mix, the expect ATC environment, aircraft noise models and community noise models and community noise impact, flight paths for noise abatement, wind considerations affecting landing, approach and landing considerations, STOLport site selection, runway capacity, and STOL operations at jetports, suburban airports, and separate STOLports.
Feasibility Analysis and Prototyping of a Fast Autonomous Recon system
2017-06-01
Test and Evaluation Interim Contractor Support System Assessment OPERATIONAL USE AND SYSTEM SUPPORT System Operation in the User Environment...Sustaining Maintenance and Logistics Support Operational Testing System Modifications for Improvement Contractor Support System Assessment...helicopter but has the added benefit of high -speed flight similar to a fixed-wing aircraft. Figure 1 shows the two different flight modes of the V-22
Navigational Heads-Up Display: Will a Shipboard Augmented Electronic Navigation System Sink or Swim?
2015-03-01
of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE I 3. REPORT...empirical results demonstrate the viability of using such a system in an operation environment and support a need for further research and development...empirical results demonstrate the viability of using such a system in an operation environment and support a need for further research and development
Mission Operations and Navigation Toolkit Environment
NASA Technical Reports Server (NTRS)
Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.;
2009-01-01
MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The space station data management system involves networks of computing resources that must work cooperatively and reliably over an indefinite life span. This program requires a long schedule of modular growth and an even longer period of maintenance and operation. The development and operation of space station computing resources will involve a spectrum of systems and software life cycle activities distributed across a variety of hosts, an integration, verification, and validation host with test bed, and distributed targets. The requirement for the early establishment and use of an apporopriate Computer Systems and Software Engineering Support Environment is identified. This environment will support the Research and Development Productivity challenges presented by the space station computing system.
Game theory: applications for surgeons and the operating room environment.
McFadden, David W; Tsai, Mitchell; Kadry, Bassam; Souba, Wiley W
2012-11-01
Game theory is an economic system of strategic behavior, often referred to as the "theory of social situations." Very little has been written in the medical literature about game theory or its applications, yet the practice of surgery and the operating room environment clearly involves multiple social situations with both cooperative and non-cooperative behaviors. A comprehensive review was performed of the medical literature on game theory and its medical applications. Definitive resources on the subject were also examined and applied to surgery and the operating room whenever possible. Applications of game theory and its proposed dilemmas abound in the practicing surgeon's world, especially in the operating room environment. The surgeon with a basic understanding of game theory principles is better prepared for understanding and navigating the complex Operating Room system and optimizing cooperative behaviors for the benefit all stakeholders. Copyright © 2012 Mosby, Inc. All rights reserved.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
1994-04-18
because they represent a microkernel and monolithic kernel approach to MLS operating system issues. TMACH is I based on MACH, a distributed operating...the operating system is [L.sed on a microkernel design or a monolithic kernel design. This distinction requires some caution since monolithic operating...are provided by 3 user-level processes, in contrast to standard UNIX, which has a large monolithic kernel that pro- I - 22 - Distributed O)perating
Virtual workstation - A multimodal, stereoscopic display environment
NASA Astrophysics Data System (ADS)
Fisher, S. S.; McGreevy, M.; Humphries, J.; Robinett, W.
1987-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use in a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.
MODIS information, data and control system (MIDACS) operations concepts
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios.
An Overview of the Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope and purpose of the space environments and spacecraft effects organization and describe the TWG's and their relationship to the functional areas.
A new intelligent curtain control system based on 51 single chip microcomputer
NASA Astrophysics Data System (ADS)
Sun, Tuan; Wang, Yanhua; Wu, Mengmeng
2017-04-01
This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems are operating correctly? 60.2940 Section 60.2940 Protection of Environment... 16, 2006 Monitoring § 60.2940 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems are operating correctly? 60.2940 Section 60.2940 Protection of Environment... 16, 2006 Monitoring § 60.2940 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission monitoring systems are operating correctly? 60.1240 Section 60.1240 Protection of Environment... Continuous Emission Monitoring § 60.1240 How do I make sure my continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous...
Durability and Life of Ceramic Matrix Composites in Combustion Environment
NASA Technical Reports Server (NTRS)
Tewari, Surendra
1997-01-01
It is now generally recognized that the next frontier in the commercial air travel will be achieved by an optimum combination of the concepts being used for the air and space transports. It will depend upon the new engines specifically designed to meet the demanding strength, temperature, environment and economy requirements. The successful development of an advanced propulsion system for a 21st Century High Speed Civil Transport will require key advances in the combustor system. Minimizing nitrous oxide (NO(x)) emission is critical, since the deleterious interaction within the ozone layer would occur at the proposed vehicle cruise level of about 75,000 feet. In order to achieve the low NOx levels an efficient combustor operating at controlled equivalence ratios and high combustion temperatures are required. This requires a combustor, whose one portion will be operating in an oxidizing environment while the other portion will operate in a reducing environment. This rather unusual requirement has introduced considerable challenge to the materials scientists and engineers, the development of material systems capable of long-life at high temperatures (up to 3000 F) in an oxidizing and/or reducing environment.
Heliospheric Physics and NASA's Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2007-01-01
The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operating standards. 265.1201 Section 265.1201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...) Provide monitoring and inspection procedures that assure the controls and containment systems are working...
The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset
NASA Technical Reports Server (NTRS)
Zank, G. P.; Spann, James F.
2014-01-01
The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.
Environmental interactions of the Space Station Freedom electric power system
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Lu, Cheng-Yi
1991-01-01
The Space Station Freedom operates in a low earth orbit (LEO) environment. Such operation results in different potential interactions with the Space Station systems including the Electric Power System (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeoroid and orbital debris impacts, plasma effects, ionizing radiation, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are briefly described and the results of analyses and testing programs planned and performed thus far to resolve environmental concerns related to the EPS and its function in LEO environment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Definitions. 1700.3 Section 1700.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE; UNIFORM NATIONAL... operation of a marine propulsion system, shipboard maneuvering system, crew habitability system, or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Definitions. 1700.3 Section 1700.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE; UNIFORM NATIONAL... operation of a marine propulsion system, shipboard maneuvering system, crew habitability system, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Definitions. 1700.3 Section 1700.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE; UNIFORM NATIONAL... operation of a marine propulsion system, shipboard maneuvering system, crew habitability system, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Definitions. 1700.3 Section 1700.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE; UNIFORM NATIONAL... operation of a marine propulsion system, shipboard maneuvering system, crew habitability system, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Definitions. 1700.3 Section 1700.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY AND DEPARTMENT OF DEFENSE; UNIFORM NATIONAL... operation of a marine propulsion system, shipboard maneuvering system, crew habitability system, or...
Multifunctional millimeter-wave radar system for helicopter safety
NASA Astrophysics Data System (ADS)
Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.
2012-06-01
A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.
Task planning and control synthesis for robotic manipulation in space applications
NASA Technical Reports Server (NTRS)
Sanderson, A. C.; Peshkin, M. A.; Homem-De-mello, L. S.
1987-01-01
Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets.
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir
2014-06-01
This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.
Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.
2009-01-01
Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.
Systems Issues In Terrestrial Fiber Optic Link Reliability
NASA Astrophysics Data System (ADS)
Spencer, James L.; Lewin, Barry R.; Lee, T. Frank S.
1990-01-01
This paper reviews fiber optic system reliability issues from three different viewpoints - availability, operating environment, and evolving technologies. Present availability objectives for interoffice links and for the distribution loop must be re-examined for applications such as the Synchronous Optical Network (SONET), Fiber-to-the-Home (FTTH), and analog services. The hostile operating environments of emerging applications (such as FTTH) must be carefully considered in system design as well as reliability assessments. Finally, evolving technologies might require the development of new reliability testing strategies.
Protection against hostile algorithms in UNIX software
NASA Astrophysics Data System (ADS)
Radatti, Peter V.
1996-03-01
Protection against hostile algorithms contained in Unix software is a growing concern without easy answers. Traditional methods used against similar attacks in other operating system environments such as MS-DOS or Macintosh are insufficient in the more complex environment provided by Unix. Additionally, Unix provides a special and significant problem in this regard due to its open and heterogeneous nature. These problems are expected to become both more common and pronounced as 32 bit multiprocess network operating systems become popular. Therefore, the problems experienced today are a good indicator of the problems and the solutions that will be experienced in the future, no matter which operating system becomes predominate.
Present and future of vision systems technologies in commercial flight operations
NASA Astrophysics Data System (ADS)
Ward, Jim
2016-05-01
The development of systems to enable pilots of all types of aircraft to see through fog, clouds, and sandstorms and land in low visibility has been widely discussed and researched across aviation. For military applications, the goal has been to operate in a Degraded Visual Environment (DVE), using sensors to enable flight crews to see and operate without concern to weather that limits human visibility. These military DVE goals are mainly oriented to the off-field landing environment. For commercial aviation, the Federal Aviation Agency (FAA) implemented operational regulations in 2004 that allow the flight crew to see the runway environment using an Enhanced Flight Vision Systems (EFVS) and continue the approach below the normal landing decision height. The FAA is expanding the current use and economic benefit of EFVS technology and will soon permit landing without any natural vision using real-time weather-penetrating sensors. The operational goals of both of these efforts, DVE and EFVS, have been the stimulus for development of new sensors and vision displays to create the modern flight deck.
40 CFR 63.744 - Standards: Cleaning operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Cleaning operations. 63.744...
40 CFR 63.744 - Standards: Cleaning operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Cleaning operations. 63.744...
40 CFR 63.744 - Standards: Cleaning operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards: Cleaning operations. 63.744...
40 CFR 63.744 - Standards: Cleaning operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Cleaning operations. 63.744...
40 CFR 63.744 - Standards: Cleaning operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Cleaning operations. 63.744...
1987-11-01
The purpose of the workshop was to bring together people whose interests lie in the areas of operating I systems , programming languages, and formal... operating system support, and applications. There were parallel discussions on scheduling and distributed languages, and on real-time and operating ...number of key challenges: * Distributed systems , languages, environments - Make transactions efficient. Integrate them into the operating system
Space Environment Testing of Photovoltaic Array Systems
NASA Technical Reports Server (NTRS)
Phillips, Brandon; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.
2015-01-01
To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry.
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Design and operating standards. 264.1201 Section 264.1201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... inspection procedures that assure the controls and containment systems are working as designed and that...
Human-Robot Interaction in High Vulnerability Domains
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2016-01-01
Future NASA missions will require successful integration of the human with highly complex systems. Highly complex systems are likely to involve humans, automation, and some level of robotic assistance. The complex environments will require successful integration of the human with automation, with robots, and with human-automation-robot teams to accomplish mission critical goals. Many challenges exist for the human performing in these types of operational environments with these kinds of systems. Systems must be designed to optimally integrate various levels of inputs and outputs based on the roles and responsibilities of the human, the automation, and the robots; from direct manual control, shared human-robotic control, or no active human control (i.e. human supervisory control). It is assumed that the human will remain involved at some level. Technologies that vary based on contextual demands and on operator characteristics (workload, situation awareness) will be needed when the human integrates into these systems. Predictive models that estimate the impact of the technologies on the system performance and the on the human operator are also needed to meet the challenges associated with such future complex human-automation-robot systems in extreme environments.
Scientific Hybrid Realtiy Environments (SHyRE): Bringing Field Work into the Laboratory
NASA Technical Reports Server (NTRS)
Miller, M. J.; Graff, T.; Young, K.; Coan, D.; Whelley, P.; Richardson, J.; Knudson, C.; Bleacher, J.; Garry, W. B.; Delgado, F.;
2018-01-01
The use of analog environments in preparing for future planetary surface exploration is key in ensuring we both understand the processes shaping other planetary surfaces as well as develop the technology, systems, and concepts of operations necessary to operate in these geologic environments. While conducting fieldwork and testing technology in relevant terrestrial field environments is crucial in this development, it is often the case that operational testing requires a time-intensive iterative process that is hampered by the rigorous conditions (e.g. terrain, weather, location, etc.) found in most field environments. Additionally, field deployments can be costly and must be scheduled months in advance, therefore limiting the testing opportunities required to investigate and compare science operational concepts to only once or twice per year.
Intelligent mobility research for robotic locomotion in complex terrain
NASA Astrophysics Data System (ADS)
Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit
2006-05-01
The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.
An approach to a real-time distribution system
NASA Technical Reports Server (NTRS)
Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui
1990-01-01
The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.
Exchange Service Station Gasoline Pumping Operation Simulation.
1980-06-01
an event step simulation model of the Naval operation.s The model has been developed as a management tool and aid to decision making. The environment...has been developed as a management tool and aid to decision making. The environment in which the system operates is discussed and the significant...of the variables such as arrival rates; while others are primarily controlled by managerial decision making, for example the number of pumps available
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
Pressure Safety: Advanced Live 11459
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, George
Many Los Alamos National Laboratory (LANL) operations use pressure equipment and systems. Failure to follow proper procedures when designing or operating pressure systems can result in injuries to personnel and damage to equipment and/or the environment. This manual presents an overview of the requirements and recommendations that address the safe design and operation of pressure systems at LANL.
The Department of Homeland Security’s Pursuit of Data-Driven Decision Making
2015-12-01
agencies’ information management systems pertaining to mission support and business operations 1 KT...Directorate’s operating environment. xviii managed . Meanwhile, adding to the intrinsic organizational change management challenges is the idea that...a timely manner. The lack of a single, enterprise-wide information management system has resulted in numerous, disparate systems operating within
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1993-01-01
PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.
NASA Technical Reports Server (NTRS)
Edwards, B. B.; Coffey, E. W.
1974-01-01
The theory and operation of the scanner portion of the laser Doppler system for detecting and monitoring aircraft trailing vortices in an airport environment are discussed. Schematics, wiring diagrams, component values, and operation and checkout procedures are included.
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei
2017-03-01
The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.
Assessment of Delivery Accuracy in an Operational-Like Environment
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Wynnyk, Mitch
2016-01-01
In order to enable arrival management concepts and solutions in a Next Generation Air Transportation System (NextGen) environment, ground-based sequencing and scheduling functions were developed to support metering operations in the National Airspace System. These sequencing and scheduling tools are designed to assist air traffic controllers in developing an overall arrival strategy, from enroute down to the terminal area boundary. NASA developed a ground system concept and protoype capability called Terminal Sequencing and Spacing (TSAS) to extend metering operations into the terminal area to the runway. To demonstrate the use of these scheduling and spacing tools in an operational-like environment, the FAA, NASA, and MITRE conducted an Operational Integration Assessment (OIA) of a prototype TSAS system at the FAA's William J. Hughes Technical Center (WJHTC). This paper presents an analysis of the arrival management strategies utilized and delivery accuracy achieved during the OIA. The analysis demonstrates how en route preconditioning, in various forms, and schedule disruptions impact delivery accuracy. As the simulation spanned both enroute and terminal airspace, the use of Ground Interval Management - Spacing (GIM-S) enroute speed advisories was investigated. Delivery accuracy was measured as the difference between the Scheduled Time of Arrival (STA) and the Actual Time of Arrival (ATA). The delivery accuracy was computed across all runs conducted during the OIA, which included deviations from nominal operations which are known to commonly occur in real operations, such as schedule changes and missed approaches. Overall, 83% of all flights were delivered into the terminal airspace within +/- 30 seconds of their STA and 94% of flights were delivered within +/- 60 seconds. The meter fix delivery accuracy standard deviation was found to be between 36 and 55 seconds across all arrival procedures. The data also showed when schedule disruptions were excluded, the percentage of aircraft delivered within +/- 30 seconds was between 85 and 90% across the various arrival procedures at the meter fix. This paper illustrates the ability to meet new delivery accuracy requirements in an operational-like environment using operational systems and NATCA controller participants, while also including common events that might cause disruptions to the schedule and overall system.
NASA Technical Reports Server (NTRS)
Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven
2010-01-01
Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.
NASA Astrophysics Data System (ADS)
Gao, Fang; Rey-de-Castro, Roberto; Wang, Yaoxiong; Rabitz, Herschel; Shuang, Feng
2016-05-01
Many systems under control with an applied field also interact with the surrounding environment. Understanding the control mechanisms has remained a challenge, especially the role played by the interaction between the field and the environment. In order to address this need, here we expand the scope of the Hamiltonian-encoding and observable-decoding (HE-OD) technique. HE-OD was originally introduced as a theoretical and experimental tool for revealing the mechanism induced by control fields in closed quantum systems. The results of open-system HE-OD analysis presented here provide quantitative mechanistic insights into the roles played by a Markovian environment. Two model open quantum systems are considered for illustration. In these systems, transitions are induced by either an applied field linked to a dipole operator or Lindblad operators coupled to the system. For modest control yields, the HE-OD results clearly show distinct cooperation between the dynamics induced by the optimal field and the environment. Although the HE-OD methodology introduced here is considered in simulations, it has an analogous direct experimental formulation, which we suggest may be applied to open systems in the laboratory to reveal mechanistic insights.
Distributed Systems: Interconnection and Fault Tolerance Studies
1992-01-01
real - time operating system , a number of new techniques have to be...problem is at the heart of a successful implementation of a real - time operating system in a distributed environment. Our studies of the issues...land, College Park MD 20742, January 1991. [i1] 6 lafur Gudmundsson, Daniel Moss6, Ashok K. Agrawala, and Satish K. Tripathi. MARUTI a hard real - time operating system .
A Further Look at Technologies and Capabilities for Stabilization and Reconstruction Operations
2007-09-01
in current S&R operations in Iraq and Afghanistan due to the infrequency of major combat operations. However, other ABCS sub- systems are vital to S&R...complex environments. In terms of the need for an integrated S&R operational planning and execution C2 system , there continues to be a challenge in ... systems (which speaks to the over-reliance on cell phones as a means of
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2014-01-01
In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.
The Transportable Applications Environment - An interactive design-to-production development system
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.
1988-01-01
An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.
Electronic Components and Systems for Cryogenic Space Applications
NASA Technical Reports Server (NTRS)
Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.
2001-01-01
Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
Space Environments and Spacecraft Effects Organization Concept
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal government agencies, and the commercial sector to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lessons learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support all mission phases from mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will describe the scope of the TWGs and their relationship to the functional areas, and discuss an organizational structure for this space environments and spacecraft effects organization.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).
Development and Operation of a Database Machine for Online Access and Update of a Large Database.
ERIC Educational Resources Information Center
Rush, James E.
1980-01-01
Reviews the development of a fault tolerant database processor system which replaced OCLC's conventional file system. A general introduction to database management systems and the operating environment is followed by a description of the hardware selection, software processes, and system characteristics. (SW)
Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Anderson, B. Jeffrey
2004-01-01
Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.
Derived virtual devices: a secure distributed file system mechanism
NASA Technical Reports Server (NTRS)
VanMeter, Rodney; Hotz, Steve; Finn, Gregory
1996-01-01
This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.
Military applications of emission and susceptibility data
NASA Astrophysics Data System (ADS)
Kohlbacher, Howard; Walker, William
A basic design consideration for new military communications-electronics (C-E) equipment is that it be electromagnetically compatible with the environment in which it will operate. A military standard (MIL-STD-461B) describes the design requirements for the control of the unintentional electromagnetic emission and susceptibility characteristics of electronic equipment and subsystems designed or procured by the US Department of Defense. For new systems which fail the test standards of MIL-STD-461B with regard to radiated susceptibility (RSO3) or radiated emissions (RE02), a decision must be made to fix the new system or to field it without a fix. A procedure to aid in the decision process is outlined. The minimum separation distances required between a failed test system and other C-E equipment in its environment to avoid interference are determined. If this distance is operationally acceptable, the failed unit may be considered to be operationally compatible with its electromagnetic environment.
Extravehicular Activity and Planetary Protection
NASA Technical Reports Server (NTRS)
Buffington, J. A.; Mary, N. A.
2015-01-01
The first human mission to Mars will be the farthest distance that humans have traveled from Earth and the first human boots on Martian soil in the Exploration EVA Suit. The primary functions of the Exploration EVA Suit are to provide a habitable, anthropometric, pressurized environment for up to eight hours that allows crewmembers to perform autonomous and robotically assisted extravehicular exploration, science/research, construction, servicing, and repair operations on the exterior of the vehicle, in hazardous external conditions of the Mars local environment. The Exploration EVA Suit has the capability to structurally interface with exploration vehicles via next generation ingress/egress systems. Operational concepts and requirements are dependent on the mission profile, surface assets, and the Mars environment. This paper will discuss the effects and dependencies of the EVA system design with the local Mars environment and Planetary Protection. Of the three study areas listed for the workshop, EVA identifies most strongly with technology and operations for contamination control.
40 CFR 51.119 - Intermittent control systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., 1970, and was operated as specified by the operating system of the ICS before December 31, 1970. (3... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Intermittent control systems. 51.119... Intermittent control systems. (a) The use of an intermittent control system (ICS) may be taken into account in...
40 CFR 51.119 - Intermittent control systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 1970, and was operated as specified by the operating system of the ICS before December 31, 1970. (3... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Intermittent control systems. 51.119... Intermittent control systems. (a) The use of an intermittent control system (ICS) may be taken into account in...
40 CFR 51.119 - Intermittent control systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., 1970, and was operated as specified by the operating system of the ICS before December 31, 1970. (3... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Intermittent control systems. 51.119... Intermittent control systems. (a) The use of an intermittent control system (ICS) may be taken into account in...
40 CFR 51.119 - Intermittent control systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 1970, and was operated as specified by the operating system of the ICS before December 31, 1970. (3... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Intermittent control systems. 51.119... Intermittent control systems. (a) The use of an intermittent control system (ICS) may be taken into account in...
40 CFR 51.119 - Intermittent control systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., 1970, and was operated as specified by the operating system of the ICS before December 31, 1970. (3... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Intermittent control systems. 51.119... Intermittent control systems. (a) The use of an intermittent control system (ICS) may be taken into account in...
Electronic Components and Circuits for Extreme Temperature Environments
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Dickman, John E.; Gerber, Scott
2003-01-01
Planetary exploration missions and deep space probes require electrical power management and control systems that are capable of efficient and reliable operation in very low temperature environments. Presently, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. Electronics capable of operation at cryogenic temperatures will not only tolerate the hostile environment of deep space but also reduce system size and weight by eliminating or reducing the radioisotope heating units and their associate structures; thereby reducing system development as well as launch costs. In addition, power electronic circuits designed for operation at low temperatures are expected to result in more efficient systems than those at room temperature. This improvement results from better behavior and tolerance in the electrical and thermal properties of semiconductor and dielectric materials at low temperatures. The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components, circuits, and systems suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices and systems for reliable use down to cryogenic temperatures. Some of the commercial-off-the-shelf as well as developed components that are being characterized include switching devices, resistors, magnetics, and capacitors. Semiconductor devices and integrated circuits including digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being investigated for potential use in low temperature applications. An overview of the NASA Glenn Research Center Low Temperature Electronic Program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained through in-house component and circuit testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.
Operation of commercial R3000 processors in the low earth orbit (LEO) space environment
NASA Astrophysics Data System (ADS)
Kaschmitter, J. L.; Shaeffer, D. L.; Colella, N. J.; McKnett, C. L.; Coakley, P. G.
1991-12-01
Spacecraft processors must operate with minimal degradation of performance in the LEO radiation environment, which includes the effects of total accumulated ionizing dose and single event phenomena (SEP) caused by protons and cosmic rays. Commercially available microprocessors can offer a number of advantages relative to radiation-hardened devices but are not normally designed to tolerate effects induced by the LEO environment. Extensive testing of the MIPS R3000 Reduced Instruction Set Computer (RISC) microprocessor family for operation in LEO environments is reported. The authors have characterized total dose and SEP effects for altitudes and inclinations of interest to systems operating in LEO, and they postulate techniques for detection and alleviation of SEP effects based on experimental results.
2017-06-09
reports, a potential solution to communication shortfalls was the use of high frequency (HF) Harris radios that possess complex encryption... communications , positioning, and navigation do not properly function, is known as a Degraded, Denied, Disrupted Space Operating Environment (D3SOE).7...battalion operates in a D3SOE. This was a very relevant question for a force increasingly reliant on frequency modulated (FM) radio communication systems
JPL Space Telecommunications Radio System Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike
2013-01-01
A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).
Packaging of fiber lasers and components for use in harsh environments
NASA Astrophysics Data System (ADS)
Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.
2016-03-01
High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.
New Space Weather Systems Under Development and Their Contribution to Space Weather Management
NASA Astrophysics Data System (ADS)
Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.
2008-12-01
There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, S.; Ralstin, S.
1992-04-01
Many computer security plans specify that only a small percentage of the data processed will be classified. Thus, the bulk of the data on secure systems must be unclassified. Secure limited access sites operating approved classified computing systems sometimes also have a system ostensibly containing only unclassified files but operating within the secure environment. That system could be networked or otherwise connected to a classified system(s) in order that both be able to use common resources for file storage or computing power. Such a system must operate under the same rules as the secure classified systems. It is in themore » nature of unclassified files that they either came from, or will eventually migrate to, a non-secure system. Today, unclassified files are exported from systems within the secure environment typically by loading transport media and carrying them to an open system. Import of unclassified files is handled similarly. This media transport process, sometimes referred to as sneaker net, often is manually logged and controlled only by administrative procedures. A comprehensive system for secure bi-directional transfer of unclassified files between secure and open environments has yet to be developed. Any such secure file transport system should be required to meet several stringent criteria. It is the purpose of this document to begin a definition of these criteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, S.; Ralstin, S.
1992-01-01
Many computer security plans specify that only a small percentage of the data processed will be classified. Thus, the bulk of the data on secure systems must be unclassified. Secure limited access sites operating approved classified computing systems sometimes also have a system ostensibly containing only unclassified files but operating within the secure environment. That system could be networked or otherwise connected to a classified system(s) in order that both be able to use common resources for file storage or computing power. Such a system must operate under the same rules as the secure classified systems. It is in themore » nature of unclassified files that they either came from, or will eventually migrate to, a non-secure system. Today, unclassified files are exported from systems within the secure environment typically by loading transport media and carrying them to an open system. Import of unclassified files is handled similarly. This media transport process, sometimes referred to as sneaker net, often is manually logged and controlled only by administrative procedures. A comprehensive system for secure bi-directional transfer of unclassified files between secure and open environments has yet to be developed. Any such secure file transport system should be required to meet several stringent criteria. It is the purpose of this document to begin a definition of these criteria.« less
Review of biased solar arraay. Plasma interaction studies
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1981-01-01
The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.
40 CFR 1039.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the environment. Exhaust-gas recirculation (EGR) and turbochargers are not aftertreatment. Aircraft..., modulating, delaying, or deactivating the operation of any part of the emission-control system. Brake power... suppression operations. Emission-control system means any device, system, or element of design that controls...
Operational Management of Area Environment.
ERIC Educational Resources Information Center
Sprague, George W.
Three phases leading to the automation of the mechanical building systems on the Harvard campus are described. The systems allow a single operator to monitor and control all the mechanical systems, plus fire, flood, and security alarms, for all buildings in a large area of the campus. (JT)
Earth orbital teleoperator systems evaluation
NASA Technical Reports Server (NTRS)
Shields, N. L., Jr.; Slaughter, P. H.; Brye, R. G.; Henderson, D. E.
1979-01-01
The mechanical extension of the human operator to remote and specialized environments poses a series of complex operational questions. A technical and scientific team was organized to investigate these questions through conducting specific laboratory and analytical studies. The intent of the studies was to determine the human operator requirements for remotely manned systems and to determine the particular effects that various system parameters have on human operator performance. In so doing, certain design criteria based on empirically derived data concerning the ultimate control system, the human operator, were added to the Teleoperator Development Program.
SLS-SPEC-159 Cross-Program Design Specification for Natural Environments (DSNE) Revision E
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2017-01-01
The DSNE completes environment-related specifications for architecture, system-level, and lower-tier documents by specifying the ranges of environmental conditions that must be accounted for by NASA ESD Programs. To assure clarity and consistency, and to prevent requirements documents from becoming cluttered with extensive amounts of technical material, natural environment specifications have been compiled into this document. The intent is to keep a unified specification for natural environments that each Program calls out for appropriate application. This document defines the natural environments parameter limits (maximum and minimum values, energy spectra, or precise model inputs, assumptions, model options, etc.), for all ESD Programs. These environments are developed by the NASA Marshall Space Flight Center (MSFC) Natural Environments Branch (MSFC organization code: EV44). Many of the parameter limits are based on experience with previous programs, such as the Space Shuttle Program. The parameter limits contain no margin and are meant to be evaluated individually to ensure they are reasonable (i.e., do not apply unrealistic extreme-on-extreme conditions). The natural environments specifications in this document should be accounted for by robust design of the flight vehicle and support systems. However, it is understood that in some cases the Programs will find it more effective to account for portions of the environment ranges by operational mitigation or acceptance of risk in accordance with an appropriate program risk management plan and/or hazard analysis process. The DSNE is not intended as a definition of operational models or operational constraints, nor is it adequate, alone, for ground facilities which may have additional requirements (for example, building codes and local environmental constraints). "Natural environments," as the term is used here, refers to the environments that are not the result of intended human activity or intervention. It consists of a variety of external environmental factors (most of natural origin and a few of human origin) which impose restrictions or otherwise impact the development or operation of flight vehicles and destination surface systems.
Advanced optical blade tip clearance measurement system
NASA Technical Reports Server (NTRS)
Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.
1978-01-01
An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.
NASA Technical Reports Server (NTRS)
Jex, Henry R.
1991-01-01
A review is given of a wide range of simulations in which operator steering control of a vehicle is involved and the dominant-clues, closed-loop bandwidth, measured operator effective time-delay, and ratio of bandwidth-to-inverse delay are summarized. A correlation of kinetosis with dynamic scene field-of-view is shown. The use of moving base simulators to improve the validity of locomotion teleoperations is discussed. some rules-of-thumb for good 'feel-system' simulation, such as for control manipulanda are given. Finally, simulation tests of teleoperators and virtual environments should include three types of measures: system performance, operator (or robot) 'behavior', and mental workload evaluations.
1980-12-01
type of personnel likely to he using them, (3) the physical environment , (4) health and operational safety considerations. Carefully selected portable...operated apparatus must have the battery and energy-limiting components located outside the hazardous environment , and be so constructed that a direct...designate effect on equipment or personnel), based upon the most severe result of personnel error, procedural deficiencies, environment , design
NASA Astrophysics Data System (ADS)
Boyle, P.; Chen, D.; Christ, N.; Clark, M.; Cohen, S.; Cristian, C.; Dong, Z.; Gara, A.; Joo, B.; Jung, C.; Kim, C.; Levkova, L.; Liao, X.; Liu, G.; Li, S.; Lin, H.; Mawhinney, R.; Ohta, S.; Petrov, K.; Wettig, T.; Yamaguchi, A.
2005-03-01
The QCDOC project has developed a supercomputer optimised for the needs of Lattice QCD simulations. It provides a very competitive price to sustained performance ratio of around $1 USD per sustained Megaflop/s in combination with outstanding scalability. Thus very large systems delivering over 5 TFlop/s of performance on the evolution of a single lattice is possible. Large prototypes have been built and are functioning correctly. The software environment raises the state of the art in such custom supercomputers. It is based on a lean custom node operating system that eliminates many unnecessary overheads that plague other systems. Despite the custom nature, the operating system implements a standards compliant UNIX-like programming environment easing the porting of software from other systems. The SciDAC QMP interface adds internode communication in a fashion that provides a uniform cross-platform programming environment.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
Source Data Applicability Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven D.; Ring, Robert W.
2016-01-01
Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system where it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for assigning uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide a case study example by translating Ground Benign (GB) and Ground Mobile (GM) to the Airborne Uninhabited Fighter (AUF) environment for three electronic components often found in space launch vehicle control systems. The classification method will be followed by uncertainty-importance routines to assess the need to for more applicable data to reduce uncertainty.
Inspection system qualification and integration into the mask manufacturing environment
NASA Astrophysics Data System (ADS)
LaVoy, Rosanne; Fujioka, Ron
1995-12-01
Integration of a mask inspection system into a manufacturing environment poses new challenges to both the inspection engineer and the equipment supplier. Traditional specifications (limited primarily to sensitivity and uptime) are no longer sufficient to successfully integrate a system into a 7 by 24 manufacturing area with multiple systems. Issues such as system sensitivity matching, sensitivity characterization by defect type, operator training and certification standards, and real-time SPC control of the systems must be addressed. This paper outlines some of the techniques Intel Mask Operation uses for integration of a new inspection system into the manufacturing line. Specifically moving a beta- site type tool out of the beta-site mode and into volume production. Examples are presented, including installation for manufacturing (including ergonomic modifications), techniques for system-to-system matching, use of SPC charts to monitor system performance, and operator training/certifications. Relationships between system PMs, or other environmental changes, and the system sensitivity SPC control charts also are discussed.
Innovative Multi-Environment, Multimode Thermal Control System
NASA Technical Reports Server (NTRS)
Singh, Bhim S.; Hasan, Mohammad H.
2007-01-01
Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phasechange cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system. The architecture also allows flexibility in partitioning of components between the various Constellation modules to take advantage of operational requirements in various modes consistent with the mission needs. Preliminary design calculations using R-134 as working fluid show the concept to be feasible to meet the heat rejection requirements that are representative of the Crew Exploration Vehicle and Lunar Access Module for nominal cases. More detailed analyses to establish performance under various modes and environmental conditions are underway.
Norwegian Special Forces: Their Role in Future Counterinsurgency Operations
2009-03-13
COIN operations. Norway and the International Environment and Systems The global environment and the world we are operating in today can be described...NATO alliance is a cornerstone of Norway’s security and defense policy. The fundamental NATO principle of providing collective defense to its member...interact with the myriad of units and agencies operatin 19 or such demanding and complicated new and modern technology and techniques that nity. NORSOF
Tcl as a Software Environment for a TCS
NASA Astrophysics Data System (ADS)
Terrett, David L.
2002-12-01
This paper describes how the Tcl scripting language and C API has been used as the software environment for a telescope pointing kernel so that new pointing algorithms and software architectures can be developed and tested without needing a real-time operating system or real-time software environment. It has enabled development to continue outside the framework of a specific telescope project while continuing to build a system that is sufficiently complete to be capable of controlling real hardware but expending minimum effort on replacing the services that would normally by provided by a real-time software environment. Tcl is used as a scripting language for configuring the system at startup and then as the command interface for controlling the running system; the Tcl C language API is used to provided a system independent interface to file and socket I/O and other operating system services. The pointing algorithms themselves are implemented as a set of C++ objects calling C library functions that implement the algorithms described in [2]. Although originally designed as a test and development environment, the system, running as a soft real-time process on Linux, has been used to test the SOAR mount control system and will be used as the pointing kernel of the SOAR telescope control system
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values...
NASA Astrophysics Data System (ADS)
Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon
2017-09-01
For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.
Operation plan for the data 100/LARS terminal system
NASA Technical Reports Server (NTRS)
Bowen, A. J., Jr.
1980-01-01
The Data 100/LARS terminal system provides an interface for processing on the IBM 3031 computer system at Purdue University's Laboratory for Applications of Remote Sensing. The environment in which the system is operated and supported is discussed. The general support responsibilities, procedural mechanisms, and training established for the benefit of the system users are defined.
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 27.307 - Proof of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
14 CFR 29.307 - Proof of structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system, including control surfaces; (3) Operation tests of the control system; (4) Flight stress... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loading condition accounting for the environment to which the structure will be exposed in operation...
An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun
In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.
Design reuse experience of space and hazardous operations robots
NASA Technical Reports Server (NTRS)
Oneil, P. Graham
1994-01-01
A comparison of design drivers for space and hazardous nuclear waste operating robots details similarities and differences in operations, performance and environmental parameters for these critical environments. The similarities are exploited to provide low risk system components based on reuse principles and design knowledge. Risk reduction techniques are used for bridging areas of significant differences. As an example, risk reduction of a new sensor design for nuclear environment operations is employed to provide upgradeable replacement units in a reusable architecture for significantly higher levels of radiation.
Knowledge as a Contingency Factor: Achieving Coordination in Interorganizational Systems
2010-09-01
Problem...............................70 b. Vignette 2: Terrorism Threat to an International Event Held in a Archipelagic Environment...72 c. Vignette 3: Containing a Pandemic in a Archipelagic Environment...Operations (NEO) and disaster relief operations), and they also agree that there is no doctrine or procedures written to help them achieve successful
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
Systemic Operational Design: An Alternative to Estimate Planning
2009-05-04
relationships found in the COE. Framing and campaign design, with emphasis on systems theory , have therefore made their way to the forefront of doctrinal...short explanation of the systems theory behind SOD, examines how the SOD process happens, and compares SOD with the time proven “Commander’s Estimate... Theory , Campaign planning, Contemporary Operating Environment, Commander’s Estimate Process, Operational design 16. SECURITY CLASSIFICATION OF
Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.
Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran
2016-01-01
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802
Advanced solar irradiances applied to satellite and ionospheric operational systems
NASA Astrophysics Data System (ADS)
Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave
Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.
Evaluation of power system security and development of transmission pricing method
NASA Astrophysics Data System (ADS)
Kim, Hyungchul
The electric power utility industry is presently undergoing a change towards the deregulated environment. This has resulted in unbundling of generation, transmission and distribution services. The introduction of competition into unbundled electricity services may lead system operation closer to its security boundaries resulting in smaller operating safety margins. The competitive environment is expected to lead to lower price rates for customers and higher efficiency for power suppliers in the long run. Under this deregulated environment, security assessment and pricing of transmission services have become important issues in power systems. This dissertation provides new methods for power system security assessment and transmission pricing. In power system security assessment, the following issues are discussed (1) The description of probabilistic methods for power system security assessment; (2) The computation time of simulation methods; (3) on-line security assessment for operation. A probabilistic method using Monte-Carlo simulation is proposed for power system security assessment. This method takes into account dynamic and static effects corresponding to contingencies. Two different Kohonen networks, Self-Organizing Maps and Learning Vector Quantization, are employed to speed up the probabilistic method. The combination of Kohonen networks and Monte-Carlo simulation can reduce computation time in comparison with straight Monte-Carlo simulation. A technique for security assessment employing Bayes classifier is also proposed. This method can be useful for system operators to make security decisions during on-line power system operation. This dissertation also suggests an approach for allocating transmission transaction costs based on reliability benefits in transmission services. The proposed method shows the transmission transaction cost of reliability benefits when transmission line capacities are considered. The ratio between allocation by transmission line capacity-use and allocation by reliability benefits is computed using the probability of system failure.
LWS/SET End-to-End Data System
NASA Technical Reports Server (NTRS)
Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)
2002-01-01
This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
30 CFR 250.800 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems... environments. Production safety systems operated in subfreezing climates shall utilize equipment and procedures...
30 CFR 250.800 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems... environments. Production safety systems operated in subfreezing climates shall utilize equipment and procedures...
30 CFR 250.800 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems... environments. Production safety systems operated in subfreezing climates shall utilize equipment and procedures...
10 CFR 960.5-1 - System guidelines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure... radioactive materials to restricted and unrestricted areas during repository operation and closure shall meet... repository siting, construction, operation, closure, and decommissioning the public and the environment shall...
NASA Technical Reports Server (NTRS)
Spradlin, G.
2000-01-01
The concept provides an overview of operational roles and responsibilities in a service system environment. It describes changed and new interfaces between the customers and the service system, and variations on these interfaces as a function of the level of support required by the customer.
The operating room of the future: observations and commentary.
Satava, Richard M
2003-09-01
The Operating Room of the Future is a construct upon which to develop the next generation of operating environments for the patient, surgeon, and operating team. Analysis of the suite of visions for the Operating Room of the Future reveals a broad set of goals, with a clear overall solution to create a safe environment for high-quality healthcare. The vision, although planned for the future, is based upon iteratively improving and integrating current systems, both technology and process. This must become the Operating Room of Today, which will require the enormous efforts described. An alternative future of the operating room, based upon emergence of disruptive technologies, is also presented.
Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal; J. Stephen Herring
2008-07-01
Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazardsmore » related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.« less
SLS-SPEC-159 Cross-Program Design Specification for Natural Environments (DSNE) Revision D
NASA Technical Reports Server (NTRS)
Roberts, Barry C.
2015-01-01
This document is derived from the former National Aeronautics and Space Administration (NASA) Constellation Program (CxP) document CxP 70023, titled "The Design Specification for Natural Environments (DSNE), Revision C." The original document has been modified to represent updated Design Reference Missions (DRMs) for the NASA Exploration Systems Development (ESD) Programs. The DSNE completes environment-related specifications for architecture, system-level, and lower-tier documents by specifying the ranges of environmental conditions that must be accounted for by NASA ESD Programs. To assure clarity and consistency, and to prevent requirements documents from becoming cluttered with extensive amounts of technical material, natural environment specifications have been compiled into this document. The intent is to keep a unified specification for natural environments that each Program calls out for appropriate application. This document defines the natural environments parameter limits (maximum and minimum values, energy spectra, or precise model inputs, assumptions, model options, etc.), for all ESD Programs. These environments are developed by the NASA Marshall Space Flight Center (MSFC) Natural Environments Branch (MSFC organization code: EV44). Many of the parameter limits are based on experience with previous programs, such as the Space Shuttle Program. The parameter limits contain no margin and are meant to be evaluated individually to ensure they are reasonable (i.e., do not apply unrealistic extreme-on-extreme conditions). The natural environments specifications in this document should be accounted for by robust design of the flight vehicle and support systems. However, it is understood that in some cases the Programs will find it more effective to account for portions of the environment ranges by operational mitigation or acceptance of risk in accordance with an appropriate program risk management plan and/or hazard analysis process. The DSNE is not intended as a definition of operational models or operational constraints, nor is it adequate, alone, for ground facilities which may have additional requirements (for example, building codes and local environmental constraints). "Natural environments," as the term is used here, refers to the environments that are not the result of intended human activity or intervention. It consists of a variety of external environmental factors (most of natural origin and a few of human origin) which impose restrictions or otherwise impact the development or operation of flight vehicles and destination surface systems. These natural environments include the following types of environments: Terrestrial environments at launch, abort, and normal landing sites (winds, temperatures, pressures, surface roughness, sea conditions, etc.); Space environments (ionizing radiation, orbital debris, meteoroids, thermosphere density, plasma, solar, Earth, and lunar-emitted thermal radiation, etc.); Destination environments (Lunar surface and orbital, Mars atmosphere and surface, near Earth asteroids, etc.). Many of the environmental specifications in this document are based on models, data, and environment descriptions contained in the CxP 70044, Constellation Program Natural Environment Definition for Design (NEDD). The NEDD provides additional detailed environment data and model descriptions to support analytical studies for ESD Programs. For background information on specific environments and their effects on spacecraft design and operations, the environment models, and the data used to generate the specifications contained in the DSNE, the reader is referred to the NEDD paragraphs listed in each section of the DSNE. Also, most of the environmental specifications in this document are tied specifically to the ESD DRMs in ESD-10012, Revision B, Exploration Systems Development Concept of Operations (ConOps). Coordination between these environment specifications and the DRMs must be maintained. This document should be compatible with the current ESD DRMs, but updates to the mission definitions and variations in interpretation may require adjustments to the environment specifications.
Engineering for Autonomous Seismic Stations at the IRIS PASSCAL Instrument Center
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Carpenter, P.; Beaudoin, B. C.; Parker, T.; Hebert, J.; Childs, D.; Chung, P.; Reusch, A. M.
2015-12-01
The NSF funded Incorporated Research Institutions for Seismology (IRIS) through New Mexico Tech operates the PASSCAL Instrument Center (PIC) in Socorro New Mexico. The engineering effort at the PIC seeks to optimize seismic station operations for all portable experiments, include those in extremely remote and harsh polar environments. Recent advances have resulted in improved station design, allowing improved operational efficiencies, data quality return and reduction in station logistics associated with installation, maintenance and decommissioning of stations. These include: Battery and power system designs. Incorporating primary Lithium Thionyl Chloride (LTC) technology with rechargeable Lithium Iron Phosphate (LiFePO4) batteries allows systems to operate in areas with long-term solar autonomy (high latitudes). Development includes charge controller systems to switch between primary and secondary technologies efficiently. Enclosures: Engineered solutions to efficiently manage waste heat, maintain operational environment and provide light-weight and durable housing for seismic instrumentation. Communications: In collaboration with Xeos Technologies Inc., we deliver Iridium-based SOH/Command and Control telemetry as well as full bandwidth seismic data communications in high latitude environments at low power requirements. Smaller-lighter-instrumentation: Through the GEOICE MRI, we are working with Nanometrics on next generation "all-in-one" seismic systems that can be deployed in polar environments - easing logistics, minimizing installation time and improving data quality return for these expensive deployments. All autonomous station designs are openly and freely available at the IRIS PASSCAL webpage (www.passcal.nmt.edu/polar/design-drawings). More information on GEOICE and data quality from various seismometer emplacements will be presented in other posters at this AGU meeting.
A virtual reality environment for telescope operation
NASA Astrophysics Data System (ADS)
Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel
2010-07-01
Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.
Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring
Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein
2016-01-01
This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450
40 CFR 63.444 - Standards for the pulping system at sulfite processes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for the pulping system at sulfite processes. (a) The owner or operator of each sulfite process... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards for the pulping system at sulfite processes. 63.444 Section 63.444 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Run-on/run-off control systems. 258.26 Section 258.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Run-on/run-off control systems. 258.26 Section 258.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a...
The medium is NOT the message or Indefinitely long-term file storage at Leeds University
NASA Technical Reports Server (NTRS)
Holdsworth, David
1996-01-01
Approximately 3 years ago we implemented an archive file storage system which embodies experiences gained over more than 25 years of using and writing file storage systems. It is the third in-house system that we have written, and all three systems have been adopted by other institutions. This paper discusses the requirements for long-term data storage in a university environment, and describes how our present system is designed to meet these requirements indefinitely. Particular emphasis is laid on experiences from past systems, and their influence on current system design. We also look at the influence of the IEEE-MSS standard. We currently have the system operating in five UK universities. The system operates in a multi-server environment, and is currently operational with UNIX (SunOS4, Solaris2, SGI-IRIX, HP-UX), NetWare3 and NetWare4. PCs logged on to NetWare can also archive and recover files that live on their hard disks.
The natural space environment: Effects on spacecraft
NASA Technical Reports Server (NTRS)
James, Bonnie F.; Norton, O. W. (Compiler); Alexander, Margaret B. (Editor)
1994-01-01
The effects of the natural space environments on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of the natural space environments and their effect on spacecraft design, development, and operations, and also highlights some of the new developments in science and technology for each space environment. It is hoped that a better understanding of the space environment and its effect on spacecraft will enable program management to more effectively minimize program risks and costs, optimize design quality, and successfully achieve mission objectives.
Engineering Elegant Systems: Postulates, Principles, and Hypotheses of Systems Engineering
NASA Technical Reports Server (NTRS)
Watson, Michael D.
2018-01-01
Definition: System Engineering is the engineering discipline which integrates the system functions, system environment, and the engineering disciplines necessary to produce and/or operate an elegant system; Elegant System - A system that is robust in application, fully meeting specified and adumbrated intent, is well structured, and is graceful in operation. Primary Focus: System Design and Integration: Identify system couplings and interactions; Identify system uncertainties and sensitivities; Identify emergent properties; Manage the effectiveness of the system. Engineering Discipline Integration: Manage flow of information for system development and/or operations; Maintain system activities within budget and schedule. Supporting Activities: Process application and execution.
2016-10-01
Operational Performance and Sex -Specific Responses PRINCIPAL INVESTIGATOR: Brent C. Ruby CONTRACTING ORGANIZATION: The University of Montana System...Environments: Implications for Enhanced Training, Operational Performance and Sex -Specific Responses 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-2-0075...mitochondrial gene responses were not altered by altitude stress. Moreover, there were no differences across sex . While prior research has clearly
NASA Technical Reports Server (NTRS)
1981-01-01
A hardware integrated convolutional coding/symbol interleaving and integrated symbol deinterleaving/Viterbi decoding simulation system is described. Validation on the system of the performance of the TDRSS S-band return link with BPSK modulation, operating in a pulsed RFI environment is included. The system consists of three components, the Fast Linkabit Error Rate Tester (FLERT), the Transition Probability Generator (TPG), and a modified LV7017B which includes rate 1/3 capability as well as a periodic interleaver/deinterleaver. Operating and maintenance manuals for each of these units are included.
Utilizing Advanced Vibration Isolation Technology to Enable Microgravity Science Operations
NASA Technical Reports Server (NTRS)
Alhorn, Dean Carl
1999-01-01
Microgravity scientific research is performed in space to determine the effects of gravity upon experiments. Until recently, experiments had to accept the environment aboard various carriers: reduced-gravity aircraft, sub-orbital payloads, Space Shuttle, and Mir. If the environment is unacceptable, then most scientists would rather not expend the resources without the assurance of true microgravity conditions. This is currently the case on the International Space Station, because the ambient acceleration environment will exceed desirable levels. For this reason, the g-LIMIT (Glovebox Integrated Microgravity Isolation Technology) system is currently being developed to provide a quiescent acceleration environment for scientific operations. This sub-rack isolation system will provide a generic interface for a variety of experiments for the Microgravity Science Glovebox. This paper describes the motivation for developing of the g-LIMIT system, presents the design concept and details some of the advanced technologies utilized in the g-LIMIT flight design.
DOT National Transportation Integrated Search
2012-07-01
This project has developed and implemented a software environment to utilize data collected by Traffic Management Centers (TMC) in Florida, in combination with data from other sources to support various applications. The environment allows capturing ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... opacity monitoring system and how are the data used? 60.1760 Section 60.1760 Protection of Environment... continuous opacity monitoring system and how are the data used? (a) Install, calibrate, maintain, and operate a continuous opacity monitoring system. (b) Install, evaluate, and operate each continuous opacity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... opacity monitoring system and how are the data used? 62.15215 Section 62.15215 Protection of Environment... required for my continuous opacity monitoring system and how are the data used? (a) Install, calibrate, maintain, and operate a continuous opacity monitoring system. (b) Install, evaluate, and operate each...
Rotating assembly working group summary
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.
1984-01-01
The feasibility of a fail safe flywheel system was demonstrated. Three of the major advantages of flywheel systems are: longer operational life, higher electrical efficiency, and higher system energy density. The use of composite material flywheels is important to realize these advantages. Rotor design and dynamics, rotor materials and fabrication, safety, nondestructive testing, and systems operation loads and environment, are outlined.
NASA Technical Reports Server (NTRS)
Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.
1991-01-01
The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.
Autonomous exploration and mapping of unknown environments
NASA Astrophysics Data System (ADS)
Owens, Jason; Osteen, Phil; Fields, MaryAnne
2012-06-01
Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.
Materials challenges for nuclear systems
Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...
2010-11-26
The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less
Unitaxial constant velocity microactuator
McIntyre, Timothy J.
1994-01-01
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
Modeling of Radiowave Propagation in a Forested Environment
2014-09-01
is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Propagation models used in wireless communication system design play an...domains. Applications in both domains require communication devices and sensors to be operated in forested environments. Various methods have been...wireless communication system design play an important role in overall link performance. Propagation models in a forested environment, in particular
Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing
NASA Technical Reports Server (NTRS)
Watts, Carly; Vogel, Matthew
2016-01-01
For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.
Torsional ultrasonic wave based level measurement system
Holcomb, David E [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN
2012-07-10
A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.
40 CFR 1033.112 - Emission diagnostics for SCR systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant quality...
Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, C.; /Fermilab; Balle, C.
2011-05-01
The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due tomore » the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.« less
Cost-effective implementation of intelligent systems
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.; Heer, Ewald
1990-01-01
Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.
40 CFR 264.73 - Operating record.
Code of Federal Regulations, 2010 CFR
2010-07-01
... System, Recordkeeping, and Reporting § 264.73 Operating record. (a) The owner or operator must keep a written operating record at his facility. (b) The following information must be recorded, as it becomes... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Operating record. 264.73 Section 264...
40 CFR 280.31 - Operation and maintenance of corrosion protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...
40 CFR 280.31 - Operation and maintenance of corrosion protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...
40 CFR 280.31 - Operation and maintenance of corrosion protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Operation and maintenance of corrosion... UNDERGROUND STORAGE TANKS (UST) General Operating Requirements § 280.31 Operation and maintenance of corrosion protection. All owners and operators of steel UST systems with corrosion protection must comply with the...
Space station needs, attributes and architectural options study. Volume 2: Mission analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.
2008-11-05
Description Operationally Feasible? EEG ms ms cm Measures electrical activity in the brain. Practical tool for applications - real time monitoring or...Cognitive Systems Device Development & Processing Methods Brain activity can be monitored in real-time in operational environments with EEG Brain...biological and cognitive findings about the user to customize the learning environment Neurofeedback • Present the user with real-time feedback
NASA Astrophysics Data System (ADS)
Watanuki, Keiichi; Kojima, Kazuyuki
The environment in which Japanese industry has achieved great respect is changing tremendously due to the globalization of world economies, while Asian countries are undergoing economic and technical development as well as benefiting from the advances in information technology. For example, in the design of custom-made casting products, a designer who lacks knowledge of casting may not be able to produce a good design. In order to obtain a good design and manufacturing result, it is necessary to equip the designer and manufacturer with a support system related to casting design, or a so-called knowledge transfer and creation system. This paper proposes a new virtual reality based knowledge acquisition and job training system for casting design, which is composed of the explicit and tacit knowledge transfer systems using synchronized multimedia and the knowledge internalization system using portable virtual environment. In our proposed system, the education content is displayed in the immersive virtual environment, whereby a trainee may experience work in the virtual site operation. Provided that the trainee has gained explicit and tacit knowledge of casting through the multimedia-based knowledge transfer system, the immersive virtual environment catalyzes the internalization of knowledge and also enables the trainee to gain tacit knowledge before undergoing on-the-job training at a real-time operation site.
NASA Astrophysics Data System (ADS)
Anderson, Monica; David, Phillip
2007-04-01
Implementation of an intelligent, automated target acquisition and tracking systems alleviates the need for operators to monitor video continuously. This system could identify situations that fatigued operators could easily miss. If an automated acquisition and tracking system plans motions to maximize a coverage metric, how does the performance of that system change when the user intervenes and manually moves the camera? How can the operator give input to the system about what is important and understand how that relates to the overall task balance between surveillance and coverage? In this paper, we address these issues by introducing a new formulation of the average linear uncovered length (ALUL) metric, specially designed for use in surveilling urban environments. This metric coordinates the often competing goals of acquiring new targets and tracking existing targets. In addition, it provides current system performance feedback to system users in terms of the system's theoretical maximum and minimum performance. We show the successful integration of the algorithm via simulation.
The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2007-01-01
Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
An integrated approach to system design, reliability, and diagnosis
NASA Astrophysics Data System (ADS)
Patterson-Hine, F. A.; Iverson, David L.
1990-12-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
Automated Planning and Scheduling for Planetary Rover Distributed Operations
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve
1999-01-01
Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.
MRMS Experimental Testbed for Operational Products (METOP)
NASA Astrophysics Data System (ADS)
Zhang, J.
2016-12-01
Accurate high-resolution quantitative precipitation estimation (QPE) at the continental scale is of critical importance to the nation's weather, water and climate services. To address this need, a Multi-Radar Multi-Sensor (MRMS) system was developed at the National Severe Storms Lab of National Oceanic and Atmospheric Administration that integrates radar, gauge, model and satellite data and provides a suite of QPE products at 1-km and 2-min resolution. MRMS system consists of three components: 1) an operational system; 2) a real-time research system; 3) an archive testbed. The operational system currently provides instantaneous precipitation rate, type and 1- to 72-hr accumulations for conterminous United Stated and southern Canada. The research system has the similar hardware infrastructure and data environment as the operational system, but runs newer and more advanced algorithms. The newer algorithms are tested on the research system for robustness and computational efficiency in a pseudo operational environment before they are transitioned into operations. The archive testbed, also called the MRMS Experimental Testbed for Operational Products (METOP), consists of a large database that encompasses a wide range of hydroclimatological and geographical regimes. METOP is for the testing and refinements of the most advanced radar QPE techniques, which are often developed on specific data from limited times and locations. The archive data includes quality controlled in-situ observations for the validation of the new radar QPE across all seasons and geographic regions. A number of operational QPE products derived from different sensors/models are also included in METOP for the fusion of multiple sources of complementary precipitation information. This paper is an introduction of the METOP system.
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2012-01-01
NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2013-01-01
NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Delta nitrogen tetroxide fueling operations
NASA Technical Reports Server (NTRS)
Grigsby, R. B.; Cross, T. M.; Rucci, T. D.
1978-01-01
The development of the Delta second stage nitrogen tetroxide fueling system is briefly summarized. The nitrogen tetroxide fueling system and the equipment used to protect the spacecraft environment from the toxic nitrogen tetroxide fumes are described. Topics covered include: the nitrogen tetroxide transfer system; loading operations; safety precautions; and chemical treatment of all toxic vapors.
A Multiprocessor Operating System Simulator
NASA Technical Reports Server (NTRS)
Johnston, Gary M.; Campbell, Roy H.
1988-01-01
This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.
Space Qualification Issues in Acousto-optic and Electro-optic Devices
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta
2007-01-01
Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.
NASA Astrophysics Data System (ADS)
Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun
2002-07-01
In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.
Timeliner: Automating Procedures on the ISS
NASA Technical Reports Server (NTRS)
Brown, Robert; Braunstein, E.; Brunet, Rick; Grace, R.; Vu, T.; Zimpfer, Doug; Dwyer, William K.; Robinson, Emily
2002-01-01
Timeliner has been developed as a tool to automate procedural tasks. These tasks may be sequential tasks that would typically be performed by a human operator, or precisely ordered sequencing tasks that allow autonomous execution of a control process. The Timeliner system includes elements for compiling and executing sequences that are defined in the Timeliner language. The Timeliner language was specifically designed to allow easy definition of scripts that provide sequencing and control of complex systems. The execution environment provides real-time monitoring and control based on the commands and conditions defined in the Timeliner language. The Timeliner sequence control may be preprogrammed, compiled from Timeliner "scripts," or it may consist of real-time, interactive inputs from system operators. In general, the Timeliner system lowers the workload for mission or process control operations. In a mission environment, scripts can be used to automate spacecraft operations including autonomous or interactive vehicle control, performance of preflight and post-flight subsystem checkouts, or handling of failure detection and recovery. Timeliner may also be used for mission payload operations, such as stepping through pre-defined procedures of a scientific experiment.
A summary of the OV1-19 satellite dose, depth dose, and linear energy transfer spectral measurements
NASA Technical Reports Server (NTRS)
Cervini, J. T.
1972-01-01
Measurements of the biophysical and physical parameters in the near earth space environment, specifically, the Inner Van Allen Belt are discussed. This region of space is of great interest to planners of the Skylab and the Space Station programs because of the high energy proton environment, especially during periods of increased solar activity. Many physical measurements of charged particle flux, spectra, and pitch angle distribution have been conducted and are programmed in the space radiation environment. Such predictions are not sufficient to accurately predict the effects of space radiations on critical biological and electronic systems operating in these environments. Some of the difficulties encountered in transferring from physical data to a prediction of the effects of space radiation on operational systems are discussed.
2015-04-01
to successfully operate after being exposed to the harsh launch vibration environment. 2. Uncover workmanship flaws such as loose fasteners or weak...uncover any workmanship errors in spite of exposing the PPUs to vibration levels in excess of what is expected for flight on any of the launchers ...successfully operate after being exposed to the harsh launch vibration environment. 2. Uncover workmanship flaws such as loose fasteners or weak
A COTS-Based Replacement Strategy for Aging Avionics Computers
2001-12-01
Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace
DOT National Transportation Integrated Search
2002-04-01
The Logical Architecture is based on a Computer Aided Systems Engineering (CASE) model of the requirements for the flow of data and control through the various functions included in Intelligent Transportation Systems (ITS). Data Dictionary is the com...
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
STS-107 Microgravity Environment Summary Report
NASA Technical Reports Server (NTRS)
Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy
2005-01-01
This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.
Tools to manage the enterprise-wide picture archiving and communications system environment.
Lannum, L M; Gumpf, S; Piraino, D
2001-06-01
The presentation will focus on the implementation and utilization of a central picture archiving and communications system (PACS) network-monitoring tool that allows for enterprise-wide operations management and support of the image distribution network. The MagicWatch (Siemens, Iselin, NJ) PACS/radiology information system (RIS) monitoring station from Siemens has allowed our organization to create a service support structure that has given us proactive control of our environment and has allowed us to meet the service level performance expectations of the users. The Radiology Help Desk has used the MagicWatch PACS monitoring station as an applications support tool that has allowed the group to monitor network activity and individual systems performance at each node. Fast and timely recognition of the effects of single events within the PACS/RIS environment has allowed the group to proactively recognize possible performance issues and resolve problems. The PACS/operations group performs network management control, image storage management, and software distribution management from a single, central point in the enterprise. The MagicWatch station allows for the complete automation of software distribution, installation, and configuration process across all the nodes in the system. The tool has allowed for the standardization of the workstations and provides a central configuration control for the establishment and maintenance of the system standards. This report will describe the PACS management and operation prior to the implementation of the MagicWatch PACS monitoring station and will highlight the operational benefits of a centralized network and system-monitoring tool.
Bid opening report : Federal-aid highway construction contracts : first six months 1998
DOT National Transportation Integrated Search
1999-07-01
This document presents human factors guidelines for designers, owners operators, and planners involved in the development and operation of traffic management centers. Dimensions of the work environment affecting operator and system performance are ad...
Understanding the operational environment: implications for advanced visualizations
NASA Astrophysics Data System (ADS)
Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon
2009-05-01
With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.
Human interaction with wearable computer systems: a look at glasses-mounted displays
NASA Astrophysics Data System (ADS)
Revels, Allen R.; Quill, Laurie L.; Kancler, David E.; Masquelier, Barbara L.
1998-09-01
With the advancement of technology and the information explosion, integration of the two into performance aiding systems can have a significant impact on operational and maintenance environments. The Department of Defense and commercial industry have made great strides in digitizing and automating technical manuals and data to be presented on performance aiding systems. These performance aides are computerized interactive systems that provide procedures on how to operate and maintain fielded systems. The idea is to provide the end-user a system which is compatible with their work environment. The purpose of this paper is to show, historically, the progression of wearable computer aiding systems for maintenance environments, and then highlight the work accomplished in the design and development of glasses- mounted displays (GMD). The paper reviews work performed over the last seven years, then highlights, through review of a usability study, the advances made with GMDs. The use of portable computing systems, such as laptop and notebook, computers, does not necessarily increase the accessibility of the displayed information while accomplishing a given task in a hands-busy, mobile work environment. The use of a GMD increases accessibility of the information by placing it in eye sight of the user without obstructing the surrounding environment. Although the potential utility for this type of display is great, hardware and human integration must be refined. Results from the usability study show the usefulness and usability of the GMD in a mobile, hands-free environment.
NASA Astrophysics Data System (ADS)
Bogolubov, Nikolai N.; Soldatov, Andrey V.
2017-12-01
Exact and approximate master equations were derived by the projection operator method for the reduced statistical operator of a multi-level quantum system with finite number N of quantum eigenstates interacting with arbitrary external classical fields and dissipative environment simultaneously. It was shown that the structure of these equations can be simplified significantly if the free Hamiltonian driven dynamics of an arbitrary quantum multi-level system under the influence of the external driving fields as well as its Markovian and non-Markovian evolution, stipulated by the interaction with the environment, are described in terms of the SU(N) algebra representation. As a consequence, efficient numerical methods can be developed and employed to analyze these master equations for real problems in various fields of theoretical and applied physics. It was also shown that literally the same master equations hold not only for the reduced density operator but also for arbitrary nonequilibrium multi-time correlation functions as well under the only assumption that the system and the environment are uncorrelated at some initial moment of time. A calculational scheme was proposed to account for these lost correlations in a regular perturbative way, thus providing additional computable terms to the correspondent master equations for the correlation functions.
Environmental sentinel biomonitors: integrated response systems for monitoring toxic chemicals
NASA Astrophysics Data System (ADS)
van der Schalie, William H.; Reuter, Roy; Shedd, Tommy R.; Knechtges, Paul L.
2002-02-01
Operational environments for military forces are becoming potentially more dangerous due to the increased number, use, and misuse of toxic chemicals across the entire range of military missions. Defense personnel may be exposed to harmful chemicals as a result of industrial accidents or intentional or unintentional action of enemy, friendly forces, or indigenous populations. While there has been a significant military effort to enable forces to operate safely and survive and sustain operations in nuclear, biological, chemical warfare agent environments, until recently there has not been a concomitant effort associated with potential adverse health effects from exposures of deployed personnel to toxic industrial chemicals. To provide continuous real-time toxicity assessments across a broad spectrum of individual chemicals or chemical mixtures, an Environmental Sentinel Biomonitor (ESB) system concept is proposed. An ESB system will integrate data from one or more platforms of biologically-based systems and chemical detectors placed in the environment to sense developing toxic conditions and transmit time-relevant data for use in risk assessment, mitigation, and/or management. Issues, challenges, and next steps for the ESB system concept are described, based in part on discussions at a September 2001 workshop sponsored by the U.S. Army Center for Environmental Health Research.
Urban Combat Advanced Training Technology (Technologie Avancee d’Entrainement au Combat Urbain)
2010-04-01
JRTC Joint Readiness Training Center JRTC-MOUT-IS Joint Readiness Training Center Military Operations in Urbanised Terrain Instrumentation System...did not support or identify joint or multi-national requirements for conducting effective military operations in an urbanised environment. Very few...Requirements Document (ORD) for the Joint Readiness Training Center (JRTC) Military Operations on Urbanised Terrain (MOUT) Instrumentation System
Radiation Assurance for the Space Environment
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth A.; Poivey, Christian
2004-01-01
The space radiation environment can lead to extremely harsh operating conditions for spacecraft electronic systems. A hardness assurance methodology must be followed to assure that the space radiation environment does not compromise the functionality and performance of space-based systems during the mission lifetime. The methodology includes a definition of the radiation environment, assessment of the radiation sensitivity of parts, worst-case analysis of the impact of radiation effects, and part acceptance decisions which are likely to include mitigation measures.
Generating realistic environments for cyber operations development, testing, and training
NASA Astrophysics Data System (ADS)
Berk, Vincent H.; Gregorio-de Souza, Ian; Murphy, John P.
2012-06-01
Training eective cyber operatives requires realistic network environments that incorporate the structural and social complexities representative of the real world. Network trac generators facilitate repeatable experiments for the development, training and testing of cyber operations. However, current network trac generators, ranging from simple load testers to complex frameworks, fail to capture the realism inherent in actual environments. In order to improve the realism of network trac generated by these systems, it is necessary to quantitatively measure the level of realism in generated trac with respect to the environment being mimicked. We categorize realism measures into statistical, content, and behavioral measurements, and propose various metrics that can be applied at each level to indicate how eectively the generated trac mimics the real world.
2018-05-05
This video provides an overview of the Management by Trajectory (MBT) concept of operations developed as part on a NASA Research Announcement (NRA) sponsored by NASA’s Aviation Operations and Safety Program (AOSP). Possible changes in roles and responsibilities among various agents in the air traffic system are identified, and the concept’s potential impact on system safety in a way that brings the National Airspace System (NAS) closer to a full Trajectory-Based Operations (TBO) environment is described.
Study of alternate methods of disposal of propellants and gases at KSC
NASA Technical Reports Server (NTRS)
Moore, W. I.
1970-01-01
A comprehensive study was conducted at KSC launch support facilities to determine the nature and extent of potential hazards from propellant and gas releases to the environment. The results of the study, alternate methods for reducing or eliminating the hazards, and recommendations pertaining to these alternatives are presented. The operational modes of the propellant or hazardous gas systems considered include: system charging, system standby, system operation, and post-test operations. The results are outlined on an area-by-area basis.
A Proposed Conceptual Model of Military Medical Readiness
2007-05-01
critical role in complex military operations in which Medical Readiness 22 technological and information demands necessitate a multi-operator environment...Analysis 33 Coding 34 Data Collection 35 Medical Readiness 6 Boundaries 36 Researcher’s Role and Approach 37 Literature Review 37 The Military Health...Within the external environment, strategic shifts, technological advancements, and changing demographics affect how the Military Health System delivers
A block chain based architecture for asset management in coalition operations
NASA Astrophysics Data System (ADS)
Verma, Dinesh; Desai, Nirmit; Preece, Alun; Taylor, Ian
2017-05-01
To support dynamic communities of interests in coalition operations, new architectures for efficient sharing of ISR assets are needed. The use of blockchain technology in wired business environments, such as digital currency systems, offers an interesting solution by creating a way to maintain a distributed shared ledger without requiring a single trusted authority. In this paper, we discuss how a blockchain-based system can be modified to provide a solution for dynamic asset sharing amongst coalition members, enabling the creation of a logically centralized asset management system by a seamless policy-compliant federation of different coalition systems. We discuss the use of blockchain for three different types of assets in a coalition context, showing how blockchain can offer a suitable solution for sharing assets in those environments. We also discuss the limitations in the current implementations of blockchain which need to be overcome for the technology to become more effective in a decentralized tactical edge environment.
Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation
NASA Technical Reports Server (NTRS)
Lacaze, Alberto; Meystel, Michael; Meystel, Alex
1994-01-01
This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.
Multilateral haptics-based immersive teleoperation for improvised explosive device disposal
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Daly, John
2013-05-01
Of great interest to police and military organizations is the development of effective improvised explosive device (IED) disposal (IEDD) technology to aid in activities such as mine field clearing, and bomb disposal. At the same time minimizing risk to personnel. This paper presents new results in the research and development of a next generation mobile immersive teleoperated explosive ordnance disposal system. This system incorporates elements of 3D vision, multilateral teleoperation for high transparency haptic feedback, immersive augmented reality operator control interfaces, and a realistic hardware-in-the-loop (HIL) 3D simulation environment incorporating vehicle and manipulator dynamics for both operator training and algorithm development. In the past year, new algorithms have been developed to facilitate incorporating commercial off-the-shelf (COTS) robotic hardware into the teleoperation system. In particular, a real-time numerical inverse position kinematics algorithm that can be applied to a wide range of manipulators has been implemented, an inertial measurement unit (IMU) attitude stabilization system for manipulators has been developed and experimentally validated, and a voiceoperated manipulator control system has been developed and integrated into the operator control station. The integration of these components into a vehicle simulation environment with half-car vehicle dynamics has also been successfully carried out. A physical half-car plant is currently being constructed for HIL integration with the simulation environment.
Simulation-based Testing of Control Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda
It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less
Guerlain, Stephanie; Adams, Reid B; Turrentine, F Beth; Shin, Thomas; Guo, Hui; Collins, Stephen R; Calland, J Forrest
2005-01-01
The objective of this research was to develop a digital system to archive the complete operative environment along with the assessment tools for analysis of this data, allowing prospective studies of operative performance, intraoperative errors, team performance, and communication. Ability to study this environment will yield new insights, allowing design of systems to avoid preventable errors that contribute to perioperative complications. A multitrack, synchronized, digital audio-visual recording system (RATE tool) was developed to monitor intraoperative performance, including software to synchronize data and allow assignment of independent observational scores. Cases were scored for technical performance, participants' situational awareness (knowledge of critical information), and their comfort and satisfaction with the conduct of the procedure. Laparoscopic cholecystectomy (n = 10) was studied. Technical performance of the RATE tool was excellent. The RATE tool allowed real time, multitrack data collection of all aspects of the operative environment, while permitting digital recording of the objective assessment data in a time synchronized and annotated fashion during the procedure. The mean technical performance score was 73% +/- 28% of maximum (perfect) performance. Situational awareness varied widely among team members, with the attending surgeon typically the only team member having comprehensive knowledge of critical case information. The RATE tool allows prospective analysis of performance measures such as technical judgments, team performance, and communication patterns, offers the opportunity to conduct prospective intraoperative studies of human performance, and allows for postoperative discussion, review, and teaching. This study also suggests that gaps in situational awareness might be an underappreciated source of operative adverse events. Future uses of this system will aid teaching, failure or adverse event analysis, and intervention research.
Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.
Arico, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Sciaraffa, Nicolina; Colosimo, Alfredo; Babiloni, Fabio
2017-07-01
This minireview aims to highlight recent important aspects to consider and evaluate when passive brain-computer interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications. Electroencephalography (EEG) based pBCI has become an important tool for real-time analysis of brain activity since it could potentially provide covertly-without distracting the user from the main task-and objectively-not affected by the subjective judgment of an observer or the user itself-information about the operator cognitive state. Different examples of pBCI applications in operational environments and new adaptive interface solutions have been presented and described. In addition, a general overview regarding the correct use of machine learning techniques (e.g., which algorithm to use, common pitfalls to avoid, etc.) in the pBCI field has been provided. Despite recent innovations on algorithms and neurotechnology, pBCI systems are not completely ready to enter the market yet, mainly due to limitations of the EEG electrodes technology, and algorithms reliability and capability in real settings. High complexity and safety critical systems (e.g., airplanes, ATM interfaces) should adapt their behaviors and functionality accordingly to the user' actual mental state. Thus, technologies (i.e., pBCIs) able to measure in real time the user's mental states would result very useful in such "high risk" environments to enhance human machine interaction, and so increase the overall safety.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank...: Submission. If the owner or operator of a foreign tank vessel having a COW system under § 157.10(e), § 157...
Microbiology operations and facilities aboard restructured Space Station Freedom
NASA Technical Reports Server (NTRS)
Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.
1992-01-01
With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.
Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System
NASA Technical Reports Server (NTRS)
Howard, J. W., Jr.; Hardage, D. M.
1999-01-01
The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).
The New Era in Operational Forecasting
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.
2012-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe recent forecasting advances for moving space weather information through automated systems into operational, derivative products for communications, aviation, and satellite operations uses.
VEVI: A Virtual Reality Tool For Robotic Planetary Explorations
NASA Technical Reports Server (NTRS)
Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik
1994-01-01
The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.
40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...
40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...
40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...
DOT National Transportation Integrated Search
2000-05-01
The California database incorporated in the Highway Safety Information System (HSIS) is derived from the California TASAS (Traffic Accident Surveillance and Analysis System). The system, maintained by the Traffic Operations Office of Caltrans, is a m...
DOT National Transportation Integrated Search
1999-07-01
This document presents human factors guidelines for designers, owners operators, and planners involved in the development and operation of traffic management centers. Dimensions of the work environment affecting operator and system performance are ad...
40 CFR 264.194 - General operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....194 Section 264.194 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.194 General operating requirements. (a) Hazardous wastes or treatment reagents must...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, Eric; Al-Sheikhly, Mohamad; Summers, Christopher
An advanced in-pile multi-parameter reactor monitoring system is being proposed in this funding opportunity. The proposed effort brings cutting edge, high-fidelity optical measurement systems into the reactor environment in an unprecedented fashion, including in-core, in-cladding and in-fuel pellet itself. Unlike instrumented leads, the proposed system provides a unique solution to a multi-parameter monitoring need in core while being minimally intrusive in the reactor core. Detector designs proposed herein can monitor fuel compression and expansion in both the radial and axial dimensions as well as monitor linear power profiles and fission rates during the operation of the reactor. In addition tomore » pressure, stress, strain, compression, neutron flux, neutron spectra, and temperature can be observed inside the fuel bundle and fuel rod using the proposed system. The proposed research aims at developing radiation-hard, harsh-environment multi-parameter systems for insertion into the reactor environment. The proposed research holds the potential to drastically increase the fidelity and precision of in-core instrumentation with little or no impact in the neutron economy in the reactor environment while providing a measurement system capable of operation for entire operating cycles. Significant work has been done over the last few years on the use of nanoparticle-based scintillators. Through the use of metamaterials, the PIs aim to develop planar neutron detectors and large-volume neutron detectors. These detectors will have high efficiencies for neutron detection and will have a high gamma discrimination capability.« less
Mobile wireless network for the urban environment
NASA Astrophysics Data System (ADS)
Budulas, Peter; Luu, Brian; Gopaul, Richard
2005-05-01
As the Army transforms into the Future Force, particular attention must be paid to operations in Complex and Urban Terrain. Our adversaries increasingly draw us into operations in the urban environment and one can presume that this trend will continue in future battles. In order to ensure that the United States Army maintains battlefield dominance, the Army Research Laboratory (ARL) is developing technology to equip our soldiers for the urban operations of the future. Sophisticated soldier borne systems will extend sensing to the individual soldier, and correspondingly, allow the soldier to establish an accurate picture of their surrounding environment utilizing information from local and remote assets. Robotic platforms will be an integral part of the future combat team. These platforms will augment the team with remote sensing modalities, task execution capabilities, and enhanced communication systems. To effectively utilize the products provided by each of these systems, collected data must be exchanged in real time to all affected entities. Therefore, the Army Research Laboratory is also developing the technology that will be required to support high bandwidth mobile communication in urban environments. This technology incorporates robotic systems that will allow connectivity in areas unreachable by traditional systems. This paper will address some of the issues of providing wireless connectivity in complex and urban terrain. It will further discuss approaches developed by the Army Research Laboratory to integrate communications capabilities into soldier and robotic systems and provide seamless connectivity between the elements of a combat team, and higher echelons.
National Transonic Facility status
NASA Technical Reports Server (NTRS)
Mckinney, L. W.; Bruce, W. E., Jr.; Gloss, B. B.
1989-01-01
The National Transonic Facility (NTF) was operational in a combined checkout and test mode for about 3 years. During this time there were many challenges associated with movement of mechanical components, operation of instrumentation systems, and drying of insulation in the cryogenic environment. Most of these challenges were met to date along with completion of a basic flow calibration and aerodynamic tests of a number of configurations. Some of the major challenges resulting from cryogenic environment are reviewed with regard to hardware systems and data quality. Reynolds number effects on several configurations are also discussed.
Flight evaluation of two-segment approaches using area navigation guidance equipment
NASA Technical Reports Server (NTRS)
Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.
1976-01-01
A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult.
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
3-dimensional telepresence system for a robotic environment
Anderson, Matthew O.; McKay, Mark D.
2000-01-01
A telepresence system includes a camera pair remotely controlled by a control module affixed to an operator. The camera pair provides for three dimensional viewing and the control module, affixed to the operator, affords hands-free operation of the camera pair. In one embodiment, the control module is affixed to the head of the operator and an initial position is established. A triangulating device is provided to track the head movement of the operator relative to the initial position. A processor module receives input from the triangulating device to determine where the operator has moved relative to the initial position and moves the camera pair in response thereto. The movement of the camera pair is predetermined by a software map having a plurality of operation zones. Each zone therein corresponds to unique camera movement parameters such as speed of movement. Speed parameters include constant speed, or increasing or decreasing. Other parameters include pan, tilt, slide, raise or lowering of the cameras. Other user interface devices are provided to improve the three dimensional control capabilities of an operator in a local operating environment. Such other devices include a pair of visual display glasses, a microphone and a remote actuator. The pair of visual display glasses are provided to facilitate three dimensional viewing, hence depth perception. The microphone affords hands-free camera movement by utilizing voice commands. The actuator allows the operator to remotely control various robotic mechanisms in the remote operating environment.
NASA Technical Reports Server (NTRS)
Fletcher, Daryl P.; Alena, Richard L.; Akkawi, Faisal; Duncavage, Daniel P.
2004-01-01
This paper presents some of the challenges associated with bringing software projects from the research world into an operationa1 environment. While the core functional components of research-oriented software applications can have great utility in an operational setting, these applications often lack aspects important in an operational environment such as logging and security. Furthermore, these stand-alone applications, sometimes developed in isolation from one another, can produce data products useful to other applications in a software ecosystem.
Pipelining in a changing competitive environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, E.G.; Wishart, D.M.
1996-12-31
The changing competitive environment for the pipeline industry presents a broad spectrum of new challenges and opportunities: international cooperation; globalization of opportunities, organizations and competition; and integrated systems approach to system configuration, financing, contracting strategy, materials sourcing, and operations; cutting edge and emerging technologies; adherence to high standards of environmental protection; an emphasis on safety; innovative approaches to project financing; and advances in technology and programs to maintain the long term, cost effective integrity of operating pipeline systems. These challenges and opportunities are partially a result of the increasingly competitive nature of pipeline development and the public`s intolerance to incidentsmore » of pipeline failure. A creative systems approach to these challenges is often the key to the project moving ahead. This usually encompasses collaboration among users of the pipeline, pipeline owners and operators, international engineering and construction companies, equipment and materials suppliers, in-country engineers and constructors, international lending agencies and financial institutions.« less
A Method for Evaluating the Safety Impacts of Air Traffic Automation
NASA Technical Reports Server (NTRS)
Kostiuk, Peter; Shapiro, Gerald; Hanson, Dave; Kolitz, Stephan; Leong, Frank; Rosch, Gene; Bonesteel, Charles
1998-01-01
This report describes a methodology for analyzing the safety and operational impacts of emerging air traffic technologies. The approach integrates traditional reliability models of the system infrastructure with models that analyze the environment within which the system operates, and models of how the system responds to different scenarios. Products of the analysis include safety measures such as predicted incident rates, predicted accident statistics, and false alarm rates; and operational availability data. The report demonstrates the methodology with an analysis of the operation of the Center-TRACON Automation System at Dallas-Fort Worth International Airport.
48 CFR 970.2305 - Workplace substance abuse programs-management and operating contracts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety and Drug-Free...
Cyber Threat Assessment of Uplink and Commanding System for Mission Operation
NASA Technical Reports Server (NTRS)
Ko, Adans Y.; Tan, Kymie M. C.; Cilloniz-Bicchi, Ferner; Faris, Grant
2014-01-01
Most of today's Mission Operations Systems (MOS) rely on Ground Data System (GDS) segment to mitigate cyber security risks. Unfortunately, IT security design is done separately from the design of GDS' mission operational capabilities. This incoherent practice leaves many security vulnerabilities in the system without any notice. This paper describes a new way to system engineering MOS, to include cyber threat risk assessments throughout the MOS development cycle, without this, it is impossible to design a dependable and reliable MOS to meet today's rapid changing cyber threat environment.
PATHOGENIC MICROORGANISMS AND THEIR FATE ON/IN THE ENVIRONMENT
Major sources of human and animal pathogens in the environment originate from animal feeding operations, decentralized wastewater treatment systems (e.g., septic tanks), wastewater treatment plants, and sewage sludges (biosolids).
Human-Automation Cooperation for Separation Assurance in Future NextGen Environments
NASA Technical Reports Server (NTRS)
Mercer, Joey; Homola, Jeffrey; Cabrall, Christopher; Martin, Lynne; Morey, Susan; Gomez, Ashley; Prevot, Thomas
2014-01-01
A 2012 Human-In-The-Loop air traffic control simulation investigated a gradual paradigm-shift in the allocation of functions between operators and automation. Air traffic controllers staffed five adjacent high-altitude en route sectors, and during the course of a two-week experiment, worked traffic under different function-allocation approaches aligned with four increasingly mature NextGen operational environments. These NextGen time-frames ranged from near current-day operations to nearly fully-automated control, in which the ground systems automation was responsible for detecting conflicts, issuing strategic and tactical resolutions, and alerting the controller to exceptional circumstances. Results indicate that overall performance was best in the most automated NextGen environment. Safe operations were achieved in this environment for twice todays peak airspace capacity, while being rated by the controllers as highly acceptable. However, results show that sector operations were not always safe; separation violations did in fact occur. This paper will describe in detail the simulation conducted, as well discuss important results and their implications.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Mission Critical Computer Resources Management Guide
1988-09-01
Support Analyzers, Management, Generators Environments Word Workbench Processors Showroom System Structure HO Compilers IMath 1OperatingI Functions I...Simulated Automated, On-Line Generators Support Exercises Catalog, Function Environments Formal Spec Libraries Showroom System Structure I ADA Trackers I...shown in Figure 13-2. In this model, showrooms of larger more capable piecesare developed off-line for later integration and use in multiple systems
Contamination control plan for prelaunch operations
NASA Technical Reports Server (NTRS)
Austin, J. D.
1983-01-01
A unified, systematic plan is presented for contamination control for space flight systems. Allowable contaminant quantities, or contamination budgets, are determined based on system performance margins and system-level allowable degradations. These contamination budgets are compared to contamination rates in ground environments to establish the controls required in each ground environment. The use of feedback from contamination monitoring and some contamination control procedures are discussed.
Microbiological assay of the Marshall Space Flight Center neutral buoyancy simulator
NASA Technical Reports Server (NTRS)
Beyerle, F. J.
1973-01-01
A neutral buoyancy simulator tank system is described in terms of microbiological and medical safety for astronauts. The system was designed to simulate a gravity-free state for evaluation of orbital operations in a microorganism-free environment. Methods for the identification and elimination of specific microorganisms are dealt with as measures for a pure system of space environment simulation.
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
Analysis of the development of missile-borne IR imaging detecting technologies
NASA Astrophysics Data System (ADS)
Fan, Jinxiang; Wang, Feng
2017-10-01
Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key technologies and its development trends of missiles' IR imaging detecting technologies are analyzed.
NASA Astrophysics Data System (ADS)
Lemley, Todd A.
1996-11-01
The rapid change in the telecommunications environment is forcing carriers to re-assess not only their service offering, but also their network management philosophy. The competitive carrier environment has taken away the luxury of throwing technology at a problem by using legacy and proprietary systems and architectures. A more flexible management environment is necessary to effectively gain, and maintain operating margins in the new market era. Competitive forces are driving change which gives carriers more choices than those that are available in legacy and standards-based solutions alone. However, creating an operational support system (OSS) with this gap between legacy and standards has become as dynamic as the services which it supports. A philosophy which helps to integrate the legacy and standards systems is domain management. Domain management relates to a specific service or market 'domain,'and its associated operational support requirements. It supports a companies definition of its business model, which drives the definition of each domain. It also attempts to maximize current investment while injecting new technology available in a practical approach. The following paragraphs offer an overview of legacy systems, standards-based philosophy, and the potential of domain management to help bridge the gap between the two types of systems.
General aviation IFR operational problems
NASA Technical Reports Server (NTRS)
Bolz, E. H.; Eisele, J. E.
1979-01-01
Operational problems of general aviation IFR operators (particularly single pilot operators) were studied. Several statistical bases were assembled and utilized to identify the more serious problems and to demonstrate their magnitude. These bases include official activity projections, historical accident data and delay data, among others. The GA operating environment and cockpit environment were analyzed in detail. Solutions proposed for each of the problem areas identified are based on direct consideration of currently planned enhancements to the ATC system, and on a realistic assessment of the present and future limitations of general aviation avionics. A coordinated set of research program is suggested which would provide the developments necessary to implement the proposed solutions.
Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3
NASA Astrophysics Data System (ADS)
Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.
2014-12-01
The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Closed vent systems and control... this part, except as provided in § 63.1002(b). (2) Owners or operators of closed vent systems and... in subpart SS of this part, except as provided in § 63.1002(b). (3) Owners or operators routing...
Current Issues in Human Spacecraft Thermal Control Technology
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.
2008-01-01
Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M; West, Phillip B; Heath, Gail L; Scott, Clark L
2015-01-27
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E [Idaho Falls, ID; Svoboda, John M [Idaho Falls, ID; West, Phillip B [Idaho Falls, ID; Heath, Gail L [Iona, ID; Scott, Clark L [Idaho Falls, ID
2010-08-31
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Methods, apparatus, and systems for monitoring transmission systems
Polk, Robert E; Svoboda, John M.; West, Phillip B.; Heath, Gail L.; Scott, Clark L.
2016-07-19
A sensing platform for monitoring a transmission system, and method therefor, may include a sensor that senses one or more conditions relating to a condition of the transmission system and/or the condition of an environment around the transmission system. A control system operatively associated with the sensor produces output data based on an output signal produced by the sensor. A transmitter operatively associated with the control system transmits the output data from the control system.
Model Analyst’s Toolkit User Guide, Version 7.1.0
2015-08-01
Help > About) Environment details ( operating system ) metronome.log file, located in your MAT 7.1.0 installation folder Any log file that...requirements to run the Model Analyst’s Toolkit: Windows XP operating system (or higher) with Service Pack 2 and all critical Windows updates installed...application icon on your desktop Create a Quick Launch icon – Creates a MAT application icon on the taskbar for operating systems released
Space Environments and Effects Concept: Transitioning Research to Operations and Applications
NASA Technical Reports Server (NTRS)
Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan
2012-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application.
Measurement and analysis of operating system fault tolerance
NASA Technical Reports Server (NTRS)
Lee, I.; Tang, D.; Iyer, R. K.
1992-01-01
This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.
NASA's Analog Missions: Driving Exploration Through Innovative Testing
NASA Technical Reports Server (NTRS)
Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.
2012-01-01
Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).
The French Space Operation Act: Technical Regulations
NASA Astrophysics Data System (ADS)
Trinchero, J. P.; Lazare, B.
2010-09-01
The French Space Operation Act(FSOA) stipulates that a prime objective of the National technical regulations is to protect people, property, public health and the environment. Compliance with these technical regulations is mandatory as of 10 December 2010 for space operations by French space operators and for space operations from French territory. The space safety requirements and regulations governing procedures are based on national and international best practices and experience. A critical design review of the space system and procedures shall be carried out by the applicant, in order to verify compliance with the Technical Regulations. An independent technical assessment of the operation is delegated to CNES. The principles applied when drafting technical regulations are as follows: requirements must as far as possible establish the rules according to the objective to be obtained, rather than how it is to be achieved; requirements must give preference to international standards recognised as being the state of the art; requirements must take previous experience into account. Technical regulations are divided into three sections covering common requirements for the launch, control and return of a space object. A dedicated section will cover specific rules to be applied at the Guiana Space Centre. The main topics addressed by the technical regulations are: operator safety management system; study of risks to people, property, public health and the Earth’s environment; impact study on the outer space environment: space debris generated by the operation; planetary protection.
NASA Astrophysics Data System (ADS)
Carlton, A.; Cahoy, K.
2015-12-01
Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of telemetry files at certain dates. We compare these system-wide events to known space weather storms, such as the 2003 Halloween storms, and to spacecraft operational events, such as maneuvers. We also present future applications and expansions of SEER for robust space environment sensing and system health and safety monitoring.
Air Cushion Crash Rescue Vehicle (ACCRV)
1987-10-01
capability to operate over rough and low strength ground surfaces, especially soft, wet ground or marsh and snow, with no capability for overwater...operation. In a wartime environment , fire fighting and res- cue will be further restricted because of craters, debris or unexploded bombs. Improved...swamps and, of course, in more conventional environments on or about airports. The integration of an air cushion system with a paddle track propulsor
40 CFR 122.32 - As an operator of a small MS4, am I regulated under the NPDES storm water program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false As an operator of a small MS4, am I regulated under the NPDES storm water program? 122.32 Section 122.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit...
40 CFR 122.32 - As an operator of a small MS4, am I regulated under the NPDES storm water program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false As an operator of a small MS4, am I regulated under the NPDES storm water program? 122.32 Section 122.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Permit...
Spatial Thinking: Precept for Understanding Operational Environments
2016-06-10
A Computer Movie Simulating Urban Growth in the Detroit Region,” 236. 29 U.S. National Research Council, Learning to Think Spatially: GIS as a... children and spatial language, the article focuses on the use of geospatial information systems (GIS) as a support mechanism for learning to think...Thinking, Cognition, Learning , Geospatial, Operating Environment, Space Perception 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18
Generalized Operations Simulation Environment for Aircraft Maintenance Training
2004-04-01
Operations Simulation Environment ( GOSE ) project is a collaborative effort between AETC and AFRL to develop common, cost-effective, generalized VR training...maintenance training domain since it provided an opportunity to build on the VEST architecture. Development of GOSE involves re-engineering VEST as a scalable...modular, immersive VR training system comprised of PC-based hardware and software. GOSE initiatives include: (a) formalize training needs across
Definition and testing of the hydrologic component of the pilot land data system
NASA Technical Reports Server (NTRS)
Ragan, Robert M.; Sircar, Jayanta K.
1987-01-01
The specific aim was to develop within the Pilot Land Data System (PLDS) software design environment, an easily implementable and user friendly geometric correction procedure to readily enable the georeferencing of imagery data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA series spacecraft. A software subsystem was developed within the guidelines set by the PLDS development environment utilizing NASA Goddard Space Flight Center (GSFC) Image Analysis Facility's (IAF's) Land Analysis Software (LAS) coding standards. The IAS current program development environment, the Transportable Applications Executive (TAE), operates under a VAX VMS operating system and was used as the user interface. A brief overview of the ICARUS algorithm that was implemented in the set of functions developed, is provided. The functional specifications decription is provided, and a list of the individual programs and directory names containing the source and executables installed in the IAF system are listed. A user guide is provided for the LAS system documentation format for the three functions developed.
Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard
1996-01-01
Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout appeared to have a significant impact on the microgravity environment.
40 CFR 35.929-2 - General requirements for all user charge systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 1 2014-07-01 2014-07-01 false General requirements for all user charge systems. 35.929-2 Section 35.929-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... than every 2 years the waste water contribution of users and user classes, the total costs of operation...
40 CFR 35.929-2 - General requirements for all user charge systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 1 2012-07-01 2012-07-01 false General requirements for all user charge systems. 35.929-2 Section 35.929-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... than every 2 years the waste water contribution of users and user classes, the total costs of operation...
40 CFR 35.929-2 - General requirements for all user charge systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 1 2013-07-01 2013-07-01 false General requirements for all user charge systems. 35.929-2 Section 35.929-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... than every 2 years the waste water contribution of users and user classes, the total costs of operation...
This study compares alternative dairy manure management systems operated under full scale commercial conditions. The study investigates weight of manure handled per cow per year, labor and energy requirements, effect on the environment, nutrient conservation, corn silage producti...
Towards an integral computer environment supporting system operations analysis and conceptual design
NASA Technical Reports Server (NTRS)
Barro, E.; Delbufalo, A.; Rossi, F.
1994-01-01
VITROCISET has in house developed a prototype tool named System Dynamic Analysis Environment (SDAE) to support system engineering activities in the initial definition phase of a complex space system. The SDAE goal is to provide powerful means for the definition, analysis, and trade-off of operations and design concepts for the space and ground elements involved in a mission. For this purpose SDAE implements a dedicated modeling methodology based on the integration of different modern (static and dynamic) analysis and simulation techniques. The resulting 'system model' is capable of representing all the operational, functional, and behavioral aspects of the system elements which are part of a mission. The execution of customized model simulations enables: the validation of selected concepts with respect to mission requirements; the in-depth investigation of mission specific operational and/or architectural aspects; and the early assessment of performances required by the system elements to cope with mission constraints and objectives. Due to its characteristics, SDAE is particularly tailored for nonconventional or highly complex systems, which require a great analysis effort in their early definition stages. SDAE runs under PC-Windows and is currently used by VITROCISET system engineering group. This paper describes the SDAE main features, showing some tool output examples.
WinHPC System | High-Performance Computing | NREL
System WinHPC System NREL's WinHPC system is a computing cluster running the Microsoft Windows operating system. It allows users to run jobs requiring a Windows environment such as ANSYS and MATLAB
A multiprocessor operating system simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, G.M.; Campbell, R.H.
1988-01-01
This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT and T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows thatmore » of the Choices family of operating systems for loosely and tightly coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.« less
An Investigation into Soft Error Detection Efficiency at Operating System Level
Taheri, Hassan
2014-01-01
Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance. PMID:24574894
An investigation into soft error detection efficiency at operating system level.
Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan
2014-01-01
Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and software levels for their alleviation. However, there is the basic assumption behind these works that the operating system is reliable and the focus is on other system levels. In this paper, we investigate the effects of soft errors on the operating system components and compare their vulnerability with that of application level components. Results show that soft errors in operating system components affect both operating system and application level components. Therefore, by providing endurance to operating system level components against soft errors, both operating system and application level components gain tolerance.
Integrating Space Systems Operations at the Marine Expeditionary Force Level
2015-06-01
Electromagnetic Interference ENVI Environment for Visualizing Images EW Electronic Warfare xvi FA40 Space Operations Officer FEC Fires and Effects...Information Facility SFE Space Force Enhancement SIGINT Signals Intelligence SSA Space Situational Awareness SSE Space Support Element STK Systems...April 23, 2015. 65 • GPS Interference and Navigation Tool (GIANT) for providing GPS accuracy prediction reports • Systems Toolkit ( STK ) Analysis
Performance prediction evaluation of ceramic materials in point-focusing solar receivers
NASA Technical Reports Server (NTRS)
Ewing, J.; Zwissler, J.
1979-01-01
A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.
NASA Technical Reports Server (NTRS)
Obrien, Maureen E.
1990-01-01
Telerobotic operations, whether under autonomous or teleoperated control, require a much more sophisticated safety system than that needed for most industrial applications. Industrial robots generally perform very repetitive tasks in a controlled, static environment. The safety system in that case can be as simple as shutting down the robot if a human enters the work area, or even simply building a cage around the work space. Telerobotic operations, however, will take place in a dynamic, sometimes unpredictable environment, and will involve complicated and perhaps unrehearsed manipulations. This creates a much greater potential for damage to the robot or objects in its vicinity. The Procedural Safety System (PSS) collects data from external sensors and the robot, then processes it through an expert system shell to determine whether an unsafe condition or potential unsafe condition exists. Unsafe conditions could include exceeding velocity, acceleration, torque, or joint limits, imminent collision, exceeding temperature limits, and robot or sensor component failure. If a threat to safety exists, the operator is warned. If the threat is serious enough, the robot is halted. The PSS, therefore, uses expert system technology to enhance safety thus reducing operator work load, allowing him/her to focus on performing the task at hand without the distraction of worrying about violating safety criteria.
NASA Technical Reports Server (NTRS)
Campbell, R. H.; Essick, R. B.; Grass, J.; Johnston, G.; Kenny, K.; Russo, V.
1986-01-01
The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing.
Protecting coherence by environmental decoherence: a solvable paradigmatic model
NASA Astrophysics Data System (ADS)
Torres, Juan Mauricio; Seligman, Thomas H.
2017-11-01
We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes-Cummings Hamiltonian, which we introduce into a Kossakowski-Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.
Flowmeter evaluation for on-orbit operations
NASA Technical Reports Server (NTRS)
Baird, R. S.
1988-01-01
Various flowmetering concepts were flow tested to characterize the relative capabilities and limitations for on-orbit fluid-transfer operations. Performance results and basic operating principles of each flowmetering concept tested are summarized, and basic considerations required to select the best flowmeter(s) for fluid system application are discussed. Concepts tested were clamp-on ultrasonic, area averaging ultrasonic, offset ultrasonic, coriolis mass, vortex shedding, universal venturi tube, turbine, bearingless turbine, turbine/turbine differential-pressure hybrid, dragbody, and dragbody/turbine hybrid flowmeters. Fluid system flowmeter selection considerations discussed are flowmeter performance, fluid operating conditions, systems operating environments, flowmeter packaging, flowmeter maintenance, and flowmeter technology. No one flowmetering concept tested was shown to be best for all on-orbit fluid systems.
A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment
Gao, Junyao; Zhao, Fangzhou; Liu, Yi
2017-01-01
This paper introduces a search-and-rescue robot system used for remote sensing of the underground coal mine environment, which is composed of an operating control unit and two mobile robots with explosion-proof and waterproof function. This robot system is designed to observe and collect information of the coal mine environment through remote control. Thus, this system can be regarded as a multifunction sensor, which realizes remote sensing. When the robot system detects danger, it will send out signals to warn rescuers to keep away. The robot consists of two gas sensors, two cameras, a two-way audio, a 1 km-long fiber-optic cable for communication and a mechanical explosion-proof manipulator. Especially, the manipulator is a novel explosion-proof manipulator for cleaning obstacles, which has 3-degree-of-freedom, but is driven by two motors. Furthermore, the two robots can communicate in series for 2 km with the operating control unit. The development of the robot system may provide a reference for developing future search-and-rescue systems. PMID:29065560
Programmed Training for Water/Wastewater Operators.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC.
This manual is aimed at the water and wastewater technician who has the responsibility for monitoring the water environment. The televised programmed training stresses the interaction of three components: the program production and operation; group leaders; and operators, including distribution and collection system personnel. The academic…
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...
The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2007-01-01
Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.
CO2Explorer: Conducting Greenhouse-Gas Measurements of Landfills using a Small Fixed-wing UAV
NASA Astrophysics Data System (ADS)
Hollingsworth, Peter; Allen, Grant; Kabbabe, Khristopher; Pitt, Joseph
2017-04-01
Quantifying inventories of Greenhouse gas emissions, primarily Methane and Carbon Dioxide, from distributed sources such as a landfill has historically been undertaken using one of several ground based measurement techniques. These methods are either time and/or resource intensive. As a result regulatory agencies have started looking at the potential of using small-unmanned aircraft to supplement or supplant the current methods. The challenge of using a UAV to perform these tasks is the trade-off between accuracy, operational flexibility and operational productivity. This is driven by the state-of-the-art in measurement instruments, the operating environment at landfills and the regulatory/safety environment surrounding UAV operations. This work describes the development of the operational concept, and associated UAV measurement platform for the CO2Explorer. It looks at the scientific, engineering and possible policy trades and compares the use of small rotary and fixed-wing UAVs from both an operational and measurement perspective. This work also makes recommendations on system development and operation for users lacking in both systems engineering and operational experience.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1992-01-01
This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.
2014-01-01
Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.
All unital qubit channels are 4-noisy operations
NASA Astrophysics Data System (ADS)
Müller-Hermes, Alexander; Perry, Christopher
2018-06-01
We show that any unital qubit channel can be implemented by letting the input system interact unitarily with a four-dimensional environment in the maximally mixed state and then tracing out the environment. We also provide an example where the dimension of such an environment has to be at least 3.
Structured analysis and modeling of complex systems
NASA Technical Reports Server (NTRS)
Strome, David R.; Dalrymple, Mathieu A.
1992-01-01
The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.
1983-11-01
transmission, FM(R) will only have to hold one message. 3. Program Control Block (PCB) The PCB ( Deitel 82] will be maintained by the Executive in...and Use of Kernel to Process Interrupts 35 10. Layered Operating System Design 38 11. Program Control Block Table 43 12. Ready List Data Structure 45 13...examples of fully distributed systems in operation. An objective of the NPS research program for SPLICE is to advance our knowledge of distributed
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
Guidance, Control and Positioning of Future Precision Guided Stand-off Weapons Systems
1986-06-01
environment tests. The programme consists of approximately ten fl ights, the firsts having a passive nature . These are followed by progressive...Limited _. .. , 40 Chigwell Lane, Loughton, Essex IGIO 3TZ PREFACE The environment in which tactical air forces must be able to operate is becoming...GUIDANCE SYSTEM CONCEPT FOR HIGH-DYNAMIC ENVIRONMENT * by U.K.Krogmann 17 APPLICATIONS DES CENTRALES A COMPOSANTS LIES AUX MISSILES TACTIQUES: CAS DES
A Human Proximity Operations System test case validation approach
NASA Astrophysics Data System (ADS)
Huber, Justin; Straub, Jeremy
A Human Proximity Operations System (HPOS) poses numerous risks in a real world environment. These risks range from mundane tasks such as avoiding walls and fixed obstacles to the critical need to keep people and processes safe in the context of the HPOS's situation-specific decision making. Validating the performance of an HPOS, which must operate in a real-world environment, is an ill posed problem due to the complexity that is introduced by erratic (non-computer) actors. In order to prove the HPOS's usefulness, test cases must be generated to simulate possible actions of these actors, so the HPOS can be shown to be able perform safely in environments where it will be operated. The HPOS must demonstrate its ability to be as safe as a human, across a wide range of foreseeable circumstances. This paper evaluates the use of test cases to validate HPOS performance and utility. It considers an HPOS's safe performance in the context of a common human activity, moving through a crowded corridor, and extrapolates (based on this) to the suitability of using test cases for AI validation in other areas of prospective application.
Meta-manager: a requirements analysis.
Cook, J F; Rozenblit, J W; Chacko, A K; Martinez, R; Timboe, H L
1999-05-01
The digital imaging network-picture-archiving and communications system (DIN-PACS) will be implemented in ten sites within the Great Plains Regional Medical Command (GPRMC). This network of PACS and teleradiology technology over a shared T1 network has opened the door for round the clock radiology coverage of all sites. However, the concept of a virtual radiology environment poses new issues for military medicine. A new workflow management system must be developed. This workflow management system will allow us to efficiently resolve these issues including quality of care, availability, severe capitation, and quality of the workforce. The design process of this management system must employ existing technology, operate over various telecommunication networks and protocols, be independent of platform operating systems, be flexible and scaleable, and involve the end user at the outset in the design process for which it is developed. Using the unified modeling language (UML), the specifications for this new business management system were created in concert between the University of Arizona and the GPRMC. These specifications detail a management system operating through a common object request brokered architecture (CORBA) environment. In this presentation, we characterize the Meta-Manager management system including aspects of intelligence, interfacility routing, fail-safe operations, and expected improvements in patient care and efficiency.
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.
2008-01-01
NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.
The Influence of Free Space Environment in the Mission Life Cycle: Material Selection
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; de Groh, Kim K.
2014-01-01
The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.
Multi Car Elevator Control by using Learning Automaton
NASA Astrophysics Data System (ADS)
Shiraishi, Kazuaki; Hamagami, Tomoki; Hirata, Hironori
We study an adaptive control technique for multi car elevators (MCEs) by adopting learning automatons (LAs.) The MCE is a high performance and a near-future elevator system with multi shafts and multi cars. A strong point of the system is that realizing a large carrying capacity in small shaft area. However, since the operation is too complicated, realizing an efficient MCE control is difficult for top-down approaches. For example, “bunching up together" is one of the typical phenomenon in a simple traffic environment like the MCE. Furthermore, an adapting to varying environment in configuration requirement is a serious issue in a real elevator service. In order to resolve these issues, having an autonomous behavior is required to the control system of each car in MCE system, so that the learning automaton, as the solutions for this requirement, is supposed to be appropriate for the simple traffic control. First, we assign a stochastic automaton (SA) to each car control system. Then, each SA varies its stochastic behavior distributions for adapting to environment in which its policy is evaluated with each passenger waiting times. That is LA which learns the environment autonomously. Using the LA based control technique, the MCE operation efficiency is evaluated through simulation experiments. Results show the technique enables reducing waiting times efficiently, and we confirm the system can adapt to the dynamic environment.
NASA Astrophysics Data System (ADS)
Jules, Kenol; Lin, Paul P.
2007-06-01
With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.
The Real Time Display Builder (RTDB)
NASA Technical Reports Server (NTRS)
Kindred, Erick D.; Bailey, Samuel A., Jr.
1989-01-01
The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.
An Analysis of the Navy Regional Data Automation Center (NARDAC) chargeback System
1986-09-01
addition, operational control is concerned with performing predefined activities whereas management control relates to the organiza- tion’s goals and...In effect, the management control system monitors the progress of operations and alerts the "appropriate management level" when performance as measured...architecture, the financial control processes, and the audit function ( Brandon , 1978; Anderson, 1983). In an operating DP environment, however, non-financial
A high-temperature wideband pressure transducer
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1976-01-01
The problem of operating a condenser microphone as a terminal element of a half wavelength transmission line was dealt with; the environment in which the microphone operates necessitates a 25 foot separation from its supporting electronics. A theoretical analysis of the microphone-cable system, substantiated by laboratory tests, provided criteria to optimize system gain.
Cyber Operations Virtual Environment
2010-09-01
automated system affects reliance on that system (e.g., Dzindolet, Peterson , Pomranky, Pierce, & Beck, 2003; Lee & Moray, 1994; Lee & See, 2004...described a need for instruction to enable interactive, realistic training ( Hershey , 2008): Network Warfare and Operations Distributed Training...knowledge or needs beyond this shallow level (Beck, Stern, & Haugsjaa, 1996 ). The immediate feedback model employed in behaviorist learning has
Immersive Environment Technologies for Mars Exploration
NASA Technical Reports Server (NTRS)
Wright, John R.; Hartman, Frank
2000-01-01
JPL's charter includes the unmanned exploration of the Solar System. One of the tools for exploring other planets is the rover as exemplified by Sojourner on the Mars Pathfinder mission. The light speed turnaround time between Earth and the outer planets precludes the use of teleoperated rovers so autonomous operations are built in to the current and upcoming generation devices. As the level of autonomy increases, the mode of operations shifts from low-level specification of activities to a higher-level specification of goals. To support this higher-level activity, it is necessary to provide the operator with an effective understanding of the in-situ environment and also the tools needed to specify the higher-level goals. Immersive environments provide the needed sense of presence to achieve this goal. Use of immersive environments at JPL has two main thrusts that will be discussed in this talk. One is the generation of 3D models of the in-situ environment, in particular the merging of models from different sensors, different modes (orbital, descent, and lander), and even different missions. The other is the use of various tools to visualize the environment within which the rover will be operating to maximize the understanding by the operator. A suite of tools is under development which provide an integrated view into the environment while providing a variety of modes of visualization. This allows the operator to smoothly switch from one mode to another depending on the information and presentation desired.
Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B.
2018-01-01
We identify the conditions that guarantee equivalence of the reduced dynamics of an open quantum system (OQS) for two different types of environments—one a continuous bosonic environment leading to a unitary system-environment evolution and the other a discrete-mode bosonic environment resulting in a system-mode (nonunitary) Lindbladian evolution. Assuming initial Gaussian states for the environments, we prove that the two OQS dynamics are equivalent if both the expectation values and two-time correlation functions of the environmental interaction operators are the same at all times for the two configurations. Since the numerical and analytical description of a discrete-mode environment undergoing a Lindbladian evolution is significantly more efficient than that of a continuous bosonic environment in a unitary evolution, our result represents a powerful, nonperturbative tool to describe complex and possibly highly non-Markovian dynamics. As a special application, we recover and generalize the well-known pseudomodes approach to open-system dynamics.
Preliminary base heating environments for a generalized ALS LO2/LH2 launch vehicle, appendix 1 and 2
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.
1989-01-01
A secondary objective of contract NAS8-39141 is to provide base heating assessments, as required, to support Advanced Launch System (ALS) preliminary launch vehicle and propulsion system design studies. The ALS propulsion systems integration working group meeting (No. 3) recently completed in San Diego, California, focused attention on the need for base heating environment determination to provide preliminary requirements for LO2/LH2 propulsion systems currently being considered for ALS. We were requested to provide these environments for a range of possible propellant mixture and nozzle area ratios. Base heating environments can only be determined as a function of altitude when the engine operating conditions and vehicle base region geometry (engine arrangement) are known. If time dependent environments are needed to assess thermal loads, a trajectory must also be provided. These parameters are not fixed at this time since the ALS configurations and propulsion operating conditions are varied and continue to be studied by Phase B contractors. Therefore, for this study, a generalized LO2/LH2 system was selected along with a vehicle configuration consisting of a seven-engine booster and a three-engine core. MSFC provided guidance for the selection. We also selected a limited number of body points on the booster and core vehicles and engines for the environment estimates. Environments at these locations are representative of maximum heating conditions in the base region and are provided as a function of altitude only. Guidelines and assumptions for this assessment, methodology for determining the environments, and preliminary results are provided in this technical note. Refinements in the environments will be provided as the ALS design matures.
Test Waveform Applications for JPL STRS Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.
2013-01-01
This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
Store-operate-coherence-on-value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Heidelberger, Philip; Kumar, Sameer
A system, method and computer program product for performing various store-operate instructions in a parallel computing environment that includes a plurality of processors and at least one cache memory device. A queue in the system receives, from a processor, a store-operate instruction that specifies under which condition a cache coherence operation is to be invoked. A hardware unit in the system runs the received store-operate instruction. The hardware unit evaluates whether a result of the running the received store-operate instruction satisfies the condition. The hardware unit invokes a cache coherence operation on a cache memory address associated with the receivedmore » store-operate instruction if the result satisfies the condition. Otherwise, the hardware unit does not invoke the cache coherence operation on the cache memory device.« less
The long life of Pioneer interplanetary spacecraft
NASA Technical Reports Server (NTRS)
Dixon, W. J.
1974-01-01
The Pioneer 6 to 9 interplanetary spacecraft were launched in 1965, 66, 67, and 68. All continue to operate in various orbits about the sun, gathering data on the solar system environment. Pioneer 10 was launched in 1972, and is now more than halfway to Jupiter, with all systems performing their required functions. The paper reviews these programs and the few anomalies which have been observed. The long-term mission success is discussed in terms of possible causative factors: simplicity in design and operation, redundancy in function and in equipment, comprehensive development and acceptance tests, the mildness of the space environment, and luck.
1994-08-01
Momentum and Its Derivatives in Various Coordinate Systems 47 CONTENTS (cont) Page C Absolute Acceleration of Geometric Center C of the S & A Plane 55 D...Dynamics of Rotor-Driven S & A Mechanism with a Two-Pass Clock 59 Gear Train and A Verge Runaway Escapement Operating in an Aeroballistic Environment E...System Fixed to 295 Underside of Mechanism Plane (Applicable to M577 S & A ) H Program Aercloc 301 Distribution List 365 Accesion For NTIS CRA&M DTIC TAB 0
An improved control system for a remotely operated vessel
NASA Astrophysics Data System (ADS)
Bachnak, Rafic; Mendez, Marc; Esparza, Jack; Fahed, Oliver
2006-05-01
Collecting environmental data in coastal bays presents several challenges to the scientist. One of the most pressing issues is how to efficiently and reliably gather data in shallow water areas-environments that often preclude the use of traditional boats. Obstacles that are encountered in such environments include difficulty in covering large territories and the presence of inaccessible areas due to a variety of reasons, such as soft bottoms or contamination. There is also a high probability of disturbing the test area while placing the sensors. This paper outlines the development of a remotely operated boat and its real-time control system.
Radiation Effects on Emerging Technologies: Implications of Space Weather Risk Management
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Barth, Janet L.
2000-01-01
As NASA and its space partners endeavor to develop a network of satellites capable of supporting humankind's needs for advanced space weather prediction and understanding, one of the key challenges is to design a space system to operate in the natural space radiation environment In this paper, we present a description of the natural space radiation environment, the effects of interest to electronic or photonic systems, and a sample of emerging technologies and their specific issues. We conclude with a discussion of operations in the space radiation hazard and considerations for risk management.
DOT National Transportation Integrated Search
1975-07-01
The volume presents the results of the quantitative analyses of the O'Hare ASTC System operations. The operations environments for the periods selected for detailed analysis of the ASDE films and controller communications recording are described. Fol...
Supporting Marine Corps Enhanced Company Operations: A Quantitative Analysis
2010-06-01
by decomposition into simple independent parts. o Agents interact with each other in non-linear ways, and “ adapt ” to their local environment . (p...Center Co Company CoLT Company Landing Team CAS Complex Adaptive Systems CSV Comma-separated Value DO Distributed Operations DODIC Department...SUMMARY The modern irregular warfare environment has dramatically impacted the battle space assignments and mission scope of tactical units that now
Objective Properties from Subjective Quantum States: Environment as a Witness
NASA Astrophysics Data System (ADS)
Ollivier, Harold; Poulin, David; Zurek, Wojciech H.
2004-11-01
We study the emergence of objective properties in open quantum systems. In our analysis, the environment is promoted from a passive role of a reservoir selectively destroying quantum coherence to an active role of amplifier selectively proliferating information about the system. We show that only preferred pointer states of the system can leave a redundant and therefore easily detectable imprint on the environment. Observers who—as is almost always the case—discover the state of the system indirectly (by probing a fraction of its environment) will find out only about the corresponding pointer observable. Many observers can act in this fashion independently and without perturbing the system. They will agree about its state. In this operational sense, preferred pointer states exist objectively.
Aviation system indicators : 1996 annual report
DOT National Transportation Integrated Search
1997-03-14
This report presents graphs and data tables for 36 aviation system and environmental indicators that the Federal Aviation Administration (FAA) has developed to give a broad view of the national aviation system operation and environment. The 24 system...
NASA Technical Reports Server (NTRS)
Romanowski, William E. (Inventor); Suljak, George T. (Inventor)
1989-01-01
A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.
NASA Technical Reports Server (NTRS)
Birr, Richard B.; Spencer, Roy; Murray, Jennifer; Lash, Andrew
2013-01-01
This report describes the analysis of communications between the Control Station and an Unmanned Aircraft (UA) flying in the National Airspace System (NAS). This work is based on the RTCA SC-203 Operational Services and Environment Description (OSED). The OSED document seeks to characterize the highly different attributes of all UAs navigating the airspace and define their relationship to airspace users, air traffic services, and operating environments of the NAS. One goal of this report is to lead to the development of Minimum Aviation System Performance Standards for Control and Communications. This report takes the nine scenarios found in the OSED and analyzes the communication links.
Apparatus and methods for a human de-amplifier system
Kress, Reid L.; Jansen, John F.
2000-01-01
A human de-amplifier system for interfacing a human operator and a physical object through a physical plant, wherein the physical object has dimensions in the range of 1 micrometer to 1 mm. The human de-amplifier system uses an inner-feedback loop to increases the equivalent damping of the operating system to stabilize the system when it contacts with the environment and reduces the impact of the environment variation by utilizing a high feedback gain, determined by a root locus sketch. Because the stability of the human de-amplifier system of the present invention is greatly enhanced over that of the prior art, the de-amplifier system is able to manipulate the physical object has dimensions in the range of 1 micrometer to 1 mm with high stability and accuracy. The system also has a monitoring device to monitor the motion of the physical object under manipulation.
Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Link, Valentin; Strunz, Walter T.
2017-11-01
We present a stochastic projection formalism for the description of quantum dynamics in bosonic or spin environments. The Schrödinger equation in the coherent state representation with respect to the environmental degrees of freedom can be reformulated by employing the Feshbach partitioning technique for open quantum systems based on the introduction of suitable non-Hermitian projection operators. In this picture the reduced state of the system can be obtained as a stochastic average over pure state trajectories, for any temperature of the bath. The corresponding non-Markovian stochastic Schrödinger equations include a memory integral over the past states. In the case of harmonic environments and linear coupling the approach gives a new form of the established non-Markovian quantum state diffusion stochastic Schrödinger equation without functional derivatives. Utilizing spin coherent states, the evolution equation for spin environments resembles the bosonic case with, however, a non-Gaussian average for the reduced density operator.
Performability evaluation of the SIFT computer
NASA Technical Reports Server (NTRS)
Meyer, J. F.; Furchtgott, D. G.; Wu, L. T.
1979-01-01
Performability modeling and evaluation techniques are applied to the SIFT computer as it might operate in the computational evironment of an air transport mission. User-visible performance of the total system (SIFT plus its environment) is modeled as a random variable taking values in a set of levels of accomplishment. These levels are defined in terms of four attributes of total system behavior: safety, no change in mission profile, no operational penalties, and no economic process whose states describe the internal structure of SIFT as well as relavant conditions of the environment. Base model state trajectories are related to accomplishment levels via a capability function which is formulated in terms of a 3-level model hierarchy. Performability evaluation algorithms are then applied to determine the performability of the total system for various choices of computer and environment parameter values. Numerical results of those evaluations are presented and, in conclusion, some implications of this effort are discussed.
NASA Technical Reports Server (NTRS)
Happell, Nadine; Miksell, Steve; Carlisle, Candace
1989-01-01
A major barrier in taking expert systems from prototype to operational status involves instilling end user confidence in the operational system. The software of different life cycle models is examined and the advantages and disadvantages of each when applied to expert system development are explored. The Fault Isolation Expert System for Tracking and data relay satellite system Applications (FIESTA) is presented as a case study of development of an expert system. The end user confidence necessary for operational use of this system is accentuated by the fact that it will handle real-time data in a secure environment, allowing little tolerance for errors. How FIESTA is dealing with transition problems as it moves from an off-line standalone prototype to an on-line real-time system is discussed.
NASA Technical Reports Server (NTRS)
Happell, Nadine; Miksell, Steve; Carlisle, Candace
1989-01-01
A major barrier in taking expert systems from prototype to operational status involves instilling end user confidence in the operational system. The software of different life cycle models is examined and the advantages and disadvantages of each when applied to expert system development are explored. The Fault Isolation Expert System for Tracking and data relay satellite system Applications (FIESTA) is presented as a case study of development of an expert system. The end user confidence necessary for operational use of this system is accentuated by the fact that it will handle real-time data in a secure environment, allowing little tolerance for errors. How FIESTA is dealing with transition problems as it moves from an off-line standalone prototype to an on-line real-time system is discussed.
ELISA, a demonstrator environment for information systems architecture design
NASA Technical Reports Server (NTRS)
Panem, Chantal
1994-01-01
This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.
Operational environments for electrical power wiring on NASA space systems
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.
1994-01-01
Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.
NASA Technical Reports Server (NTRS)
Rice, Amanda; Parris, Frank; Nerren, Philip
2000-01-01
Marshall Space Flight Center (MSFC) has been funding development of intelligent software models to benefit payload ground operations for nearly a decade. Experience gained from simulator development and real-time monitoring and control is being applied to engineering design, testing, and operation of the First Material Science Research Rack (MSRR-1). MSRR-1 is the first rack in a suite of three racks comprising the Materials Science Research Facility (MSRF) which will operate on the International Space Station (ISS). The MSRF will accommodate advanced microgravity investigations in areas such as the fields of solidification of metals and alloys, thermo-physical properties of polymers, crystal growth studies of semiconductor materials, and research in ceramics and glasses. The MSRR-1 is a joint venture between NASA and the European Space Agency (ESA) to study the behavior of different materials during high temperature processing in a low gravity environment. The planned MSRR-1 mission duration is five (5) years on-orbit and the total design life is ten (IO) years. The MSRR-1 launch is scheduled on the third Utilization Flight (UF-3) to ISS, currently in February of 2003). The objective of MSRR-1 is to provide an early capability on the ISS to conduct material science, materials technology, and space product research investigations in microgravity. It will provide a modular, multi-user facility for microgravity research in materials crystal growth and solidification. An intelligent software model of MSRR-1 is under development and will serve multiple purposes to support the engineering analysis, testing, training, and operational phases of the MSRR-1 life cycle development. The G2 real-time expert system software environment developed by Gensym Corporation was selected as the intelligent system shell for this development work based on past experience gained and the effectiveness of the programming environment. Our approach of multi- uses of the simulation model and its intuitive graphics capabilities is providing a concurrent engineering environment for rapid prototyping and development. Operational schematics of the MSRR-1 electrical, thermal control, vacuum access, and gas supply systems, and furnace inserts are represented graphically in the environment. Logic to represent first order engineering calculations is coded into the knowledge base to simulate the operational behavior of the MSRR-1 systems. An example of engineering data provided includes electrical currents, voltages, operational power, temperatures, thermal fluid flow rates. pressures, and component status indications. These type of data are calculated and displayed at appropriate instrumentation points, and the schematics are animated to reflect the simulated operational status of the MSRR-1. The software control functions are also simulated to represent appropriate operational behavior based on automated control and response to commands received by the crew or ground controllers. The first benefit of this simulation environment is being realized in the high fidelity engineering analysis results from the electrical power system G2 model. Secondly, the MSRR-1 simulation model will be embedded with a hardware mock-up of the MSRR-1 to provide crew training on MSRR-1 integrated payload operations. G2 gateway code will output the simulated instrumentation values, termed as telemetry, in a flight-like data stream so that the crew has realistic and accurate simulated MSRR-1 data on the flight displays which will be designed for crew use. The simulation will also respond appropriately to crew or ground initiated commands, which will be part of normal facility operations. A third use of the G2 model is being planned; the MSRR-1 simulation will be integrated with additional software code as part of the test configuration of the primary onboard computer, or Master Controller, for MSRR-1. We will take advantage of the G2 capability to simulate the flight like data stream to test flight software responses and behavior. A fourth use of the G2 model will be to train the Ground Support Personnel that will monitor the MSRR-1 systems and payloads while they are operating aboard the ISS. The intuitive, schematic based environment will provide an excellent foundation for personnel to understand the integrated configuration and operation of the MSRR-1, and the anticipated telemetry feedback based on operational modes of the equipment. Expert monitoring features will be enhanced to provide a smart monitoring environment for the operators. These features include: (1) Animated, intuitive schematic-based displays which reflect telemetry values, (1) Real-time plotting of simulated or incoming sensor values, (3) High/Low exception monitoring for analog data, (4) Expected state monitoring for discrete data, (5) Data trending, (6) Automated malfunction procedure execution to diagnose problems, (7) Look ahead capability to planned MSRR-1 activities in the onboard timeline. And finally, the logic to calculate telemetry values will be deactivated, and the same environment will interface to the incoming data for the real-time telemetry stream to schematically represent the onboard hardware configuration. G2 will be the foundation for the real-time monitoring and control environment. In summary, our MSRR-1 simulation model spans many elements of the life cycle development of this project: Engineering Analysis, Test and Checkout, Training of Crew and Ground Personnel, and Real-time monitoring and control. By utilizing the unique features afforded by an expert system development environment, we have been able to synergize a powerful tool capable of addressing our project needs at every phase of project development.
2015-06-01
version of the Bear operating system. The full system is depicted in Figure 3 and is composed of a minimalist micro-kernel with an associated...which are intended to support a general virtual machine execution environment, this minimalist hypervisor is designed to support only the operations...The use of a minimalist hypervisor in the Bear system opened the door to discovery of zero-day exploits. The approach leverages the hypervisors
Considerations for human-machine interfaces in tele-operations
NASA Technical Reports Server (NTRS)
Newport, Curt
1991-01-01
Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.
Business intelligence modeling in launch operations
NASA Astrophysics Data System (ADS)
Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.
2005-05-01
The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations, and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems.
Business Intelligence Modeling in Launch Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.
2005-01-01
This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce long-term benefits in support of the NASA objectives for simulation based acquisition, will improve the ability to assess architectural options verses safety/risk for future exploration systems, and will facilitate incorporation of operability as a systems design consideration, reducing overall life cycle cost for future systems. The future of business intelligence of space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems.
Ada/POSIX binding: A focused Ada investigation
NASA Technical Reports Server (NTRS)
Legrand, Sue
1988-01-01
NASA is seeking an operating system interface definition (OSID) for the Space Station Program (SSP) in order to take advantage of the commercial off-the-shelf (COTS) products available today and the many that are expected in the future. NASA would also like to avoid the reliance on any one source for operating systems, information system, communication system, or instruction set architecture. The use of the Portable Operating System Interface for Computer Environments (POSIX) is examined as a possible solution to this problem. Since Ada is already the language of choice for SSP, the question of an Ada/POSIX binding is addressed. The intent of the binding is to provide access to the POSIX standard operation system (OS) interface and environment, by which application portability of Ada applications will be supported at the source code level. A guiding principle of Ada/POSIX binding development is a clear conformance of the Ada interface with the functional definition of POSIX. The interface is intended to be used by both application developers and system implementors. The objective is to provide a standard that allows a strictly conforming application source program that can be compiled to execute on any conforming implementation. Special emphasis is placed on first providing those functions and facilities that are needed in a wide variety of commercial applications
Support of Helicopter 'Free Flight' Operations in the 1996 Olympics
NASA Technical Reports Server (NTRS)
Branstetter, James R.; Cooper, Eric G.
1996-01-01
The microcosm of activity surrounding the 1996 Olympic Games provided researchers an opportunity for demonstrating state-of-the art technology in the first large-scale deployment of a prototype digital communication/navigation/surveillance system in a confined environment. At the same time it provided an ideal opportunity for transportation officials to showcase the merits of an integrated transportation system in meeting the operational needs to transport time sensitive goods and provide public safety services under real-world conditions. Five aeronautical CNS functions using a digital datalink system were chosen for operational flight testing onboard 91 aircraft, most of them helicopters, participating in the Atlanta Short-Haul Transportation System. These included: GPS-based Automatic Dependent Surveillance, Cockpit Display of Traffic Information, Controller-Pilot Communications, Graphical Weather Information (uplink), and Automated Electronic Pilot Reporting (downlink). Atlanta provided the first opportunity to demonstrate, in an actual operating environment, key datalink functions which would enhance flight safety and situational awareness for the pilot and supplement conventional air traffic control. The knowledge gained from such a large-scale deployment will help system designers in development of a national infrastructure where aircraft would have the ability to navigate autonomously.
Modeling and Simulation for Mission Operations Work System Design
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.
2003-01-01
Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.
Contamination Effects Due to Space Environmental Interactions
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Paquin, Krista C. (Technical Monitor)
2001-01-01
Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko
As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolková, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk; Holubčík, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz’s Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain themore » waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.« less
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Holubčík, Michal; Malcho, Milan
2016-06-01
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz's Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.
Cultural Geography Modeling and Analysis in Helmand Province
2010-10-01
the application of an agent-based model called “Cultural Geography” to represent the civilian populace. This project uses a multi-agent system ...represent the civilian populace. This project uses a multi-agent system consisting of an environment, agents, objects (things), operations that can be...environments[1]. The model is patterned after the conflict eco- system described by Kilcullen[2] in an attempt to capture the complexities of irregular
40 CFR 63.1572 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true What are my monitoring installation... Compliance Requirements § 63.1572 What are my monitoring installation, operation, and maintenance requirements? (a) You must install, operate, and maintain each continuous emission monitoring system according...
40 CFR 63.1572 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true What are my monitoring installation... Requirements § 63.1572 What are my monitoring installation, operation, and maintenance requirements? (a) You must install, operate, and maintain each continuous emission monitoring system according to the...
40 CFR 63.1572 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false What are my monitoring installation... Compliance Requirements § 63.1572 What are my monitoring installation, operation, and maintenance requirements? (a) You must install, operate, and maintain each continuous emission monitoring system according...
A Structured, Yet Agile Approach to Designing C2 Operating Environments
2012-06-01
PROCESS ........................................................ 22 APPENDIX A: SUPPLEMENTAL MATERIAL...organization’s mission effectiveness. Lastly, he identifies the mechanisms for C2 agility, enabled by people, processes , information, systems...operations, controls forces, and coordinates operational activities and/or a facility that is organized to gather, process , analyze, dispatch, and
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
The Coast Guard Proceedings of the Marine Safety and Security Council: Spring 2016
2016-04-01
PROCEEDINGS Spring 2016 Vol. 73, Number 1 Safety Management System Objectives 6 Safety Management Facilitates Safe Vessel Operation Vessel systems...crew, and operations. by LCDR Aaron W. Demo 9 Safety Management Systems to Prevent Pollution from Ships Standard procedures protect the environment...by LCDR Michael Lendvay 11 Dead Reckoning by Safety Management ? Check your course. by LCDR Corydon F. Heard IV Safety Management Systems and the Outer
Liu, Charles Y; Apuzzo, Michael L J
2003-01-01
Despite its singular importance, little attention has been given to the neurosurgical operative environment in the scientific and medical literature. This article focuses attention on the development of neurosurgery and the parallel emergence of its operative setting. The operative environment has, to a large extent, defined the "state of the art and science" of neurosurgery, which is now undergoing rapid reinvention. During the course of its initial invention, major milestones in the development of neurosurgery have included the definition of anatomy, consolidation of a scientific basis, and incorporation of the practicalities of anesthesia and antisepsis and later operative technical adjuvants for further refinement of action and minimalism. The progress, previously long and laborious in emergence, is currently undergoing rapid evolution. Throughout its evolution, the discipline has assimilated the most effective tools of modernity into the operative environment, leading eventually to the entity known as the operating room. In the decades leading to the present, progressive minimalization of manipulation and the emergence of more refined operative definition with increasing precision are evident, with concurrent miniaturization of attendant computerized support systems, sensors, robotic interfaces, and imaging devices. These developments over time have led to the invention of neurosurgery and the establishment of the current state-of-the-art neurosurgical operating room as we understand it, and indeed, to a broader definition of the entity itself. To remain current, each neurosurgeon should periodically reconsider his or her personal operative environment and its functional design with reference to modernity of practice as currently defined.
Clark, Susz; Van Steenvort, Jon K
2008-01-01
Today's operational environment in the support of counterinsurgency operations requires greater tactical and operational flexibility and diverse medical capabilities. The skills and organizations required for full spectrum medical operations are different from those of the past. Combat healthcare demands agility and the capacity for rapid change in clinical systems and processes to better support the counterinsurgency environment. This article proposes the Army Medical Department (AMEDD) develop and implement the medical capability team (MCT) for combat healthcare delivery. It discusses using the concept of the brigade combat team to develop medical capability teams as the unit of effectiveness to transform frontline care; provides a theoretical overview of the MCT as a "clinical microsystem"; discusses MCT leadership, training, and organizational support, and the deployment and employment of the MCT in a counterinsurgency environment. Additionally, this article proposes that the AMEDD initiate the development of an AMEDD Combat Training Center of Excellence to train and validate the MCTs. The complexity of combat healthcare demands an agile and campaign quality AMEDD with joint expeditionary capability in order to promote the best patient outcomes in a counterinsurgency environment.
Evaluation of Silicon-on-Insulator HTOP-01 Operational Amplifier for Wide Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronics capable of operation under extreme temperatures are required in many of NASA space exploration missions. Aerospace and military applications, as well as some terrestrial industries constitute environments where electronic systems are anticipated to be exposed to extreme temperatures and wide-range thermal swings. Electronics that are able to withstand and operate efficiently in such harsh environments would simplify, if not eliminate, traditional thermal control elements and their associated structures for proper ambient operation. As a result, overall system mass would be reduced, design would be simplified, and reliability would be improved. Electronic parts that are built utilizing silicon-on-insulator (SOI) technology are known to offer better radiation-tolerance compared to their conventional silicon counterparts, provide faster switching, and consume less power. They also exhibit reduced leakage current and, thus, they are often tailored for high temperature operation. These attributes make SOI-based devices suitable for use in harsh environments where extreme temperatures and wide thermal swings are anticipated. A new operational amplifier, based on silicon-on-insulator technology and geared for high temperature well-logging applications, was recently introduced by Honeywell Corporation. This HTOP-01 dual precision operational amplifier is a low power device, operates on a single supply, and has an internal oscillator and an external clocking option [1]. It is rated for operation from -55 C to +225 C with a maximum output current capability of 50 mA. The amplifier chip is designed as a 14-pin, hermetically-sealed device in a ceramic package. Table I shows some of the device manufacturer s specifications.
NASA Astrophysics Data System (ADS)
Metcalfe, Jason S.; Mikulski, Thomas; Dittman, Scott
2011-06-01
The current state and trajectory of development for display technologies supporting information acquisition, analysis and dissemination lends a broad informational infrastructure to operators of complex systems. The amount of information available threatens to outstrip the perceptual-cognitive capacities of operators, thus limiting their ability to effectively interact with targeted technologies. Therefore, a critical step in designing complex display systems is to find an appropriate match between capabilities, operational needs, and human ability to utilize complex information. The present work examines a set of evaluation parameters that were developed to facilitate the design of systems to support a specific military need; that is, the capacity to support the achievement and maintenance of real-time 360° situational awareness (SA) across a range of complex military environments. The focal point of this evaluation is on the reciprocity native to advanced engineering and human factors practices, with a specific emphasis on aligning the operator-systemenvironment fit. That is, the objective is to assess parameters for evaluation of 360° SA display systems that are suitable for military operations in tactical platforms across a broad range of current and potential operational environments. The approach is centered on five "families" of parameters, including vehicle sensors, data transmission, in-vehicle displays, intelligent automation, and neuroergonomic considerations. Parameters are examined under the assumption that displays designed to conform to natural neurocognitive processing will enhance and stabilize Soldier-system performance and, ultimately, unleash the human's potential to actively achieve and maintain the awareness necessary to enhance lethality and survivability within modern and future operational contexts.
Optimized pulses for the control of uncertain qubits
Grace, Matthew D.; Dominy, Jason M.; Witzel, Wayne M.; ...
2012-05-18
The construction of high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for π/2 and π pulses and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses hasmore » calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from π/2 and π pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, postfacto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.« less
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
[Concepts of development of the neurosurgical operative environment in the 21st century].
Apuzzo, M; Liu, C
2002-01-01
The operative environment has to a large extent defines the "state of the art and science" of neurosurgery, which is now undergoing rapid reinvention. In order to remain current, each neurosurgeon should periodically reconsider their personal operative environment and its functional design with reference to modernity of practice as currently defined. Historical trends and their analysis offer predictive guides for development of such settings with an eye toward the future. Examination of technical developments in decade timeframes defines the progress in capability and need. Progressive minimalism of manipulation and the presence of operative definition with increasing precision are evident, with concurrent miniaturization of attendant computerized support systems, sensors, robotic interfaces, and imaging devices. These trends and developments offer the opportunity for simplificity of setting design with higher functionality as the desired endpoint.