Computer network defense system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urias, Vincent; Stout, William M. S.; Loverro, Caleb
A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves networkmore » connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.« less
Virtual Network Configuration Management System for Data Center Operations and Management
NASA Astrophysics Data System (ADS)
Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken
Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.
Methods and systems relating to an augmented virtuality environment
Nielsen, Curtis W; Anderson, Matthew O; McKay, Mark D; Wadsworth, Derek C; Boyce, Jodie R; Hruska, Ryan C; Koudelka, John A; Whetten, Jonathan; Bruemmer, David J
2014-05-20
Systems and methods relating to an augmented virtuality system are disclosed. A method of operating an augmented virtuality system may comprise displaying imagery of a real-world environment in an operating picture. The method may further include displaying a plurality of virtual icons in the operating picture representing at least some assets of a plurality of assets positioned in the real-world environment. Additionally, the method may include displaying at least one virtual item in the operating picture representing data sensed by one or more of the assets of the plurality of assets and remotely controlling at least one asset of the plurality of assets by interacting with a virtual icon associated with the at least one asset.
2017-08-01
ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...ARL-TN-0839 ● AUG 2017 US Army Research Laboratory User Guide: How to Use and Operate Virtual Reality Equipment in the Systems...September 2017 4. TITLE AND SUBTITLE User Guide: How to Use and Operate Virtual Reality Equipment in the Systems Assessment and Usability Laboratory
Software platform virtualization in chemistry research and university teaching
2009-01-01
Background Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Results Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Conclusion Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide. PMID:20150997
Software platform virtualization in chemistry research and university teaching.
Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver
2009-11-16
Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.
NASA Technical Reports Server (NTRS)
Jefferson, David; Beckman, Brian
1986-01-01
This paper describes the concept of virtual time and its implementation in the Time Warp Operating System at the Jet Propulsion Laboratory. Virtual time is a distributed synchronization paradigm that is appropriate for distributed simulation, database concurrency control, real time systems, and coordination of replicated processes. The Time Warp Operating System is targeted toward the distributed simulation application and runs on a 32-node JPL Mark II Hypercube.
Implementation of NASTRAN on the IBM/370 CMS operating system
NASA Technical Reports Server (NTRS)
Britten, S. S.; Schumacker, B.
1980-01-01
The NASA Structural Analysis (NASTRAN) computer program is operational on the IBM 360/370 series computers. While execution of NASTRAN has been described and implemented under the virtual storage operating systems of the IBM 370 models, the IBM 370/168 computer can also operate in a time-sharing mode under the virtual machine operating system using the Conversational Monitor System (CMS) subset. The changes required to make NASTRAN operational under the CMS operating system are described.
Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System
NASA Astrophysics Data System (ADS)
Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki
A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.
The benefits of virtual reality simulator training for laparoscopic surgery.
Hart, Roger; Karthigasu, Krishnan
2007-08-01
Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen
2002-02-01
In 2004, the European COLUMBUS Module is to be attached to the International Space Station. On the way to the successful planning, deployment and operation of the module, computer generated and animated models are being used to optimize performance. Under contract of the German Space Agency DLR, it has become IRF's task to provide a Projective Virtual Reality System to provide a virtual world built after the planned layout of the COLUMBUS module let astronauts and experimentators practice operational procedures and the handling of experiments. The key features of the system currently being realized comprise the possibility for distributed multi-user access to the virtual lab and the visualization of real-world experiment data. Through the capabilities to share the virtual world, cooperative operations can be practiced easily, but also trainers and trainees can work together more effectively sharing the virtual environment. The capability to visualize real-world data will be used to introduce measured data of experiments into the virtual world online in order to realistically interact with the science-reference model hardware: The user's actions in the virtual world are translated into corresponding changes of the inputs of the science reference model hardware; the measured data is than in turn fed back into the virtual world. During the operation of COLUMBUS, the capabilities for distributed access and the capabilities to visualize measured data through the use of metaphors and augmentations of the virtual world may be used to provide virtual access to the COLUMBUS module, e.g. via Internet. Currently, finishing touches are being put to the system. In November 2001 the virtual world shall be operational, so that besides the design and the key ideas, first experimental results can be presented.
Virtual instrument: remote control and monitoring of an artificial heart driver
NASA Astrophysics Data System (ADS)
Nguyen, An H.; Farrar, David
1993-07-01
A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.
Efficient operating system level virtualization techniques for cloud resources
NASA Astrophysics Data System (ADS)
Ansu, R.; Samiksha; Anju, S.; Singh, K. John
2017-11-01
Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.
Study of the modifications needed for effective operation NASTRAN on IBM virtual storage computers
NASA Technical Reports Server (NTRS)
Mccormick, C. W.; Render, K. H.
1975-01-01
The necessary modifications were determined to make NASTRAN operational under virtual storage operating systems (VS1 and VS2). Suggested changes are presented which will make NASTRAN operate more efficiently under these systems. Estimates of the cost and time involved in design, coding, and implementation of all suggested modifications are included.
Virtualized Networks and Virtualized Optical Line Terminal (vOLT)
NASA Astrophysics Data System (ADS)
Ma, Jonathan; Israel, Stephen
2017-03-01
The success of the Internet and the proliferation of the Internet of Things (IoT) devices is forcing telecommunications carriers to re-architecture a central office as a datacenter (CORD) so as to bring the datacenter economics and cloud agility to a central office (CO). The Open Network Operating System (ONOS) is the first open-source software-defined network (SDN) operating system which is capable of managing and controlling network, computing, and storage resources to support CORD infrastructure and network virtualization. The virtualized Optical Line Termination (vOLT) is one of the key components in such virtualized networks.
Semi-Immersive Virtual Turbine Engine Simulation System
NASA Astrophysics Data System (ADS)
Abidi, Mustufa H.; Al-Ahmari, Abdulrahman M.; Ahmad, Ali; Darmoul, Saber; Ameen, Wadea
2018-05-01
The design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
Novel graphical environment for virtual and real-world operations of tracked mobile manipulators
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.
1993-08-01
A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
Abreu, Rui Mv; Froufe, Hugo Jc; Queiroz, Maria João Rp; Ferreira, Isabel Cfr
2010-10-28
Virtual screening of small molecules using molecular docking has become an important tool in drug discovery. However, large scale virtual screening is time demanding and usually requires dedicated computer clusters. There are a number of software tools that perform virtual screening using AutoDock4 but they require access to dedicated Linux computer clusters. Also no software is available for performing virtual screening with Vina using computer clusters. In this paper we present MOLA, an easy-to-use graphical user interface tool that automates parallel virtual screening using AutoDock4 and/or Vina in bootable non-dedicated computer clusters. MOLA automates several tasks including: ligand preparation, parallel AutoDock4/Vina jobs distribution and result analysis. When the virtual screening project finishes, an open-office spreadsheet file opens with the ligands ranked by binding energy and distance to the active site. All results files can automatically be recorded on an USB-flash drive or on the hard-disk drive using VirtualBox. MOLA works inside a customized Live CD GNU/Linux operating system, developed by us, that bypass the original operating system installed on the computers used in the cluster. This operating system boots from a CD on the master node and then clusters other computers as slave nodes via ethernet connections. MOLA is an ideal virtual screening tool for non-experienced users, with a limited number of multi-platform heterogeneous computers available and no access to dedicated Linux computer clusters. When a virtual screening project finishes, the computers can just be restarted to their original operating system. The originality of MOLA lies on the fact that, any platform-independent computer available can he added to the cluster, without ever using the computer hard-disk drive and without interfering with the installed operating system. With a cluster of 10 processors, and a potential maximum speed-up of 10x, the parallel algorithm of MOLA performed with a speed-up of 8,64× using AutoDock4 and 8,60× using Vina.
System-Level Virtualization for High Performance Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian
2008-01-01
System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing themore » machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.« less
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.
1992-03-01
This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
2004-02-09
FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE VIRTUAL COLLABORATION: 5a. CONTRACT NUMBER ADVANTAGES AND DISADVANTAGES IN THE PLANNING AND...warfare is not one system; it is a system of systems from sensors to information flow. In analyzing the specific advantages and disadvantages of one of...Standard Form 298 (Rev. 8-98) NAVAL WAR COLLEGE Newport, R.I. VIRTUAL COLLABORATION: ADVANTAGES AND DISADVANTAGES IN THE PLANNING AND EXECUTION OF OPERATIONS
Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.
2012-05-29
Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.
Time Warp Operating System, Version 2.5.1
NASA Technical Reports Server (NTRS)
Bellenot, Steven F.; Gieselman, John S.; Hawley, Lawrence R.; Peterson, Judy; Presley, Matthew T.; Reiher, Peter L.; Springer, Paul L.; Tupman, John R.; Wedel, John J., Jr.; Wieland, Frederick P.;
1993-01-01
Time Warp Operating System, TWOS, is special purpose computer program designed to support parallel simulation of discrete events. Complete implementation of Time Warp software mechanism, which implements distributed protocol for virtual synchronization based on rollback of processes and annihilation of messages. Supports simulations and other computations in which both virtual time and dynamic load balancing used. Program utilizes underlying resources of operating system. Written in C programming language.
Integration of the virtual 3D model of a control system with the virtual controller
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2015-11-01
Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the operation of the adopted research object. The carried out work allowed foot the integration of the virtual model of the control system of the tunneling machine with the virtual controller, enabling the verification of its operation.
Virtual reality in surgical skills training.
Palter, Vanessa N; Grantcharov, Teodor P
2010-06-01
With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.
1995-01-01
This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.
Computer-Aided Design of Drugs on Emerging Hybrid High Performance Computers
2013-09-01
solutions to virtualization include lightweight, user-level implementations on Linux operating systems , but these solutions are often dependent on a...virtualization include lightweight, user-level implementations on Linux operating systems , but these solutions are often dependent on a specific version of...Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302
Master-slave system with force feedback based on dynamics of virtual model
NASA Technical Reports Server (NTRS)
Nojima, Shuji; Hashimoto, Hideki
1994-01-01
A master-slave system can extend manipulating and sensing capabilities of a human operator to a remote environment. But the master-slave system has two serious problems: one is the mechanically large impedance of the system; the other is the mechanical complexity of the slave for complex remote tasks. These two problems reduce the efficiency of the system. If the slave has local intelligence, it can help the human operator by using its good points like fast calculation and large memory. The authors suggest that the slave is a dextrous hand with many degrees of freedom able to manipulate an object of known shape. It is further suggested that the dimensions of the remote work space be shared by the human operator and the slave. The effect of the large impedance of the system can be reduced in a virtual model, a physical model constructed in a computer with physical parameters as if it were in the real world. A method to determine the damping parameter dynamically for the virtual model is proposed. Experimental results show that this virtual model is better than the virtual model with fixed damping.
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
Paging memory from random access memory to backing storage in a parallel computer
Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E
2013-05-21
Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.
Infrastructure Suitability Assessment Modeling for Cloud Computing Solutions
2011-09-01
Virtualization vs . Para-Virtualization .......................................................10 Figure 4. Modeling alternatives in relation to model...the conceptual difference between full virtualization and para-virtualization. Figure 3. Full Virtualization vs . Para-Virtualization 2. XEN...Besides Microsoft’s own client implementations, dubbed “Remote Desktop Con- nection Client” for Windows® and Apple ® operating systems, various open
NASA Astrophysics Data System (ADS)
Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.
2014-10-01
The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.
A usability assessment on a virtual reality system for panic disorder treatment
NASA Astrophysics Data System (ADS)
Lee, Jaelin; Kawai, Takashi; Yoshida, Nahoko; Izawa, Shuhei; Nomura, Shinobu; Eames, Douglas; Kaiya, Hisanobu
2008-02-01
The authors have developed a virtual reality exposure system that reflects the Japanese culture and environment. Concretely, the system focuses on the subway environment, which is the environment most patients receiving treatment for panic disorder at hospitals in Tokyo, Japan tend to avoid. The system is PC based and features realistic video images and highly interactive functionality. In particular, the system enables instant transformation of the virtual space and allows situations to be freely customized according to the condition and symptoms expressed by each patient. Positive results achieved in therapy assessments aimed at patients with panic disorder accompanying agoraphobia indicate the possibility of indoor treatment. Full utilization of the functionality available requires that the interactive functions be easily operable. Accordingly, there appears to be a need for usability testing aimed at determining whether or not a therapist can operate the system naturally while focusing fully on treatment. In this paper, the configuration of the virtual reality exposure system focusing on the subway environment is outlined. Further, the results of usability tests aimed at assessing how naturally it can be operated while focusing fully on treatment are described.
Human Machine Interfaces for Teleoperators and Virtual Environments Conference
NASA Technical Reports Server (NTRS)
1990-01-01
In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.
Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3
NASA Astrophysics Data System (ADS)
Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.
2014-12-01
The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.
Evaluation of glucose controllers in virtual environment: methodology and sample application.
Chassin, Ludovic J; Wilinska, Malgorzata E; Hovorka, Roman
2004-11-01
Adaptive systems to deliver medical treatment in humans are safety-critical systems and require particular care in both the testing and the evaluation phase, which are time-consuming, costly, and confounded by ethical issues. The objective of the present work is to develop a methodology to test glucose controllers of an artificial pancreas in a simulated (virtual) environment. A virtual environment comprising a model of the carbohydrate metabolism and models of the insulin pump and the glucose sensor is employed to simulate individual glucose excursions in subjects with type 1 diabetes. The performance of the control algorithm within the virtual environment is evaluated by considering treatment and operational scenarios. The developed methodology includes two dimensions: testing in relation to specific life style conditions, i.e. fasting, post-prandial, and life style (metabolic) disturbances; and testing in relation to various operating conditions, i.e. expected operating conditions, adverse operating conditions, and system failure. We define safety and efficacy criteria and describe the measures to be taken prior to clinical testing. The use of the methodology is exemplified by tuning and evaluating a model predictive glucose controller being developed for a wearable artificial pancreas focused on fasting conditions. Our methodology to test glucose controllers in a virtual environment is instrumental in anticipating the results of real clinical tests for different physiological conditions and for different operating conditions. The thorough testing in the virtual environment reduces costs and speeds up the development process.
Training Capability Data for Dismounted Soldier Training System
2015-06-01
Simulators (2004) An Assessment of V-IMTS (2004) Evaluation of the Virtual Squad Training System (2007) Perceived Usefulness of TTES : A Second Look (1995...Center-White Sands Missile Range, V-IMTS – Virtual Integrated MOUT ( Military Operation in Urban Terrain) Training System, VIRTSIM – Virtual... military grid reference system coordinate. There currently is no indication or capability to determine the distance traveled (e.g., pace count
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
An Interactive Logistics Centre Information Integration System Using Virtual Reality
NASA Astrophysics Data System (ADS)
Hong, S.; Mao, B.
2018-04-01
The logistics industry plays a very important role in the operation of modern cities. Meanwhile, the development of logistics industry has derived various problems that are urgent to be solved, such as the safety of logistics products. This paper combines the study of logistics industry traceability and logistics centre environment safety supervision with virtual reality technology, creates an interactive logistics centre information integration system. The proposed system utilizes the immerse characteristic of virtual reality, to simulate the real logistics centre scene distinctly, which can make operation staff conduct safety supervision training at any time without regional restrictions. On the one hand, a large number of sensor data can be used to simulate a variety of disaster emergency situations. On the other hand, collecting personnel operation data, to analyse the improper operation, which can improve the training efficiency greatly.
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
ERIC Educational Resources Information Center
Schaffhauser, Dian
2012-01-01
Half of servers in higher ed are virtualized. But that number's not high enough for Link Alander, interim vice chancellor and CIO at the Lone Star College System (Texas). He aspires to see 100 percent of the system's infrastructure requirements delivered as IT services from its own virtualized data centers or other cloud-based operators. Back in…
Marshall Engineers Use Virtual Reality
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
Computer Applications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
ComputerApplications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
ComputerApplications and Virtual Environments (CAVE)
NASA Technical Reports Server (NTRS)
1993-01-01
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
Creating virtual humans for simulation-based training and planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stansfield, S.; Sobel, A.
1998-05-12
Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system formore » planning, rehearsing and training assault operations.« less
NASA Astrophysics Data System (ADS)
Watanuki, Keiichi; Kojima, Kazuyuki
The environment in which Japanese industry has achieved great respect is changing tremendously due to the globalization of world economies, while Asian countries are undergoing economic and technical development as well as benefiting from the advances in information technology. For example, in the design of custom-made casting products, a designer who lacks knowledge of casting may not be able to produce a good design. In order to obtain a good design and manufacturing result, it is necessary to equip the designer and manufacturer with a support system related to casting design, or a so-called knowledge transfer and creation system. This paper proposes a new virtual reality based knowledge acquisition and job training system for casting design, which is composed of the explicit and tacit knowledge transfer systems using synchronized multimedia and the knowledge internalization system using portable virtual environment. In our proposed system, the education content is displayed in the immersive virtual environment, whereby a trainee may experience work in the virtual site operation. Provided that the trainee has gained explicit and tacit knowledge of casting through the multimedia-based knowledge transfer system, the immersive virtual environment catalyzes the internalization of knowledge and also enables the trainee to gain tacit knowledge before undergoing on-the-job training at a real-time operation site.
Utilization of Virtual Server Technology in Mission Operations
NASA Technical Reports Server (NTRS)
Felton, Larry; Lankford, Kimberly; Pitts, R. Lee; Pruitt, Robert W.
2010-01-01
Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.
Virtualization in the Operations Environments
NASA Technical Reports Server (NTRS)
Pitts, Lee; Lankford, Kim; Felton, Larry; Pruitt, Robert
2010-01-01
Virtualization provides the opportunity to continue to do "more with less"---more computing power with fewer physical boxes, thus reducing the overall hardware footprint, power and cooling requirements, software licenses, and their associated costs. This paper explores the tremendous advantages and any disadvantages of virtualization in all of the environments associated with software and systems development to operations flow. It includes the use and benefits of the Intelligent Platform Management Interface (IPMI) specification, and identifies lessons learned concerning hardware and network configurations. Using the Huntsville Operations Support Center (HOSC) at NASA Marshall Space Flight Center as an example, we demonstrate that deploying virtualized servers as a means of managing computing resources is applicable and beneficial to many areas of application, up to and including flight operations.
NASA Astrophysics Data System (ADS)
Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian
2012-09-01
ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.
NASA Technical Reports Server (NTRS)
Rabelo, Luis C.
2002-01-01
This is a report of my activities as a NASA Fellow during the summer of 2002 at the NASA Kennedy Space Center (KSC). The core of these activities is the assigned project: the Virtual Test Bed (VTB) from the Spaceport Engineering and Technology Directorate. The VTB Project has its foundations in the NASA Ames Research Center (ARC) Intelligent Launch & Range Operations program. The objective of the VTB project is to develop a new and unique collaborative computing environment where simulation models can be hosted and integrated in a seamless fashion. This collaborative computing environment will be used to build a Virtual Range as well as a Virtual Spaceport. This project will work as a technology pipeline to research, develop, test and validate R&D efforts against real time operations without interfering with the actual operations or consuming the operational personnel s time. This report will also focus on the systems issues required to conceptualize and provide form to a systems architecture capable of handling the different demands.
VERDEX: A virtual environment demonstrator for remote driving applications
NASA Technical Reports Server (NTRS)
Stone, Robert J.
1991-01-01
One of the key areas of the National Advanced Robotics Centre's enabling technologies research program is that of the human system interface, phase 1 of which started in July 1989 and is currently addressing the potential of virtual environments to permit intuitive and natural interactions between a human operator and a remote robotic vehicle. The aim of the first 12 months of this program (to September, 1990) is to develop a virtual human-interface demonstrator for use later as a test bed for human factors experimentation. This presentation will describe the current state of development of the test bed, and will outline some human factors issues and problems for more general discussion. In brief, the virtual telepresence system for remote driving has been designed to take the following form. The human operator will be provided with a helmet-mounted stereo display assembly, facilities for speech recognition and synthesis (using the Marconi Macrospeak system), and a VPL DataGlove Model 2 unit. The vehicle to be used for the purposes of remote driving is a Cybermotion Navmaster K2A system, which will be equipped with a stereo camera and microphone pair, mounted on a motorized high-speed pan-and-tilt head incorporating a closed-loop laser ranging sensor for camera convergence control (currently under contractual development). It will be possible to relay information to and from the vehicle and sensory system via an umbilical or RF link. The aim is to develop an interactive audio-visual display system capable of presenting combined stereo TV pictures and virtual graphics windows, the latter featuring control representations appropriate for vehicle driving and interaction using a graphical 'hand,' slaved to the flex and tracking sensors of the DataGlove and an additional helmet-mounted Polhemus IsoTrack sensor. Developments planned for the virtual environment test bed include transfer of operator control between remote driving and remote manipulation, dexterous end effector integration, virtual force and tactile sensing (also the focus of a current ARRL contract, initially employing a 14-pneumatic bladder glove attachment), and sensor-driven world modeling for total virtual environment generation and operator-assistance in remote scene interrogation.
1993-09-15
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall SPace Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
1993-12-15
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. Marshall Spce Flight Center (MSFC) is begirning to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models are used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup is to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provides general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC).
ERIC Educational Resources Information Center
Barata, Pebertli Nils Alho; Filho, Manoel Ribeiro; Nunes, Marcus V. Alves
2015-01-01
Within the field of electric power systems, the study of electrical equipment can be frustrating and demotivating because of the lack of a clear vision of how this equipment functions and operates in a real environment. The use of virtual reality can provide a more concrete representation for students, who rarely have the opportunity to visit a…
NASA Technical Reports Server (NTRS)
Searcy, Brittani
2017-01-01
Using virtual environments to assess complex large scale human tasks provides timely and cost effective results to evaluate designs and to reduce operational risks during assembly and integration of the Space Launch System (SLS). NASA's Marshall Space Flight Center (MSFC) uses a suite of tools to conduct integrated virtual analysis during the design phase of the SLS Program. Siemens Jack is a simulation tool that allows engineers to analyze human interaction with CAD designs by placing a digital human model into the environment to test different scenarios and assess the design's compliance to human factors requirements. Engineers at MSFC are using Jack in conjunction with motion capture and virtual reality systems in MSFC's Virtual Environments Lab (VEL). The VEL provides additional capability beyond standalone Jack to record and analyze a person performing a planned task to assemble the SLS at Kennedy Space Center (KSC). The VEL integrates Vicon Blade motion capture system, Siemens Jack, Oculus Rift, and other virtual tools to perform human factors assessments. By using motion capture and virtual reality, a more accurate breakdown and understanding of how an operator will perform a task can be gained. By virtual analysis, engineers are able to determine if a specific task is capable of being safely performed by both a 5% (approx. 5ft) female and a 95% (approx. 6'1) male. In addition, the analysis will help identify any tools or other accommodations that may to help complete the task. These assessments are critical for the safety of ground support engineers and keeping launch operations on schedule. Motion capture allows engineers to save and examine human movements on a frame by frame basis, while virtual reality gives the actor (person performing a task in the VEL) an immersive view of the task environment. This presentation will discuss the need of human factors for SLS and the benefits of analyzing tasks in NASA MSFC's VEL.
Integration of virtualized worker nodes in standard batch systems
NASA Astrophysics Data System (ADS)
Büge, Volker; Hessling, Hermann; Kemp, Yves; Kunze, Marcel; Oberst, Oliver; Quast, Günter; Scheurer, Armin; Synge, Owen
2010-04-01
Current experiments in HEP only use a limited number of operating system flavours. Their software might only be validated on one single OS platform. Resource providers might have other operating systems of choice for the installation of the batch infrastructure. This is especially the case if a cluster is shared with other communities, or communities that have stricter security requirements. One solution would be to statically divide the cluster into separated sub-clusters. In such a scenario, no opportunistic distribution of the load can be achieved, resulting in a poor overall utilization efficiency. Another approach is to make the batch system aware of virtualization, and to provide each community with its favoured operating system in a virtual machine. Here, the scheduler has full flexibility, resulting in a better overall efficiency of the resources. In our contribution, we present a lightweight concept for the integration of virtual worker nodes into standard batch systems. The virtual machines are started on the worker nodes just before jobs are executed there. No meta-scheduling is introduced. We demonstrate two prototype implementations, one based on the Sun Grid Engine (SGE), the other using Maui/Torque as a batch system. Both solutions support local job as well as Grid job submission. The hypervisors currently used are Xen and KVM, a port to another system is easily envisageable. To better handle different virtual machines on the physical host, the management solution VmImageManager is developed. We will present first experience from running the two prototype implementations. In a last part, we will show the potential future use of this lightweight concept when integrated into high-level (i.e. Grid) work-flows.
Distribution Locational Real-Time Pricing Based Smart Building Control and Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen
This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less
Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0
NASA Technical Reports Server (NTRS)
Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.
2001-01-01
A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.
Navigation system for robot-assisted intra-articular lower-limb fracture surgery.
Dagnino, Giulio; Georgilas, Ioannis; Köhler, Paul; Morad, Samir; Atkins, Roger; Dogramadzi, Sanja
2016-10-01
In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction. 3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon's virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system. The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of [Formula: see text] (translational) and [Formula: see text] (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and [Formula: see text], when the robot reduced the fracture. Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and [Formula: see text], and meeting the clinical requirements for distal femur fracture reduction procedures.
Multi-modal cockpit interface for improved airport surface operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)
2010-01-01
A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.
Virtual fringe projection system with nonparallel illumination based on iteration
NASA Astrophysics Data System (ADS)
Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian
2017-06-01
Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.
Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture
NASA Technical Reports Server (NTRS)
Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan
2014-01-01
With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!
A class Hierarchical, object-oriented approach to virtual memory management
NASA Technical Reports Server (NTRS)
Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.
1989-01-01
The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.
Optoelectronics technologies for Virtual Reality systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-08-01
Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.
Polley, John W; Figueroa, Alvaro A
2013-05-01
To introduce the concept and use of an occlusal-based "orthognathic positioning system" (OPS) to be used during orthognathic surgery. The OPS consists of intraoperative occlusal-based devices that transfer virtual surgical planning to the operating field for repositioning of the osteotomized dentoskeletal segments. The system uses detachable guides connected to an occlusal splint. An initial drilling guide is used to establish stable references or landmarks. These are drilled on the bone that will not be repositioned adjacent to the osteotomy line. After mobilization of the skeletal segment, a final positioning guide, referenced to the drilled landmarks, is used to transfer the skeletal segment according to the virtual surgical planning. The OPS is digitally designed using 3-dimensional computer-aided design/computer-aided manufacturing technology and manufactured with stereolithographic techniques. Virtual surgical planning has improved the preoperative assessment and, in conjunction with the OPS, the execution of orthognathic surgery. The OPS has the possibility to eliminate the inaccuracies commonly associated with traditional orthognathic surgery planning and to simplify the execution by eliminating surgical steps such as intraoperative measuring, determining the condylar position, the use of bulky intermediate splints, and the use of intermaxillary wire fixation. The OPS attempts precise translation of the virtual plan to the operating field, bridging the gap between virtual and actual surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
1993-09-15
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Centerr (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability provided general visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
1993-09-15
Virtual Reality (VR) can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The Marshall Space Flight Center (MSFC) in Huntsville, Alabama began to utilize VR for design analysis in the X-34 experimental reusable space vehicle. Analysts at MSFC's Computer Applications and Virtual Environments (CAVE) used Head Mounted Displays (HMD) (pictured), spatial trackers and gesture inputs as a means to animate or inhabit a properly sized virtual human model. These models were used in a VR scenario as a way to determine functionality of space and maintenance requirements for the virtual X-34. The primary functions of the virtual X-34 mockup was to support operations development and design analysis for engine removal, the engine compartment and the aft fuselage. This capability providedgeneral visualization support to engineers and designers at MSFC and to the System Design Freeze Review at Orbital Sciences Corporation (OSC). The X-34 program was cancelled in 2001.
Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj
2008-03-01
The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.
Proof-of-Concept Part Task Trainer for Close Air Support Procedures
2016-06-01
TVDL Tactical Video Down Link VE Virtual Environment VR Virtual Reality WTI Weapons and Tactics Instructor xvii ACKNOWLEDGMENTS I would first...in training of USMC pilots for close air support operations? • What is the feasibility of developing a prototype virtual reality (VR) system that...Chapter IV provides a review of virtual reality (VR)/ virtual environment (VE) and part-task trainers currently used in military training
A Virtual Reality-Based Simulation of Abdominal Surgery
1994-06-30
415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and
Rizzo, Albert Skip; Difede, JoAnn; Rothbaum, Barbara O; Reger, Greg; Spitalnick, Josh; Cukor, Judith; McLay, Rob
2010-10-01
Numerous reports indicate that the growing incidence of posttraumatic stress disorder (PTSD) in returning Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) military personnel is creating a significant health care and economic challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. Virtual reality-delivered exposure therapy for PTSD has been previously used with reports of positive outcomes. The current paper will detail the development and early results from use of the Virtual Iraq/Afghanistan exposure therapy system. The system consists of a series of customizable virtual scenarios designed to represent relevant Middle Eastern contexts for exposure therapy, including a city and desert road convoy environment. The process for gathering user-centered design feedback from returning OEF/OIF military personnel and from a system deployed in Iraq (as was needed to iteratively evolve the system) will be discussed, along with a brief summary of results from an open clinical trial using Virtual Iraq with 20 treatment completers, which indicated that 16 no longer met PTSD checklist-military criteria for PTSD after treatment. © 2010 Association for Research in Nervous and Mental Disease.
Virtual Laparoscopic Training System Based on VCH Model.
Tang, Jiangzhou; Xu, Lang; He, Longjun; Guan, Songluan; Ming, Xing; Liu, Qian
2017-04-01
Laparoscopy has been widely used to perform abdominal surgeries, as it is advantageous in that the patients experience lower post-surgical trauma, shorter convalescence, and less pain as compared to traditional surgery. Laparoscopic surgeries require precision; therefore, it is imperative to train surgeons to reduce the risk of operation. Laparoscopic simulators offer a highly realistic surgical environment by using virtual reality technology, and it can improve the training efficiency of laparoscopic surgery. This paper presents a virtual Laparoscopic surgery system. The proposed system utilizes the Visible Chinese Human (VCH) to construct the virtual models and simulates real-time deformation with both improved special mass-spring model and morph target animation. Meanwhile, an external device that integrates two five-degrees-of-freedom (5-DOF) manipulators was designed and made to interact with the virtual system. In addition, the proposed system provides a modular tool based on Unity3D to define the functions and features of instruments and organs, which could help users to build surgical training scenarios quickly. The proposed virtual laparoscopic training system offers two kinds of training mode, skills training and surgery training. In the skills training mode, the surgeons are mainly trained for basic operations, such as laparoscopic camera, needle, grasp, electric coagulation, and suturing. In the surgery-training mode, the surgeons can practice cholecystectomy and removal of hepatic cysts by guided or non-guided teaching.
Virtual interface environment workstations
NASA Technical Reports Server (NTRS)
Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.
1988-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.
Implementation of a virtual laryngoscope system using efficient reconstruction algorithms.
Luo, Shouhua; Yan, Yuling
2009-08-01
Conventional fiberoptic laryngoscope may cause discomfort to the patient and in some cases it can lead to side effects that include perforation, infection and hemorrhage. Virtual laryngoscopy (VL) can overcome this problem and further it may lower the risk of operation failures. Very few virtual endoscope (VE) based investigations of the larynx have been described in the literature. CT data sets from a healthy subject were used for the VL studies. An algorithm of preprocessing and region-growing for 3-D image segmentation is developed. An octree based approach is applied in our VL system which facilitates a rapid construction of iso-surfaces. Some locating techniques are used for fast rendering and navigation (fly-through). Our VL visualization system provides for real time and efficient 'fly-through' navigation. The virtual camera can be arranged so that it moves along the airway in either direction. Snap shots were taken during fly-throughs. The system can automatically adjust the direction of the virtual camera and prevent collisions of the camera and the wall of the airway. A virtual laryngoscope (VL) system using OpenGL (Open Graphics Library) platform for interactive rendering and 3D visualization of the laryngeal framework and upper airway is established. OpenGL is supported on major operating systems and works with every major windowing system. The VL system runs on regular PC workstations and was successfully tested and evaluated using CT data from a normal subject.
NASA Astrophysics Data System (ADS)
Bjorklund, E.
1994-12-01
In the 1970s, when computers were memory limited, operating system designers created the concept of "virtual memory", which gave users the ability to address more memory than physically existed. In the 1990s, many large control systems have the potential of becoming data limited. We propose that many of the principles behind virtual memory systems (working sets, locality, caching and clustering) can also be applied to data-limited systems, creating, in effect, "virtual data systems". At the Los Alamos National Laboratory's Clinton P. Anderson Meson Physics Facility (LAMPF), we have applied these principles to a moderately sized (10 000 data points) data acquisition and control system. To test the principles, we measured the system's performance during tune-up, production, and maintenance periods. In this paper, we present a general discussion of the principles of a virtual data system along with some discussion of our own implementation and the results of our performance measurements.
McFarlane, N. J. B.; Lin, X.; Zhao, Y.; Clapworthy, G. J.; Dong, F.; Redaelli, A.; Parodi, O.; Testi, D.
2011-01-01
Ischaemic heart failure remains a significant health and economic problem worldwide. This paper presents a user-friendly software system that will form a part of the virtual pathological heart of the Virtual Physiological Human (VPH2) project, currently being developed under the European Commission Virtual Physiological Human (VPH) programme. VPH2 is an integrated medicine project, which will create a suite of modelling, simulation and visualization tools for patient-specific prediction and planning in cases of post-ischaemic left ventricular dysfunction. The work presented here describes a three-dimensional interactive visualization for simulating left ventricle restoration surgery, comprising the operations of cutting, stitching and patching, and for simulating the elastic deformation of the ventricle to its post-operative shape. This will supply the quantitative measurements required for the post-operative prediction tools being developed in parallel in the same project. PMID:22670207
Virtual fixtures as tools to enhance operator performance in telepresence environments
NASA Astrophysics Data System (ADS)
Rosenberg, Louis B.
1993-12-01
This paper introduces the notion of virtual fixtures for use in telepresence systems and presents an empirical study which demonstrates that such virtual fixtures can greatly enhance operator performance within remote environments. Just as tools and fixtures in the real world can enhance human performance by guiding manual operations, providing localizing references, and reducing the mental processing required to perform a task, virtual fixtures are computer generated percepts overlaid on top of the reflection of a remote workspace which can provide similar benefits. Like a ruler guiding a pencil in a real manipulation task, a virtual fixture overlaid on top of a remote workspace can act to reduce the mental processing required to perform a task, limit the workload of certain sensory modalities, and most of all allow precision and performance to exceed natural human abilities. Because such perceptual overlays are virtual constructions they can be diverse in modality, abstract in form, and custom tailored to individual task or user needs. This study investigates the potential of virtual fixtures by implementing simple combinations of haptic and auditory sensations as perceptual overlays during a standardized telemanipulation task.
Head-mounted active noise control system with virtual sensing technique
NASA Astrophysics Data System (ADS)
Miyazaki, Nobuhiro; Kajikawa, Yoshinobu
2015-03-01
In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... Operations Assessment contains threat trees for the seven types of voting types covered by the Election Operations Assessment. These threat trees are intended to capture risks to the various types of voting systems and the possible mitigations. These threat trees feed into the Risk Assessment tool that will be...
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
Surgery applications of virtual reality
NASA Technical Reports Server (NTRS)
Rosen, Joseph
1994-01-01
Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.
Liu Bejarano, Humberto
2011-01-01
Due to the poor agreement between endoscopy and histology, the gastric biopsy continues being the gold standard for the diagnosis of atrophic chronic gastritis. The Virtual chromoendoscopy system allows better observation of the gastric mucosa. Evaluate the agreement between the Kimura-Takemoto ´s endoscopic system classification and the histological system of OLGA (Operative for Link Assessment Gastritis), as well as to evaluate the application of the virtual chromoendoscopy. A prospective and longitudinal study of cohorts, 138 patients was include, using endoscopic system of atrophy by Kimura and Takemoto (K-T), with conventional optical and with the use of seventh filter of virtual chromoendoscopy ,then comparing with the histological findings of the OLGA pathology system, also were determinated injuries associated with respect to stage OLGA. The kappa index of agreement between conventional endoscopy and the system OLGA was 0.859 and with the system of virtual chromoendoscopy was 0.822, the preneoplasic and neoplastic gastric lesions were associate to stages III and IV of atrophy. The endoscopic and histological correlation with both systems isvery good, with or without the use of virtual chromoendoscopy. chronic atrophic gastritis, virtual chromoendoscopy, olga system, , kimuratakemoto system.
Virtual Schools in the U.S. 2013: Politics, Performance, Policy, and Research Evidence
ERIC Educational Resources Information Center
Miron, Gary; Horvitz, Brian; Gulosino, Charisse; Huerta, Luis; Rice, Jennifer King; Shafer, Sheryl Rankin; Cuban, Larry
2013-01-01
This national study, which comprehensively reviews 311 virtual schools operating in the United States, finds serious and systemic problems with the nation's full-time cyber schools. Despite virtual schools' track record of students falling behind their peers academically or dropping-out at higher rates, states and districts continue to expand…
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.
Wu, Qijun; Wang, Lufei; Zu, Lily
2011-01-01
We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.
A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy
Wu, Qijun; Wang, Lufei; Zu, Lily
2011-01-01
We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted. PMID:22013388
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2011-06-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.
Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery
Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell
2013-01-01
This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557
NASA Technical Reports Server (NTRS)
1990-01-01
While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.
Intraoperative virtual brain counseling
NASA Astrophysics Data System (ADS)
Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando
1997-06-01
Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.
Autonomous Satellite Operations Via Secure Virtual Mission Operations Center
NASA Technical Reports Server (NTRS)
Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael
2011-01-01
The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.
NASA Technical Reports Server (NTRS)
Jex, Henry R.
1991-01-01
A review is given of a wide range of simulations in which operator steering control of a vehicle is involved and the dominant-clues, closed-loop bandwidth, measured operator effective time-delay, and ratio of bandwidth-to-inverse delay are summarized. A correlation of kinetosis with dynamic scene field-of-view is shown. The use of moving base simulators to improve the validity of locomotion teleoperations is discussed. some rules-of-thumb for good 'feel-system' simulation, such as for control manipulanda are given. Finally, simulation tests of teleoperators and virtual environments should include three types of measures: system performance, operator (or robot) 'behavior', and mental workload evaluations.
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
Thermal feedback in virtual reality and telerobotic systems
NASA Technical Reports Server (NTRS)
Zerkus, Mike; Becker, Bill; Ward, Jon; Halvorsen, Lars
1994-01-01
A new concept has been developed that allows temperature to be part of the virtual world. The Displaced Temperature Sensing System (DTSS) can 'display' temperature in a virtual reality system.The DTSS can also serve as a feedback device for telerobotics. For virtual reality applications the virtual world software would be required to have a temperature map of its world. By whatever means (magnetic tracker, ultrasound tracker, etc.) the hand and fingers, which have been instrumented with thermodes, would be tracked. The temperature associated with the current position would be transmitted to the DRSS via a serial data link. The DTSS would provide that temperature to the fingers. For telerobotic operation the function of the DTSS is to transmit a temperature from a remote location to the fingers where the temperature can be felt.
VEVI: A Virtual Reality Tool For Robotic Planetary Explorations
NASA Technical Reports Server (NTRS)
Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik
1994-01-01
The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.
sRNAtoolboxVM: Small RNA Analysis in a Virtual Machine.
Gómez-Martín, Cristina; Lebrón, Ricardo; Rueda, Antonio; Oliver, José L; Hackenberg, Michael
2017-01-01
High-throughput sequencing (HTS) data for small RNAs (noncoding RNA molecules that are 20-250 nucleotides in length) can now be routinely generated by minimally equipped wet laboratories; however, the bottleneck in HTS-based research has shifted now to the analysis of such huge amount of data. One of the reasons is that many analysis types require a Linux environment but computers, system administrators, and bioinformaticians suppose additional costs that often cannot be afforded by small to mid-sized groups or laboratories. Web servers are an alternative that can be used if the data is not subjected to privacy issues (what very often is an important issue with medical data). However, in any case they are less flexible than stand-alone programs limiting the number of workflows and analysis types that can be carried out.We show in this protocol how virtual machines can be used to overcome those problems and limitations. sRNAtoolboxVM is a virtual machine that can be executed on all common operating systems through virtualization programs like VirtualBox or VMware, providing the user with a high number of preinstalled programs like sRNAbench for small RNA analysis without the need to maintain additional servers and/or operating systems.
A Virtual Instrument System for Determining Sugar Degree of Honey
Wu, Qijun; Gong, Xun
2015-01-01
This study established a LabVIEW-based virtual instrument system to measure optical activity through the communication of conventional optical instrument with computer via RS232 port. This system realized the functions for automatic acquisition, real-time display, data processing, results playback, and so forth. Therefore, it improved accuracy of the measurement results by avoiding the artificial operation, cumbersome data processing, and the artificial error in optical activity measurement. The system was applied to the analysis of the batch inspection on the sugar degree of honey. The results obtained were satisfying. Moreover, it showed advantages such as friendly man-machine dialogue, simple operation, and easily expanded functions. PMID:26504615
Virtual C Machine and Integrated Development Environment for ATMS Controllers.
DOT National Transportation Integrated Search
2000-04-01
The overall objective of this project is to develop a prototype virtual machine that fits on current Advanced Traffic Management Systems (ATMS) controllers and provides functionality for complex traffic operations.;Prepared in cooperation with Utah S...
The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery.
Ballantyne, Garth H; Moll, Fred
2003-12-01
The United States Department of Defense developed the telepresence surgery concept to meet battlefield demands. The da Vinci telerobotic surgery system evolved from these efforts. In this article, the authors describe the components of the da Vinci system and explain how the surgeon sits at a computer console, views a three-dimensional virtual operative field, and performs the operation by controlling robotic arms that hold the stereoscopic video telescope and surgical instruments that simulate hand motions with seven degrees of freedom. The three-dimensional imaging and handlike motions of the system facilitate advanced minimally invasive thoracic, cardiac, and abdominal procedures. da Vinci has recently released a second generation of telerobots with four arms and will continue to meet the evolving challenges of surgery.
Intra-operative 3D imaging system for robot-assisted fracture manipulation.
Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S
2015-01-01
Reduction is a crucial step in the treatment of broken bones. Achieving precise anatomical alignment of bone fragments is essential for a good fast healing process. Percutaneous techniques are associated with faster recovery time and lower infection risk. However, deducing intra-operatively the desired reduction position is quite challenging due to the currently available technology. The 2D nature of this technology (i.e. the image intensifier) doesn't provide enough information to the surgeon regarding the fracture alignment and rotation, which is actually a three-dimensional problem. This paper describes the design and development of a 3D imaging system for the intra-operative virtual reduction of joint fractures. The proposed imaging system is able to receive and segment CT scan data of the fracture, to generate the 3D models of the bone fragments, and display them on a GUI. A commercial optical tracker was included into the system to track the actual pose of the bone fragments in the physical space, and generate the corresponding pose relations in the virtual environment of the imaging system. The surgeon virtually reduces the fracture in the 3D virtual environment, and a robotic manipulator connected to the fracture through an orthopedic pin executes the physical reductions accordingly. The system is here evaluated through fracture reduction experiments, demonstrating a reduction accuracy of 1.04 ± 0.69 mm (translational RMSE) and 0.89 ± 0.71 ° (rotational RMSE).
Zanardi, P
2001-08-13
The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A of operationally relevant observables. The algebraic structure of A selects a preferred tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomies
Computer Associates International, CA-ACF2/VM Release 3.1
1987-09-09
Associates CA-ACF2/VM Bibliography International Business Machines Corporation, IBM Virtual Machine/Directory Maintenance Program Logic Manual...publication number LY20-0889 International Business Machines International Business Machines Corporation, IBM System/370 Principles of Operation...publication number GA22-7000 International Business Machines Corporation, IBM Virtual Machine/Directory Maintenance Installation and System Administrator’s
A virtual reality environment for telescope operation
NASA Astrophysics Data System (ADS)
Martínez, Luis A.; Villarreal, José L.; Ángeles, Fernando; Bernal, Abel
2010-07-01
Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any potential user the acquirement of great amount of information previous to access them. At present, the most common way to overcome that information is through the implementation of larger graphical user interfaces and computer monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that works as an extension of the remote system and allows us to operate the telescope. In this work we explore this alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.
NASA Technical Reports Server (NTRS)
Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph
2000-01-01
For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.
Tools virtualization for command and control systems
NASA Astrophysics Data System (ADS)
Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław
2017-10-01
Information management is an inseparable part of the command process. The result is that the person making decisions at the command post interacts with data providing devices in various ways. Tools virtualization process can introduce a number of significant modifications in the design of solutions for management and command. The general idea involves replacing physical devices user interface with their digital representation (so-called Virtual instruments). A more advanced level of the systems "digitalization" is to use the mixed reality environments. In solutions using Augmented reality (AR) customized HMI is displayed to the operator when he approaches to each device. Identification of device is done by image recognition of photo codes. Visualization is achieved by (optical) see-through head mounted display (HMD). Control can be done for example by means of a handheld touch panel. Using the immersive virtual environment, the command center can be digitally reconstructed. Workstation requires only VR system (HMD) and access to information network. Operator can interact with devices in such a way as it would perform in real world (for example with the virtual hands). Because of their procedures (an analysis of central vision, eye tracking) MR systems offers another useful feature of reducing requirements for system data throughput. Due to the fact that at the moment we focus on the single device. Experiments carried out using Moverio BT-200 and SteamVR systems and the results of experimental application testing clearly indicate the ability to create a fully functional information system with the use of mixed reality technology.
[Application of virtual reality in surgical treatment of complex head and neck carcinoma].
Zhou, Y Q; Li, C; Shui, C Y; Cai, Y C; Sun, R H; Zeng, D F; Wang, W; Li, Q L; Huang, L; Tu, J; Jiang, J
2018-01-07
Objective: To investigate the application of virtual reality technology in the preoperative evaluation of complex head and neck carcinoma and he value of virtual reality technology in surgical treatment of head and neck carcinoma. Methods: The image data of eight patients with complex head and neck carcinoma treated from December 2016 to May 2017 was acquired. The data were put into virtual reality system to built the three-dimensional anatomical model of carcinoma and to created the surgical scene. The process of surgery was stimulated by recognizing the relationship between tumor and surrounding important structures. Finally all patients were treated with surgery. And two typical cases were reported. Results: With the help of virtual reality, surgeons could adequately assess the condition of carcinoma and the security of operation and ensured the safety of operations. Conclusions: Virtual reality can provide the surgeons with the sensory experience in virtual surgery scenes and achieve the man-computer cooperation and stereoscopic assessment, which will ensure the safety of surgery. Virtual reality has a huge impact on guiding the traditional surgical procedure of head and neck carcinoma.
Graphic and haptic simulation system for virtual laparoscopic rectum surgery.
Pan, Jun J; Chang, Jian; Yang, Xiaosong; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas
2011-09-01
Medical simulators with vision and haptic feedback techniques offer a cost-effective and efficient alternative to the traditional medical trainings. They have been used to train doctors in many specialties of medicine, allowing tasks to be practised in a safe and repetitive manner. This paper describes a virtual-reality (VR) system which will help to influence surgeons' learning curves in the technically challenging field of laparoscopic surgery of the rectum. Data from MRI of the rectum and real operation videos are used to construct the virtual models. A haptic force filter based on radial basis functions is designed to offer realistic and smooth force feedback. To handle collision detection efficiently, a hybrid model is presented to compute the deformation of intestines. Finally, a real-time cutting technique based on mesh is employed to represent the incision operation. Despite numerous research efforts, fast and realistic solutions of soft tissues with large deformation, such as intestines, prove extremely challenging. This paper introduces our latest contribution to this endeavour. With this system, the user can haptically operate with the virtual rectum and simultaneously watch the soft tissue deformation. Our system has been tested by colorectal surgeons who believe that the simulated tactile and visual feedbacks are realistic. It could replace the traditional training process and effectively transfer surgical skills to novices. Copyright © 2011 John Wiley & Sons, Ltd.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, C. C.; Chen, P. P.; Fuchs, W. K.
1987-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data structures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared databased of Virtual Double Linked Lists.
Local concurrent error detection and correction in data structures using virtual backpointers
NASA Technical Reports Server (NTRS)
Li, Chung-Chi Jim; Chen, Paul Peichuan; Fuchs, W. Kent
1989-01-01
A new technique, based on virtual backpointers, for local concurrent error detection and correction in linked data strutures is presented. Two new data structures, the Virtual Double Linked List, and the B-tree with Virtual Backpointers, are described. For these structures, double errors can be detected in 0(1) time and errors detected during forward moves can be corrected in 0(1) time. The application of a concurrent auditor process to data structure error detection and correction is analyzed, and an implementation is described, to determine the effect on mean time to failure of a multi-user shared database system. The implementation utilizes a Sequent shared memory multiprocessor system operating on a shared database of Virtual Double Linked Lists.
Global tree network for computing structures enabling global processing operations
Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.
2010-01-19
A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.
NASA Technical Reports Server (NTRS)
Fisher, Scott S.
1986-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.
The Virtual Health University: An eLearning Model within the Cuban Health System.
Jardines, José B
2008-01-01
This paper describes Cuba's experience with the Virtual Health University (VHU) as a strategic project of INFOMED, promoting creation of an open teaching-learning environment for health sciences education, through intensive and creative use of Information and Communication Technologies (ICTs) and a network approach to learning. An analysis of the VHU's main antecedents in its different stages of development provides insight into the strategic reasons that led to the establishment of a virtual university in the national health system during Cuba's so-called Special Period of economic crisis. Using the general objectives of creating, sharing, and collaborating which define the VHU's conceptual-operative framework, the three essential components (subsystems) are described: pedagogical, technological, and managerial, as well as the operative stages of educational design, technological implementation, and teaching-administrative management system. Each component of the model is analyzed in the context of global, modern university trends, towards integration of the face-to-face and distance education approaches and the creation of virtual institutions that assume the technological and pedagogical changes demanded by eLearning.
Seung, Sungmin; Choi, Hongseok; Jang, Jongseong; Kim, Young Soo; Park, Jong-Oh; Park, Sukho; Ko, Seong Young
2017-01-01
This article presents a haptic-guided teleoperation for a tumor removal surgical robotic system, so-called a SIROMAN system. The system was developed in our previous work to make it possible to access tumor tissue, even those that seat deeply inside the brain, and to remove the tissue with full maneuverability. For a safe and accurate operation to remove only tumor tissue completely while minimizing damage to the normal tissue, a virtual wall-based haptic guidance together with a medical image-guided control is proposed and developed. The virtual wall is extracted from preoperative medical images, and the robot is controlled to restrict its motion within the virtual wall using haptic feedback. Coordinate transformation between sub-systems, a collision detection algorithm, and a haptic-guided teleoperation using a virtual wall are described in the context of using SIROMAN. A series of experiments using a simplified virtual wall are performed to evaluate the performance of virtual wall-based haptic-guided teleoperation. With haptic guidance, the accuracy of the robotic manipulator's trajectory is improved by 57% compared to one without. The tissue removal performance is also improved by 21% ( p < 0.05). The experiments show that virtual wall-based haptic guidance provides safer and more accurate tissue removal for single-port brain surgery.
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2017-08-01
In the work is examined the sequential control system of a technological line in the form of the final part of a system of an internal transport. The process of designing this technological line using the computer-aided approach ran concurrently in two different program environments. In the Mechatronics Concept Designer module of the PLM Siemens NX software was developed the 3D model of the technological line prepared for verification the logic interrelations implemented in the control system. For this purpose, from the whole system of the technological line, it was distinguished the sub-system of actuators and sensors, because their correct operation determines the correct operation of the whole system. Whereas in the application of the virtual controller have been implemented the algorithms of work of the planned line. Then both program environments have been integrated using the OPC server, which enables the exchange of data between the considered systems. The data on the state of the object and the data defining the way and sequence of operation of the technological line are exchanged between the virtual controller and the 3D model of the technological line in real time.
Decision Support Systems for Launch and Range Operations Using Jess
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar
2007-01-01
The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.
Virtual reality in the operating room of the future.
Müller, W; Grosskopf, S; Hildebrand, A; Malkewitz, R; Ziegler, R
1997-01-01
In cooperation with the Max-Delbrück-Centrum/Robert-Rössle-Klinik (MDC/RRK) in Berlin, the Fraunhofer Institute for Computer Graphics is currently designing and developing a scenario for the operating room of the future. The goal of this project is to integrate new analysis, visualization and interaction tools in order to optimize and refine tumor diagnostics and therapy in combination with laser technology and remote stereoscopic video transfer. Hence, a human 3-D reference model is reconstructed using CT, MR, and anatomical cryosection images from the National Library of Medicine's Visible Human Project. Applying segmentation algorithms and surface-polygonization methods a 3-D representation is obtained. In addition, a "fly-through" the virtual patient is realized using 3-D input devices (data glove, tracking system, 6-DOF mouse). In this way, the surgeon can experience really new perspectives of the human anatomy. Moreover, using a virtual cutting plane any cut of the CT volume can be interactively placed and visualized in realtime. In conclusion, this project delivers visions for the application of effective visualization and VR systems. Commonly known as Virtual Prototyping and applied by the automotive industry long ago, this project shows, that the use of VR techniques can also prototype an operating room. After evaluating design and functionality of the virtual operating room, MDC plans to build real ORs in the near future. The use of VR techniques provides a more natural interface for the surgeon in the OR (e.g., controlling interactions by voice input). Besides preoperative planning future work will focus on supporting the surgeon in performing surgical interventions. An optimal synthesis of real and synthetic data, and the inclusion of visual, aural, and tactile senses in virtual environments can meet these requirements. This Augmented Reality could represent the environment for the surgeons of tomorrow.
A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)
NASA Astrophysics Data System (ADS)
Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.
2013-12-01
Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS 1280-HR SIMS operating under LabView. The Publishing System will be based on eSciDoc, which is already successfully used by the GFZ scientific library. For the LIMS Server we are currently testing various options. The challenge, however, is the successful integration of all the various components and, where necessary, the definition of useful interfaces between the modules.
Virtualization in education: Information Security lab in your hands
NASA Astrophysics Data System (ADS)
Karlov, A. A.
2016-09-01
The growing demand for qualified specialists in advanced information technologies poses serious challenges to the education and training of young personnel for science, industry and social problems. Virtualization as a way to isolate the user from the physical characteristics of computing resources (processors, servers, operating systems, networks, applications, etc.), has, in particular, an enormous influence in the field of education, increasing its efficiency, reducing the cost, making it more widely and readily available. The study of Information Security of computer systems is considered as an example of use of virtualization in education.
NASA Technical Reports Server (NTRS)
2002-01-01
Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.
Advanced Decision-Support for Coastal Beach Health: Virtual Beach 3.0
Virtual Beach is a free decision-support system designed to help beach managers and researchers construct, evaluate, and operate site-specific statistical models that can predict levels of fecal indicator bacteria (FIB) based on environmental conditions that are more readily mea...
Real-time, interactive, visually updated simulator system for telepresence
NASA Technical Reports Server (NTRS)
Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.
1991-01-01
Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.
Virtual workstation - A multimodal, stereoscopic display environment
NASA Astrophysics Data System (ADS)
Fisher, S. S.; McGreevy, M.; Humphries, J.; Robinett, W.
1987-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use in a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.
Integrating UniTree with the data migration API
NASA Technical Reports Server (NTRS)
Schrodel, David G.
1994-01-01
The Data Migration Application Programming Interface (DMAPI) has the potential to allow developers of open systems Hierarchical Storage Management (HSM) products to virtualize native file systems without the requirement to make changes to the underlying operating system. This paper describes advantages of virtualizing native file systems in hierarchical storage management systems, the DMAPI at a high level, what the goals are for the interface, and the integration of the Convex UniTree+HSM with DMAPI along with some of the benefits derived in the resulting product.
Yamashita, Yoshinori; Ogaito, Tatoku
2013-01-01
In our hospital, we managed an electronic health record system and many section subsystems as a hospital information system. By the expansion of these information systems, a system becomes complicated, and maintenance and operative cost increased. Furthermore, the environment that is available to medical information is demanded anywhere anytime by expansion of the computerization. However, the expansion of the information use becomes necessary for the expansion such as the personal protection of information for security. We became rebuilding and the private cloud of the hospital information system by the virtualization technology to solve such a problem. As a result, we were able to perform a decrease in number of the servers which constituted a system, a decrease in network traffic, reduction of the operative cost.
C-arm positioning using virtual fluoroscopy for image-guided surgery
NASA Astrophysics Data System (ADS)
de Silva, T.; Punnoose, J.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M. D.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.
2017-03-01
Introduction: Fluoroscopically guided procedures often involve repeated acquisitions for C-arm positioning at the cost of radiation exposure and time in the operating room. A virtual fluoroscopy system is reported with the potential of reducing dose and time spent in C-arm positioning, utilizing three key advances: robust 3D-2D registration to a preoperative CT; real-time forward projection on GPU; and a motorized mobile C-arm with encoder feedback on C-arm orientation. Method: Geometric calibration of the C-arm was performed offline in two rotational directions (orbit α, orbit β). Patient registration was performed using image-based 3D-2D registration with an initially acquired radiograph of the patient. This approach for patient registration eliminated the requirement for external tracking devices inside the operating room, allowing virtual fluoroscopy using commonly available systems in fluoroscopically guided procedures within standard surgical workflow. Geometric accuracy was evaluated in terms of projection distance error (PDE) in anatomical fiducials. A pilot study was conducted to evaluate the utility of virtual fluoroscopy to aid C-arm positioning in image guided surgery, assessing potential improvements in time, dose, and agreement between the virtual and desired view. Results: The overall geometric accuracy of DRRs in comparison to the actual radiographs at various C-arm positions was PDE (mean ± std) = 1.6 ± 1.1 mm. The conventional approach required on average 8.0 ± 4.5 radiographs spent "fluoro hunting" to obtain the desired view. Positioning accuracy improved from 2.6o ± 2.3o (in α) and 4.1o ± 5.1o (in β) in the conventional approach to 1.5o ± 1.3o and 1.8o ± 1.7o, respectively, with the virtual fluoroscopy approach. Conclusion: Virtual fluoroscopy could improve accuracy of C-arm positioning and save time and radiation dose in the operating room. Such a system could be valuable to training of fluoroscopy technicians as well as intraoperative use in fluoroscopically guided procedures.
NASA Technical Reports Server (NTRS)
Lunsford, Myrtis Leigh
1998-01-01
The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.
Perspectives of IT Professionals on Employing Server Virtualization Technologies
ERIC Educational Resources Information Center
Sligh, Darla
2010-01-01
Server virtualization enables a physical computer to support multiple applications logically by decoupling the application from the hardware layer, thereby reducing operational costs and competitive in delivering IT services to their enterprise organizations. IT organizations continually examine the efficiency of their internal IT systems and…
Using shadow page cache to improve isolated drivers performance.
Zheng, Hao; Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe
2015-01-01
With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much.
Using Shadow Page Cache to Improve Isolated Drivers Performance
Dong, Xiaoshe; Wang, Endong; Chen, Baoke; Zhu, Zhengdong; Liu, Chengzhe
2015-01-01
With the advantage of the reusability property of the virtualization technology, users can reuse various types and versions of existing operating systems and drivers in a virtual machine, so as to customize their application environment. In order to prevent users' virtualization environments being impacted by driver faults in virtual machine, Chariot examines the correctness of driver's write operations by the method of combining a driver's write operation capture and a driver's private access control table. However, this method needs to keep the write permission of shadow page table as read-only, so as to capture isolated driver's write operations through page faults, which adversely affect the performance of the driver. Based on delaying setting frequently used shadow pages' write permissions to read-only, this paper proposes an algorithm using shadow page cache to improve the performance of isolated drivers and carefully study the relationship between the performance of drivers and the size of shadow page cache. Experimental results show that, through the shadow page cache, the performance of isolated drivers can be greatly improved without impacting Chariot's reliability too much. PMID:25815373
Final Report: Enabling Exascale Hardware and Software Design through Scalable System Virtualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Patrick G.
2015-02-01
In this grant, we enhanced the Palacios virtual machine monitor to increase its scalability and suitability for addressing exascale system software design issues. This included a wide range of research on core Palacios features, large-scale system emulation, fault injection, perfomrance monitoring, and VMM extensibility. This research resulted in large number of high-impact publications in well-known venues, the support of a number of students, and the graduation of two Ph.D. students and one M.S. student. In addition, our enhanced version of the Palacios virtual machine monitor has been adopted as a core element of the Hobbes operating system under active DOE-fundedmore » research and development.« less
The Virtual Mission Operations Center
NASA Technical Reports Server (NTRS)
Moore, Mike; Fox, Jeffrey
1994-01-01
Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.
NASA Astrophysics Data System (ADS)
Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu
2017-06-01
With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.
Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1997-01-01
Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.
A COTS-Based Replacement Strategy for Aging Avionics Computers
2001-12-01
Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace
NASA Technical Reports Server (NTRS)
Runnels, Tyson D.
1993-01-01
This is a case study. It deals with the use of a 'virtual file system' (VFS) for Boeing's UNIX-based Product Standards Data System (PSDS). One of the objectives of PSDS is to store digital standards documents. The file-storage requirements are that the files must be rapidly accessible, stored for long periods of time - as though they were paper, protected from disaster, and accumulative to about 80 billion characters (80 gigabytes). This volume of data will be approached in the first two years of the project's operation. The approach chosen is to install a hierarchical file migration system using optical disk cartridges. Files are migrated from high-performance media to lower performance optical media based on a least-frequency-used algorithm. The optical media are less expensive per character stored and are removable. Vital statistics about the removable optical disk cartridges are maintained in a database. The assembly of hardware and software acts as a single virtual file system transparent to the PSDS user. The files are copied to 'backup-and-recover' media whose vital statistics are also stored in the database. Seventeen months into operation, PSDS is storing 49 gigabytes. A number of operational and performance problems were overcome. Costs are under control. New and/or alternative uses for the VFS are being considered.
File System Virtual Appliances
2010-05-01
Technical Conference. USENIX Association, Berkeley, CA, 24–24. [31] Eisler , M., Corbett, P., Kazar, M., Nydick, D. S., and Wagner, C. 2007. Data ONTAP GX...and Operations Market Through 2012. http://www.gartner.com/it/page.jsp?id=638207. [37] Gingell, R. A., Moran, J. P., and Shannon, W. A. 1987 . Virtual
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv
1990-01-01
The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.
Stereoscopic, Force-Feedback Trainer For Telerobot Operators
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1994-01-01
Computer-controlled simulator for training technicians to operate remote robots provides both visual and kinesthetic virtual reality. Used during initial stage of training; saves time and expense, increases operational safety, and prevents damage to robots by inexperienced operators. Computes virtual contact forces and torques of compliant robot in real time, providing operator with feel of forces experienced by manipulator as well as view in any of three modes: single view, two split views, or stereoscopic view. From keyboard, user specifies force-reflection gain and stiffness of manipulator hand for three translational and three rotational axes. System offers two simulated telerobotic tasks: insertion of peg in hole in three dimensions, and removal and insertion of drawer.
Configurable memory system and method for providing atomic counting operations in a memory device
Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin
2010-09-14
A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.
Satou, Shouichi; Aoki, Taku; Kaneko, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Sugawara, Yasuhiko; Arai, Osamu; Mitake, Tsuyoshi; Miura, Koui; Kokudo, Norihiro
2014-02-01
Real-time virtual sonography is an innovative imaging technology that detects the spatial position of an ultrasound probe and immediately reconstructs a section of computed tomography (CT) and/or magnetic resonance in accordance with the ultrasound image, thereby allowing a real-time comparison of those modalities. A novel intraoperative navigation system for liver resection using real-time virtual sonography has been devised for the detection of tumors and navigation of the resection plane. Sixteen patients with hepatic malignancies (26 tumors in total) were involved in this study, and the system was used intraoperatively. The tumor size ranged 2 to 140 mm (23 mm in median). By the navigation system, operators could refer intraoperative ultrasound image displayed on the television monitor side-by-side with corresponding images of CT and/or magnetic resonance. In addition, the system overlaid preoperative simulation on the CT image and highlighted the extent of resection so as to navigate the resection plane. Because the system used electromagnetic power in the operation room, the feasibility and safety of the system was investigated as well as its validity. The system could be used uneventfully in each operation. All of the 26 tumors scheduled to be resected were detected by the navigation system. The weight of the resected specimen correlated with the preoperatively simulated volume (R = 0.995, P < .0001). The feasibility and safety of the navigation system were confirmed. The system should be helpful for intraoperative tumor detection and navigation of liver resection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imura, K; Fujibuchi, T; Hirata, H
Purpose: Patient set-up skills in radiotherapy treatment room have a great influence on treatment effect for image guided radiotherapy. In this study, we have developed the training system for improving practical set-up skills considering rotational correction in the virtual environment away from the pressure of actual treatment room by using three-dimensional computer graphic (3DCG) engine. Methods: The treatment room for external beam radiotherapy was reproduced in the virtual environment by using 3DCG engine (Unity). The viewpoints to perform patient set-up in the virtual treatment room were arranged in both sides of the virtual operable treatment couch to assume actual performancemore » by two clinical staffs. The position errors to mechanical isocenter considering alignment between skin marker and laser on the virtual patient model were displayed by utilizing numerical values expressed in SI units and the directions of arrow marks. The rotational errors calculated with a point on the virtual body axis as the center of each rotation axis for the virtual environment were corrected by adjusting rotational position of the body phantom wound the belt with gyroscope preparing on table in a real space. These rotational errors were evaluated by describing vector outer product operations and trigonometric functions in the script for patient set-up technique. Results: The viewpoints in the virtual environment allowed individual user to visually recognize the position discrepancy to mechanical isocenter until eliminating the positional errors of several millimeters. The rotational errors between the two points calculated with the center point could be efficiently corrected to display the minimum technique mathematically by utilizing the script. Conclusion: By utilizing the script to correct the rotational errors as well as accurate positional recognition for patient set-up technique, the training system developed for improving patient set-up skills enabled individual user to indicate efficient positional correction methods easily.« less
Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks
NASA Astrophysics Data System (ADS)
Karpov, Kirill; Fedotova, Irina; Siemens, Eduard
2017-07-01
In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.
Guo, Jin; Guo, Shuxiang; Tamiya, Takashi; Hirata, Hideyuki; Ishihara, Hidenori
2016-03-01
An Internet-based tele-operative robotic catheter operating system was designed for vascular interventional surgery, to afford unskilled surgeons the opportunity to learn basic catheter/guidewire skills, while allowing experienced physicians to perform surgeries cooperatively. Remote surgical procedures, limited by variable transmission times for visual feedback, have been associated with deterioration in operability and vascular wall damage during surgery. At the patient's location, the catheter shape/position was detected in real time and converted into three-dimensional coordinates in a world coordinate system. At the operation location, the catheter shape was reconstructed in a virtual-reality environment, based on the coordinates received. The data volume reduction significantly reduced visual feedback transmission times. Remote transmission experiments, conducted over inter-country distances, demonstrated the improved performance of the proposed prototype. The maximum error for the catheter shape reconstruction was 0.93 mm and the transmission time was reduced considerably. The results were positive and demonstrate the feasibility of remote surgery using conventional network infrastructures. Copyright © 2015 John Wiley & Sons, Ltd.
Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua
2014-01-01
This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable. PMID:24883353
Xiong, Yonghua; Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua
2014-01-01
This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable.
Exploring the Strategies for a Community College Transition into a Cloud-Computing Environment
ERIC Educational Resources Information Center
DeBary, Narges
2017-01-01
The use of the Internet has resulted in the birth of an innovative virtualization technology called cloud computing. Virtualization can tremendously improve the instructional and operational systems of a community college. Although the incidental adoption of the cloud solutions in the community colleges of higher education has been increased,…
Using Immersive Virtual Environments for Certification
NASA Technical Reports Server (NTRS)
Lutz, R.; Cruz-Neira, C.
1998-01-01
Immersive virtual environments (VEs) technology has matured to the point where it can be utilized as a scientific and engineering problem solving tool. In particular, VEs are starting to be used to design and evaluate safety-critical systems that involve human operators, such as flight and driving simulators, complex machinery training, and emergency rescue strategies.
Memory Forensics: Review of Acquisition and Analysis Techniques
2013-11-01
Management Overview Processes running on modern multitasking operating systems operate on an abstraction of RAM, called virtual memory [7]. In these systems...information such as user names, email addresses and passwords [7]. Analysts also use tools such as WinHex to identify headers or other suspicious data within
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Concept of operations for virtual weigh station
DOT National Transportation Integrated Search
2009-06-01
This document describes the concept of operations (ConOps) for the virtual weigh station (VWS). The ConOps describes the goals, functions, key concepts, architecture, operational scenarios, operational policies, and impacts of virtual weigh stations....
Peña-Tapia, Elena; Martín-Barrio, Andrés; Olivares-Méndez, Miguel A.
2017-01-01
Multi-robot missions are a challenge for operators in terms of workload and situational awareness. These operators have to receive data from the robots, extract information, understand the situation properly, make decisions, generate the adequate commands, and send them to the robots. The consequences of excessive workload and lack of awareness can vary from inefficiencies to accidents. This work focuses on the study of future operator interfaces of multi-robot systems, taking into account relevant issues such as multimodal interactions, immersive devices, predictive capabilities and adaptive displays. Specifically, four interfaces have been designed and developed: a conventional, a predictive conventional, a virtual reality and a predictive virtual reality interface. The four interfaces have been validated by the performance of twenty-four operators that supervised eight multi-robot missions of fire surveillance and extinguishing. The results of the workload and situational awareness tests show that virtual reality improves the situational awareness without increasing the workload of operators, whereas the effects of predictive components are not significant and depend on their implementation. PMID:28749407
Virtual reality for spherical images
NASA Astrophysics Data System (ADS)
Pilarczyk, Rafal; Skarbek, Władysław
2017-08-01
Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.
A Three-Dimensional Virtual Simulator for Aircraft Flyover Presentation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Sullivan, Brenda M.; Sandridge, Christopher A.
2003-01-01
This paper presents a system developed at NASA Langley Research Center to render aircraft flyovers in a virtual reality environment. The present system uses monaural recordings of actual aircraft flyover noise and presents these binaurally using head tracking information. The three-dimensional audio is simultaneously rendered with a visual presentation using a head-mounted display (HMD). The final system will use flyover noise synthesized using data from various analytical and empirical modeling systems. This will permit presentation of flyover noise from candidate low-noise flight operations to subjects for psychoacoustical evaluation.
Derived virtual devices: a secure distributed file system mechanism
NASA Technical Reports Server (NTRS)
VanMeter, Rodney; Hotz, Steve; Finn, Gregory
1996-01-01
This paper presents the design of derived virtual devices (DVDs). DVDs are the mechanism used by the Netstation Project to provide secure shared access to network-attached peripherals distributed in an untrusted network environment. DVDs improve Input/Output efficiency by allowing user processes to perform I/O operations directly from devices without intermediate transfer through the controlling operating system kernel. The security enforced at the device through the DVD mechanism includes resource boundary checking, user authentication, and restricted operations, e.g., read-only access. To illustrate the application of DVDs, we present the interactions between a network-attached disk and a file system designed to exploit the DVD abstraction. We further discuss third-party transfer as a mechanism intended to provide for efficient data transfer in a typical NAP environment. We show how DVDs facilitate third-party transfer, and provide the security required in a more open network environment.
Virtualizing Resources for the Application Services and Framework Team
NASA Technical Reports Server (NTRS)
Varner, Justin T.; Crawford, Linda K.
2010-01-01
Virtualization is an emerging technology that will undoubtedly have a major impact on the future of Information Technology. It allows for the centralization of resources in an enterprise system without the need to make any changes to the host operating system, file system, or registry. In turn, this significantly reduces cost and administration, and provides a much greater level of security, compatibility, and efficiency. This experiment examined the practicality, methodology, challenges, and benefits of implementing the technology for the Launch Control System (LCS), and more specifically the Application Services (AS) group of the National Aeronautics and Space Administration (NASA) at the Kennedy Space Center (KSC). In order to carry out this experiment, I used several tools from the virtualization company known as VMWare; these programs included VMWare ThinApp, VMWare Workstation, and VMWare ACE. Used in conjunction, these utilities provided the engine necessary to virtualize and deploy applications in a desktop environment on any Windows platform available. The results clearly show that virtualization is a viable technology that can, when implemented properly, dramatically cut costs, enhance stability and security, and provide easier management for administrators.
Building a virtual ligand screening pipeline using free software: a survey.
Glaab, Enrico
2016-03-01
Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. © The Author 2015. Published by Oxford University Press.
Building a virtual ligand screening pipeline using free software: a survey
2016-01-01
Virtual screening, the search for bioactive compounds via computational methods, provides a wide range of opportunities to speed up drug development and reduce the associated risks and costs. While virtual screening is already a standard practice in pharmaceutical companies, its applications in preclinical academic research still remain under-exploited, in spite of an increasing availability of dedicated free databases and software tools. In this survey, an overview of recent developments in this field is presented, focusing on free software and data repositories for screening as alternatives to their commercial counterparts, and outlining how available resources can be interlinked into a comprehensive virtual screening pipeline using typical academic computing facilities. Finally, to facilitate the set-up of corresponding pipelines, a downloadable software system is provided, using platform virtualization to integrate pre-installed screening tools and scripts for reproducible application across different operating systems. PMID:26094053
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Kopardekar, Parimal H.
2016-01-01
Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.; Cavolowsky, John
2015-01-01
Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
Three dimensional tracking with misalignment between display and control axes
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence
1992-01-01
Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero
2016-12-01
Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in environmental monitoring that are making a wide range of data available, continuous snow monitoring systems that can collect data at high spatial and temporal resolution are not well established yet, especially in inaccessible high-latitude or mountainous regions. The unprecedented availability of user-generated data on the web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real-world water-management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.
Research on Modeling Technology of Virtual Robot Based on LabVIEW
NASA Astrophysics Data System (ADS)
Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.
2017-12-01
Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.
ERIC Educational Resources Information Center
Zuiker, Steven J.
2012-01-01
As a global cyberinfrastructure, the Internet makes authentic digital problem spaces like educational virtual environments (EVEs) available to a wide range of classrooms, schools and education systems operating under different circumstantial, practical, social and cultural conditions. And yet, if the makers and users of EVEs both have a hand in…
Cyber Operations Virtual Environment
2010-09-01
automated system affects reliance on that system (e.g., Dzindolet, Peterson , Pomranky, Pierce, & Beck, 2003; Lee & Moray, 1994; Lee & See, 2004...described a need for instruction to enable interactive, realistic training ( Hershey , 2008): Network Warfare and Operations Distributed Training...knowledge or needs beyond this shallow level (Beck, Stern, & Haugsjaa, 1996 ). The immediate feedback model employed in behaviorist learning has
Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system
NASA Astrophysics Data System (ADS)
Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd
2016-10-01
Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.
Liu, Xiujuan; Tao, Haiquan; Xiao, Xigang; Guo, Binbin; Xu, Shangcai; Sun, Na; Li, Maotong; Xie, Li; Wu, Changjun
2018-07-01
This study aimed to compare the diagnostic performance of the stereoscopic virtual reality display system with the conventional computed tomography (CT) workstation and three-dimensional rotational angiography (3DRA) for intracranial aneurysm detection and characterization, with a focus on small aneurysms and those near the bone. First, 42 patients with suspected intracranial aneurysms underwent both 256-row CT angiography (CTA) and 3DRA. Volume rendering (VR) images were captured using the conventional CT workstation. Next, VR images were transferred to the stereoscopic virtual reality display system. Two radiologists independently assessed the results that were obtained using the conventional CT workstation and stereoscopic virtual reality display system. The 3DRA results were considered as the ultimate reference standard. Based on 3DRA images, 38 aneurysms were confirmed in 42 patients. Two cases were misdiagnosed and 1 was missed when the traditional CT workstation was used. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the conventional CT workstation were 94.7%, 85.7%, 97.3%, 75%, and99.3%, respectively, on a per-aneurysm basis. The stereoscopic virtual reality display system missed a case. The sensitivity, specificity, PPV, NPV, and accuracy of the stereoscopic virtual reality display system were 100%, 85.7%, 97.4%, 100%, and 97.8%, respectively. No difference was observed in the accuracy of the traditional CT workstation, stereoscopic virtual reality display system, and 3DRA in detecting aneurysms. The stereoscopic virtual reality display system has some advantages in detecting small aneurysms and those near the bone. The virtual reality stereoscopic vision obtained through the system was found as a useful tool in intracranial aneurysm diagnosis and pre-operative 3D imaging. Copyright © 2018 Elsevier B.V. All rights reserved.
Virtual reality robotic telesurgery simulations using MEMICA haptic system
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mavroidis, Constantinos; Bouzit, Mourad; Dolgin, Benjamin; Harm, Deborah L.; Kopchok, George E.; White, Rodney
2001-01-01
The authors conceived a haptic mechanism called MEMICA (Remote Mechanical Mirroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace haptic system. The development of a novel MEMICA gloves and virtual reality models are being explored to allow simulation of telesurgery and other applications. The MEMICA gloves are being designed to provide intuitive mirroring of the conditions at a virtual site where a robot simulates the presence of a human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and electrically controlled force and stiffness (ECFS) actuators that are based on the use of Electro-Rheological Fluids (ERF. In this paper the design of the MEMICA system and initial experimental results are presented.
Virtual reality system for planning minimally invasive neurosurgery. Technical note.
Stadie, Axel Thomas; Kockro, Ralf Alfons; Reisch, Robert; Tropine, Andrei; Boor, Stephan; Stoeter, Peter; Perneczky, Axel
2008-02-01
The authors report on their experience with a 3D virtual reality system for planning minimally invasive neurosurgical procedures. Between October 2002 and April 2006, the authors used the Dextroscope (Volume Interactions, Ltd.) to plan neurosurgical procedures in 106 patients, including 100 with intracranial and 6 with spinal lesions. The planning was performed 1 to 3 days preoperatively, and in 12 cases, 3D prints of the planning procedure were taken into the operating room. A questionnaire was completed by the neurosurgeon after the planning procedure. After a short period of acclimatization, the system proved easy to operate and is currently used routinely for preoperative planning of difficult cases at the authors' institution. It was felt that working with a virtual reality multimodal model of the patient significantly improved surgical planning. The pathoanatomy in individual patients could easily be understood in great detail, enabling the authors to determine the surgical trajectory precisely and in the most minimally invasive way. The authors found the preoperative 3D model to be in high concordance with intraoperative conditions; the resulting intraoperative "déjà-vu" feeling enhanced surgical confidence. In all procedures planned with the Dextroscope, the chosen surgical strategy proved to be the correct choice. Three-dimensional virtual reality models of a patient allow quick and easy understanding of complex intracranial lesions.
Marshall Space Flight Center's Virtual Reality Applications Program 1993
NASA Technical Reports Server (NTRS)
Hale, Joseph P., II
1993-01-01
A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems.
Virtual containment system for composite flywheels
NASA Astrophysics Data System (ADS)
Shiue, Fuh-Wen
2001-07-01
There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a circumferential crack grows over certain size. This phenomenon is largely due to crack curvature unique to filament-wound composite flywheels. Several virtual containment strategies were investigated numerically to demonstrate the feasibility of virtual containment systems. Once a flaw is detected during flywheel operation, the maximum operating speed can be reduced to prevent catastrophic failure, achieve a specific design life, and maximize energy storage capacity over the remaining life. A numerical example showed 4--5 times of improvement in cumulative energy storage through lifetime with a virtual containment. A closed-loop speed controller using condition monitoring sensor feedback was investigated numerically to account for possible imperfection of the fracture mechanics model. Finally, an integrated virtual containment system without any complex fracture mechanics analysis was also developed and successfully demonstrated experimentally.
NASA Technical Reports Server (NTRS)
Logan, Cory; Maida, James; Goldsby, Michael; Clark, Jim; Wu, Liew; Prenger, Henk
1993-01-01
The Space Station Freedom (SSF) Data Management System (DMS) consists of distributed hardware and software which monitor and control the many onboard systems. Virtual environment and off-the-shelf computer technologies can be used at critical points in project development to aid in objectives and requirements development. Geometric models (images) coupled with off-the-shelf hardware and software technologies were used in The Space Station Mockup and Trainer Facility (SSMTF) Crew Operational Assessment Project. Rapid prototyping is shown to be a valuable tool for operational procedure and system hardware and software requirements development. The project objectives, hardware and software technologies used, data gained, current activities, future development and training objectives shall be discussed. The importance of defining prototyping objectives and staying focused while maintaining schedules are discussed along with project pitfalls.
Dynamically allocated virtual clustering management system
NASA Astrophysics Data System (ADS)
Marcus, Kelvin; Cannata, Jess
2013-05-01
The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard
2003-01-01
The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.
NASA Astrophysics Data System (ADS)
Priego-Roche, Luz-María; Rieu, Dominique; Front, Agnès
Nowadays, organizations aiming to be successful in an increasingly competitive market tend to group together into virtual organizations. Designing the information system (IS) of such virtual organizations on the basis of the IS of those participating is a real challenge. The IS of a virtual organization plays an important role in the collaboration and cooperation of the participants organizations and in reaching the common goal. This article proposes criteria allowing virtual organizations to be identified and classified at an intentional level, as well as the information necessary for designing the organizations’ IS. Instantiation of criteria for a specific virtual organization and its participants, will allow simple graphical models to be generated in a modelling tool. The models will be used as bases for the IS design at organizational and operational levels. The approach is illustrated by the example of the virtual organization UGRT (a regional stockbreeders union in Tabasco, Mexico).
Managing virtual machines with Vac and Vcycle
NASA Astrophysics Data System (ADS)
McNab, A.; Love, P.; MacMahon, E.
2015-12-01
We compare the Vac and Vcycle virtual machine lifecycle managers and our experiences in providing production job execution services for ATLAS, CMS, LHCb, and the GridPP VO at sites in the UK, France and at CERN. In both the Vac and Vcycle systems, the virtual machines are created outside of the experiment's job submission and pilot framework. In the case of Vac, a daemon runs on each physical host which manages a pool of virtual machines on that host, and a peer-to-peer UDP protocol is used to achieve the desired target shares between experiments across the site. In the case of Vcycle, a daemon manages a pool of virtual machines on an Infrastructure-as-a-Service cloud system such as OpenStack, and has within itself enough information to create the types of virtual machines to achieve the desired target shares. Both systems allow unused shares for one experiment to temporarily taken up by other experiements with work to be done. The virtual machine lifecycle is managed with a minimum of information, gathered from the virtual machine creation mechanism (such as libvirt or OpenStack) and using the proposed Machine/Job Features API from WLCG. We demonstrate that the same virtual machine designs can be used to run production jobs on Vac and Vcycle/OpenStack sites for ATLAS, CMS, LHCb, and GridPP, and that these technologies allow sites to be operated in a reliable and robust way.
2015-06-01
version of the Bear operating system. The full system is depicted in Figure 3 and is composed of a minimalist micro-kernel with an associated...which are intended to support a general virtual machine execution environment, this minimalist hypervisor is designed to support only the operations...The use of a minimalist hypervisor in the Bear system opened the door to discovery of zero-day exploits. The approach leverages the hypervisors
NASA Technical Reports Server (NTRS)
Brower, Robert
2003-01-01
As described herein, this project has progressed well, with the initiation or completion of a number of program facets at programmatic, technical, and inter-agency levels. The concept of the Virtual Management Operations Center has taken shape, grown, and has been well received by parties from a wide variety of agencies and organizations in the Finger Lakes region and beyond. As it has evolved in design and functionality, and to better illustrate its current focus for this project, it has been given the expanded name of Watershed Virtual Management Operations Center (W-VMOC). It offers the advanced, compelling functionality of interactive 3D visualization interfaced with 2D mapping, all accessed via Internet or virtually any kind of distributed computer network. This strong foundation will allow the development of a Decision Support System (DSS) with anticipated enhanced functionality to be applied to the myriad issues involved in the wise management of the Finger Lakes region.
A Reconfigurable Simulation-Based Test System for Automatically Assessing Software Operating Skills
ERIC Educational Resources Information Center
Su, Jun-Ming; Lin, Huan-Yu
2015-01-01
In recent years, software operating skills, the ability in computer literacy to solve problems using specific software, has become much more important. A great deal of research has also proven that students' software operating skills can be efficiently improved by practicing customized virtual and simulated examinations. However, constructing…
Tsuchihashi, Yasunari; Takamatsu, Terumasa; Hashimoto, Yukimasa; Takashima, Tooru; Nakano, Kooji; Fujita, Setsuya
2008-07-15
We started to use virtual slide (VS) and virtual microscopy (VM) systems for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. In the system we used a digital slide scanner, VASSALO by CLARO Inc., and a broadband optic fibre provided by NTT West Japan Inc. with the best effort capacity of 100 Mbps. The client is the pathology laboratory of Yamashiro Public Hospital, one of the local centre hospitals located in the south of Kyoto Prefecture, where a full-time pathologist is not present. The client is connected by VPN to the telepathology centre of our institute located in central Kyoto. As a result of the recent 15 test cases of VS telepathology diagnosis, including cases judging negative or positive surgical margins, we could estimate the usefulness of VS in intra-operative remote diagnosis. The time required for the frozen section VS file making was found to be around 10 min when we use x10 objective and if the maximal dimension of the frozen sample is less than 20 mm. Good correct focus of VS images was attained in all cases and all the fields of each tissue specimen. Up to now the capacity of best effort B-band appears to be sufficient to attain diagnosis on time in intra-operation. Telepathology diagnosis was achieved within 5 minutes in most cases using VS viewer provided by CLARO Inc. The VS telepathology system was found to be superior to the conventional still image telepathology system using a robotic microscope since in the former we can observe much greater image information than in the latter in a certain limited time of intra-operation and in the much more efficient ways. In the near future VS telepathology will replace conventional still image telepathology with a robotic microscope even in quick frozen intra-operative diagnosis.
Use of virtual slide system for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan
Tsuchihashi, Yasunari; Takamatsu, Terumasa; Hashimoto, Yukimasa; Takashima, Tooru; Nakano, Kooji; Fujita, Setsuya
2008-01-01
We started to use virtual slide (VS) and virtual microscopy (VM) systems for quick frozen intra-operative telepathology diagnosis in Kyoto, Japan. In the system we used a digital slide scanner, VASSALO by CLARO Inc., and a broadband optic fibre provided by NTT West Japan Inc. with the best effort capacity of 100 Mbps. The client is the pathology laboratory of Yamashiro Public hospital, one of the local centre hospitals located in the south of Kyoto Prefecture, where a fulltime pathologist is not present. The client is connected by VPN to the telepathology centre of our institute located in central Kyoto. As a result of the recent 15 test cases of VS telepathology diagnosis, including cases judging negative or positive surgical margins, we could estimate the usefulness of VS in intra-operative remote diagnosis. The time required for the frozen section VS file making was found to be around 10 min when we use ×10 objective and if the maximal dimension of the frozen sample is less than 20 mm. Good correct focus of VS images was attained in all cases and all the fields of each tissue specimen. Up to now the capacity of best effort B-band appears to be sufficient to attain diagnosis on time in intra-operation. Telepathology diagnosis was achieved within 5 minutes in most cases using VS viewer provided by CLARO Inc. The VS telepathology system was found to be superior to the conventional still image telepathology system using a robotic microscope since in the former we can observe much greater image information than in the latter in a certain limited time of intra-operation and in the much more efficient ways. In the near future VS telepathology will replace conventional still image telepathology with a robotic microscope even in quick frozen intra-operative diagnosis. PMID:18673520
Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.
2000-01-01
There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.
Open core control software for surgical robots.
Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo
2010-05-01
In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a "force guide" for supporting operators to perform precise manipulation by using a master-slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. The Open Core Control software was implemented on a surgical master-slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a "force guide" on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement "General Principles of Software Validation" or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field.
Virtual operating room for team training in surgery.
Abelson, Jonathan S; Silverman, Elliott; Banfelder, Jason; Naides, Alexandra; Costa, Ricardo; Dakin, Gregory
2015-09-01
We proposed to develop a novel virtual reality (VR) team training system. The objective of this study was to determine the feasibility of creating a VR operating room to simulate a surgical crisis scenario and evaluate the simulator for construct and face validity. We modified ICE STORM (Integrated Clinical Environment; Systems, Training, Operations, Research, Methods), a VR-based system capable of modeling a variety of health care personnel and environments. ICE STORM was used to simulate a standardized surgical crisis scenario, whereby participants needed to correct 4 elements responsible for loss of laparoscopic visualization. The construct and face validity of the environment were measured. Thirty-three participants completed the VR simulation. Attendings completed the simulation in less time than trainees (271 vs 201 seconds, P = .032). Participants felt the training environment was realistic and had a favorable impression of the simulation. All participants felt the workload of the simulation was low. Creation of a VR-based operating room for team training in surgery is feasible and can afford a realistic team training environment. Copyright © 2015 Elsevier Inc. All rights reserved.
Linte, Cristian A; Moore, John; Wedlake, Chris; Bainbridge, Daniel; Guiraudon, Gérard M; Jones, Douglas L; Peters, Terry M
2009-03-01
An interventional system for minimally invasive cardiac surgery was developed for therapy delivery inside the beating heart, in absence of direct vision. A system was developed to provide a virtual reality (VR) environment that integrates pre-operative imaging, real-time intra-operative guidance using 2D trans-esophageal ultrasound, and models of the surgical tools tracked using a magnetic tracking system. Detailed 3D dynamic cardiac models were synthesized from high-resolution pre-operative MR data and registered within the intra-operative imaging environment. The feature-based registration technique was employed to fuse pre- and intra-operative data during in vivo intracardiac procedures on porcine subjects. This method was found to be suitable for in vivo applications as it relies on easily identifiable landmarks, and hence, it ensures satisfactory alignment of pre- and intra-operative anatomy in the region of interest (4.8 mm RMS alignment accuracy) within the VR environment. Our initial experience in translating this work to guide intracardiac interventions, such as mitral valve implantation and atrial septal defect repair demonstrated feasibility of the methods. Surgical guidance in the absence of direct vision and with no exposure to ionizing radiation was achieved, so our virtual environment constitutes a feasible candidate for performing various off-pump intracardiac interventions.
Cyber physical systems role in manufacturing technologies
NASA Astrophysics Data System (ADS)
Al-Ali, A. R.; Gupta, Ragini; Nabulsi, Ahmad Al
2018-04-01
Empowered by the recent development in single System-on-Chip, Internet of Things, and cloud computing technologies, cyber physical systems are evolving as a major controller during and post the manufacturing products process. In additional to their real physical space, cyber products nowadays have a virtual space. A product virtual space is a digital twin that is attached to it to enable manufacturers and their clients to better manufacture, monitor, maintain and operate it throughout its life time cycles, i.e. from the product manufacturing date, through operation and to the end of its lifespan. Each product is equipped with a tiny microcontroller that has a unique identification number, access code and WiFi conductivity to access it anytime and anywhere during its life cycle. This paper presents the cyber physical systems architecture and its role in manufacturing. Also, it highlights the role of Internet of Things and cloud computing in industrial manufacturing and factory automation.
The virtual mirror: a new interaction paradigm for augmented reality environments.
Bichlmeier, Christoph; Heining, Sandro Michael; Feuerstein, Marco; Navab, Nassir
2009-09-01
Medical augmented reality (AR) has been widely discussed within the medical imaging as well as computer aided surgery communities. Different systems for exemplary medical applications have been proposed. Some of them produced promising results. One major issue still hindering AR technology to be regularly used in medical applications is the interaction between physician and the superimposed 3-D virtual data. Classical interaction paradigms, for instance with keyboard and mouse, to interact with visualized medical 3-D imaging data are not adequate for an AR environment. This paper introduces the concept of a tangible/controllable Virtual Mirror for medical AR applications. This concept intuitively augments the direct view of the surgeon with all desired views on volumetric medical imaging data registered with the operation site without moving around the operating table or displacing the patient. We selected two medical procedures to demonstrate and evaluate the potentials of the Virtual Mirror for the surgical workflow. Results confirm the intuitiveness of this new paradigm and its perceptive advantages for AR-based computer aided interventions.
Use of Virtual Mission Operations Center Technology to Achieve JPDO's Virtual Tower Vision
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.
2006-01-01
The Joint Program Development Office has proposed that the Next Generation Air Transportation System (NGATS) consolidate control centers. NGATS would be managed from a few strategically located facilities with virtual towers and TRACONS. This consolidation is about combining the delivery locations for these services not about decreasing service. By consolidating these locations, cost savings in the order of $500 million have been projected. Evolving to spaced-based communication, navigation, and surveillance offers the opportunity to reduce or eliminate much of the ground-based infrastructure cost. Dynamically adjusted airspace offers the opportunity to reduce the number of sectors and boundary inconsistencies; eliminate or reduce "handoffs;" and eliminate the distinction between Towers, TRACONS, and Enroute Centers. To realize a consolidation vision for air traffic management there must be investment in networking. One technology that holds great potential is the use of Virtual Mission Operations Centers to provide secure, automated, intelligent management of the NGATS. This paper provides a conceptual framework for incorporating VMOC into the NGATS.
Mobility for GCSS-MC through virtual PCs
2017-06-01
their productivity. Mobile device access to GCSS-MC would allow Marines to access a required program for their mission using a form of computing ...network throughput applications with a device running on various operating systems with limited computational ability. The use of VPCs leads to a...reduced need for network throughput and faster overall execution. 14. SUBJECT TERMS GCSS-MC, enterprise resource planning, virtual personal computer
A Backscatter-Lidar Forward-Operator
NASA Astrophysics Data System (ADS)
Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland
2015-04-01
We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.
Sensor supervision and multiagent commanding by means of projective virtual reality
NASA Astrophysics Data System (ADS)
Rossmann, Juergen
1998-10-01
When autonomous systems with multiple agents are considered, conventional control- and supervision technologies are often inadequate because the amount of information available is often presented in a way that the user is effectively overwhelmed by the displayed data. New virtual reality (VR) techniques can help to cope with this problem, because VR offers the chance to convey information in an intuitive manner and can combine supervision capabilities and new, intuitive approaches to the control of autonomous systems. In the approach taken, control and supervision issues were equally stressed and finally led to the new ideas and the general framework for Projective Virtual Reality. The key idea of this new approach for an intuitively operable man machine interface for decentrally controlled multi-agent systems is to let the user act in the virtual world, detect the changes and have an action planning component automatically generate task descriptions for the agents involved to project actions that have been carried out by users in the virtual world into the physical world, e.g. with the help of robots. Thus the Projective Virtual Reality approach is to split the job between the task deduction in the VR and the task `projection' onto the physical automation components by the automatic action planning component. Besides describing the realized projective virtual reality system, the paper will also describe in detail the metaphors and visualization aids used to present different types of (e.g. sensor-) information in an intuitively comprehensible manner.
NASA Astrophysics Data System (ADS)
Soler, Luc; Marescaux, Jacques
2006-04-01
Technological innovations of the 20 th century provided medicine and surgery with new tools, among which virtual reality and robotics belong to the most revolutionary ones. Our work aims at setting up new techniques for detection, 3D delineation and 4D time follow-up of small abdominal lesions from standard mecial images (CT scsan, MRI). It also aims at developing innovative systems making tumor resection or treatment easier with the use of augmented reality and robotized systems, increasing gesture precision. It also permits a realtime great distance connection between practitioners so they can share a same 3D reconstructed patient and interact on a same patient, virtually before the intervention and for real during the surgical procedure thanks to a telesurgical robot. In preclinical studies, our first results obtained from a micro-CT scanner show that these technologies provide an efficient and precise 3D modeling of anatomical and pathological structures of rats and mice. In clinical studies, our first results show the possibility to improve the therapeutic choice thanks to a better detection and and representation of the patient before performing the surgical gesture. They also show the efficiency of augmented reality that provides virtual transparency of the patient in real time during the operative procedure. In the near future, through the exploitation of these systems, surgeons will program and check on the virtual patient clone an optimal procedure without errors, which will be replayed on the real patient by the robot under surgeon control. This medical dream is today about to become reality.
Time Warp Operating System (TWOS)
NASA Technical Reports Server (NTRS)
Bellenot, Steven F.
1993-01-01
Designed to support parallel discrete-event simulation, TWOS is complete implementation of Time Warp mechanism - distributed protocol for virtual time synchronization based on process rollback and message annihilation.
Bol Raap, Goris; Koning, Anton H J; Scohy, Thierry V; ten Harkel, A Derk-Jan; Meijboom, Folkert J; Kappetein, A Pieter; van der Spek, Peter J; Bogers, Ad J J C
2007-02-16
This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D) echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD). 12 data sets from intraoperative epicardial echocardiographic studies in 5 operations (patient age at operation 3 weeks to 4 years and bodyweight at operation 3.8 to 17.2 kg) after surgical closure of VSD were included in the study. The data sets were analysed as two-dimensional (2D) images on the screen of the ultrasound system as well as holograms in an I-space virtual reality (VR) system. The 2D images were assessed for tricuspid valve function. In the I-Space, a 6 degrees-of-freedom controller was used to create the necessary projectory positions and cutting planes in the hologram. The holograms were used for additional assessment of tricuspid valve leaflet mobility. All data sets could be used for 2D as well as holographic analysis. In all data sets the area of interest could be identified. The 2D analysis showed no tricuspid valve stenosis or regurgitation. Leaflet mobility was considered normal. In the virtual reality of the I-Space, all data sets allowed to assess the tricuspid leaflet level in a single holographic representation. In 3 holograms the septal leaflet showed restricted mobility that was not appreciated in the 2D echocardiogram. In 4 data sets the posterior leaflet and the tricuspid papillary apparatus were not completely included. This report shows that dynamic holographic imaging of intraoperative postoperative echocardiographic data regarding tricuspid valve function after VSD closure is feasible. Holographic analysis allows for additional tricuspid valve leaflet mobility analysis. The large size of the probe, in relation to small size of the patient, may preclude a complete data set. At the moment the requirement of an I-Space VR system limits the applicability in virtual reality 3D echocardiography in clinical practice.
InkTag: Secure Applications on an Untrusted Operating System
Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett
2014-01-01
InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939
InkTag: Secure Applications on an Untrusted Operating System.
Hofmann, Owen S; Kim, Sangman; Dunn, Alan M; Lee, Michael Z; Witchel, Emmett
2013-01-01
InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification , a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes.
NASA Astrophysics Data System (ADS)
Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián
2016-05-01
This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.
Safeguarding a Lunar Rover with Wald's Sequential Probability Ratio Test
NASA Technical Reports Server (NTRS)
Furlong, Michael; Dille, Michael; Wong, Uland; Nefian, Ara
2016-01-01
The virtual bumper is a safeguarding mechanism for autonomous and remotely operated robots. In this paper we take a new approach to the virtual bumper system by using an old statistical test. By using a modified version of Wald's sequential probability ratio test we demonstrate that we can reduce the number of false positive reported by the virtual bumper, thereby saving valuable mission time. We use the concept of sequential probability ratio to control vehicle speed in the presence of possible obstacles in order to increase certainty about whether or not obstacles are present. Our new algorithm reduces the chances of collision by approximately 98 relative to traditional virtual bumper safeguarding without speed control.
Virtual reality applications in robotic simulations
NASA Technical Reports Server (NTRS)
Homan, David J.; Gott, Charles J.; Goza, S. Michael
1994-01-01
Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.
NASA Astrophysics Data System (ADS)
Palestini, C.; Basso, A.
2017-11-01
In recent years, an increase in international investment in hardware and software technology to support programs that adopt algorithms for photomodeling or data management from laser scanners significantly reduced the costs of operations in support of Augmented Reality and Virtual Reality, designed to generate real-time explorable digital environments integrated to virtual stereoscopic headset. The research analyzes transversal methodologies related to the acquisition of these technologies in order to intervene directly on the phenomenon of acquiring the current VR tools within a specific workflow, in light of any issues related to the intensive use of such devices , outlining a quick overview of the possible "virtual migration" phenomenon, assuming a possible integration with the new internet hyper-speed systems, capable of triggering a massive cyberspace colonization process that paradoxically would also affect the everyday life and more in general, on human space perception. The contribution aims at analyzing the application systems used for low cost 3d photogrammetry by means of a precise pipeline, clarifying how a 3d model is generated, automatically retopologized, textured by color painting or photo-cloning techniques, and optimized for parametric insertion on virtual exploration platforms. Workflow analysis will follow some case studies related to photomodeling, digital retopology and "virtual 3d transfer" of some small archaeological artifacts and an architectural compartment corresponding to the pronaus of Aurum, a building designed in the 1940s by Michelucci. All operations will be conducted on cheap or free licensed software that today offer almost the same performance as their paid counterparts, progressively improving in the data processing speed and management.
Ng, Ivan; Hwang, Peter Y K; Kumar, Dinesh; Lee, Cheng Kiang; Kockro, Ralf A; Sitoh, Y Y
2009-05-01
To evaluate the feasibility of surgical planning using a virtual reality platform workstation in the treatment of cerebral arterio-venous malformations (AVMs) Patient-specific data of multiple imaging modalities were co-registered, fused and displayed as a 3D stereoscopic object on the Dextroscope, a virtual reality surgical planning platform. This system allows for manipulation of 3D data and for the user to evaluate and appreciate the angio-architecture of the nidus with regards to position and spatial relationships of critical feeders and draining veins. We evaluated the ability of the Dextroscope to influence surgical planning by providing a better understanding of the angio-architecture as well as its impact on the surgeon's pre- and intra-operative confidence and ability to tackle these lesions. Twenty four patients were studied. The mean age was 29.65 years. Following pre-surgical planning on the Dextroscope, 23 patients underwent microsurgical resection after pre-surgical virtual reality planning, during which all had documented complete resection of the AVM. Planning on the virtual reality platform allowed for identification of critical feeders and draining vessels in all patients. The appreciation of the complex patient specific angio-architecture to establish a surgical plan was found to be invaluable in the conduct of the procedure and was found to enhance the surgeon's confidence significantly. Surgical planning of resection of an AVM with a virtual reality system allowed detailed and comprehensive analysis of 3D multi-modality imaging data and, in our experience, proved very helpful in establishing a good surgical strategy, enhancing intra-operative spatial orientation and increasing surgeon's confidence.
Are virtual planning and guided surgery for head and neck reconstruction economically viable?
Zweifel, Daniel Fritz; Simon, Christian; Hoarau, Remy; Pasche, Philippe; Broome, Martin
2015-01-01
Virtual planning and guided surgery with or without prebent or milled plates are becoming more and more common for mandibular reconstruction with fibular free flaps (FFFs). Although this excellent surgical option is being used more widely, the question of the additional cost of planning and cutting-guide production has to be discussed. In capped payment systems such additional costs have to be offset by other savings if there are no special provisions for extra funding. Our study was designed to determine whether using virtual planning and guided surgery resulted in time saved during surgery and whether this time gain resulted in self-funding of such planning through the time saved. All consecutive cases of FFF surgery were evaluated during a 2-year period. Institutional data were used to determine the price of 1 minute of operative time. The time for fibula molding, plate adaptation, and insetting was recorded. During the defined period, we performed 20 mandibular reconstructions using FFFs, 9 with virtual planning and guided surgery and 11 freehand cases. One minute of operative time was calculated to cost US $47.50. Multiplying this number by the time saved, we found that the additional cost of virtual planning was reduced from US $5,098 to US $1,231.50 with a prebent plate and from US $6,980 to US $3,113.50 for a milled plate. Even in capped health care systems, virtual planning and guided surgery including prebent or milled plates are financially viable. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Putting humans in the loop: Using crowdsourced snow information to inform water management
NASA Astrophysics Data System (ADS)
Fedorov, Roman; Giuliani, Matteo; Castelletti, Andrea; Fraternali, Piero
2016-04-01
The unprecedented availability of user generated data on the Web due to the advent of online services, social networks, and crowdsourcing, is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense, possibly contributing to our ability of making better decisions. In this work, we contribute a novel crowdsourcing procedure for computing virtual snow indexes from public web images, either produced by users or generated by touristic webcams, which is based on a complex architecture designed for automatically crawling content from multiple web data sources. The procedure retains only geo-tagged images containing a mountain skyline, identifies the visible peaks in each image using a public online digital terrain model, and classifies the mountain image pixels as snow or no-snow. This operation yields a snow mask per image, from which it is possible to extract time series of virtual snow indexes representing a proxy of the snow covered area. The value of the obtained virtual snow indexes is estimated in a real world water management problem. We consider the snow-dominated catchment of Lake Como, a regulated lake in Northern Italy, where snowmelt represents the most important contribution to seasonal lake storage, and we used the virtual snow indexes for informing the daily operation of the lake's dam. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance.
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M.; Manjarrez, Elías; Tapia, Jesús A.; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A.; Herrera-May, Agustín L.
2013-01-01
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG). PMID:24196434
Cater, J P; Huffman, S D
1995-01-01
This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.
Naver: a PC-cluster-based VR system
NASA Astrophysics Data System (ADS)
Park, ChangHoon; Ko, HeeDong; Kim, TaiYun
2003-04-01
In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.
Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L
2013-11-05
We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).
2001-03-01
term research efforts to focus on natural interfaces ( innovative metaphors) and on how to model (intelligent) human and object behaviour. In the short...Kalawsky A Virtual Environment for Naval Flight Deck Operations Training 1 by V.S.S. Sastry, J. Steel and E.A. Trott Mission Debriefing System 2 by B.I...stricom.army.mil Email: trond.myhrer@ffi.no continued overleaf ix Antonio GRAMAGE MCS Jean- Paul PAPIN ISDEFE 7, rue Roger Edison, 4 92140 CLAMART 28006 Madrid
Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.
Kockro, Ralf A; Hwang, Peter Y K
2009-05-01
We have developed an interactive virtual model of the temporal bone for the training and teaching of cranial base surgery. The virtual model was based on the tomographic data of the Visible Human Project. The male Visible Human's computed tomographic data were volumetrically reconstructed as virtual bone tissue, and the individual photographic slices provided the basis for segmentation of the middle and inner ear structures, cranial nerves, vessels, and brainstem. These structures were created by using outlining and tube editing tools, allowing structural modeling either directly on the basis of the photographic data or according to information from textbooks and cadaver dissections. For training and teaching, the virtual model was accessed in the previously described 3-dimensional workspaces of the Dextroscope or Dextrobeam (Volume Interactions Pte, Ltd., Singapore), whose interfaces enable volumetric exploration from any perspective and provide virtual tools for drilling and measuring. We have simulated several cranial base procedures including approaches via the floor of the middle fossa and the lateral petrous bone. The virtual model suitably illustrated the core facts of anatomic spatial relationships while simulating different stages of bone drilling along a variety of surgical corridors. The system was used for teaching during training courses to plan and discuss operative anatomy and strategies. The Virtual Temporal Bone and its surrounding 3-dimensional workspace provide an effective way to study the essential surgical anatomy of this complex region and to teach and train operative strategies, especially when used as an adjunct to cadaver dissections.
Virtualization Technologies in Information Systems Education
ERIC Educational Resources Information Center
Lunsford, Dale L.
2009-01-01
Information systems educators must balance the need to protect the stability, availability, and security of computer laboratories with the learning objectives of various courses. In advanced courses where students need to install, configure, and otherwise manipulate application and operating system settings, this is especially problematic as these…
Virtual reality enhanced mannequin (VREM) that is well received by resuscitation experts.
Semeraro, Federico; Frisoli, Antonio; Bergamasco, Massimo; Cerchiari, Erga L
2009-04-01
The objective of this study was to test acceptance of, and interest in, a newly developed prototype of virtual reality enhanced mannequin (VREM) on a sample of congress attendees who volunteered to participate in the evaluation session and to respond to a specifically designed questionnaire. A commercial Laerdal HeartSim 4000 mannequin was developed to integrate virtual reality (VR) technologies with specially developed virtual reality software to increase the immersive perception of emergency scenarios. To evaluate the acceptance of a virtual reality enhanced mannequin (VREM), we presented it to a sample of 39 possible users. Each evaluation session involved one trainee and two instructors with a standardized procedure and scenario: the operator was invited by the instructor to wear the data-gloves and the head mounted display and was briefly introduced to the scope of the simulation. The instructor helped the operator familiarize himself with the environment. After the patient's collapse, the operator was asked to check the patient's clinical conditions and start CPR. Finally, the patient started to recover signs of circulation and the evaluation session was concluded. Each participant was then asked to respond to a questionnaire designed to explore the trainee's perception in the areas of user-friendliness, realism, and interaction/immersion. Overall, the evaluation of the system was very positive, as was the feeling of immersion and realism of the environment and simulation. Overall, 84.6% of the participants judged the virtual reality experience as interesting and believed that its development could be very useful for healthcare training. The prototype of the virtual reality enhanced mannequin was well-liked, without interfence by interaction devices, and deserves full technological development and validation in emergency medical training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markidis, S.; Rizwan, U.
The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. Inmore » this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)« less
SPECT System Optimization Against A Discrete Parameter Space
Meng, L. J.; Li, N.
2013-01-01
In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609
Virtual Ultrasound Guidance for Inexperienced Operators
NASA Technical Reports Server (NTRS)
Caine, Timothy; Martin, David
2012-01-01
Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit in which the time delay inherent with communication will make remote guidance impractical. The Virtual Ultrasound Guidance system is a combination of hardware and software. The hardware portion includes, but is not limited to, video glasses that allow hands-free, full-screen viewing. The glasses also allow the operator a substantial field of view below the glasses to view and operate the ultrasound system. The software is a comprehensive video program designed to guide an inexperienced operator through a detailed ultrasound or echocardiographic study without extensive training or guidance from the ground. The program contains a detailed description using video and audio to demonstrate equipment controls, ergonomics of scanning, study protocol, and scanning guidance, including recovery from sub-optimal images. The components used in the initial validation of the system include an Apple iPod Classic third-generation as the video source, and Myvue video glasses. Initially, the program prompts the operator to power-up the ultrasound and position the patient. The operator would put on the video glasses and attach them to the video source. After turning on both devices and the ultrasound system, the audio-video guidance would then instruct on patient positioning and scanning techniques. A detailed scanning protocol follows with descriptions and reference video of each view along with advice on technique. The program also instructs the operator regarding the types of images to store and how to overcome pitfalls in scanning. Images can be forwarded to the ground or other site when convenient. Following study completion, the video glasses, video source, and ultrasound system are powered down and stored. Virtually any equipment that can play back video can be used to play back the program. This includes a DVD player, personal computer, and some MP3 players.
Analyzing Automated Instructional Systems: Metaphors from Related Design Professions.
ERIC Educational Resources Information Center
Jonassen, David H.; Wilson, Brent G.
Noting that automation has had an impact on virtually every manufacturing and information operation in the world, including instructional design (ID), this paper suggests three basic metaphors for automating instructional design activities: (1) computer-aided design and manufacturing (CAD/CAM) systems; (2) expert system advisor systems; and (3)…
NASA Technical Reports Server (NTRS)
Pogorzelski, R. J.; Beckon, R. J.
1997-01-01
The virtual spacecraft concept is embodied in a set of subsystems, either in the form of hardware or computational models, which together represent all, or a portion of, a spacecraft. For example, the telecommunications transponder may be a hardware prototype while the propulsion system may exist only as a simulation. As the various subsystems are realized in hardware, the spacecraft becomes progressively less virtual. This concept is enabled by JPL's Mission System Testbed which is a set of networked workstations running a message passing operating system called "TRAMEL" which stands for Task Remote Asynchronous Message Exchange Layer. Each simulation on the workstations, which may in fact be hardware controlled by the workstation, "publishes" its operating parameters on TRAMEL and other simulations requiring those parameters as input may "subscribe" to them. In this manner, the whole simulation operates as a single virtual system. This paper describes a simulation designed to evaluate a communications link between the earth and the Mars Pathfinder Lander module as it descends under a parachute through the Martian atmosphere toward the planet's surface. This link includes a transmitter and a low gain antenna on the spacecraft and a receiving antenna and receiver on the earth as well as a simulation of the dynamics of the spacecraft. The transmitter, the ground station antenna, the receiver and the dynamics are all simulated computationally while the spacecraft antenna is implemented in hardware on a very simple spacecraft mockup. The dynamics simulation is a record of one output of the ensemble of outputs of a Monte Carlo simulation of the descent. Additionally, the antenna/spacecraft mock-up system was simulated using APATCH, a shooting and bouncing ray code developed by Demaco, Inc. The antenna simulation, the antenna hardware, and the link simulation are all physically located in different facilities at JPL separated by several hundred meters and are linked via the local area network (LAN).
Will Anything Useful Come Out of Virtual Reality? Examination of a Naval Application
1993-05-01
The term virtual reality can encompass varying meanings, but some generally accepted attributes of a virtual environment are that it is immersive...technology, but at present there are few practical applications which are utilizing the broad range of virtual reality technology. This paper will discuss an...Operability, operator functions, Virtual reality , Man-machine interface, Decision aids/decision making, Decision support. ASW.
Research and realization of signal simulation on virtual instrument
NASA Astrophysics Data System (ADS)
Zhao, Qi; He, Wenting; Guan, Xiumei
2010-02-01
In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.
Human-Computer Interaction and Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1995-01-01
The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.
Exploring the simulation requirements for virtual regional anesthesia training
NASA Astrophysics Data System (ADS)
Charissis, V.; Zimmer, C. R.; Sakellariou, S.; Chan, W.
2010-01-01
This paper presents an investigation towards the simulation requirements for virtual regional anaesthesia training. To this end we have developed a prototype human-computer interface designed to facilitate Virtual Reality (VR) augmenting educational tactics for regional anaesthesia training. The proposed interface system, aims to compliment nerve blocking techniques methods. The system is designed to operate in real-time 3D environment presenting anatomical information and enabling the user to explore the spatial relation of different human parts without any physical constrains. Furthermore the proposed system aims to assist the trainee anaesthetists so as to build a mental, three-dimensional map of the anatomical elements and their depictive relationship to the Ultra-Sound imaging which is used for navigation of the anaesthetic needle. Opting for a sophisticated approach of interaction, the interface elements are based on simplified visual representation of real objects, and can be operated through haptic devices and surround auditory cues. This paper discusses the challenges involved in the HCI design, introduces the visual components of the interface and presents a tentative plan of future work which involves the development of realistic haptic feedback and various regional anaesthesia training scenarios.
Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder
NASA Technical Reports Server (NTRS)
Stoker, C.; Zbinden, E.; Blackmon, T.; Nguyen, L.
1999-01-01
We describe an interactive terrain visualization system which rapidly generates and interactively displays photorealistic three-dimensional (3-D) models produced from stereo images. This product, first demonstrated in Mars Pathfinder, is interactive, 3-D, and can be viewed in an immersive display which qualifies it for the name Virtual Reality (VR). The use of this technology on Mars Pathfinder was the first use of VR for geologic analysis. A primary benefit of using VR to display geologic information is that it provides an improved perception of depth and spatial layout of the remote site. The VR aspect of the display allows an operator to move freely in the environment, unconstrained by the physical limitations of the perspective from which the data were acquired. Virtual Reality offers a way to archive and retrieve information in a way that is intuitively obvious. Combining VR models with stereo display systems can give the user a sense of presence at the remote location. The capability, to interactively perform measurements from within the VR model offers unprecedented ease in performing operations that are normally time consuming and difficult using other techniques. Thus, Virtual Reality can be a powerful a cartographic tool. Additional information is contained in the original extended abstract.
Katz, Jonathan E
2017-01-01
Laboratories tend to be amenable environments for long-term reliable operation of scientific measurement equipment. Indeed, it is not uncommon to find equipment 5, 10, or even 20+ years old still being routinely used in labs. Unfortunately, the Achilles heel for many of these devices is the control/data acquisition computer. Often these computers run older operating systems (e.g., Windows XP) and, while they might only use standard network, USB or serial ports, they require proprietary software to be installed. Even if the original installation disks can be found, it is a burdensome process to reinstall and is fraught with "gotchas" that can derail the process-lost license keys, incompatible hardware, forgotten configuration settings, etc. If you have running legacy instrumentation, the computer is the ticking time bomb waiting to put a halt to your operation.In this chapter, I describe how to virtualize your currently running control computer. This virtualized computer "image" is easy to maintain, easy to back up and easy to redeploy. I have used this multiple times in my own lab to greatly improve the robustness of my legacy devices.After completing the steps in this chapter, you will have your original control computer as well as a virtual instance of that computer with all the software installed ready to control your hardware should your original computer ever be decommissioned.
Electronic Campus Meets Today's Education Mission.
ERIC Educational Resources Information Center
Swalec, John J.; And Others
Waubonsee Community College (WCC) employs electronic technology to meet the needs of its students and community in virtually every phase of campus operations. WCC's Information System Center, housing three mainframe computers, drives an online registration system, a computerized self-registration system that can be accessed by telephone from…
A Virtual Audio Guidance and Alert System for Commercial Aircraft Operations
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Wenzel, Elizabeth M.; Shrum, Richard; Miller, Joel; Null, Cynthia H. (Technical Monitor)
1996-01-01
Our work in virtual reality systems at NASA Ames Research Center includes the area of aurally-guided visual search, using specially-designed audio cues and spatial audio processing (also known as virtual or "3-D audio") techniques (Begault, 1994). Previous studies at Ames had revealed that use of 3-D audio for Traffic Collision Avoidance System (TCAS) advisories significantly reduced head-down time, compared to a head-down map display (0.5 sec advantage) or no display at all (2.2 sec advantage) (Begault, 1993, 1995; Begault & Pittman, 1994; see Wenzel, 1994, for an audio demo). Since the crew must keep their head up and looking out the window as much as possible when taxiing under low-visibility conditions, and the potential for "blunder" is increased under such conditions, it was sensible to evaluate the audio spatial cueing for a prototype audio ground collision avoidance warning (GCAW) system, and a 3-D audio guidance system. Results were favorable for GCAW, but not for the audio guidance system.
Network Virtualization - Opportunities and Challenges for Operators
NASA Astrophysics Data System (ADS)
Carapinha, Jorge; Feil, Peter; Weissmann, Paul; Thorsteinsson, Saemundur E.; Etemoğlu, Çağrı; Ingþórsson, Ólafur; Çiftçi, Selami; Melo, Márcio
In the last few years, the concept of network virtualization has gained a lot of attention both from industry and research projects. This paper evaluates the potential of network virtualization from an operator's perspective, with the short-term goal of optimizing service delivery and rollout, and on a longer term as an enabler of technology integration and migration. Based on possible scenarios for implementing and using network virtualization, new business roles and models are examined. Open issues and topics for further evaluation are identified. In summary, the objective is to identify the challenges but also new opportunities for telecom operators raised by network virtualization.
NASA Astrophysics Data System (ADS)
Zheng, Guoyan
2007-03-01
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Plot of virtual surgery based on CT medical images
NASA Astrophysics Data System (ADS)
Song, Limei; Zhang, Chunbo
2009-10-01
Although the CT device can give the doctors a series of 2D medical images, it is difficult to give vivid view for the doctors to acknowledge the decrease part. In order to help the doctors to plot the surgery, the virtual surgery system is researched based on the three-dimensional visualization technique. After the disease part of the patient is scanned by the CT device, the 3D whole view will be set up based on the 3D reconstruction module of the system. TCut a part is the usually used function for doctors in the real surgery. A curve will be created on the 3D space; and some points can be added on the curve automatically or manually. The position of the point can change the shape of the cut curves. The curve can be adjusted by controlling the points. If the result of the cut function is not satisfied, all the operation can be cancelled to restart. The flexible virtual surgery gives more convenience to the real surgery. Contrast to the existing medical image process system, the virtual surgery system is added to the system, and the virtual surgery can be plotted for a lot of times, till the doctors have enough confidence to start the real surgery. Because the virtual surgery system can give more 3D information of the disease part, some difficult surgery can be discussed by the expert doctors in different city via internet. It is a useful function to understand the character of the disease part, thus to decrease the surgery risk.
Associative programming language and virtual associative access manager
NASA Technical Reports Server (NTRS)
Price, C.
1978-01-01
APL provides convenient associative data manipulation functions in a high level language. Six statements were added to PL/1 via a preprocessor: CREATE, INSERT, FIND, FOR EACH, REMOVE, and DELETE. They allow complete control of all data base operations. During execution, data base management programs perform the functions required to support the APL language. VAAM is the data base management system designed to support the APL language. APL/VAAM is used by CADANCE, an interactive graphic computer system. VAAM is designed to support heavily referenced files. Virtual memory files, which utilize the paging mechanism of the operating system, are used. VAAM supports a full network data structure. The two basic blocks in a VAAM file are entities and sets. Entities are the basic information element and correspond to PL/1 based structures defined by the user. Sets contain the relationship information and are implemented as arrays.
Virtual reality training for surgical trainees in laparoscopic surgery.
Nagendran, Myura; Gurusamy, Kurinchi Selvan; Aggarwal, Rajesh; Loizidou, Marilena; Davidson, Brian R
2013-08-27
Standard surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time-consuming, costly, and of variable effectiveness. Training using a virtual reality simulator is an option to supplement standard training. Virtual reality training improves the technical skills of surgical trainees such as decreased time for suturing and improved accuracy. The clinical impact of virtual reality training is not known. To assess the benefits (increased surgical proficiency and improved patient outcomes) and harms (potentially worse patient outcomes) of supplementary virtual reality training of surgical trainees with limited laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE and Science Citation Index Expanded until July 2012. We included all randomised clinical trials comparing virtual reality training versus other forms of training including box-trainer training, no training, or standard laparoscopic training in surgical trainees with little laparoscopic experience. We also planned to include trials comparing different methods of virtual reality training. We included only trials that assessed the outcomes in people undergoing laparoscopic surgery. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5 analysis. For each outcome we calculated the mean difference (MD) or standardised mean difference (SMD) with 95% confidence intervals based on intention-to-treat analysis. We included eight trials covering 109 surgical trainees with limited laparoscopic experience. Of the eight trials, six compared virtual reality versus no supplementary training. One trial compared virtual reality training versus box-trainer training and versus no supplementary training, and one trial compared virtual reality training versus box-trainer training. There were no trials that compared different forms of virtual reality training. All the trials were at high risk of bias. Operating time and operative performance were the only outcomes reported in the trials. The remaining outcomes such as mortality, morbidity, quality of life (the primary outcomes of this review) and hospital stay (a secondary outcome) were not reported. Virtual reality training versus no supplementary training: The operating time was significantly shorter in the virtual reality group than in the no supplementary training group (3 trials; 49 participants; MD -11.76 minutes; 95% CI -15.23 to -8.30). Two trials that could not be included in the meta-analysis also showed a reduction in operating time (statistically significant in one trial). The numerical values for operating time were not reported in these two trials. The operative performance was significantly better in the virtual reality group than the no supplementary training group using the fixed-effect model (2 trials; 33 participants; SMD 1.65; 95% CI 0.72 to 2.58). The results became non-significant when the random-effects model was used (2 trials; 33 participants; SMD 2.14; 95% CI -1.29 to 5.57). One trial could not be included in the meta-analysis as it did not report the numerical values. The authors stated that the operative performance of virtual reality group was significantly better than the control group. Virtual reality training versus box-trainer training: The only trial that reported operating time did not report the numerical values. In this trial, the operating time in the virtual reality group was significantly shorter than in the box-trainer group. Of the two trials that reported operative performance, only one trial reported the numerical values. The operative performance was significantly better in the virtual reality group than in the box-trainer group (1 trial; 19 participants; SMD 1.46; 95% CI 0.42 to 2.50). In the other trial that did not report the numerical values, the authors stated that the operative performance in the virtual reality group was significantly better than the box-trainer group. Virtual reality training appears to decrease the operating time and improve the operative performance of surgical trainees with limited laparoscopic experience when compared with no training or with box-trainer training. However, the impact of this decreased operating time and improvement in operative performance on patients and healthcare funders in terms of improved outcomes or decreased costs is not known. Further well-designed trials at low risk of bias and random errors are necessary. Such trials should assess the impact of virtual reality training on clinical outcomes.
The Integration of CloudStack and OCCI/OpenNebula with DIRAC
NASA Astrophysics Data System (ADS)
Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan
2012-12-01
The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Han, Young-Min; Choi, Seung-Bok
2008-12-01
This paper presents the control performance of an electrorheological (ER) fluid-based haptic master device connected to a virtual slave environment that can be used for minimally invasive surgery (MIS). An already developed haptic joint featuring controllable ER fluid and a spherical joint mechanism is adopted for the master system. Medical forceps and an angular position measuring device are devised and integrated with the joint to establish the MIS master system. In order to embody a human organ in virtual space, a volumetric deformable object is used. The virtual object is then mathematically formulated by a shape-retaining chain-linked (S-chain) model. After evaluating the reflection force, computation time and compatibility with real-time control, the haptic architecture for MIS is established by incorporating the virtual slave with the master device so that the reflection force for the object of the virtual slave and the desired position for the master operator are transferred to each other. In order to achieve the desired force trajectories, a sliding mode controller is formulated and then experimentally realized. Tracking control performances for various force trajectories are evaluated and presented in the time domain.
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Rajkumar, T.
2003-01-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Intelligent launch and range operations virtual testbed (ILRO-VTB)
NASA Astrophysics Data System (ADS)
Bardina, Jorge; Rajkumar, Thirumalainambi
2003-09-01
Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Effects of telework and the virtual enterprise on the organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, R.A.
1996-12-31
This paper provides information on the growing trend towards telework and using {open_quotes}virtual employees{close_quotes} as a fundamental component of the human resource requirements for the conduct of business. As the organization moves from a traditional approach of fixed plant and permanent employees toward a more dynamic model of motile office arrangements and virtual workers, new challenges arise for workers, supervisors, and managers. These challenges pertain to both the individual and the organization and are rooted in both technology and human behavior. Notwithstanding the challenges, the opportunities created for increased productivity and cost-effective operations are propelling organizations globally to adopt themore » virtual enterprise model, to a greater or lesser extent. Management hierarchy is giving way to autonomous teams. Middle management is being replaced by better organizational communication systems, better information storage and retrieval systems, and a newly developing classification of software called groupware. In the midst of these changes, the business process of identifying and acquiring the services of the virtual team member seems to lie at an intersection where Human Resources, Information Systems, Contracts/Subcontracts, and the functional department requiring the services intersect. Human Resources departments are slowly coming to grips with the virtual worker model but are largely uncomfortable in the role. Information Systems departments can implement networks; but, dynamic links outside the traditional organization bring up a myriad of questions about compatibility and system security. The champion of the virtual worker is the Functional Department. This might be engineering, software development, the design department, the financial analysis group, or whichever department in the organization is faced with the responsibility of creating knowledge work product and has resource constraints and upper management support.« less
Virtual terrain: a security-based representation of a computer network
NASA Astrophysics Data System (ADS)
Holsopple, Jared; Yang, Shanchieh; Argauer, Brian
2008-03-01
Much research has been put forth towards detection, correlating, and prediction of cyber attacks in recent years. As this set of research progresses, there is an increasing need for contextual information of a computer network to provide an accurate situational assessment. Typical approaches adopt contextual information as needed; yet such ad hoc effort may lead to unnecessary or even conflicting features. The concept of virtual terrain is, therefore, developed and investigated in this work. Virtual terrain is a common representation of crucial information about network vulnerabilities, accessibilities, and criticalities. A virtual terrain model encompasses operating systems, firewall rules, running services, missions, user accounts, and network connectivity. It is defined as connected graphs with arc attributes defining dynamic relationships among vertices modeling network entities, such as services, users, and machines. The virtual terrain representation is designed to allow feasible development and maintenance of the model, as well as efficacy in terms of the use of the model. This paper will describe the considerations in developing the virtual terrain schema, exemplary virtual terrain models, and algorithms utilizing the virtual terrain model for situation and threat assessment.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Space and Time Partitioning with Hardware Support for Space Applications
NASA Astrophysics Data System (ADS)
Pinto, S.; Tavares, A.; Montenegro, S.
2016-08-01
Complex and critical systems like airplanes and spacecraft implement a very fast growing amount of functions. Typically, those systems were implemented with fully federated architectures, but the number and complexity of desired functions of todays systems led aerospace industry to follow another strategy. Integrated Modular Avionics (IMA) arose as an attractive approach for consolidation, by combining several applications into one single generic computing resource. Current approach goes towards higher integration provided by space and time partitioning (STP) of system virtualization. The problem is existent virtualization solutions are not ready to fully provide what the future of aerospace are demanding: performance, flexibility, safety, security while simultaneously containing Size, Weight, Power and Cost (SWaP-C).This work describes a real time hypervisor for space applications assisted by commercial off-the-shell (COTS) hardware. ARM TrustZone technology is exploited to implement a secure virtualization solution with low overhead and low memory footprint. This is demonstrated by running multiple guest partitions of RODOS operating system on a Xilinx Zynq platform.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Immersive virtual reality for visualization of abdominal CT
NASA Astrophysics Data System (ADS)
Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A.; Bodenheimer, Robert E.
2013-03-01
Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.
Immersive Virtual Reality for Visualization of Abdominal CT.
Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A; Bodenheimer, Robert E
2013-03-28
Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two-dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.
PRAIS: Distributed, real-time knowledge-based systems made easy
NASA Technical Reports Server (NTRS)
Goldstein, David G.
1990-01-01
This paper discusses an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS). PRAIS strives for transparently parallelizing production (rule-based) systems, even when under real-time constraints. PRAIS accomplishes these goals by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors.
Forensic Analysis of Window’s(Registered) Virtual Memory Incorporating the System’s Page-File
2008-12-01
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE December...data in a meaningful way. One reason for this is how memory is managed by the operating system. Data belonging to one process can be distributed...way. One reason for this is how memory is managed by the operating system. Data belonging to one process can be distributed arbitrarily across
Data General Corporation Advanced Operating System/Virtual Storage (AOS/ VS). Revision 7.60
1989-02-22
control list for each directory and data file. An access control list includes the users who can and cannot access files as well as the access...and any required data, it can -5- February 22, 1989 Final Evaluation Report Data General AOS/VS SYSTEM OVERVIEW operate asynchronously and in parallel...memory. The IOC can perform the data transfer without further interventiin from the CPU. The I/O channels interface with the processor or system
Robust Airborne Networking Extensions (RANGE)
2008-02-01
IMUNES [13] project, which provides an entire network stack virtualization and topology control inside a single FreeBSD machine . The emulated topology...Multicast versus broadcast in a manet.” in ADHOC-NOW, 2004, pp. 14–27. [9] J. Mukherjee, R. Atwood , “ Rendezvous point relocation in protocol independent...computer with an Ethernet connection, or a Linux virtual machine on some other (e.g., Windows) operating system, should work. 2.1 Patching the source code
BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences
Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola
2015-01-01
Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org. PMID:26401099
BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.
Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola
2015-01-01
Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Virtual Exercise Training Software System
NASA Technical Reports Server (NTRS)
Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.
2018-01-01
The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.
Program For Parallel Discrete-Event Simulation
NASA Technical Reports Server (NTRS)
Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.
1991-01-01
User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.
The U.S. Air Force Transformation Flight Plan
2003-11-01
at Buckley Air Force Base, Colorado. Reserve Associate and Active Associate units have proven that this concept works and benef its the Active and...munitions manufactured from nano-particles, whose virtually all-surface structure yields unprecedented “burn-rates” (extreme explosiveness), promise far...systems for a common operating system, and a suite of remotely operated sensors, weapons, and robotics . Also included are a group of non-lethal weapon
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye
2016-01-01
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye
2016-06-07
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
NASA Astrophysics Data System (ADS)
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye
2016-06-01
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
Virtual environment assessment for laser-based vision surface profiling
NASA Astrophysics Data System (ADS)
ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.
2015-03-01
Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.
Visual landmarks facilitate rodent spatial navigation in virtual reality environments
Youngstrom, Isaac A.; Strowbridge, Ben W.
2012-01-01
Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain areas. Virtual reality offers a unique approach to ask whether visual landmark cues alone are sufficient to improve performance in a spatial task. We found that mice could learn to navigate between two water reward locations along a virtual bidirectional linear track using a spherical treadmill. Mice exposed to a virtual environment with vivid visual cues rendered on a single monitor increased their performance over a 3-d training regimen. Training significantly increased the percentage of time avatars controlled by the mice spent near reward locations in probe trials without water rewards. Neither improvement during training or spatial learning for reward locations occurred with mice operating a virtual environment without vivid landmarks or with mice deprived of all visual feedback. Mice operating the vivid environment developed stereotyped avatar turning behaviors when alternating between reward zones that were positively correlated with their performance on the probe trial. These results suggest that mice are able to learn to navigate to specific locations using only visual cues presented within a virtual environment rendered on a single computer monitor. PMID:22345484
ERIC Educational Resources Information Center
Violino, Bob
2008-01-01
This article discusses the enterprise resource planning (ERP) system. Deploying an ERP system is one of the most extensive--and expensive--IT projects a college or university can undertake. The potential benefits of ERP are significant: a more smoothly running operation with efficiencies in virtually every area of administration, from automated…
75 FR 4054 - Sunshine Act; Notice of Virtual Public Forum for EAC Board of Advisors
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... Assessment. Phase II of the Election Operations Assessment contains threat trees for the seven types of voting types covered by the Election Operations Assessment. These threat trees are intended to capture risks to the various types of voting systems and the possible mitigations. These threat trees feed into...
Report to Congress on Sustainable Ranges, 2011
2011-07-01
Interoperation of live participants and their operational systems. `` Realistic LVC representations of non-participant friendly warfighting capabilities...across the full range of military operations (ROMO). `` Realistic LVC representations of opposing forces (OPFOR), neutral, and factional entities that...entities. `` Suitable representations of the real world environment where the warfighting capabilities exist. Table 2-2 Live, Virtual, and
Analysis Methodology for Balancing Authority Cooperation in High Penetration of Variable Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Etingov, Pavel V.; Zhou, Ning
2010-02-01
With the rapidly growing penetration level of wind and solar generation, the challenges of managing variability and the uncertainty of intermittent renewable generation become more and more significant. The problem of power variability and uncertainty gets exacerbated when each balancing authority (BA) works locally and separately to balance its own subsystem. The virtual BA concept means various forms of collaboration between individual BAs must manage power variability and uncertainty. The virtual BA will have a wide area control capability in managing its operational balancing requirements in different time frames. This coordination results in the improvement of efficiency and reliability ofmore » power system operation while facilitating the high level integration of green, intermittent energy resources. Several strategies for virtual BA implementation, such as ACE diversity interchange (ADI), wind only BA, BA consolidation, dynamic scheduling, regulation and load following sharing, extreme event impact study are discussed in this report. The objective of such strategies is to allow individual BAs within a large power grid to help each other deal with power variability. Innovative methods have been developed to simulate the balancing operation of BAs. These methods evaluate the BA operation through a number of metrics — such as capacity, ramp rate, ramp duration, energy and cycling requirements — to evaluate the performances of different virtual BA strategies. The report builds a systematic framework for evaluating BA consolidation and coordination. Results for case studies show that significant economic and reliability benefits can be gained. The merits and limitation of each virtual BA strategy are investigated. The report provides guidelines for the power industry to evaluate the coordination or consolidation method. The application of the developed strategies in cooperation with several regional BAs is in progress for several off-spring projects.« less
Squad Modeling and Simulation for Analysis of Materiel and Personnel Solutions
2014-06-01
Laboratory MORSS Presentations • Virtual Employment Test Bed: Operational Research and Systems Analysis to Test Armaments Designs Early in the...Elizabeth Mezzacappa, PhD Target Behavioral Response Laboratory Presented to the 82nd Military Operations Research Society Symposium June 4-6, 2014...Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding
The Virtual Astronomical Observatory: Re-engineering access to astronomical data
NASA Astrophysics Data System (ADS)
Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.
2015-06-01
The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.
NASA Technical Reports Server (NTRS)
Brower, Robert
2004-01-01
This report summarizes the activity conducted under NASA Grant NAG13-02059 entitled "Preserving the Finger Lakes for the Future" A Prototype Decision Support System for Water Resources Management, Open Space and Agricultural Protection, for the period of September 26, 2003 to September 25, 2004. The RACNE continues to utilize the services of its affiliate, the Institute for the Application of Geospatial Technology at Cayuga Community College, Inc. (IAGT), for the purposes of this project under its permanent operating agreement with IAGT. IAGT is a 501(c)(3) not-for-profit Corporation created by the RACNE for the purpose of carrying out its programmatic and administrative mission. The "Preserving the Finger Lakes for the Future" project has progressed and evolved as planned, with the continuation or initiation of a number of program facets at programmatic, technical, and inter-agency levels. The project has grown, starting with the well received core concept of the Virtual Management Operations Center (VMOC), to the functional Watershed Virtual Management Operations Center (W-VMOC) prototype, to the more advanced Finger Lakes Decision Support System (FLDSS) prototype, deployed for evaluation and assessment to a wide variety of agencies and organizations in the Finger Lakes region and beyond. This suite of tools offers the advanced, compelling functionality of interactive 3D visualization interfaced with 2D mapping, all accessed via Internet or virtually any kind of distributed computer network.
How much can a single webcam tell to the operation of a water system?
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Castelletti, Andrea; Fedorov, Roman; Fraternali, Piero
2017-04-01
Recent advances in environmental monitoring are making a wide range of hydro-meteorological data available with a great potential to enhance understanding, modelling and management of environmental processes. Despite this progress, continuous monitoring of highly spatiotemporal heterogeneous processes is not well established yet, especially in inaccessible sites. In this context, the unprecedented availability of user-generated data on the web might open new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this work, we focus on snow and contribute a novel crowdsourcing procedure for extracting snow-related information from public web images, either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multiple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow-covered area. The operational value of the obtained virtual snow indexes is then assessed for a real-world water-management problem, where we use these indexes for informing the daily control of a regulated lake supplying water for multiple purposes. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations, ultimately improving the system performance. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations where such public images are available.
NASA Astrophysics Data System (ADS)
Thubaasini, P.; Rusnida, R.; Rohani, S. M.
This paper describes Linux, an open source platform used to develop and run a virtual architectural walkthrough application. It proposes some qualitative reflections and observations on the nature of Linux in the concept of Virtual Reality (VR) and on the most popular and important claims associated with the open source approach. The ultimate goal of this paper is to measure and evaluate the performance of Linux used to build the virtual architectural walkthrough and develop a proof of concept based on the result obtain through this project. Besides that, this study reveals the benefits of using Linux in the field of virtual reality and reflects a basic comparison and evaluation between Windows and Linux base operating system. Windows platform is use as a baseline to evaluate the performance of Linux. The performance of Linux is measured based on three main criteria which is frame rate, image quality and also mouse motion.
Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction
NASA Astrophysics Data System (ADS)
Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong
2017-08-01
We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.
Open core control software for surgical robots
Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B.; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo
2010-01-01
Object In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge “intelligent surgical robot” will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are “home-made” in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. Materials and methods In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a “force guide” for supporting operators to perform precise manipulation by using a master–slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. Results The Open Core Control software was implemented on a surgical master–slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a “force guide” on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. Conclusion In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement “General Principles of Software Validation” or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field. PMID:20033506
Constructing Agent Model for Virtual Training Systems
NASA Astrophysics Data System (ADS)
Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru
Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.
Simulation-based Testing of Control Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda
It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less
Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components
NASA Astrophysics Data System (ADS)
Dong, Z. H.; Ye, X.; Yang, F.
2018-05-01
Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.
An adaptive process-based cloud infrastructure for space situational awareness applications
NASA Astrophysics Data System (ADS)
Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce
2014-06-01
Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.
Network design for telemedicine--e-health using satellite technology.
Graschew, Georgi; Roelofs, Theo A; Rakowsky, Stefan; Schlag, Peter M
2008-01-01
Over the last decade various international Information and Communications Technology networks have been created for a global access to high-level medical care. OP 2000 has designed and validated the high-end interactive video communication system WinVicos especially for telemedical applications, training of the physician in a distributed environment, teleconsultation and second opinion. WinVicos is operated on a workstation (WoTeSa) using standard hardware components and offers a superior image quality at a moderate transmission bandwidth of up to 2 Mbps. WoTeSa / WinVicos have been applied for IP-based communication in different satellite-based telemedical networks. In the DELTASS-project a disaster scenario was analysed and an appropriate telecommunication system for effective rescue measures for the victims was set up and evaluated. In the MEDASHIP project an integrated system for telemedical services (teleconsultation, teleelectro-cardiography, telesonography) on board of cruise ships and ferries has been set up. EMISPHER offers an equal access for most of the countries of the Euro-Mediterranean area to on-line services for health care in the required quality of service. E-learning applications, real-time telemedicine and shared management of medical assistance have been realized. The innovative developments in ICT with the aim of realizing a ubiquitous access to medical resources for everyone at any time and anywhere (u-Health) bear the risk of creating and amplifying a digital divide in the world. Therefore we have analyzed how the objective needs of the heterogeneous partners can be joined with the result that there is a need for real integration of the various platforms and services. A virtual combination of applications serves as the basic idea for the Virtual Hospital. The development of virtual hospitals and digital medicine helps to bridge the digital divide between different regions of the world and enables equal access to high-level medical care. Pre-operative planning, intra-operative navigation and minimally-invasive surgery require a digital and virtual environment supporting the perception of the physician. As data and computing resources in a virtual hospital are distributed over many sites the concept of the Grid should be integrated with other communication networks and platforms.
LHCb experience with running jobs in virtual machines
NASA Astrophysics Data System (ADS)
McNab, A.; Stagni, F.; Luzzi, C.
2015-12-01
The LHCb experiment has been running production jobs in virtual machines since 2013 as part of its DIRAC-based infrastructure. We describe the architecture of these virtual machines and the steps taken to replicate the WLCG worker node environment expected by user and production jobs. This relies on the uCernVM system for providing root images for virtual machines. We use the CernVM-FS distributed filesystem to supply the root partition files, the LHCb software stack, and the bootstrapping scripts necessary to configure the virtual machines for us. Using this approach, we have been able to minimise the amount of contextualisation which must be provided by the virtual machine managers. We explain the process by which the virtual machine is able to receive payload jobs submitted to DIRAC by users and production managers, and how this differs from payloads executed within conventional DIRAC pilot jobs on batch queue based sites. We describe our operational experiences in running production on VM based sites managed using Vcycle/OpenStack, Vac, and HTCondor Vacuum. Finally we show how our use of these resources is monitored using Ganglia and DIRAC.
NASA Technical Reports Server (NTRS)
Clancey, William J.
2004-01-01
This viewgraph presentation provides an overview of past and possible future applications for artifical intelligence (AI) in astronaut instruction and training. AI systems have been used in training simulation for the Hubble Space Telescope repair, the International Space Station, and operations simulation for the Mars Exploration Rovers. In the future, robots such as may work as partners with astronauts on missions such as planetary exploration and extravehicular activities.
Use of Virtual Reality for Space Flight
NASA Technical Reports Server (NTRS)
Harm, Deborah; Taylor, L. C.; Reschke, M. F.
2011-01-01
Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational training at the same time. Such efforts could support both improved health and performance on orbit and improved operational training in the most efficient manner.
Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.
Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing
2011-12-01
For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.
Virtual reality: a reality for future military pilotage?
NASA Astrophysics Data System (ADS)
McIntire, John P.; Martinsen, Gary L.; Marasco, Peter L.; Havig, Paul R.
2009-05-01
Virtual reality (VR) systems provide exciting new ways to interact with information and with the world. The visual VR environment can be synthetic (computer generated) or be an indirect view of the real world using sensors and displays. With the potential opportunities of a VR system, the question arises about what benefits or detriments a military pilot might incur by operating in such an environment. Immersive and compelling VR displays could be accomplished with an HMD (e.g., imagery on the visor), large area collimated displays, or by putting the imagery on an opaque canopy. But what issues arise when, instead of viewing the world directly, a pilot views a "virtual" image of the world? Is 20/20 visual acuity in a VR system good enough? To deliver this acuity over the entire visual field would require over 43 megapixels (MP) of display surface for an HMD or about 150 MP for an immersive CAVE system, either of which presents a serious challenge with current technology. Additionally, the same number of sensor pixels would be required to drive the displays to this resolution (and formidable network architectures required to relay this information), or massive computer clusters are necessary to create an entirely computer-generated virtual reality with this resolution. Can we presently implement such a system? What other visual requirements or engineering issues should be considered? With the evolving technology, there are many technological issues and human factors considerations that need to be addressed before a pilot is placed within a virtual cockpit.
Pilot study on effectiveness of simulation for surgical robot design using manipulability.
Kawamura, Kazuya; Seno, Hiroto; Kobayashi, Yo; Fujie, Masakatsu G
2011-01-01
Medical technology has advanced with the introduction of robot technology, which facilitates some traditional medical treatments that previously were very difficult. However, at present, surgical robots are used in limited medical domains because these robots are designed using only data obtained from adult patients and are not suitable for targets having different properties, such as children. Therefore, surgical robots are required to perform specific functions for each clinical case. In addition, the robots must exhibit sufficiently high movability and operability for each case. In the present study, we focused on evaluation of the mechanism and configuration of a surgical robot by a simulation based on movability and operability during an operation. We previously proposed the development of a simulator system that reproduces the conditions of a robot and a target in a virtual patient body to evaluate the operability of the surgeon during an operation. In the present paper, we describe a simple experiment to verify the condition of the surgical assisting robot during an operation. In this experiment, the operation imitating suturing motion was carried out in a virtual workspace, and the surgical robot was evaluated based on manipulability as an indicator of movability. As the result, it was confirmed that the robot was controlled with low manipulability of the left side manipulator during the suturing. This simulation system can verify the less movable condition of a robot before developing an actual robot. Our results show the effectiveness of this proposed simulation system.
Universal Serial Bus Architecture for Removable Media (USB-ARM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-03-09
USB-ARM creates operating system drivers which sit between removable media and the user and applications. The drivers isolate the media and submit the contents of the media to a virtual machine containing an entire scanning system. This scanning system may include traditional anti-virus, but also allows more detailed analysis of files, including dynamic run-time analysis, helping to prevent "zero-day" threats not already identified in anti-virus signatures. Once cleared, the media is presented to the operating system, at which point it becomes available to users and applications.
Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito
2017-10-15
Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.
Proactive Fault Tolerance for HPC with Xen Virtualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagarajan, Arun Babu; Mueller, Frank; Engelmann, Christian
2007-01-01
with thousands of processors. At such large counts of compute nodes, faults are becoming common place. Current techniques to tolerate faults focus on reactive schemes to recover from faults and generally rely on a checkpoint/restart mechanism. Yet, in today's systems, node failures can often be anticipated by detecting a deteriorating health status. Instead of a reactive scheme for fault tolerance (FT), we are promoting a proactive one where processes automatically migrate from unhealthy nodes to healthy ones. Our approach relies on operating system virtualization techniques exemplied by but not limited to Xen. This paper contributes an automatic and transparent mechanismmore » for proactive FT for arbitrary MPI applications. It leverages virtualization techniques combined with health monitoring and load-based migration. We exploit Xen's live migration mechanism for a guest operating system (OS) to migrate an MPI task from a health-deteriorating node to a healthy one without stopping the MPI task during most of the migration. Our proactive FT daemon orchestrates the tasks of health monitoring, load determination and initiation of guest OS migration. Experimental results demonstrate that live migration hides migration costs and limits the overhead to only a few seconds making it an attractive approach to realize FT in HPC systems. Overall, our enhancements make proactive FT a valuable asset for long-running MPI application that is complementary to reactive FT using full checkpoint/ restart schemes since checkpoint frequencies can be reduced as fewer unanticipated failures are encountered. In the context of OS virtualization, we believe that this is the rst comprehensive study of proactive fault tolerance where live migration is actually triggered by health monitoring.« less
Chang, Ching-I; Yan, Huey-Yeu; Sung, Wen-Hsu; Shen, Shu-Cheng; Chuang, Pao-Yu
2006-01-01
The purpose of this research was to develop a computer-aided instruction system for intra-aortic balloon pumping (IABP) skills in clinical nursing with virtual instrument (VI) concepts. Computer graphic technologies were incorporated to provide not only static clinical nursing education, but also the simulated function of operating an expensive medical instrument with VI techniques. The content of nursing knowledge was adapted from current well-accepted clinical training materials. The VI functions were developed using computer graphic technology with photos of real medical instruments taken by digital camera. We wish the system could provide beginners of nursing education important teaching assistance.
Design of 3D simulation engine for oilfield safety training
NASA Astrophysics Data System (ADS)
Li, Hua-Ming; Kang, Bao-Sheng
2015-03-01
Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Owens, Brandon
2017-01-01
This is a presentation for a Cisco Internet of Things (IoT) Systems Engineering Virtual Training (SEVT) event. The presentation provides an overview of the UTM concept, architecture, flight test events, and lessons learned. Networking hardware used in support of flight tests is also described.
MATREX: A Unifying Modeling and Simulation Architecture for Live-Virtual-Constructive Applications
2007-05-23
Deployment Systems Acquisition Operations & Support B C Sustainment FRP Decision Review FOC LRIP/IOT& ECritical Design Review Pre-Systems...CMS2 – Comprehensive Munitions & Sensor Server • CSAT – C4ISR Static Analysis Tool • C4ISR – Command & Control, Communications, Computers
Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Hale, Joseph P.
1995-01-01
A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.
Virtual Design of a Controller for a Hydraulic Cam Phasing System
NASA Astrophysics Data System (ADS)
Schneider, Markus; Ulbrich, Heinz
2010-09-01
Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.
Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD.
Rizzo, Albert 'Skip'; Shilling, Russell
2017-01-01
Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention.
Clinical Virtual Reality tools to advance the prevention, assessment, and treatment of PTSD
Rizzo, Albert ‘Skip’; Shilling, Russell
2017-01-01
ABSTRACT Numerous reports indicate that the incidence of posttraumatic stress disorder (PTSD) in Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) military personnel has created a significant behavioural healthcare challenge. These findings have served to motivate research on how to better develop and disseminate evidence-based treatments for PTSD. The current article presents the use of Virtual Reality (VR) as a clinical tool to address the assessment, prevention, and treatment of PTSD, based on the VR projects that were evolved at the University of Southern California Institute for Creative Technologies since 2004. A brief discussion of the definition and rationale for the clinical use of VR is followed by a description of a VR application designed for the delivery of prolonged exposure (PE) for treating Service Members (SMs) and Veterans with combat- and sexual assault-related PTSD. The expansion of the virtual treatment simulations of Iraq and Afghanistan for PTSD assessment and prevention is then presented. This is followed by a forward-looking discussion that details early efforts to develop virtual human agent systems that serve the role of virtual patients for training the next generation of clinical providers, as healthcare guides that can be used to support anonymous access to trauma-relevant behavioural healthcare information, and as clinical interviewers capable of automated behaviour analysis of users to infer psychological state. The paper will conclude with a discussion of VR as a tool for breaking down barriers to care in addition to its direct application in assessment and intervention. PMID:29372007
Image-guided laser projection for port placement in minimally invasive surgery.
Marmurek, Jonathan; Wedlake, Chris; Pardasani, Utsav; Eagleson, Roy; Peters, Terry
2006-01-01
We present an application of an augmented reality laser projection system in which procedure-specific optimal incision sites, computed from pre-operative image acquisition, are superimposed on a patient to guide port placement in minimally invasive surgery. Tests were conducted to evaluate the fidelity of computed and measured port configurations, and to validate the accuracy with which a surgical tool-tip can be placed at an identified virtual target. A high resolution volumetric image of a thorax phantom was acquired using helical computed tomography imaging. Oriented within the thorax, a phantom organ with marked targets was visualized in a virtual environment. A graphical interface enabled marking the locations of target anatomy, and calculation of a grid of potential port locations along the intercostal rib lines. Optimal configurations of port positions and tool orientations were determined by an objective measure reflecting image-based indices of surgical dexterity, hand-eye alignment, and collision detection. Intra-operative registration of the computed virtual model and the phantom anatomy was performed using an optical tracking system. Initial trials demonstrated that computed and projected port placement provided direct access to target anatomy with an accuracy of 2 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Birchard P; Michel, Kelly D; Few, Douglas A
From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less
Distributed Web-Based Expert System for Launch Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Thirumalainambi, Rajkumar
2005-01-01
The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.
A Civilising Mission? Perceptions and Representations of the New Zealand Native Schools System
ERIC Educational Resources Information Center
Simon, Judith, Ed.; Smith, Linda Tuhiwai, Ed.
The Native Schools system was a system of village primary schools for Maori children operated by the New Zealand state from 1867 to 1969. The official purpose of the system was assimilation. Virtually all previous historical accounts of the Native Schools have been written by Pakeha (non-Maori, usually of European descent) and based on material…
Phenomenology tools on cloud infrastructures using OpenStack
NASA Astrophysics Data System (ADS)
Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.
2013-04-01
We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.
Interfacing laboratory instruments to multiuser, virtual memory computers
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Stang, David B.; Roth, Don J.
1989-01-01
Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.
NASA Technical Reports Server (NTRS)
Skeberdis, Daniel
2016-01-01
This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.
The Global Communication Infrastructure of the International Monitoring System
NASA Astrophysics Data System (ADS)
Lastowka, L.; Gray, A.; Anichenko, A.
2007-05-01
The Global Communications Infrastructure (GCI) employs 6 satellites in various frequency bands distributed around the globe. Communications with the PTS (Provisional Technical Secretariat) in Vienna, Austria are achieved through VSAT technologies, international leased data circuits and Virtual Private Network (VPN) connections over the Internet. To date, 210 independent VSAT circuits have been connected to Vienna as well as special circuits connecting to the Antarctic and to independent sub-networks. Data volumes from all technologies currently reach 8 Gigabytes per day. The first level of support and a 24/7 help desk remains with the GCI contractor, but performance is monitored actively by the PTS/GCI operations team. GCI operations are being progressively introduced into the PTS operations centre. An Operations centre fully integrated with the GCI segment of the IMS network will ensure a more focused response to incidents and will maximize the availability of the IMS network. Existing trouble tickets systems are being merged to ensure the commission manages GCI incidents in the context of the IMS as a whole. A focus on a single source of data for GCI network performance has enabled reporting systems to be developed which allow for improved and automated reports. The contracted availability for each individual virtual circuit is 99.5% and this performance is regularly reviewed on a monthly basis
Stability effects of singularities in force-controlled robotic assist devices
NASA Astrophysics Data System (ADS)
Luecke, Greg R.
2002-02-01
Force feedback is being used as an interface between humans and material handling equipment to provide an intuitive method to control large and bulky payloads. Powered actuation in the lift assist device compensates for the inertial characteristics of the manipulator and the payload to provide effortless control and handling of manufacturing parts, components, and assemblies. The use of these Intelligent Assist Devices (IAD) is being explored to prevent worker injury, enhance material handling performance, and increase productivity in the workplace. The IAD also provides the capability to shape and control motion in the workspace during routine operations. Virtual barriers can be developed to protect fixed objects in the workspace, and regions can be programmed that attract the work piece to a certain position and orientation. However, the robot is still under complete control of the human operator, with the trajectory being determined and commanded using the judgment of the operator to complete a given task. In many cases, the IAD is built in a configuration that may have singular points inside the workspace. These singularities can cause problems when the unstructured trajectory commands from the human cause interaction between the IAD and the virtual walls and fixtures at positions close to these singularities. The research presented here explores the stability effects of the interactions between the powered manipulator and the virtual surfaces when controlled by the operator. Because of the flexible nature of the human decisions determining the real time work piece paths, manipulator singularities that occur in conjunction with the virtual surfaces raise stability issues in the performance around these singularities. We examine these stability issues in the context of a particular IAD configuration, and present analytic results for the performance and stability of these systems in response to the real-time trajectory modification of the human operator.
Feedback from video for virtual reality Navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V
2000-10-27
Important preconditions for wide acceptance of virtual reality (VR) systems include their comfort, ease and naturalness to use. Most existing trackers super from discomfort-related issues. For example, body-based trackers (hand controllers, joysticks, helmet attachments, etc.) restrict spontaneity and naturalness of motion, while ground-based devices (e.g., hand controllers) limit the workspace by literally binding an operator to the ground. There are similar problems with controls. This paper describes using real-time video with registered depth information (from a commercially available camera) for virtual reality navigation. Camera-based setup can replace cumbersome trackers. The method includes selective depth processing for increased speed, and amore » robust skin-color segmentation for accounting illumination variations.« less
Microelectronic bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.
1975-01-01
The possibility of using RF fields to power biologically implanted transmitters used in biomedical experiments was investigated. This approach would be especially useful when animal subjects are strapped in chairs or confined in cages. A telemetry system using an external source of energy has the additional advantage of not being limited in operation by battery lifetime and can therefore operate for virtually infinite lengths of time. A description of a system based on this principle is given. Progress in the development of battery-driven transmitters is also reported, including an ingestible temperature telemetry system and a resistance-to-pulse frequency convertor for implantable temperature telemetry systems.
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
1998-01-01
Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.
Virtual university applied to telesurgery: from teleeducation to telemanipulation.
Marescaux, J; Soler, L; Mutter, D; Leroy, J; Vix, M; Koehl, C; Clément, J M
2000-01-01
PROBLEM/BACKGROUND: In order to improve patient care by minimal invasive surgery (MIS), we perfected a Virtual TeleSurgical University that allows for teleeducation, teleconcertation, surgical planning and telemanipulation, through new Virtual Reality and multimedia systems. The organization of this innovative school was federated around three major research programs. First, the TESUS program focused on the teletransmission of medical information, allowing for videoconferencing around the world and telementoring. Next, the WeBS-Surg program is a multimedia continuous surgical education system on internet, that allows for teleeducation and teleconcertation between world experts in MIS. Then, the MASTER program (Minimal Access Surgery by Telecommunications and Robotics) allowed the development of the third millenium Operating room. It included Virtual Reality systems that delineate automatically anatomical and pathological structures of a patients from him CT-scan, and that allow for an interactive surgical planning and force-feed-back simulation. It also included a telesurgical robot named Zeus controlled by surgeons through telemanipulation system. Tests and validation shows that all these systems improved all steps of the surgical procedure: preoperatively due to a better continuous education and a computer assisted surgical planning, and peroperatively due to teleconcertation, telementoring and telemanipulation systems. Revolutionary tools for minimal invasive surgery learning, planning and performing are all ready available. These tools represents the first prototype of the computer assisted tele-robotical surgery that will be the future of surgery.
NASA Technical Reports Server (NTRS)
Knox, James C.; Stanley, Christine M.
2015-01-01
The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.
A collaborative virtual reality environment for neurosurgical planning and training.
Kockro, Ralf A; Stadie, Axel; Schwandt, Eike; Reisch, Robert; Charalampaki, Cleopatra; Ng, Ivan; Yeo, Tseng Tsai; Hwang, Peter; Serra, Luis; Perneczky, Axel
2007-11-01
We have developed a highly interactive virtual environment that enables collaborative examination of stereoscopic three-dimensional (3-D) medical imaging data for planning, discussing, or teaching neurosurgical approaches and strategies. The system consists of an interactive console with which the user manipulates 3-D data using hand-held and tracked devices within a 3-D virtual workspace and a stereoscopic projection system. The projection system displays the 3-D data on a large screen while the user is working with it. This setup allows users to interact intuitively with complex 3-D data while sharing this information with a larger audience. We have been using this system on a routine clinical basis and during neurosurgical training courses to collaboratively plan and discuss neurosurgical procedures with 3-D reconstructions of patient-specific magnetic resonance and computed tomographic imaging data or with a virtual model of the temporal bone. Working collaboratively with the 3-D information of a large, interactive, stereoscopic projection provides an unambiguous way to analyze and understand the anatomic spatial relationships of different surgical corridors. In our experience, the system creates a unique forum for open and precise discussion of neurosurgical approaches. We believe the system provides a highly effective way to work with 3-D data in a group, and it significantly enhances teaching of neurosurgical anatomy and operative strategies.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
An Experimental Seismic Data and Parameter Exchange System for Interim NEAMTWS
NASA Astrophysics Data System (ADS)
Hanka, W.; Hoffmann, T.; Weber, B.; Heinloo, A.; Hoffmann, M.; Müller-Wrana, T.; Saul, J.
2009-04-01
In 2008 GFZ Potsdam has started to operate its global earthquake monitoring system as an experimental seismic background data centre for the interim NEAMTWS (NE Atlantic and Mediterranean Tsunami Warning System). The SeisComP3 (SC3) software, developed within the GITEWS (German Indian Ocean Tsunami Early Warning System) project was extended to test the export and import of individual processing results within a cluster of SC3 systems. The initiated NEAMTWS SC3 cluster consists presently of the 24/7 seismic services at IMP, IGN, LDG/EMSC and KOERI, whereas INGV and NOA are still pending. The GFZ virtual real-time seismic network (GEOFON Extended Virtual Network - GEVN) was substantially extended by many stations from Western European countries optimizing the station distribution for NEAMTWS purposes. To amend the public seismic network (VEBSN - Virtual European Broadband Seismic Network) some attached centres provided additional private stations for NEAMTWS usage. In parallel to the data collection by Internet the GFZ VSAT hub for the secured data collection of the EuroMED GEOFON and NEAMTWS backbone network stations became operational and the first data links were established. In 2008 the experimental system could already prove its performance since a number of relevant earthquakes have happened in NEAMTWS area. The results are very promising in terms of speed as the automatic alerts (reliable solutions based on a minimum of 25 stations and disseminated by emails and SMS) were issued between 2 1/2 and 4 minutes for Greece and 5 minutes for Iceland. They are also promising in terms of accuracy since epicenter coordinates, depth and magnitude estimates were sufficiently accurate from the very beginning, usually don't differ substantially from the final solutions and provide a good starting point for the operations of the interim NEAMTWS. However, although an automatic seismic system is a good first step, 24/7 manned RTWCs are mandatory for regular manual verification of the automatic seismic results and the estimation of the tsunami potential for a given event.
Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P., E-mail: pasquale.arpaia@unina.it; Technology Department, European Organization for Nuclear Research; Girone, M., E-mail: mario.girone@cern.ch
2015-12-15
The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sourcesmore » most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.« less
Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki
2009-01-01
We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.
Virtual reality training and assessment in laparoscopic rectum surgery.
Pan, Jun J; Chang, Jian; Yang, Xiaosong; Liang, Hui; Zhang, Jian J; Qureshi, Tahseen; Howell, Robert; Hickish, Tamas
2015-06-01
Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. Copyright © 2014 John Wiley & Sons, Ltd.
A Data Management System for International Space Station Simulation Tools
NASA Technical Reports Server (NTRS)
Betts, Bradley J.; DelMundo, Rommel; Elcott, Sharif; McIntosh, Dawn; Niehaus, Brian; Papasin, Richard; Mah, Robert W.; Clancy, Daniel (Technical Monitor)
2002-01-01
Groups associated with the design, operational, and training aspects of the International Space Station make extensive use of modeling and simulation tools. Users of these tools often need to access and manipulate large quantities of data associated with the station, ranging from design documents to wiring diagrams. Retrieving and manipulating this data directly within the simulation and modeling environment can provide substantial benefit to users. An approach for providing these kinds of data management services, including a database schema and class structure, is presented. Implementation details are also provided as a data management system is integrated into the Intelligent Virtual Station, a modeling and simulation tool developed by the NASA Ames Smart Systems Research Laboratory. One use of the Intelligent Virtual Station is generating station-related training procedures in a virtual environment, The data management component allows users to quickly and easily retrieve information related to objects on the station, enhancing their ability to generate accurate procedures. Users can associate new information with objects and have that information stored in a database.
2014-02-01
long hours , shift work , relational conflict...reasons for an increase in medication. Such sleep problems were often explained in textual responses to be the result of long work hours , shift work ...to be operational in nature [1]. Specifically, long hours , shift work , organizational and leadership challenges, nature of work , additional
None
2018-02-13
NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.
Trista Patterson; David Nicholls; Jonathan Long
2015-01-01
The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
Virtual reality for the treatment of autism.
Strickland, D
1997-01-01
Autism is a mental disorder which has received attention in several unrelated studies using virtual reality. One of the first attempts was to diagnose children with special needs at Tokyo University using a sandbox playing technique. Although operating the computer controls proved to be too difficult for the individuals with autism in the Tokyo study, research at the University of Nottingham, UK, is successful in using VR as a learning aid for children with a variety of disorders including autism. Both centers used flat screen computer systems with virtual scenes. Another study which concentrated on using VR as a learning aid with an immersive headset system is described in detail in this chapter. Perhaps because of the seriousness of the disorder and the lack of effective treatments, autism has received more study than attention deficit disorders, although both would appear to benefit from many of the same technology features.
Temporally coherent 4D video segmentation for teleconferencing
NASA Astrophysics Data System (ADS)
Ehmann, Jana; Guleryuz, Onur G.
2013-09-01
We develop an algorithm for 4-D (RGB+Depth) video segmentation targeting immersive teleconferencing ap- plications on emerging mobile devices. Our algorithm extracts users from their environments and places them onto virtual backgrounds similar to green-screening. The virtual backgrounds increase immersion and interac- tivity, relieving the users of the system from distractions caused by disparate environments. Commodity depth sensors, while providing useful information for segmentation, result in noisy depth maps with a large number of missing depth values. By combining depth and RGB information, our work signi¯cantly improves the other- wise very coarse segmentation. Further imposing temporal coherence yields compositions where the foregrounds seamlessly blend with the virtual backgrounds with minimal °icker and other artifacts. We achieve said improve- ments by correcting the missing information in depth maps before fast RGB-based segmentation, which operates in conjunction with temporal coherence. Simulation results indicate the e±cacy of the proposed system in video conferencing scenarios.
Augmentation of Cognition and Perception Through Advanced Synthetic Vision Technology
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Arthur, Jarvis J.; Williams, Steve P.; McNabb, Jennifer
2005-01-01
Synthetic Vision System technology augments reality and creates a virtual visual meteorological condition that extends a pilot's cognitive and perceptual capabilities during flight operations when outside visibility is restricted. The paper describes the NASA Synthetic Vision System for commercial aviation with an emphasis on how the technology achieves Augmented Cognition objectives.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
A virtual environment for modeling and testing sensemaking with multisensor information
NASA Astrophysics Data System (ADS)
Nicholson, Denise; Bartlett, Kathleen; Hoppenfeld, Robert; Nolan, Margaret; Schatz, Sae
2014-05-01
Given today's challenging Irregular Warfare, members of small infantry units must be able to function as highly sensitized perceivers throughout large operational areas. Improved Situation Awareness (SA) in rapidly changing fields of operation may also save lives of law enforcement personnel and first responders. Critical competencies for these individuals include sociocultural sensemaking, the ability to assess a situation through the perception of essential salient environmental and behavioral cues, and intuitive sensemaking, which allows experts to act with the utmost agility. Intuitive sensemaking and intuitive decision making (IDM), which involve processing information at a subconscious level, have been cited as playing a critical role in saving lives and enabling mission success. This paper discusses the development of a virtual environment for modeling, analysis and human-in-the-loop testing of perception, sensemaking, intuitive sensemaking, decision making (DM), and IDM performance, using state-of-the-art scene simulation and modeled imagery from multi-source systems, under the "Intuition and Implicit Learning" Basic Research Challenge (I2BRC) sponsored by the Office of Naval Research (ONR). We present results from our human systems engineering approach including 1) development of requirements and test metrics for individual and integrated system components, 2) the system architecture design 3) images of the prototype virtual environment testing system and 4) a discussion of the system's current and future testing capabilities. In particular, we examine an Enhanced Interaction Suite testbed to model, test, and analyze the impact of advances in sensor spatial, and temporal resolution to a user's intuitive sensemaking and decision making capabilities.
Migrating EO/IR sensors to cloud-based infrastructure as service architectures
NASA Astrophysics Data System (ADS)
Berglie, Stephen T.; Webster, Steven; May, Christopher M.
2014-06-01
The Night Vision Image Generator (NVIG), a product of US Army RDECOM CERDEC NVESD, is a visualization tool used widely throughout Army simulation environments to provide fully attributed synthesized, full motion video using physics-based sensor and environmental effects. The NVIG relies heavily on contemporary hardware-based acceleration and GPU processing techniques, which push the envelope of both enterprise and commodity-level hypervisor support for providing virtual machines with direct access to hardware resources. The NVIG has successfully been integrated into fully virtual environments where system architectures leverage cloudbased technologies to various extents in order to streamline infrastructure and service management. This paper details the challenges presented to engineers seeking to migrate GPU-bound processes, such as the NVIG, to virtual machines and, ultimately, Cloud-Based IAS architectures. In addition, it presents the path that led to success for the NVIG. A brief overview of Cloud-Based infrastructure management tool sets is provided, and several virtual desktop solutions are outlined. A discrimination is made between general purpose virtual desktop technologies compared to technologies that expose GPU-specific capabilities, including direct rendering and hard ware-based video encoding. Candidate hypervisor/virtual machine configurations that nominally satisfy the virtualized hardware-level GPU requirements of the NVIG are presented , and each is subsequently reviewed in light of its implications on higher-level Cloud management techniques. Implementation details are included from the hardware level, through the operating system, to the 3D graphics APls required by the NVIG and similar GPU-bound tools.
Flying Cassini with Virtual Operations Teams
NASA Technical Reports Server (NTRS)
Dodd, Suzanne; Gustavson, Robert
1998-01-01
The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.
Clinical applications of virtual navigation bronchial intervention.
Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko
2018-01-01
In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments are helpful for bronchial intervention procedures, and are also excellent devices for educational training.
NASA Technical Reports Server (NTRS)
Stoker, Carol
1994-01-01
This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.
Kundhal, Pavi S; Grantcharov, Teodor P
2009-03-01
This study was conducted to validate the role of virtual reality computer simulation as an objective method for assessing laparoscopic technical skills. The authors aimed to investigate whether performance in the operating room, assessed using a modified Objective Structured Assessment of Technical Skill (OSATS), correlated with the performance parameters registered by a virtual reality laparoscopic trainer (LapSim). The study enrolled 10 surgical residents (3 females) with a median of 5.5 years (range, 2-6 years) since graduation who had similar limited experience in laparoscopic surgery (median, 5; range, 1-16 laparoscopic cholecystectomies). All the participants performed three repetitions of seven basic skills tasks on the LapSim laparoscopic trainer and one laparoscopic cholecystectomy in the operating room. The operating room procedure was video recorded and blindly assessed by two independent observers using a modified OSATS rating scale. Assessment in the operating room was based on three parameters: time used, error score, and economy of motion score. During the tasks on the LapSim, time, error (tissue damage and millimeters of tissue damage [tasks 2-6], error score [incomplete target areas, badly placed clips, and dropped clips [task 7]), and economy of movement parameters (path length and angular path) were registered. The correlation between time, economy, and error parameters during the simulated tasks and the operating room procedure was statistically assessed using Spearman's test. Significant correlations were demonstrated between the time used to complete the operating room procedure and time used for task 7 (r (s) = 0.74; p = 0.015). The error score demonstrated during the laparoscopic cholecystectomy correlated well with the tissue damage in three of the seven tasks (p < 0.05), the millimeters of tissue damage during two of the tasks, and the error score in task 7 (r (s) = 0.67; p = 0.034). Furthermore, statistically significant correlations were observed between the economy of motion score from the operative procedure and LapSim's economy parameters (path length and angular path in six of the tasks) (p < 0.05). The current study demonstrated significant correlations between operative performance in the operating room (assessed using a well-validated rating scale) and psychomotor performance in virtual environment assessed by a computer simulator. This provides strong evidence for the validity of the simulator system as an objective tool for assessing laparoscopic skills. Virtual reality simulation can be used in practice to assess technical skills relevant for minimally invasive surgery.
Internet-Based Solutions for a Secure and Efficient Seismic Network
NASA Astrophysics Data System (ADS)
Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.
2017-12-01
The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations. Noise monitoring is effective at identifying anthropogenic noise sources and malfunctioning acquisition equipment. We have built a dynamic display of results with sorting and mapping capabilities that allow us to quickly identify problematic sites and areas with elevated noise.
Smith, Vincent S.; Rycroft, Simon D.; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David
2011-01-01
Abstract The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project’s operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article. PMID:22207806
Smith, Vincent S; Rycroft, Simon D; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David
2011-01-01
The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project's operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article.
Optical augmented reality assisted navigation system for neurosurgery teaching and planning
NASA Astrophysics Data System (ADS)
Wu, Hui-Qun; Geng, Xing-Yun; Wang, Li; Zhang, Yuan-Peng; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng
2013-07-01
This paper proposed a convenient navigation system for neurosurgeon's pre-operative planning and teaching with augmented reality (AR) technique, which maps the three-dimensional reconstructed virtual anatomy structures onto a skull model. This system included two parts, a virtual reality system and a skull model scence. In our experiment, a 73 year old right-handed man initially diagnosed with astrocytoma was selected as an example to vertify our system. His imaging data from different modalities were registered and the skull soft tissue, brain and inside vessels as well as tumor were reconstructed. Then the reconstructed models were overlayed on the real scence. Our findings showed that the reconstructed tissues were augmented into the real scence and the registration results were in good alignment. The reconstructed brain tissue was well distributed in the skull cavity. The probe was used by a neurosurgeon to explore the surgical pathway which could be directly posed into the tumor while not injuring important vessels. In this way, the learning cost for students and patients' education about surgical risks reduced. Therefore, this system could be a selective protocol for image guided surgery(IGS), and is promising for neurosurgeon's pre-operative planning and teaching.
Virtual Instrument Simulator for CERES
NASA Technical Reports Server (NTRS)
Chapman, John J.
1997-01-01
A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive simulation system capable of high fidelity.
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
Wang, You-Yuan; Fan, Song; Zhang, Han-Qing; Lin, Zhao-Yu; Ye, Jian-Tao; Li, Jin-Song
2016-06-01
Reconstruction of maxillary and midfacial defects due to tumor ablation is challenging to conventional operation. The purposes of this study are to evaluate the precise 3-dimensional position of the fibular flap in reconstruction of maxillary defects assisted by virtual surgical planning and to assess the postoperative outcomes compared with conventional surgery. We retrospectively reviewed 18 consecutive patients who underwent maxillary reconstruction with a vascularized fibular flap assisted by virtual surgical planning after maxillary or midfacial tumor ablation. Conventional surgery was performed in another 15 patients. Proplan CMF surgical planning (Materialise, Leuven, Belgium) was performed preoperatively in the virtual planning group. Fibular flaps were harvested and underwent osteotomy assisted by prefabricated cutting guides, and the maxilla and midface were resected and reconstructed assisted by the prefabricated cutting guides and templates in the virtual planning group. The operative time and fibular flap positions were evaluated in the 2 groups. Postoperative fibular positions of the maxillary reconstruction were compared with virtual plans in the virtual planning group. The postoperative facial appearance and occlusal function were assessed. The operations were performed successfully without complications. The ischemia time and total operative time were shorter in the virtual planning group than those in the conventional surgery group (P < .05). High precision of the cutting guides and templates was found on both the fibula and maxilla in the virtual planning group. The positions of the fibular flaps, including the vertical and horizontal positions, were more accurate in the virtual planning group than those in the conventional surgery group (P < .05). Bone-to-bone contact between the maxilla and fibular segments was more precise in the virtual planning group (P < .05). Postoperative computed tomography scans showed excellent contour of the fibular flap segments in accordance with the virtual plans in the virtual planning group. All patients were alive with no evidence of disease. Functional mandibular range of motion, good occlusion, and an ideal facial appearance were observed in the virtual planning group. Virtual surgical planning appears to achieve precise maxillary reconstruction with a vascularized fibular flap after tumor ablation, as well as an ideal facial appearance and function after dental rehabilitation. The use of prefabricated cutting guides and plates eases fibular flap molding and placement, minimizes operating time, and improves clinical outcomes. Copyright © 2016 The American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Meola, Marc; Stormont, Sam
This guide discusses the essentials of live virtual reference, preparing for virtual reference, and implementing and incorporating virtual reference. Chapter 1, "Understanding Live Virtual Reference," lays out what virtual reference is and how it compares to other forms of reference. Chapter 2, "Offering Live Virtual Reference," presents ten…
NASA Astrophysics Data System (ADS)
Katchasuwanmanee, Kanet; Cheng, Kai; Bateman, Richard
2016-09-01
As energy efficiency is one of the key essentials towards sustainability, the development of an energy-resource efficient manufacturing system is among the great challenges facing the current industry. Meanwhile, the availability of advanced technological innovation has created more complex manufacturing systems that involve a large variety of processes and machines serving different functions. To extend the limited knowledge on energy-efficient scheduling, the research presented in this paper attempts to model the production schedule at an operation process by considering the balance of energy consumption reduction in production, production work flow (productivity) and quality. An innovative systematic approach to manufacturing energy-resource efficiency is proposed with the virtual simulation as a predictive modelling enabler, which provides real-time manufacturing monitoring, virtual displays and decision-makings and consequentially an analytical and multidimensional correlation analysis on interdependent relationships among energy consumption, work flow and quality errors. The regression analysis results demonstrate positive relationships between the work flow and quality errors and the work flow and energy consumption. When production scheduling is controlled through optimization of work flow, quality errors and overall energy consumption, the energy-resource efficiency can be achieved in the production. Together, this proposed multidimensional modelling and analysis approach provides optimal conditions for the production scheduling at the manufacturing system by taking account of production quality, energy consumption and resource efficiency, which can lead to the key competitive advantages and sustainability of the system operations in the industry.
Study on digital teeth selection and virtual teeth arrangement for complete denture.
Yu, Xiaoling; Cheng, Xiaosheng; Dai, Ning; Chen, Hu; Yu, Changjiang; Sun, Yuchun
2018-03-01
In dentistry, the complete denture is a conventional treatment for edentulous patients. The computer-aided design and computer-aided manufacturing (CAD/CAM) has been applied on the digital complete denture which is developed rapidly. Tooth selection and arrangement is one of the most important parts in digital complete denture. In this paper, we propose a new method of personalized teeth arrangement. This paper presents a method of arranging teeth virtually for a complete denture. First, scan and extract the feature points of the 3D triangular mesh data of artificial teeth (PLY format), then establish a tooth selection system. Second, scan and mark the anatomic characteristics of the maxillary and mandibular cast surfaces, such as facial midline, the curve of the arches. With the enter information, the study calculates the common arrangement lines of artificial teeth. Third, select the preferred artificial teeth and automatically arrange them virtually in the correct position by using our own software. After that, design the gingival part of the dentures on the basic of the arranged teeth on the screen and then fabricated it by using Computerized Numerical Control (CNC) technology, Rapid Prototyping (RP) technology or 3D printer technology. Finally, select artificial teeth were embedded in wax rims. This system can choose artificial teeth reasonably and the teeth placement can meet the dentist's request to a certain extent, whereas all the operations are based on the medical principles. The study performed here involves computer sciences, medicine, and dentistry, a teeth selection system was proposed and virtual teeth arrangement was described. This study has the capacity of helping operators to select teeth, which improved the accuracy of tooth arrangement, and customized complete denture. Copyright © 2017 Elsevier B.V. All rights reserved.
Technical aspects of virtual liver resection planning.
Glombitza, G; Lamadé, W; Demiris, A M; Göpfert, M R; Mayer, A; Bahner, M L; Meinzer, H P; Richter, G; Lehnert, T; Herfarth, C
1998-01-01
Operability of a liver tumor is depending on its three dimensional relation to the intrahepatic vascular trees which define autonomously functioning liver (sub-)segments. Precise operation planning is complicated by anatomic variability, distortion of the vascular trees by the tumor or preceding liver resections. Because of the missing possibility to track the deformation of the liver during the operation an integration of the resection planning system into an intra-operative navigation system is not feasible. So the main task of an operation planning system in this domain is a quantifiable patient selection by exact prediction of post-operative liver function and a quantifiable resection proposal. The system quantifies the organ structures and resection volumes by means of absolute and relative values. It defines resection planes depending on security margins and the vascular trees and presents the data in visualized form as a 3D movie. The new 3D operation planning system offers quantifiable liver resection proposals based on individualized liver anatomy. The results are visualized in digital movies as well as in quantitative reports.
Reconfigurable virtual electrowetting channels.
Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian
2012-02-21
Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.
Security model for VM in cloud
NASA Astrophysics Data System (ADS)
Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.
2013-03-01
Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.
Development of a teledermatopathology consultation system using virtual slides
2012-01-01
Background An online consultation system using virtual slides (whole slide images; WSI) has been developed for pathological diagnosis, and could help compensate for the shortage of pathologists, especially in the field of dermatopathology and in other fields dealing with difficult cases. This study focused on the performance and future potential of the system. Method In our system, histological specimens on slide glasses are digitalized by a virtual slide instrument, converted into web data, and up-loaded to an open server. Using our own purpose-built online system, we then input patient details such as age, gender, affected region, clinical data, past history and other related items. We next select up to ten consultants. Finally we send an e-mail to all consultants simultaneously through a single command. The consultant receives an e-mail containing an ID and password which is used to access the open server and inspect the images and other data associated with the case. The consultant makes a diagnosis, which is sent to us along with comments. Because this was a pilot study, we also conducted several questionnaires with consultants concerning the quality of images, operability, usability, and other issues. Results We solicited consultations for 36 cases, including cases of tumor, and involving one to eight consultants in the field of dermatopathology. No problems were noted concerning the images or the functioning of the system on the sender or receiver sides. The quickest diagnosis was received only 18 minutes after sending our data. This is much faster than in conventional consultation using glass slides. There were no major problems relating to the diagnosis, although there were some minor differences of opinion between consultants. The results of questionnaires answered by many consultants confirmed the usability of this system for pathological consultation. (16 out of 23 consultants.) Conclusion We have developed a novel teledermatopathological consultation system using virtual slides, and investigated the usefulness of the system. The results demonstrate that our system can be a useful tool for international medical work, and we anticipate its wider application in the future. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1902376044831574 PMID:23237667
Object Orientated Simulation on Transputer Arrays Using Time Warp
1989-12-01
Transputer based Machines, Grenoble, Sept 14-16 1987, Ed. Traian Muntean. [ 3 ] Muntean T., "PARX operating system kernal; application to Minix ", Esprit P1085...Simulation 3 Time Warp Simulation 8 3.1 Rollback Mechanism ........ ............................. 8 3.2 Simulation Outp,,t...23 4.3.* Importan Noc .......... ............................ 23 5 Low Level Operations 24 • 3 IIiI 5.1 Global Virtual Timne Estimiation
Mental rotation - A key to mitigation of motion sickness in the virtual environments?
NASA Technical Reports Server (NTRS)
Parker, Donald E.; Harm, Deborah L.
1992-01-01
If mental rotation is important for the reduction of motion sickness and complement performance in virtual environments (VEs), the use of the Howard (1982) mental rotation test battery may identify individuals with lower susceptibility to VE-induced motion sickness and therefore a greater probability of success as VE operators. An apparatus and its associated procedures are currently under development for astronaut microgravity training aimed at reducing motion sickness; it is hypothesized that this system may be of significance to VE testing and training.
NASA Technical Reports Server (NTRS)
2004-01-01
In 1984, researchers from Ames Research Center came together to develop advanced human interfaces for NASA s teleoperations that would come to be known as "virtual reality." The basis of the work theorized that if the sensory interfaces met a certain threshold and sufficiently supported each other, then the operator would feel present in the remote/synthetic environment, rather than present in their physical location. Twenty years later, this prolific research continues to pay dividends to society in the form of cutting-edge virtual reality products, such as an interactive audio simulation system.
Application of computer-generated models using low-bandwidth vehicle data
NASA Astrophysics Data System (ADS)
Heyes, Neil J.
2002-05-01
One of the main issues with remote teleoperation of vehicles is that during visual operation, one relies on fixed camera positions that ultimately constrain the operator's view of the real world. The paper describes a solution that has been developed at QinetiQ where the operator his given a unique virtual perspective of the vehicle and the surrounding terrain as the vehicle operates. This system helps to solve problems that are generic to remote systems, such as reduction of high data transmission rates and providing 360 degree(s) three dimensional operator view positions regardless of terrain features, light levels and near real time operation. A summary of technologies is listed that could be applied to different types of vehicles and placed in many different situations in order to enhance operator spatial awareness.
Online Operation Guidance of Computer System Used in Real-Time Distance Education Environment
ERIC Educational Resources Information Center
He, Aiguo
2011-01-01
Computer system is useful for improving real time and interactive distance education activities. Especially in the case that a large number of students participate in one distance lecture together and every student uses their own computer to share teaching materials or control discussions over the virtual classrooms. The problem is that within…
Virtual Display Design and Evaluation of Clothing: A Design Process Support System
ERIC Educational Resources Information Center
Zhang, Xue-Fang; Huang, Ren-Qun
2014-01-01
This paper proposes a new computer-aided educational system for clothing visual merchandising and display. It aims to provide an operating environment that supports the various stages of display design in a user-friendly and intuitive manner. First, this paper provides a brief introduction to current software applications in the field of…
ERIC Educational Resources Information Center
Executive Educator, 1994
1994-01-01
This issue of "The Electronic School" features a special forum on computer networking. Articles specifically focus on network operating systems, cabling requirements, and network architecture. Tom Wall argues that virtual reality is not yet ready for classroom use. B.J. Novitsky profiles two high schools experimenting with CD-ROM…
Isotani, Shuji; Shimoyama, Hirofumi; Yokota, Isao; China, Toshiyuki; Hisasue, Shin-ichi; Ide, Hisamitsu; Muto, Satoru; Yamaguchi, Raizo; Ukimura, Osamu; Horie, Shigeo
2015-05-01
To evaluate the feasibility and accuracy of virtual partial nephrectomy analysis, including a color-coded three-dimensional virtual surgical planning and a quantitative functional analysis, in predicting the surgical outcomes of robot-assisted partial nephrectomy. Between 2012 and 2014, 20 patients underwent virtual partial nephrectomy analysis before undergoing robot-assisted partial nephrectomy. Virtual partial nephrectomy analysis was carried out with the following steps: (i) evaluation of the arterial branch for selective clamping by showing the vascular-supplied area; (ii) simulation of the optimal surgical margin in precise segmented three-dimensional model for prediction of collecting system opening; and (iii) detailed volumetric analyses and estimates of postoperative renal function based on volumetric change. At operation, the surgeon identified the targeted artery and determined the surgical margin according to the virtual partial nephrectomy analysis. The surgical outcomes between the virtual partial nephrectomy analysis and the actual robot-assisted partial nephrectomy were compared. All 20 patients had negative cancer surgical margins and no urological complications. The tumor-specific renal arterial supply areas were shown in color-coded three-dimensional model visualization in all cases. The prediction value of collecting system opening was 85.7% for sensitivity and 100% for specificity. The predicted renal resection volume was significantly correlated with actual resected specimen volume (r(2) = 0.745, P < 0.001). The predicted estimated glomerular filtration rate was significantly correlated with actual postoperative estimated glomerular filtration rate (r(2) = 0.736, P < 0.001). Virtual partial nephrectomy analysis is able to provide the identification of tumor-specific renal arterial supply, prediction of collecting system opening and prediction of postoperative renal function. This technique might allow urologists to compare various arterial clamping methods and resection margins with surgical outcomes in a non-invasive manner. © 2015 The Japanese Urological Association.
Takalo, Jouni; Piironen, Arto; Honkanen, Anna; Lempeä, Mikko; Aikio, Mika; Tuukkanen, Tuomas; Vähäsöyrinki, Mikko
2012-01-01
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system's performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.
Virtual tape measure for the operating microscope: system specifications and performance evaluation.
Kim, M Y; Drake, J M; Milgram, P
2000-01-01
The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by relying on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy. Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM. Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy. The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces. Copyright 2000 Wiley-Liss, Inc.
A low-cost multimodal head-mounted display system for neuroendoscopic surgery.
Xu, Xinghua; Zheng, Yi; Yao, Shujing; Sun, Guochen; Xu, Bainan; Chen, Xiaolei
2018-01-01
With rapid advances in technology, wearable devices as head-mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low-cost multimodal HMD system in neuroendoscopic surgery. A multimodal HMD system, mainly consisted of a HMD with two built-in displays, an action camera, and a laptop computer displaying reconstructed medical images, was developed to assist neuroendoscopic surgery. With this intensively integrated system, the neurosurgeon could freely switch between endoscopic image, three-dimensional (3D) reconstructed virtual endoscopy images, and surrounding environment images. Using a leap motion controller, the neurosurgeon could adjust or rotate the 3D virtual endoscopic images at a distance to better understand the positional relation between lesions and normal tissues at will. A total of 21 consecutive patients with ventricular system diseases underwent neuroendoscopic surgery with the aid of this system. All operations were accomplished successfully, and no system-related complications occurred. The HMD was comfortable to wear and easy to operate. Screen resolution of the HMD was high enough for the neurosurgeon to operate carefully. With the system, the neurosurgeon might get a better comprehension on lesions by freely switching among images of different modalities. The system had a steep learning curve, which meant a quick increment of skill with it. Compared with commercially available surgical assistant instruments, this system was relatively low-cost. The multimodal HMD system is feasible, practical, helpful, and relatively cost efficient in neuroendoscopic surgery.
Assessment of the Impacts of ACLS on the ISS Life Support System Using Dynamic Simulations in V-HAB
NASA Technical Reports Server (NTRS)
Putz, Daniel; Olthoff, Claas; Ewert, Michael; Anderson, Molly
2016-01-01
The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is the Virtual Habitat (V-HAB). Based on MATLAB, V-HAB has been under development at the Institute of Astronautics of the Technical University of Munich (TUM) since 2004 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large, ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside individual modules of the ISS by splitting it into twelve distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS Simulation and several different operating modes for both ACLS and the existing ISS life support systems are studied and the impacts of ACLS on the rest of the system are determined. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to a achieve a very low CO2 concentration in the cabin atmosphere.
Assessment of the Impacts of ACLS on the ISS Life Support System using Dynamic Simulations in V-HAB
NASA Technical Reports Server (NTRS)
Puetz, Daniel; Olthoff, Claas; Ewert, Michael K.; Anderson, Molly S.
2016-01-01
The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is Virtual Habitat (V-HAB). Based on Matlab (Registered Trademark) V-HAB has been under development at the Institute of Astronautics of the Technical University Munich (TUM) since 2006 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside the individual modules of the ISS by splitting it into ten distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS simulation and different operating modes for both ACLS and the existing ISS life support systems are studied to determine the impacts of ACLS on the rest of the system. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to achieve the highest possible CO2 recycling together with a low CO2 concentration.
Development of a precision multimodal surgical navigation system for lung robotic segmentectomy
Soldea, Valentin; Lachkar, Samy; Rinieri, Philippe; Sarsam, Mathieu; Bottet, Benjamin; Peillon, Christophe
2018-01-01
Minimally invasive sublobar anatomical resection is becoming more and more popular to manage early lung lesions. Robotic-assisted thoracic surgery (RATS) is unique in comparison with other minimally invasive techniques. Indeed, RATS is able to better integrate multiple streams of information including advanced imaging techniques, in an immersive experience at the level of the robotic console. Our aim was to describe three-dimensional (3D) imaging throughout the surgical procedure from preoperative planning to intraoperative assistance and complementary investigations such as radial endobronchial ultrasound (R-EBUS) and virtual bronchoscopy for pleural dye marking. All cases were operated using the DaVinci SystemTM. Modelisation was provided by Visible Patient™ (Strasbourg, France). Image integration in the operative field was achieved using the Tile Pro multi display input of the DaVinci console. Our experience was based on 114 robotic segmentectomies performed between January 2012 and October 2017. The clinical value of 3D imaging integration was evaluated in 2014 in a pilot study. Progressively, we have reached the conclusion that the use of such an anatomic model improves the safety and reliability of procedures. The multimodal system including 3D imaging has been used in more than 40 patients so far and demonstrated a perfect operative anatomic accuracy. Currently, we are developing an original virtual reality experience by exploring 3D imaging models at the robotic console level. The act of operating is being transformed and the surgeon now oversees a complex system that improves decision making. PMID:29785294
Development of a precision multimodal surgical navigation system for lung robotic segmentectomy.
Baste, Jean Marc; Soldea, Valentin; Lachkar, Samy; Rinieri, Philippe; Sarsam, Mathieu; Bottet, Benjamin; Peillon, Christophe
2018-04-01
Minimally invasive sublobar anatomical resection is becoming more and more popular to manage early lung lesions. Robotic-assisted thoracic surgery (RATS) is unique in comparison with other minimally invasive techniques. Indeed, RATS is able to better integrate multiple streams of information including advanced imaging techniques, in an immersive experience at the level of the robotic console. Our aim was to describe three-dimensional (3D) imaging throughout the surgical procedure from preoperative planning to intraoperative assistance and complementary investigations such as radial endobronchial ultrasound (R-EBUS) and virtual bronchoscopy for pleural dye marking. All cases were operated using the DaVinci System TM . Modelisation was provided by Visible Patient™ (Strasbourg, France). Image integration in the operative field was achieved using the Tile Pro multi display input of the DaVinci console. Our experience was based on 114 robotic segmentectomies performed between January 2012 and October 2017. The clinical value of 3D imaging integration was evaluated in 2014 in a pilot study. Progressively, we have reached the conclusion that the use of such an anatomic model improves the safety and reliability of procedures. The multimodal system including 3D imaging has been used in more than 40 patients so far and demonstrated a perfect operative anatomic accuracy. Currently, we are developing an original virtual reality experience by exploring 3D imaging models at the robotic console level. The act of operating is being transformed and the surgeon now oversees a complex system that improves decision making.
Wang, Y Y; Zhang, H Q; Fan, S; Zhang, D M; Huang, Z Q; Chen, W L; Ye, J T; Li, J S
2016-11-01
This study evaluated the accuracy of mandibular reconstruction and assessed clinical outcomes in both virtual planning and conventional surgery patients. ProPlan CMF surgical planning software was used preoperatively in the virtual planning group. In the virtual planning group, fibula flaps were harvested and osteotomized, and the mandibles were resected and reconstructed assisted by the prefabricated cutting guides and templates. The main outcome measures included the operative time, postoperative computed tomography (CT) scans, facial appearance, and occlusal function. The ischemia time and total operation time were shorter in the virtual planning group than in the conventional surgery group. High precision with the use of the cutting guides and templates was found for both the fibula and mandible, and a good fit was noted among the pre-bent plate, mandible, and fibula segments in the virtual planning group. Postoperative CT scans also showed excellent mandibular contours of the fibula flaps in accordance with virtual plans in the virtual planning group. This study demonstrated that virtual surgical planning was able to achieve more accurate mandibular reconstruction than conventional surgery. The use of prefabricated cutting guides and plates makes fibula flap moulding and placement easier, minimizes the operating time, and improves clinical outcomes. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Real-time 3D visualization of volumetric video motion sensor data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.; Stansfield, S.; Shawver, D.
1996-11-01
This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to bemore » immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.« less
Developing Collective Training for Small Unmanned Aerial Systems Employment
NASA Technical Reports Server (NTRS)
Durlach, Paula J.; Priest, Heather; Martin, Glenn A.; Saffold, Jay
2010-01-01
The projected use of small unmanned aerial systems (SUAS) in military operations will produce training requirements which go beyond current capabilities. The paper describes the development of prototype training procedures and accompanying research simulations to address this need. We initially constructed a testbed to develop simulation-based training for an SUAS operator equipped with a simulated vertical-lift and land SUAS. However, the required training will go beyond merely training an operator how to pilot an SUAS. In addition to tactics, techniques, and procedures for employment of SUASs, collective training methods must be trained. Moreover, the leader of a unit equipped with SUAS will need to learn how to plan missions which incorporate the SUAS, and take into account air space and frequency management considerations. The demands of the task require the leader to allocate personnel to the SUAS mission, communicate and coordinate with those personnel during the mission, and make use of the information provided. To help address these training issues, we expanded our research testbed to include a command and control node (C2 node), to enable communications between a leader and the SUAS operator. In addition, we added a virtual environment in which dismounted infantry missions can be conducted. This virtual environment provides the opportunity for interactions among human-controlled avatars and non-player characters (NPCs), plus authoring tools to construct scenarios. Using these NPCs, a collective exercise involving friendly, enemy, and civilian personnel can be conducted without the need for a human role-player for every entity. We will describe the results of our first experiment, which examined the ability of players to negotiate use of the C2 node and the virtual environment at the same time, in order to see if this is a feasible combination of tools for training development.
A methodology toward manufacturing grid-based virtual enterprise operation platform
NASA Astrophysics Data System (ADS)
Tan, Wenan; Xu, Yicheng; Xu, Wei; Xu, Lida; Zhao, Xianhua; Wang, Li; Fu, Liuliu
2010-08-01
Virtual enterprises (VEs) have become one of main types of organisations in the manufacturing sector through which the consortium companies organise their manufacturing activities. To be competitive, a VE relies on the complementary core competences among members through resource sharing and agile manufacturing capacity. Manufacturing grid (M-Grid) is a platform in which the production resources can be shared. In this article, an M-Grid-based VE operation platform (MGVEOP) is presented as it enables the sharing of production resources among geographically distributed enterprises. The performance management system of the MGVEOP is based on the balanced scorecard and has the capacity of self-learning. The study shows that a MGVEOP can make a semi-automated process possible for a VE, and the proposed MGVEOP is efficient and agile.
An e-consent-based shared EHR system architecture for integrated healthcare networks.
Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold
2007-01-01
Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.
Oral and maxillofacial surgery with computer-assisted navigation system.
Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko
2010-01-01
Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.
Virtual reality in rhinology-a new dimension of clinical experience.
Klapan, Ivica; Raos, Pero; Galeta, Tomislav; Kubat, Goranka
2016-07-01
There is often a need to more precisely identify the extent of pathology and the fine elements of intracranial anatomic features during the diagnostic process and during many operations in the nose, sinus, orbit, and skull base region. In two case reports, we describe the methods used in the diagnostic workup and surgical therapy in the nose and paranasal sinus region. Besides baseline x-ray, multislice computed tomography, and magnetic resonance imaging, operative field imaging was performed via a rapid prototyping model, virtual endoscopy, and 3-D imaging. Different head tissues were visualized in different colors, showing their anatomic interrelations and the extent of pathologic tissue within the operative field. This approach has not yet been used as a standard preoperative or intraoperative procedure in otorhinolaryngology. In this way, we tried to understand the new, visualized "world of anatomic relations within the patient's head" by creating an impression of perception (virtual perception) of the given position of all elements in a particular anatomic region of the head, which does not exist in the real world (virtual world). This approach was aimed at upgrading the diagnostic workup and surgical therapy by ensuring a faster, safer and, above all, simpler operative procedure. In conclusion, any ENT specialist can provide virtual reality support in implementing surgical procedures, with additional control of risks and within the limits of normal tissue, without additional trauma to the surrounding tissue in the anatomic region. At the same time, the virtual reality support provides an impression of the virtual world as the specialist navigates through it and manipulates virtual objects.
Basak, Muzaffer; Ozkurt, Huseyin; Tanriverdi, Orhan; Cay, Esra; Aydin, Mustafa; Miroglu, Cengiz
2009-01-01
The purpose of this study was to evaluate the use of virtual cystoscopy performed with multidetector computed tomography (CT) in patients with suspected bladder tumors and histories of bladder carcinoma operation. Thirty-six patients (29 men and 7 women) with a mean age of 66 years (range, 24-88 years) with suspected bladder tumors and histories of bladder carcinoma operation were included in this prospective study. Virtual cystoscopy was performed by 16-slice multidetector CT scanner. The bladder was filled with diluted contrast material solution through a Foley catheter. Then, all patients underwent conventional cystoscopy examination. Two reviewers found 18 lesions detected by virtual cystoscopy by consensus, whereas 19 lesions were depicted by conventional cystoscopy. At virtual and conventional cystoscopies, the conditions of 3 patients, 2 with chronic inflammations and 1 with foreign body reaction, were wrongly diagnosed as tumors. At conventional cystoscopy, one patient's result was wrongly interpreted as normal. In pathologic evaluation, all tumors were diagnosed as transitional cell carcinoma. Bladder tumor can be noninvasively diagnosed using virtual cystoscopy. Use of virtual cystoscopy should be considered inpatients who present with hematuria or have histories of bladder carcinoma operation and are for follow-up because of its lesser complication risk and its being a less invasive, easily applied procedure without need of anesthesia. In the future, owing to the development of the CT technology and image processing technique, virtual cystoscopy may have a part in the detection of bladder cancer.
Three-dimensional surgical simulation.
Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2010-09-01
In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
VIPER: Virtual Intelligent Planetary Exploration Rover
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard
2001-01-01
Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.
Virtual targeting in three-dimensional space with sound and light interference
NASA Astrophysics Data System (ADS)
Chua, Florence B.; DeMarco, Robert M.; Bergen, Michael T.; Short, Kenneth R.; Servatius, Richard J.
2006-05-01
Law enforcement and the military are critically concerned with the targeting and firing accuracy of opponents. Stimuli which impede opponent targeting and firing accuracy can be incorporated into defense systems. An automated virtual firing range was developed to assess human targeting accuracy under conditions of sound and light interference, while avoiding dangers associated with live fire. This system has the ability to quantify sound and light interference effects on targeting and firing accuracy in three dimensions. This was achieved by development of a hardware and software system that presents the subject with a sound or light target, preceded by a sound or light interference. SonyXplod. TM 4-way speakers present sound interference and sound targeting. The Martin ® MiniMAC TM Profile operates as a source of light interference, while a red laser light serves as a target. A tracking system was created to monitor toy gun movement and firing in three-dimensional space. Data are collected via the Ascension ® Flock of Birds TM tracking system and a custom National Instrument ® LabVIEW TM 7.0 program to monitor gun movement and firing. A test protocol examined system parameters. Results confirm that the system enables tracking of virtual shots from a fired simulation gun to determine shot accuracy and location in three dimensions.
Virtualized Multi-Mission Operations Center (vMMOC) and its Cloud Services
NASA Technical Reports Server (NTRS)
Ido, Haisam Kassim
2017-01-01
His presentation will cover, the current and future, technical and organizational opportunities and challenges with virtualizing a multi-mission operations center. The full deployment of Goddard Space Flight Centers (GSFC) Virtualized Multi-Mission Operations Center (vMMOC) is nearly complete. The Space Science Mission Operations (SSMO) organizations spacecraft ACE, Fermi, LRO, MMS(4), OSIRIS-REx, SDO, SOHO, Swift, and Wind are in the process of being fully migrated to the vMMOC. The benefits of the vMMOC will be the normalization and the standardization of IT services, mission operations, maintenance, and development as well as ancillary services and policies such as collaboration tools, change management systems, and IT Security. The vMMOC will also provide operational efficiencies regarding hardware, IT domain expertise, training, maintenance and support.The presentation will also cover SSMO's secure Situational Awareness Dashboard in an integrated, fleet centric, cloud based web services fashion. Additionally the SSMO Telemetry as a Service (TaaS) will be covered, which allows authorized users and processes to access telemetry for the entire SSMO fleet, and for the entirety of each spacecrafts history. Both services leverage cloud services in a secure FISMA High and FedRamp environment, and also leverage distributed object stores in order to house and provide the telemetry. The services are also in the process of leveraging the cloud computing services elasticity and horizontal scalability. In the design phase is the Navigation as a Service (NaaS) which will provide a standardized, efficient, and normalized service for the fleet's space flight dynamics operations. Additional future services that may be considered are Ground Segment as a Service (GSaaS), Telemetry and Command as a Service (TCaaS), Flight Software Simulation as a Service, etc.
ERIC Educational Resources Information Center
DeCarlo, Jeffrey
2010-01-01
Air travel is expected to grow by a factor of 2 to 3 times by 2025 and people working in the aviation system, including airport personnel, pilots, and air traffic controllers, must be able to safely and efficiently operate in this arena ("NextGen"). In response to the personnel training and education requirements concomitant with "NextGen,"…
Immersive virtual reality used as a platform for perioperative training for surgical residents.
Witzke, D B; Hoskins, J D; Mastrangelo, M J; Witzke, W O; Chu, U B; Pande, S; Park, A E
2001-01-01
Perioperative preparations such as operating room setup, patient and equipment positioning, and operating port placement are essential to operative success in minimally invasive surgery. We developed an immersive virtual reality-based training system (REMIS) to provide residents (and other health professionals) with training and evaluation in these perioperative skills. Our program uses the qualities of immersive VR that are available today for inclusion in an ongoing training curriculum for surgical residents. The current application consists of a primary platform for patient positioning for a laparoscopic cholecystectomy. Having completed this module we can create many different simulated problems for other procedures. As a part of the simulation, we have devised a computer-driven real-time data collection system to help us in evaluating trainees and providing feedback during the simulation. The REMIS program trains and evaluates surgical residents and obviates the need to use expensive operating room and surgeon time. It also allows residents to train based on their schedule and does not put patients at increased risk. The method is standardized, allows for repetition if needed, evaluates individual performance, provides the possible complications of incorrect choices, provides training in 3-D environment, and has the capability of being used for various scenarios and professions.
Two-stage collaborative global optimization design model of the CHPG microgrid
NASA Astrophysics Data System (ADS)
Liao, Qingfen; Xu, Yeyan; Tang, Fei; Peng, Sicheng; Yang, Zheng
2017-06-01
With the continuous developing of technology and reducing of investment costs, renewable energy proportion in the power grid is becoming higher and higher because of the clean and environmental characteristics, which may need more larger-capacity energy storage devices, increasing the cost. A two-stage collaborative global optimization design model of the combined-heat-power-and-gas (abbreviated as CHPG) microgrid is proposed in this paper, to minimize the cost by using virtual storage without extending the existing storage system. P2G technology is used as virtual multi-energy storage in CHPG, which can coordinate the operation of electric energy network and natural gas network at the same time. Demand response is also one kind of good virtual storage, including economic guide for the DGs and heat pumps in demand side and priority scheduling of controllable loads. Two kinds of storage will coordinate to smooth the high-frequency fluctuations and low-frequency fluctuations of renewable energy respectively, and achieve a lower-cost operation scheme simultaneously. Finally, the feasibility and superiority of proposed design model is proved in a simulation of a CHPG microgrid.
Operator vision aids for space teleoperation assembly and servicing
NASA Technical Reports Server (NTRS)
Brooks, Thurston L.; Ince, Ilhan; Lee, Greg
1992-01-01
This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.
Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.
Choque-Velasquez, Joham; Colasanti, Roberto; Collan, Juhani; Kinnunen, Riina; Rezai Jahromi, Behnam; Hernesniemi, Juha
2018-04-01
Microsurgical skills and eye-hand coordination need continuous training to be developed and refined. However, well-equipped microsurgical laboratories are not so widespread as their setup is expensive. Herein, we present a novel microsurgical training system that requires a high-resolution personal computer screen, smartphones, and virtual reality glasses. A smartphone placed on a holder at a height of about 15-20 cm from the surgical target field is used as the webcam of the computer. A specific software is used to duplicate the video camera image. The video may be transferred from the computer to another smartphone, which may be connected to virtual reality glasses. Using the previously described training model, we progressively performed more and more complex microsurgical exercises. It did not take long to set up our system, thus saving time for the training sessions. Our proposed training model may represent an affordable and efficient system to improve eye-hand coordination and dexterity in using not only the operating microscope but also endoscopes and exoscopes. Copyright © 2018 Elsevier Inc. All rights reserved.
Java bioinformatics analysis web services for multiple sequence alignment--JABAWS:MSA.
Troshin, Peter V; Procter, James B; Barton, Geoffrey J
2011-07-15
JABAWS is a web services framework that simplifies the deployment of web services for bioinformatics. JABAWS:MSA provides services for five multiple sequence alignment (MSA) methods (Probcons, T-coffee, Muscle, Mafft and ClustalW), and is the system employed by the Jalview multiple sequence analysis workbench since version 2.6. A fully functional, easy to set up server is provided as a Virtual Appliance (VA), which can be run on most operating systems that support a virtualization environment such as VMware or Oracle VirtualBox. JABAWS is also distributed as a Web Application aRchive (WAR) and can be configured to run on a single computer and/or a cluster managed by Grid Engine, LSF or other queuing systems that support DRMAA. JABAWS:MSA provides clients full access to each application's parameters, allows administrators to specify named parameter preset combinations and execution limits for each application through simple configuration files. The JABAWS command-line client allows integration of JABAWS services into conventional scripts. JABAWS is made freely available under the Apache 2 license and can be obtained from: http://www.compbio.dundee.ac.uk/jabaws.
NASA Technical Reports Server (NTRS)
Murphy, James R.; Otto, Neil M.
2017-01-01
NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The project's integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.
NASA Technical Reports Server (NTRS)
Murphy, Jim; Otto, Neil
2017-01-01
NASA's Unmanned Aircraft Systems Integration in the National Airspace System Project is conducting human in the loop simulations and flight testing intended to reduce barriers associated with enabling routine airspace access for unmanned aircraft. The primary focus of these tests is interaction of the unmanned aircraft pilot with the display of detect and avoid alerting and guidance information. The projects integrated test and evaluation team was charged with developing the test infrastructure. As with any development effort, compromises in the underlying system architecture and design were made to allow for the rapid prototyping and open-ended nature of the research. In order to accommodate these design choices, a distributed test environment was developed incorporating Live, Virtual, Constructive, (LVC) concepts. The LVC components form the core infrastructure support simulation of UAS operations by integrating live and virtual aircraft in a realistic air traffic environment. This LVC infrastructure enables efficient testing by leveraging the use of existing assets distributed across multiple NASA Centers. Using standard LVC concepts enable future integration with existing simulation infrastructure.
Intelligent Virtual Station (IVS)
NASA Technical Reports Server (NTRS)
2002-01-01
The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.
Zhu, Ming; Chai, Gang; Lin, Li; Xin, Yu; Tan, Andy; Bogari, Melia; Zhang, Yan; Li, Qingfeng
2016-12-01
Augmented reality (AR) technology can superimpose the virtual image generated by computer onto the real operating field to present an integral image to enhance surgical safety. The purpose of our study is to develop a novel AR-based navigation system for craniofacial surgery. We focus on orbital hypertelorism correction, because the surgery requires high preciseness and is considered tough even for senior craniofacial surgeon. Twelve patients with orbital hypertelorism were selected. The preoperative computed tomography data were imported into 3-dimensional platform for preoperational design. The position and orientation of virtual information and real world were adjusted by image registration process. The AR toolkits were used to realize the integral image. Afterward, computed tomography was also performed after operation for comparing the difference between preoperational plan and actual operational outcome. Our AR-based navigation system was successfully used in these patients, directly displaying 3-dimensional navigational information onto the surgical field. They all achieved a better appearance by the guidance of navigation image. The difference in interdacryon distance and the dacryon point of each side appear no significant (P > 0.05) between preoperational plan and actual surgical outcome. This study reports on an effective visualized approach for guiding orbital hypertelorism correction. Our AR-based navigation system may lay a foundation for craniofacial surgery navigation. The AR technology could be considered as a helpful tool for precise osteotomy in craniofacial surgery.
A study of factors affecting the adoption of server virtualization technology
NASA Astrophysics Data System (ADS)
Lu, Hsin-Ke; Lin, Peng-Chun; Chiang, Chang-Heng; Cho, Chien-An
2018-04-01
It has become a trend that worldwide enterprises and organizations apply new technologies to improve their operations; besides, it has higher cost and less flexibility to construct and manage traditional servers, therefore the current mainstream is to use server virtualization technology. However, from these new technology organizations will not necessarily get the expected benefits because each one has its own level of organizational complexity and abilities to accept changes. The researcher investigated key factors affecting the adoption of virtualization technology through two phases. In phase I, the researcher reviewed literature and then applied the dimensions of "Information Systems Success Model" (ISSM) to generalize the factors affecting the adoption of virtualization technology to be the preliminary theoretical framework and develop a questionnaire; in phase II, a three-round Delphi Method was used to integrate the opinions of experts from related fields which were then gradually converged in order to obtain a stable and objective questionnaire of key factors so that these results were expected to provide references for organizations' adoption of server virtualization technology and future studies.
Economic analysis of cloud-based desktop virtualization implementation at a hospital
2012-01-01
Background Cloud-based desktop virtualization infrastructure (VDI) is known as providing simplified management of application and desktop, efficient management of physical resources, and rapid service deployment, as well as connection to the computer environment at anytime, anywhere with anydevice. However, the economic validity of investing in the adoption of the system at a hospital has not been established. Methods This study computed the actual investment cost of the hospital-wide VDI implementation at the 910-bed Seoul National University Bundang Hospital in Korea and the resulting effects (i.e., reductions in PC errors and difficulties, application and operating system update time, and account management time). Return on investment (ROI), net present value (NPV), and internal rate of return (IRR) indexes used for corporate investment decision-making were used for the economic analysis of VDI implementation. Results The results of five-year cost-benefit analysis given for 400 Virtual Machines (VMs; i.e., 1,100 users in the case of SNUBH) showed that the break-even point was reached in the fourth year of the investment. At that point, the ROI was 122.6%, the NPV was approximately US$192,000, and the IRR showed an investment validity of 10.8%. From our sensitivity analysis to changing the number of VMs (in terms of number of users), the greater the number of adopted VMs was the more investable the system was. Conclusions This study confirms that the emerging VDI can have an economic impact on hospital information system (HIS) operation and utilization in a tertiary hospital setting. PMID:23110661
Economic analysis of cloud-based desktop virtualization implementation at a hospital.
Yoo, Sooyoung; Kim, Seok; Kim, Taeki; Baek, Rong-Min; Suh, Chang Suk; Chung, Chin Youb; Hwang, Hee
2012-10-30
Cloud-based desktop virtualization infrastructure (VDI) is known as providing simplified management of application and desktop, efficient management of physical resources, and rapid service deployment, as well as connection to the computer environment at anytime, anywhere with any device. However, the economic validity of investing in the adoption of the system at a hospital has not been established. This study computed the actual investment cost of the hospital-wide VDI implementation at the 910-bed Seoul National University Bundang Hospital in Korea and the resulting effects (i.e., reductions in PC errors and difficulties, application and operating system update time, and account management time). Return on investment (ROI), net present value (NPV), and internal rate of return (IRR) indexes used for corporate investment decision-making were used for the economic analysis of VDI implementation. The results of five-year cost-benefit analysis given for 400 Virtual Machines (VMs; i.e., 1,100 users in the case of SNUBH) showed that the break-even point was reached in the fourth year of the investment. At that point, the ROI was 122.6%, the NPV was approximately US$192,000, and the IRR showed an investment validity of 10.8%. From our sensitivity analysis to changing the number of VMs (in terms of number of users), the greater the number of adopted VMs was the more investable the system was. This study confirms that the emerging VDI can have an economic impact on hospital information system (HIS) operation and utilization in a tertiary hospital setting.
To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing
Zgonnikov, Arkady; Lubashevsky, Ihor; Kanemoto, Shigeru; Miyazawa, Toru; Suzuki, Takashi
2014-01-01
Understanding how humans control unstable systems is central to many research problems, with applications ranging from quiet standing to aircraft landing. Increasingly, much evidence appears in favour of event-driven control hypothesis: human operators only start actively controlling the system when the discrepancy between the current and desired system states becomes large enough. The event-driven models based on the concept of threshold can explain many features of the experimentally observed dynamics. However, much still remains unclear about the dynamics of human-controlled systems, which likely indicates that humans use more intricate control mechanisms. This paper argues that control activation in humans may be not threshold-driven, but instead intrinsically stochastic, noise-driven. Specifically, we suggest that control activation stems from stochastic interplay between the operator's need to keep the controlled system near the goal state, on the one hand, and the tendency to postpone interrupting the system dynamics, on the other hand. We propose a model capturing this interplay and show that it matches the experimental data on human balancing of virtual overdamped stick. Our results illuminate that the noise-driven activation mechanism plays a crucial role at least in the considered task, and, hypothetically, in a broad range of human-controlled processes. PMID:25056217
Sniffing Out Efficacy: Sniffy Lite, a Virtual Animal Lab
ERIC Educational Resources Information Center
Venneman, Sandy S.; Knowles, Laura, Ruth
2005-01-01
We investigated the benefits of using a virtual laboratory, Sniffy Lite CD-ROM (Alloway, Wilson, Graham, & Krames, 2000), as a supplemental teaching tool to present schedules of reinforcement in operant conditioning. Our results suggest that using the virtual laboratory significantly enhanced understanding. Students who used the virtual laboratory…
ViNEL: A Virtual Networking Lab for Cyber Defense Education
ERIC Educational Resources Information Center
Reinicke, Bryan; Baker, Elizabeth; Toothman, Callie
2018-01-01
Professors teaching cyber security classes often face challenges when developing workshops for their students: How does one quickly and efficiently configure and deploy an operating system for a temporary learning/testing environment? Faculty teaching these classes spend countless hours installing, configuring and deploying multiple system…
Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars
2017-04-01
To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Teng, William; Rui, Hualan; Strub, Richard; Vollmer, Bruce
2015-01-01
A Digital Divide has long stood between how NASA and other satellite-derived data are typically archived (time-step arrays or maps) and how hydrology and other point-time series oriented communities prefer to access those data. In essence, the desired method of data access is orthogonal to the way the data are archived. Our approach to bridging the Divide is part of a larger NASA-supported data rods project to enhance access to and use of NASA and other data by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS) and the larger hydrology community. Our main objective was to determine a way to reorganize data that is optimal for these communities. Two related objectives were to optimally reorganize data in a way that (1) is operational and fits in and leverages the existing Goddard Earth Sciences Data and Information Services Center (GES DISC) operational environment and (2) addresses the scaling up of data sets available as time series from those archived at the GES DISC to potentially include those from other Earth Observing System Data and Information System (EOSDIS) data archives. Through several prototype efforts and lessons learned, we arrived at a non-database solution that satisfied our objectivesconstraints. We describe, in this presentation, how we implemented the operational production of pre-generated data rods and, considering the tradeoffs between length of time series (or number of time steps), resources needed, and performance, how we implemented the operational production of on-the-fly (virtual) data rods. For the virtual data rods, we leveraged a number of existing resources, including the NASA Giovanni Cache and NetCDF Operators (NCO) and used data cubes processed in parallel. Our current benchmark performance for virtual generation of data rods is about a years worth of time series for hourly data (9,000 time steps) in 90 seconds. Our approach is a specific implementation of the general optimal strategy of reorganizing data to match the desired means of access. Results from our project have already significantly extended NASA data to the large and important hydrology user community that has been, heretofore, mostly unable to easily access and use NASA data.
NASA Astrophysics Data System (ADS)
Teng, W. L.; Rui, H.; Strub, R. F.; Vollmer, B.
2015-12-01
A "Digital Divide" has long stood between how NASA and other satellite-derived data are typically archived (time-step arrays or "maps") and how hydrology and other point-time series oriented communities prefer to access those data. In essence, the desired method of data access is orthogonal to the way the data are archived. Our approach to bridging the Divide is part of a larger NASA-supported "data rods" project to enhance access to and use of NASA and other data by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS) and the larger hydrology community. Our main objective was to determine a way to reorganize data that is optimal for these communities. Two related objectives were to optimally reorganize data in a way that (1) is operational and fits in and leverages the existing Goddard Earth Sciences Data and Information Services Center (GES DISC) operational environment and (2) addresses the scaling up of data sets available as time series from those archived at the GES DISC to potentially include those from other Earth Observing System Data and Information System (EOSDIS) data archives. Through several prototype efforts and lessons learned, we arrived at a non-database solution that satisfied our objectives/constraints. We describe, in this presentation, how we implemented the operational production of pre-generated data rods and, considering the tradeoffs between length of time series (or number of time steps), resources needed, and performance, how we implemented the operational production of on-the-fly ("virtual") data rods. For the virtual data rods, we leveraged a number of existing resources, including the NASA Giovanni Cache and NetCDF Operators (NCO) and used data cubes processed in parallel. Our current benchmark performance for virtual generation of data rods is about a year's worth of time series for hourly data (~9,000 time steps) in ~90 seconds. Our approach is a specific implementation of the general optimal strategy of reorganizing data to match the desired means of access. Results from our project have already significantly extended NASA data to the large and important hydrology user community that has been, heretofore, mostly unable to easily access and use NASA data.
Monocular Stereo Measurement Using High-Speed Catadioptric Tracking
Hu, Shaopeng; Matsumoto, Yuji; Takaki, Takeshi; Ishii, Idaku
2017-01-01
This paper presents a novel concept of real-time catadioptric stereo tracking using a single ultrafast mirror-drive pan-tilt active vision system that can simultaneously switch between hundreds of different views in a second. By accelerating video-shooting, computation, and actuation at the millisecond-granularity level for time-division multithreaded processing in ultrafast gaze control, the active vision system can function virtually as two or more tracking cameras with different views. It enables a single active vision system to act as virtual left and right pan-tilt cameras that can simultaneously shoot a pair of stereo images for the same object to be observed at arbitrary viewpoints by switching the direction of the mirrors of the active vision system frame by frame. We developed a monocular galvano-mirror-based stereo tracking system that can switch between 500 different views in a second, and it functions as a catadioptric active stereo with left and right pan-tilt tracking cameras that can virtually capture 8-bit color 512×512 images each operating at 250 fps to mechanically track a fast-moving object with a sufficient parallax for accurate 3D measurement. Several tracking experiments for moving objects in 3D space are described to demonstrate the performance of our monocular stereo tracking system. PMID:28792483
Towards a Global Service Registry for the World-Wide LHC Computing Grid
NASA Astrophysics Data System (ADS)
Field, Laurence; Alandes Pradillo, Maria; Di Girolamo, Alessandro
2014-06-01
The World-Wide LHC Computing Grid encompasses a set of heterogeneous information systems; from central portals such as the Open Science Grid's Information Management System and the Grid Operations Centre Database, to the WLCG information system, where the information sources are the Grid services themselves. Providing a consistent view of the information, which involves synchronising all these informations systems, is a challenging activity that has lead the LHC virtual organisations to create their own configuration databases. This experience, whereby each virtual organisation's configuration database interfaces with multiple information systems, has resulted in the duplication of effort, especially relating to the use of manual checks for the handling of inconsistencies. The Global Service Registry aims to address this issue by providing a centralised service that aggregates information from multiple information systems. It shows both information on registered resources (i.e. what should be there) and available resources (i.e. what is there). The main purpose is to simplify the synchronisation of the virtual organisation's own configuration databases, which are used for job submission and data management, through the provision of a single interface for obtaining all the information. By centralising the information, automated consistency and validation checks can be performed to improve the overall quality of information provided. Although internally the GLUE 2.0 information model is used for the purpose of integration, the Global Service Registry in not dependent on any particular information model for ingestion or dissemination. The intention is to allow the virtual organisation's configuration databases to be decoupled from the underlying information systems in a transparent way and hence simplify any possible future migration due to the evolution of those systems. This paper presents the Global Service Registry architecture, its advantages compared to the current situation and how it can support the evolution of information systems.
Using Virtualization to Integrate Weather, Climate, and Coastal Science Education
NASA Astrophysics Data System (ADS)
Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.
2012-12-01
To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a single ready-to-use package. Thus, the previous ornery task of setting up and compiling these tools becomes obsolete and the research, educator or student can focus on using the tools to study the interactions between weather, climate and the coastal environment. The incorporation of WRF into the CSEVA has been designed to be synergistic with the extensive online tutorials and biannual tutorials hosted by NCAR. Included are working examples of the idealized test simulations provided with WRF (2D sea breeze and squalls, a large eddy simulation, a Held and Suarez simulation, etc.) To demonstrate the integration of weather, coastal and coastal science education, example applications are being developed to demonstrate how the system can be used to couple a coastal and estuarine circulation, transport and storm surge model with downscale reanalysis weather and future climate predictions. Documentation, tutorials and the enhanced CSEVA itself will be found on the web at: http://cseva.coastal.ufl.edu.
Virtual reality simulators and training in laparoscopic surgery.
Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos
2015-01-01
Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Inertial Motion-Tracking Technology for Virtual 3-D
NASA Technical Reports Server (NTRS)
2005-01-01
In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.
Renal surgery in the new millennium.
Delvecchio, F C; Preminger, G M
2000-11-01
In the not too distant future, the minimally invasive renal surgeon will be able to practice an operation on a difficult case on a three-dimensional virtual reality simulator, providing all attributes of the real procedure. The patient's imaging studies will be imported into the simulator to better mimic particular anatomy. When confident enough of his or her skills, the surgeon will start operating on the patient using the same virtual reality simulator/telepresence surgery console system, which will permit the live surgery to be conducted by robots hundreds of miles away. The robots will manipulate miniature endoscopes or control minimally or noninvasive ablative technologies. Endoscopic/laparoscopic footage of the surgical procedure will be stored digitally in optical disks to be used later in telementoring of a surgery resident. All this and more will be possible in the not so distant third millennium.
Maintaining consistency in distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1991-01-01
In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.
Immersive Virtual Reality with Applications to Tele-Operation and Training
2016-03-07
to design accurate models for the control of a remote agent by retargeting human gestures (or body part movements) on the control structure of the...which is designed to co-operate with human inhabitants will need to posses, on some levels, a theory of mind [20]. This will enable the system to...University of Houston-Victoria, a designated Hispanic Serving Institution of higher education. The requested equipment and instrumentation will be
NASA Technical Reports Server (NTRS)
Soprano, C.
1993-01-01
CDMA (Code Division Multiple Access) is known to decrease inter-service interference in Satellite Communication Systems. Its performance is increased by chip quasi-synchronous operation which virtually eliminates the self-noise; however, the theory shows that the time error on the synchronization has to be kept at less than one tenth of a chip which, for 1 Mchip/sec. spreading rate, corresponds to 10(exp -7) sec. This, on the return-link, may only be achieved by means of a closed loop control system which, for mobile communication systems, has to be capable of autonomous operation. Until now some results have been reported on the feasibility of chip quasi-synchronous operation for mobile communication systems only including satellites on GEO (Geostationary Earth Orbit). In what follows, the basic principles are exposed, and results are presented showing how low chip synchronism error may be achieved by means of an autonomous control loop operating through satellites on any Earth orbit.
NASA Astrophysics Data System (ADS)
Shibuo, Yoshihiro; Ikoma, Eiji; Lawford, Peter; Oyanagi, Misa; Kanauchi, Shizu; Koudelova, Petra; Kitsuregawa, Masaru; Koike, Toshio
2014-05-01
While availability of hydrological- and hydrometeorological data shows growing tendency and advanced modeling techniques are emerging, such newly available data and advanced models may not always be applied in the field of decision-making. In this study we present an integrated system of ensemble streamflow forecast (ESP) and virtual dam simulator, which is designed to support river and dam manager's decision making. The system consists of three main functions: real time hydrological model, ESP model, and dam simulator model. In the real time model, the system simulates current condition of river basins, such as soil moisture and river discharges, using LSM coupled distributed hydrological model. The ESP model takes initial condition from the real time model's output and generates ESP, based on numerical weather prediction. The dam simulator model provides virtual dam operation and users can experience impact of dam control on remaining reservoir volume and downstream flood under the anticipated flood forecast. Thus the river and dam managers shall be able to evaluate benefit of priori dam release and flood risk reduction at the same time, on real time basis. Furthermore the system has been developed under the concept of data and models integration, and it is coupled with Data Integration and Analysis System (DIAS) - a Japanese national project for integrating and analyzing massive amount of observational and model data. Therefore it has advantage in direct use of miscellaneous data from point/radar-derived observation, numerical weather prediction output, to satellite imagery stored in data archive. Output of the system is accessible over the web interface, making information available with relative ease, e.g. from ordinary PC to mobile devices. We have been applying the system to the Upper Tone region, located northwest from Tokyo metropolitan area, and we show application example of the system in recent flood events caused by typhoons.
Gyro and Accelerometer Based Navigation System for a Mobile Autonomous Robot.
1985-12-02
special thanks goes to our thesis advisor Dr. Matthew Kabrisky for having the confidence to turn us loose on this project. Additionally, we would...Wordmaster Word Processor 1 Wordstar Word Processor 1 Virtual Devices Robo A 6802 Cross Assembler 1 Modem 720 Communication Program 1 CP/M Operating
A 3D visualization and simulation of the individual human jaw.
Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo
2003-01-01
A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-12-12
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.
Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang
2017-01-01
Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868
Meyer, Adrian; Green, Laura; Faulk, Ciearro; Galla, Stephen; Meyer, Anne-Marie
2016-01-01
Introduction: Large amounts of health data generated by a wide range of health care applications across a variety of systems have the potential to offer valuable insight into populations and health care systems, but robust and secure computing and analytic systems are required to leverage this information. Framework: We discuss our experiences deploying a Secure Data Analysis Platform (SeDAP), and provide a framework to plan, build and deploy a virtual desktop infrastructure (VDI) to enable innovation, collaboration and operate within academic funding structures. It outlines 6 core components: Security, Ease of Access, Performance, Cost, Tools, and Training. Conclusion: A platform like SeDAP is not simply successful through technical excellence and performance. It’s adoption is dependent on a collaborative environment where researchers and users plan and evaluate the requirements of all aspects. PMID:27683665
Situation Awareness and Levels of Automation
NASA Technical Reports Server (NTRS)
Kaber, David B.
1999-01-01
During the first year of this project, a taxonomy of theoretical levels of automation (LOAs) was applied to the advanced commercial aircraft by categorizing actual modes of McDonald Douglas MD-11 autoflight system operation in terms of the taxonomy. As well, high LOAs included in the taxonomy (e.g., supervisory control) were modeled in the context of MD-11 autoflight systems through development of a virtual flight simulator. The flight simulator was an integration of a re-configurable simulator developed by the Georgia Institute Technology and new software prototypes of autoflight system modules found in the MD-11 cockpit. In addition to this work, a version of the Situation Awareness Global Assessment Technique (SAGAT) was developed for application to commercial piloting tasks. A software package was developed to deliver the SAGAT and was integrated with the virtual flight simulator.
NASA Astrophysics Data System (ADS)
Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua
2017-08-01
In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.
Du, Zhuo-Ying; Gao, Xiang; Zhang, Xiao-Luo; Wang, Zhi-Qiu; Tang, Wei-Jun
2010-09-01
In this paper the authors' goal was to evaluate the feasibility and efficacy of a virtual reality (VR) system in preoperative planning for microvascular decompression (MVD) procedures treating idiopathic trigeminal neuralgia and hemifacial spasm. The system's role in surgical simulation and training was also assessed. Between May 2008 and April 2009, the authors used the Dextroscope system to visualize the neurovascular complex and simulate MVD in the cerebellopontine angle in a VR environment in 16 patients (6 patients had trigeminal neuralgia and 10 had hemifacial spasm). Reconstructions were carried out 2-3 days before MVD. Images were printed in a red-blue stereoscopic format for teaching and discussion and were brought into the operating room to be compared with real-time intraoperative findings. The VR environment was a powerful aid for spatial understanding of the neurovascular relationship in MVD for operating surgeons and trainees. Through an initial series of comparison/confirmation experiences, the senior neurosurgeon became accustomed to the system. He could predict intraoperative problems and simulate surgical maneuvering, which increased his confidence in performing the procedure. The Dextroscope system is an easy and rapid method to create a stereoscopic neurovascular model for MVD that is highly concordant with intraoperative findings. It effectively shortens the learning curve and adds to the surgeon's confidence.
Physical Models and Virtual Reality Simulators in Otolaryngology.
Javia, Luv; Sardesai, Maya G
2017-10-01
The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Data Transport Subsystem - The SFOC glue
NASA Technical Reports Server (NTRS)
Parr, Stephen J.
1988-01-01
The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.
ART/Ada design project, phase 1: Project plan
NASA Technical Reports Server (NTRS)
Allen, Bradley P.
1988-01-01
The plan and schedule for Phase 1 of the Ada based ESBT Design Research Project is described. The main platform for the project is a DEC Ada compiler on VAX mini-computers and VAXstations running the Virtual Memory System (VMS) operating system. The Ada effort and lines of code are given in tabular form. A chart is given of the entire project life cycle.
Virtual Manufacturing (la Fabrication virtuelle)
1998-05-01
with moving parts and subassemblies, • verification of product subcomponents and systems operations through kinematics studies, and • realism ...dimensions, parts moved in mechanism based directions, and realism of interaction is increased through use of sound, touch and other parameters. For the...direct converters from CAD systems. A simple cinematic package is also high on the requirement to be able to simulate motions as well as an interface to
Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe
NASA Astrophysics Data System (ADS)
Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.
2016-06-01
GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
2002-01-01
The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.
NASA Astrophysics Data System (ADS)
Jaffer, Ghulam; Nader, Ronnie; Koudelka, Otto
2011-09-01
Students in higher education, and scientific and technological researchers want to communicate with the International Space Station (ISS), download live satellite images, and receive telemetry, housekeeping and science/engineering data from nano-satellites and larger spacecrafts. To meet this need the Ecuadorian Civilian Space Agency (EXA) has recently provided the civilian world with an internet-to-orbit gateway (Hermes-A/Minotaur) Space Flight Control Center (SFCC) available for public use. The gateway has a maximum range of tracking and detection of 22,000 km and sensitivity such that it can receive and discriminate the signals from a satellite transmitter with power˜0.1 W. The capability is enough to receive the faintest low-earth-orbit (LEO) satellites. This gateway virtually connects participating internet clients around the world to a remote satellite ground station (GS), providing a broad community for multinational cooperation. The goal of the GS is to lower financial and engineering barriers that hinder access to science and engineering data from orbit. The basic design of the virtual GS on a user side is based on free software suites. Using these and other software tools the GS is able to provide access to orbit for a multitude of users without each having to go through the costly setups. We present the design and implementation of the virtual GS in a higher education and scientific outreach settings. We also discuss the basic architecture of the single existing system and the benefits of a proposed distributed system. Details of the software tools and their applicability to synchronous round-the-world tracking, monitoring and processing performed by students and teams at Graz University of Technology, Austria, EXA-Ecuador, University of Michigan, USA and JAXA who have participated in various mission operations and have investigated real-time satellite data download and image acquisition and processing. Students and other remote users at these institutions undergo training with in orbit satellites in preparation for their own use with future university-class nano-satellites' post launch space operations. The exclusive ability of Hermes-A/Minotaur to act as a gateway between remote users (internet) and satellites (in orbit) makes the virtual GS at user-end more feasible for the long-term real-time nano/cubesats space operations. The only requirement is to have a mutual agreement between EXA and participating university/research organization and broadband internet connection at user-end. With successful and remote satellite tracking and downloading of real-time data from many operational satellites, the Hermes has been found a reliable potential GS for current and future university missions and a training platform for individuals pursuing space operations.
Bassil, Alfred; Rubod, Chrystèle; Borghesi, Yves; Kerbage, Yohan; Schreiber, Elie Servan; Azaïs, Henri; Garabedian, Charles
2017-04-01
Hysteroscopy is one of the most common gynaecological procedure. Training for diagnostic and operative hysteroscopy can be achieved through numerous previously described models like animal models or virtual reality simulation. We present our novel combined model associating virtual reality and bovine uteruses and bladders. End year residents in obstetrics and gynaecology attended a full day workshop. The workshop was divided in theoretical courses from senior surgeons and hands-on training in operative hysteroscopy and virtual reality Essure ® procedures using the EssureSim™ and Pelvicsim™ simulators with multiple scenarios. Theoretical and operative knowledge was evaluated before and after the workshop and General Points Averages (GPAs) were calculated and compared using a Student's T test. GPAs were significantly higher after the workshop was completed. The biggest difference was observed in operative knowledge (0,28 GPA before workshop versus 0,55 after workshop, p<0,05). All of the 25 residents having completed the workshop applauded the realism an efficiency of this type of training. The force feedback allowed by the cattle uteruses gives the residents the possibility to manage thickness of resection as in real time surgery. Furthermore, the two-horned bovine uteruses allowed to reproduce septa resection in conditions close to human surgery CONCLUSION: Teaching operative and diagnostic hysteroscopy is essential. Managing this training through a full day workshop using a combined animal model and virtual reality simulation is an efficient model not described before. Copyright © 2017 Elsevier B.V. All rights reserved.
[Image fusion, virtual reality, robotics and navigation. Effects on surgical practice].
Maresceaux, J; Soler, L; Ceulemans, R; Garcia, A; Henri, M; Dutson, E
2002-05-01
In the new minimally invasive surgical era, virtual reality, robotics, and image merging have become topics on their own, offering the potential to revolutionize current surgical treatment and assessment. Improved patient care in the digital age seems to be the primary impetus for continued efforts in the field of telesurgery. The progress in endoscopic surgery with regard to telesurgery is manifested by digitization of the pre-, intra-, and postoperative interaction with the patients' surgical disease via computer system integration: so-called Computer Assisted Surgery (CAS). The preoperative assessment can be improved by 3D organ reconstruction, as in virtual colonoscopy or cholangiography, and by planning and practicing surgery using virtual or simulated organs. When integrating all of the data recorded during this preoperative stage, an enhanced reality can be made possible to improve intra-operative patient interactions. CAS allows for increased three-dimensional accuracy, improved precision and the reproducibility of procedures. The ability to store the actions of the surgeon as digitized information also allows for universal, rapid distribution: i.e., the surgeon's activity can be transmitted to the other side of the operating room or to a remote site via high-speed communications links, as was recently demonstrated by our own team during the Lindbergh operation. Furthermore, the surgeon will be able to share his expertise and skill through teleconsultation and telemanipulation, bringing the patient closer to the expert surgical team through electronic means and opening the way to advanced and continuous surgical learning. Finally, for postoperative interaction, virtual reality and simulation can provide us with 4 dimensional images, time being the fourth dimension. This should allow physicians to have a better idea of the disease process in evolution, and treatment modifications based on this view can be anticipated. We are presently determining the accuracy and efficacy of 4 dimensional imaging compared to conventional evaluations.
Telementoring: use of augmented reality in orthopaedic education: AAOS exhibit selection.
Ponce, Brent A; Jennings, Jonathan K; Clay, Terry B; May, Mathew B; Huisingh, Carrie; Sheppard, Evan D
2014-05-21
Virtual interactive presence (VIP) is a new technology that allows an individual to deliver real-time virtual assistance to another geographically remote individual via a standard Internet connection. The objectives of this pilot study were to evaluate the efficiency and performance of a VIP system implemented in an operating room setting, determine the potential utility of the system for guidance of surgical procedures, and assess the safety of the system. Following institutional review board approval, fifteen patients underwent arthroscopic shoulder procedures. Two VIP stations were used, one in the operating room and the other in an adjoining dictation room. The attending surgeon proctored operating resident surgeons from the dictation room until his physical presence was required in the operating room. Following each procedure, the attending surgeon, resident surgeons, and three surgical staff members completed a Likert-scale questionnaire regarding the educational utility, efficiency of use, and safety of the system. The operative time was also compared with historical data. Both attending and resident surgeons assigned a favorable rating to the utility of the VIP to highlight anatomy and provide feedback to the resident (p > 0.05 for the difference). Both groups agreed that the system was easy to use and that safety was not compromised (p > 0.05). The majority of resident and attending surgeon responses indicated no perceptible lag between motions (95% and 100%, respectively; p > 0.99) and no interference of the VIP system with the surgical procedure (85% and 100%, respectively; p = 0.24). The mean operative times with and without VIP use did not differ significantly for rotator cuff repair (p = 0.90) or for treatment of instability (p = 0.57). This pilot study revealed that the VIP technology was efficient, safe, and effective as a teaching tool. The attending and resident surgeons agreed that training was enhanced, and this occurred without increasing operative times. Furthermore, the attending surgeon believed that this technology improved teaching effectiveness. These results are promising, and further objective quantification is warranted.
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George
2015-07-21
This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
Review of Enabling Technologies to Facilitate Secure Compute Customization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A; Hicks, Susan Elaine
High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data for a variety of users, often requiring strong separation between job allocations. There are many challenges to establishing these secure enclaves within the shared infrastructure of high-performance computing (HPC) environments. The isolation mechanisms in the system software are the basic building blocks for enabling secure compute enclaves. There are a variety of approaches and the focus of this report is to review the different virtualization technologies thatmore » facilitate the creation of secure compute enclaves. The report reviews current operating system (OS) protection mechanisms and modern virtualization technologies to better understand the performance/isolation properties. We also examine the feasibility of running ``virtualized'' computing resources as non-privileged users, and providing controlled administrative permissions for standard users running within a virtualized context. Our examination includes technologies such as Linux containers (LXC [32], Docker [15]) and full virtualization (KVM [26], Xen [5]). We categorize these different approaches to virtualization into two broad groups: OS-level virtualization and system-level virtualization. The OS-level virtualization uses containers to allow a single OS kernel to be partitioned to create Virtual Environments (VE), e.g., LXC. The resources within the host's kernel are only virtualized in the sense of separate namespaces. In contrast, system-level virtualization uses hypervisors to manage multiple OS kernels and virtualize the physical resources (hardware) to create Virtual Machines (VM), e.g., Xen, KVM. This terminology of VE and VM, detailed in Section 2, is used throughout the report to distinguish between the two different approaches to providing virtualized execution environments. As part of our technology review we analyzed several current virtualization solutions to assess their vulnerabilities. This included a review of common vulnerabilities and exposures (CVEs) for Xen, KVM, LXC and Docker to gauge their susceptibility to different attacks. The complete details are provided in Section 5 on page 33. Based on this review we concluded that system-level virtualization solutions have many more vulnerabilities than OS level virtualization solutions. As such, security mechanisms like sVirt (Section 3.3) should be considered when using system-level virtualization solutions in order to protect the host against exploits. The majority of vulnerabilities related to KVM, LXC, and Docker are in specific regions of the system. Therefore, future "zero day attacks" are likely to be in the same regions, which suggests that protecting these areas can simplify the protection of the host and maintain the isolation between users. The evaluations of virtualization technologies done thus far are discussed in Section 4. This includes experiments with 'user' namespaces in VEs, which provides the ability to isolate user privileges and allow a user to run with different UIDs within the container while mapping them to non-privileged UIDs in the host. We have identified Linux namespaces as a promising mechanism to isolate shared resources, while maintaining good performance. In Section 4.1 we describe our tests with LXC as a non-root user and leveraging namespaces to control UID/GID mappings and support controlled sharing of parallel file-systems. We highlight several of these namespace capabilities in Section 6.2.3. The other evaluations that were performed during this initial phase of work provide baseline performance data for comparing VEs and VMs to purely native execution. In Section 4.2 we performed tests using the High-Performance Computing Conjugate Gradient (HPCCG) benchmark to establish baseline performance for a scientific application when run on the Native (host) machine in contrast with execution under Docker and KVM. Our tests verified prior studies showing roughly 2-4% overheads in application execution time & MFlops when running in hypervisor-base environments (VMs) as compared to near native performance with VEs. For more details, see Figures 4.5 (page 28), 4.6 (page 28), and 4.7 (page 29). Additionally, in Section 4.3 we include network measurements for TCP bandwidth performance over the 10GigE interface in our testbed. The Native and Docker based tests achieved >= ~9Gbits/sec, while the KVM configuration only achieved 2.5Gbits/sec (Table 4.6 on page 32). This may be a configuration issue with our KVM installation, and is a point for further testing as we refine the network settings in the testbed. The initial network tests were done using a bridged networking configuration. The report outline is as follows: - Section 1 introduces the report and clarifies the scope of the proj...« less
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Virtual Reality Simulator Systems in Robotic Surgical Training.
Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo
2018-06-01
The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.
Electro-textile garments for power and data distribution
NASA Astrophysics Data System (ADS)
Slade, Jeremiah R.; Winterhalter, Carole
2015-05-01
U.S. troops are increasingly being equipped with various electronic assets including flexible displays, computers, and communications systems. While these systems can significantly enhance operational capabilities, forming reliable connections between them poses a number of challenges in terms of comfort, weight, ergonomics, and operational security. IST has addressed these challenges by developing the technologies needed to integrate large-scale cross-seam electrical functionality into virtually any textile product, including the various garments and vests that comprise the warfighter's ensemble. Using this technology IST is able to develop textile products that do not simply support or accommodate a network but are the network.
Tools Automate Spacecraft Testing, Operation
NASA Technical Reports Server (NTRS)
2010-01-01
"NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."
A miniature disposable radio (MiDR) for unattended ground sensor systems (UGSS) and munitions
NASA Astrophysics Data System (ADS)
Wells, Jeffrey S.; Wurth, Timothy J.
2004-09-01
Unattended and tactical sensors are used by the U.S. Army"s Future Combat Systems (FCS) and Objective Force Warrior (OFW) to detect and identify enemy targets on the battlefield. The radios being developed as part of the Networked Sensors for the Objective Force (NSOF) are too costly and too large to deploy in missions requiring throw-away hardware. A low-cost miniature radio is required to satisfy the communication needs for unmanned sensor and munitions systems that are deployed in a disposable manner. A low cost miniature disposable communications suite is leveraged using the commercial off-the-shelf market and employing a miniature universal frequency conversion architecture. Employing the technology of universal frequency architecture in a commercially available communication unit delivers a robust disposable transceiver that can operate at virtually any frequency. A low-cost RF communication radio has applicability in the commercial, homeland defense, military, and other government markets. Specific uses include perimeter monitoring, infrastructure defense, unattended ground sensors, tactical sensors, and border patrol. This paper describes a low-cost radio architecture to meet the requirements of throw-away radios that can be easily modified or tuned to virtually any operating frequency required for the specific mission.
A Low-cost System for Generating Near-realistic Virtual Actors
NASA Astrophysics Data System (ADS)
Afifi, Mahmoud; Hussain, Khaled F.; Ibrahim, Hosny M.; Omar, Nagwa M.
2015-06-01
Generating virtual actors is one of the most challenging fields in computer graphics. The reconstruction of a realistic virtual actor has been paid attention by the academic research and the film industry to generate human-like virtual actors. Many movies were acted by human-like virtual actors, where the audience cannot distinguish between real and virtual actors. The synthesis of realistic virtual actors is considered a complex process. Many techniques are used to generate a realistic virtual actor; however they usually require expensive hardware equipment. In this paper, a low-cost system that generates near-realistic virtual actors is presented. The facial features of the real actor are blended with a virtual head that is attached to the actor's body. Comparing with other techniques that generate virtual actors, the proposed system is considered a low-cost system that requires only one camera that records the scene without using any expensive hardware equipment. The results of our system show that the system generates good near-realistic virtual actors that can be used on many applications.
Ródenas, J; Zarza, I; Burgos, M C; Felipe, A; Sánchez-Mayoral, M L
2004-01-01
Operators in Nuclear Power Plants can receive high doses during refuelling operations. A training programme for simulating refuelling operations will be useful in reducing the doses received by workers as well as minimising operation time. With this goal in mind, a virtual reality application is developed within the framework of the CIPRES project. The application requires doses, both instantaneous and accumulated, to be displayed at all times during operator training. Therefore, it is necessary to set up a database containing dose rates at every point in the refuelling plant. This database is based on radiological protection surveillance data measured in the plant during refuelling operations. Some interpolation routines have been used to estimate doses through the refuelling plant. Different assumptions have been adopted in order to perform the interpolation and obtain consistent data. In this paper, the procedures developed to set up the dose database for the virtual reality application are presented and analysed.
NASA Astrophysics Data System (ADS)
Ferriere, D.; Rucinski, A.; Jankowski, T.
2007-04-01
Establishing a Virtual Sea Border by performing a real-time, satellite-accessible Internet-based bio-metric supported threat assessment of arriving foreign-flagged cargo ships, their management and ownership, their arrival terminal operator and owner, and rewarding proven legitimate operators with an economic incentive for their transparency will simultaneously improve port security and maritime transportation efficiencies.
Weapon system simulation in flight (WaSiF)
NASA Astrophysics Data System (ADS)
Bartoldus, Klaus H.
2005-05-01
The research and technology demonstration program was co-funded by the Ministries of Defence of five European countries under the framework of the "EUropean Cooperation for the Long term in Defence" (EUCLID) MoU to include Germany, Italy, The Netherlands, Portugal and Turkey with considerable financial contribution from the industrial entities. EADS Military Aircraft Munich has led a team of seven industries and research centers, including Aermacchi of Italy, DutchSpace and NLR of The Netherlands, OGMA and INETI of Portugal and Marmara Research Center of Turkey. The purpose of the project was the design, realization and demonstration of an embedded real time simulation system allowing the combat training of operational aircrew in a virtual air defence scenario and threat environment against computer generated forces in the air and on the ground while flying on a real aircraft. The simulated scenario is focused on air-to-air beyond visual range engagements of fighter aircraft. WaSiF represents one of the first demonstrations of an advanced embedded real time training system onboard a fighter/training aircraft. The system is integrated onboard the MB339CX aircraft. The overall flight test activity covered a wide variety of test conditions for a total of 21 test flights; the operational airborne time of the WaSiF amounted to nearly 18 hours. The demonstration and evaluation were quite positive; the five-nation aircrew was very fond of their first encounter with the virtual world in the military flight training. A common view and approach towards Network Centric Warfare is but emerging. WaSiF in a future networked configuration holds lots of promise to serve the needs of Integrated Air Defence: Common training in a virtual environment.
Perez, Jose A; Faust, Cheryl; Kenyon, Angie
2009-09-01
Education in systems-based practice is a required component of all postgraduate medical education programs in the United States. Competency in this area requires that trainees have an understanding of the health care system sufficient to provide optimal care to patients. Most trainees in residency programs have little understanding of the complexities and challenges of present-day practice in the current system of care and consider themselves unprepared to undertake this activity following completion of training. Training in practice management in residency programs has not been emphasized as an important component of systems-based practice. Historically, practice management training in residency programs has been done using a fully didactic model, and residents have expressed a desire to learn this skill by becoming more directly involved in the operations and management of a practice. The patient visit touches many aspects of the health care system, including clinic operations, insurance, quality, and finances. At our institution, we used the residents' continuity clinic practices as a vehicle to provide education in practice management and systems-based practice by creating a curriculum that included the residents' perceived gaps in knowledge regarding going into practice. This is known as the virtual practice. This curriculum is taught using data obtained from residents' practice to illustrate concepts in many areas, including primary practice operations, malpractice insurance, financial benchmarks, and career planning. Resident self-assessed knowledge of these areas increased after participating in the curriculum, and resident testimonials indicate satisfaction with the project. In addition, residents have become engaged and interested in how their effort translates into performance and how they participate in the health care system.
Survey of Command Execution Systems for NASA Spacecraft and Robots
NASA Technical Reports Server (NTRS)
Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich
2005-01-01
NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.
A telemedicine system for enabling teaching activities.
Masero, V; Sanchez, F M; Uson, J
2000-01-01
In order to improve the distance teaching of minimally invasive surgery techniques, an integrated system has been developed. It comprises a telecommunications system, a server, a workstation, some medical peripherals and several computer applications developed in the Minimally Invasive Surgery Centre. The latest peripherals, such as robotized teleoperating systems for telesurgery and virtual reality peripherals, have been added. The visualization of the zone to be treated, along with the teacher's explanations, enables the student to understand the procedures of the operation much better.
Intranets: virtual procedure manuals for the pathology lab.
Ruby, S G; Krempel, G
1998-08-01
A novel system exists for replacing standard written operation manuals using a computerized PC-based peer-to-peer network. The system design is based on commonly available hardware and software and utilizes existing equipment to minimize implementation expense. The system is relatively easy to implement and maintain, involves minimal training, and should quickly become a financial asset. In addition, such a system can improve access to laboratory procedure manuals so that resources can be better used on a daily basis.
Adaptive Virtual Reality Training to Optimize Military Medical Skills Acquisition and Retention.
Siu, Ka-Chun; Best, Bradley J; Kim, Jong Wook; Oleynikov, Dmitry; Ritter, Frank E
2016-05-01
The Department of Defense has pursued the integration of virtual reality simulation into medical training and applications to fulfill the need to train 100,000 military health care personnel annually. Medical personnel transitions, both when entering an operational area and returning to the civilian theater, are characterized by the need to rapidly reacquire skills that are essential but have decayed through disuse or infrequent use. Improved efficiency in reacquiring such skills is critical to avoid the likelihood of mistakes that may result in mortality and morbidity. We focus here on a study testing a theory of how the skills required for minimally invasive surgery for military surgeons are learned and retained. Our adaptive virtual reality surgical training system will incorporate an intelligent mechanism for tracking performance that will recognize skill deficiencies and generate an optimal adaptive training schedule. Our design is modeling skill acquisition based on a skill retention theory. The complexity of appropriate training tasks is adjusted according to the level of retention and/or surgical experience. Based on preliminary work, our system will improve the capability to interactively assess the level of skills learning and decay, optimizes skill relearning across levels of surgical experience, and positively impact skill maintenance. Our system could eventually reduce mortality and morbidity by providing trainees with the reexperience they need to help make a transition between operating theaters. This article reports some data that will support adaptive tutoring of minimally invasive surgery and similar surgical skills. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Diatomite filters--methods of automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, G.F.
1966-01-01
Following an introduction of subject material, diatomite filters are discussed in the following categories: a filter system, the manual station, the decision to automate, equipment, the automated filter, and the fail-safe methods. Diagrams and pictures of the equipment and its operation are included. Many aspects of the uses of both the automatic and manually operated diatomite filtering systems are reviewed. The fully automated station may be ideally suited to the remotely located waterflood since it requires virtually no attention or perhaps only periodic inspection. On the other hand, floods large enough to employ full-time personnel, who can maintain a constantmore » vigil and peiodically scrutinize the filtering operation, probably require nothing more than a semiautomatic operation. The reduction of human error can save money, and the introduction of consistency into any unit operation is certain to be beneficial.« less
Virtual performer: single camera 3D measuring system for interaction in virtual space
NASA Astrophysics Data System (ADS)
Sakamoto, Kunio; Taneji, Shoto
2006-10-01
The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.
Design and Development of a Virtual Facility Tour Using iPIX(TM) Technology
NASA Technical Reports Server (NTRS)
Farley, Douglas L.
2002-01-01
The capabilities of the iPIX virtual tour software, in conjunction with a web-based interface create a unique and valuable system that provides users with an efficient virtual capability to tour facilities while being able to acquire the necessary technical content is demonstrated. A users guide to the Mechanics and Durability Branch's virtual tour is presented. The guide provides the user with instruction on operating both scripted and unscripted tours as well as a discussion of the tours for Buildings 1148, 1205 and 1256 and NASA Langley Research Center. Furthermore, an indepth discussion has been presented on how to develop a virtual tour using the iPIX software interface with conventional html and JavaScript. The main aspects for discussion are on network and computing issues associated with using this capability. A discussion of how to take the iPIX pictures, manipulate them and bond them together to form hemispherical images is also presented. Linking of images with additional multimedia content is discussed. Finally, a method to integrate the iPIX software with conventional HTML and JavaScript to facilitate linking with multi-media is presented.
The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC
NASA Technical Reports Server (NTRS)
Little, William
2017-01-01
The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.
2014-01-01
Background This study aimed to evaluate the accuracy of surgical outcomes in free iliac crest mandibular reconstructions that were carried out with virtual surgical plans and rapid prototyping templates. Methods This study evaluated eight patients who underwent mandibular osteotomy and reconstruction with free iliac crest grafts using virtual surgical planning and designed guiding templates. Operations were performed using the prefabricated guiding templates. Postoperative three-dimensional computer models were overlaid and compared with the preoperatively designed models in the same coordinate system. Results Compared to the virtual osteotomy, the mean error of distance of the actual mandibular osteotomy was 2.06 ± 0.86 mm. When compared to the virtual harvested grafts, the mean error volume of the actual harvested grafts was 1412.22 ± 439.24 mm3 (9.12% ± 2.84%). The mean error between the volume of the actual harvested grafts and the shaped grafts was 2094.35 ± 929.12 mm3 (12.40% ± 5.50%). Conclusions The use of computer-aided rapid prototyping templates for virtual surgical planning appears to positively influence the accuracy of mandibular reconstruction. PMID:24957053
How virtual reality works: illusions of vision in "real" and virtual environments
NASA Astrophysics Data System (ADS)
Stark, Lawrence W.
1995-04-01
Visual illusions abound in normal vision--illusions of clarity and completeness, of continuity in time and space, of presence and vivacity--and are part and parcel of the visual world inwhich we live. These illusions are discussed in terms of the human visual system, with its high- resolution fovea, moved from point to point in the visual scene by rapid saccadic eye movements (EMs). This sampling of visual information is supplemented by a low-resolution, wide peripheral field of view, especially sensitive to motion. Cognitive-spatial models controlling perception, imagery, and 'seeing,' also control the EMs that shift the fovea in the Scanpath mode. These illusions provide for presence, the sense off being within an environment. They equally well lead to 'Telepresence,' the sense of being within a virtual display, especially if the operator is intensely interacting within an eye-hand and head-eye human-machine interface that provides for congruent visual and motor frames of reference. Interaction, immersion, and interest compel telepresence; intuitive functioning and engineered information flows can optimize human adaptation to the artificial new world of virtual reality, as virtual reality expands into entertainment, simulation, telerobotics, and scientific visualization and other professional work.
Virtual reality applied to teletesting
NASA Astrophysics Data System (ADS)
van den Berg, Thomas J.; Smeenk, Roland J. M.; Mazy, Alain; Jacques, Patrick; Arguello, Luis; Mills, Simon
2003-05-01
The activity "Virtual Reality applied to Teletesting" is related to a wider European Space Agency (ESA) initiative of cost reduction, in particular the reduction of test costs. Reduction of costs of space related projects have to be performed on test centre operating costs and customer company costs. This can accomplished by increasing the automation and remote testing ("teletesting") capabilities of the test centre. Main problems related to teletesting are a lack of situational awareness and the separation of control over the test environment. The objective of the activity is to evaluate the use of distributed computing and Virtual Reality technology to support the teletesting of a payload under vacuum conditions, and to provide a unified man-machine interface for the monitoring and control of payload, vacuum chamber and robotics equipment. The activity includes the development and testing of a "Virtual Reality Teletesting System" (VRTS). The VRTS is deployed at one of the ESA certified test centres to perform an evaluation and test campaign using a real payload. The VRTS is entirely written in the Java programming language, using the J2EE application model. The Graphical User Interface runs as an applet in a Web browser, enabling easy access from virtually any place.
Virtual building environments (VBE) - Applying information modeling to buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazjanac, Vladimir
2004-06-21
A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative andmore » the benefits from a couple of early VBE projects.« less
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2017-08-01
In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.
NASA Astrophysics Data System (ADS)
McIntire, John; Geiselman, Eric; Heft, Eric; Havig, Paul
2011-06-01
Designers, researchers, and users of binocular stereoscopic head- or helmet-mounted displays (HMDs) face the tricky issue of what imagery to present in their particular displays, and how to do so effectively. Stereoscopic imagery must often be created in-house with a 3D graphics program or from within a 3D virtual environment, or stereoscopic photos/videos must be carefully captured, perhaps for relaying to an operator in a teleoperative system. In such situations, the question arises as to what camera separation (real or virtual) is appropriate or desirable for end-users and operators. We review some of the relevant literature regarding the question of stereo pair camera separation using deskmounted or larger scale stereoscopic displays, and employ our findings to potential HMD applications, including command & control, teleoperation, information and scientific visualization, and entertainment.
Improving robot arm control for safe and robust haptic cooperation in orthopaedic procedures.
Cruces, R A Castillo; Wahrburg, J
2007-12-01
This paper presents the ongoing results of an effort to achieve the integration of a navigated cooperative robotic arm into computer-assisted orthopaedic surgery. A seamless integration requires the system acting in direct cooperation with the surgeon instead of replacing him. Two technical issues are discussed to improve the haptic operating modes for interactive robot guidance. The concept of virtual fixtures is used to restrict the range of motion of the robot according to pre-operatively defined constraints, and methodologies to assure a robust and accurate motion through singular arm configurations are investigated. A new method for handling singularities is proposed, which is superior to the commonly used damped-least-squares method. It produces no deviations of the end-effector in relation to the virtually constrained path. A solution to assure a good performance of a hands-on robotic arm at singularity configurations is proposed. (c) 2007 John Wiley & Sons, Ltd.
Lee, Changho; Kim, Kyungun; Han, Seunghoon; Kim, Sehui; Lee, Jun Hoon; Kim, Hong kyun; Kim, Chulhong; Jung, Woonggyu; Kim, Jeehyun
2014-01-01
Abstract. An intraoperative surgical microscope is an essential tool in a neuro- or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custom-made beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon’s depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition. PMID:24604471
Modeling the Virtual Machine Launching Overhead under Fermicloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele; Wu, Hao; Ren, Shangping
FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resourcemore » (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.« less
VERSE - Virtual Equivalent Real-time Simulation
NASA Technical Reports Server (NTRS)
Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel
2005-01-01
Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.
MIRIADS: miniature infrared imaging applications development system description and operation
NASA Astrophysics Data System (ADS)
Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.
2001-10-01
A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.
Research on the man in the loop control system of the robot arm based on gesture control
NASA Astrophysics Data System (ADS)
Xiao, Lifeng; Peng, Jinbao
2017-03-01
The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.
Applying Web-Based Tools for Research, Engineering, and Operations
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2011-01-01
Personnel in the NASA Glenn Research Center Network and Architectures branch have performed a variety of research related to space-based sensor webs, network centric operations, security and delay tolerant networking (DTN). Quality documentation and communications, real-time monitoring and information dissemination are critical in order to perform quality research while maintaining low cost and utilizing multiple remote systems. This has been accomplished using a variety of Internet technologies often operating simultaneously. This paper describes important features of various technologies and provides a number of real-world examples of how combining Internet technologies can enable a virtual team to act efficiently as one unit to perform advanced research in operational systems. Finally, real and potential abuses of power and manipulation of information and information access is addressed.
2016-02-09
Impact of Human Systems Community of Interest D O T M L P F $450M COI Budget Has Broad Impact in Several DOTMLPF Areas Decision Making Selection...and fit to a military career. • 26 personality dimensions such as optimism, excitement seeking, and non- delinquency • Applicant chooses from...Adaptive Collaborative Control Technologies ( IMPACT ) architecture designed • IMPACT “DoD Virtual Lab” established (Year 1) • 1 operator x 6 vehicles
A Combination Therapy of JO-I and Chemotherapy in Ovarian Cancer Models
2013-10-01
which consists of a 3PAR storage backend and is sharing data via a highly available NetApp storage gateway and 2 high throughput commodity storage...Environment is configured as self- service Enterprise cloud and currently hosts more than 700 virtual machines. The network infrastructure consists of...technology infrastructure and information system applications designed to integrate, automate, and standardize operations. These systems fuse state of
Insider Threat Detection on the Windows Operating System using Virtual Machine Introspection
2012-06-14
by a malicious insider. HBSS systems running on a user’s workstation could be disabled either due to misconfiguration, privilege escalation , or by a...potential malicious insider threat, organizations must develop use cases which categorize possible attack techniques, such as data exfiltration via...hardware and contain any type of data an attacker may be looking for. Minimal Resources Since honeypots do not provide any network services, they
Tanaka, Yoshiyuki; Mizoe, Genki; Kawaguchi, Tomohiro
2015-01-01
This paper proposes a simple diagnostic methodology for checking the ability of proprioceptive/kinesthetic sensation by using a robotic device. The perception ability of virtual frictional forces is examined in operations of the robotic device by the hand at a uniform slow velocity along the virtual straight/circular path. Experimental results by healthy subjects demonstrate that percentage of correct answers for the designed perceptual tests changes in the motion direction as well as the arm configuration and the HFM (human force manipulability) measure. It can be supposed that the proposed methodology can be applied into the early detection of neuromuscular/neurological disorders.
Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai
2009-01-01
The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.
NASA Technical Reports Server (NTRS)
Li, Larry; Cox, Brian; Shelton, Susan; Diftler, Myron
1994-01-01
Telepresence is an approach to teleoperation that provides egocentric, intuitive interactions between an operator and a remote environment. This approach takes advantage of the natural cognitive and sensory motor skills of an on-board crew and effectively transfers them to a slave robot. A dual alarm dexterous robot operating under telepresence control has been developed and initial evaluations of the system performing candidate EVA, IVA and planetary geological tasks were conducted. The results of our evaluation showed that telepresence control is very effective in transferring the operator's skills to the slave robot. However, the results also showed that, due to the kinematic and dynamics inconsistencies between the operator and the robot, a limited amount of intelligent automation is also required to carry out some to the tasks. Therefore, several enhancements have been made to the original system to increase the automated capabilities of the control system without losing the benefits of telepresence.
Computed intraoperative navigation guidance--a preliminary report on a new technique.
Enislidis, G; Wagner, A; Ploder, O; Ewers, R
1997-08-01
To assess the value of a computer-assisted three-dimensional guidance system (Virtual Patient System) in maxillofacial operations. Laboratory and open clinical study. Teaching Hospital, Austria. 6 patients undergoing various procedures including removal of foreign body (n=3) and biopsy, maxillary advancement, and insertion of implants (n=1 each). Storage of computed tomographic (CT) pictures on an optical disc, and imposition of intraoperative video images on to these. The resulting display is shown to the surgeon on a micromonitor in his head-up display for guidance during the operations. To improve orientation during complex or minimally invasive maxillofacial procedures and to make such operations easier and less traumatic. Successful transferral of computed navigation technology into an operation room environment and positive evaluation of the method by the surgeons involved. Computer-assisted three-dimensional guidance systems have the potential for making complex or minimally invasive procedures easier to do, thereby reducing postoperative morbidity.
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
A framework using cluster-based hybrid network architecture for collaborative virtual surgery.
Qin, Jing; Choi, Kup-Sze; Poon, Wai-Sang; Heng, Pheng-Ann
2009-12-01
Research on collaborative virtual environments (CVEs) opens the opportunity for simulating the cooperative work in surgical operations. It is however a challenging task to implement a high performance collaborative surgical simulation system because of the difficulty in maintaining state consistency with minimum network latencies, especially when sophisticated deformable models and haptics are involved. In this paper, an integrated framework using cluster-based hybrid network architecture is proposed to support collaborative virtual surgery. Multicast transmission is employed to transmit updated information among participants in order to reduce network latencies, while system consistency is maintained by an administrative server. Reliable multicast is implemented using distributed message acknowledgment based on cluster cooperation and sliding window technique. The robustness of the framework is guaranteed by the failure detection chain which enables smooth transition when participants join and leave the collaboration, including normal and involuntary leaving. Communication overhead is further reduced by implementing a number of management approaches such as computational policies and collaborative mechanisms. The feasibility of the proposed framework is demonstrated by successfully extending an existing standalone orthopedic surgery trainer into a collaborative simulation system. A series of experiments have been conducted to evaluate the system performance. The results demonstrate that the proposed framework is capable of supporting collaborative surgical simulation.
Virtual reality or real virtuality: the space of flows and nursing practice.
Barnes, Lynne; Rudge, Trudy
2005-12-01
The use of virtual environments for the provision of health-care is on the increase, and with each new development brings debates about their impact on care, nursing and nursing practice. Such environments offer opportunities for extending care and improvements in communication. Others believe these developments threaten aspects of nursing they hold sacrosanct. This paper explores the development of an assemblage of computer networks, databases, information systems, software programs and management systems that together work to manage health-care in Australia, namely casemix. We contend that spatial theories on network society show how this assemblage co-ordinates and operates to manage care. We discuss how this assemblage affects care and suggest that changes in organisation may be a part of the shift in how bodily organisation occurs more generally, but more specifically in health-care. We also suggest how nurses are enrolled in and by such networks, leading to transformation in nurses' practices. Finally, we argue that using spatial forms of analysis allows an interpretation of such assemblages that may account for their strengths and their shortcomings.
Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen
2015-09-09
Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Qiang
At exascale, the challenge becomes to develop applications that run at scale and use exascale platforms reliably, efficiently, and flexibly. Workflows become much more complex because they must seamlessly integrate simulation and data analytics. They must include down-sampling, post-processing, feature extraction, and visualization. Power and data transfer limitations require these analysis tasks to be run in-situ or in-transit. We expect successful workflows will comprise multiple linked simulations along with tens of analysis routines. Users will have limited development time at scale and, therefore, must have rich tools to develop, debug, test, and deploy applications. At this scale, successful workflows willmore » compose linked computations from an assortment of reliable, well-defined computation elements, ones that can come and go as required, based on the needs of the workflow over time. We propose a novel framework that utilizes both virtual machines (VMs) and software containers to create a workflow system that establishes a uniform build and execution environment (BEE) beyond the capabilities of current systems. In this environment, applications will run reliably and repeatably across heterogeneous hardware and software. Containers, both commercial (Docker and Rocket) and open-source (LXC and LXD), define a runtime that isolates all software dependencies from the machine operating system. Workflows may contain multiple containers that run different operating systems, different software, and even different versions of the same software. We will run containers in open-source virtual machines (KVM) and emulators (QEMU) so that workflows run on any machine entirely in user-space. On this platform of containers and virtual machines, we will deliver workflow software that provides services, including repeatable execution, provenance, checkpointing, and future proofing. We will capture provenance about how containers were launched and how they interact to annotate workflows for repeatable and partial re-execution. We will coordinate the physical snapshots of virtual machines with parallel programming constructs, such as barriers, to automate checkpoint and restart. We will also integrate with HPC-specific container runtimes to gain access to accelerators and other specialized hardware to preserve native performance. Containers will link development to continuous integration. When application developers check code in, it will automatically be tested on a suite of different software and hardware architectures.« less
NASA Astrophysics Data System (ADS)
Tinoco, Hector A.; Ovalle, Alex M.; Vargas, Carlos A.; Cardona, María J.
2015-09-01
In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system tracks IR passive markers located on the hands to take the positions of each one. For our purpose, a real workplace is virtually represented by domains to create a virtual workplace based on basic geometries. Motion captured data are combined with the virtual workplace to simulate operations carried out on it, and a time and motion analysis is completed by means of an algorithm. To test the methodology of analysis, a case study was intentionally designed using and violating the principles of motion economy. In the results, it was possible to observe where the hands never crossed as well as where the hands passed by the same place. In addition, the activities done in each zone were observed and some known deficiencies were identified in the distribution of the workplace by computational analysis. Using a frequency analysis of hand velocities, errors in the chosen assembly method were revealed showing differences in the hand velocities. An opportunity is seen to classify some quantifiable aspects that are not identified easily in a traditional time and motion analysis. The automated analysis is considered as the main contribution in this study. In the industrial context, a great application is perceived in terms of monitoring the workplace to analyze repeatability, PTS, workplace and labor activities redistribution using the proposed methodology.
2005-11-01
interest has a large variance so that excessive run lengths are required. This naturally invokes the interest for searches for effective variance ...years since World War II the nature , organization, and mode of the operation of command organizations within the Army has remained virtually...Laboratory began a series of studies and projects focused on investigating the nature of military command and control (C2) operations. The questions
Understanding the complex needs of automotive training at final assembly lines.
Hermawati, Setia; Lawson, Glyn; D'Cruz, Mirabelle; Arlt, Frank; Apold, Judith; Andersson, Lina; Lövgren, Maria Gink; Malmsköld, Lennart
2015-01-01
Automobile final assembly operators must be highly skilled to succeed in a low automation environment where multiple variants must be assembled in quick succession. This paper presents formal user studies conducted at OPEL and VOLVO Group to identify assembly training needs and a subset of requirements; and to explore potential features of a hypothetical game-based virtual training system. Stakeholder analysis, timeline analysis, link analysis, Hierarchical Task Analysis and thematic content analysis were used to analyse the results of interviews with various stakeholders (17 and 28 participants at OPEL and VOLVO, respectively). The results show that there is a strong case for the implementation of virtual training for assembly tasks. However, it was also revealed that stakeholders would prefer to use a virtual training to complement, rather than replace, training on pre-series vehicles. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
Magnetosensitive e-skins with directional perception for augmented reality
Cañón Bermúdez, Gilbert Santiago; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Lebanov, Ana; Bischoff, Lothar; Kaltenbrunner, Martin; Fassbender, Jürgen; Schmidt, Oliver G.; Makarov, Denys
2018-01-01
Electronic skins equipped with artificial receptors are able to extend our perception beyond the modalities that have naturally evolved. These synthetic receptors offer complimentary information on our surroundings and endow us with novel means of manipulating physical or even virtual objects. We realize highly compliant magnetosensitive skins with directional perception that enable magnetic cognition, body position tracking, and touchless object manipulation. Transfer printing of eight high-performance spin valve sensors arranged into two Wheatstone bridges onto 1.7-μm-thick polyimide foils ensures mechanical imperceptibility. This resembles a new class of interactive devices extracting information from the surroundings through magnetic tags. We demonstrate this concept in augmented reality systems with virtual knob-turning functions and the operation of virtual dialing pads, based on the interaction with magnetic fields. This technology will enable a cornucopia of applications from navigation, motion tracking in robotics, regenerative medicine, and sports and gaming to interaction in supplemented reality. PMID:29376121
The Virtual Naval Hospital: the digital library as knowledge management tool for nomadic patrons*
D'Alessandro, Michael P.; D'Alessandro, Donna M.; Bakalar, Richard S.; Ashley, Denis E.; Hendrix, Mary J. C.
2005-01-01
Objective: To meet the information needs of isolated primary care providers and their patients in the US Navy, a digital health sciences library, the Virtual Naval Hospital, was created through a unique partnership between academia and government. Methods: The creation of the digital library was heavily influenced by the principles of user-centered design and made allowances for the nomadic nature of the digital library's patrons and the heterogeneous access they have to Internet bandwidth. Results: The result is a digital library that has been in operation since 1997, continues to expand in size, is heavily used, and is highly regarded by its patrons. Conclusions: The digital library is dedicated to delivering the right information at the right time to the right person so the right decision can be made, and therefore the Virtual Naval Hospital functions as a knowledge-management system for the US Navy Bureau of Medicine and Surgery. PMID:15685269
Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW.
Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián
2013-02-21
This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented.
Virtual and Remote Robotic Laboratory Using EJS, MATLAB and Lab VIEW
Chaos, Dictino; Chacón, Jesús; Lopez-Orozco, Jose Antonio; Dormido, Sebastián
2013-01-01
This paper describes the design and implementation of a virtual and remote laboratory based on Easy Java Simulations (EJS) and LabVIEW. The main application of this laboratory is to improve the study of sensors in Mobile Robotics, dealing with the problems that arise on the real world experiments. This laboratory allows the user to work from their homes, tele-operating a real robot that takes measurements from its sensors in order to obtain a map of its environment. In addition, the application allows interacting with a robot simulation (virtual laboratory) or with a real robot (remote laboratory), with the same simple and intuitive graphical user interface in EJS. Thus, students can develop signal processing and control algorithms for the robot in simulation and then deploy them on the real robot for testing purposes. Practical examples of application of the laboratory on the inter-University Master of Systems Engineering and Automatic Control are presented. PMID:23429578
The Virtual Naval Hospital: the digital library as knowledge management tool for nomadic patrons.
D'Alessandro, Michael P; D'Alessandro, Donna M; Bakalar, Richard S; Ashley, Denis E; Hendrix, Mary J C
2005-01-01
To meet the information needs of isolated primary care providers and their patients in the US Navy, a digital health sciences library, the Virtual Naval Hospital, was created through a unique partnership between academia and government. The creation of the digital library was heavily influenced by the principles of user-centered design and made allowances for the nomadic nature of the digital library's patrons and the heterogeneous access they have to Internet bandwidth. The result is a digital library that has been in operation since 1997, continues to expand in size, is heavily used, and is highly regarded by its patrons. The digital library is dedicated to delivering the right information at the right time to the right person so the right decision can be made, and therefore the Virtual Naval Hospital functions as a knowledge-management system for the US Navy Bureau of Medicine and Surgery.
NASA Technical Reports Server (NTRS)
Parker, Donald E.; Harm, D. L.; Florer, Faith L.
1993-01-01
This paper describes ongoing development of training procedures to enhance self-attitude awareness in astronaut trainees. The procedures are based on observations regarding self-attitude (perceived self-orientation and self-motion) reported by astronauts. Self-attitude awareness training is implemented on a personal computer system and consists of lesson stacks programmed using Hypertalk with Macromind Director movie imports. Training evaluation will be accomplished by an active search task using the virtual Spacelab environment produced by the Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME-PAT) as well as by assessment of astronauts' performance and sense of well-being during orbital flight. The general purpose of self-attitude awareness training is to use as efficiently as possible the limited DOME-PAT training time available to astronauts prior to a space mission. We suggest that similar training procedures may enhance the performance of virtual environment operators.
Verma, Suzanne; Gonzalez, Marianela; Schow, Sterling R; Triplett, R Gilbert
This technical protocol outlines the use of computer-assisted image-guided technology for the preoperative planning and intraoperative procedures involved in implant-retained facial prosthetic treatment. A contributing factor for a successful prosthetic restoration is accurate preoperative planning to identify prosthetically driven implant locations that maximize bone contact and enhance cosmetic outcomes. Navigational systems virtually transfer precise digital planning into the operative field for placing implants to support prosthetic restorations. In this protocol, there is no need to construct a physical, and sometimes inaccurate, surgical guide. The report addresses treatment workflow, radiologic data specifications, and special considerations in data acquisition, virtual preoperative planning, and intraoperative navigation for the prosthetic reconstruction of unilateral, bilateral, and midface defects. Utilization of this protocol for the planning and surgical placement of craniofacial bone-anchored implants allows positioning of implants to be prosthetically driven, accurate, precise, and efficient, and leads to a more predictable treatment outcome.
Improving Virtual Teams through Knowledge Management: A Case Study
ERIC Educational Resources Information Center
Laughridge, James F.
2012-01-01
Within the dynamic globalized operating environment, organizations are increasingly relying on virtual teams to solve their most difficult problems, leverage their expertise and expand their presence. The use of virtual teams by organizations continues to increase greatly as the technologies supporting them evolve. Despite improvements in…
A Framework for Adaptable Operating and Runtime Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterling, Thomas
The emergence of new classes of HPC systems where performance improvement is enabled by Moore’s Law for technology is manifest through multi-core-based architectures including specialized GPU structures. Operating systems were originally designed for control of uniprocessor systems. By the 1980s multiprogramming, virtual memory, and network interconnection were integral services incorporated as part of most modern computers. HPC operating systems were primarily derivatives of the Unix model with Linux dominating the Top-500 list. The use of Linux for commodity clusters was first pioneered by the NASA Beowulf Project. However, the rapid increase in number of cores to achieve performance gain throughmore » technology advances has exposed the limitations of POSIX general-purpose operating systems in scaling and efficiency. This project was undertaken through the leadership of Sandia National Laboratories and in partnership of the University of New Mexico to investigate the alternative of composable lightweight kernels on scalable HPC architectures to achieve superior performance for a wide range of applications. The use of composable operating systems is intended to provide a minimalist set of services specifically required by a given application to preclude overheads and operational uncertainties (“OS noise”) that have been demonstrated to degrade efficiency and operational consistency. This project was undertaken as an exploration to investigate possible strategies and methods for composable lightweight kernel operating systems towards support for extreme scale systems.« less
NASA Technical Reports Server (NTRS)
Grasso, Christopher; Page, Dennis; O'Reilly, Taifun; Fteichert, Ralph; Lock, Patricia; Lin, Imin; Naviaux, Keith; Sisino, John
2005-01-01
Virtual Machine Language (VML) is a mission-independent, reusable software system for programming for spacecraft operations. Features of VML include a rich set of data types, named functions, parameters, IF and WHILE control structures, polymorphism, and on-the-fly creation of spacecraft commands from calculated values. Spacecraft functions can be abstracted into named blocks that reside in files aboard the spacecraft. These named blocks accept parameters and execute in a repeatable fashion. The sizes of uplink products are minimized by the ability to call blocks that implement most of the command steps. This block approach also enables some autonomous operations aboard the spacecraft, such as aerobraking, telemetry conditional monitoring, and anomaly response, without developing autonomous flight software. Operators on the ground write blocks and command sequences in a concise, high-level, human-readable programming language (also called VML ). A compiler translates the human-readable blocks and command sequences into binary files (the operations products). The flight portion of VML interprets the uplinked binary files. The ground subsystem of VML also includes an interactive sequence- execution tool hosted on workstations, which runs sequences at several thousand times real-time speed, affords debugging, and generates reports. This tool enables iterative development of blocks and sequences within times of the order of seconds.
Training for percutaneous renal access on a virtual reality simulator.
Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun
2013-01-01
The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.
Toward an operational water vapor remote sensing system using the global positioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, S.I.; Chadwick, R.B.; Wolf, d.W.
1995-04-01
Water vapor is one of the most important constituents of the free atmosphere since it is the principal mechanism by which moisture and latent heat are transported and cause weather. Recent experiments have demonstrated that data from Global Positioning System (GPS) satellites can be used to monitor precipitable water vapor (PWV) with millimeter accuracy and sub-hourly temporal resolution. Major advantages of GPS-based systems include the following: they work under virtually all weather conditions; individual systems do not have to be calibrated; and, they are relatively inexpensive.
Development of a virtual reality training system for endoscope-assisted submandibular gland removal.
Miki, Takehiro; Iwai, Toshinori; Kotani, Kazunori; Dang, Jianwu; Sawada, Hideyuki; Miyake, Minoru
2016-11-01
Endoscope-assisted surgery has widely been adopted as a basic surgical procedure, with various training systems using virtual reality developed for this procedure. In the present study, a basic training system comprising virtual reality for the removal of submandibular glands under endoscope assistance was developed. The efficacy of the training system was verified in novice oral surgeons. A virtual reality training system was developed using existing haptic devices. Virtual reality models were constructed from computed tomography data to ensure anatomical accuracy. Novice oral surgeons were trained using the developed virtual reality training system. The developed virtual reality training system included models of the submandibular gland and surrounding connective tissues and blood vessels entering the submandibular gland. Cutting or abrasion of the connective tissue and manipulations, such as elevation of blood vessels, were reproduced by the virtual reality system. A training program using the developed system was devised. Novice oral surgeons were trained in accordance with the devised training program. Our virtual reality training system for endoscope-assisted removal of the submandibular gland is effective in the training of novice oral surgeons in endoscope-assisted surgery. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients
NASA Astrophysics Data System (ADS)
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George
2015-07-01
This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
NASA Technical Reports Server (NTRS)
1975-01-01
NASA structural analysis (NASTRAN) computer program is operational on three series of third generation computers. The problem and difficulties involved in adapting NASTRAN to a fourth generation computer, namely, the Control Data STAR-100, are discussed. The salient features which distinguish Control Data STAR-100 from third generation computers are hardware vector processing capability and virtual memory. A feasible method is presented for transferring NASTRAN to Control Data STAR-100 system while retaining much of the machine-independent code. Basic matrix operations are noted for optimization for vector processing.
Virtual Ultrasound Guidance for Inexperienced Operators
NASA Technical Reports Server (NTRS)
Caine, Timothy; Martin, Davis
2012-01-01
Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit, in which the time delay inherent with communication will make remote guidance impractical.
Design of a steganographic virtual operating system
NASA Astrophysics Data System (ADS)
Ashendorf, Elan; Craver, Scott
2015-03-01
A steganographic file system is a secure file system whose very existence on a disk is concealed. Customarily, these systems hide an encrypted volume within unused disk blocks, slack space, or atop conventional encrypted volumes. These file systems are far from undetectable, however: aside from their ciphertext footprint, they require a software or driver installation whose presence can attract attention and then targeted surveillance. We describe a new steganographic operating environment that requires no visible software installation, launching instead from a concealed bootstrap program that can be extracted and invoked with a chain of common Unix commands. Our system conceals its payload within innocuous files that typically contain high-entropy data, producing a footprint that is far less conspicuous than existing methods. The system uses a local web server to provide a file system, user interface and applications through a web architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.; McCorkle, D.; Yang, C.
Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less
Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng
2017-08-01
In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.
Logistics Support Analysis Techniques Guide
1985-03-15
LANGUAGE (DATA RECORDS) FORTRAN CDC 6600 D&V FSD P/D A H REMA-RKS: Program n-s-ists of F PLIATIffIONS, approx 4000 line of coding , 3 Safegard, AN/FSC... FORTRAN IV -EW-RAK9-- The model consz.sts of IT--k-LIC- I-U-0NS: approximately 367 lines of SiNCGARS, PERSHING II coding . %.’. ~ LSA TASK INTERFACE...system supported by Computer’ Systems Command. The current version of LADEN is coded totally in FORTRAN for virtual memory operating system
The UK Ion Thruster System and a Proposed Future Programme.
1977-05-01
design and constructional features 13 1.2.3 The hollow cathode assembly 14 1.2.4 Isolators 16 1.2.5 Vaporisers 17 1.2.6 The neutraliser system 19 1.2.7... constructed and integrated with the thrus ter by MSDS Ltd)3, and is now undergoing modifications in light of the more recent experience gained in operating...measurements of virtuall y all the materials emitted by the thruster. The latter requirement has necessitated the construction of a complex system of probes
1984-12-01
3Com Corporation ....... A-18 Ethernet Controller Support . . . . . . A-19 Host Systems Support . . . . . . . . . A-20 Personal Computers Support...A-23 VAX EtherSeries Software 0 * A-23 Network Research Corporation . o o o . o A-24 File Transfer Service . . . . o A-25 Virtual Terminal Service 0...Control office is planning to acquire a Digital Equipment Corporation VAX 11/780 mainframe computer with the Unix Berkeley 4.2BSD operating system. They
Ultrasound image guidance of cardiac interventions
NASA Astrophysics Data System (ADS)
Peters, Terry M.; Pace, Danielle F.; Lang, Pencilla; Guiraudon, Gérard M.; Jones, Douglas L.; Linte, Cristian A.
2011-03-01
Surgical procedures often have the unfortunate side-effect of causing the patient significant trauma while accessing the target site. Indeed, in some cases the trauma inflicted on the patient during access to the target greatly exceeds that caused by performing the therapy. Heart disease has traditionally been treated surgically using open chest techniques with the patient being placed "on pump" - i.e. their circulation being maintained by a cardio-pulmonary bypass or "heart-lung" machine. Recently, techniques have been developed for performing minimally invasive interventions on the heart, obviating the formerly invasive procedures. These new approaches rely on pre-operative images, combined with real-time images acquired during the procedure. Our approach is to register intra-operative images to the patient, and use a navigation system that combines intra-operative ultrasound with virtual models of instrumentation that has been introduced into the chamber through the heart wall. This paper illustrates the problems associated with traditional ultrasound guidance, and reviews the state of the art in real-time 3D cardiac ultrasound technology. In addition, it discusses the implementation of an image-guided intervention platform that integrates real-time ultrasound with a virtual reality environment, bringing together the pre-operative anatomy derived from MRI or CT, representations of tracked instrumentation inside the heart chamber, and the intra-operatively acquired ultrasound images.
A Virtual World with Real Results
ERIC Educational Resources Information Center
Hughes, Katherine L.; Golann, Joanne Wang
2008-01-01
This article describes how students learn invaluable job-readiness and academic skills by setting up and running their own businesses in a virtual world. Virtual Enterprises (VE) International is a high school career and technical education (CTE) program that teaches students about business by having a class create and operate its own virtual…
Virtual Reference, Real Money: Modeling Costs in Virtual Reference Services
ERIC Educational Resources Information Center
Eakin, Lori; Pomerantz, Jeffrey
2009-01-01
Libraries nationwide are in yet another phase of belt tightening. Without an understanding of the economic factors that influence library operations, however, controlling costs and performing cost-benefit analyses on services is difficult. This paper describes a project to develop a cost model for collaborative virtual reference services. This…
Registered File Support for Critical Operations Files at (Space Infrared Telescope Facility) SIRTF
NASA Technical Reports Server (NTRS)
Turek, G.; Handley, Tom; Jacobson, J.; Rector, J.
2001-01-01
The SIRTF Science Center's (SSC) Science Operations System (SOS) has to contend with nearly one hundred critical operations files via comprehensive file management services. The management is accomplished via the registered file system (otherwise known as TFS) which manages these files in a registered file repository composed of a virtual file system accessible via a TFS server and a file registration database. The TFS server provides controlled, reliable, and secure file transfer and storage by registering all file transactions and meta-data in the file registration database. An API is provided for application programs to communicate with TFS servers and the repository. A command line client implementing this API has been developed as a client tool. This paper describes the architecture, current implementation, but more importantly, the evolution of these services based on evolving community use cases and emerging information system technology.
Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan
2015-06-01
The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. Copyright © 2015 Elsevier Inc. All rights reserved.
Cyber entertainment system using an immersive networked virtual environment
NASA Astrophysics Data System (ADS)
Ihara, Masayuki; Honda, Shinkuro; Kobayashi, Minoru; Ishibashi, Satoshi
2002-05-01
Authors are examining a cyber entertainment system that applies IPT (Immersive Projection Technology) displays to the entertainment field. This system enables users who are in remote locations to communicate with each other so that they feel as if they are together. Moreover, the system enables those users to experience a high degree of presence, this is due to provision of stereoscopic vision as well as a haptic interface and stereo sound. This paper introduces this system from the viewpoint of space sharing across the network and elucidates its operation using the theme of golf. The system is developed by integrating avatar control, an I/O device, communication links, virtual interaction, mixed reality, and physical simulations. Pairs of these environments are connected across the network. This allows the two players to experience competition. An avatar of each player is displayed by the other player's IPT display in the remote location and is driven by only two magnetic sensors. That is, in the proposed system, users don't need to wear any data suit with a lot of sensors and they are able to play golf without any encumbrance.
Improving Acquisition From Within: Suggestions From Our PEOs
2016-08-01
Cybersecurity requirements continue to grow impacting virtually everything we do in acquisition from daily workplace activities, to Enterprise Resource...O N , T E C H N O LO GY, A N D LO G I S T I C S University curriculum is updated to reflect audit readiness and cybersecurity considerations...to currently fielded operational systems puts undue burden on the op erational user. • Control of and accountability for system cybersecurity is
LINUX, Virtualization, and the Cloud: A Hands-On Student Introductory Lab
ERIC Educational Resources Information Center
Serapiglia, Anthony
2013-01-01
Many students are entering Computer Science education with limited exposure to operating systems and applications other than those produced by Apple or Microsoft. This gap in familiarity with the Open Source community can quickly be bridged with a simple exercise that can also be used to strengthen two other important current computing concepts,…
STS-111 Expedition Five Crew Training Clip
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-111 Expedition Five Crew begins with training on payload operations. Flight Engineer Peggy Whitson and Mission Specialist Sandy Magnus are shown in Shuttle Remote Manipulator System (SRMS) procedures. Flight Engineer Sergei Treschev gets suited for Neutral Neutral Buoyancy Lab (NBL) training. Virtual Reality lab training is shown with Peggy Whitson. Habitation Equipment and procedures are also presented.
Divide and Recombine for Large Complex Data
2017-12-01
Empirical Methods in Natural Language Processing , October 2014 Keywords Enter keywords for the publication. URL Enter the URL...low-latency data processing systems. Declarative Languages for Interactive Visualization: The Reactive Vega Stack Another thread of XDATA research...for array processing operations embedded in the R programming language . Vector virtual machines work well for long vectors. One of the most
A Descriptive Study of Wisconsin PK-12 Virtual Public School Program Operations and Management
ERIC Educational Resources Information Center
Banker, Margaret M.
2012-01-01
E-Learning as it pertains to public education is in its infancy in America. There is limited research on what operational design, development, and management attributes of virtual school programs foster student achievement. The Wisconsin Department of Instruction has not developed or adopted program standards for E-Learning programs. The purpose…