Sample records for operation temperature range

  1. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  2. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  3. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  4. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  5. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOEpatents

    DeVault, Robert C [Knoxville, TN; Wesolowski, David J [Kingston, TN

    2010-02-23

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  6. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Kyei-Sing; Bennett, James P.

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  7. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE PAGES

    Kwong, Kyei-Sing; Bennett, James P.

    2016-11-25

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  8. Performance of a spacecraft DC-DC converter breadboard modified for low temperature operation

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Stell, Chris; Patterson, Richard; Ray, Biswajit

    1996-01-01

    A 1OW 3OV/5.OV push-pull dc-dc converter breadboard, designed by the Jet Propulsion Laboratory (JPL) with a +50 C to +5 C operating range for the Cassini space probe, was characterized for lower operating temperatures. The breadboard converter which failed to operate for temperatures below -125 C was then modified to operate at temperatures approaching that of liquid nitrogen (LN2). Associated with this low operating temperature range (greater than -196 C) was a variety of performance problems such as significant change in output voltage, converter switching instability, and failure to restart at temperatures below -154 C. An investigation into these problems yielded additional modifications to the converter which improved low temperature performance even further.

  9. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  10. A Eu/Tb-mixed MOF for luminescent high-temperature sensing

    NASA Astrophysics Data System (ADS)

    Wang, Huizhen; Zhao, Dian; Cui, Yuangjing; Yang, Yu; Qian, Guodong

    2017-02-01

    Temperature measurements and thermal mapping using luminescent MOF operating in the high-temperature range are of great interest in the micro-electronic diagnosis. In this paper, we report a thermostable Eu/Tb-mixed MOF Eu0.37Tb0.63-BTC-a exhibiting strong luminescence at elevated temperature, which can serve as a ratiometric luminescent thermometer for high-temperature range. The high-temperature operating range (313-473 K), high relative sensitivity and accurate temperature resolution, make such a Eu/Tb-mixed MOF useful for micro-electronic diagnosis.

  11. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2011-01-01

    Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  12. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huizhen; Zhao, Dian; Cui, Yuangjing, E-mail: cuiyj@zju.edu.cn

    Temperature measurements and thermal mapping using luminescent MOF operating in the high-temperature range are of great interest in the micro-electronic diagnosis. In this paper, we report a thermostable Eu/Tb-mixed MOF Eu{sub 0.37}Tb{sub 0.63}-BTC-a exhibiting strong luminescence at elevated temperature, which can serve as a ratiometric luminescent thermometer for high-temperature range. The high-temperature operating range (313–473 K), high relative sensitivity and accurate temperature resolution, make such a Eu/Tb-mixed MOF useful for micro-electronic diagnosis. - Graphical abstract: A thermostable Eu/Tb-mixed MOF Eu{sub 0.37}Tb{sub 0.63}-BTC-a was developed as a ratiometric luminescent thermometers in the high-temperature range of 313–473 K. - Highlights: • Amore » thermostable Eu/Tb-codoped MOF exhibiting strong luminescent at elevated temperature is reported. • The high-temperature operating range of Eu{sub 0.37}Tb{sub 0.63}-BTC-a is 313–473 K. • The mechanism of Eu{sub 0.37}Tb{sub 0.63}-BTC-a used as thermometers are also discussed.« less

  14. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  15. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  16. Stability of a Crystal Oscillator, Type Si530, Inside and Beyond its Specified Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Data acquisition and control systems depend on timing signals for proper operation and required accuracy. These clocked signals are typically provided by some form of an oscillator set to produce a repetitive, defined signal at a given frequency. Crystal oscillators are commonly used because they are less expensive, smaller, and more reliable than other types of oscillators. Because of the inherent characteristics of the crystal, the oscillators exhibit excellent frequency stability within the specified range of operational temperature. In some cases, however, some compensation techniques are adopted to further improve the thermal stability of a crystal oscillator. Very limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) crystal oscillators at temperatures beyond the manufacturer's specified operating temperature range. This information is very crucial if any of these parts were to be used in circuits designed for use in space exploration missions where extreme temperature swings and thermal cycling are encountered. This report presents the results of the work obtained on the operation of Silicon Laboratories crystal oscillator, type Si530, under specified and extreme ambient temperatures.

  17. A high-efficiency thermoelectric converter for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, J.D.; El-Genk, M.S.

    1990-01-01

    This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reducemore » or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.« less

  18. A high-efficiency thermoelectric converter for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, J.D.; El-Genk, M.S.

    1990-12-31

    This paper presents a concept for using high-temperature superconducting materials in thermoelectric generators (SCTE) to produce electricity at conversion efficiencies approaching 50% of the Carrot efficiency. The SCTE generator is applicable to systems operating in temperature ranges of high-temperature superconducting materials and thus would be a low-grade converter. Operating in cryogenic temperature ranges provides the advantage of inherently increasing the limits of the Carrot efficiency. Potential applications are for systems operating in space where the ambient temperatures are in the cryogenic temperature range. The advantage of using high-temperature superconducting material in a thermoelectric converter is that it would significantly reducemore » or eliminate the Joule heating losses in a thermoelectric element. This paper investigates the system aspects and the material requirements of the SCTE converter concept, and presents a conceptual design and an application for a space power system.« less

  19. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  20. Electricity generation of single-chamber microbial fuel cells at low temperatures.

    PubMed

    Cheng, Shaoan; Xing, Defeng; Logan, Bruce E

    2011-01-15

    Practical applications of microbial fuel cells (MFCs) for wastewater treatment will require operation of these systems over a wide range of wastewater temperatures. MFCs at room or higher temperatures (20-35°C) are relatively well studied compared those at lower temperatures. MFC performance was examined here over a temperature range of 4-30°C in terms of startup time needed for reproducible power cycles, and performance. MFCs initially operated at 15°C or higher all attained a reproducible cycles of power generation, but the startup time to reach stable operation increased from 50 h at 30°C to 210 h at 15°C. At temperatures below 15°C, MFCs did not produce appreciable power even after one month of operation. If an MFC was first started up at temperature of 30°C, however, reproducible cycles of power generation could then be achieved at even the two lowest temperatures of 4°C and 10°C. Power production increased linearly with temperature at a rate of 33±4 mW °C(-1), from 425±2 mW m(-2) at 4°C to 1260±10 mW m(-2) at 30°C. Coulombic efficiency decreased by 45% over this same temperature range, or from CE=31% at 4°C to CE=17% at 30°C. These results demonstrate that MFCs can effectively be operated over a wide range of temperatures, but our findings have important implications for the startup of larger scale reactors where low wastewater temperatures could delay or prevent adequate startup of the system. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  2. Joint Networking Command and Control (C2) Communications Among Distributed Operations, JCAS, and Joint Fires

    DTIC Science & Technology

    2007-06-01

    fasteners. Enviromental Spec Storage Temperature: -26 to 160 °F, Operating Temperature: -22 to 160 °F, Operating Humidity Range: 5% to 100% Non...Accessories Double 90° tongue and groove case design, with anti-tamper fasteners. Enviromental Spec Storage Temperature: -26 to 160 °F, Operating

  3. 33 CFR 159.119 - Operability test; temperature range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Operability test; temperature range. 159.119 Section 159.119 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.119...

  4. Coupling of Transport and Chemical Processes in Catalytic Combustion

    NASA Technical Reports Server (NTRS)

    Bracco, F. V.; Bruno, C.; Royce, B. S. H.; Santavicca, D. A.; Sinha, N.; Stein, Y.

    1983-01-01

    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics.

  5. THE PSYCHROMETER, MODEL II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poore, J.I.

    1963-09-01

    The psychrometer measures percentage of relative humidity and temperature. The relative humidity can be measured to an accuracy better than 1 per cent over the range from 5 to 98 percent in a temperature range of 35 deg F through 140 deg F. A test report on this psychrometer by the National Bureau of Standards is given. The psychrometer will measure temperature with an accuracy within 0.05 deg F over the range 32 deg F through 212 deg F. The operation theory, general description, and operating procedures are included. (auth)

  6. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide temperature range in MCMB-LiNiCoAlO2 and Li4Ti5O12-LiNi-CoAlO2 prototype cells. These electrolytes have enabled high rate performance at low temperature (i.e., up to 2.0C rates at -50 C and 5.0C rates at -40 C), and good cycling performance over a wide temperature range (i.e., from -40 to +70 C). Current efforts are focused upon improving the high temperature resilience of the methyl propionatebased system through the use of electrolyte additives, which are envisioned to improve the nature of the solid electrolyte interphase (SEI) layers.

  7. TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS

    PubMed Central

    Elliott, R. Paul

    1963-01-01

    Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889–894. 1963.—The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959

  8. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  9. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  10. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  11. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  12. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  13. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions... rotational speed shown under the rotor speed requirements in § 27.1509(c); and (3) The gas temperature limits for turbine engines over the range of operating and atmospheric conditions for which certification is...

  14. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    PubMed

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Correlation of Mixture Temperature Data Obtained from Bare Intake-manifold Thermocouples

    NASA Technical Reports Server (NTRS)

    White, H. Jack; Gammon, Goldie L

    1946-01-01

    A relatively simple equation has been found to express with fair accuracy, variation in manifold-charge temperature with charge in engine operating conditions. This equation and associated curves have been checked by multi cylinder-engine data, both test stand and flight, over a wide range of operating conditions. Average mixture temperatures, predicted by the equations of this report, agree reasonably well with results within the same range of carburetor-air temperatures from laboratories and test stands other than the NACA.

  16. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraphs (a) and (b)(1) through (8) of this section. (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a non-cryogenic temperature range, use a temperature sensor... value, whichever is larger. (3) For a cryogenic temperature range, use a temperature sensor with a...

  17. Cryogenic Behavior of the High Temperature Crystal Oscillator PX-570

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Scherer, Steven

    2011-01-01

    Microprocessors, data-acquisition systems, and electronic controllers usually require timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that utilize crystal oscillators due to availability, cost, ease of operation, and accuracy. Stability of these oscillators, i.e. crystal characteristics, is usually governed, amongst other things, by the ambient temperature. Operation of these devices under extreme temperatures requires, therefore, the implementation of some temperature-compensation mechanism either through the manufacturing process of the oscillator part or in the design of the circuit to maintain stability as well as accuracy. NASA future missions into deep space and planetary exploration necessitate operation of electronic instruments and systems in environments where extreme temperatures along with wide-range thermal swings are countered. Most of the commercial devices are very limited in terms of their specified operational temperature while very few custom-made and military-grade parts have the ability to operate in a slightly wider range of temperature. Thus, it is becomes mandatory to design and develop circuits that are capable of operation efficiently and reliably under the space harsh conditions. This report presents the results obtained on the evaluation of a new (COTS) commercial-off-the-shelf crystal oscillator under extreme temperatures. The device selected for evaluation comprised of a 10 MHz, PX-570-series crystal oscillator. This type of device was recently introduced by Vectron International and is designed as high temperature oscillator [1]. These parts are fabricated using proprietary manufacturing processes designed specifically for high temperature and harsh environment applications [1]. The oscillators have a wide continuous operating temperature range; making them ideal for use in military and aerospace industry, industrial process control, geophysical fields, avionics, and engine control. They exhibit low jitter and phase noise, consume little power, and are suited for high shock and vibration applications. The unique package design of these crystal oscillators offers a small ceramic package footprint, as well as providing both through-hole mounting and surface mount options.

  18. Comparison of Two Potassium-Filled Gas-Controlled Heat Pipes

    NASA Astrophysics Data System (ADS)

    Bertiglia, F.; Iacomini, L.; Moro, F.; Merlone, A.

    2015-12-01

    Calibration by comparison of platinum resistance thermometers and thermocouples requires transfer media capable of providing very good short-term temperature uniformity and temperature stability over a wide temperature range. This paper describes and compares the performance of two potassium-filled gas-controlled heat pipes (GCHP) for operation over the range from 420° C to 900° C. One of the heat pipes has been in operation for more than 10 years having been operated at temperature for thousands of hours, while the other was commissioned in 2010 following recently developed improvements to both the design, assembly, and filling processes. It was found that the two devices, despite differences in age, structure, number of wells, and filling processes, realized the same temperatures within the measurement uncertainty. The results show that the potassium-filled GCHP provides a durable and high-quality transfer medium for performing thermometer calibrations with very low uncertainties, over the difficult high-temperature range from 420° C to 900° C.

  19. Temperature offset control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, M.

    1987-07-28

    This patent describes a temperature offset control system for controlling the operation of both heating and air conditioning systems simultaneously contained within the same premises each of which is set by local thermostats to operate at an appropriate temperature, the offset control system comprising: a central control station having means for presetting an offset temperature range, means for sensing the temperature at a central location, means for comparing the sensed temperature with the offset temperature range, means responsive to the comparison for producing a control signal indicative of whether the sensed temperature is within the offset temperature range or beyondmore » the offset temperature range, and means for transmitting the control signal onto the standard energy lines servicing the premises; and a receiving station respectively associated with each heating and air conditioning system, the receiving stations each comprising means for receiving the same transmitted control signal from the energy lines, and switch means for controlling the energization of the respective system in response to the received control signal. The heating systems and associated local thermostat are disabled by the control signal when the control signal originates from a sensed temperature above the lower end of the offset temperature range. The air conditioning systems and associated thermostats are disabled by the same control signal when the control signal originates from a sensed temperature below the upper end of the offset temperature range.« less

  20. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  1. Fourier transform spectrometer for spectral emissivity measurement in the temperature range between 60 and 1500°C

    NASA Astrophysics Data System (ADS)

    Dai, Jingmin; Wang, Xinbei; Yuan, Guibin

    2005-01-01

    A new spectral emissivity measurement system has been developed at Harbin Institute of Technology (HIT) by using a Fourier transform infrared (FTIR) spectrometer. The spectral range between 0.6 and 25 µm was covered by a photovoltaic HgCdTe and a silicon photodiode detector. A SiC heater with a black hole was employed for heating the sample. The temperature of the sample can be controlled in a range between 60 and 1500°C with an error of less than 1°C. The system was calibrated against two high quality reference blackbodies: a low temperature heat-pipe blackbody operated in the temperature range between 60°C and 300°C and a high temperature blackbody with SiC heater operated in the temperature range between 300°C and 1500°C. Several tests were done for this new system. The estimated uncertainty of emissivity measurement is better than 3%.

  2. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  3. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  4. Novel AlInN/GaN integrated circuits operating up to 500 °C

    NASA Astrophysics Data System (ADS)

    Gaska, R.; Gaevski, M.; Jain, R.; Deng, J.; Islam, M.; Simin, G.; Shur, M.

    2015-11-01

    High electron concentration in 2DEG channel of AlInN/GaN devices is remarkably stable over a broad temperature range, enabling device operation above 500 °C. The developed IC technology is based on three key elements: (1) exceptional quality AlInN/GaN heterostructure with very high carrier concentration and mobility enables IC fast operation in a broad temperature range; (2) heterostructure field effect transistor approach t provides fully planar IC structure which is easy to scale and to combine with the other high temperature electronic components; (3) fabrication advancements including novel metallization scheme and high-K passivation/gate dielectrics enable high temperature operation. The feasibility of the developed technology was confirmed by fabrication and testing of the high temperature inverter and differential amplifier ICs using AlInN/GaN heterostructures. The developed ICs showed stable performance with unit-gain bandwidth above 1 MHz and internal response time 45 ns at temperatures as high as 500 °C.

  5. Laboratory evaluation of the Level TROLL 100 manufactured by In-Situ Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.; Fulford, Janice M.; Brooks, Myron H.

    2013-01-01

    The Level TROLL 100 manufactured by In-Situ Inc. was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s accuracy specifications for measuring pressure throughout the device’s operating temperature range. The Level TROLL 100 is a submersible, sealed, water-level sensing device with an operating pressure range equivalent to 0 to 30 feet of water over a temperature range of −20 to 50 degrees Celsius (°C). The device met the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of 0 to 50 °C. The device’s accuracy specifications did not meet established USGS requirements for primary water-stage sensors used in the operation of streamgages, but the Level TROLL 100 may be suitable for other hydrologic data-collection applications. As a note, the Level TROLL 100 is not designed to meet USGS accuracy requirements. Manufacturer accuracy specifications were evaluated, and the procedures followed and the results obtained are described in this report. USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the HIF.

  6. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  7. Temperature effects on metal-alumina-nitride-oxide-silicon memory operations

    NASA Astrophysics Data System (ADS)

    Padovani, Andrea; Larcher, Luca; Heh, Dawei; Bersuker, Gennadi; Della Marca, Vincenzo; Pavan, Paolo

    2010-05-01

    We present a detailed investigation of temperature effects on the operation of TaN/Al2O3/Si3N4/SiO2/Si (TANOS) memory devices. We show that not only retention but also program and erase operations are affected significantly by temperature. Using a large set of experimental data and simulations on a variety of TANOS stacks, we show that the temperature dependence of TANOS program and erase operations can be explained by accounting for that the alumina dielectric constant increases by 20%-25% over a 125 K temperature range.

  8. Prediction of operating parameters range for ammonia removal unit in coke making by-products

    NASA Astrophysics Data System (ADS)

    Tiwari, Hari Prakash; Kumar, Rajesh; Bhattacharjee, Arunabh; Lingam, Ravi Kumar; Roy, Abhijit; Tiwary, Shambhu

    2018-02-01

    Coke oven gas treatment plants are well equipped with distributed control systems (DCS) and therefore recording the vast amount of operational data efficiently. Analyzing the stored information manually from historians is practically impossible. In this study, data mining technique was examined for lowering the ammonia concentration in clean coke oven gas. Results confirm that concentration of ammonia in clean coke oven gas depends on the average PCDC temperature; gas scrubber temperatures stripped liquor flow, stripped liquor concentration and stripped liquor temperature. The optimum operating ranges of the above dependent parameters using data mining technique for lowering the concentration of ammonia is described in this paper.

  9. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less

  10. Fixation of virgin lunar surface soil

    NASA Technical Reports Server (NTRS)

    Conley, J. M.; Frazer, R.; Cannon, W. A.

    1972-01-01

    Two systems are shown to be suitable for fixing loose particulate soils with a polymer film, without visually detectable disturbance of the soil particle spatial relationships. A two-component system is described, which uses a gas monomer condensible at the soil temperature and a gas phase catalyst acting to polymerize the monomer. A one-component system using a monomer which polymerizes spontaneously on and within the top few millimeters of the soil is also considered. The two-component system employs a simpler apparatus, but it operates over a narrower temperature range (approximately -40 to -10 C). Other two-component systems were identified which may operate at soil temperatures as high as +100 C, at relatively narrow temperature ranges of approximately 30 C. The one-component system was demonstrated to operate successfully with initial soil temperatures from -70 C or lower to +150 C.

  11. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  12. Solar Power for Near Sun, High-Temperature Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  13. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  14. Effects of Temperature on the Performance and Stability of Recent COTS Silicon Oscillators

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2010-01-01

    Silicon oscillators have lately emerged to serve as potential replacement for crystal and ceramic resonators to provide timing and clock signals in electronic systems. These semiconductor-based devices, including those that are based on MEMS technology, are reported to be resistant to vibration and shock (an important criteria for systems to be deployed in space), immune to EMI, consume very low current, require few or no external components, and cover a wide range of frequency for analog and digital circuits. In this work, the performance of five recently-developed COTS silicon oscillator chips from different manufacturers was determined within a temperature range that extended beyond the individual specified range of operation. In addition, restart capability at extreme temperatures, i.e. power switched on while the device was soaking at extreme (hot or cold) temperature, and the effects of thermal cycling under a wide temperature range on the operation of these silicon oscillators were also investigated. Performance characterization of each oscillator was obtained in terms of its output frequency, duty cycle, rise and fall times, and supply current at specific test temperatures. The five different oscillators tested operated beyond their specified temperature region, with some displaying excellent stability throughout the whole test temperature range. Others experienced some instability at certain temperature test points as evidenced by fluctuation in the output frequency. Recovery from temperature-induced changes took place when excessive temperatures were removed. It should also be pointed out that all oscillators were able to restart at the extreme test temperatures and to withstand the limited thermal cycling without undergoing any significant changes in their characteristics. In addition, no physical damage was observed in the packaging material of any of these silicon oscillators due to extreme temperature exposure and thermal cycling. It is recommended that additional and more comprehensive testing under long term cycling be carried out to fully establish the reliability of these devices and to determine their suitability for use in space exploration missions under extreme temperature conditions.

  15. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.

    2014-12-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.

  16. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  17. Noncontact Temperature Measurements of Organic Layers in an Organic Light-Emitting Diode Using Wavenumber-Temperature Relations of Raman Bands

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takuro; Furukawa, Yukio

    2008-05-01

    We have measured the temperatures of the organic layers in operating organic light-emitting diodes (OLEDs) by Raman spectroscopy. The wavenumbers of the Raman bands due to N,N'-di-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) and copper phthalocyanine (CuPc) have been measured as a function of temperature in the range of 25-191 °C. The observed positions of strong bands around 1607 cm-1 (NPD) and 1531 cm-1 (CuPc) shifted downward linearly with increasing temperature in the ranges lower than 92 and 191 °C, respectively. We have determined the temperatures of the NPD and CuPc layers in an operating OLED from the wavenumber-temperature relations of these bands.

  18. Very low threshold-current temperature sensitivity in constricted double-heterojunction AlGaAs lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.; Gilbert, D. B.; Ettenberg, M.

    1981-01-01

    The temperature dependence of threshold currents in constricted double-heterojunction diode lasers with strong lateral mode confinement is found to be significantly milder than for other types of lasers. The threshold-current relative variations with ambient temperature are typically two to three times less than for other devices of CW-operation capability. Over the interval 10-70 C the threshold currents fit the empirical exponential law exp/(T2-T1)/T0/ with T0 values in the 240-375 C range in pulsed operation, and in the 200-310 C range in CW operation. The external differential quantum efficiency and the mode far-field pattern near threshold are virtually invariant with temperature. The possible causes of high-T0 behavior are analyzed, and a new phenomenon - temperature-dependent current focusing - is presented to explain the results.

  19. Thermal characteristics of the 12-gigahertz, 200-watt output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.

    1978-01-01

    A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.

  20. High operating temperature IR-modules with reduced pitch for SWaP sensitive applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Wendler, J.; Lutz, H.; Rutzinger, S.; Ihle, T.; Ziegler, J.; Rühlich, I.

    2011-06-01

    Low size, weight and power (SWaP) are the most critical requirements for portable thermal imagers like weapon sights or handheld observations devices. On the other hand due to current asymmetrical conflicts there are high requirements for the e/o performance of these devices providing the ability to distinguish between combatants and non-combatants in adequate ranges. Despite of all the success with uncooled technology, such requirements usually still require cooled detectors. AIM has developed a family of thermal weapon sights called HuntIR and RangIR based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The specific capability of these devices is a high ID range >1500m for tank targets being suitable in use as thermal sights for .50 cal rifles like the G82, targeting units for the 40mm AGL or for night observation. While such ranges sound far beyond the operational needs in urban operations, the a.m. specific needs of asymmetric warfare require sometimes even more range performance. High operating temperature (HOT) is introduced in the AIM MCT 640x512/15μm MWIR or LWIR modules for further reduction of cooler power consumption, shorter cooldown times and higher MTTF. As a key component to keep performance while further reducing SWaP AIM is developing a new cooled MCT IR-module with reduced pitch of 12 μm operating at a temperature >120 K. The module will provide full TV format with 640x480 elements sensitive in the MWIR spectral band. The paper will show recent results of AIM IR-modules with high operating temperature and the impact of design regarding the IR-module itself and thermal sights making use of it.

  1. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    DOEpatents

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  2. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less

  3. Low Temperature Performance of High Power Density DC/DC Converter Modules

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Hammond, Ahmad; Gerber, Scott; Patterson, Richard L.; Overton, Eric

    2001-01-01

    In this paper, two second-generation high power density DC/DC converter modules have been evaluated at low operating temperatures. The power rating of one converter (Module 1) was specified at 150 W with an input voltage range of 36 to 75 V and output voltage of 12 V. The other converter (Module 2) was specified at 100 W with the same input voltage range and an output voltage of 3.3 V. The converter modules were evaluated in terms of their performance as a function of operating temperature in the range of 25 to -140 C. The experimental procedures along with the experimental data obtained are presented and discussed in this paper.

  4. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Nelms, R. Mark; Johnson, R. Wayne; Askew, Ray

    1994-01-01

    Silicon based power devices can be used at 200 C. The device measurements made during this program show a predictable shift in device parameters with increasing temperature. No catastrophic or abrupt changes occurred in the parameters over the temperature range. As expected, the most dramatic change was the increase in leakage currents with increasing temperature. At 200 C the leakage current was in the milliAmp range but was still several orders of magnitude lower than the on-state current capabilities of the devices under test. This increase must be considered in the design of circuits using power transistors at elevated temperature. Three circuit topologies have been prototyped using MOSFET's and IGBT's. The circuits were designed using zero current or zero voltage switching techniques to eliminate or minimize hard switching of the power transistors. These circuits have functioned properly over the temperature range. One thousand hour life data have been collected for two power supplies with no failures and no significant change in operating efficiency. While additional reliability testing should be conducted, the feasibility of designing soft switched circuits for operation at 200 C has been successfully demonstrated.

  5. Monel-shot and screen regenerators

    NASA Technical Reports Server (NTRS)

    Browning, C. W.

    1974-01-01

    Monel has been found to be ideal material for matrix of regenerators operating in temperature range of 325 K to 50 K. Two best shapes are as spheres or as wire mesh. For given size of regenerator, spherical shots are preferable for low-temperature operation. At high temperatures, mesh would be superior by virtue of its lower flow resistance.

  6. Transport critical current measurement apparatus using liquid nitrogen cooled high-Tc superconducting magnet with variable temperature insert

    NASA Astrophysics Data System (ADS)

    Nishijima, G.; Kitaguchi, H.; Tshuchiya, Y.; Nishimura, T.; Kato, T.

    2013-01-01

    We have developed an apparatus to investigate transport critical current (Ic) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)2Sr2Ca2Cu3O10 (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating Ic measurement environment for a high-Tc superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  7. Evaluation of Fast Switching Diode 1N4448 Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Boomer, Kristen; Damron, James; Gray, Josh; Hammoud, Ahmad

    2017-01-01

    Electronic parts used in the design of power systems geared for space applications are often exposed to extreme temperatures and thermal cycling. Limited data exist on the performance and reliability of commercial-off-the-shelf (COTS) electronic parts at temperatures beyond the manufacturers specified operating temperature range. This report summarizes preliminary results obtained on the evaluation of automotive-grade, fast switching diodes over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these diodes and to determine suitability for use outside their recommended temperature limits.

  8. Solid oxide fuel cell operable over wide temperature range

    DOEpatents

    Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.

    2001-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  9. Performance of a catalytic reactor at simulated gas turbine combustor operating conditions

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.; Mroz, T. S.

    1975-01-01

    The performance of a catalytic reactor 12 cm in diameter and 17 cm long was evaluated at simulated gas turbine combustor operating conditions using premixed propane and air. Inlet temperatures of 600 and 800 K, pressures of 3 and 6 atm, and reference velocities of 9 to 30 m/s were tested. Data were taken for equivalence ratios as high as 0.43. The operating range was limited on the low-temperature side by very poor efficiency; the minimum exit temperature for good performance ranged from 1400 to 1600 K depending on inlet conditions. As exit temperatures were raised above this minimum, emissions of unburned hydrocarbons decreased, carbon monoxide emissions became generally less than 1 g CO/kg fuel, and nitrogen oxides were less than about 0.1 g NO2/kg fuel.

  10. Cryogenic Blackbody-Radiation Calibration Source

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; Daryabeigi, Kamran

    1993-01-01

    Operating temperatures range from ambient down to minus 100 degrees C. V-grooved front face of source body blackened and recessed in black sleeve. Semiairtight chamber that houses source purged with dry nitrogen gas to prevent formation of dew or frost at low operating temperature.

  11. Room temperature single-photon detectors for high bit rate quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  12. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  13. System for controlling the operating temperature of a fuel cell

    DOEpatents

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  14. Lithium Batteries and Supercapacitors Capable of Operating at Low Temperatures for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2012-01-01

    Demonstrated improved performance with wide operating temperature electrolytes containing ester co - solvents (i.e., methyl propionate and ethyl butyrate) in a number of prototype cells: center dot Successfully scaled up low temperature technology to 12 Ah size prismatic Li - ion cells (Quallion, LCC), and demonstrated good performance down to - 60 o C. center dot Demonstrated wide operating temperature range performance ( - 60 o to +60 o C) in A123 Systems LiFePO 4 - based lithium - ion cells containing methyl butyrate - based low temperature electrolytes. These systems were also demonstrated to have excellent cycle life performance at ambient temperatures, as well as the ability to be cycled up to high temperatures.

  15. Development of thermal control methods for specialized components and scientific instruments at very low temperatures (follow-on)

    NASA Technical Reports Server (NTRS)

    Wright, J. P.; Wilson, D. E.

    1976-01-01

    Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.

  16. Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature

    NASA Astrophysics Data System (ADS)

    Hernández-Santana, Senaida; Gogolin, Christian; Cirac, J. Ignacio; Acín, Antonio

    2017-09-01

    We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α ≥2 D , correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.

  17. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  18. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    DOEpatents

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  19. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  20. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  1. 49 CFR 213.343 - Continuous welded rail (CWR).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and...) Designation of a desired rail installation temperature range for the geographic area in which the CWR is... installation temperature range when adjusting CWR. (b) Rail anchoring or fastening requirements that will...

  2. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  3. Characterization of 6H-SiC JFET Integrated Circuits Over A Broad Temperature Range from -150 C to +500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Krasowski, Michael J.; Chen, Liang-Yu; Prokop, Norman F.

    2009-01-01

    The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 C to +500 C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.

  4. Performance of High-Speed PWM Control Chips at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard; Overton, Eric

    2001-01-01

    The operation of power electronic systems at cryogenic temperatures is anticipated in many NASA space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. As part of the NASA Glenn Low Temperature Electronics Program, several commercial high-speed Pulse Width Modulation (PWM) chips have been characterized in terms of their performance as a function of temperature in the range of 25 to -196 C (liquid nitrogen). These chips ranged in their electrical characteristics, modes of control, packaging options, and applications. The experimental procedures along with the experimental data obtained on the investigated chips are presented and discussed.

  5. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  6. Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.

  7. 40 CFR Table 4 to Subpart Xxxx of... - Operating Limits for Puncture Sealant Application Control Devices

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test. 2. Carbon adsorber (regenerative) to which puncture sealant application spray booth emissions are ducted a. Maintain the total regeneration mass, volumetric flow, and carbon bed temperature at the operating range established during the performance test.b. Reestablish the carbon bed temperature...

  8. 29 CFR 1926.407 - Hazardous (classified) locations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Electrical Code, lists or defines hazardous gases, vapors, and dusts by “Groups” characterized by their... the class, group, and operating temperature or temperature range, based on operation in a 40-degree C... be marked to indicate the group. (C) Fixed general-purpose equipment in Class I locations, other than...

  9. 29 CFR 1926.407 - Hazardous (classified) locations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Electrical Code, lists or defines hazardous gases, vapors, and dusts by “Groups” characterized by their... the class, group, and operating temperature or temperature range, based on operation in a 40-degree C... be marked to indicate the group. (C) Fixed general-purpose equipment in Class I locations, other than...

  10. A presently available energy supply for high temperature environment (550-1000 deg F)

    NASA Technical Reports Server (NTRS)

    Jacquelin, J.; Vic, R. L.

    1981-01-01

    Sodium-sulfur cells attractive electric energy storage device for long service, are discussed. The state of art is given. More than 200 Wh/kg cells were tested. The known range of working temperature is 550 to 750 F. Self-discharge is quite nonexistent for months in operation. The technical basis for expecting an operating range up to 1,000 F under a high pressure atmosphere is given. Possibilities to adapt size and characteristics to particular interplanetary missions are discussed.

  11. Investigation of high pressure steaming (HPS) as a thermal treatment for lipid extraction from Chlorella vulgaris.

    PubMed

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2014-07-01

    Biofuels from algae are considered a technically viable energy source that overcomes several of the problems present in previous generations of biofuels. In this research high pressure steaming (HPS) was studied as a hydrothermal pre-treatment for extraction of lipids from Chlorella vulgaris, and analysis by response surface methodology allowed finding operational points in terms of target temperature and algae concentration for high lipid and glucose yields. Within the range covered by these experiments the best conditions for high bio-crude yield are temperatures higher than 174°C and low biomass concentrations (<5 g/L). For high glucose yield there are two suitable operational ranges, either low temperatures (<105°C) and low biomass concentrations (<4 g/L); or low temperatures (<105°C) and high biomass concentrations (<110 g/L). High pressure steaming is a good hydrothermal treatment for lipid recovery and does not significantly change the fatty acids profile for the range of temperatures studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    PubMed

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  13. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  14. Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy

    NASA Astrophysics Data System (ADS)

    Tian, Chenggang; Xu, Ling; Cui, Chuanyong; Sun, Xiaofeng

    2015-10-01

    In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.

  15. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  16. Spectroscopic results in helium from the NASA Lewis Bumpy Torus plasma. [ion heating by Penning discharge in confinement geometry

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    Spectroscopic measurements were carried out on the NASA Lewis Bumpy Torus experiment in which a steady state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. Electron temperatures in pure helium are measured from the ratio of spectral line intensities. Measured electron temperatures range from 10 to 100 eV. Relative electron densities are also measured over the range of operating conditions. Radial profiles of temperature and relative density are measured in the two basic modes of operation of the device called the low and high pressure modes. The electron temperatures are used to estimate particle confinement times based on a steady state particle balance.

  17. High Temperature Composite Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Jaskowiak, Martha H.

    2002-01-01

    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  18. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  19. Laboratory evaluation of the pressure water level data logger manufactured by Infinities USA, Inc.: results of pressure and temperature tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2015-01-01

    The Pressure Water Level Data Logger manufactured by Infinities USA, Inc., was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility for conformance with the manufacturer’s stated accuracy specifications for measuring pressure throughout the device’s operating temperature range and with the USGS accuracy requirements for water-level measurements. The Pressure Water Level Data Logger (Infinities Logger) is a submersible, sealed, water-level sensing device with an operating pressure range of 0 to 11.5 feet of water over a temperature range of −18 to 49 degrees Celsius. For the pressure range tested, the manufacturer’s accuracy specification of 0.1 percent of full scale pressure equals an accuracy of ±0.138 inch of water. Three Infinities Loggers were evaluated, and the testing procedures followed and results obtained are described in this report. On the basis of the test results, the device is poorly compensated for temperature. For the three Infinities Loggers, the mean pressure differences varied from –4.04 to 5.32 inches of water and were not within the manufacturer’s accuracy specification for pressure measurements made within the temperature-compensated range. The device did not meet the manufacturer’s stated accuracy specifications for pressure within its temperature-compensated operating range of –18 to 49 degrees Celsius or the USGS accuracy requirements of no more than 0.12 inch of water (0.01 foot of water) or 0.10 percent of reading, whichever is larger. The USGS accuracy requirements are routinely examined and reported when instruments are evaluated at the Hydrologic Instrumentation Facility. The estimated combined measurement uncertainty for the pressure cycling test was ±0.139 inch of water, and for temperature, the cycling test was ±0.127 inch of water for the three Infinities Loggers.

  20. Performance characterization of Lithium-ion cells possessing carbon-carbon composite-based anodes capable of operating over a wide temperature range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Hossain, S.; Ratnakumar, B. V.; Loutfy, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.; Narayanan, S. R.

    2004-01-01

    NASA has interest in secondary energy storage batteries that display high specific energy, high energy density, long life characteristics, and perform well over a wide range of temperatures, in order to enable a number of future applications.

  1. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  2. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  3. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  4. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  5. 40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...

  6. Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad

    2018-01-01

    Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.

  7. Kernel reconstruction methods for Doppler broadening - Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    NASA Astrophysics Data System (ADS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-04-01

    This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.

  8. Measurements of heat generation in prismatic Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Kaiwei; Unsworth, Grant; Li, Xianguo

    2014-09-01

    An accurate understanding of the characteristics of battery heat generation is essential to the development and success of thermal management systems for electric vehicles. In this study, a calorimeter capable of measuring the heat generation rates of a prismatic battery is developed and verified by using a controllable electric heater. The heat generation rates of a prismatic A123 LiFePO4 battery is measured for discharge rates ranging from 0.25C to 3C and operating temperature ranging from -10 °C to 40 °C. At low rates of discharge the heat generation is not significant, even becoming endothermic at the battery operating temperatures of 30 °C and 40 °C. Heat of mixing is observed to be a non-negligible component of total heat generation at discharge rates as low as 0.25C for all tested battery operating temperatures. A double plateau in battery discharge curve is observed for operating temperatures of 30 °C and 40 °C. The developed experimental facility can be used for the characterization of heat generation for any prismatic battery, regardless of chemistries.

  9. Room temperature solid-state quantum emitters in the telecom range.

    PubMed

    Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo

    2018-03-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.

  10. Operational and theoretical temperature considerations in a Penning surface plasma source

    NASA Astrophysics Data System (ADS)

    Faircloth, D. C.; Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.

    2015-04-01

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  11. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  12. Low Temperature Testing of a Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital (A/D) Converter

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammond, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.; Overton, Eric; Ghaffarian, Reza; Ramesham, Rajeshuni; Agarwal, Shri G.

    2001-01-01

    Power processing electronic systems, data acquiring probes, and signal conditioning circuits are required to operate reliably under harsh environments in many of NASA:s missions. The environment of the space mission as well as the operational requirements of some of the electronic systems, such as infrared-based satellite or telescopic observation stations where cryogenics are involved, dictate the utilization of electronics that can operate efficiently and reliably at low temperatures. In this work, radiation-hard CMOS 8-bit flash A/D converters were characterized in terms of voltage conversion and offset in the temperature range of +25 to -190 C. Static and dynamic supply currents, ladder resistance, and gain and offset errors were also obtained in the temperature range of +125 to -190 C. The effect of thermal cycling on these properties for a total of ten cycles between +80 and - 150 C was also determined. The experimental procedure along with the data obtained are reported and discussed in this paper.

  13. Charge carrier localization effects on the quantum efficiency and operating temperature range of InAs{sub x}P{sub 1−x}/InP quantum well detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashisht, Geetanjali, E-mail: geetanjali@rrcat.gov.in; Dixit, V. K., E-mail: dixit@rrcat.gov.in; Porwal, S.

    2016-03-07

    The effect of charge carrier localization resulting in “S-shaped” temperature dependence of the photoluminescence peak energy of InAs{sub x}P{sub 1−x}/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energymore » of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAs{sub x}P{sub 1−x}/InP QW detectors.« less

  14. Lithium-Ion Electrolytes Containing Phosphorous-Based, Flame-Retardant Additives

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Smith, Kiah A.; Bugga, Ratnakumar V.; Prakash, G. K. Surya

    2010-01-01

    Future NASA missions aimed at exploring Mars, the Moon, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications. In addition, many of these applications will require improved safety, due to their use by humans. Currently, the state-of-the-art lithium-ion (Li-ion) system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, abuse conditions can often lead to cell rupture and fire. The nature of the electrolyte can greatly affect the propensity of the cell/battery to catch fire, given the flammability of the organic solvents used within. Li-ion electrolytes have been developed that contain a flame-retardant additive in conjunction with fluorinated co-solvents to provide a safe system with a wide operating temperature range. Previous work incorporated fluorinated esters into multi-component electrolyte formulations, which were demonstrated to cover a temperature range from 60 to +60 C. This work was described in Fluoroester Co-Solvents for Low-Temperature Li+ Cells (NPO-44626), NASA Tech Briefs, Vol. 33, No. 9 (September 2009), p. 37; and Optimized Li-Ion Electrolytes Con tain ing Fluorinated Ester Co-Solvents (NPO-45824), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 48. Other previous work improved the safety characteristics of the electrolytes by adding flame-retardant additives such as triphenyl phosphate (TPhPh), tri-butyl phosphate (TBuPh), triethyl phosphate (TEtPh), and bis(2,2,2-trifluoroethyl) methyl phosphonate (TFMPo). The current work involves further investigation of other types of flame-retardant additives, including tris(2,2,2-trifluoroethyl) phosphate, tris(2,2,2-trifluoroethyl) phosphite, triphenylphosphite, diethyl ethylphosphonate, and diethyl phenylphosphonate added to an electrolyte composition intended for wide operating temperatures. In general, many of the formulations investigated in this study displayed good performance over a wide temperature range, good cycle life characteristics, and are expected to have improved safety characteristics, such as low flammability. Of the electrolytes studied, 1.0 M LiPF6 in EC+EMC+DEP (20:75:5 v/v %) and 1.0 M LiPF6 in EC+EMC+DPP (20:75:5 v/v %) displayed the best operation at low temperatures, whereas the electrolyte containing triphenylphosphite displayed the best cycle life performance compared to the baseline solution. It is anticipated that further improvements can be made to the life characteristics with the incorporation of a SET promoters (such as VC, vinylene carbonate), which will likely inhibit the decomposition of the flame-retardant additives.

  15. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  16. Thales Cryogenics rotary cryocoolers for HOT applications

    NASA Astrophysics Data System (ADS)

    Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien

    2012-06-01

    Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.

  17. A nickel metal hydride battery for electric vehicles

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.; Ross, J.

    1993-04-01

    An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  18. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-08-01

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  19. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  20. Low Temperature Characterization of Ceramic and Film Power Capacitors

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Overton, Eric

    1996-01-01

    Among the key requirements for advanced electronic systems is the ability to withstand harsh environments while maintaining reliable and efficient operation. Exposures to low temperature as well as high temperature constitute such stresses. Applications where low temperatures are encountered include deep space missions, medical imaging equipment, and cryogenic instrumentation. Efforts were taken to design and develop power capacitors capable of wide temperature operation. In this work, ceramic and film power capacitors were developed and characterized as a function of temperature from 20 C to -185 C in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The manuscript presents the results that indicate good operational characteristic behavior and stability of the components tested at low temperatures.

  1. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    DOE PAGES

    Ducru, Pablo; Josey, Colin; Dibert, Karia; ...

    2017-01-25

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less

  2. Development of the III-V Barrier PhotoDetector Heterostructures for Spectral Range Above 10 microns

    DTIC Science & Technology

    2016-02-14

    Figure 5. Quantum efficiency spectra (a) and temperature dependence of dark current (b) in heterostructures consisting of bulk InAsSb absorber and...compositions covering the range from 20 to 65 %. The solved challenges include selection of the buffer grade composition rate and growth temperature ...absorbers can operate at elevated temperatures and with faster response compared to those in detectors with n-type absorbers. It was important to

  3. Cr-doped scandium borate laser

    DOEpatents

    Chai, Bruce H.; Lai, Shui T.; Long, Margaret N.

    1989-01-01

    A broadly wavelength-tunable laser is provided which comprises as the laser medium a single crystal of MBO.sub.3 :Cr.sup.3+, where M is selected from the group of Sc, In and Lu. The laser may be operated over a broad temperature range from cryogenic temperatures to elevated temperatures. Emission is in a spectral range from red to infrared, and the laser is useful in the fields of defense, communications, isotope separation, photochemistry, etc.

  4. Note: Temperature effects in the modified Howland current source for electrical bioimpedance spectroscopy.

    PubMed

    Fernandez Santos, S; Bertemes-Filho, P

    2017-07-01

    The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.

  5. Note: Temperature effects in the modified Howland current source for electrical bioimpedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernandez Santos, S.; Bertemes-Filho, P.

    2017-07-01

    The aim of this study is to show how the modified Howland current source (MHCS) is affected by temperature changes. The source has been tested in a temperature range from 20 to 70 °C and frequency range from 100 Hz to 1 MHz. Parameters like output current, output impedance, total harmonic distortion, and oscillation have been measured. The measurements were made inside a temperature controlled environment. It was showed that the MHCS is stable at temperatures below 70 °C. Operational amplifiers with a low temperature drift and matching resistor should be carefully considered in order to prevent oscillations at high temperatures.

  6. Room temperature solid-state quantum emitters in the telecom range

    PubMed Central

    Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam

    2018-01-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. PMID:29670945

  7. Design study of shaft face seal with self-acting lift augmentation. 4: Force balance

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Zuk, J.; Johnson, R. L.

    1972-01-01

    A method for predicting the operating film thickness of self-acting seals is described. The analysis considers a 16.76-cm mean diameter seal that is typical of large gas turbines for aircraft. Four design points were selected to cover a wide range of operation for advanced engines. This operating range covered sliding speeds of 61 to 153 m/sec, sealed pressures of 45 to 217 N/sq cm abs, and gas temperatures of 311 to 977 K. The force balance analysis revealed that the seal operated without contact over the operating range with gas film thicknesses ranging between 0.00046 to 0.00119 cm, and with gas leakage rates between 0.01 to 0.39 scmm.

  8. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  9. Atmospheric simulator and calibration system for remote sensing radiometers

    NASA Technical Reports Server (NTRS)

    Holland, J. A.

    1983-01-01

    A system for calibrating the MAPS (measurement of air pollution from satellites) instruments was developed. The design of the system provides a capability for simulating a broad range of radiant energy source temperatures and a broad range of atmospheric pressures, temperatures, and pollutant concentrations for a single slab atmosphere. The system design and the system operation are described.

  10. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  11. Mariner Jupiter/Saturn LCSSE thruster/valve assembly and injection propulsion unit rocket engine assemblies: 0.2-lbf T/VA development and margin limit test report

    NASA Technical Reports Server (NTRS)

    Clark, E. C.

    1975-01-01

    Thruster valve assemblies (T/VA's) were subjected to the development test program for the combined JPL Low-Cost Standardized Spacecraft Equipment (LCSSE) and Mariner Jupiter/Saturn '77 spacecraft (MJS) programs. The development test program was designed to achieve the following program goals: (1) demonstrate T/VA design compliance with JPL Specifications, (2) to conduct a complete performance Cf map of the T/VA over the full operating range of environment, (3) demonstrate T/VA life capability and characteristics of life margin for steady-state limit cycle and momentum wheel desaturation duty cycles, (4) verification of structural design capability, and (5) generate a computerized performance model capable of predicting T/VA operation over pressures ranging from 420 to 70 psia, propellant temperatures ranging from 140 F to 40 F, pulse widths of 0.008 to steady-state operation with unlimited duty cycle capability, and finally predict the transient performance associated with reactor heatup during any given duty cycle, start temperature, feed pressure, and propellant temperature conditions.

  12. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    One of the important issues in the lunar base architecture is the design of a Thermal Control System (TCS) to reject the low temperature heat from the base. The TCS ensures that the base and all components inside are maintained within the operating temperature range. A significant portion of the total mass of the TCS is due to the radiator. Shading the radiation from the sun and the hot lunar soil could decrease the radiator operating temperature significantly. Heat pumps have been in use for terrestrial applications. To optimize the mass of the heat pump augmented TCS, all promising options have to be evaluated and compared. Careful attention is given to optimizing system operating parameters, working fluids, and component masses. The systems are modeled for full load operation.

  13. Simulation of SRAM SEU Sensitivity at Reduced Operating Temperatures

    NASA Technical Reports Server (NTRS)

    Sanathanamurthy, S.; Ramachandran, V.; Alles, M. L.; Reed, R. A.; Massengill, L. W.; Raman, A.; Turowski, M.; Mantooth, A.; Woods, B.; Barlow, M.; hide

    2009-01-01

    A new NanoTCAD-to-Spectre interface is applied to perform mixed-mode SEU simulations of an SRAM cell. Results using newly calibrated TCAD cold temperature substrate mobility models, and BSIM3 compact models extracted explicitly for the cold temperature designs, indicate a 33% reduction in SEU threshold for the range of temperatures simulated.

  14. Temperature in a J47-25 Turbojet-engine Combustor and Turbine Sections During Steady-state and Transient Operation in a Sea-level Test Stand

    NASA Technical Reports Server (NTRS)

    Morse, C R; Johnston, J R

    1955-01-01

    In order to determine the conditions of engine operation causing the most severe thermal stresses in the hot parts of a turbojet engine, a J47-25 engine was instrumented with thermocouples and operated to obtain engine material temperatures under steady-state and transient conditions. Temperatures measured during rated take-off conditions of nozzle guide vanes downstream of a single combustor differed on the order of 400 degrees F depending on the relation of the blades position to the highest temperature zone of the burner. Under the same operation conditions, measured midspan temperatures in a nozzle guide vane in the highest temperature zone of a combustor wake ranged from approximately 1670 degrees F at leading and trailing edges to 1340 degrees F at midchord on the convex side of the blade. The maximum measured nozzle-guide-vane temperature of 1920degrees at the trailing edge occurred during a rapid acceleration from idle to rated take-off speed following which the tail-pipe gas temperature exceeded maximum allowable temperature by 125 degrees F.

  15. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  16. Single mode, short cavity, Pb-salt diode lasers operating in the 5, 10, and 30-microns spectral regions

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1985-01-01

    Pb-salt diode lasers are being used as frequency-tunable infrared sources in high resolution spectroscopy and heterodyne detection applications. Recent advances in short cavity, stripe-geometry laser configurations have led to significant increases in maximum CW operating temperature, single mode operation, and increased single mode tuning range. This paper describes short cavity, stripe geometry lasers operating in the 5, 10, and 30-microns spectral regions, with single mode tuning ranges of over 6/cm.

  17. An application of randomization for detecting evidence of thermoregulation in timber rattlesnakes (Crotalus horridus) from northwest Arkansas.

    PubMed

    Wills, C A; Beaupre, S J

    2000-01-01

    Most reptiles maintain their body temperatures within normal functional ranges through behavioral thermoregulation. Under some circumstances, thermoregulation may be a time-consuming activity, and thermoregulatory needs may impose significant constraints on the activities of ectotherms. A necessary (but not sufficient) condition for demonstrating thermoregulation is a difference between observed body temperature distributions and available operative temperature distributions. We examined operative and body temperature distributions of the timber rattlesnake (Crotalus horridus) for evidence of thermoregulation. Specifically, we compared the distribution of available operative temperatures in the environment to snake body temperatures during August and September. Operative temperatures were measured using 48 physical models that were randomly deployed in the environment and connected to a Campbell CR-21X data logger. Body temperatures (n=1,803) were recorded from 12 radiotagged snakes using temperature-sensitive telemetry. Separate randomization tests were conducted for each hour of day within each month. Actual body temperature distributions differed significantly from operative temperature distributions at most time points considered. Thus, C. horridus exhibits a necessary (but not sufficient) condition for demonstrating thermoregulation. However, unlike some desert ectotherms, we found no compelling evidence for thermal constraints on surface activity. Randomization may prove to be a powerful technique for drawing inferences about thermoregulation without reliance on studies of laboratory thermal preference.

  18. Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW

    NASA Technical Reports Server (NTRS)

    SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.

    2001-01-01

    A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.

  19. Temperature environment for 9975 packages stored in KAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. Themore » long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.« less

  20. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  1. Electrically injected GaAsBi/GaAs single quantum well laser diodes

    NASA Astrophysics Data System (ADS)

    Liu, Juanjuan; Pan, Wenwu; Wu, Xiaoyan; Cao, Chunfang; Li, Yaoyao; Chen, Xiren; Zhang, Yanchao; Wang, Lijuan; Yan, Jinyi; Zhang, Dongliang; Song, Yuxin; Shao, Jun; Wang, Shumin

    2017-11-01

    We present electrically injected GaAs/GaAsBi single quantum well laser diodes (LDs) emitting at a record long wavelength of 1141 nm at room temperature grown by molecular beam epitaxy. The LDs have excellent device performances with internal quantum efficiency of 86%, internal loss of 10 cm-1 and transparency current density of 196 A/cm2. The LDs can operate under continuous-wave mode up to 273 K. The characteristic temperature are extracted to be 125 K in the temperature range of 77˜150 K, and reduced to 90 K in the range of 150˜273 K. The temperature coefficient of 0.3 nm/K is extracted in the temperature range of 77˜273 K.

  2. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    NASA Astrophysics Data System (ADS)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  3. Joining of Silicon Carbide-Based Ceramics for MEMS-LDI Fuel Injector Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2012-01-01

    Deliver the benefits of ceramics in turbine engine applications- increased efficiency, performance, horsepower, range, operating temperature, and payload and reduced cooling and operation and support costs for future engines.

  4. Combustion interaction with radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Rosenberg, S. D.; Jassowski, D. M.; Barlow, R.; Lucht, R.; Mccarty, K.

    1990-01-01

    Over 15 hours of thruster operation at temperatures between 1916 and 2246 C without failure or erosion has been demonstrated using iridium-coated rhenium chamber materials with nitrogen tetroxide/monomethylhydrazine propellants operating over a mixture ratio range of 1.60-2.05. Research is now under way to provide a basic understanding of the mechanisms which make high-temperature operation possible and to extend the capability to a wider range of conditions, including other propellant combinations and chamber materials. Techniques have been demonstrated for studying surface fracture phenomena. These include surface Raman and Auger for study of oxide formation, surface Raman and X-ray diffraction to determine the oxide phase, Auger to study oxide stoichiometry, and sputter Auger to study interdiffusion of alloy species.

  5. Note: Wide-operating-range control for thermoelectric coolers.

    PubMed

    Peronio, P; Labanca, I; Ghioni, M; Rech, I

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  6. Note: Wide-operating-range control for thermoelectric coolers

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  7. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  8. Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.

  9. Temperature stable oxide-confined 850-nm VCSELs operating at bit rates up to 25 Gbit/s at 150°C

    NASA Astrophysics Data System (ADS)

    Ledentsov, N.; Agustin, M.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.

    2018-02-01

    New applications in industrial, automotive and datacom applications require vertical-cavity surface-emitting lasers (VCSELs) operating at very high ambient temperatures at ultrahigh speed. We discuss issues related to high temperature performance of the VCSELs including temperature response and spectral properties. The influence of the gain-to-cavity wavelength detuning on temperature performance and spectral width of the VCSELs is discussed. Performance of the oxide-confined 850 nm VCSELs with increased temperature stability capable of operating at bit rates up to 25 Gbit/s at heat sink temperature of 150°C and 35Gbit/s at 130°C. Furthermore, opposite to previous studies of VCSELs with large gain-to-cavity detuning, which demonstrated strongly increased spectral width and a strong redistribution of the mode intensities upon current increase. VCSELs demonstrated in this work show good reproducibility of a narrow spectrum in a wide range of currents and temperatures. Such performance strongly improves the transmission distance over multi-mode fiber and can reduce mode partition noise during high speed operation.

  10. Nuclear fuels for very high temperature applications

    NASA Astrophysics Data System (ADS)

    Lundberg, L. B.; Hobbins, R. R.

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  11. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  12. Comparison of microtweezers based on three lateral thermal actuator configurations

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-06-01

    Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhixiao; Mukherjee, Partha P.

    We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less

  14. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.

    PubMed

    Liu, Zhixiao; Mukherjee, Partha P

    2017-02-15

    The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.

  15. Precision capacitor has improved temperature and operational stability

    NASA Technical Reports Server (NTRS)

    Brookshier, W. K.; Lewis, R. N.

    1967-01-01

    Vacuum dielectric capacitor is fabricated from materials with very low temperature coefficients of expansion. This precision capacitor in the 1000-2000 picofarad range has a near-zero temperature coefficient of capacitance, eliminates ion chamber action caused by air ionization in the dielectric, and minimizes electromagnetic field charging effects.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less

  17. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  18. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  19. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  20. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  1. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this temperature range are satisfied. Range percent Si 0.10-0.50 Maximum S 0.035 P 0.035 Ni 0.80 Cr 0... service temperature A-203, 21/4 percent, Ni, normalized −80 °F. for Grade A.−75 °F. for Grade B. A-203, 31/2 percent, Ni, normalized −130 °F. for Grade D.−110 °F. for Grade E. 5 percent Ni, normalized...

  2. 46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this temperature range are satisfied. Range percent Si 0.10-0.50 Maximum S 0.035 P 0.035 Ni 0.80 Cr 0... service temperature A-203, 21/4 percent, Ni, normalized −80 °F. for Grade A.−75 °F. for Grade B. A-203, 31/2 percent, Ni, normalized −130 °F. for Grade D.−110 °F. for Grade E. 5 percent Ni, normalized...

  3. Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.

    PubMed

    Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul

    2017-08-31

    In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.

  4. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    NASA Astrophysics Data System (ADS)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and experimentally demonstrated an efficient polarization dependent plasmonic toroid switch operating at THz frequency. In summary, we have successfully designed, analytically and numerically investigated novel THz emitters with the advantages of wide range tunability, compactness, room temperature operation, fast modulation and the possibility for monolithic integration, which are the most sought after properties in the new generation THz sources.

  5. A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics

    NASA Astrophysics Data System (ADS)

    Filla, B. James

    1997-07-01

    A one-sided very-high-temperature guarded hot plate has been built to measure thermal conductivity of monolithic ceramics, ceramic composites, thermal barrier coatings, functional graded materials, and high-temperature metal alloys. It is an absolute, steady-state measurement device with an operational temperature range of 400-1400 K. Measurements are made in an atmosphere of low-pressure helium. Specimens examined in this apparatus are 70 mm in diameter, with thicknesses ranging between 1 and 8 mm. Optimal specimen thermal conductivities fall in the range of 0.5-30 W/(mK). Internal heated components are composed entirely of high-purity aluminum oxide, boron nitride, beryllium oxide, and fibrous alumina insulation board. Pure nickel and thermocouple-grade platinum-based alloys are the only metals used in the system. Apparatus design, modeling, and operation are described, along with the methods of data analysis that are unique to this system. An analysis of measurement uncertainty yields a combined measurement uncertainty of ±5%. Experimental measurements on several materials are presented to illustrate the precision and bias of the apparatus.

  6. Cryogenic Field Measurement of Pr2Fe14B Undulator and Performance Enhancement Options at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, T.; Chubar, O.; Harder, David A.

    2009-09-27

    Short period (14.5mm) hybrid undulator arrays composed of Praseodymium Iron Boron (Pr{sub 2}Fe{sub 14}B) magnets (CR53, NEOMAX, Inc.) and vanadium permendur poles have been fabricated at Brookhaven National Laboratory. Unlike Neodymium Iron Boron (Nd{sub 2}Fe{sub 14}B) magnets which exhibit spin reorientation at temperatures below 150K, PrFeB arrays monotonically increase performance with lower operating temperature. It opens up the posibility for use in operating a cryo-permanent magnet undulator (CPMU) in the range of 40K to 60K where very efficient cryocoolers are available. Magnetic flux density profiles were measured at various temperature ranges from room temperature down to liquid helium (LHe) usingmore » the Vertical Testing Facility (VTF) at the National Snchrotron Light Source-II (NSLS-II). Temperature variations of phase error have been characterized. In addition, we examined the use of textured Dysprosium (Dy) poles to replace permendur poles to obtain further improvement in performance.« less

  7. Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants

    NASA Astrophysics Data System (ADS)

    Liu, T. L.; Liu, W. R.; Xu, X. H.

    2017-11-01

    Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.

  8. High temperature dynamic engine seal technology development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.

    1992-01-01

    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  9. Evaluation of centrifugal compressor performance with water injection

    NASA Technical Reports Server (NTRS)

    Beede, William L; Hamrick, Joseph T; Withee, Joseph R , Jr

    1951-01-01

    The effects of water injection on a compressor are presented. To determine the effects of varying water-air ratio, the compressor was operated at a constant equivalent impeller speed over a range of water-air ratios and weight flows. Operation over a range of weight flows at one water-air ratio and two inlet air temperatures was carried out to obtain an indication of the effects of varying inlet air temperature. Beyond a water-air ratio of 0.03 there was no increase in maximum air-weight flow, a negligible rise in peak total-pressure ratio, and a decrease in peak adiabatic efficiency. An increase in inlet air temperature resulted in an increase in the magnitude of evaporation. An analysis of data indicated that the magnitude of evaporation within the compressor impeller was small.

  10. Development of high frequency and wide bandwidth Johnson noise thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law abovemore » T ∼ 100 K.« less

  11. Technique for temperature compensation of eddy-current proximity probes

    NASA Technical Reports Server (NTRS)

    Masters, Robert M.

    1989-01-01

    Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.

  12. The procedure for determining the residual life of high-temperature aggregates

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. S.; Prihodko, E. V.; Kinzhibekova, A. K.; Karmanov, A. E.

    2018-01-01

    One of the main reasons for the withdrawal of high-temperature aggregates for repairs is the destruction of enclosing structures due to the occurrence of temperature stresses. A wide range of refractory materials used, a large number of product names, a difference in the operation of even the same aggregates makes it impossible to apply general principles for determining the residual resource of high-temperature aggregates, which is based, as a rule, on the determination of temperature stresses. In the article there is suggested a technique based on the method of simulation modeling, allowing to estimate the remaining resource and reliability of the operating equipment. There are given data on the calculation of these indicators for a 25-ton steel-casting ladle. The values obtained make it possible to evaluate the rationality of the further operation of the high-temperature unit by the condition of reliability of the enclosing structures.

  13. Thermal modeling of a Ni-H2 battery cell

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Dewitt, K. J.; Keith, T. G.

    1991-01-01

    The nickel-hydrogen secondary battery has many desirable features which make it attractive for satellite power systems. It can provide a significant improvement over the energy density of present spacecraft nickel-cadnium batteries, combined with longer life, tolerance to overcharge and possibility of state-of-charge indication. However, to realize these advantages, accurate thermal modeling of nickel-hydrogen cells is required in order to properly design the battery pack so that it operates within a specified temperature range during the operation. Maintenance of a low operating temperature and a uniform temperature profile within the cell will yield better reliability, improved cycle life and better charge/discharge efficiencies. This research has the objective of developing and testing a thermal model which can be used to characterize battery operation. Primarily, temperature distribution with the heat generation rates as a function of position and time will be evaluated for a Ni-H2 cell in the three operating modes: (1) charge cycle, (2) discharge cycle, and (3) overcharge condition, if applicable. Variables to be examined include charging current, discharge rates, state of charge, pressure and temperature. Once the thermal model has been developed, this resulting model will predict the actual operating temperature and temperature gradient for the specific cell geometry to be used.

  14. Alcohol synthesis in a high-temperature slurry reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S.

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system canmore » be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.« less

  15. Low Temperature Double-layer Capacitors with Improved Energy Density: An Overview of Recent Development Efforts

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb

    2012-01-01

    Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.

  16. Infrared emission spectra from operating elastohydrodynamic sliding contacts

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.

    1976-01-01

    Infrared emission spectra from an operating EHD sliding contact were obtained through a diamond window for an aromatic polymer solute present in equal concentration in four different fluids. Three different temperature ranges, three different loads, and three different speeds for every load were examined. Very sensitive Fourier spectrophotometric (Interferometric) techniques were employed. Band Intensities and band intensity ratios found to depend both on the operating parameters and on the fluid. Fluid film and metal surface temperatures were calculated from the spectra and their dependence on the mechanical parameters plotted. The difference between these temperatures could be plotted against shear rate on one curve for all fluids. However, at the same shear rate the difference between bulk fluid temperature and diamond window temperature was much higher for one of the fluids, a traction fluid, than for the others.

  17. A Solid Nitrogen Cooled MgB2 “Demonstration” Coil for MRI Applications

    PubMed Central

    Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu

    2009-01-01

    A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB2 superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB2 magnet was designed to operate in the temperature range 10–15 K, maintained by a cryocooler. A combination of this “wide” temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly. PMID:20390056

  18. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  19. Method and apparatus for optical temperature measurement

    DOEpatents

    O'Rourke, Patrick E.; Livingston, Ronald R.; Prather, William S.

    1994-01-01

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  20. Kinetic study of isothermal crystallization process of Gd2Ti2O7 precursor's powder prepared through the Pechini synthetic approach

    NASA Astrophysics Data System (ADS)

    Janković, Bojan; Marinović-Cincović, Milena; Dramićanin, Miroslav

    2015-10-01

    Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták-Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.

  1. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation.

    PubMed

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-03-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.

  2. Facile Quantification and Identification Techniques for Reducing Gases over a Wide Concentration Range Using a MOS Sensor in Temperature-Cycled Operation

    PubMed Central

    Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman

    2018-01-01

    Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545

  3. 1 GHz, 200 C, SiC MESFET Clapp Oscillator

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Schwartz, Zachary D.

    2005-01-01

    A SiC Clapp oscillator frabricated on an alumina substrate with chip capacitors and spiral inductors is designed for high temperature operation at 1 gigahertz. The oscillator operated from 30 to 200 C with an output power of 21.8 dBm at 1 gigahertz and 200 C. The efficiency at 200 C is 15 percent. The frequency variation over the temperature range is less than 0.5 percent.

  4. Experimental measurements and evaluation of the expanded water repellent perlite used for the cargo containment system of LNG carrier

    NASA Astrophysics Data System (ADS)

    Li, Manfeng; Ju, Yonglin

    2017-10-01

    To minimize the water absorption and to improve the thermal insulated properties of the insulation materials used for the cargo containment systems (CCSs) of LNG carrier, a kind of expanded water-repellent perlite has been developed by coating hydrophobic membrane onto the outer surface of the expanded perlite to change its physical and chemical characteristics. Considering the CCSs operated in a wide temperature range from environmental temperature to cryogenic temperature, the thermal analysis has been conducted to quantitatively determine the thermal insulted properties of the insulation materials. Furthermore, a double-sided guarded hot plate apparatus (GHP) is specifically designed and fabricated for the measurement of the thermal conductivities of the insulation specimens operated down to liquid nitrogen temperature. The breakage ratio associated with the water absorption and the thermal conductivity of the expanded water-repellent perlite is firstly proposed, and then a series of experiments are carried out to determine the thermal conductivity of the expanded water-repellent perlite ranging from room temperature to cryogenic temperature based on the different breakage ratios.

  5. Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Chambers, Antja

    2013-01-01

    A miniature sensor probe, composed of four sensors which monitor the partial pressure of O2, CO2, H2O, and temperature, designed to operate in the portable life support system (PLSS), has been demonstrated. The probe provides an important advantage over existing technology in that it is able to operate reliably while wet. These luminescence-based fiber optic sensors consist of an indicator chemistry immobilized in a polymeric film, whose emission lifetime undergoes a strong change upon a reversible interaction with the target gas. Each sensor includes chemistry specifically sensitive to one target parameter. All four sensors are based on indicator chemistries that include luminescent dyes from the same chemical family, and therefore exhibit similar photochemical properties, which allow performing measurements of all the sensors by a single, compact, low-power optoelectronic unit remotely connected to the sensors by an electromagnetic interference-proof optical fiber cable. For space systems, using these miniature sensor elements with remote optoelectronics provides unmatched design flexibility for measurements in highly constrained volume systems such as the PLSS. A 10 mm diameter and 15 mm length prototype multiparameter probe was designed, fabricated, tested, and demonstrated over a wide operational range of gas concentration, humidity, and temperature relevant to operation in the PLSS. The sensors were evaluated for measurement range, precision, accuracy, and response time in temperatures ranging from 50 aF-150 aF and relative humidity from dry to 100% RH. Operation of the sensors in water condensation conditions was demonstrated wherein the sensors not only tolerated liquid water but actually operated while wet.

  6. Prototype water reuse system

    USGS Publications Warehouse

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  7. System and method for pre-cooling of buildings

    DOEpatents

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  8. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  9. Thermal ecology of subadult and adult muskellunge in a thermally enriched reservoir

    USGS Publications Warehouse

    Cole, A. J.; Bettoli, Phillip William

    2014-01-01

    The movement of adult muskellunge, Esox masquinongy Mitchill, has been investigated in a variety of systems, but temperature selection by muskellunge has not been examined where well-oxygenated waters were available over a range of temperatures for much of the year. Thirty subadult and adult muskellunge tagged internally with temperature-sensing radio tags were tracked from March 2010 to March 2011 in a Tennessee reservoir. Mean tag temperatures were 18.9 °C in spring (March to May), 22.1 °C in summer (June to August), 16.5 °C in autumn and 9.8 °C in winter (December to February). When the greatest range in water temperatures was available (7.1–33.3 °C; May to early August 2010), their realised thermal niche (mean ± 1 SD) was 22.3 °C ± 1.8; the realised thermal niche was affected by fish size (smaller fish selected slightly warmer temperatures) but not sex. An electric generating steam plant discharging warm water resumed operation in January 2011, and most (86%) tagged fish occupied the plume where temperatures were ≈10 °C warmer than ambient water temperatures. No mortalities were observed 15 days later when plant operations ceased. Their affinity for the heated plume prompted concerns that muskellunge will be too easily exploited when the plant operates during winter.

  10. Mixed anion materials and compounds for novel proton conducting membranes

    DOEpatents

    Poling, Steven Andrew; Nelson, Carly R.; Martin, Steve W.

    2006-09-05

    The present invention provides new amorphous or partially crystalline mixed anion chalcogenide compounds for use in proton exchange membranes which are able to operate over a wide variety of temperature ranges, including in the intermediate temperature range of about 100 .degree. C. to 300.degree. C., and new uses for crystalline mixed anion chalcogenide compounds in such proton exchange membranes. In one embodiment, the proton conductivity of the compounds is between about 10.sup.-8 S/cm and 10.sup.-1 S/cm within a temperature range of between about -60 and 300.degree. C. and a relative humidity of less than about 12%..

  11. Compounds for novel proton conducting membranes and methods of making same

    DOEpatents

    Poling, Steven A.; Martin, Steve W.; Sutherland, Jacob T.

    2006-03-28

    The present invention provides new compounds for use in proton exchange membranes which are able to operate in a wide variety of temperature ranges, including in the intermediate temperature range of about 100.degree. C. to 700.degree. C., and new and improved methods of making these compounds. The present invention also provides new and improved methods for making chalcogenide compounds, including, but not limited to, non-protonated sulfide, selenide and telluride compounds. In one embodiment, the proton conductivity of the compounds is between about 10.sup.-8 S/cm and 10.sup.-1 S/cm within a temperature range of between about -50 and 500.degree. C.

  12. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range

    NASA Astrophysics Data System (ADS)

    Winden, A.; Mikulics, M.; Grützmacher, D.; Hardtdegen, H.

    2013-10-01

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  13. Performance Demonstration of Mcmb-LiNiCoO2 Cells Containing Electrolytes Designed for Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.

    2009-01-01

    With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.

  14. Lightweight moving radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Knapp, K.

    1981-01-01

    Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.

  15. High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber.

    PubMed

    Guan, Bai-Ou; Zhang, Yang; Wang, Hong-Jun; Chen, Da; Tam, Hwa-Yaw

    2008-03-03

    We present a high-temperature-resistant distributed Bragg reflector fiber laser photowritten in Er/Yb codoped phosphosilicate fiber that is capable of long-term operation at 500 degrees C. Highly saturated Bragg gratings are directly inscribed into the Er/Yb fiber without hydrogen loading by using a 193 nm excimer laser and phase mask method. After annealing at elevated temperature, the remained gratings are strong enough for laser oscillation. The laser operates in robust single mode with output power more than 1 dBm and signal-to-noise ratio better than 70 dB over the entire temperature range from room temperature to 500 degrees C.

  16. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor liners are likely to be as critical as the turbine rotor blades.

  17. Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryner, Elliott; Brun, Klaus; Coogan, Shane

    The objective of this project is to increase Concentrated Solar Power (CSP) tower air receiver and gas turbine temperature capabilities to 1,000ºC by the development of a novel gas turbine combustor, which can be integrated on a megawatt-scale gas turbine, such as the Solar Turbines Mercury 50™. No combustor technology currently available is compatible with the CSP application target inlet air temperature of 1,000°C. Autoignition and flashback at this temperature prevent the use of conventional lean pre-mix injectors that are currently employed to manage NOx emissions. Additional challenges are introduced by the variability of the high-temperature heat source provided bymore » the field of solar collectors, the heliostat in CSP plants. For optimum energy generation from the power turbine, the turbine rotor inlet temperature (TRIT) should remain constant. As a result of changing heat load provided to the solar collector from the heliostat, the amount of energy input required from the combustion system must be adjusted to compensate. A novel multi-bank lean micro-mix injector has been designed and built to address the challenges of high-temperature combustion found in CSP applications. The multi-bank arrangement of the micro-mix injector selectively injects fuel to meet the heat addition requirements to maintain constant TRIT with changing solar load. To validate the design, operation, and performance of the multi-bank lean micro-mix injector, a novel combustion test facility has been designed and built at Southwest Research Institute® (SwRI®) in San Antonio, TX. This facility, located in the Turbomachinery Research Facility, provides in excess of two kilograms per second of compressed air at nearly eight bar pressure. A two-megawatt electric heater raises the inlet temperature to 800°C while a secondary gas-fired heater extends the operational temperature range of the facility to 1,000°C. A combustor test rig connected to the heater has been designed and built to test the multi-bank lean micro-mix injector over the range of CSP operating conditions. The fuel is controlled and selectively delivered to the banks of the injector based on combustor inlet conditions that correspond to turbine operating points. The combustor rig is equipped with a data acquisition system and a suite of instrumentation for measuring temperature, pressure, and species concentration. This unique test facility has been built and commissioned and a prototype of the multi-bank lean micro-mix injector design has been tested. Operation of the combustor and injector has been demonstrated over the full range of CSP inlet conditions and for the range of turbine load conditions specified. The multi-bank operation of the injector has been proven to be an effective design for managing the variable flow rates of air and fuel due to changing inlet conditions from the solar field and turbine loads.« less

  18. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  19. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  20. Estimation of fan pressure ratio requirements and operating performance for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Nystrom, D.

    1981-01-01

    The National Transonic Facility (NTF), a fan-driven, transonic, pressurized, cryogenic wind tunnel, will operate over the Mach number range of 0.10 to 1.20 with stagnation pressures varying from 1.00 to about 8.8 atm and stagnation temperatures varying from 77 to 340 K. The NTF is cooled to cryogenic temperatures by the injection of liquid nitrogen into the tunnel stream with gaseous nitrogen as the test gas. The NTF can also operate at ambient temperatures using a conventional chilled water heat exchanger with air on nitrogen as the test gas. The methods used in estimating the fan pressure ratio requirements are described. The estimated NTF operating envelopes at Mach numbers from 0.10 to 1.20 are presented.

  1. Packaging of fiber lasers and components for use in harsh environments

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Jones, Casey; Ibach, Charles; Lemons, Michael; Budni, Peter A.; Zona, James P.; Marcinuk, Adam; Willis, Chris; Sweeney, James; Setzler, Scott D.

    2016-03-01

    High power continuous and pulsed fiber lasers and amplifiers have become more prevalent in laser systems over the last ten years. In fielding such systems, strong environmental and operational factors drive the packaging of the components. These include large operational temperature ranges, non-standard wavelengths of operation, strong vibration, and lack of water cooling. Typical commercial fiber components are not designed to survive these types of environments. Based on these constraints, we have had to develop and test a wide range of customized fiber-based components and systems to survive in these conditions. In this paper, we discuss some of those designs and detail the testing performed on those systems and components. This includes the use of commercial off-the-shelf (COTS) components, modified to survive extended temperature ranges, as well as customized components designed specifically for performance in harsh environments. Some of these custom components include: ruggedized/monolithic fiber spools; detachable and repeatable fiber collimators; low loss fiber-to-fiber coupling schemes; and high power fiber-coupled isolators.

  2. Features of Creation and Operation of Electric and Hybrid Vehicles in Countries with Difficult Climatic Conditions, for Example, in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Karpukhin, K.; Terenchenko, A.

    2016-11-01

    The trend of increasing fleet of electric or hybrid vehicles and determines the extension of the geographical areas of operation, including the Northern areas with cold winter weather. Practically in all territory of Russia the average winter temperature is negative. With the winter temperatures can be below in Moscow -30°C, in Krasnoyarsk -50°C. Battery system can operate in a wide temperature range, but there are extremes that should be remembered all the time, especially in cold climates like Russia. In the operating instructions of the electric car Tesla Model S indicate that to save the battery don't use at temperatures below -15°C. The paper presents the dependence of the cooling time and heating of the battery cell at different ambient temperatures and provides guidance on allowable cooling time while using and not thermally insulated thermally containers Suggests using the temperature control on the basis of thermoelectric converters Peltier connection from the onboard electrical network of the electric vehicle.

  3. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Stynes, J. K.

    2012-02-01

    The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantagesmore » to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.« less

  4. Warming of infusion syringes caused by electronic syringe pumps.

    PubMed

    Cornelius, A; Frey, B; Neff, T A; Gerber, A C; Weiss, M

    2003-05-01

    To evaluate inadvertent warming of the infusion syringe in four different types of electronic syringe pumps. Ambient temperature and syringe surface temperature were simultaneously measured by two electronic temperature probes in four different models of commercially available syringe pumps. Experiments were performed at an infusion rate of 1 ml h(-1) using both battery-operated and main power-operated pumps. Measurements were repeated four times with two pumps from each of the four syringe pump types at a room temperature of approximately 23 degrees C. Differences among the four syringe pump brands regarding ambient to syringe temperature gradient were compared using ANOVA. A P-value of less than 0.05 was considered statistically significant. Syringe warming differed significantly between the four syringe brands for both the battery-operated and main power-operated mode (ANOVA, P< 0.001 for both modes). Individual differences between syringe surface and ambient temperature ranged from 0.3 to 1.9 degrees C for battery operation and from 0.5 to 11.2 degrees C during main-power operation. Infusion solutions can be significantly warmed by syringe pumps. This has potential impact on bacterial growth and the stability of drug solutions and blood products infused, as well as on the susceptibility to hydrostatic pressure changes within the infusion syringe.

  5. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range.

    PubMed

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-16

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm -2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a 'nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  6. Evaluation Method for Low-Temperature Performance of Lithium Battery

    NASA Astrophysics Data System (ADS)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  7. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  8. Cryogenic Eyesafer Laser Optimization for Use Without Liquid Nitrogen

    DTIC Science & Technology

    2014-02-01

    liquid cryogens. This calls for optimal performance around 125–150 K—high enough for reasonably efficient operation of a Stirling cooler. We...state laser system with an optimum operating temperature somewhat higher—ideally 125–150 K—can be identified, then a Stirling cooler can be used to...needed to optimize laser performance in the desired temperature range. This did not include actual use of Stirling coolers, but rather involved both

  9. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Esmaielzadeh Kandjani, Ahmad; Matthews, Glenn I; Field, Matthew; Jones, Lathe A; Nafady, Ayman; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-04

    Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM counterpart (84%) while Hg(0) vapor was measured in the presence of ammonia (NH3), humidity, and a number of volatile organic compounds at the chosen operating temperature of 55 °C.

  10. NHEXAS PHASE I REGION 5 STUDY--STANDARD OPERATING PROCEDURE--REFRIGERATORS AND FREEZERS (NHX/SOP-163-001)

    EPA Science Inventory

    This procedure describes the calibration and maintenance activities of a refrigerator custodian in ensuring that refrigerators and freezers are functioning within acceptable temperature ranges. Refrigerators and freezers were used as temperature-controlled repositories for reagen...

  11. Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.

  12. A Parametric Sizing Model for Molten Regolith Electrolysis Reactors to Produce Oxygen from Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.

  13. Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode

    DOE PAGES

    Liu, Zhixiao; Mukherjee, Partha P.

    2017-01-23

    We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less

  14. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  15. Optical and mechanical response of high temperature optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Sirkis, Jim

    1991-01-01

    The National Aerospace Plane (NASP) will experience temperatures as high as 2500 F at critical locations in its structure. Optical fiber sensors were proposed as a means of monitoring the temperature in these critical regions by either bonding the optical fiber to, or embedding the optical fiber in, metal matrix composite (MMC) components. Unfortunately, the anticipated NASP temperature ranges exceed the glass transition region of the optical fiber glass. The attempt is made to define the operating temperature range of optical fiber sensors from both optical and mechanical perspectives. A full non-linear optical analysis was performed by modeling the optical response of an isolated sensor cyclically driven through the glass transition region.

  16. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  17. New materials drive high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.

    1992-01-01

    This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.

  18. High temperature range recuperator. Phase I: materials selection, design optimization, evaluation and thermal testing. Final report, April 1977-May 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, D V

    1978-06-01

    Initial efforts to develop, test, and evaluate counterflow recuperator designs are reported for the High Temperature Range Recuperator project. Potential materials to withstand glass furnace exhaust environments at temperatures up to 2800/sup 0/F were evaluated on the bases of material properties, fabrication capability, and relative performance in the flue environment of a day tank glass furnace. Polycrystalline alumina (Vistal), reaction sintered silicon carbide (KT and NC 430), chemically vapor deposited silicon carbide (CVD) and sintered alpha silicon carbide proved most satisfactory in the material temperature range of 2300/sup 0/F to 2800/sup 0/F. Relatively pure alumina (AD 998 and AD 94),more » mullite and cordierite were most satisfactory in the material temperature range of 1700/sup 0/F to 2300/sup 0/F. Recuperator designs were evaluated on the bases of cold air flow tests on laboratory models, fabricability, and calculated thermomechanical stress under expected operating conditions. Material strengths are shown to be greater than expected stresses by factors ranging from 2.6 for KT silicon carbide to 16 for cordierite. Recuperator test sections were fabricated from KT silicon carbide and subjected to thermal stress conditions in excess of twice the expected operating conditions with no deterioration or failure evident. A test section was subjected to the thermal shock of instant transfer between room temperature and a 2000/sup 0/F furnace without damage. Economic analysis based on calculated heat transfer indicates a recuperator system of this design and using currently available materials would have a payback period of 2.3 years.« less

  19. NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig

    1999-01-01

    The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.

  20. Laboratory evaluation of the Design Analysis Associates DAA H-3613i radar water-level sensor—Results of temperature, distance, and SDI-12 tests

    USGS Publications Warehouse

    Carnley, Mark V.

    2016-09-30

    The Design Analysis Associates (DAA) DAA H-3613i radar water-level sensor (DAA H-3613i), manufactured by Xylem Incorporated, was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to manufacturer’s accuracy specifications for measuring a distance throughout the sensor’s operating temperature range, for measuring distances from 3 to 15 feet at ambient temperatures, and for compliance with the SDI-12 serial-to-digital interface at 1200-baud communication standard. The DAA H-3613i is a noncontact water-level sensor that uses pulsed radar to measure the distance between the radar and the water surface from 0.75 to 131 feet over a temperature range of −40 to 60 degrees Celsius (°C). Manufacturer accuracy specifications that were evaluated, the test procedures that followed, and the results obtained are described in this report. The sensor’s accuracy specification of ± 0.01 feet (± 3 millimeters) meets USGS requirements for a primary water-stage sensor used in the operation of a streamgage. The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during temperature testing at a distance of 8 feet from the target over its temperature-compensated operating range of −40 to 60 °C, except at 60 °C. At 60 °C, about half the measurements exceeded the manufacturer’s accuracy specification by not more than 0.005 feet.The sensor met the manufacturer’s stated accuracy specifications for water-level measurements during distance-accuracy testing at the tested distances from 3 to 15 feet above the water surface at the HIF.

  1. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in C. elegans

    PubMed Central

    Beverly, Matthew; Anbil, Sriram; Sengupta, Piali

    2011-01-01

    Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode C. elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis towards colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior. PMID:21832201

  2. Development of a para-orthohydrogen catalytic converter for a solid hydrogen cooler

    NASA Technical Reports Server (NTRS)

    Nast, T. C.; Hsu, I. C.

    1984-01-01

    Design features of a tested catalytic converter for altering vented cryogenic parahydrogen used as a coolant on spacecraft into a para-ortho equilibrium for channeling to other cooling functions are described. The hydrogen is expected to be stored in either liquid or solid form. A high surface area Ni-on-Si catalyst was selected for tests at an operating pressure of 2 torr at a ratio of 1000 gr catalyst for a gr/sec hydrogen flow. Cylindrical and radial flow geometries were tried and measurements centered on the converter efficiencies at different operating temperatures when the converter was placed in the vent line of the H2 cooler. Efficiencies ranging from 10-100 percent were obtained for varying flow rates. Further testing is necessary to characterize the converter performance under a wider range of operating temperatures and environments.

  3. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  4. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  5. OM300 Direction Drilling Module

    DOE Data Explorer

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  6. New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction.

    PubMed

    Tang, C C; Bushnell-Wye, G; Cernik, R J

    1998-05-01

    A high-temperature furnace with an induction heater coil and a cryogenic system based on closed-cycle refrigeration have been assembled to enhance the non-ambient powder diffraction facilities at the Synchrotron Radiation Source, Daresbury Laboratory. The commissioning of the high- and low-temperature devices on the high-resolution powder diffractometer of Station 2.3 is described. The combined temperature range provided by the furnace/cryostat is 10-1500 K. Results from Fe and NH(4)Br powder samples are presented to demonstrate the operation of the apparatus. The developments presented in this paper are applicable to a wide range of other experiments and diffraction geometries.

  7. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGES

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  8. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less

  9. A Ceramic Heat Exchanger for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Robertson Jr., C.; Stacy, L.

    1985-01-01

    Design intended for high-temperature service. Proposed ceramic-tube and header heat exchangers used for solar-concentrating collector operating in 25- to 150-KW power range at temperatures between 2,000 degrees and 3,000 degrees F (1,095 degrees and 1,650 degrees C).

  10. 40 CFR 60.116b - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... range. (e) Available data on the storage temperature may be used to determine the maximum true vapor...: (i) Available data on the Reid vapor pressure and the maximum expected storage temperature based on... Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction...

  11. Multimode fiber-optic temperature sensor system based on dual-wavelength difference absorption principle

    NASA Astrophysics Data System (ADS)

    Zhang, Zaixuan; Lin, Dan; Fang, Xiao; Jing, Shangzhong

    1991-08-01

    The multimode fiber optical temperature sensor system is a cobalt salt solution (CoCl26H2O) in the isoptopyl alcohol and water thermochromic transducer based on the dual-wavelength difference absorption principle. The digital locking-in detection, the operation of signal division and temperature calibration is operated by IBM PC computer. The measurement temperature range of the fiber-optic sensor system is 30 degree(s)C to 50 degree(s)C, accuracy is +/- 0.15 degree(s)C, and the temperature resolution is 0.02 degree(s)C. The most accurate measurements resulting from repeated stability tests over 6 and 12 hours (40 degree(s)C) are +/- $0.05 degree(s)C and +/- 0.18 degree(s)C, and the temperature mean is displayed in real time.

  12. Cryogenic Field Measurement of Pr{sub 2}Fe{sub 14}B Undulator and Performance Enhancement Options at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanabe, Toshiya; Chubar, Oleg; Harder, David A.

    2010-06-23

    Short period (14.5mm) hybrid undulator arrays composed of Praseodymium Iron Boron (Pr{sub 2}Fe{sub 14}B) magnets (CR53, NEOMAX, Inc.) and vanadium permendur poles have been fabricated at Brookhaven National Laboratory. Unlike Neodymium Iron Boron (Nd{sub 2}Fe{sub 14}B) magnets which exhibit spin reorientation at a temperatures below 150 K, PrFeB arrays monotonically increase performance with lower operating temperature. It opens up the possibility for use in operating a cryo-permanent magnet undulator (CPMU) in the range of 40 K to 60 K where very efficient cryocoolers are available. Magnetic flux density profiles were measured at various temperature ranges from room temperature down tomore » liquid helium (LHe) using the Vertical Testing Facility (VTF) at the National Synchrotron Light Source-II (NSLS-II). Temperature variations of phase error have been characterized. In addition, we examined the use of textured Dysprosium (Dy) poles to replace permendur poles to obtain further improvement in performance.« less

  13. PWV, Temperature and Wind Statistics at Sites Suitable For mm and Sub-mm Wavelengths Astronomy

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Travouillon, Tony; De Breuck, Carlos; Radford, Simon; Matsushita, Satoki; Pérez-Beaupuits, Juan P.

    2018-01-01

    Atmospheric water vapor is the main limiting factor of atmospheric transparency in the mm and sub-mm wavelength spectral windows. Thus, dry sites are needed for the installation and successful operation of radio astronomy observatories exploiting those spectral windows. Other parameters that play an important role in the mechanical response of radio telescopes exposed to the environmental conditions are: temperature, and in particular temperature gradients that induce thermal deformation of mechanical structures, as well as wind magnitude that induce pointing jitter affecting this way the required accuracy in the ability to point to a cosmic source during the observations. Temperature and wind are variables of special consideration when planning the installation and operations of large aperture radio telescopes. This work summarizes the statistics of precipitable water vapor (PWV), temperature and wind monitored at sites by the costal mountain range, as well as on t he west slope of the Andes mountain range in the region of Antofagasta, Chile. This information could prove useful for the planning of the Atacama Large-Aperture Submm/mm Telescope (AtLast).

  14. Evaluation of Silicon-on-Insulator HTOP-01 Operational Amplifier for Wide Temperature Operation

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronics capable of operation under extreme temperatures are required in many of NASA space exploration missions. Aerospace and military applications, as well as some terrestrial industries constitute environments where electronic systems are anticipated to be exposed to extreme temperatures and wide-range thermal swings. Electronics that are able to withstand and operate efficiently in such harsh environments would simplify, if not eliminate, traditional thermal control elements and their associated structures for proper ambient operation. As a result, overall system mass would be reduced, design would be simplified, and reliability would be improved. Electronic parts that are built utilizing silicon-on-insulator (SOI) technology are known to offer better radiation-tolerance compared to their conventional silicon counterparts, provide faster switching, and consume less power. They also exhibit reduced leakage current and, thus, they are often tailored for high temperature operation. These attributes make SOI-based devices suitable for use in harsh environments where extreme temperatures and wide thermal swings are anticipated. A new operational amplifier, based on silicon-on-insulator technology and geared for high temperature well-logging applications, was recently introduced by Honeywell Corporation. This HTOP-01 dual precision operational amplifier is a low power device, operates on a single supply, and has an internal oscillator and an external clocking option [1]. It is rated for operation from -55 C to +225 C with a maximum output current capability of 50 mA. The amplifier chip is designed as a 14-pin, hermetically-sealed device in a ceramic package. Table I shows some of the device manufacturer s specifications.

  15. Highly temperature insensitive quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Y.; Bandyopadhyay, N.; Tsao, S.

    2010-12-20

    An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mmmore » and a ridge width of 8 {mu}m.« less

  16. Ultralow noise performance of an 8.4-GHz maser-feedhorn system

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Petty, S. M.; Kovatch, J. J.; Glass, G. W.

    1990-01-01

    A total system noise temperature of 6.6 K was demonstrated with an 8.4-GHz traveling wave maser and feedhorn operating in a cryogenic environment. Both the maser and feedhorn were inserted in the helium cryostat, with the maser operating in the 1.6-K liquid bath and the feedhorn cooled in the helium gas, with a temperature gradient along the horn ranging from the liquid bath temperature at its lower end to room temperature at its top. The ruby maser exhibited 43 dB of gain with a bandwidth of 76 MHz(-3 dB) centered at 8400 MHz. Discussions of the maser, cooled feedhorn, and cryostat designs are presented along with a discussion of the noise temperature measurements.

  17. Evaluation of Candidate Materials for a High-Temperature Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bowman, Randy; Ritzert, Frank; Freedman, Marc

    2003-01-01

    The Department of Energy (DOE) and NASA have identified Stirling Radioisotope Generators (SRG) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel base superalloy 718. This temperature is at the limit of Alloy 718's capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, an assessment of material candidates was performed assuming a range of heater head temperatures. The chosen alternative material candidates will be discussed, along with the development efforts needed to ensure that these materials can meet the demanding system requirements of long-duration operation in hostile environments.

  18. The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments

    NASA Astrophysics Data System (ADS)

    Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.

    2003-06-01

    We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.

  19. Evaluation of catalytic combustion of actual coal-derived gas

    NASA Technical Reports Server (NTRS)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  20. Comprehensive thermoelectric properties of n- and p-type 78a/o Si - 22a/o Ge alloy

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1978-01-01

    The time and temperature dependence of the thermoelectric properties on n- and p-type 78 a/o Si - 22 a/o Ge alloy are presented in detail for the range of temperatures of zero to 1000 C and operating times up to twelve years. The mechanisms responsible for the time dependence of the properties are discussed and mathematical models used in the derivation of the property values from experimental data are presented. The thermoelectric properties for each polarity type of the alloy are presented as a function of temperature for various operating times.

  1. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  2. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature

    NASA Astrophysics Data System (ADS)

    Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel

    2015-12-01

    Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.

  3. Temperature dependence of alkali-antimonide photocathodes: Evaluation at cryogenic temperatures

    DOE PAGES

    Mamun, M. A.; Hernandez-Flores, M. R.; Morales, E.; ...

    2017-10-24

    Cs xK ySb photocathodes were manufactured on a niobium substrate and evaluated over a range of temperatures from 300 to 77 K. Vacuum conditions were identified that minimize surface contamination due to gas adsorption when samples were cooled below room temperature. Here, measurements of photocathode spectral response provided a means to evaluate the photocathode bandgap dependence on temperature and to predict photocathode quantum efficiency at 4 K, a typical temperature at which superconducting radio frequency photoguns operate.

  4. SOI N-Channel Field Effect Transistors, CHT-NMOS80, for Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Almad

    2009-01-01

    Extreme temperatures, both hot and cold, are anticipated in many of NASA space exploration missions as well as in terrestrial applications. One can seldom find electronics that are capable of operation under both regimes. Even for operation under one (hot or cold) temperature extreme, some thermal controls need to be introduced to provide appropriate ambient temperatures so that spacecraft on-board or field on-site electronic systems work properly. The inclusion of these controls, which comprise of heating elements and radiators along with their associated structures, adds to the complexity in the design of the system, increases cost and weight, and affects overall reliability. Thus, it would be highly desirable and very beneficial to eliminate these thermal measures in order to simplify system's design, improve efficiency, reduce development and launch costs, and improve reliability. These requirements can only be met through the development of electronic parts that are designed for proper and efficient operation under extreme temperature conditions. Silicon-on-insulator (SOI) based devices are finding more use in harsh environments due to the benefits that their inherent design offers in terms of reduced leakage currents, less power consumption, faster switching speeds, good radiation tolerance, and extreme temperature operability. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. The objective of this work was to evaluate the performance of a new commercial-off-the-shelf (COTS) SOI parts over an extended temperature range and to determine the effects of thermal cycling on their performance. The results will establish a baseline on the suitability of such devices for use in space exploration missions under extreme temperatures, and will aid mission planners and circuit designers in the proper selection of electronic parts and circuits. The electronic part investigated in this work comprised of a CHT-NMOS80 high temperature N-channel MOSFET (metal-oxide semiconductor field-effect transistor) device that was manufactured by CISSOID. This high voltage, medium-power transistor is fabricated using SOI processes and is designed for extreme wide temperature applications such as geothermal well logging, aerospace and avionics, and automotive industry. It has a high DC current capability and is specified for operation in the temperature range of -55 C to +225 C

  5. Method of low temperature operation of an electrochemical cell array

    DOEpatents

    Singh, P.; Ruka, R.J.; Bratton, R.J.

    1994-04-26

    A method is described for operating an electrochemical cell generator apparatus containing a generator chamber containing an array of cells having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas contacts the outside of the cells and the generating chamber normally operates at over 850 C, where N[sub 2] gas is fed to contact the interior electrode of the cells in any case when the generating chamber temperature drops for whatever reason to within the range of from 550 C to 800 C, to eliminate cracking within the cells. 2 figures.

  6. Temperature sensors based on multimode chalcogenide fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Zeng, Jianghui; Zhu, Liang; Yang, Dandan; Zhang, Peiqing; Xu, Yinsheng; Wang, Xunsi; Nie, Qiuhua; Dai, Shixun

    2018-04-01

    In this work, a theoretical study was conducted on temperature sensing in Ge-Sb-Se multimode fibre Bragg grating (MM-FBG). The sensing characteristics of the designed MM-FBGs with different fibre parameters and operating wavelengths were calculated using a coupled model method. The temperature sensitivity of this MM-FBG was found to improve significantly by shifting the operating wavelength from telecom range to mid-infrared (MIR) and utilizing the wide transmission range of Ge-Sb-Se glasses. The temperature sensitivity of the proposed Ge-Sb-Se MM-FBG was calculated to be 0.0758 nm/°C at 1550 nm, which is 7.58 times higher than silica FBGs at 1550 nm, and the temperature sensitivity was calculated to be more than 0.16 nm/°C at 3390 nm, which is 2.2 times higher than that at 1550 nm. In addition, the proposed MM-FBGs provided multi-peak information, and the sensitivity of each peak was calculated to be comparable to the single-mode FBG. The proposed Ge-Sb-Se MM-FBG has great potential for temperature sensing in MIR because of its advantages of simple preparation, high coupling efficiency, multi-peak information and wide working window.

  7. Comprehensive Evaluation of Power Supplies at Cryogenic Temperatures for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Gerber, Scott; Hammoud, Ahmad; Elbuluk, Malik E.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    The operation of power electronic systems at cryogenic temperatures is anticipated in many future space missions such as planetary exploration and deep space probes. In addition to surviving the space hostile environments, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing development and launch costs. DC/DC converters are widely used in space power systems in the areas of power management, conditioning, and control. As part of the on-going Low Temperature Electronics Program at NASA, several commercial-off-the-shelf (COTS) DC/DC converters, with specifications that might fit the requirements of specific future space missions have been selected for investigation at cryogenic temperatures. The converters have been characterized in terms of their performance as a function of temperature in the range of 20 C to - 180 C. These converters ranged in electrical power from 8 W to 13 W, input voltage from 9 V to 72 V and an output voltage of 3.3 V. The experimental set-up and procedures along with the results obtained on the converters' steady state and dynamic characteristics are presented and discussed.

  8. Transient boiling in two-phase helium natural circulation loops

    NASA Astrophysics Data System (ADS)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2014-01-01

    Two-phase helium natural circulation loops are used for cooling large superconducting magnets, as CMS for LHC. During normal operation or in the case of incidents, transients are exerted on the cooling system. Here a cooling system of this type is studied experimentally. Sudden power changes are operated on a vertical-heated-section natural convection loop, simulating a fast increase of heat deposition on magnet cooling pipes. Mass flow rate, heated section wall temperature and pressure drop variations are measured as a function of time, to assess the time behavior concerning the boiling regime according to the values of power injected on the heated section. The boiling curves and critical heat flux (CHF) values have been obtained in steady state. Temperature evolution has been observed in order to explore the operating ranges where heat transfer is deteriorated. Premature film boiling has been observed during transients on the heated section in some power ranges, even at appreciably lower values than the CHF. A way of attenuating these undesired temperature excursions has been identified through the application of high enough initial heating power.

  9. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  10. EMU battery/SMM power tool characterization study

    NASA Technical Reports Server (NTRS)

    Palandati, C.

    1982-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft was modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery was tested for the power tool application. The results are that the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaucage, Timothy R; Beenfeldt, Eric P; Speakman, Scott A

    Among the langasite family of crystals (LGX), the three most popular materials are langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (LGN, La3Ga5.5Nb0.5O14). The LGX crystals have received significant attention for acoustic wave (AW) device applications due to several properties, which include: (1) piezoelectric constants about two and a half times those of quartz, thus allowing the design of larger bandwidth filters; (2) existence of temperature compensated orientations; (3) high density, with potential for reduced vibration and acceleration sensitivity; and (4) possibility of operation at high temperatures, since the LGX crystals do not present phase changes up to their meltingmore » point above 1400degC. The LGX crystals' capability to operate at elevated temperatures calls for an investigation on the growth quality and the consistency of these materials' properties at high temperature. One of the fundamental crystal properties is the thermal expansion coefficients in the entire temperature range where the material is operational. This work focuses on the measurement of the LGT thermal expansion coefficients from room temperature (25degC) to 1200degC. Two methods of extracting the thermal expansion coefficients have been used and compared: (a) dual push-rod dilatometry, which provides the bulk expansion; and (b) x-ray powder diffraction, which provides the lattice expansion. Both methods were performed over the entire temperature range and considered multiple samples taken from <001> Czochralski grown LGT material. The thermal coefficients of expansion were extracted by approximating each expansion data set to a third order polynomial fit over three temperature ranges reported in this work: 25degC to 400degC, 400degC to 900degC, 900degC to 1200degC. An accuracy of fit better than 35ppm for the bulk expansion and better than 10ppm for the lattice expansion have been obtained with the aforementioned polynomial fitting. The percentage difference between the bulk and the lattice fitted expansion responses over the entire temperature range of 25degC to 1200degC is less than 2% for the three crystalline axes, which indicates the high quality and growth consistency of the LGT crystal measured« less

  12. Internal combustion engine controls for reduced exhausts contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.R. Jr.

    1974-06-04

    An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less

  13. Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems

    NASA Technical Reports Server (NTRS)

    Poultney, S.; Chen, D.; Steinberg, G.; Wu, F.; Pires, A.; Miller, M. D.; Mcnally, M.

    1980-01-01

    Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability.

  14. The thermal conductivity of 1-chloro-1,1-difluoroethane (HCFC-142b)

    NASA Astrophysics Data System (ADS)

    Sousa, A. T.; Fialho, P. S.; Nieto de Castro, C. A.; Tufeu, R.; Le Neindre, B.

    1992-05-01

    The thermal conductivity of 1-chloro-1,1-difluoroethane (HCFC-142b) has been measured in the temperature range 290 to 504 K and pressures up to 20 MPa with a concentric-cylinder apparatus operating in a steady-state mode. These temperature and pressure ranges cover all fluid states. The estimated accuracy of the method is about 2%. The density dependence of the thermal conductivity has been studied in the liquid region.

  15. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  16. Assessment of Durable SiC JFET Technology for +600 C to -125 C Integrated Circuit Operation

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Krasowski, M. J.; Prokop, N. F.

    2011-01-01

    Electrical characteristics and circuit design considerations for prototype 6H-SiC JFET integrated circuits (ICs) operating over the broad temperature range of -125 C to +600 C are described. Strategic implementation of circuits with transistors and resistors in the same 6H-SiC n-channel layer enabled ICs with nearly temperature-independent functionality to be achieved. The frequency performance of the circuits declined at temperatures increasingly below or above room temperature, roughly corresponding to the change in 6H-SiC n-channel resistance arising from incomplete carrier ionization at low temperature and decreased electron mobility at high temperature. In addition to very broad temperature functionality, these simple digital and analog demonstration integrated circuits successfully operated with little change in functional characteristics over the course of thousands of hours at 500 C before experiencing interconnect-related failures. With appropriate further development, these initial results establish a new technology foundation for realizing durable 500 C ICs for combustion engine sensing and control, deep-well drilling, and other harsh-environment applications.

  17. Evaluating thermoregulation in reptiles: the fallacy of the inappropriately applied method.

    PubMed

    Seebacher, Frank; Shine, Richard

    2004-01-01

    Given the importance of heat in most biological processes, studies on thermoregulation have played a major role in understanding the ecology of ectothermic vertebrates. It is, however, difficult to assess whether body temperature is actually regulated, and several techniques have been developed that allow an objective assessment of thermoregulation. Almost all recent studies on reptiles follow a single methodology that, when used correctly, facilitates comparisons between species, climates, and so on. However, the use of operative temperatures in this methodology assumes zero heat capacity of the study animals and is, therefore, appropriate for small animals only. Operative temperatures represent potentially available body temperatures accurately for small animals but can substantially overestimate the ranges of body temperature available to larger animals whose slower rates of heating and cooling mean that they cannot reach equilibrium if they encounter operative temperatures that change rapidly through either space or time. This error may lead to serious misinterpretations of field data. We derive correction factors specific for body mass and rate of movement that can be used to estimate body temperature null distributions of larger reptiles, thereby overcoming this methodological problem.

  18. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  19. High-Temperature Piezoelectric Ceramic Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.; Dynys, Frederick W.

    2005-01-01

    Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines.

  20. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  1. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  2. 14 CFR 29.49 - Performance at minimum operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...

  3. Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Childs, J. Howard; McCafferty, Richard J.

    1948-01-01

    A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.

  4. Methods for structural design at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.

    1973-01-01

    A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.

  5. Development of thermal energy storage units for spacecraft cryogenic coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.; Mahefkey, E. T.

    1980-01-01

    Thermal Energy Storage Units were developed for storing thermal energy required for operating Vuilleumier cryogenic space coolers. In the course of the development work the thermal characteristics of thermal energy storage material was investigated. By three distinctly different methods it was established that ternary salts did not release fusion energy as determined by ideality at the melting point of the eutectic salt. Phase change energy was released over a relatively wide range of temperature with a large change in volume. This strongly affects the amount of thermal energy that is available to the Vuilleumier cryogenic cooler at its operating temperature range and the amount of thermal energy that can be stored and released during a single storage cycle.

  6. A Temperature-Hardened Sensor Interface with a 12-Bit Digital Output Using a Novel Pulse Width Modulation Technique

    PubMed Central

    Badets, Franck; Nouet, Pascal; Masmoudi, Mohamed

    2018-01-01

    A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM) signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI) technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C. PMID:29621171

  7. Hot-Electron Photon Counters for Detecting Terahertz Photons

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; Sergeyev, Andrei

    2005-01-01

    A document proposes the development of hot-electron photon counters (HEPCs) for detecting terahertz photons in spaceborne far-infrared astronomical instruments. These would be superconducting- transition-edge devices: they would contain superconducting bridges that would have such low heat capacities that single terahertz photons would cause transient increases in their electron temperatures through the superconducting- transition range, thereby yielding measurable increases in electrical resistance. Single devices or imaging arrays of the devices would be fabricated as submicron-sized bridges made from films of disordered Ti (which has a superconducting- transition temperature of .0.35 K) between Nb contacts on bulk silicon or sapphire substrates. In operation, these devices would be cooled to a temperature of .0.3 K. The proposed devices would cost less to fabricate and operate, relative to integrating bolometers of equal sensitivity, which must be operated at a temperature of approx. = 0.1 K.

  8. Hard permanent magnet development trends and their application to A.C. machines

    NASA Technical Reports Server (NTRS)

    Mildrum, H. F.

    1981-01-01

    The physical and magnetic properties of Mn-Al-C, Fe-Cr-Co, and RE-TM (rare earth-transition metal intermetallics) in polymer and soft metal bonded or sintered form are considered for ac circuit machine usage. The manufacturing processes for the magnetic materials are reviewed, and the mechanical and electrical properties of the magnetic materials are compared, with consideration given to the reference Alnico magnet. The Mn-Al-C magnets have the same magnetic properties and costs as Alnico units, operate well at low temperatures, but have poor high temperature performance. Fe-Cr-Co magnets also have comparable cost to Alnico magnets, and operate at high or low temperature, but are brittle, expensive, and contain Co. RE-Co magnets possess a high energy density, operate well in a wide temperature range, and are expensive. Recommendation for exploring the rare-earth alternatives are offered.

  9. Mechanical stability of the CMS strip tracker measured with a laser alignment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    Here, the CMS tracker consists of 206 m 2 of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from –25 to +25°C. The mechanical stability of tracker components during physics operation was monitored with a few μm resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011–2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30μm. In addition, temperature variations were found to cause displacements ofmore » tracker structures of about 2μm°C, which largely revert to their initial positions when the temperature is restored to its original value.« less

  10. Mechanical stability of the CMS strip tracker measured with a laser alignment system

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-04-21

    Here, the CMS tracker consists of 206 m 2 of silicon strip sensors assembled on carbon fibre composite structures and is designed for operation in the temperature range from –25 to +25°C. The mechanical stability of tracker components during physics operation was monitored with a few μm resolution using a dedicated laser alignment system as well as particle tracks from cosmic rays and hadron-hadron collisions. During the LHC operational period of 2011–2013 at stable temperatures, the components of the tracker were observed to experience relative movements of less than 30μm. In addition, temperature variations were found to cause displacements ofmore » tracker structures of about 2μm°C, which largely revert to their initial positions when the temperature is restored to its original value.« less

  11. A compact cryogen-free platform operating at 1 K or 50 mK

    NASA Astrophysics Data System (ADS)

    Matthews, A. J.; Patton, M.; Marsh, T.; van der Vliet, H.

    2018-03-01

    We report the design and performance characteristics of a compact cryogen-free platform. The system is based around a continuous 1 K pot which operates using a small (10 m3 h‑1) room temperature circulation pump. The pot cools an experimental plate to ≈ 1.2 K, and has a cooling capacity of 100 mW at a temperature ≈ 1.9 K. Cooling the pot from room temperature to < 2 K takes around 12 hours. The temperature range of the platform can be lowered to < 50 mK with the addition of a small dilution refrigerator, using the 1 K pot as a pre-cooling stage for the circulating 3He. The dilution stage has a typical (continuous) cooling capacity of 30 µW at 100 mK (300 µW at 250 mK) and is designed to operate with just 3 litres of (NTP) 3He.

  12. Performance of Surface-Mount Ceramic and Solid Tantalum Capacitors for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; MacDonald, Thomas L.; Hammoud, Ahmad; Gerber, Scott

    1998-01-01

    Low temperature electronics are of great interest for space exploration programs. These include missions to the outer planets, earth-orbiting and deep-space probes, remote-sensing and communication satellites. Terrestrial applications would also benefit from the availability of low temperature electronics. Power components capable of low temperature operation would, thus, enhance the technologies needed for the development of advanced power systems suitable for use in harsh environments. In this work, ceramic and solid tantalum capacitors were evaluated in terms of their dielectric properties as a function of temperature and at various frequencies. The surface-mount devices were characterized in terms of their capacitance stability and dissipation factor in the frequency range of 50 Hz to 100 kHz at temperatures ranging from room temperature (20 deg. C) to about liquid nitrogen temperature (-190 deg. C). The results are discussed and conclusions made concerning the suitability of the capacitors investigated for low temperature applications.

  13. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  14. Effect of temperature on solids reductions and on degradation kinetics during thermophilic aerobic digestion of a simulated sludge.

    PubMed

    Toki, C J

    2008-07-01

    Laboratory-scale experiments were conducted to determine the influence of higher thermophilic temperatures on thermophilic aerobic digestion treatment of a simulated sludge. The efficiency of the process was evaluated in respect of solids removal and degradation rate constants at four thermophilic temperatures. Batch runs were operated at a retention time of one day and temperatures of 65, 70, 72 and 75 degrees C. The results indicated that temperature increase did not impart any significant benefits to the digestion operation in terms of suspended solids and biochemichal oxygen demand reduction. The findings from this research also suggested that the treatment would not appear to benefit from temperatures higher than 65 degrees C, as classically suggested by Van't Hoff-Arrhenius. Therefore, increase of thermophilic temperature in the tested 65-75 degrees C range does not enhance the efficiency of thermophilic, aerobic sludge digestion treatment.

  15. Materials insights into low-temperature performances of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Gaolong; Wen, Kechun; Lv, Weiqiang; Zhou, Xingzhi; Liang, Yachun; Yang, Fei; Chen, Zhilin; Zou, Minda; Li, Jinchao; Zhang, Yuqian; He, Weidong

    2015-12-01

    Lithium-ion batteries (LIBs) have been employed in many fields including cell phones, laptop computers, electric vehicles (EVs) and stationary energy storage wells due to their high energy density and pronounced recharge ability. However, energy and power capabilities of LIBs decrease sharply at low operation temperatures. In particular, the charge process becomes extremely sluggish at temperatures below -20 °C, which severely limits the applications of LIBs in some cold areas during winter. Extensive research has shown that the electrolyte/electrode composition and microstructure are of fundamental importance to low-temperature performances of LIBs. In this report, we review the recent findings in the role of electrolytes, anodes, and cathodes in the low temperature performances of LIBs. Our overview aims to understand comprehensively the fundamental origin of low-temperature performances of LIBs from a materials perspective and facilitates the development of high-performance lithium-ion battery materials that are operational at a large range of working temperatures.

  16. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function.

    PubMed

    Kim, Jaai; Lee, Changsoo

    2016-02-01

    Temperature is a crucial factor that significantly influences the microbial activity and so the methanation performance of an anaerobic digestion (AD) process. Therefore, how to control the operating temperature for optimal activity of the microbes involved is a key to stable AD. This study examined the response of a continuous anaerobic reactor to a series of temperature shifts over a wide range of 35-65 °C using a dairy-processing byproduct as model wastewater. During the long-term experiment for approximately 16 months, the reactor was subjected to stepwise temperature increases by 5 °C at a fixed HRT of 15 days. The reactor showed stable performance within the temperature range of 35-45 °C, with the methane production rate and yield being maximum at 45 °C (18% and 26% greater, respectively, than at 35 °C). However, the subsequent increase to 50 °C induced a sudden performance deterioration with a complete cessation of methane recovery, indicating that the temperature range between 45 °C and 50 °C had a critical impact on the transition of the reactor's methanogenic activity from mesophilic to thermophilic. This serious process perturbation was associated with a severe restructuring of the reactor microbial community structure, particularly of methanogens, quantitatively as well as qualitatively. Once restored by interrupted feeding for about two months, the reactor maintained fairly stable performance under thermophilic conditions until it was upset again at 65 °C. Interestingly, in contrast to most previous reports, hydrogenotrophs largely dominated the methanogen community at mesophilic temperatures while acetotrophs emerged as a major group at thermophilic temperature. This implies that the primary methanogenesis route of the reactor shifted from hydrogen- to acetate-utilizing pathways with the temperature shifts from mesophilic to thermophilic temperatures. Our observations suggest that a mesophilic digester may not need to be cooled at up to 45 °C in case of undesired temperature rise, for example, by excessive self-heating, which offers a possibility to reduce operating costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Single temperature liquefaction process at different operating pHs to improve ethanol production from Indian rice and corn feedstock.

    PubMed

    Gohel, V; Ranganathan, K; Duan, G

    2017-04-21

    Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50-5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50-5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT -1 rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT -1 corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.

  18. A polarisation maintaining fiber optimized for high temperature gyroscopes

    NASA Astrophysics Data System (ADS)

    Tutu, F.; Hill, Mark; Cooper, Laurence; Gillooly, A.

    2015-05-01

    Fiber optic gyroscopes (FOGs) are being used within increasingly severe environments, requiring operational temperatures in excess of the standard operating range for FOGs. Applications requiring these higher temperatures include: directional drilling of wells in oil and gas fields, space applications and military FOG applications. This paper will describe the relative merits of two high temperature acrylate coatings for an optical fiber designed for a FOG in such operating environments. Results for two high temperature acrylates are presented, tested in a 200m length of loose wound fiber, coiled and supported at 75mm diameter, in line with TIA/EIA-455-192 (FOTP-192). It can be seen that both coating types give very good polarization extinction ratio (PER) performance at high temperature up to 180oC, with better performance shown by one coating type on the low temperature side, since it does not harden to the same extent below 0oC. The long term thermal exposure effects will be discussed and experimental results presented which include testing the PER performance over temperature both before and after an extended period of high temperature endurance. This will demonstrate the relative merits of different styles of coatings. From the PER performance, the h-parameter of the fiber can be calculated and hence the preferred coating type selected and recommended for the customer operating environment.

  19. Comparison of photo detectors and operating conditions for decay time determination in phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Knappe, C.; Nada, F. Abou; Richter, M.; Aldén, M.

    2012-09-01

    This work compares the extent of linear response regions from standard time-resolving optical detectors for phosphor thermometry. Different types of photomultipliers (ordinary and time-gated) as well as an avalanche photodiode were tested and compared using the phosphorescence decay time of cadmium tungstate (CdWO4). Effects originating from incipient detector saturation are revealed as a change in evaluated phosphorescence decay time, which was found to be a more sensitive measure for saturation than the conventional signal strength comparison between in- and output. Since the decay time of thermographic phosphors is used for temperature determination systematic temperature errors in the order of several tens of Kelvins may be introduced. Saturation from the initial intensity is isolated from temporally developed saturation by varying the CdWO4 decay time over the microsecond to nanosecond range, resultant of varying the temperature from 290 to 580 K. A detector mapping procedure is developed in order to identify linear response regions where the decay-to-temperature evaluations are unbiased. In addition, this mapping procedure generates a library of the degree of distortion for operating points outside of linear response regions. Signals collected in the partly saturated regime can thus be corrected to their unbiased value using this library, extending the usable detector operating range significantly.

  20. Characterization of the Vectron PX-570 Crystal Oscillator for Use in Harsh Environments

    NASA Technical Reports Server (NTRS)

    Li, Jacob; Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Computing hardware, data-acquisition systems, communications systems, and many electronic control systems require well-controlled timing signals for proper and accurate operation. These signals are, in most cases, provided by circuits that employ crystal oscillators due to availability, cost, ease of operation, and accuracy. In some cases, the electronic systems are expected to survive and operate under harsh conditions that include exposure to extreme temperatures. These applications exist in terrestrial systems as well as in aerospace products. Well-logging, geothermal systems, and industrial process control are examples of ground-based applications, while distributed jet engine control in aircraft, space-based observatories (such as the James Webb Space Telescope), satellites, and lunar and planetary landers are typical environments where electronics are exposed to harsh operating conditions. To ensure these devices produce reliable results, the digital heartbeat from the oscillator must deliver a stable signal that is not affected by external temperature or other conditions. One such solution is a recently introduced commercial-off-the-shelf (COTS) oscillator, the PX-570 series from Vectron International. The oscillator was designed for high-temperature applications and as proof, the crystal oscillator was subjected to a wide suite of tests to determine its ruggedness for operation in harsh environments. The tests performed by Vectron included electrical characterization under wide range of temperature, accelerated life test/aging, shock and vibration, internal moisture analysis, ESD threshold, and latch-up testing. The parametric evaluation was performed on the oscillator's frequency, output signal rise and fall times, duty cycle, and supply current over the temperature range of -125 C to +230 C. The evaluations also determined the effects of thermal cycling and the oscillator's re-start capability at extreme hot and cold temperatures. These thermal cycling and restart tests were performed at the NASA Glenn Research Center. Overall, the crystal oscillator performed well and demonstrated very good frequency stability. This paper will discuss the test procedures and present details of the performance results.

  1. In orbit adiabatic demagnetization refrigeration for bolometric and microcalorimetric detectors

    NASA Astrophysics Data System (ADS)

    Hepburn, I. D.; Ade, P. A. R.; Davenport, I.; Smith, A.; Sumner, T. J.

    1992-12-01

    The new generation of photon detectors for satellite based mm/submm and X-ray astronomical observations require cooling to temperatures in the range 60 to 300 mK. At present Adiabatic Demagnetization Refrigeration (ADR) is the best proposed technique for producing these temperatures in orbit due to its inherent simplicity and gravity independent operation. For the efficient utilization of an ADR it is important to realize long operational times at base temperature with short recycle times. These criteria are dependent on several parameters; the required operating temperature, the cryogen bath temperature, the amount of heat leakage to the paramagnetic salt, the volume and type of salt and the maximum obtainable magnetic field. For space application these parameters are restricted by the limitations imposed on the physical size, the mass, the available electrical power and the cooling power available. The design considerations required in order to match these parameters are described and test data from a working laboratory system is presented.

  2. Simulated Beam Extraction Performance Characterization of a 50-cm Ion Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Hubble, Aimee; Nowak-Gucker, Sarah; Davis, Chris; Peterson, Peter; Viges, Eric; Chen, Dave

    2013-01-01

    A 50 cm ion thruster is being developed to operate at >65 percent total efficiency at 11 kW, 2700 s Isp and over 25 kW, 4500 s Isp at a total efficiency of >75 percent. The engine is being developed to address the need for a multimode system that can provide a range of thrust-to- power to service national and commercial near-earth onboard propulsion needs such as station-keeping and orbit transfer. Operating characteristics of the 50 cm ion thruster were measured under simulated beam extraction. The discharge current distribution at the various magnet rings was measured over a range of operating conditions. The relationship between the anode current distribution and the resulting plasma uniformity and ion flux measured at the thruster exit plane is discussed. The thermal envelope will also be investigated through the monitoring of magnet temperatures over the range of discharge powers investigated. Discharge losses as a function of propellant utilization was also characterized at multiple simulated beam currents. Bulk plasma conditions such as electron temperature and electron density near engine centerline was measured over a range of operating conditions using an internal Langmuir probe. Sensitivity of discharge performance to chamber length is also discussed. This data acquired from this discharge study will be used in the refinement of a throttle table in anticipation for eventual beam extraction testing.

  3. Performance of concrete pavement in the presence of deicing salts and deicing salt cocktails.

    DOT National Transportation Integrated Search

    2016-05-01

    Deicing salts are widely used for anti-icing and de-icing operations in pavements. While historically sodium chloride may have been the : deicer most commonly used, a wide range of deicing salts have begun to be used to operate at lower temperatures,...

  4. A compact, rugged, high repetition rate CO2 laser incorporating catalyst

    NASA Technical Reports Server (NTRS)

    Schwarzenberger, P. M.; Matzangou, X.

    1990-01-01

    The principal design features and operating characteristics of a high repetition rate CO2 laser are outlined. The laser is a compact, rugged unit, completely sealed and incorporating an unheated solid catalyst. Stable operation has been successfully demonstrated over a temperature range of -35 C to 65 C.

  5. 40 CFR Table 2 to Subpart Yyyy of... - Operating Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... catalyst maintain the 4-hour rolling average of the catalyst inlet temperature within the range suggested by the catalyst manufacturer. 2. each stationary combustion turbine that is required to comply with the emission limitation for formaldehyde and is not using an oxidation catalyst maintain any operating...

  6. Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. II - Operational Characteristics. II; Operational Characteristics

    NASA Technical Reports Server (NTRS)

    Fleming, William A.

    1948-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.

  7. Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature

    NASA Astrophysics Data System (ADS)

    Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.

    2009-08-01

    We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.

  8. Long-term temperature effects on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Hong, K. H.

    1979-01-01

    The thermal degradation of AlGaAs solar cells resulting from a long-term operation in a space environment is investigated. The solar cell degradation effects caused by zinc and aluminum diffusion as well as deterioration by arsenic evaporation are presented. Also, the results are presented of experimental testing and measurements of various GaAs solar cell properties while the solar cell was operating in the temperature range of 27 C to 350 C. In particular, the properties of light current voltage curves, dark current voltage curves, and spectral response characteristics are given. Finally, some theoretical models for the annealing of radiation damage over various times and temperatures are included.

  9. A reconfigurable cryogenic platform for the classical control of quantum processors

    NASA Astrophysics Data System (ADS)

    Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo

    2017-04-01

    The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.

  10. A reconfigurable cryogenic platform for the classical control of quantum processors.

    PubMed

    Homulle, Harald; Visser, Stefan; Patra, Bishnu; Ferrari, Giorgio; Prati, Enrico; Sebastiano, Fabio; Charbon, Edoardo

    2017-04-01

    The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.

  11. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes

    2008-03-16

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transportmore » properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.« less

  12. A millimeter-wave radiometer for detecting microbursts

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert

    1992-01-01

    This paper describes a millimeter-wave radiometer for the detection of wind shear from airborne platforms or at airport terminals. This proposed instrument will operate near the group of atmospheric oxygen absorptions centered near 60 GHz, which it will use to sense temperature from a distance. The instrument will use two channels to provide two different temperature measurements, providing the basis for solution of two equations in two unknowns, which are range to the wind shear plume and its temperature. A third channel will measure ambient atmospheric temperature. Depending on the temperature difference between the wind-shear plume and ambient, the standard deviation of range measurement accuracy is expected to be about 1 km at 5 km range, while the temperature measurement standard deviation will be about one-fourth the temperature difference between plume and ambient at this range. The instrument is expected to perform usefully at ranges up to 10 km, giving adequate warning of the presence of wind shear even for high performance jet aircraft. Other atmospheric hazards which might be detected by this radiometer include aircraft wakes and vortices, clear-air turbulence, and wind rotors, although the latter two phenomena would be detected by an airborne version of the instrument. A separate radiometer channel will be provided in the proposed instrument to detect aircraft wakes and vortices based on perturbation of the spectrum of microscopic atmospheric temperature fluctuations caused by the passage of large aircraft.

  13. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 V) or to operate at higher voltages with encapsulated of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between coverglass and conductive spacecraft body in a kilovolt range. In such a case, weakly conductive layer over coverglass (ITO) is one of possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of -150 C +110 C. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to Sun. Conductive layer over coverglass causes sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating material (RTV), radiative heating of coupon in vacuum chamber becomes practically impossible above 150 C, conductivities of glass and adhesive go up with temperature that decrease array efficiency, and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 200 C. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over ITO layer.

  14. The thermal conductivity of 1-chloro-1,1-difluoroethane (HCFC-142b)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa, A.T.; Fialho, P.S.; Nieto de Castro, C.A.

    1992-05-01

    The thermal conductivity of 1-chloro-1,1-difluoroethane (HCFC-142b) has been measured in the temperature range 290 to 504 K and pressures up to 20 MPa with a concentric-cylinder apparatus operating in a steady-state mode. These temperature and pressure ranges cover all fluid states. The estimated accuracy of the method is about 2%. The density dependence of the thermal conductivity has been studied in the liquid region. 19 refs., 5 figs., 4 tabs.

  15. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; DelCastillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  16. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  17. Heat pipe radiator technology for space power systems

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Gustafson, E.; Ercegovic, B. A.

    1986-01-01

    High-reliability high-performance deployable monogroove and dual-slot heat pipe radiator systems to meet the requirements for electric power in future space missions, such as the 300-kW(e) electric powder demand projected for NASA's Space Station, are discussed. Analytical model trade studies of various configurations show the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight reduction potential over the 50-350 F temperature range. The ammonia-aluminum monogroove heat pipe, limited to below-180 F operating temperatures, is under development, and can employ methanol-stainless steel heat pipes to achieve operating temperatures in excess of 300 F. Dual-slot heat pipe configuration proof-of-concept testing was begun in 1985.

  18. Consideration of Fuel Requirements for Supersonic Transport Operation

    NASA Technical Reports Server (NTRS)

    Stickle, Joseph W.

    1965-01-01

    An analysis of the interaction of operational environment and aircraft characteristics of the supersonic transport (SST) in the areas of design-range and reserve-fuel requirements has been made. Design-range requirements are considered in relation to the effects of wind, temperature, flight-level assignment, and payload variation. An approach toward combining en route and holding reserve requirements while maintaining protection equivalent to that provided subsonic jet transport operations by the present civil air regulation en route plus holding reserves is given. This approach results in a savings in reserve fuel over that required by separate requirements.

  19. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    PubMed

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A simple microfluidic Coriolis effect flowmeter for operation at high pressure and high temperature.

    PubMed

    Harrison, Christopher; Jundt, Jacques

    2016-08-01

    We describe a microfluidic Coriolis effect flowmeter that is simple to assemble, operates at elevated temperature and pressure, and can be operated with a lock-in amplifier. The sensor has a flow rate sensitivity greater than 2° of phase shift per 1 g/min of mass flow and is benchmarked with flow rates ranging from 0.05 to 2.0 g/min. The internal volume is 15 μl and uses off-the-shelf optical components to measure the tube motion. We demonstrate that fluid density can be calculated from the frequency of the resonating element with proper calibration.

  1. High temperature ion source for an on-line isotope separator

    DOEpatents

    Mlekodaj, Ronald L.

    1979-01-01

    A reduced size ion source for on-line use with a cyclotron heavy-ion beam is provided. A sixfold reduction in source volume while operating with similar input power levels results in a 2000.degree. C. operating temperature. A combined target/window normally provides the reaction products for ionization while isolating the ion source plasma from the cyclotron beam line vacuum. A graphite felt catcher stops the recoiling reaction products and releases them into the plasma through diffusion and evaporation. Other target arrangements are also possible. A twenty-four hour lifetime of unattended operation is achieved, and a wider range of elements can be studied than was heretofore possible.

  2. Method of low temperature operation of an electrochemical cell array

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.; Bratton, Raymond J.

    1994-01-01

    In the method of operating an electrochemical cell generator apparatus containing a generator chamber (20) containing an array of cells (12) having interior and exterior electrodes with solid electrolyte between the electrodes, where a hot gas (F) contacts the outside of the cells (12) and the generating chamber normally operates at over 850.degree. C., where N.sub.2 gas is fed to contact the interior electrode of the cells (12) in any case when the generating chamber (20) temperature drops for whatever reason to within the range of from 550.degree. C. to 800.degree. C., to eliminate cracking within the cells (12).

  3. The Development of Silicon Carbide Based Hydrogen and Hydrocarbon Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun

    1994-01-01

    Silicon carbide is a high temperature electronic material. Its potential for development of chemical sensors in a high temperature environment has not been explored. The objective of this study is to use silicon carbide as the substrate material for the construction of chemical sensors for high temperature applications. Sensors for the detection of hydrogen and hydrocarbon are developed in this program under the auspices of Lewis Research Center, NASA. Metal-semiconductor or metal-insulator-semiconductor structures are used in this development. Specifically, using palladium-silicon carbide Schottky diodes as gas sensors in the temperature range of 100 to 400 C are designed, fabricated and assessed. The effect of heat treatment on the Pd-SiC Schottky diode is examined. Operation of the sensors at 400 C demonstrate sensitivity of the sensor to hydrogen and hydrocarbons. Substantial progress has been made in this study and we believe that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures. However, the long term stability and operational life of the sensor need to be assessed. This aspect is an important part of our future continuing investigation.

  4. Using Mason number to predict MR damper performance from limited test data

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.; Wereley, Norman M.

    2017-05-01

    The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.

  5. Temperature dependence of the plastic scintillator detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling

    2017-01-01

    The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS

  6. Determination of electron temperature in a penning discharge by the helium line ratio method

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1975-01-01

    The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.

  7. Synthesis and thermoelectric properties of CoP(sub 3)

    NASA Technical Reports Server (NTRS)

    Shields, V. B.; Caillet, T.

    2002-01-01

    In an effort to expand the range of operation for highly efficient, segmented thermoelectric unicouples currently being developed at JPL, skutterudite phosphides are being investigated as potential high temperature segments to supplement antimonide segments that limit the use of these unicouples at a hot-side temperature of about 873-973 K.

  8. Intelligent Data Transfer for Multiple Sensor Networks over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael (Inventor)

    2018-01-01

    A sensor network may be configured to operate in extreme temperature environments. A sensor may be configured to generate a frequency carrier, and transmit the frequency carrier to a node. The node may be configured to amplitude modulate the frequency carrier, and transmit the amplitude modulated frequency carrier to a receiver.

  9. Moderate temperature rechargeable NaNiS2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

  10. High temperature electronics applications in space exploration

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.

    1981-01-01

    The extension of the range of operating temperatures of electronic components and systems for planetary exploration is examined. In particular, missions which utilize balloon-borne instruments to study the Venusian and Jovian atmospheres are discussed. Semiconductor development and devices including power sources, ultrastable oscillators, transmitters, antennas, electromechanical devices, and deployment systems are addressed.

  11. Stable catalyst layers for hydrogen permeable composite membranes

    DOEpatents

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  12. Refractory metal shielding /insulation/ increases operating range of induction furnace

    NASA Technical Reports Server (NTRS)

    Ebihara, B. T.

    1965-01-01

    Thermal radiation shield contains escaping heat from an induction furnace. The shield consists of a sheet of refractory metal foil and a loosely packed mat of refractory metal fibers in a concentric pattern. This shielding technique can be used for high temperature ovens, high temperature fluid lines, and chemical reaction vessels.

  13. High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte

    PubMed Central

    Hibino, Takashi; Kobayashi, Kazuyo; Nagao, Masahiro; Kawasaki, Shinji

    2015-01-01

    Expanding the range of supercapacitor operation to temperatures above 100°C is important because this would enable capacitors to operate under the severe conditions required for next-generation energy storage devices. In this study, we address this challenge by the fabrication of a solid-state supercapacitor with a proton-conducting Sn0.95Al0.05H0.05P2O7 (SAPO)-polytetrafluoroethylene (PTFE) composite electrolyte and a highly condensed H3PO4 electrode ionomer. At a temperature of 200°C, the SAPO-PTFE electrolyte exhibits a high proton conductivity of 0.02 S cm−1 and a wide withstanding voltage range of ±2 V. The H3PO4 ionomer also has good wettability with micropore-rich activated carbon, which realizes a capacitance of 210 F g−1 at 200°C. The resulting supercapacitor exhibits an energy density of 32 Wh kg−1 at 3 A g−1 and stable cyclability after 7000 cycles from room temperature to 150°C. PMID:25600936

  14. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95more » wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.« less

  15. The physical and functional thermal sensitivity of bacterial chemoreceptors.

    PubMed

    Frank, Vered; Koler, Moriah; Furst, Smadar; Vaknin, Ady

    2011-08-19

    The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Flexible Cryogenic Heat Pipe Development Program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.

  17. A phenomenological force model of Li-ion battery packs for enhanced performance and health management

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2017-10-01

    A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.

  18. Advances in Fabry-Perot and tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2017-05-01

    Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.

  19. Improved gas thrust bearings

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Etsion, I.

    1979-01-01

    Two variations of gas-lubricated thrust bearings extend substantially load-carrying range over existing gas bearings. Dual-Action Gas Thrust Bearing's load-carrying capacity is more than ninety percent greater than that of single-action bearing over range of compressibility numbers. Advantages of Cantilever-mounted Thrust Bearing are greater tolerance to dirt ingestion, good initial lift-off characteristics, and operational capability over wide temperature range.

  20. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  1. A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10 K

    NASA Astrophysics Data System (ADS)

    Wang, Yanan; Wang, Xiaotao; Dai, Wei; Luo, Ercang

    2018-03-01

    Vuilleumier (VM) type pulse tube cryocooler (PTC) utilizes the thermal compressor to drive the low temperature stage PTC. This paper presents the latest experimental results of a cryogen-free VM type PTC that operates in the temperature range below 10 K. Stirling type pre-coolers instead of liquid nitrogen provide the cooling power for the thermal compressor. Compared with previous configuration, the thermal compressor was improved with a higher output pressure ratio, and lead and HoCu2 spheres were packed within the regenerator for the low temperature stage PTC for a better match with targeted cold end temperature. A lowest no-load temperature of 7.58 K was obtained with a pressure ratio of 1.23, a working frequency of 3 Hz and an average pressure of 1.63 MPa. The experimental results show good consistency in terms of lowest temperature with the simulation under the same working condition.

  2. Performance of Power Converters at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

    2001-01-01

    Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

  3. Fluid valve with wide temperature range

    NASA Technical Reports Server (NTRS)

    Kast, Howard Berdolt (Inventor)

    1976-01-01

    A fluid valve suitable for either metering or pressure regulating fluids at various temperatures is provided for a fuel system as may be utilized in an aircraft gas turbine engine. The valve includes a ceramic or carbon pad which cooperates with a window in a valve plate to provide a variable area orifice which remains operational during large and sometimes rapid variations in temperature incurred from the use of different fuels.

  4. Calibration and evaluation tests of strain gages for use on structure exposed to cryogenic and reentry temperatures

    NASA Astrophysics Data System (ADS)

    Mueller, Richard N.; Howard, J. Lawrence; Sikorra, Charles F.; Swegle, Allan R.

    Commercial strain gages were evaluated for proposed strain measurement on a Rene 41 honeycomb test panel to be subjected to temperatures from -423 F to +1600 F. Foil strain gages of three different temperature compensations, a weldable strain gage, and a capacitive strain gage, were tested to determine characteristics of apparent strain, strain sensitivity, and temperature operational limits under stabilized temperature and several heating and cooling temperature rates. Test results show that strain measurement over the total temperature range can be made using a combination of gages.

  5. EMU Battery/module Service Tool Characterization Study

    NASA Technical Reports Server (NTRS)

    Palandati, C. F.

    1984-01-01

    The power tool which will be used to replace the attitude control system in the SMM spacecraft is being modified to operate from a self contained battery. The extravehicular mobility unit (EMU) battery, a silver zinc battery, was tested for the power tool application. The results obtained during show the EMU battery is capable of operating the power tool within the pulse current range of 2.0 to 15.0 amperes and battery temperature range of -10 to 40 degrees Celsius.

  6. Lasing efficiency of Er-Yb-Cr-glass: A temperature study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    George, Simi A.; Hayden, Joseph S.; Davis, Mark J.

    2017-03-01

    Retina-safe operation in open-air is of high interest to the next generation of lasers that are being utilized for many industrial, defense and medical applications. Those wavelengths that are considered to be the best for retina safe operations (also called eye-safe) fall in the range between 1400nm and1800nm. This wavelength region also coincides with the low loss window of fused silica fibers used for optical fiber communications [1], where the S and C bands near 1500nm are heavily utilized for long range communications due to the lowest attenuation losses possible in the fiber. The trivalent Er ion can produce direct emission into the 1540 nm wavelength, thus, it is the rare-earth emitter of choice for many eye-safe applications. In recent years, the need for high beam quality under passive operation in open air applications have renewed interest in Er-doped bulk glasses as the gain material of choice for solid-state eye-safe lasers. The need for performance stability under a broad operating range from -400C to 1000C without active cooling is a challenge for amorphous gain materials. Moreover, there is very little known about how temperature may affect performance. In this study, we describe our first attempts to understand material behavior by systematically analyzing temperature driven variations exhibited in absorption and emission from the commercially available gain materials. As part of these investigations, we will also present our method for assessing quantum efficiency through measurements for critical evaluation from laser community at large.

  7. Evaluation of Capacitors at Cryogenic Temperatures for Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.

    1998-01-01

    Advanced electronic systems designed for use in planetary exploration missions must operate efficiently and reliably under the extreme cold temperatures of deep space environment. In addition, spacecraft power electronics capable of cold temperature operation will greatly simplify the thermal management system by eliminating the need for heating units and associated equipment and thereby reduce the size and weight of the overall power system. In this study, film, mica, solid tantalum and electric double layer capacitors were evaluated as a function of temperature from room to liquid nitrogen in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The results obtained are discussed and conclusions are made concerning the suitability of the capacitors investigated for low temperature applications.

  8. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  9. Studies on the pretreatment of zeolite clinoptilolite in packed beds.

    PubMed

    Inglezakis, V J; Loizidou, M D; Grigoropoulou, H P

    2004-02-01

    The effect of volumetric flow rate, ranging from 5 to 45 Bed Volumes per hour (BV h(-1)) and temperature, ranging from 25 to 59 degrees C, during pretreatment of clinoptilolite on its effective capacity has been investigated. Pretreatment tests have been performed in an upflow ion exchange bed. Increased temperatures were found to increase the effective capacity of clinoptilolite. Effective capacity was maximal at low volumetric flow rates, indicating an influence of contact time and complete saturation of the zeolite bed at flow rates lower than 10 BV h(-1). Furthermore, a comparison between upflow and downflow operation at the same operating conditions showed that better results are obtained in upflow conditions, probably due to the better wetting of the material and the absence of liquid maldistribution.

  10. Three Axes MEMS Combined Sensor for Electronic Stability Control System

    NASA Astrophysics Data System (ADS)

    Jeong, Heewon; Goto, Yasushi; Aono, Takanori; Nakamura, Toshiaki; Hayashi, Masahide

    A microelectromechanical systems (MEMS) combined sensor measuring two-axis accelerations and an angular rate (rotation) has been developed for an electronic stability control system of automobiles. With the recent trend to mount the combined sensors in the engine compartment, the operation temperature range increased drastically, with the request of immunity to environmental disturbances such as vibration. In this paper, we report the combined sensor which has a gyroscopic part and two acceleration parts in single die. A deformation-robust MEMS structure has been adopted to achieve stable operation under wide temperature range (-40 to 125°C) in the engine compartment. A package as small as 10 × 19 × 4 mm is achieved by adopting TSV (through silicon via) and WLP (wafer-level package) technologies with enough performance as automotive grade.

  11. A Continuous Adiabatic Demagnetization Refrigerator for Use with Mechanical Coolers

    NASA Technical Reports Server (NTRS)

    Shirron, P.; Abbondante, N.; Canavan, E.; DiPirro, M.; Grabowski, M.; Hirsch, M.; Jackson, M.; Tuttle, J.

    2000-01-01

    We have begun developing an adiabatic demagnetization refrigerator (ADR) which can produce continuous cooling at temperatures of 50 mK or lower, with high cooling power (goal of 10 PW). The design uses multiple stages to cascade heat from a continuously-cooled stage up to a heat sink. The serial arrangement makes it possible to add stages to extend the operating range to lower temperature, or to raise the heat rejection temperature. Compared to conventional single-shot ADRS, this system achieves higher cooling power per unit mass and is able to reject its heat at a more uniform rate. For operation with a mechanical cryocooler, this latter feature stabilizes the heat sink temperature and allows both the ADR and cryocooler to operate more efficiently. The ADR is being designed to operate with a heat sink as warm as 10-12 K to make it compatible with a wide variety of mechanical coolers as part of a versatile, cryogen-free low temperature cooling system. A two-stage system has been constructed and a proof-of-principle demonstration was conducted at 100 mK. Details of the design and test results, as well as the direction of future work, are discussed.

  12. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Raman Doppler velocimetry - A unified approach for measuring molecular flow velocity, temperature, and pressure

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Hillard, M. E.

    1986-01-01

    Molecular flow velocity (one component), translational temperature, and static pressure of N2 are measured in a supersonic wind tunnel using inverse Raman spectroscopy. For velocity, the technique employs the large Doppler shift exhibited by the molecules when the pump and probe laser beams are counterpropagating (backward scattering). A retrometer system is employed to yield an optical configuration insensitive to mechanical vibration, which has the additional advantage of simultaneously obtaining both the forward and backward scattered spectra. The forward and backward line breadths and their relative Doppler shift can be used to determine the static pressure, translational temperature, and molecular flow velocity. A demonstration of the technique was performed in a continuous airflow supersonic wind tunnel in which data were obtained under the following conditions: (1) free-stream operation at five set Mach number levels over the 2.50-4.63 range; (2) free-stream operation over a range of Reynolds number (at a fixed Mach number) to vary systematically the static pressure; and (3) operation in the flow field of a simple aerodynamic model to assess beam steering effects in traversing the attached shock layer.

  14. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  15. Portable Cathode-Air Vapor-Feed Electrochemical Medical Oxygen Concentrator (OC)

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Ashwin

    2015-01-01

    Missions on the International Space Station and future space exploration will present significant challenges to crew health care capabilities, particularly in the efficient utilization of onboard oxygen resources. Exploration vehicles will require lightweight, compact, and portable oxygen concentrators that can provide medical-grade oxygen from the ambient cabin air. Current pressure-swing adsorption OCs are heavy and bulky, require significant start-up periods, operate in narrow temperature ranges, and require a liquid water feed. Lynntech, Inc., has developed an electrochemical OC that operates with a cathode-air vapor feed, eliminating the need for a bulky onboard water supply. Lynntech's OC is smaller and lighter than conventional pressure-swing OCs, is capable of instant start-up, and operates over a temperature range of 5-80 C. Accomplished through a unique nanocomposite proton exchange membrane and catalyst technology, the unit delivers 4 standard liters per minute of humidified oxygen at 60 percent concentration. The technology enables both ambient-pressure operating devices for portable applications and pressurized (up to 3,600 psi) OC devices for stationary applications.

  16. Acceleration of high-pressure-ratio single-spool turbojet engine as determined from component performance characteristics I : effect of air bleed at compressor outlet

    NASA Technical Reports Server (NTRS)

    Rebeske, John J , Jr; Rohlik, Harold E

    1953-01-01

    An analytical investigation was made to determine from component performance characteristics the effect of air bleed at the compressor outlet on the acceleration characteristics of a typical high-pressure-ratio single-spool turbojet engine. Consideration of several operating lines on the compressor performance map with two turbine-inlet temperatures showed that for a minimum acceleration time the turbine-inlet temperature should be the maximum allowable, and the operating line on the compressor map should be as close to the surge region as possible throughout the speed range. Operation along such a line would require a continuously varying bleed area. A relatively simple two-step area bleed gives only a small increase in acceleration time over a corresponding variable-area bleed. For the modes of operation considered, over 84 percent of the total acceleration time was required to accelerate through the low-speed range ; therefore, better low-speed compressor performance (higher pressure ratios and efficiencies) would give a significant reduction in acceleration time.

  17. Thermionic converter temperature controller

    DOEpatents

    Shaner, Benjamin J [McMurray, PA; Wolf, Joseph H [Pittsburgh, PA; Johnson, Robert G. R. [Trafford, PA

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  18. High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers

    NASA Astrophysics Data System (ADS)

    Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.

    2007-07-01

    The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.

  19. Flexible Multiplexed Surface Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, L. A.; Johnson, Preston B.; Ash, Robert L.

    1995-01-01

    Unitary array of sensors measures temperatures at points distributed over designated area on surface. Useful in measuring surface temperatures of aerodynamic models and thermally controlled objects. Made of combination of integrated-circuit microchips and film circuitry. Temperature-sensing chips scanned at speeds approaching 10 kHz. Operating range minus 40 degrees C to 120 degrees C. Flexibility of array conforms to curved surfaces. Multiplexer eliminates numerous monitoring cables. Control of acquisition and recording of data effected by connecting array to microcomputers via suitable interface circuitry.

  20. Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.

    PubMed

    Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas

    2017-05-01

    To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.

  1. 6H-SiC Transistor Integrated Circuits Demonstrating Prolonged Operation at 500 C

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu; Chang, Carl W.; Beheim, Glenn M.; Okojie, Robert S.; Evans, Laura J.; Meredith, Roger; Ferrier, Terry; Krasowski, Michael J.; hide

    2008-01-01

    The NASA Glenn Research Center is developing very high temperature semiconductor integrated circuits (ICs) for use in the hot sections of aircraft engines and for Venus exploration where ambient temperatures are well above the approximately 300 degrees Centigrade effective limit of silicon-on-insulator IC technology. In order for beneficial technology insertion to occur, such transistor ICs must be capable of prolonged operation in such harsh environments. This paper reports on the fabrication and long-term 500 degrees Centigrade operation of 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). Simple analog amplifier and digital logic gate ICs have now demonstrated thousands of hours of continuous 500 degrees Centigrade operation in oxidizing air atmosphere with minimal changes in relevant electrical parameters. Electrical characterization and modeling of transistors and circuits at temperatures from 24 degrees Centigrade to 500 degrees Centigrade is also described. Desired analog and digital IC functionality spanning this temperature range was demonstrated without changing the input signals or power supply voltages.

  2. In-situ analysis of hydrazine decomposition products

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Whalen, Margaret V.

    1987-01-01

    A gas analyzer utilizing a nondispersive infrared (NDIR) detection system was used to monitor the ammonia and water vapor content of the products of a previously unused hydrazine gas generator. This provided an in-situ measurement of the generator's efficiency difficult to obtain by other means. The analyzer was easily installed in both the calibration and hydrazine systems, required no maintenance other than periodic zero adjustments, and performed well for extended periods in the operating range tested. The catalyst bed operated smoothly and repeatably during the 28 hr of testing. No major transients were observed on startup or during steady state operation. The amount of ammonia in the output stream of the gas generator was found to be a strong function of temperature at catalyst bed temperatures below 450 C. At temperatures above this, the efficiency remained nearly constant. On startup the gas generator efficiency was found to decrease with time until a steady state value was attained. Elevated catalyst bed temperatures in the periods before steady state operation was found to be responsible for this phenomenon.

  3. Tuning the transition temperature of WSi$$_{x}$$ alloys for use in cryogenic microcalorimeters

    DOE PAGES

    Cecil, T.; Gades, L.; Madden, T.; ...

    2016-03-10

    Here, microwave kinetic inductance detectors (MKID) provide a pathway to highly multiplexed, high-resolution, detectors. Over the past several years we have introduced the concept of the Thermal Kinetic Inductance Detector (TKID), which operates as a microcalorimeter. As with other microcalorimeters, the thermal noise of a TKID is reduced when the operating temperature is decreased. However, because the sensitivity of a TKID decreases as the operating temperature drops below 20% of T C, the T C of the resonator material must be tuned to match the desired operating temperature. We have investigated the WSimore » $$_{x}$$ alloy system as a material for these detectors. By co-sputtering from a Si andW2Si target, we have deposited WSi$$_{x}$$ films with a tunable T C that ranges from 5 K down to 500 mK. These films provide a large kinetic inductance fraction and relatively low noise levels. We provide results of these studies showing the T C, resistivity, quality factors, and noise as a function of deposition conditions. These results show that WSi$$_{x}$$ is a good candidate for TKIDs.« less

  4. Temperature effects on the aerobic metabolism of glycogen-accumulating organisms.

    PubMed

    Lopez-Vazquez, Carlos M; Song, Young-Il; Hooijmans, Christine M; Brdjanovic, Damir; Moussa, Moustafa S; Gijzen, Huub J; van Loosdrecht, Mark C M

    2008-10-01

    Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.

  5. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  6. Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments

    NASA Astrophysics Data System (ADS)

    Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming

    2013-04-01

    Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.

  7. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus.

    PubMed

    Long, Mingsheng; Gao, Anyuan; Wang, Peng; Xia, Hui; Ott, Claudia; Pan, Chen; Fu, Yajun; Liu, Erfu; Chen, Xiaoshuang; Lu, Wei; Nilges, Tom; Xu, Jianbin; Wang, Xiaomu; Hu, Weida; Miao, Feng

    2017-06-01

    The mid-infrared (MIR) spectral range, pertaining to important applications, such as molecular "fingerprint" imaging, remote sensing, free space telecommunication, and optical radar, is of particular scientific interest and technological importance. However, state-of-the-art materials for MIR detection are limited by intrinsic noise and inconvenient fabrication processes, resulting in high-cost photodetectors requiring cryogenic operation. We report black arsenic phosphorus-based long-wavelength IR photodetectors, with room temperature operation up to 8.2 μm, entering the second MIR atmospheric transmission window. Combined with a van der Waals heterojunction, room temperature-specific detectivity higher than 4.9 × 10 9 Jones was obtained in the 3- to 5-μm range. The photodetector works in a zero-bias photovoltaic mode, enabling fast photoresponse and low dark noise. Our van der Waals heterojunction photodetectors not only exemplify black arsenic phosphorus as a promising candidate for MIR optoelectronic applications but also pave the way for a general strategy to suppress 1/ f noise in photonic devices.

  8. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    NASA Astrophysics Data System (ADS)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  9. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  10. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  11. Handheld chemiresistive gas sensor readout system

    NASA Astrophysics Data System (ADS)

    Joubert, Trudi-Heleen; du Toit, Jurie; Mkwakikunga, Bonex; Bosscha, Peter

    2016-02-01

    Low-cost and non-invasive diabetes diagnosis is increasingly important [1], and this paper presents a handheld readout system for chemiresistive gas sensors in a breath acetone diagnostic application. The sensor contains reference and detection devices, used for the detection of gas concentration. Fabrication is by dropcasting a metaloxide nanowire solution onto gold interdigitated electrodes, which had been manufactured on silicon. The resulting layer is a wide bandgap n-type semiconductor material sensitive to acetone, producing a change in resistance between the electrode terminals [2]. Chemiresistive sensors typically require temperatures of 300-500 °C, while variation of sensing temperature is also employed for selective gas detection. The nano-structured functional material requires low temperatures due to large surface area, but heating is still required for acceptable recovery kinetics. Furthermore, UV illumination improves the sensor recovery [3], and is implemented in this system. Sensor resistances range from 100 Ω to 50 MΩ, while the sensor response time require a sampling frequency of 10Hz. Sensor resistance depends on temperature, humidity, and barometric pressure. The GE CC2A23 temperature sensor is used over a range of -10°C to 60°C, the Honeywell HIH5031 humidity sensor operates up to 85% over this temperature range, and the LPS331AP barometric pressure sensor measures up to 1.25 bar. Honeywell AWM43300V air flow sensors monitor the flow rate up to 1000 sccm. An LCD screen displays all the sensor data, as well as real time date and time, while all measurements are also logged in CSV-format. The system operates from a rechargeable battery.

  12. Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Useller, James W.; Russey, Robert E.

    1955-01-01

    An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.

  13. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  14. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Davnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35/sup 0/C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23h. Both growth and ethanol yield coefficients in dependence on initialmore » glucose concentrations were determined.« less

  15. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Duvnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35 degrees C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23 hours. Both growth and ethanol yield coefficients in dependencemore » on initial glucose concentrations were determined. (Refs. 16).« less

  16. Development of Cryogenic Enhancement-Mode Pseudomorphic High-Electron-Mobility Transistor Amplifier

    NASA Astrophysics Data System (ADS)

    Hirata, T.; Okazaki, T.; Obara, K.; Yano, H.; Ishikawa, O.

    2017-06-01

    This paper reports the technical details of the development of a low-temperature amplifier for nuclear magnetic resonance measurements of superfluid {}^3He in very confined geometries. The amplifier consists of commercially available enhancement-mode pseudomorphic high-electron-mobility transistor devices and temperature-insensitive passive components with an operating frequency range of 0.2-6 MHz.

  17. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  18. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  19. Control of hydrocarbon emissions from gasoline loading by refrigeration systems. Final report Dec 80-Apr 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battye, W.; Brown, P.; Misenheimer, D.

    1981-07-01

    The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration systems cooling various gasoline/air mixtures to -62 C, -73 C, and -84 C by estimating vapor/liquid equilibrium compositions for VOC/air mixtures. Emission rates were calculated for inlet streams containing vapors from low- and high-volatility gasolines at concentrations of 15, 30, and 50% by volume (22.5, 45, and 75% measured as propane). Predicted VOC emission rates for systems cooling various inlet streamsmore » to -62 C ranged from 48 to 59 mg VOC/liter of gasoline loaded. Predicted VOC were 21 to 28 mg/l loaded for systems operating at -73 C and 8.7 to 12 mg/l loaded for systems operating at -84 C. Compressor electrical requirements and relative capital costs for systems operating at the above temperatures were estimated for model systems using the results of a computer simulation. Compressor electrical requirements ranged from 0.11 to 0.45 Whr/l loaded, depending on the inlet VOC concentration and the outlet temperature. The capital cost to build a system designed to cool vapors to -84 C is estimated to be about 9% higher than for a system designed to operate at -73 C.« less

  20. Evaluation of a 2.5 kWel automotive low temperature PEM fuel cell stack with extended operating temperature range up to 120 °C

    NASA Astrophysics Data System (ADS)

    Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich

    2016-01-01

    Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.

  1. Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K

    NASA Technical Reports Server (NTRS)

    Wade, A.; Fedorov, G.; Smirnov, D.; Kumar, S.; Williams, B. S.; Hu, Q.; Reno, J. L.

    2008-01-01

    Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2-5 THz, although cryogenic cooling is still required2.3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz approx. equals 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68-3.33 THz). Owing to the suppression of inter-landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.

  2. Should Tungsten Ribbon Lamps Be Replaced or Not?

    NASA Astrophysics Data System (ADS)

    Matveyev, M. S.; Pokhodun, A. I.; Sild, Yu. A.

    2003-09-01

    Tungsten ribbon lamps are the most frequently used means in the temperature range higher than 800 °C for reproduction and precise transfer of a temperature scale by non-contact methods. Lamps have many advantages: a very high reproducibility, stability and durability; use of a lamp over dozens of years with careful and correct operation; and relative simplicity of operation, storage and transportation. The direct correlation of temperature and current through a ribbon enables us to use the advantages of electrical measurements. At the same time lamps have also a number of negative features. Small deviations from the prescribed procedure can lead to unpredictable changes of the performance of a lamp and, even, to irreversible changes of its parameters. The important factor of the quality of transferring the temperature scale is the propinquity of the transferred temperature to the thermodynamic one. Only this factor guarantees the accuracy and unity of temperature measurements of temperature by instruments applying different principles of operation and various designs. However, this is the quality that the lamps do not possess. Their main drawback is selectivity of radiation stipulated by the spectral dependence of emissivity. That is why it is necessary to replace them with blackbodies, which let us rely completely on the definition of the ITS-90. Several years ago at our institute we started investigations on development of special measuring instruments, in which a sensor was located around a miniature blackbody. The aperture of this blackbody could be used as a standard emitter, which temperature was accurately determined by a resistance thermometer. Applying also a standard pyrometer, we refined the reference function of a platinum resistor in the range between the Ag and Cu fixed points. To extend the temperature range up to 1450 °C to 1500 °C we built an instrument in the form of a miniature blackbody made of Pd which was connected to three platinum wires forming Pt-Pd thermocouples. Then we built a similar device made of Pt-Rh alloy. It gave us an opportunity to reach the temperatures up to 1600 to 1700 °C. Having the maximal diameter 8 mm, about 35 mm length and a radiating aperture of diameter 1.8 mm, the device had emissivity about 0.9994, and it was suitable for transfer of the temperature scale, without using conditional temperatures. Its small dimensions allowed for applying it also as a temperature-measuring instrument using the well known and developed contact methods. We discuss in the paper whether such instrument equipped with a simple heater would compete with lamps.

  3. An Integrated Chemical Reactor-Heat Exchanger Based on Ammonium Carbamate (POSTPRINT)

    DTIC Science & Technology

    2012-10-01

    With the scrubber and exhaust operating, the test cell ammonia concentration remains below 5 ppm. To further reduce NH3 release into the test cell...material has a high decomposition enthalpy and exhibits decomposition over a wide range of temperatures. AC decomposition produces ammonia and carbon...installation due to toxic gas ( ammonia ) generation during operation. Therefore, the experiment is intended to be remotely operated. A secondary control

  4. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led to the following conclusions:The existing outlets at Lookout Point Dam, because of the range of depths, allow for greater temperature control than the two existing outlets at Hills Creek Dam that are relatively deep.Temperature control at HCR through operational scenarios generally was minimal near Hills Creek Dam, but improved downstream toward the head of LOP when decreased release rates held HCR at a low lake elevation year-round.Inflows from unregulated streams between HCR and LOP helped to dilute the effects of HCR and achieve more natural stream temperatures before the MFWR entered LOP.The relative benefit of any particular scenario depended on the location in the MFWR system used to assess the potential change, with most scenarios involving changes to Hills Creek Dam being less effective with increasing downstream distance, such as downstream of DEX.To achieve as much temperature control as the most successful structural scenarios, which were able to resemble without-dam conditions for part of the year, most operational scenarios had to be free of any power-generation requirements at Lookout Point Dam.Downstream of DEX, scenarios incorporating a hypothetical floating outlet at either HCR or LOP resulted in similar temperatures, with both scenarios causing a delay in the estimated spring Chinook egg emergence by about 9–10 days compared to base-case temperature-management scenarios.

  5. Altitude-Test-Chamber Investigation of a Solar Afterburner on the 24C Engine I - Operational Characteristics and Altitude Limits

    NASA Technical Reports Server (NTRS)

    1948-01-01

    An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.

  6. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates

    NASA Astrophysics Data System (ADS)

    Jarrett, Anthony; Kim, Il Yong

    2014-01-01

    The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.

  7. A new intelligent curtain control system based on 51 single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Sun, Tuan; Wang, Yanhua; Wu, Mengmeng

    2017-04-01

    This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.

  8. The balance between cytoplasmic and nuclear CaM Kinase-1 signaling controls the operating range of noxious heat avoidance

    PubMed Central

    Schild, Lisa C.; Zbinden, Laurie; Bell, Harold W.; Yu, Yanxun V.; Sengupta, Piali; Goodman, Miriam B.; Glauser, Dominique A.

    2015-01-01

    SUMMARY Through encounters with predators, competitors, and noxious stimuli, animals have evolved defensive responses that minimize injury and are essential for survival. Physiological adaptation modulates the stimulus intensities that trigger such nocifensive behaviors, but the molecular networks that define their operating range are largely unknown. Here, we identify a novel, gain-of-function allele of the cmk-1 CaMKI gene in C. elegans and show that loss of the regulatory domain of the CaMKI enzyme produces thermal analgesia and shifts the operating range for nocifensive heat avoidance to higher temperatures. Such analgesia depends on nuclear CMK-1 signaling, while cytoplasmic CMK-1 signaling lowers the threshold for thermal avoidance. CMK-1 acts downstream of heat detection in thermal receptor neurons and controls neuropeptide release. Our results establish CaMKI as a key regulator of the operating range for nocifensive behaviors, and suggest strategies for producing thermal analgesia through the regulation of CaMKI-dependent signaling. PMID:25467982

  9. The lack of effect of low temperature and high turbidity on operational Bacillus thuringiensis subsp. israelensis activity against larval black flies (Diptera: Simuliidae).

    PubMed

    Gray, Elmer W; Wyatt, Roger D; Adler, Peter H; Smink, John; Cox, Julie E; Noblet, Ray

    2012-06-01

    Black fly suppression programs are conducted across a wide range of environmental conditions, targeting a variety of pest species with diverse life histories. Operational applications of Vectobac 12AS (Bacillus thuringiensis subsp. israelensis) were conducted during times characterized by water temperature and turbidity extremes. Applications were conducted in the Yellow River in central Wisconsin targeting Simulium annulus and S. johannseni when water temperatures were 1-2 degrees C. Applications were conducted in the Green River in western North Carolina targeting the S. jenningsi group after a rain event, when portions of the treatment zone experienced turbidities of 276 nephelometric turbidity units. Excellent larvicidal activity was observed in both programs, with 97% mortality or greater being observed at distances over 5 km downstream of a treatment site. Mortality data for larval black flies in 2 operational suppression programs conducted in 2011 demonstrated a negligible effect of near-freezing water temperatures and exceptionally high turbidity on Bti activity.

  10. Monitoring solar irradiance from L2 with Gaia

    NASA Astrophysics Data System (ADS)

    Serpell, E.

    2017-09-01

    Gaia is the European Space Agency's cornerstone astrometry mission to measure the positions of a billion stars in the Milky Way with unprecedented accuracy. Since early 2014 Gaia has been operating in a halo orbit around the second Sun-Earth Lagrange point that provides the stable thermal environment, without Earth eclipses, needed for the payload to function accurately. The spacecraft is equipped with a number of thermally isolated, sun-facing thermistors that provide a continuous measurement of the local equilibrium temperature. As a consequence of the spacecraft design and operational conditions these temperature measurements have been used to infer the solar output over a broad wavelength range. In this paper we present an analysis of temperature measurements made of the Gaia solar panels at frequencies of up to 1 Hz for the first 35 months of routine operations. We show that the Gaia solar panel temperature measurements are capable of precisely determining short term changes to the solar output at a level of better than 0.04% with time constants of a few minutes.

  11. Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Bjorklund, R. A.

    1973-01-01

    The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications.

  12. SiC JFET Transistor Circuit Model for Extreme Temperature Range

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2008-01-01

    A technique for simulating extreme-temperature operation of integrated circuits that incorporate silicon carbide (SiC) junction field-effect transistors (JFETs) has been developed. The technique involves modification of NGSPICE, which is an open-source version of the popular Simulation Program with Integrated Circuit Emphasis (SPICE) general-purpose analog-integrated-circuit-simulating software. NGSPICE in its unmodified form is used for simulating and designing circuits made from silicon-based transistors that operate at or near room temperature. Two rapid modifications of NGSPICE source code enable SiC JFETs to be simulated to 500 C using the well-known Level 1 model for silicon metal oxide semiconductor field-effect transistors (MOSFETs). First, the default value of the MOSFET surface potential must be changed. In the unmodified source code, this parameter has a value of 0.6, which corresponds to slightly more than half the bandgap of silicon. In NGSPICE modified to simulate SiC JFETs, this parameter is changed to a value of 1.6, corresponding to slightly more than half the bandgap of SiC. The second modification consists of changing the temperature dependence of MOSFET transconductance and saturation parameters. The unmodified NGSPICE source code implements a T(sup -1.5) temperature dependence for these parameters. In order to mimic the temperature behavior of experimental SiC JFETs, a T(sup -1.3) temperature dependence must be implemented in the NGSPICE source code. Following these two simple modifications, the Level 1 MOSFET model of the NGSPICE circuit simulation program reasonably approximates the measured high-temperature behavior of experimental SiC JFETs properly operated with zero or reverse bias applied to the gate terminal. Modification of additional silicon parameters in the NGSPICE source code was not necessary to model experimental SiC JFET current-voltage performance across the entire temperature range from 25 to 500 C.

  13. Solar Array at Very High Temperatures: Ground Tests

    NASA Technical Reports Server (NTRS)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees Centigrade. The dependence of leakage current on temperature was measured, and electrostatic cleanness was verified for coupons with antireflection (AR) coating over the indium tin oxide (ITO) layer.

  14. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    PubMed

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  15. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics.

    PubMed

    Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N

    2017-10-01

    A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Design and application of gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Chan, C. K.; Ross, R. G., Jr.

    1990-01-01

    Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort.

  17. Stable room-temperature LiF:F2+* tunable color-center laser for the 830-1060-nm spectral range pumped by second-harmonic radiation from a neodymium laser

    NASA Astrophysics Data System (ADS)

    Ter-Mikirtychev, V. V.

    1995-09-01

    Simultaneous photostability and thermostability of a room-temperature LiF:F2+ * tunable color-center laser, with an operating range over 830-1060 nm, pumped by second-harmonic radiation of a YAG:Nd3+ laser with a 532-nm wavelength has been achieved. The main lasing characteristics of the obtained LiF:F2+* laser have been measured. Twenty-five percent real efficiency in a nonselective resonator cavity and 15% real efficiency in a selective resonator cavity have been obtained. The stable LiF:F2 +* laser operates at a 1-100-Hz pulse-repetition rate with a 15-ns pulse duration, a 1-1.5-cm-1 narrow-band oscillation bandwidth, and divergency of better than 6 \\times 10-4. Doubling the fundamental frequencies of F2+ * oscillation made it possible to obtain stable blue-green tunable radiation over the 415-530-nm range.

  18. Scrambling in the quantum Lifshitz model

    NASA Astrophysics Data System (ADS)

    Plamadeala, Eugeniu; Fradkin, Eduardo

    2018-06-01

    We study signatures of chaos in the quantum Lifshitz model through out-of-time ordered correlators (OTOC) of current operators. This model is a free scalar field theory with dynamical critical exponent z  =  2. It describes the quantum phase transition in 2D systems, such as quantum dimer models, between a phase with a uniform ground state to another one with spontaneously broken translation invariance. At the lowest temperatures the chaotic dynamics are dominated by a marginally irrelevant operator which induces a temperature dependent stiffness term. The numerical computations of OTOC exhibit a non-zero Lyapunov exponent (LE) in a wide range of temperatures and interaction strengths. The LE (in units of temperature) is a weakly temperature-dependent function; it vanishes at weak interaction and saturates for strong interaction. The Butterfly velocity increases monotonically with interaction strength in the studied region while remaining smaller than the interaction-induced velocity/stiffness.

  19. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  20. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.

  1. Status of fiberoptics technology for propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1982-01-01

    Optical sensors and optically controlled actuators for use in airbreathing engine control systems are discussed. The environmental conditions in which the aircraft will operate require the fiberoptic cables and optical connectors to perform reliably at temperatures over the -55 C to 260 C range. The status of fiberoptics technology for operation in this environment is reviewed.

  2. Air-Cooled Turbine Blades with Tip Cap For Improved Leading-Edge Cooling

    NASA Technical Reports Server (NTRS)

    Calvert, Howard F.; Meyer, Andre J., Jr.; Morgan, William C.

    1959-01-01

    An investigation was conducted in a modified turbojet engine to determine the cooling characteristics of the semistrut corrugated air- cooled turbine blade and to compare and evaluate a leading-edge tip cap as a means for improving the leading-edge cooling characteristics of cooled turbine blades. Temperature data were obtained from uncapped air-cooled blades (blade A), cooled blades with the leading-edge tip area capped (blade B), and blades with slanted corrugations in addition to leading-edge tip caps (blade C). All data are for rated engine speed and turbine-inlet temperature (1660 F). A comparison of temperature data from blades A and B showed a leading-edge temperature reduction of about 130 F that could be attributed to the use of tip caps. Even better leading-edge cooling was obtained with blade C. Blade C also operated with the smallest chordwise temperature gradients of the blades tested, but tip-capped blade B operated with the lowest average chordwise temperature. According to a correlation of the experimental data, all three blade types 0 could operate satisfactorily with a turbine-inlet temperature of 2000 F and a coolant flow of 3 percent of engine mass flow or less, with an average chordwise temperature limit of 1400 F. Within the range of coolant flows investigated, however, only blade C could maintain a leading-edge temperature of 1400 F for a turbine-inlet temperature of 2000 F.

  3. Metal-coated Bragg grating reflecting fibre

    NASA Astrophysics Data System (ADS)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

  4. Active mode locking of quantum cascade lasers in an external ring cavity.

    PubMed

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  5. Active mode locking of quantum cascade lasers in an external ring cavity

    PubMed Central

    Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.

    2016-01-01

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409

  6. Rugged switch responds to minute pressure differentials

    NASA Technical Reports Server (NTRS)

    Friend, L. C.; Shaub, K. D.

    1967-01-01

    Pressure responsive switching device exhibits high sensitivity but is extremely rugged and resistant to large amplitude shock and velocity loading. This snap-action, single pole-double throw switch operates over a wide temperature range.

  7. Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney

    NASA Technical Reports Server (NTRS)

    Russell, P.; Flynn, J.; Reddy, T.

    1996-01-01

    Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.

  8. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    NASA Technical Reports Server (NTRS)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though, probing the deformation mechanisms operating in fatigue will lead to a better understanding of NiAl's unique characteristics. Low cycle fatigue properties have been reported on binary NiAl in the past year, yet those studies were limited to two temperature ranges: room temperature and near 1000 K. Eventually, fatigue property data will be needed for a wide range of temperatures and compositions. The intermediate temperature range near the brittle-to-ductile transition was chosen for this study to ascertain whether the sharp change occurring in monotonic behavior also occurs under cyclic conditions. An effort was made to characterize the dislocation structures which evolved during fatigue testing and comment on their role in the deformation process.

  9. Improved operation of graded-channel SOI nMOSFETs down to liquid helium temperature

    NASA Astrophysics Data System (ADS)

    Pavanello, Marcelo Antonio; de Souza, Michelly; Ribeiro, Thales Augusto; Martino, João Antonio; Flandre, Denis

    2016-11-01

    This paper presents the operation of Graded-Channel (GC) Silicon-On-Insulator (SOI) nMOSFETs at low temperatures down to liquid helium temperature in comparison to standard uniformly doped transistors. Devices from two different technologies have been measured and show that the mobility increase rate with temperature for GC SOI transistors is similar to uniformly doped devices for temperatures down to 90 K. However, at liquid helium temperature the rate of mobility increase is larger in GC SOI than in standard devices because of the different mobility scattering mechanisms. The analog properties of GC SOI devices have been investigated down to 4.16 K and show that because of its better transconductance and output conductance, an intrinsic voltage gain improvement with temperature is also obtained for devices in the whole studied temperature range. GC devices are also capable of reducing the impact ionization due to the high electric field in the drain region, increasing the drain breakdown voltage of fully-depleted SOI MOSFETs at any studied temperature and the kink voltage at 4.16 K.

  10. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    PubMed Central

    Liu, CY; Sun, ZZ; Yew, KC

    2006-01-01

    Self-assembled GaInNAs quantum dots (QDs) were grown on GaAs (001) substrate using solid-source molecular-beam epitaxy (SSMBE) equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM), photoluminescence (PL), and transmission electron microscopy (TEM) measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW) operation at room temperature (RT) with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2) at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2), with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  11. Torque Sensor Based on Tunnel-Diode Oscillator

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Young, Joseph

    2008-01-01

    A proposed torque sensor would be capable of operating over the temperature range from 1 to 400 K, whereas a typical commercially available torque sensor is limited to the narrower temperature range of 244 to 338 K. The design of this sensor would exploit the wide temperature range and other desirable attributes of differential transducers based on tunnel-diode oscillators as described in "Multiplexing Transducers Based on Tunnel-Diode Oscillators". The proposed torque sensor would include three flexural springs that would couple torque between a hollow outer drive shaft and a solid inner drive shaft. The torque would be deduced from the torsional relative deflection of the two shafts, which would be sensed via changes in capacitances of two capacitors defined by two electrodes attached to the inner shaft and a common middle electrode attached to the outer shaft.

  12. Development of Pulse Tube Cryocoolers at SITP for Space Application

    NASA Astrophysics Data System (ADS)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Yu, Huiqin; Yang, Baoyu

    2018-05-01

    Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

  13. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  14. Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 $${}^{\\circ}$$ C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Emmett E.; Simon, John; Geisz, John F.

    2016-09-01

    In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased,more » we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.« less

  15. Room temperature continuous wave operation of quantum cascade laser at λ ~ 9.4 μm

    NASA Astrophysics Data System (ADS)

    Hou, Chuncai; Zhao, Yue; Zhang, Jinchuan; Zhai, Shenqiang; Zhuo, Ning; Liu, Junqi; Wang, Lijun; Liu, Shuman; Liu, Fengqi; Wang, Zhanguo

    2018-03-01

    Continuous wave (CW) operation of long wave infrared (LWIR) quantum cascade lasers (QCLs) is achieved up to a temperature of 303 K. For room temperature CW operation, the wafer with 35 stages was processed into buried heterostructure lasers. For a 2-mm-long and 10-μm-wide laser with high-reflectivity (HR) coating on the rear facet, CW output power of 45 mW at 283 K and 9 mW at 303 K is obtained. The lasing wavelength is around 9.4 μm locating in the LWIR spectrum range. Project supported by the National Key Research And Development Program (No. 2016YFB0402303), the National Natural Science Foundation of China (Nos. 61435014, 61627822, 61574136, 61774146, 61674144, 61404131), the Key Projects of Chinese Academy of Sciences (Nos. ZDRW-XH-2016-4, QYZDJ-SSW-JSC027), and the Beijing Natural Science Foundation (No. 4162060, 4172060).

  16. Ngas Multi-Stage Coaxial High Efficiency Cooler (hec)

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Toma, G.; Jaco, C.; Raab, J.

    2010-04-01

    This paper presents the performance data of the single and two-stage High Efficiency Cooler (HEC) tested with coaxial cold heads. The single stage coaxial cold head has been optimized to operate at temperatures of 40 K and above. The two-stage parallel cold head configuration has been optimized to operate at 30 K and above and provides a long-life, low mass and efficient two-stage version of the Northrop Grumman Aerospace Systems (NGAS) flight qualified single stage HEC cooler. The HEC pulse tube cryocoolers are the latest generation of flight coolers with heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years. This paper presents the performance data of the one and two-stage versions of this cooler under a wide range of heat rejection temperature, cold head temperature and input power.

  17. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques.

    PubMed

    Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E

    2018-04-26

    Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants. Copyright © 2018. Published by Elsevier Ltd.

  18. Impact of Diurnal Temperature Fluctuations during Larval Development on Adult Life History Traits and Insecticide Susceptibility in Two Vectors; Anopheles gambiae and Aedes aegypti

    DTIC Science & Technology

    2014-04-30

    105 x CHAPTER 1: General Introduction THE THERMAL ENVIRONMENT The ambient temperature at which an organism must function can...forces an organism to operate outside the optimal temperature range for which its physiological processes are optimized to function under. Thermal...a specific insecticide. Some of these influences are relatively intuitive. For instance, larval development in the presence of adequate nutritional

  19. Optimization of tocopherol concentration process from soybean oil deodorized distillate using response surface methodology.

    PubMed

    Ito, Vanessa Mayumi; Batistella, César Benedito; Maciel, Maria Regina Wolf; Maciel Filho, Rubens

    2007-04-01

    Soybean oil deodorized distillate is a product derived from the refining process and it is rich in high value-added products. The recovery of these unsaponifiable fractions is of great commercial interest, because of the fact that in many cases, the "valuable products" have vitamin activities such as tocopherols (vitamin E), as well as anticarcinogenic properties such as sterols. Molecular distillation has large potential to be used in order to concentrate tocopherols, as it uses very low temperatures owing to the high vacuum and short operating time for separation, and also, it does not use solvents. Then, it can be used to separate and to purify thermosensitive material such as vitamins. In this work, the molecular distillation process was applied for tocopherol concentration, and the response surface methodology was used to optimize free fatty acids (FFA) elimination and tocopherol concentration in the residue and in the distillate streams, both of which are the products of the molecular distiller. The independent variables studied were feed flow rate (F) and evaporator temperature (T) because they are the very important process variables according to previous experience. The experimental range was 4-12 mL/min for F and 130-200 degrees C for T. It can be noted that feed flow rate and evaporator temperature are important operating variables in the FFA elimination. For decreasing the loss of FFA, in the residue stream, the operating range should be changed, increasing the evaporator temperature and decreasing the feed flow rate; D/F ratio increases, increasing evaporator temperature and decreasing feed flow rate. High concentration of tocopherols was obtained in the residue stream at low values of feed flow rate and high evaporator temperature. These results were obtained through experimental results based on experimental design.

  20. Magnetic-Flux-Compression Cooling Using Superconductors

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M.; Israelsson, Ulf E.; Elleman, Daniel D.

    1989-01-01

    Proposed magnetic-flux-compression refrigeration system produces final-stage temperatures below 4.2 K. More efficient than mechanical and sorption refrigerators at temperatures in this range. Weighs less than comparable liquid-helium-cooled superconducting magnetic refrigeration systems operating below 4.2 K. Magnetic-flux-compression cooling stage combines advantages of newly discovered superconductors with those of cooling by magnetization and demagnetization of paramagnetic salts.

  1. Determination of heat losses and their influence on the performance characteristics of high-enthalpy hot-shot tubes

    NASA Astrophysics Data System (ADS)

    Ganimedov, V. L.; Shumsky, V. V.; Yaroslavtsev, M. I.

    2009-06-01

    An analysis of the losses of heat into the walls of settling chamber in a hypersonic hot-shot tube has been performed. Tests without diaphragm rupture showed that the fall of settling-chamber pressure during the operating flow regime in the tube was the consequence of the transfer of heat from working body to wall; this has allowed us to evaluate the heat-transfer coefficient α and the inner-surface temperature of the wall T w. An empirical formula relating the coefficient α with the pressure and working-body temperature in the settling chamber in the range of pressures and temperatures 160 to 540 bar and 700 to 3400 K was obtained. Using the gained dependences of α and T w on pressure and temperature, we have developed a physical model for calculating the working-body characteristics in the tube with allowance for enthalpy losses. We found that by the hundredth millisecond of the operating regime the disregard, in such calculations, of the wall heat flux in the first settling chamber resulted in overestimation of the stagnation temperature in the test section in comparison with similar calculations made without allowance for the heat losses by 6-18 % in terms of the full-scale temperature for aircraft flight in Mach number range 5 to 8. The developed calculation procedure has been tested in experiments without diaphragm rupture.

  2. 150 KVA Samarium Cobalt VSCF Starter Generator Electrical System

    DTIC Science & Technology

    1978-12-01

    also has protective circuits to limit damage to the system in evpnt tif failure. During normal operation , the system either starts up automatically when...determined during operation due to the external til loop . 4.2. 1. 1. 11 Temperature Sensor Four copper constantan thermocouples are located in stator...design and part of the vibration problem being experienced can be attributed to the shaft critical being too close to the top operating ,)eed range

  3. The thermal regime around buried submarine high-voltage cables

    NASA Astrophysics Data System (ADS)

    Emeana, C. J.; Hughes, T. J.; Dix, J. K.; Gernon, T. M.; Henstock, T. J.; Thompson, C. E. L.; Pilgrim, J. A.

    2016-08-01

    The expansion of offshore renewable energy infrastructure and the need for trans-continental shelf power transmission require the use of submarine high-voltage (HV) cables. These cables have maximum operating surface temperatures of up to 70 °C and are typically buried 1-2 m beneath the seabed, within the wide range of substrates found on the continental shelf. However, the heat flow pattern and potential effects on the sedimentary environments around such anomalously high heat sources in the near-surface sediments are poorly understood. We present temperature measurements from a 2-D laboratory experiment representing a buried submarine HV cable, and identify the thermal regimes generated within typical unconsolidated shelf sediments—coarse silt, fine sand and very coarse sand. We used a large (2 × 2.5 m2) tank filled with water-saturated spherical glass beads (ballotini) and instrumented with a buried heat source and 120 thermocouples to measure the time-dependent 2-D temperature distributions. The observed and corresponding Finite Element Method simulations of the steady state heat flow regimes and normalized radial temperature distributions were assessed. Our results show that the heat transfer and thus temperature fields generated from submarine HV cables buried within a range of sediments are highly variable. Coarse silts are shown to be purely conductive, producing temperature increases of >10 °C up to 40 cm from the source of 60 °C above ambient; fine sands demonstrate a transition from conductive to convective heat transfer between cf. 20 and 36 °C above ambient, with >10 °C heat increases occurring over a metre from the source of 55 °C above ambient; and very coarse sands exhibit dominantly convective heat transfer even at very low (cf. 7 °C) operating temperatures and reaching temperatures of up to 18 °C above ambient at a metre from the source at surface temperatures of only 18 °C. These findings are important for the surrounding near-surface environments experiencing such high temperatures and may have significant implications for chemical and physical processes operating at the grain and subgrain scale; biological activity at both microfaunal and macrofaunal levels; and indeed the operational performance of the cables themselves, as convective heat transport would increase cable current ratings, something neglected in existing standards.

  4. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 µW at 60 mK[1]) was sufficient for the small (6x6) detector arrays[2], but recent advances in arraying and multiplexing technologies[3] are generating a need for higher cooling power (5-10 µW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  5. Wide-temperature integrated operational amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)

    2009-01-01

    The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.

  6. Analysis and Modeling of Fullerene Single Electron Transistor Based on Quantum Dot Arrays at Room Temperature

    NASA Astrophysics Data System (ADS)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Ismail, Razali

    2018-05-01

    The single electron transistor (SET) as a fast electronic device is a candidate for future nanoscale circuits because of its low energy consumption, small size and simplified circuit. It consists of source and drain electrodes with a quantum dot (QD) located between them. Moreover, it operates based on the Coulomb blockade (CB) effect. It occurs when the charging energy is greater than the thermal energy. Consequently, this condition limits SET operation at cryogenic temperatures. Hence, using QD arrays can overcome this temperature limitation in SET which can therefore work at room temperature but QD arrays increase the threshold voltage with is an undesirable effect. In this research, fullerene as a zero-dimensional material with unique properties such as quantum capacitance and high critical temperature has been selected for the material of the QDs. Moreover, the current of a fullerene QD array SET has been modeled and its threshold voltage is also compared with a silicon QD array SET. The results show that the threshold voltage of fullerene SET is lower than the silicon one. Furthermore, the comparison study shows that homogeneous linear QD arrays have a lower CB range and better operation than a ring QD array SET. Moreover, the effect of the number of QDs in a QD array SET is investigated. The result confirms that the number of QDs can directly affect the CB range. Moreover, the desired current can be achieved by controlling the applied gate voltage and island diameters in a QD array SET.

  7. Interferometric fiber-optic temperature sensor with spiral polarization couplers

    NASA Astrophysics Data System (ADS)

    Cortés, R.; Khomenko, A. V.; Starodumov, A. N.; Arzate, N.; Zenteno, L. A.

    1998-09-01

    A fiber optic temperature sensor, for which the changes in modal birefringence of a short section of a long birefringent fiber are monitored remotely, is described. It employs a white light interferometer, which is formed by two concatenated spiral polarization mode couplers. A new method for white light interferometer output signal processing is described which provides a high accuracy absolute temperature measurement even in discontinuous operation of the sensor. Experimental results are presented for temperature measurements over a 100°C range with resolution of 3×10 -3 °C.

  8. Analysis of the high-temperature particulate collection problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgaitis, R.

    1977-10-01

    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  9. Development of a high temperature capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Egger, R. L.

    1977-01-01

    High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.

  10. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  11. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  12. A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    NASA Technical Reports Server (NTRS)

    Lesyna, L.; Roellig, T.; Savage, M.; Werner, Michael W.

    1989-01-01

    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers.

  13. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Jeong, Sangkwon

    2017-12-01

    The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.

  14. Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Dennis, Cindi; McMichael, Robert

    2010-03-01

    The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);

  15. IRRADIATION-CAPSULE STUDY OF URANIUM MONOCARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, R.B.; Stahl, D.; Stang, J.H.

    1960-03-01

    Small cylindrical specimens of enriched UC were irradiated to evaluate usefulness as a high-temperature fuel for stationary power reactors. Detailed thermal and nuclear analyses were made to arrive at an appropriate capsule design on the basis of target specimen center-line temperature ( approximately 1500 deg F), specimen surface temperature (1100 deg F), specimen composition (U--5 wt.% C), and acapsule o.d. of 1.125 in. Temperature data from thermocouples inside the capsule indicated that five of the six capsules irradiated operated at close to the design conditions. Irradiation periods for individual capsules were varied to give burnups ranging from 1,000 to 20,000more » Mwd/t of U. Preliminary evidence indicates that this range of burnups was achieved. By using temperature and heat-flux data from the actual irradiations to estimate effective in-pile specimen thermal conductivities, it was found that the conductivity did not appear to vary during the exposures. (auth)« less

  16. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics.

    PubMed

    Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe

    2016-01-06

    Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34-40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature.

  17. Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna

    NASA Technical Reports Server (NTRS)

    Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James

    1987-01-01

    In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.

  18. Analysis of ORNL site temperature and humidity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, B.E.

    1989-08-01

    The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less

  19. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  20. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  1. Change in working characteristics of the steam turbine metal with operating time of more than 330000 hours

    NASA Astrophysics Data System (ADS)

    Gladshteyn, V. I.; Troitskiy, A. I.

    2017-01-01

    Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It's chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.

  2. Fatigue life characterization for piezoelectric macrofiber composites

    NASA Astrophysics Data System (ADS)

    Henslee, Isaac A.; Miller, David A.; Tempero, Tyler

    2012-10-01

    In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from - 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number.

  3. Green Chemistry Challenge: 2017 Small Business Award

    EPA Pesticide Factsheets

    Green Chemistry Challenge 2017 award winner, UniEnergy,improved a vanadium redox flow battery to double the energy density, have a broader operating temperature range, a smaller footprint, reduced chemical usage, and very little capacity degradation.

  4. A sonic transducer to detect fluid leaks

    NASA Technical Reports Server (NTRS)

    Cimerman, I.; Janus, J.

    1972-01-01

    Ultrasonic detector utilizes set of contact transducers and bandpass filters to detect and analyze sonic energy produced by flow or leakage. Detector covers wide frequency range and is operable at cryogenic temperatures and in vacuum.

  5. A novel high temperature superconducting magnetic flux pump for MRI magnets

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan

    2010-10-01

    This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.

  6. Wide-Temperature Electronics for Thermal Control of Nanosats

    NASA Technical Reports Server (NTRS)

    Dickman, John Ellis; Gerber, Scott

    2000-01-01

    This document represents a presentation which examines the wide and low-temperature electronics required for NanoSatellites. In the past, larger spacecraft used Radioisotope Heating Units (RHU's). The advantage of the use of these electronics is that they could eliminate or reduce the requirement for RHU's, reduce system weight and simplify spacecraft design by eliminating containment/support structures for RHU's. The Glenn Research Center's Wide/Low Temperature Power Electronics Program supports the development of power systems capable of reliable, efficient operation over wide and low temperature ranges. Included charts review the successes and failures of various electronic devices, the IRF541 HEXFET, The NE76118n-Channel GaAS MESFET, the Lithium Carbon Monofluoride Primary Battery, and a COTS DC-DC converter. The preliminary result of wide/low temperature testing of CTS and custom parts and power circuit indicate that through careful selection of components and technologies it is possible to design and build power circuits which operate from room temperature to near 100K.

  7. Temperature-dependent performance of all-NbN DC-SQUID magnetometers

    NASA Astrophysics Data System (ADS)

    Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen

    2017-05-01

    Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.

  8. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  9. A New Primary Dew-Point Generator at TUBITAK UME

    NASA Astrophysics Data System (ADS)

    Oğuz Aytekin, S.; Karaböce, N.; Heinonen, M.; Sairanen, H.

    2018-05-01

    An implementation of a new low-range primary humidity generator as a part of an international collaboration between TUBITAK UME and VTT MIKES was initiated as a EURAMET Project Number 1259. The dew-point generator was designed and constructed within the scope of the cooperation between TUBITAK UME and VTT MIKES in order to extend the dew-point temperature measurement capability of Humidity Laboratory of TUBITAK UME down to - 80 °C. The system was thoroughly characterized and validated at TUBITAK UME to support the evidence for dew-point temperature uncertainties. The new generator has a capability of operating in the range of - 80 °C to +10 °C, but at the moment, it was characterized down to - 60 °C. The core of the generator system is a saturator which is fully immersed in a liquid bath. Dry air is supplied to the saturator through a temperature-controlled pre-saturator. The operation of the system is based on the single-pressure generation method with a single pass, i.e., the dew-point temperature is only controlled by the saturator temperature, and the humidity-controlled air is not returned to the system after leaving of the saturator. The metrological performance of the saturator was investigated thoroughly at both National Metrology Institutes. The pre-saturator was also tested using a thermostatic bath at VTT MIKES prior to sending them to TUBITAK UME. This paper describes the principle and design of the generator in detail. The dew-point measurement system and the corresponding uncertainty analysis of the dew-point temperature scale realized with the generator in the range from - 60 °C to 10 °C is also presented.

  10. An Overview of NASA Space Cryocooler Programs--2006

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Boyle, R. F.

    2006-01-01

    Mechanical cryocoolers represent a significant enabling technology for NASA's Earth and Space Science Enterprises. Many of NASA's space instruments require cryogenic refrigeration to improve dynamic range, extend wavelength coverage, or enable the use of advanced detectors to observe a wide range of phenomena--from crop dynamics to stellar birth. Reflecting the relative maturity of the technology at these temperatures, the largest utilization of coolers over the last fifteen years has been for instruments operating at medium to high cryogenic temperatures (55 to 150K). For the future, important new developments are focusing on the lower temperature range, from 6 to 20 K, in support of studies of the origin of the Universe and the search for planets around distant stars. NASA's development of a 20K cryocooler for the European Planck spacecraft and a 6 K cryocooler for the MIRI instrument on the James Webb Space Telescope (JWST) are examples of the thrust to provide low-temperature cooling for this class of future missions.

  11. Commercial Absorption Heat Pump Water Heater: Beta Prototype Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick; Ally, Moonis; Sharma, Vishaldeep

    2016-10-14

    The Beta version of the Commercial Absorption Heat Pump (CAHP) water heater was evaluated in the environmental chambers at Oak Ridge National Laboratory. Ambient air conditions ranged from 17 to 75 oF and inlet water temperatures ranged from 100 to 120oF in order to capture trends in performance. The unit was operated under full fire (100%) and partial fire (55%). The unit was found to perform at 90% of the project goal at the design conditions of 47oF ambient and 100oF water temperatures. The trends across the full range of environmental conditions were as expected for ambient air temperatures abovemore » 32oF. Below this temperature and for the full fire condition, frost accumulated on the evaporator coil. In future work a defrost strategy will be enabled, the unit will be thoroughly cleaned of an oil contamination and the rectifier will be reconfigured in order to meet the design goals and have a field test unit ready in early 2017.« less

  12. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films

    PubMed Central

    Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  13. Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics

    DOE PAGES

    Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo; ...

    2017-05-10

    A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less

  14. Large polarization gradients and temperature-stable responses in compositionally-graded ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo

    A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less

  15. Compliant sealants for solid oxide fuel cells and other ceramics

    DOEpatents

    Bloom, I.D.; Ley, K.L.

    1995-09-26

    A glass or glass-ceramic sealant is described for a SOFC having a coefficient of thermal expansion in the range of from about 8 to about 13{times}10{sup {minus}6}/C and a viscosity of at least 10{sup 3}Pa-s at cell operating temperature. The sealant has a composition of SrO present in the range of from about 5 to about 60 mole percent, La{sub 2}O{sub 3} present in the range of from 0 to about 45 mole percent, Al{sub 2}O{sub 3} present in the range from 0 to about 15 mole percent, B{sub 2}O{sub 3} present in the range of from about 15 mole percent to about 80 mole percent, and SiO{sub 2} present in the range of from 0 to about 40 mole percent, wherein the material is a viscous fluid at cell operating temperatures of from about 600 C to about 1000 C. The sealant may also be compounds of CaO present in the range of from 0 to about 35 mole percent, Al{sub 2}O{sub 3} present in the range from 0 to about 15 mole percent, B{sub 2}O{sub 3} present in the range of from about 35 mole percent to about 85 mole percent, and SiO{sub 2} present in the range of from 0 to about 30 mole percent. 2 figs.

  16. Compliant sealants for solid oxide fuel cells and other ceramics

    DOEpatents

    Bloom, Ira D.; Ley, Kevin L.

    1995-01-01

    A glass or glass-ceramic sealant for a SOFC having a coefficient of thermal expansion in the range of from about 8 to about 13.times.10.sup.-6 /.degree.C. and a viscosity of at least 10.sup.3 Pa-s at cell operating temperature. The sealant has a composition of SrO present in the range of from about 5 to about 60 mole percent, La.sub.2 O.sub.3 present in the range of from 0 to about 45 mole percent, Al.sub.2 O.sub.3 present in the range from 0 to about 15 mole percent, B.sub.2 O.sub.3 present in the range of from about 15 mole percent to about 80 mole percent, and SiO.sub.2 present in the range of from 0 to about 40 mole percent, wherein the material is a viscous fluid at cell operating temperatures of from about 600.degree. C. to about 1000.degree. C. The sealant may also be compounds of CaO present in the range of from 0 to about 35 mole percent, Al.sub.2 O.sub.3 present in the range from 0 to about 15 mole percent, B.sub.2 O.sub.3 present in the range of from about 35 mole percent to about 85 mole percent, and SiO.sub.2 present in the range of from 0 to about 30 mole percent.

  17. Assessment of Operation of EMK21 MEMS Silicon Oscillator Over Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2009-01-01

    Electronic control systems, data-acquisition instrumentation, and microprocessors require accurate timing signals for proper operation. Traditionally, ceramic resonators and crystal oscillators provided this clock function for the majority of these systems. Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to surface as commercial-off-the-shelf (COTS) parts by a few companies. These quartz-free, miniature silicon devices could easily replace the traditional crystal oscillators in providing the timing/clock function for many digital and analog circuits. They are reported to provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [ 1-2]. In addition, they are encapsulated in compact lead-free packages and cover a wide frequency range (1 MHz to 125 MHz). The small size of the MEMS oscillators along with their thermal stability make them ideal candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an Ecliptek Corporation MEMS silicon oscillator chip under extreme temperatures.

  18. Thermal resistance model for CSP central receivers

    NASA Astrophysics Data System (ADS)

    de Meyer, O. A. J.; Dinter, F.; Govender, S.

    2016-05-01

    The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.

  19. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Passaro, Andrea; LaGraff, John E.; Oldfield, Martin L. G.; Biagioni, Leonardo; Moss, Roger W.; Battelle, Ryan T.; Povinelli, Louis A. (Technical Monitor)

    2003-01-01

    The present research concerns the development of high-frequency pressure and temperature probes and related instrumentation capable of performing spectral characterization of unsteady pressure and temperature fluctuations over the 0.05 20 kHz range, at the exit of a gas turbine combustor operating at conditions close to nominal ones for large power generation turbomachinery. The probes used a transient technique pioneered at Oxford University; in order to withstand exposure to the harsh environment the probes were fitted on a rapid injection and cooling system jointly developed by Centrospazio CPR and Syracuse University. The experimental runs were performed on a large industrial test rig being operated by ENEL Produzione. The achieved results clearly show the satisfactory performance provided by this diagnostic tool, even though the poor location of the injection port prevented the tests from yielding more insight of the core flow turbulence characteristics. The pressure and temperature probes survived several dozen injections in the combustor hot jet, while consistently providing the intended high frequency performance. The apparatus was kept connected to the combustor during long duration firings, operating as an unobtrusive, self contained, piggy-back experiment: high frequency flow samplings were remotely recorded at selected moments corresponding to different combustor operating conditions.

  20. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature.

    PubMed

    Shen, Nan; Chen, Yun; Zhou, Yan

    2017-05-01

    Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Environmental Degradation of Nickel-Based Superalloys Due to Gypsiferous Desert Dusts

    DTIC Science & Technology

    2015-09-17

    twenty-five years of continuous operation in the dusty environments of Southwest Asia have shown that degradation of gas turbine engine components...proven to initiate hot corrosion at temperatures associated with modern gas turbine engine operation, which are beyond the range at which sodium sulfate...Relevant Research into Failure Due to Molten Deposits . . . . . . . . . 13 2.1 The Gas Turbine Engine

  2. 6 K Cryocooler Program

    NASA Technical Reports Server (NTRS)

    Gully, Willy; Herrero, Fred (Technical Monitor)

    2001-01-01

    The report summarizes experimental and theoretical work on an Oxford type Stirling Cycle mechanical precooler operating in the temperature range of 13-20 degrees Kelvin. It includes measurements of the thermal losses of particle regenerators made from lead, and rare earth and rare earth alloys in an operating three stage cryocooler. A 6 K hybrid cooler is designed using the technical information gathered on regenerator performance.

  3. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  4. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Stynes, K.

    2010-10-01

    The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust overmore » a range of receiver operating temperatures.« less

  5. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  6. Multi-channel programmable power supply with temperature compensation for silicon sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, R. A.; Achanta, V. G.; Dugad, S. R., E-mail: dugad@cern.ch

    Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu etmore » al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this article. The proposed design also has the capability of gain stabilization of devices with non-linear thermal response.« less

  7. Design study of shaft face seal with self-acting lift augmentation. 5: Performance in simulated gas turbine engine operation

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.; Johnson, R. L.

    1971-01-01

    The feasibility and the noncontact operation of the self-acting seal was demonstrated over a range of simulated gas turbine engine conditions from 200 to 500 ft/sec sliding speed. Sealed pressure differentials were 50 to 300 psi and sealed temperatures were 150 to 1200 F. Low leakage (about 1/10 that of conventional labyrinth seals) was exhibited in two endurance runs (200 and 338 hr) at 400 ft/sec, 200 psi and 1000 F (gas temperature). For these endurance runs, the self-acting pad wear was less than 3.8 micrometers (0.00015 in.); this low wear was attributed to the noncontact operation of the primary seal. Operating problems identified were fretting wear of the secondary seal and erosion of the primary seal by hard particles.

  8. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  9. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  10. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  11. Wettability of Pyrolytic Boron Nitride by Aluminum

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Rosenthal, Bruce N.

    1991-01-01

    The wetting of pyrolytic boron nitride by molten 99.9999 percent pure aluminum was investigated by using the sessile drop method in a vacuum operating at approximately 660 micro-Pa at temperatures ranging from 700 to 1000 C. The equilibrium contact angle decreased with an increase in temperature. For temperatures at 900 C or less, the equilibrium contact angle was greater than 90 deg. At 1000 C a nonwetting-to-wetting transition occurred and the contact angle stabilized at 49 deg.

  12. Infrared Camera Diagnostic for Heat Flux Measurements on NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Mastrovito; R. Maingi; H.W. Kugel

    2003-03-25

    An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 {micro}m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported.

  13. Compact high reliability fiber coupled laser diodes for avionics and related applications

    NASA Astrophysics Data System (ADS)

    Daniel, David R.; Richards, Gordon S.; Janssen, Adrian P.; Turley, Stephen E. H.; Stockton, Thomas E.

    1993-04-01

    This paper describes a newly developed compact high reliability fiber coupled laser diode which is capable of providing enhanced performance under extreme environmental conditions including a very wide operating temperature range. Careful choice of package materials to minimize thermal and mechanical stress, used with proven manufacturing methods, has resulted in highly stable coupling of the optical fiber pigtail to a high performance MOCVD-grown Multi-Quantum Well laser chip. Electro-optical characteristics over temperature are described together with a demonstration of device stability over a range of environmental conditions. Real time device lifetime data is also presented.

  14. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-tonmore » R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.« less

  15. Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si

    NASA Astrophysics Data System (ADS)

    Castellano, A.; Cerutti, L.; Rodriguez, J. B.; Narcy, G.; Garreau, A.; Lelarge, F.; Tournié, E.

    2017-06-01

    We report on electrically pumped GaSb-based laser diodes monolithically grown on Si and operating in a continuous wave (cw) in the telecom wavelength range. The laser structures were grown by molecular-beam epitaxy on 6°-off (001) substrates. The devices were processed in coplanar contact geometry. 100 μm × 1 mm laser diodes exhibited a threshold current density of 1 kA/cm-2 measured under pulsed operation at 20 °C. CW operation was achieved up to 35 °C with 10 μm × 1 mm diodes. The output power at 20 °C was around 3 mW/uncoated facet, and the cw emission wavelength 1.59 μm, in the C/L-band of telecom systems.

  16. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films

    NASA Astrophysics Data System (ADS)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu

    2015-12-01

    Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  17. Intelligent trend analysis for a solar thermal energy collector field

    NASA Astrophysics Data System (ADS)

    Juuso, E. K.

    2018-03-01

    Solar thermal power plants collect available solar energy in a usable form at a temperature range which is adapted to the irradiation levels and seasonal variations. Solar energy can be collected only when the irradiation is high enough to produce the required temperatures. During the operation, a trade-off of the temperature and the flow is needed to achieve a good level for the collected power. The scaling approach brings temporal analysis to all measurements and features: trend indices are calculated by comparing the averages in the long and short time windows, a weighted sum of the trend index and its derivative detects the trend episodes and severity of the trend is estimated by including also the variable level in the sum. The trend index, trend episodes and especially, the deviation index reveal early evolving changes in the operating conditions, including cloudiness and load disturbances. The solution is highly compact: all variables, features and indices are transformed to the range [-2, 2] and represented in natural language which is important in integrating data-driven solutions with domain expertise. The special situations detected during the test campaigns are explained well.

  18. A fixed tilt solar collector employing reversible vee-trough reflectors and vacuum tube receivers for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    The usefulness of vee-trough concentrators in improving the efficiency and reducing the cost of collectors assembled from evacuated tube receivers was studied in the vee-trough/vacuum tube collector (VTVTC) project. The VTVTC was analyzed rigorously and various mathematical models were developed to calculate the optical performance of the vee-trough concentrator and the thermal performance of the evacuated tube receiver. A test bed was constructed to verify the mathematical analyses and compare reflectors made out of glass, Alzak and aluminized FEP Teflon. Tests were run at temperatures ranging from 95 to 180 C. Vee-trough collector efficiencies of 35 to 40% were observed at an operating temperature of about 175 C. Test results compared well with the calculated values. Predicted daily useful heat collection and efficiency values are presented for a year's duration of operation temperatures ranging from 65 to 230 C. Estimated collector costs and resulting thermal energy costs are presented. Analytical and experimental results are discussed along with a complete economic evaluation.

  19. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers.

    PubMed

    Khanal, Sudeep; Gao, Liang; Zhao, Le; Reno, John L; Kumar, Sushil

    2016-09-12

    Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, terahertz QCLs with bidirectional operation are developed to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al0.10Ga0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimal quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al0.15Ga0.85As material system. Broadband lasing in the frequency range of 3.1-3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. These are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays.

  20. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers

    DOE PAGES

    Khanal, Sudeep; Gao, Liang; Zhao, Le; ...

    2016-09-12

    Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, we develop terahertz QCLs with bidirectional operation to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al 0.10Ga 0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimalmore » quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al 0.15Ga 0.85As material system. Furthermore, broadband lasing in the frequency range of 3.1–3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. Finally, these are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays.« less

  1. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers

    PubMed Central

    Khanal, Sudeep; Gao, Liang; Zhao, Le; Reno, John L.; Kumar, Sushil

    2016-01-01

    Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, terahertz QCLs with bidirectional operation are developed to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al0.10Ga0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimal quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al0.15Ga0.85As material system. Broadband lasing in the frequency range of 3.1–3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. These are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays. PMID:27615416

  2. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanal, Sudeep; Gao, Liang; Zhao, Le

    Terahertz quantum cascade lasers (QCLs) with a broadband gain medium could play an important role for sensing and spectroscopy since then distributed-feedback schemes could be utilized to produce laser arrays on a single semiconductor chip with wide spectral coverage. QCLs can be designed to emit at two different frequencies when biased with opposing electrical polarities. Here, we develop terahertz QCLs with bidirectional operation to achieve broadband lasing from the same semiconductor chip. A three-well design scheme with shallow-well GaAs/Al 0.10Ga 0.90As superlattices is developed to achieve high-temperature operation for bidirectional QCLs. It is shown that shallow-well heterostructures lead to optimalmore » quantum-transport in the superlattice for bidirectional operation compared to the prevalent GaAs/Al 0.15Ga 0.85As material system. Furthermore, broadband lasing in the frequency range of 3.1–3.7 THz is demonstrated for one QCL design, which achieves maximum operating temperatures of 147 K and 128 K respectively in opposing polarities. Dual-color lasing with large frequency separation is demonstrated for a second QCL, that emits at ~3.7 THz and operates up to 121 K in one polarity, and at ~2.7 THz up to 105 K in the opposing polarity. Finally, these are the highest operating temperatures achieved for broadband terahertz QCLs at the respective emission frequencies, and could lead to commercial development of broadband terahertz laser arrays.« less

  3. Operating manual: Fast response solar array simulator

    NASA Technical Reports Server (NTRS)

    Vonhatten, R.; Weimer, A.; Zerbel, D. W.

    1971-01-01

    The fast response solar array simulator (FRSAS) is a universal solar array simulator which features an AC response identical to that of a real array over a large range of DC operating points. In addition, short circuit current (I sub sc) and open circuit voltage (V sub oc) are digitally programmable over a wide range for use not only in simulating a wide range of array sizes, but also to simulate (I sub sc) and (V sub oc) variations with illumination and temperature. A means for simulation of current variations due to spinning is available. Provisions for remote control and monitoring, automatic failure sensing and warning, and a load simulator are also included.

  4. United States Army Group 31 and Group 34 Li-ion Battery Specification

    DTIC Science & Technology

    2011-02-08

    6 1.1.6 Intercell connectors : ............................................................................................... 6 1.1.7 Safety...8 1.2.2 Dielectric Strength and Insulation Resistance: .................................................... 8 1.2.3 Operating Temperature Range...9 1.3.1 Altitude

  5. Thermal history sensors for non-destructive temperature measurements in harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature informationmore » can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.« less

  6. Performance and Operational Characteristics of a Python Turbine-propeller Engine at Simulated Altitude Conditions / Carl L. Meyer and Lavern A. Johnson

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L; Johnson, Lavern A

    1952-01-01

    The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.

  7. Demonstration of a Dual-Band Mid-Wavelength HgCdTe Detector Operating at Room Temperature

    NASA Astrophysics Data System (ADS)

    Martyniuk, P.; Madejczyk, P.; Gawron, W.; Rutkowski, J.

    2018-03-01

    In this paper, the performance of sequential dual-band mid-wavelength N+-n-p-p-P+-p-p-n-n+ back-to-back HgCdTe photodiode grown by metal-organic chemical vapor deposition (MOCVD) operating at room temperature is presented. The details of the MOCVD growth procedure are given. The influence of p-type separating-barrier layer on dark current, photocurrent and response time was analyzed. Detectivity without immersion D * higher than 1 × 108 cmHz1/2/W was estimated for λ Peak = 3.2 μm and 4.2 μm, respectively. A response time of τ s ˜ 1 ns could be reached in both MW1 and MW2 ranges for the optimal P+ barrier Cd composition at the range 0.38-0.42, and extra series resistance related to the processing R Series equal to 500 Ω.

  8. Evaluation of a Programmable Voltage-Controlled MEMS Oscillator, Type SiT3701, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Semiconductor chips based on MEMS (Micro-Electro-Mechanical Systems) technology, such as sensors, transducers, and actuators, are becoming widely used in today s electronics due to their high performance, low power consumption, tolerance to shock and vibration, and immunity to electro-static discharge. In addition, the MEMS fabrication process allows for the miniaturization of individual chips as well as the integration of various electronic circuits into one module, such as system-on-a-chip. These measures would simplify overall system design, reduce parts count and interface, improve reliability, and reduce cost; and they would meet requirements of systems destined for use in space exploration missions. In this work, the performance of a recently-developed MEMS voltage-controlled oscillator was evaluated under a wide temperature range. Operation of this new commercial-off-the-shelf (COTS) device was also assessed under thermal cycling to address some operational conditions of the space environment

  9. The Role of Surface Protection for High-Temperature Performance of TiAl Alloys

    NASA Astrophysics Data System (ADS)

    Schütze, Michael

    2017-12-01

    In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.

  10. Largo hot water system long range thermal performance test report, addendum

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.

  11. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed and Bypass Ratio. Part 1; Fan Stage Design and Experimental Results

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Prahst, Patricia S.; Thorp, Scott A.

    2011-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based combined cycle (TBCC) propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. To this end, National Aeronautics and Space Administration (NASA) and General Electric (GE) teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10 ), fan speed (7 ), inlet mass flow (3.5 ), inlet pressure (8 ), and inlet temperature (3 ). In this paper, NASA has set out to characterize a TBCC engine fan stage aerodynamic performance and stability limits over a wide operating range including power-on and hypersonic-unique "windmill" operation. Herein, we will present the fan stage design, and the experimental test results of the fan stage operating from 15 to 100 percent corrected design speed. Whereas, in the companion paper, we will provide an assessment of NASA s APNASA code s ability to predict the fan stage performance and operability over a wide range of speed and bypass ratio.

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less

  13. The effect of ultraviolet irradiation on the ultra-thin HfO{sub 2} based CO gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaduman, Irmak; Barin, Özlem; Acar, Selim

    2015-11-07

    In this work, an effort has been made to fabricate ultrathin HfO{sub 2}/Al{sub 2}O{sub 3} sample by atomic layer deposition method for the fast detection of CO gas at room temperature. The effect of the operating temperature and the UV light on the gas sensing characteristics has been studied. We investigated the optimum operating temperature for the sample by sensing 25 ppm CO and CO{sub 2} gases from room temperature to 150 °C for 10 °C steps. The maximum response was obtained at 150 °C for both gases in the measurement temperature range. Also, the photoresponse measurements clearly show the effect of UV lightmore » on the sample. At room temperature, sensor showed superior response (14%) for 5 ppm CO gas. The response time of sensor is 6 s to 5 ppm CO gas concentration. The ultrathin HfO{sub 2} based sample shows acceptable gas sensitivity for 5 ppm CO gas at room temperature under UV light irradiation.« less

  14. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  15. Ultrasonic/Sonic Drill for High Temperature Application

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Scott, James; Sherrit, Stewart; Widholm, Scott; Badescu, Mircea; Shrout, Tom; Jones, Beth

    2010-01-01

    Venus is one of the many significant scientific targets for NASA. New rock sampling tools with the ability to be operated at high temperatures of the order of 460 deg C are required for surface in-situ sampling/analysis missions. Piezoelectric materials such as LiNbO? crystals and Bismuth Titanate are potentially operational at the temperature range found on the surface of Venus. A study of the feasibility of producing piezoelectric drills for a temperature up to 500 deg C was conducted. The study includes investigation of the high temperature properties of piezoelectric crystals and ceramics with different formulas and doping. Several prototypes of Ultrasonic/Sonic Drill/Corers (USDC) driven by transducers using the high temperate piezoelectric ceramics and single LiNbO? crystal were fabricated. The transducers were analyzed by scanning the impedance at room temperature and 500 deg C under both low and high voltages. The drilling performances were tested at temperature up to 500 deg C. Preliminary results were previously reported [Bao et al, 2009]. In this paper, the progress is presented and the future works for performance improvements are discussed.

  16. Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study.

    PubMed

    Pavan, P; Battistoni, P; Cecchi, F; Mata-Alvarez, J

    2000-01-01

    The results of a two-phase system operated in different conditions, treating the source-sorted organic fraction of municipal solid waste (SS-OFMSW), coming mainly from fruit and vegetable markets, are presented. Hydraulic retention time (HRT) in the hydrolytic reactor and in the methanogenic reactor and also the temperature in the hydrolytic reactor (mesophilic and thermophilic conditions) are varied in order to evaluate the effect of these factors. The methanogenic reactor is always operated within the thermophilic range. Optimum operating conditions are found to be around 12 days (total system) using the mesophilic range of temperature in the first reactor. Specific gas production (SGP) in these conditions is around 0.6 m3/kg TVS. A kinetic study is also carried out, using the first and the step diffusional models. The latter gives much better results, with fitted constants comparable to other studies. Finally, a comparison with a one-phase system is carried out, showing that a two-phase system is much more appropriate for the digestion of this kind of highly biodegradable substrate in thermophilic conditions.

  17. An experimental study of tone excited heated jets

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.

    1984-01-01

    The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.

  18. Evaluation of InGaAS array detector suitability to space environment

    NASA Astrophysics Data System (ADS)

    Tauziede, L.; Beulé, K.; Boutillier, M.; Bernard, F.; Reverchon, J.-L.; Buffaz, A.

    2017-11-01

    InGaAs material has a natural cutoff wavelength of 1.65µm so it is naturally suitable for detection in Short Wavelength InfraRed (SWIR) spectral range. Regarding Earth Observation Spacecraft missions this spectral range can be used for the CO2 concentration measurements in the atmosphere. CNES (French Space agency) is studying a new mission, Microcarb with a spectral band centered on 1.6µm wavelength. InGaAs detector looks attractive for space application because its low dark current allows high temperature operation, reducing by the way the needed instrument resources. The Alcatel Thales III-VLab group has developed InGaAs arrays technology (320x256 & 640x512) that has been studied by CNES, using internal facilities. Performance tests and technological evaluation were performed on a 320x256 pixels array with a pitch of 30µm. The aim of this evaluation was to assess this new technology suitability for space applications. The carried out test plan includes proton radiations with Random Telegraph Signal (RTS) study, operating lifetest and evolution of performances as a function of the operating temperature.

  19. Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits.

    PubMed

    Pawar, Samraat; Dell, Anthony I; Savage, Van M; Knies, Jennifer L

    2016-02-01

    Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.

  20. Evaluation of a new polymeric stationary phase with reversed-phase properties for high temperature liquid chromatography.

    PubMed

    Vanhoenacker, Gerd; Dos Santos Pereira, Alberto; Kotsuka, Takashi; Cabooter, Deirdre; Desmet, Gert; Sandra, Pat

    2010-05-07

    The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 degrees C (optimal flow 0.5 mL/min) to 2.4 at 150 degrees C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 degrees C within the pH range 1-9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC-MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  2. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    NASA Astrophysics Data System (ADS)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  3. Lidars as an operational tool for meteorology and advanced atmospheric research

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; Dinoev, Todor; Serikov, Ilya; Froidevaux, Martin; Bartlome, Marcel; Calpini, Bertrand; Bobrovnikov, Sergei; Ristori, Pablo; van den Bergh, Hubert; Parlange, Marc; Archinov, Yury

    2010-05-01

    The talk will present the concept and observation results of three advanced lidar systems developed recently at the Swiss federal Institute of Technology- Lausanne (EPFL) Switzerland. Two of the systems are Raman lidars for simultaneous water vapor, temperature and aerosol observations and the third one is an ozone UV DIAL system. The Ranan lidars use vibrational water vapor and nitrogen signals to derive water vapor mixing ratio and temperature, aerosol extinction and backscatter are measured using pure-rotational Raman and elastic signals. The first Raman lidar (RALMO) is a fully automated, water vapor /temperature/aerosol lidar developed for operational use by the Swiss meteorological office (MeteoSiss). The lidar supplies water vapor mixing ratio and temperature plus aerosol extinction and backscatter coefficients at 355 nm. The operational range of the lidar is 100-7000 m (night time) and 100- 5000 m (daytime) with time resolution of 30 min. The spatial resolution varies with height from 25 to 300 m in order to maintain the maximum measurement error of 10%. The system is designed to provide long-term database with minimal instrument-induced variations in time of the measured parameters. The lidar has been in regular operation in the main aerological station of Meteoswiss- Payerne since September 2008. The second Raman lidar is a new generation, solar-blind system with an operational range 10-500 m and high spatial (1.5 m) and temporal (1 s) resolutions designed for simultaneous humidity, temperature, and aerosol measurements in the lower atmosphere. To maintain the measurement accuracy while operating with fixed spatial and temporal resolution, the receiver is designed to provide lower than ten dynamic range of the signals within the distance range of the lidar. The lidar has 360° azimuth and 240°elevation scanning ability. The lidar was used in two field campaigns aiming to study the structure of the lower atmosphere over complex terrains and, in particular, to advance our understanding of turbulent blending mechanisms in the unstable atmosphere. The third lidar is an ozone UV DIAL system designed for studies of the upper troposphere, lower stratosphere ozone exchange processes. The lidar is based on a commercial fourth harmonic Nd:YAG laser. The DIAL wavelengths (284 and 304 nm) are produced by stimulated Raman conversion in high pressure nitrogen. A 76 cm in diameter Cassegrein telescope is used in the receiver and the spectral separation of the signals is carried out by an imaging-grating based polychromator. The operational distance of the lidar is 6000 -12000 m ASL with a statistical error lower than 10%. The lidar is deployed at the High Altitude Research Station Jungfraujoch at 3600 m altitude in the Swiss Alps. The lidar accuracy was verified by comparison to profiles taken by ECC balloon-borne sondes launched by Meteoswiss from Payerne. The lidar has been in use from September 2008 and since that time several stratospheric intrusions and cases of intercontinental transport and transport from the atmospheric boundary layer have been observed.

  4. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  5. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  6. Thermal overload characteristics of extruded dielectric cables: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dima, A.; Katz, C.; Eager, G.S. Jr.

    1988-06-01

    This report addresses characteristics of thermoset extruded dielectric power cables in the 15--35 kV class, operated under thermal overload conditions. It presents a methodical study to determine the suitability of extruded type cable for operation at elevated temperatures. The results provide utilities with knowledge on the behavior of thermoset insulated cables at temperatures in the 130 to 175/degree/C conductor temperature range. Present industry specifications recommend a maximum emergency conductor temperature of 130/degree/C. The suitability of this temperature and the time it is to be maintained had been questioned. The present report indicates that crosslinked polyethylene and ethylene propylene insulated cable,more » both new and service aged, are suitable for emergency operation during extended periods at 130/degree/C. When these cables are provided with polyvinyl chloride jackets, long term exposure to temperatures greater than 130/degree/C can adversely affect the integrity of the jacket. Investigations on new cables were performed on short samples in ovens and on long samples in simulated ducts in the laboratory and in a typical utility duct bank. Investigations on cables recovered from service were performed in the laboratory with the cables installed in simulated ducts. 10 refs., 49 figs., 73 tabs.« less

  7. Effects of regional groundwater flow on the performance of an aquifer thermal energy storage system under continuous operation

    NASA Astrophysics Data System (ADS)

    Lee, Kun Sang

    2014-01-01

    Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.

  8. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  9. Electronic Ambient-Temperature Recorder

    NASA Technical Reports Server (NTRS)

    Russell, Larry; Barrows, William

    1995-01-01

    Electronic temperature-recording unit stores data in internal memory for later readout. Records temperatures from minus 40 degrees to plus 60 degrees C at intervals ranging from 1.875 to 15 minutes. With all four data channels operating at 1.875-minute intervals, recorder stores at least 10 days' data. For only one channel at 15-minute intervals, capacity extends to up to 342 days' data. Developed for recording temperatures of instruments and life-science experiments on satellites, space shuttle, and high-altitude aircraft. Adaptable to such terrestrial uses as recording temperatures of perishable goods during transportation and of other systems or processes over long times. Can be placed directly in environment to monitor.

  10. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  11. Convection currents in a water calorimeter.

    PubMed

    Schulz, R J; Weinhous, M S

    1985-10-01

    A flexible, temperature-regulated water calorimeter has been constructed containing two pairs of thermistor sensors at depths of 6.23 and 10.0 cm. It may be irradiated by vertical or horizontal beams, and operated at temperatures in the range from 3 to 40 degrees C. When irradiated at 30 degrees C with a vertically downward 19 MeV electron beam, the responses of the proximal and midline thermistors were in accordance with the depth-dose curve. When irradiated horizontally, the initial patterns of temperature rise were the same, but after about 30 s (4 Gy) the rate of temperature rise decreased at the proximal thermistors and increased at the midline thermistors. Shortly after irradiation, the temperature curve and increased at the midline thermistors. Shortly after irradiation, the temperature curve of the midline thermistors crossed that for the proximal thermistors, a pattern that suggested the presence of convection currents. To test this hypothesis, the calorimeter was operated at 4 degrees C. The temperature patterns for horizontal irradiation became the same as those obtained with vertical beams, thus demonstrating the production of convection currents in water at a temperature of 30 degrees C for temperature gradients as small as 10(-3) degrees C cm-1.

  12. Determination and experimental verification of high-temperature SAW orientations on langatate.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2012-02-01

    Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.

  13. Alternative Fuels Data Center: How Do Hybrid Electric Cars Work?

    Science.gov Websites

    , and the air/fuel mix is ignited by the spark from a spark plug. Power electronics controller: This maintains a proper operating temperature range of the engine, electric motor, power electronics, and other

  14. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    Science.gov Websites

    hydrogen gas on board the vehicle until it's needed by the fuel cell. Power electronics controller: This maintains a proper operating temperature range of the engine, electric motor, power electronics, and other

  15. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil fieldmore » decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.« less

  16. Improvements to Zirconia Thick-Film Oxygen Sensors

    NASA Astrophysics Data System (ADS)

    Maskell, William C.; Brett, Daniel J. L.; Brandon, Nigel P.

    2013-06-01

    Thick-film zirconia gas sensors are normally screen-printed onto a planar substrate. A sandwich of electrode-electrolyte-electrode is fired at a temperature sufficient to instigate sintering of the zirconia electrolyte. The resulting porous zirconia film acts as both the electrolyte and as the diffusion barrier through which oxygen diffuses. The high sintering temperature results in de-activation of the electrodes so that sensors must be operated at around 800 °C for measurements in the percentage range of oxygen concentration. This work shows that the use of cobalt oxide as a sintering aid allows reduction of the sensor operating temperature by 100-200 °C with clear benefits. Furthermore, an interesting and new technique is presented for the investigation of the influence of dopants and of the through-porosity of ionically-conducting materials.

  17. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economymore » compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].« less

  18. High-gain 1.3  μm GaInNAs semiconductor optical amplifier with enhanced temperature stability for all-optical signal processing at 10  Gb/s.

    PubMed

    Fitsios, D; Giannoulis, G; Korpijärvi, V-M; Viheriälä, J; Laakso, A; Iliadis, N; Dris, S; Spyropoulou, M; Avramopoulos, H; Kanellos, G T; Pleros, N; Guina, M

    2015-01-01

    We report on the complete experimental evaluation of a GaInNAs/GaAs (dilute nitride) semiconductor optical amplifier that operates at 1.3 μm and exhibits 28 dB gain and a gain recovery time of 100 ps. Successful wavelength conversion operation is demonstrated using pseudorandom bit sequence 27-1 non-return-to-zero bit streams at 5 and 10  Gb/s, yielding error-free performance and showing feasibility for implementation in various signal processing functionalities. The operational credentials of the device are analyzed in various operational regimes, while its nonlinear performance is examined in terms of four-wave mixing. Moreover, characterization results reveal enhanced temperature stability with almost no gain variation around the 1320 nm region for a temperature range from 20°C to 50°C. The operational characteristics of the device, along with the cost and energy benefits of dilute nitride technology, make it very attractive for application in optical access networks and dense photonic integrated circuits.

  19. Advanced development of Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.

    1977-01-01

    The technology was studied for producing Pb-salt diode lasers for the 8-51 micron spectral region suitable for use as local oscillators in a passive Laser Heterodyne Spectrometer (LHS). Consideration was given to long range NASA plans for the utilization of the passive LHS in a space shuttle environment. The general approach was to further develop the method of compositional interdiffusion (CID) recently reported, and used successfully at shorter wavelength. This technology was shown to provide an effective and reproducible method of producing a single-heterostructure (SH) diode of either the heterojunction or single-sided configuration. Performance specifications were exceeded in several devices, with single-ended CW power outputs as high as 0.88 milliwatts in a mode being achieved. The majority of the CID lasers fabricated had CW operating temperatures of over 60K; 30% of them operated CW above the boiling temperature of liquid nitrogen. CW operation above liquid nitrogen temperature was possible for wavelengths as long as 10.3 microns. Operation at 77K is significant with respect to space shuttle operations since its allows considerable simplification of cooling method.

  20. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    DOE PAGES

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less

Top