Pandit, Jaideep J; Tavare, Aniket
2011-07-01
It is important that a surgical list is planned to utilise as much of the scheduled time as possible while not over-running, because this can lead to cancellation of operations. We wished to assess whether, theoretically, the known duration of individual operations could be used quantitatively to predict the likely duration of the operating list. In a university hospital setting, we first assessed the extent to which the current ad-hoc method of operating list planning was able to match the scheduled operating list times for 153 consecutive historical lists. Using receiver operating curve analysis, we assessed the ability of an alternative method to predict operating list duration for the same operating lists. This method uses a simple formula: the sum of individual operation times and a pooled standard deviation of these times. We used the operating list duration estimated from this formula to generate a probability that the operating list would finish within its scheduled time. Finally, we applied the simple formula prospectively to 150 operating lists, 'shadowing' the current ad-hoc method, to confirm the predictive ability of the formula. The ad-hoc method was very poor at planning: 50% of historical operating lists were under-booked and 37% over-booked. In contrast, the simple formula predicted the correct outcome (under-run or over-run) for 76% of these operating lists. The calculated probability that a planned series of operations will over-run or under-run was found useful in developing an algorithm to adjust the planned cases optimally. In the prospective series, 65% of operating lists were over-booked and 10% were under-booked. The formula predicted the correct outcome for 84% of operating lists. A simple quantitative method of estimating operating list duration for a series of operations leads to an algorithm (readily created on an Excel spreadsheet, http://links.lww.com/EJA/A19) that can potentially improve operating list planning.
Remote mission specialist - A study in real-time, adaptive planning
NASA Technical Reports Server (NTRS)
Rokey, Mark J.
1990-01-01
A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.
13. Operational planning for a specific intervention.
2014-05-01
Every intervention must follow an operational plan. Operational plans delineate actions required to meet an objective that is part of the strategic plan (overarching goal). Operational plans dictate the critical pathways for the interventions that will be followed during and following the implementation of the intervention. Operational plans include: (1) an introduction and brief situation report; (2) an overview of the task(s), objectives, and the overarching goal to be addressed; (3) the methods that will be employed; (4) planning factors; (5) the resources that will be required including personnel, equipment, and supplies; (6) timelines, benchmarks, and milestones including their respective indicators, startup time, end point, and estimates of the time required for completion; (7) the administrative structure to be employed; (8) an operating budget; (9) the strategy for acquiring the funding required; (10) roles and responsibilities of the personnel including position descriptions and the competencies required of the personnel (skill sets); (11) mechanisms for monitoring the progress including the indicators that will be employed, (12) safety, including health of the personnel, required immunisations, accommodations, and reporting structure; (13) self-sufficiency; and (14) reporting and accounting. There are many generic items in an operational plan that can be used in successive plans. Without a detailed operational plan, interventions are doomed to probable failure and can profoundly negatively impact other projects operational in the area.
Runway Operations Planning: A Two-Stage Solution Methodology
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Clarke, John-Paul
2003-01-01
The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. Thus, Runway Operations Planning (ROP) is a critical component of airport operations planning in general and surface operations planning in particular. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, may be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. Generating optimal runway operations plans was approached in with a 'one-stage' optimization routine that considered all the desired objectives and constraints, and the characteristics of each aircraft (weight class, destination, Air Traffic Control (ATC) constraints) at the same time. Since, however, at any given point in time, there is less uncertainty in the predicted demand for departure resources in terms of weight class than in terms of specific aircraft, the ROP problem can be parsed into two stages. In the context of the Departure Planner (OP) research project, this paper introduces Runway Operations Planning (ROP) as part of the wider Surface Operations Optimization (SOO) and describes a proposed 'two stage' heuristic algorithm for solving the Runway Operations Planning (ROP) problem. Focus is specifically given on including runway crossings in the planning process of runway operations. In the first stage, sequences of departure class slots and runwy crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program. Preliminary results from the algorithm implementation on real-world traffic data are included.
Zhou, Wenliang; Yang, Xia; Deng, Lianbo
2014-01-01
Not only is the operating plan the basis of organizing marshalling station's operation, but it is also used to analyze in detail the capacity utilization of each facility in marshalling station. In this paper, a long-term operating plan is optimized mainly for capacity utilization analysis. Firstly, a model is developed to minimize railcars' average staying time with the constraints of minimum time intervals, marshalling track capacity, and so forth. Secondly, an algorithm is designed to solve this model based on genetic algorithm (GA) and simulation method. It divides the plan of whole planning horizon into many subplans, and optimizes them with GA one by one in order to obtain a satisfactory plan with less computing time. Finally, some numeric examples are constructed to analyze (1) the convergence of the algorithm, (2) the effect of some algorithm parameters, and (3) the influence of arrival train flow on the algorithm. PMID:25525614
Space Station Freedom operations planning
NASA Technical Reports Server (NTRS)
Accola, Anne L.; Keith, Bryant
1989-01-01
The Space Station Freedom program is developing an operations planning structure which assigns responsibility for planning activities to three tiers of management. The strategic level develops the policy, goals and requirements for the program over a five-year horizon. Planning at the tactical level emphasizes program integration and planning for a two-year horizon. The tactical planning process, architecture, and products have been documented and discussed with the international partners. Tactical planning includes the assignment of user and system hardware as well as significant operational events to a time increment (the period of time from the arrival of one Shuttle to the manned base to the arrival of the next). Execution-level planning emphasizes implementation, and each organization produces detailed plans, by increment, that are specific to its function.
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
NASA Technical Reports Server (NTRS)
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
ISS Payload Operations: The Need for and Benefit of Responsive Planning
NASA Technical Reports Server (NTRS)
Nahay, Ed; Boster, Mandee
2000-01-01
International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of science programs and the crew desire for flexibility; the means by which responsive plans readily accommodate ISS communications constraints; manpower efficiencies to be achieved through use of responsive plans; and the implications of responsive planning relative to resource utilization efficiency.
Activity Planning for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2004-01-01
Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.
NASA Technical Reports Server (NTRS)
Dunbar, J. C.
1972-01-01
The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.
Agile Science Operations: A New Approach for Primitive Exploration Bodies
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Thompson, David R.; Castillo-Rogez, Julie C.; Doyle, Richard; Estlin, Tara; Mclaren, David
2012-01-01
Primitive body exploration missions such as potential Comet Surface Sample Return or Trojan Tour and Rendezvous would challenge traditional operations practices. Earth-based observations would provide only basic understanding before arrival and many science goals would be defined during the initial rendezvous. It could be necessary to revise trajectories and observation plans to quickly characterize the target for safe, effective observations. Detection of outgassing activity and monitoring of comet surface activity are even more time constrained, with events occurring faster than round-trip light time. "Agile science operations" address these challenges with contingency plans that recognize the intrinsic uncertainty in the operating environment and science objectives. Planning for multiple alternatives can significantly improve the time required to repair and validate spacecraft command sequences. When appropriate, time-critical decisions can be automated and shifted to the spacecraft for immediate access to instrument data. Mirrored planning systems on both sides of the light-time gap permit transfer of authority back and forth as needed. We survey relevant science objectives, identifying time bottlenecks and the techniques that could be used to speed missions' reaction to new science data. Finally, we discuss the results of a trade study simulating agile observations during flyby and comet rendezvous scenarios. These experiments quantify instrument coverage of key surface features as a function of planning turnaround time. Careful application of agile operations techniques can play a significant role in realizing the Decadal Survey plan for primitive body exploration
Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations
NASA Technical Reports Server (NTRS)
White, W. J.
1977-01-01
The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.
45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2011-10-01 2011-10-01 false Operating rules for eligibility for a health plan...
45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2013-10-01 2013-10-01 false Operating rules for eligibility for a health plan...
45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2014-10-01 2014-10-01 false Operating rules for eligibility for a health plan...
45 CFR 162.1203 - Operating rules for eligibility for a health plan transaction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... plan transaction: (1) Phase I CORE 152: Eligibility and Benefit Real Time Companion Guide Rule, version... § 162.920). (5) Phase I CORE 156: Eligibility and Benefits Real Time Response Rule, version 1.1.0, March... 45 Public Welfare 1 2012-10-01 2012-10-01 false Operating rules for eligibility for a health plan...
Sieira Gil, R; Roig, A Marí; Obispo, C Arranz; Morla, A; Pagès, C Martí; Perez, J Llopis
2015-01-01
The standard of mandibular reconstruction has increased since the introduction of computer-assisted design (CAD) and rapid prototype modelling (RPM) for surgical planning. Between 2008 and 2013, a prospective pilot study of 20 patients was planned to compare the outcomes of patients treated by mandibular reconstruction who had CAD and RPM-guided operations using a precontoured titanium plate, with the outcomes of patients treated conventionally. We recorded the time taken for reconstruction, total operating time, and whether this type of planning could improve the results of mandibular reconstruction. We found significant differences in the incidence of dental malocclusion (p=0.03) and exposure of the titanium plate (p=0.009). The mean operating time for reconstruction in the preoperative planning group was 135 (37)min compared with 176 (58)min in the conventional group (p=0.04). Preoperative planning using CAD and RPM can increase the accuracy of microvascular mandibular reconstruction and reduce the operating time for reconstruction. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Visual display aid for orbital maneuvering - Experimental evaluation
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1993-01-01
An interactive proximity operations planning system, which allows on-site planning of fuel-efficient, multiburn maneuvers in a potential multispacecraft environment, has been experimentally evaluated. An experiment has been carried out in which nonastronaut operators with brief initial training were required to plan a trajectory to retrieve an object accidentally separated from a dual-keel Space Station, for a variety of different orbital situations. The experiments have shown that these operators were able to plan workable trajectories, satisfying a number of operational constraints. Fuel use and planning time were strongly correlated, both with the angle at which the object was separated and with the existence of spatial constraints. Planning behavior was found to be strongly operator-dependent. This finding calls for the need for standardizing planning strategies through operator training or the use of semiautomated planning schemes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
.... Although the Limit Up-Limit Down Plan will be operational during the same time period as the proposed... implementation of the Plan is operational will help to protect against unanticipated consequences. To that end... in connection with the upcoming operation of the Plan to Address Extraordinary Market Volatility...
Gellert, Paul; Ziegelmann, Jochen P; Lippke, Sonia; Schwarzer, Ralf
2012-04-01
Limitations in perceived lifetime can undermine long-term goal striving. Planning is supposed to translate intentions into health behaviors and to operate as a compensatory strategy to overcome goal striving deficits associated with a limited time perspective. Two longitudinal studies were conducted examining the compensatory role of planning: an online survey on fruit and vegetable consumption (N = 909; 16-78 years; follow-up at 4 months) and a questionnaire study on physical exercise in older adults (N = 289; 60-95 years, over a half-year period). Intentions, planning, and behavior were measured in a behavior-specific, future time perspective in a generic manner. Planning mediated between intentions and both health behaviors. Time perspective operated as a moderator, indicating that in individuals with a more limited time perspective, a stronger effect of planning on health behaviors emerged. Planning as a self-regulatory strategy may compensate for a limited time perspective.
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks
NASA Technical Reports Server (NTRS)
Hall, Timothy A.
2011-01-01
In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow, archiving f data, and generating console logs. This technology called OCAMS (OCA (Orbital Communication System) Management System), is now considered TRL level 9 and is in daily use in the Mission Control Center in support of ISS operations. These solutions have not only allowed for improved efficiency on console; but since many of the previously manual data transfers are now automated, many of the human error prone steps have been removed, and the quality of the planning products has improved tremendously. This has also allowed our Planning Flight Controllers more time to focus on the abstract areas of the job, (like the complexities of planning a mission for 6 international crew members with a global planning team), instead of being burdened with the administrative tasks that took significant time each console shift to process. The resulting automation solutions have allowed the Operations and Planning organization to realize significant cost savings for the ISS program through 2020 and many of these solutions could be a viable
Evolving from Planning and Scheduling to Real-Time Operations Support: Design Challenges
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Ludowise, Melissa; McCurdy, Michael; Li, Jack
2010-01-01
Versions of Scheduling and Planning Interface for Exploration (SPIFe) have supported a variety of mission operations across NASA. This software tool has evolved and matured over several years, assisting planners who develop intricate schedules. While initially conceived for surface Mars missions, SPIFe has been deployed in other domains, where people rather than robotic explorers, execute plans. As a result, a diverse set of end-users has compelled growth in a new direction: supporting real-time operations. This paper describes the new needs and challenges that accompany this development. Among the key features that have been built for SPIFe are current time indicators integrated into the interface and timeline, as well as other plan attributes that enable execution of scheduled activities. Field tests include mission support for the Lunar CRater Observation and Sensing Satellite (LCROSS), NASA Extreme Environment Mission Operations (NEEMO) and Desert Research and Technology Studies (DRATS) campaigns.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Up-Limit Down Plan will be operational during the same time period as the proposed extended pilot... Plan is operational will help to protect against unanticipated consequences. To that end, the extension will allow the Exchange to determine whether Rule 11.19 is necessary once the Plan is operational and...
Sensing, Measurement, and Forecasting | Grid Modernization | NREL
into operational intelligence to support grid operations and planning. Photo of solar resource monitoring equipment Grid operations involve assessing the grid's health in real time, predicting its to hours and days-to support advances in power system operations and planning. Capabilities Solar
Wang, Y Y; Zhang, H Q; Fan, S; Zhang, D M; Huang, Z Q; Chen, W L; Ye, J T; Li, J S
2016-11-01
This study evaluated the accuracy of mandibular reconstruction and assessed clinical outcomes in both virtual planning and conventional surgery patients. ProPlan CMF surgical planning software was used preoperatively in the virtual planning group. In the virtual planning group, fibula flaps were harvested and osteotomized, and the mandibles were resected and reconstructed assisted by the prefabricated cutting guides and templates. The main outcome measures included the operative time, postoperative computed tomography (CT) scans, facial appearance, and occlusal function. The ischemia time and total operation time were shorter in the virtual planning group than in the conventional surgery group. High precision with the use of the cutting guides and templates was found for both the fibula and mandible, and a good fit was noted among the pre-bent plate, mandible, and fibula segments in the virtual planning group. Postoperative CT scans also showed excellent mandibular contours of the fibula flaps in accordance with virtual plans in the virtual planning group. This study demonstrated that virtual surgical planning was able to achieve more accurate mandibular reconstruction than conventional surgery. The use of prefabricated cutting guides and plates makes fibula flap moulding and placement easier, minimizes the operating time, and improves clinical outcomes. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.
1981-01-01
The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.
Mission-directed path planning for planetary rover exploration
NASA Astrophysics Data System (ADS)
Tompkins, Paul
2005-07-01
Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot. Simulations exhibit that the new methodology succeeds where conventional path planners would fail. Three planetary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual exploration robots. Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the execution of science activities distributed over hundreds of meters.
Interactive experimenters' planning procedures and mission control
NASA Technical Reports Server (NTRS)
Desjardins, R. L.
1973-01-01
The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule.
Planning And Reasoning For A Telerobot
NASA Technical Reports Server (NTRS)
Peters, Stephen F.; Mittman, David S.; Collins, Carol E.; O'Meara Callahan, Jacquelyn S.; Rokey, Mark J.
1992-01-01
Document discusses research and development of Telerobot Interactive Planning System (TIPS). Goal in development of TIPS is to enable it to accept instructions from operator, then command run-time controller to execute operations to execute instructions. Challenges in transferring technology from testbed to operational system discussed.
A Model for the Stop Planning and Timetables of Customized Buses
Yang, Yang
2017-01-01
Customized buses (CBs) are a new mode of public transportation and an important part of diversified public transportation, providing advanced, attractive and user-led service. The operational activity of a CB is planned by aggregating space–time demand and similar passenger travel demands. Based on an analysis of domestic and international research and the current development of CBs in China and considering passenger travel data, this paper studies the problems associated with the operation of CBs, such as stop selection, line planning and timetables, and establishes a model for the stop planning and timetables of CBs. The improved immune genetic algorithm (IIGA) is used to solve the model with regard to the following: 1) multiple population design and transport operator design, 2) memory library design, 3) mutation probability design and crossover probability design, and 4) the fitness calculation of the gene segment. Finally, a real-world example in Beijing is calculated, and the model and solution results are verified and analyzed. The results illustrate that the IIGA solves the model and is superior to the basic genetic algorithm in terms of the number of passengers, travel time, average passenger travel time, average passenger arrival time ahead of schedule and total line revenue. This study covers the key issues involving operational systems of CBs, combines theoretical research and empirical analysis, and provides a theoretical foundation for the planning and operation of CBs. PMID:28056041
A Model for the Stop Planning and Timetables of Customized Buses.
Ma, Jihui; Zhao, Yanqing; Yang, Yang; Liu, Tao; Guan, Wei; Wang, Jiao; Song, Cuiying
2017-01-01
Customized buses (CBs) are a new mode of public transportation and an important part of diversified public transportation, providing advanced, attractive and user-led service. The operational activity of a CB is planned by aggregating space-time demand and similar passenger travel demands. Based on an analysis of domestic and international research and the current development of CBs in China and considering passenger travel data, this paper studies the problems associated with the operation of CBs, such as stop selection, line planning and timetables, and establishes a model for the stop planning and timetables of CBs. The improved immune genetic algorithm (IIGA) is used to solve the model with regard to the following: 1) multiple population design and transport operator design, 2) memory library design, 3) mutation probability design and crossover probability design, and 4) the fitness calculation of the gene segment. Finally, a real-world example in Beijing is calculated, and the model and solution results are verified and analyzed. The results illustrate that the IIGA solves the model and is superior to the basic genetic algorithm in terms of the number of passengers, travel time, average passenger travel time, average passenger arrival time ahead of schedule and total line revenue. This study covers the key issues involving operational systems of CBs, combines theoretical research and empirical analysis, and provides a theoretical foundation for the planning and operation of CBs.
A planning language for activity scheduling
NASA Technical Reports Server (NTRS)
Zoch, David R.; Lavallee, David; Weinstein, Stuart; Tong, G. Michael
1991-01-01
Mission planning and scheduling of spacecraft operations are becoming more complex at NASA. Described here are a mission planning process; a robust, flexible planning language for spacecraft and payload operations; and a software scheduling system that generates schedules based on planning language inputs. The mission planning process often involves many people and organizations. Consequently, a planning language is needed to facilitate communication, to provide a standard interface, and to represent flexible requirements. The software scheduling system interprets the planning language and uses the resource, time duration, constraint, and alternative plan flexibilities to resolve scheduling conflicts.
Morgenegg, Regula; Heinze, Franziska; Wieferich, Katharina; Schiffer, Ralf; Stueber, Frank; Luedi, Markus M.; Doll, Dietrich
2017-01-01
Objectives While several factors have been shown to influence operating room (OR) turnaround times, few comparisons of planned and actual OR turnaround times have been performed. This study aimed to compare planned and actual OR turnaround times at a large rural hospital in Northern Germany. Methods This retrospective study examined the OR turnaround data of 875 elective surgery cases scheduled at the Marienhospital, Vechta, Germany, between July and October 2014. The frequency distributions of planned and actual OR turnaround times were compared and correlations between turnaround times and various factors were established, including the time of day of the procedure, patient age and the planned duration of the surgery. Results There was a significant difference between mean planned and actual OR turnaround times (0.32 versus 0.64 hours; P <0.001). In addition, significant correlations were noted between actual OR turnaround times and the time of day of the surgery, patient age, actual duration of the procedure and staffing changes affecting the surgeon or the medical specialty of the surgery (P <0.001 each). The quotient of actual/planned OR turnaround times ranged from 1.733–3.000. Conclusion Significant discrepancies between planned and actual OR turnaround times were noted during the study period. Such findings may be potentially used in future studies to establish a tool to improve OR planning, measure OR management performance and enable benchmarking. PMID:29372083
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Abercromby, Andrew F.; Miller, Matthew J.; Halcon, Christopher; Gernhardt, Michael L.
2016-01-01
OBJECTIVES: NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of varying operations concepts and tasks type and complexity on representative communication latencies associated with Mars missions were studied. METHODS: 12 subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science backroom team (SBT) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for SBT to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for presampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across long communication latencies and can be done with minimal crew idle time. Imagery and information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide further instructions to the crew from a SBT on sampling priorities, additional tasks, and changes to the plan. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency. Autonomous crew planning tools can be effective at modifying existing plans if the objectives and constraints are clearly defined.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... operations center for the Department of Homeland Security.'' Through the NOC, OPS provides real-time...-003 Operations Collection, Planning, Coordination, Reporting, Analysis, and Fusion System of Records... System of Records.'' The DHS/OPS-003 Operations Collection, Planning, Coordination, Reporting, Analysis...
Real-Time Operation of the International Space Station
NASA Astrophysics Data System (ADS)
Suffredini, M. T.
2002-01-01
The International Space Station is on orbit and real-time operations are well underway. Along with the assembly challenges of building and operating the International Space Station , scientific activities are also underway. Flight control teams in three countries are working together as a team to plan, coordinate and command the systems on the International Space Station.Preparations are being made to add the additional International Partner elements including their operations teams and facilities. By October 2002, six Expedition crews will have lived on the International Space Station. Management of real-time operations has been key to these achievements. This includes the activities of ground teams in control centers around the world as well as the crew on orbit. Real-time planning is constantly challenged with balancing the requirements and setting the priorities for the assembly, maintenance, science and crew health functions on the International Space Station. It requires integrating the Shuttle, Soyuz and Progress requirements with the Station. It is also necessary to be able to respond in case of on-orbit anomalies and to set plans and commands in place to ensure the continues safe operation of the Station. Bringing together the International Partner operations teams has been challenging and intensely rewarding. Utilization of the assets of each partner has resulted in efficient solutions to problems. This paper will describe the management of the major real-time operations processes, significant achievements, and future challenges.
How the Station will operate. [operation, management, and maintenance in space
NASA Technical Reports Server (NTRS)
Cox, John T.
1988-01-01
Aspects of the upcoming operational phase of the Space Station (SS) are examined. What the crew members will do with their time in their specialized roles is addressed. SS maintenance and servicing and the interaction of the SS Control Center with Johnson Space Center is discussed. The planning of payload operations and strategic planning for the SS are examined.
NASA Technical Reports Server (NTRS)
Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.
1990-01-01
This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display elements are being developed, including a 3DOF flight detector for attitude commanding, a different flight detector for translation commands, and a pictorial representation of velocity deviations.
Benefits to blood banks of a sales and operations planning process.
Keal, Donald A; Hebert, Phil
2010-12-01
A formal sales and operations planning (S&OP) process is a decision making and communication process that balances supply and demand while integrating all business operational components with customer-focused business plans that links high level strategic plans to day-to-day operations. Furthermore, S&OP can assist in managing change across the organization as it provides the opportunity to be proactive in the face of problems and opportunities while establishing a plan for everyone to follow. Some of the key outcomes from a robust S&OP process in blood banking would include: higher customer satisfaction (donors and health care providers), balanced inventory across product lines and customers, more stable production rates and higher productivity, more cooperation across the entire operation, and timely updates to the business plan resulting in better forecasting and fewer surprises that negatively impact the bottom line. © 2010 American Association of Blood Banks.
NASA Technical Reports Server (NTRS)
1971-01-01
Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.
The University of Colorado OSO-8 spectrometer experiment. IV - Mission operations
NASA Technical Reports Server (NTRS)
Hansen, E. R.; Bruner, E. C., Jr.
1979-01-01
The remote operation of two high-resolution ultraviolet spectrometers on the OSO-8 satellite is discussed. Mission operations enabled scientific observers to plan observations based on current solar data, interact with the observing program using real- or near real-time data and commands, evaluate quick-look instrument data, and analyze the observations for publication. During routine operations, experiments were planned a day prior to their execution, and the data from these experiments received a day later. When a shorter turnaround was required, a real-time mode was available. Here, the real-time data and command links into the remote control center were used to evaluate experiment operation and make satellite pointing or instrument configuration changes with a 1-90 minute turnaround.
Future pension accounting changes: implications for hospitals.
Weld, Tim; Klein, Gina
2011-05-01
Proposed rules in accounting for defined benefit plans may affect hospitals' statement of operations and affect the time, effort, and cost to comply with periodic financial reporting requirements. The new standard would require immediate recognition of the full amount of plan amendments in determining operating income. Hospitals should consider the role of pension plans in their compensation programs.
VirSSPA- a virtual reality tool for surgical planning workflow.
Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T
2009-03-01
A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.
Wang, You-Yuan; Fan, Song; Zhang, Han-Qing; Lin, Zhao-Yu; Ye, Jian-Tao; Li, Jin-Song
2016-06-01
Reconstruction of maxillary and midfacial defects due to tumor ablation is challenging to conventional operation. The purposes of this study are to evaluate the precise 3-dimensional position of the fibular flap in reconstruction of maxillary defects assisted by virtual surgical planning and to assess the postoperative outcomes compared with conventional surgery. We retrospectively reviewed 18 consecutive patients who underwent maxillary reconstruction with a vascularized fibular flap assisted by virtual surgical planning after maxillary or midfacial tumor ablation. Conventional surgery was performed in another 15 patients. Proplan CMF surgical planning (Materialise, Leuven, Belgium) was performed preoperatively in the virtual planning group. Fibular flaps were harvested and underwent osteotomy assisted by prefabricated cutting guides, and the maxilla and midface were resected and reconstructed assisted by the prefabricated cutting guides and templates in the virtual planning group. The operative time and fibular flap positions were evaluated in the 2 groups. Postoperative fibular positions of the maxillary reconstruction were compared with virtual plans in the virtual planning group. The postoperative facial appearance and occlusal function were assessed. The operations were performed successfully without complications. The ischemia time and total operative time were shorter in the virtual planning group than those in the conventional surgery group (P < .05). High precision of the cutting guides and templates was found on both the fibula and maxilla in the virtual planning group. The positions of the fibular flaps, including the vertical and horizontal positions, were more accurate in the virtual planning group than those in the conventional surgery group (P < .05). Bone-to-bone contact between the maxilla and fibular segments was more precise in the virtual planning group (P < .05). Postoperative computed tomography scans showed excellent contour of the fibular flap segments in accordance with the virtual plans in the virtual planning group. All patients were alive with no evidence of disease. Functional mandibular range of motion, good occlusion, and an ideal facial appearance were observed in the virtual planning group. Virtual surgical planning appears to achieve precise maxillary reconstruction with a vascularized fibular flap after tumor ablation, as well as an ideal facial appearance and function after dental rehabilitation. The use of prefabricated cutting guides and plates eases fibular flap molding and placement, minimizes operating time, and improves clinical outcomes. Copyright © 2016 The American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; information required; time for approval; method for disapproval; commencement of training; approval of... filed; information required; time for approval; method for disapproval; commencement of training... miners as a normal method of operation by the operator. The operator to be so excepted shall maintain an...
Code of Federal Regulations, 2012 CFR
2012-07-01
...; information required; time for approval; method for disapproval; commencement of training; approval of... filed; information required; time for approval; method for disapproval; commencement of training... miners as a normal method of operation by the operator. The operator to be so excepted shall maintain an...
Code of Federal Regulations, 2014 CFR
2014-07-01
...; information required; time for approval; method for disapproval; commencement of training; approval of... filed; information required; time for approval; method for disapproval; commencement of training... miners as a normal method of operation by the operator. The operator to be so excepted shall maintain an...
Code of Federal Regulations, 2011 CFR
2011-07-01
...; information required; time for approval; method for disapproval; commencement of training; approval of... filed; information required; time for approval; method for disapproval; commencement of training... miners as a normal method of operation by the operator. The operator to be so excepted shall maintain an...
Code of Federal Regulations, 2010 CFR
2010-07-01
...; information required; time for approval; method for disapproval; commencement of training; approval of... filed; information required; time for approval; method for disapproval; commencement of training... miners as a normal method of operation by the operator. The operator to be so excepted shall maintain an...
ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks
NASA Technical Reports Server (NTRS)
Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)
2011-01-01
In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.
Signal Timing and Coordination Strategies Under Varying Traffic Demands
DOT National Transportation Integrated Search
2012-07-01
Current practice for signal timing and signal coordination is to develop and operate a limited number of predetermined time-of-day plans. Coordination plans are commonly developed for and based on weekday morning, mid-day, evening, and weekend peak p...
Mission Operations of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel
2007-01-01
A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.
Path planning and energy management of solar-powered unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Kaplan, Adam
Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.
A key to success: optimizing the planning process
NASA Astrophysics Data System (ADS)
Turk, Huseyin; Karakaya, Kamil
2014-05-01
By adopting The NATO Strategic Concept Document in 2010, some important changes in the perception of threat and management of crisis were introduced. This new concept, named ''Comprehensive Approach'', includes the precautions of pre-crisis management, applications of crisis-duration management and reconstruction phase of post-intervention management. NATO will be interested in not only the political and military options , but also social, economical and informational aspects of crisis. NATO will take place in all phases of conflict. The conflicts which occur outside the borders of NATO's nations and terrorism are perceived as threat sources for peace and stability. In addition to conventional threats, cyber attacks which threaten network-supported communication systems, preventing applications from accessing to space that will be used in different fields of life. On the other hand, electronic warfare capabilities which can effect us negatively are added to threat list as new threats. In the process in which military is thought as option, a harder planning phase is waiting for NATO's decision makers who struggle for keeping peace and security. Operation planning process which depends on comprehensive approach, contains these steps: Situational awareness of battlefield, evaluation of the military intervention options, orientation, developing an operation plan, reviewing the plan and transition phases.1 To be successful in theater which is always changing with the technological advances, there has to be an accurate and timely planning on the table. So, spending time for planning can be shown as one of the biggest problem. In addition, sustaining situational awareness which is important for the whole operation planning process, technical command and control hitches, human factor, inability to determine the center of gravity of opponent in asymmetrical threat situations can be described as some of the difficulties in operation planning. In this study, a possible air operation planning process is analyzed according to a comprehensive approach. The difficulties of planning are identified. Consequently, for optimizing a decisionmaking process of an air operation, a planning process is identified in a virtual command and control structure.
36 CFR 228.56 - Operating plans.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Operating plans. 228.56 Section 228.56 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS... the environment and improvements, including timely reclamation of disturbed lands. Significant changes...
36 CFR 228.56 - Operating plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Operating plans. 228.56 Section 228.56 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS... the environment and improvements, including timely reclamation of disturbed lands. Significant changes...
2010 Federal Radionavigation Plan
DOT National Transportation Integrated Search
2011-04-15
The Federal Radionavigation Plan (FRP) reflects the official positioning, : navigation, and timing (PNT) policy and planning for the Federal : Government. The FRP covers both terrestrial- and space-based, commonuse, : federally operated PNT systems. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... structure, and update the plan as necessary. Agency operating components and field installations required to... review and update of their plans. (2) Plans shall cover a time period of not less than one year and may... most recent plan was effective or was last amended. (e) Plan Content. Disabled veteran affirmative...
Code of Federal Regulations, 2011 CFR
2011-01-01
... structure, and update the plan as necessary. Agency operating components and field installations required to... review and update of their plans. (2) Plans shall cover a time period of not less than one year and may... most recent plan was effective or was last amended. (e) Plan Content. Disabled veteran affirmative...
Code of Federal Regulations, 2014 CFR
2014-01-01
... structure, and update the plan as necessary. Agency operating components and field installations required to... review and update of their plans. (2) Plans shall cover a time period of not less than one year and may... most recent plan was effective or was last amended. (e) Plan Content. Disabled veteran affirmative...
Code of Federal Regulations, 2010 CFR
2010-01-01
... structure, and update the plan as necessary. Agency operating components and field installations required to... review and update of their plans. (2) Plans shall cover a time period of not less than one year and may... most recent plan was effective or was last amended. (e) Plan Content. Disabled veteran affirmative...
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.
Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport
NASA Astrophysics Data System (ADS)
Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh
2013-09-01
From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.
Operator-assisted planning and execution of proximity operations subject to operational constraints
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1991-01-01
Future multi-vehicle operations will involve multiple scenarios that will require a planning tool for the rapid, interactive creation of fuel-efficient trajectories. The planning process must deal with higher-order, non-linear processes involving dynamics that are often counter-intuitive. The optimization of resulting trajectories can be difficult to envision. An interaction proximity operations planning system is being developed to provide the operator with easily interpreted visual feedback of trajectories and constraints. This system is hosted on an IRIS 4D graphics platform and utilizes the Clohessy-Wiltshire equations. An inverse dynamics algorithm is used to remove non-linearities while the trajectory maneuvers are decoupled and separated in a geometric spreadsheet. The operator has direct control of the position and time of trajectory waypoints to achieve the desired end conditions. Graphics provide the operator with visualization of satisfying operational constraints such as structural clearance, plume impingement, approach velocity limits, and arrival or departure corridors. Primer vector theory is combined with graphical presentation to improve operator understanding of suggested automated system solutions and to allow the operator to review, edit, or provide corrective action to the trajectory plan.
Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela
2015-05-17
The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of planning and, further up-stream, the management of a waiting list in an interactive and bi-directional dynamic process.
Seeber, G H; Kolbow, K; Maus, U; Kluge, A; Lazovic, D
2016-06-01
In the past few years, patient-specific instrumentation (PSI) in knee endoprosthetics has been energetically marketed. PSI can enhance the accuracy of the size and alignment of the prosthesis components. It should also be possible to reduce hospital costs and operating time. It remains unclear whether these putative advantages are achieved in medial unicompartmental knee arthroplasty (UKA). Data from 22 patients (24 knees) were analysed retrospectively. The focus was on the reliability of preoperative surgical planning - particularly with regards to the level of experience of the five surgeons involved, who were split into two groups depending on their level of experience, as defined by EndoCert®. Another focus was on the evaluation of actual surgical time and cost effectiveness using PSI. In order to achieve an optimal outcome, preoperative surgical planning had to be modified intraoperatively to a great extent. The femoral component had to be adjusted intraoperatively in 41.7 % of all cases, the tibial component in 58.3 % and the polyethylene insert in 87.5 %. Surgeons equipped with less experience had to change preoperative planning more often than the more experienced surgeons. Utilising PSI increased the operating time of both the less experienced and the more experienced surgeons. PSI planning and lack of surgical experience were the main predictors of increased surgical time. Instead of lowering costs, utilizing PSI increased surgical costs by nearly 1300 $ per case. This was due to increased operating time, license fees and extraordinary expenditure for MRI scans. The advertised advantages of PSI were not supported by the data analysed. On the contrary, this technology leads to additional costs, greater operating time and insufficient accuracy in preoperative planning. As not a single study has yet demonstrated better outcomes in terms of alignment and/or function with PSI than with standard instrumentation, additional data are required before PSI can be recommended for routine use in medial UKA. Georg Thieme Verlag KG Stuttgart · New York.
STK Integrated Message Production List Editor (SIMPLE) for CEO Operations
NASA Technical Reports Server (NTRS)
Trenchard, Mike; Heydorn, James
2014-01-01
Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade and replace its mission planning and mission operations software systems, which were developed in the Space Shuttle era of the 1980s and 1990s. The impetuses for this change were the planned transition of all workstations to the Windows 7 64-bit operating system and the desire for more efficient and effective use of Satellite Tool Kit (STK) software required for reliable International Space Station (ISS) Earth location tracking. An additional requirement of this new system was the use of the same SQL database of CEO science sites from the SMMS, which was also being developed. STK Integrated Message Production List Editor (SIMPLE) is the essential, all-in-one tool now used by CEO staff to perform daily ISS mission planning to meet its requirement to acquire astronaut photography of specific sites on Earth. The sites are part of a managed, long-term database that has been defined and developed for scientific, educational, and public interest. SIMPLE's end product is a set of basic time and location data computed for an operator-selected set of targets that the ISS crew will be asked to photograph (photography is typically planned 12 to 36 hours out). The CEO operator uses SIMPLE to (a) specify a payload operations planning period; (b) acquire and validate the best available ephemeris data (vectors) for the ISS during the planning period; (c) ingest and display mission-specific site information from the CEO database; (d) identify and display potential current dynamic event targets as map features; (e) compute and display time and location information for each target; (f) screen and select targets based on known crew availability constraints, obliquity constraints, and real-time evaluated constraints to target visibility due to illumination (sun elevation) and atmospheric conditions (weather); and finally (g) incorporate basic, computed time and location information for each selected target into the daily CEO Target List product (message) for submission to ISS payload planning and integration teams for their review and approval prior to uplink. SIMPLE requires and uses the following resources: an ISS mission planning period Greenwich Mean Time start date/time and end date/time), the best available ISS mission ephemeris data (vectors) for that planning period, the STK software package configured for the ISS, and an ISS mission-specific subset of the CEO sites database. The primary advantages realized by the development and implementation of SIMPLE into the CEO payload operations support activity are a smooth transition to the Windows 7 operating system upon scheduled workstation refresh; streamlining of the input and verification of the current ISS ephemeris (vector data); seamless incorporation of selected contents of the SQL database of science sites; the ability to tag and display potential dynamic event opportunities on orbit track maps; simplification of the display and selection of encountered sites based on crew availability, illumination, obliquity, and weather constraints; the incorporation of high-quality mapping of the Earth with various satellite-based datasets for use in describing targets; and the ability to encapsulate and export the essential selected target elements in XML format for use by onboard Earth-location systems, such as Worldmap. SIMPLE is a carefully designed and crafted in-house software package that includes detailed help files for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in May 2012.
Geometric Reasoning for Automated Planning
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
30 CFR 746.18 - Mining plan modification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations on lands containing leased Federal coal pursuant to a permit revision issued by the regulatory... plan which would affect the conditions of its approval pursuant to Federal law or regulation other than... would extend coal mining and reclamation operations onto leased Federal coal lands for the first time...
30 CFR 746.18 - Mining plan modification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operations on lands containing leased Federal coal pursuant to a permit revision issued by the regulatory... plan which would affect the conditions of its approval pursuant to Federal law or regulation other than... would extend coal mining and reclamation operations onto leased Federal coal lands for the first time...
30 CFR 746.18 - Mining plan modification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations on lands containing leased Federal coal pursuant to a permit revision issued by the regulatory... plan which would affect the conditions of its approval pursuant to Federal law or regulation other than... would extend coal mining and reclamation operations onto leased Federal coal lands for the first time...
30 CFR 746.18 - Mining plan modification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations on lands containing leased Federal coal pursuant to a permit revision issued by the regulatory... plan which would affect the conditions of its approval pursuant to Federal law or regulation other than... would extend coal mining and reclamation operations onto leased Federal coal lands for the first time...
Assumption-Based Planning; A Planning Tool for Very Uncertain Times
1993-01-01
Ansoff , Igor H,, "Conceptual Underpinnings of Systematic Strategic Management," European Journal of Operational Research, Vol. 1, 1985, pp. 2-19...2Ansoff, Igor fI., *Conceptual Underpinnings of Systematic Strategic Management," European Journal ofOperational Resarch, Vol. 1, 1995, pp. 2-19. 72
Systemic Operational Design: An Alternative to Estimate Planning
2009-05-04
relationships found in the COE. Framing and campaign design, with emphasis on systems theory , have therefore made their way to the forefront of doctrinal...short explanation of the systems theory behind SOD, examines how the SOD process happens, and compares SOD with the time proven “Commander’s Estimate... Theory , Campaign planning, Contemporary Operating Environment, Commander’s Estimate Process, Operational design 16. SECURITY CLASSIFICATION OF
2017-11-01
magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational
Electric Motors Maintenance Planning From Its Operating Variables
NASA Astrophysics Data System (ADS)
Rodrigues, Francisco; Fonseca, Inácio; Farinha, José Torres; Ferreira, Luís; Galar, Diego
2017-09-01
The maintenance planning corresponds to an approach that seeks to maximize the availability of equipment and, consequently, increase the levels of competitiveness of companies by increasing production times. This paper presents a maintenance planning based on operating variables (number of hours worked, duty cycles, number of revolutions) to maximizing the availability of operation of electrical motors. The reading of the operating variables and its sampling is done based on predetermined sampling cycles and subsequently is made the data analysis through time series algorithms aiming to launch work orders before reaching the variables limit values. This approach is supported by tools and technologies such as logical applications that enable a graphical user interface for access to relevant information about their Physical Asset HMI (Human Machine Interface), including the control and supervision by acquisition through SCADA (Supervisory Control And data acquisition) data, also including the communication protocols among different logical applications.
Automated and Adaptive Mission Planning for Orbital Express
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin
2008-01-01
The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan, causing the need for re-planning. These variable factors, ranging from shifting contact times to ground-station closures and required maintenance times, are discussed along with the flexibility of the ASPEN tool to accommodate changes to procedures and the daily or long-range plan, which contributed to the success of the mission. This paper will present an introduction to ASPEN, a more in-depth discussion on its use on the Orbital Express mission, and other relative work. A description of ground operations after the SRP deliveries were made is included, and we briefly discuss lessons learned from the planning perspective and future work.
29 CFR 4041.22 - Administration of plan during pendency of termination process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... out the normal operations of the plan. During that time period, except as provided in paragraph (b) of... Code to receive the distribution; (2) The distribution is consistent with prior plan practice; and (3) The distribution is not reasonably expected to jeopardize the plan's sufficiency for plan benefits. ...
Spitzer Mission Operation System Planning for IRAC Warm-Instrument Characterization
NASA Technical Reports Server (NTRS)
Hunt, Joseph C., Jr.; Sarrel, Marc A.; Mahoney, William A.
2010-01-01
This paper will describe how the Spitzer Mission Operations System planned and executed the characterization phase between Spitzer's cryogenic mission and its warm mission. To the largest extend possible, the execution of this phase was done with existing processing and procedures. The modifications that were made were in response to the differences of the characterization phase compared to normal phases before and after. The primary two categories of difference are: unknown date of execution due to uncertainty of knowledge of the date of helium depletion, and the short cycle time for data analysis and re-planning during execution. In addition, all of the planning and design had to be done in parallel with normal operations, and we had to transition smoothly back to normal operations following the transition. This paper will also describe the re-planning we had to do following an anomaly discovered in the first days after helium depletion.
Supporting Real-Time Operations and Execution through Timeline and Scheduling Aids
NASA Technical Reports Server (NTRS)
Marquez, Jessica J.; Pyrzak, Guy; Hashemi, Sam; Ahmed, Samia; McMillin, Kevin Edward; Medwid, Joseph Daniel; Chen, Diana; Hurtle, Esten
2013-01-01
Since 2003, the NASA Ames Research Center has been actively involved in researching and advancing the state-of-the-art of planning and scheduling tools for NASA mission operations. Our planning toolkit SPIFe (Scheduling and Planning Interface for Exploration) has supported a variety of missions and field tests, scheduling activities for Mars rovers as well as crew on-board International Space Station and NASA earth analogs. The scheduled plan is the integration of all the activities for the day/s. In turn, the agents (rovers, landers, spaceships, crew) execute from this schedule while the mission support team members (e.g., flight controllers) follow the schedule during execution. Over the last couple of years, our team has begun to research and validate methods that will better support users during realtime operations and execution of scheduled activities. Our team utilizes human-computer interaction principles to research user needs, identify workflow processes, prototype software aids, and user test these. This paper discusses three specific prototypes developed and user tested to support real-time operations: Score Mobile, Playbook, and Mobile Assistant for Task Execution (MATE).
Wu, V W C; Sham, J S T; Kwong, D L W
2004-07-01
The aim of this study is to demonstrate the use of inverse planning in three-dimensional conformal radiation therapy (3DCRT) of oesophageal cancer patients and to evaluate its dosimetric results by comparing them with forward planning of 3DCRT and inverse planning of intensity-modulated radiotherapy (IMRT). For each of the 15 oesophageal cancer patients in this study, the forward 3DCRT, inverse 3DCRT and inverse IMRT plans were produced using the FOCUS treatment planning system. The dosimetric results and the planner's time associated with each of the treatment plans were recorded for comparison. The inverse 3DCRT plans showed similar dosimetric results to the forward plans in the planning target volume (PTV) and organs at risk (OARs). However, they were inferior to that of the IMRT plans in terms of tumour control probability and target dose conformity. Furthermore, the inverse 3DCRT plans were less effective in reducing the percentage lung volume receiving a dose below 25 Gy when compared with the IMRT plans. The inverse 3DCRT plans delivered a similar heart dose as in the forward plans, but higher dose than the IMRT plans. The inverse 3DCRT plans significantly reduced the operator's time by 2.5 fold relative to the forward plans. In conclusion, inverse planning for 3DCRT is a reasonable alternative to the forward planning for oesophageal cancer patients with reduction of the operator's time. However, IMRT has the better potential to allow further dose escalation and improvement of tumour control.
Scientific data reduction and analysis plan: PI services
NASA Technical Reports Server (NTRS)
Feldman, P. D.; Fastie, W. G.
1971-01-01
This plan comprises two parts. The first concerns the real-time data display to be provided by MSC during the mission. The prime goal is to assess the operation of the UVS and to identify any problem areas that could be corrected during the mission. It is desirable to identify any possible observations of unusual scientific interest in order to repeat these observations at a later point in the mission, or to modify the time line with respect to the operating modes of the UVS. The second part of the plan discusses the more extensive postflight analysis of the data in terms of the scientific objectives of this experiment.
Are virtual planning and guided surgery for head and neck reconstruction economically viable?
Zweifel, Daniel Fritz; Simon, Christian; Hoarau, Remy; Pasche, Philippe; Broome, Martin
2015-01-01
Virtual planning and guided surgery with or without prebent or milled plates are becoming more and more common for mandibular reconstruction with fibular free flaps (FFFs). Although this excellent surgical option is being used more widely, the question of the additional cost of planning and cutting-guide production has to be discussed. In capped payment systems such additional costs have to be offset by other savings if there are no special provisions for extra funding. Our study was designed to determine whether using virtual planning and guided surgery resulted in time saved during surgery and whether this time gain resulted in self-funding of such planning through the time saved. All consecutive cases of FFF surgery were evaluated during a 2-year period. Institutional data were used to determine the price of 1 minute of operative time. The time for fibula molding, plate adaptation, and insetting was recorded. During the defined period, we performed 20 mandibular reconstructions using FFFs, 9 with virtual planning and guided surgery and 11 freehand cases. One minute of operative time was calculated to cost US $47.50. Multiplying this number by the time saved, we found that the additional cost of virtual planning was reduced from US $5,098 to US $1,231.50 with a prebent plate and from US $6,980 to US $3,113.50 for a milled plate. Even in capped health care systems, virtual planning and guided surgery including prebent or milled plates are financially viable. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheu, R; Powers, A; McGee, H
Purpose: To investigate the reproducibility and limitations of Pd-103 prostate brachytherapy using fixed length linear sources (CivaString). Methods: An LDR prostate brachytherapy case which was preplanned on MR images with prefabricated linear polymer-encapsulated Pd-103 sources (CivaString) was studied and compared with ultrasound based intra-operative planning and CT based post-implant dosimetry. We evaluated the following parameters among the three studies: prostate geometry (volume and cross sectional area), needle position and alignment deviations, and dosimetry parameters (D90). Results: The prostate volumes and axial cross sectional areas at center of prostate were measured as 41.8, 39.3 and 36.8 cc, and 14.9, 14.3, andmore » 11.3 respectively on pre-plan MR, inter-op US, and post-implant CT studies. The deviation of prostate volumes and axial cross sectional areas measured on pre-planning MR and intra-operative US were within 5%. 17 out of 19 pre-planned needles were positioned within 5mm (the template grid size). One needle location was adjusted intra-operatively and another needle was removed due to proximity to urethra. The needle pathways were not always parallel to the trans-rectal probe due to the flexibility of CivaString. The angle of deviation was up to 10 degrees. Two pairs of needles were exchanged to better fit the length of prostate at the time of implant. This resulted in a prostate D90 of 153.8 Gy (124%) and 131.4 Gy (106.7%) for intra-op and PID respectively. Conclusion: Preplanning is a necessary part of implants performed with prefabricated linear polymer sources. However, as is often the case, there were real-time deviations from the pre-plan. Intra-op planning provides the ability conform to anatomy at the time of implant. Therefore, we propose to develop a systematic way to order extra strings of different length to provide the flexibility to perform intra-operative planning with fixed length strands.« less
Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki
2009-01-01
We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.
Hitchhiker mission operations: Past, present, and future
NASA Technical Reports Server (NTRS)
Anderson, Kathryn
1995-01-01
What is mission operations? Mission operations is an iterative process aimed at achieving the greatest possible mission success with the resources available. The process involves understanding of the science objectives, investigation of which system capabilities can best meet these objectives, integration of the objectives and resources into a cohesive mission operations plan, evaluation of the plan through simulations, and implementation of the plan in real-time. In this paper, the authors present a comprehensive description of what the Hitchhiker mission operations approach is and why it is crucial to mission success. The authors describe the significance of operational considerations from the beginning and throughout the experiment ground and flight systems development. The authors also address the necessity of training and simulations. Finally, the authors cite several examples illustrating the benefits of understanding and utilizing the mission operations process.
DOT National Transportation Integrated Search
2015-06-01
Currently, most traffic signals operated by the Virginia Department of Transportation (VDOT) use actuated plans that vary : by time of day (TOD) and day of the week. These timing plans are typically developed off-line using traffic count information ...
40 CFR 265.55 - Emergency coordinator.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FACILITIES Contingency Plan and Emergency Procedures § 265.55 Emergency coordinator. At all times, there must... aspects of the facility's contingency plan, all operations and activities at the facility, the location... out the contingency plan. [Comment: The emergency coordinator's responsibilities are more fully...
Planning and Scheduling for Environmental Sensor Networks
NASA Astrophysics Data System (ADS)
Frank, J. D.
2005-12-01
Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.
SOLON: An autonomous vehicle mission planner
NASA Technical Reports Server (NTRS)
Dudziak, M. J.
1987-01-01
The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.
Operational use of spaceborne lidar datasets
NASA Astrophysics Data System (ADS)
Marenco, Franco; Halloran, Gemma; Forsythe, Mary
2018-04-01
The Met Office plans to use space lidar datasets from CALIPSO, CATS, Aeolus and EarthCARE operationally in near real time (NRT), for the detection of aerosols. The first step is the development of NRT imagery for nowcasting of volcanic events, air quality, and mineral dust episodes. Model verification and possibly assimilation will be explored. Assimilation trials of Aeolus winds are also planned. Here we will present our first in-house imagery and our operational requirements.
Mission Operations Planning and Scheduling System (MOPSS)
NASA Technical Reports Server (NTRS)
Wood, Terri; Hempel, Paul
2011-01-01
MOPSS is a generic framework that can be configured on the fly to support a wide range of planning and scheduling applications. It is currently used to support seven missions at Goddard Space Flight Center (GSFC) in roles that include science planning, mission planning, and real-time control. Prior to MOPSS, each spacecraft project built its own planning and scheduling capability to plan satellite activities and communications and to create the commands to be uplinked to the spacecraft. This approach required creating a data repository for storing planning and scheduling information, building user interfaces to display data, generating needed scheduling algorithms, and implementing customized external interfaces. Complex scheduling problems that involved reacting to multiple variable situations were analyzed manually. Operators then used the results to add commands to the schedule. Each architecture was unique to specific satellite requirements. MOPSS is an expert system that automates mission operations and frees the flight operations team to concentrate on critical activities. It is easily reconfigured by the flight operations team as the mission evolves. The heart of the system is a custom object-oriented data layer mapped onto an Oracle relational database. The combination of these two technologies allows a user or system engineer to capture any type of scheduling or planning data in the system's generic data storage via a GUI.
Validation of Mission Plans Through Simulation
NASA Astrophysics Data System (ADS)
St-Pierre, J.; Melanson, P.; Brunet, C.; Crabtree, D.
2002-01-01
The purpose of a spacecraft mission planning system is to automatically generate safe and optimized mission plans for a single spacecraft, or more functioning in unison. The system verifies user input syntax, conformance to commanding constraints, absence of duty cycle violations, timing conflicts, state conflicts, etc. Present day constraint-based systems with state-based predictive models use verification rules derived from expert knowledge. A familiar solution found in Mission Operations Centers, is to complement the planning system with a high fidelity spacecraft simulator. Often a dedicated workstation, the simulator is frequently used for operator training and procedure validation, and may be interfaced to actual control stations with command and telemetry links. While there are distinct advantages to having a planning system offer realistic operator training using the actual flight control console, physical verification of data transfer across layers and procedure validation, experience has revealed some drawbacks and inefficiencies in ground segment operations: With these considerations, two simulation-based mission plan validation projects are under way at the Canadian Space Agency (CSA): RVMP and ViSION. The tools proposed in these projects will automatically run scenarios and provide execution reports to operations planning personnel, prior to actual command upload. This can provide an important safeguard for system or human errors that can only be detected with high fidelity, interdependent spacecraft models running concurrently. The core element common to these projects is a spacecraft simulator, built with off-the- shelf components such as CAE's Real-Time Object-Based Simulation Environment (ROSE) technology, MathWork's MATLAB/Simulink, and Analytical Graphics' Satellite Tool Kit (STK). To complement these tools, additional components were developed, such as an emulated Spacecraft Test and Operations Language (STOL) interpreter and CCSDS TM/TC encoders and decoders. This paper discusses the use of simulation in the context of space mission planning, describes the projects under way and proposes additional venues of investigation and development.
Fügener, Andreas; Schiffels, Sebastian; Kolisch, Rainer
2017-03-01
The planning of surgery durations is crucial for efficient usage of operating theaters. Both planning too long and too short durations for surgeries lead to undesirable consequences, e.g. idle time, overtime, or rescheduling of surgeries. We define these consequences as operating room inefficiency. The overall objective of planning surgery durations is to minimize expected operating room inefficiency, since surgery durations are stochastic. While most health care studies assume economically rational behavior of decision makers, experimental studies have shown that decision makers often do not act according to economic incentives. Based on insights from health care operations management, medical decision making, behavioral operations management, as well as empirical observations, we derive hypotheses that surgeons' behavior deviates from economically rational behavior. To investigate this, we undertake an experimental study where experienced surgeons are asked to plan surgeries with uncertain durations. We discover systematic deviations from optimal decision making and offer behavioral explanations for the observed biases. Our research provides new insights to tackle a major problem in hospitals, i.e. low operating room utilization going along with staff overtime.
The stem cell laboratory: design, equipment, and oversight.
Wesselschmidt, Robin L; Schwartz, Philip H
2011-01-01
This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.
NASA Astrophysics Data System (ADS)
Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.
2001-07-01
This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.
Hu, Zhouyang; Li, Xinhua; Cui, Jian; He, Xiaobo; Li, Cong; Han, Yingchao; Pan, Jie; Yang, Mingjie; Tan, Jun; Li, Lijun
2017-05-01
Preoperative planning software has been widely used in many other minimally invasive surgeries, but there is a lack of information describing the clinical benefits of existing software applied in percutaneous endoscopic lumbar discectomy (PELD). This study aimed to compare the clinical efficacy of preoperative planning software in puncture and channel establishment of PELD with routine methods in treating lumbar disc herniation (LDH). From June 2016 to October 2016, 40 patients who had single L4/5 or L5/S1 disc herniation were divided into two groups. Group A adopted planning software for preoperative puncture simulation while Group B took routine cases discussion for making puncture plans. The channel establishment time, operative time, fluoroscopic times and complications were compared between the two groups. The surgical efficacy was evaluated according to the Visual Analogue Scale (VAS), Oswestry Disability Index (ODI) and modified Macnab's criteria. The mean channel establishment time was 25.1 ± 4.2 min and 34.6 ± 5.4 min in Group A and B, respectively (P < 0.05). The mean operative time was 80.8 ± 8.4 min and 92.1 ± 7.3 min in Group A and B, respectively (P < 0.05). The fluoroscopic times were 21.5 ± 5.2 in Group A and 29.3 ± 5.5 in Group B (P < 0.05). There were no significant differences in VAS and ODI scorings between the two groups either preoperatively or postoperatively (P > 0.05). The findings of modified Macnab's criteria at each follow-up also showed no significant differences (P > 0.05). The application of preoperative planning software in puncture and cannula insertion planning in PELD was easy and reliable, and could reduce the channel establishment time, operative time and fluoroscopic times of PELD significantly. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Galileo mission planning for Low Gain Antenna based operations
NASA Technical Reports Server (NTRS)
Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.
1994-01-01
The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include quantifying resource or capabilities to be allocated, prioritizing science observations and estimating resource needs for each, working inter-and intra-orbit trades of these resources among the Project elements, and planning real-time science activity. The first major mission planning activity, a high level, orbit-by-orbit allocation of resources among science objectives, has already been completed; and results are illustrated in the paper. To make efficient use of limited resources, Galileo mission planning will rely on automated mission planning tools capable of dealing with interactions among time-varying downlink capability, real-time science and engineering data transmission, and playback of recorded data. A new generic mission planning tool is being adapted for this purpose.
Galileo mission planning for Low Gain Antenna based operations
NASA Astrophysics Data System (ADS)
Gershman, R.; Buxbaum, K. L.; Ludwinski, J. M.; Paczkowski, B. G.
1994-11-01
The Galileo mission operations concept is undergoing substantial redesign, necessitated by the deployment failure of the High Gain Antenna, while the spacecraft is on its way to Jupiter. The new design applies state-of-the-art technology and processes to increase the telemetry rate available through the Low Gain Antenna and to increase the information density of the telemetry. This paper describes the mission planning process being developed as part of this redesign. Principal topics include a brief description of the new mission concept and anticipated science return (these have been covered more extensively in earlier papers), identification of key drivers on the mission planning process, a description of the process and its implementation schedule, a discussion of the application of automated mission planning tool to the process, and a status report on mission planning work to date. Galileo enhancements include extensive reprogramming of on-board computers and substantial hard ware and software upgrades for the Deep Space Network (DSN). The principal mode of operation will be onboard recording of science data followed by extended playback periods. A variety of techniques will be used to compress and edit the data both before recording and during playback. A highly-compressed real-time science data stream will also be important. The telemetry rate will be increased using advanced coding techniques and advanced receivers. Galileo mission planning for orbital operations now involves partitioning of several scarce resources. Particularly difficult are division of the telemetry among the many users (eleven instruments, radio science, engineering monitoring, and navigation) and allocation of space on the tape recorder at each of the ten satellite encounters. The planning process is complicated by uncertainty in forecast performance of the DSN modifications and the non-deterministic nature of the new data compression schemes. Key mission planning steps include quantifying resource or capabilities to be allocated, prioritizing science observations and estimating resource needs for each, working inter-and intra-orbit trades of these resources among the Project elements, and planning real-time science activity. The first major mission planning activity, a high level, orbit-by-orbit allocation of resources among science objectives, has already been completed; and results are illustrated in the paper. To make efficient use of limited resources, Galileo mission planning will rely on automated mission planning tools capable of dealing with interactions among time-varying downlink capability, real-time science and engineering data transmission, and playback of recorded data. A new generic mission planning tool is being adapted for this purpose.
The traverse planning process for D-RATS 2010
NASA Astrophysics Data System (ADS)
Hörz, Friedrich; Lofgren, Gary E.; Gruener, John E.; Eppler, Dean B.; Skinner, James A.; Fortezzo, Corey M.; Graf, Jodi S.; Bluethmann, William J.; Seibert, Marc A.; Bell, Ernest R.
2013-10-01
This report describes the traverse planning process for the Desert Research and Technology Studies (D-RATS) 2010 field simulation of a conceptual 14-day planetary mission. This activity took place between August 23 and September 17, 2010 in the San Francisco Volcanic Field, Arizona. It focused on the utilization of two pressurized rovers and a ground-based communication system, as well as on the development of mission operation concepts for long duration, dual-rover missions. The early planning process began some 12 months prior to the actual field tests and defined the first order engineering-, flight operations, and science objectives. The detailed implementation and refinement of these objectives took place over the ensuing 10 months, resulting in a large number of technical and operational constraints that affected the actual traverse route or the cumulative Extravehicular Activity (EVA) time available for detailed field observations. The science planning proceeded from the generation of photogeologic maps of the test area, to the establishment of prioritized science objectives and associated candidate sites for detailed field exploration. The combination of operational constraints and science objectives resulted in the final design of traverse routes and time lines for each of the 24 traverses needed to support 12 field days by two rovers. Examples of daily traverses will be given that will hopefully illustrate that the design of long duration, long distance planetary traverses is a highly interdisciplinary and time-consuming collaboration between diverse engineers, flight operations personnel, human factors interests, and planetary scientists.
Guidelines for Implementing a Real Estate Cooperative Education Program.
ERIC Educational Resources Information Center
Pearson, Thomas R.
Background information and guidelines are provided for the development of cooperative education programs for real estate industry personnel. The first section outlines the operation of cooperative education programs and presents two organizational plans: the alternating plan, where students attend class full-time and work full-time during…
Proceedings of the Fourth Precise Time and Time Interval Planning Meeting
NASA Technical Reports Server (NTRS)
Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)
1972-01-01
The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.
NASA Technical Reports Server (NTRS)
1991-01-01
Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.
Hung, Chun-Chi; Li, Yuan-Ta; Chou, Yu-Ching; Chen, Jia-En; Wu, Chia-Chun; Shen, Hsain-Chung; Yeh, Tsu-Te
2018-05-03
Treating pelvic fractures remains a challenging task for orthopaedic surgeons. We aimed to evaluate the feasibility, accuracy, and effectiveness of three-dimensional (3D) printing technology and computer-assisted virtual surgery for pre-operative planning in anterior ring fractures of the pelvis. We hypothesized that using 3D printing models would reduce operation time and significantly improve the surgical outcomes of pelvic fracture repair. We retrospectively reviewed the records of 30 patients with pelvic fractures treated by anterior pelvic fixation with locking plates (14 patients, conventional locking plate fixation; 16 patients, pre-operative virtual simulation with 3D, printing-assisted, pre-contoured, locking plate fixation). We compared operative time, instrumentation time, blood loss, and post-surgical residual displacements, as evaluated on X-ray films, among groups. Statistical analyses evaluated significant differences between the groups for each of these variables. The patients treated with the virtual simulation and 3D printing-assisted technique had significantly shorter internal fixation times, shorter surgery duration, and less blood loss (- 57 minutes, - 70 minutes, and - 274 ml, respectively; P < 0.05) than patients in the conventional surgery group. However, the post-operative radiological result was similar between groups (P > 0.05). The complication rate was less in the 3D printing group (1/16 patients) than in the conventional surgery group (3/14 patients). The 3D simulation and printing technique is an effective and reliable method for treating anterior pelvic ring fractures. With precise pre-operative planning and accurate execution of the procedures, this time-saving approach can provide a more personalized treatment plan, allowing for a safer orthopaedic surgery.
Flight Deck Surface Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.
2017-01-01
Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Baldwin, John
2007-01-01
TIGRAS is client-side software, which provides tracking-station equipment planning, allocation, and scheduling services to the DSMS (Deep Space Mission System). TIGRAS provides functions for schedulers to coordinate the DSN (Deep Space Network) antenna usage time and to resolve the resource usage conflicts among tracking passes, antenna calibrations, maintenance, and system testing activities. TIGRAS provides a fully integrated multi-pane graphical user interface for all scheduling operations. This is a great improvement over the legacy VAX VMS command line user interface. TIGRAS has the capability to handle all DSN resource scheduling aspects from long-range to real time. TIGRAS assists NASA mission operations for DSN tracking of station equipment resource request processes from long-range load forecasts (ten years or longer), to midrange, short-range, and real-time (less than one week) emergency tracking plan changes. TIGRAS can be operated by NASA mission operations worldwide to make schedule requests for the DSN station equipment.
Rommel, Niklas; Kesting, Marco Rainer; Rohleder, Nils Hagen; Bauer, Florian Martin Josef; Wolff, Klaus-Dietrich; Weitz, Jochen
2017-08-01
The free osteomyocutaneous fibular flap has become one of the primary options for mandibular reconstruction, because of the later introduction and development of virtual surgical planning (VSP). However, VSP is associated with high additional pre-operative effort and costs. Therefore, the purpose of the study was to develop a new individual cost-effective pre-operative planning concept for free fibula mandible reconstruction and to compare it with VSP regarding clinical parameters and post-operative outcome. 31 patients undergoing mandibular reconstruction with a microvascular free fibular flap were divided into two groups and retrospectively reviewed. For the first group A (18 of 31 patients), an individual method with stererolithographic (STL) models, silicon templates and hand-made cutting guides was used (about 250 € planning costs/patient). For the second group B (13 of 31 patients), VSP including pre-fabricated cutting guides was used (about 2500 € planning costs/patient). We found no statistically significant differences with respect to intra-operative time of mandibular reconstruction, duration of hospitalisation or post-operative complications between the two groups (p ≥ 0.05). The surgical outcomes and operative efficiency of this individual and cost-effective planning concept are comparable with the much more expensive complete VSP concept. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Interactive orbital proximity operations planning system instruction and training guide
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1994-01-01
This guide instructs users in the operation of a Proximity Operations Planning System. This system uses an interactive graphical method for planning fuel-efficient rendezvous trajectories in the multi-spacecraft environment of the space station and allows the operator to compose a multi-burn transfer trajectory between orbit initial chaser and target trajectories. The available task time (window) of the mission is predetermined and the maneuver is subject to various operational constraints, such as departure, arrival, spatial, plume impingement, and en route passage constraints. The maneuvers are described in terms of the relative motion experienced in a space station centered coordinate system. Both in-orbital plane as well as out-of-orbital plane maneuvering is considered. A number of visual optimization aids are used for assisting the operator in reaching fuel-efficient solutions. These optimization aids are based on the Primer Vector theory. The visual feedback of trajectory shapes, operational constraints, and optimization functions, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool is an example of operator-assisted optimization of nonlinear cost functions.
DOT National Transportation Integrated Search
1994-07-01
This report is the ninth in a series on physiological and psychological effects of flight operations on flight crews, and on the operational significance of these effects. Long-haul flight operations often involve rapid multiple time-zone changes, sl...
Strategic planning for the International Space Station
NASA Technical Reports Server (NTRS)
Griner, Carolyn S.
1990-01-01
The concept for utilization and operations planning for the International Space Station Freedom was developed in a NASA Space Station Operations Task Force in 1986. Since that time the concept has been further refined to definitize the process and products required to integrate the needs of the international user community with the operational capabilities of the Station in its evolving configuration. The keystone to the process is the development of individual plans by the partners, with the parameters and formats common to the degree that electronic communications techniques can be effectively utilized, while maintaining the proper level and location of configuration control. The integration, evaluation, and verification of the integrated plan, called the Consolidated Operations and Utilization Plan (COUP), is being tested in a multilateral environment to prove out the parameters, interfaces, and process details necessary to produce the first COUP for Space Station in 1991. This paper will describe the concept, process, and the status of the multilateral test case.
Flying Cassini with Virtual Operations Teams
NASA Technical Reports Server (NTRS)
Dodd, Suzanne; Gustavson, Robert
1998-01-01
The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.
The Stem Cell Laboratory: Design, Equipment, and Oversight
Wesselschmidt, Robin L.; Schwartz, Philip H.
2013-01-01
This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863
Observing strategies for future solar facilities: the ATST test case
NASA Astrophysics Data System (ADS)
Uitenbroek, H.; Tritschler, A.
2012-12-01
Traditionally solar observations have been scheduled and performed very differently from night time efforts, in particular because we have been observing the Sun for a long time, requiring new combinations of observables to make progress, and because solar physics observations are often event driven on time scales of hours to days. With the proposal pressure that is expected for new large-aperture facilities, we can no longer afford the time spent on custom setups, and will have to rethink our scheduling and operations. We will discuss our efforts at Sac Peak in preparing for this new era, and outline the planned scheduling and operations planning for the ATST in particular.
Bye, Robin T; Neilson, Peter D
2010-10-01
Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.
Ground controlled robotic assembly operations for Space Station Freedom
NASA Technical Reports Server (NTRS)
Parrish, Joseph C.
1991-01-01
A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.
Incentive-Compatible Robust Line Planning
NASA Astrophysics Data System (ADS)
Bessas, Apostolos; Kontogiannis, Spyros; Zaroliagis, Christos
The problem of robust line planning requests for a set of origin-destination paths (lines) along with their frequencies in an underlying railway network infrastructure, which are robust to fluctuations of real-time parameters of the solution. In this work, we investigate a variant of robust line planning stemming from recent regulations in the railway sector that introduce competition and free railway markets, and set up a new application scenario: there is a (potentially large) number of line operators that have their lines fixed and operate as competing entities issuing frequency requests, while the management of the infrastructure itself remains the responsibility of a single entity, the network operator. The line operators are typically unwilling to reveal their true incentives, while the network operator strives to ensure a fair (or socially optimal) usage of the infrastructure, e.g., by maximizing the (unknown to him) aggregate incentives of the line operators.
33 CFR 154.1135 - Response plan development and evaluation criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Operating in Prince William Sound, Alaska § 154.1135 Response plan development and evaluation criteria. The following response times must be used in determining the on scene arrival time in Prince William Sound for the response resources required by § 154.1045: Tier 1 (hrs.) Tier 2 (hrs.) tier 3 (hrs.) Prince...
Lunar Prospecting: Searching for Volatiles at the South Pole
NASA Technical Reports Server (NTRS)
Trimble, Jay; Carvalho, Robert
2016-01-01
The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.
29 CFR 1917.30 - Emergency action plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emergency action and for reaction time for safe escape of employees from the workplace or the immediate work... 29 Labor 7 2010-07-01 2010-07-01 false Emergency action plans. 1917.30 Section 1917.30 Labor... (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.30 Emergency action plans. (a) Emergency...
Interactive orbital proximity operations planning system
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1988-01-01
An interactive graphical proximity operations planning system was developed, which allows on-site design of efficient, complex, multiburn maneuvers in a dynamic multispacecraft environment. Maneuvering takes place in and out of the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of orbital dynamics and complex time-varying operational constraints. This difficulty is greatly overcome by visualizing the relative trajectories and the relevant constraints in an easily interpretable graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of a Space Station and co-orbiting spacecraft on the background of the Station's orbital plane. The operator has control over the two modes of operation: a viewing system mode, which enables the exporation of the spatial situation about the Space Station and thus the ability to choose and zoom in on areas of interest; and a trajectory design mode, which allows the interactive editing of a series of way points and maneuvering burns to obtain a trajectory that complies with all operational constraints. A first version of this display was completed. An experimental program is planned in which operators will carry out a series of design missions which vary in complexity and constraints.
NASA Technical Reports Server (NTRS)
Hughes, John; Marius, Julio L.; Montoro, Manuel; Patel, Mehul; Bludworth, David
2006-01-01
This Paper is a case study of the development and execution of the End-of-Mission plans for the Earth Radiation Budget Satellite (ERBS) and the Upper Atmosphere Research Satellite (UARS). The goals of the End-of-Mission Plans are to minimize the time the spacecraft remains on orbit and to minimize the risk of creating orbital debris. Both of these Missions predate the NASA Management Instructions (NMI) that directs missions to provide for safe mission termination. Each spacecrafts had their own unique challenges, which required assessing End-of-Mission requirements versus spacecraft limitations. Ultimately the End-of- Mission operations were about risk mitigation. This paper will describe the operational challenges and the lessons learned executing these End-of-Mission Plans
Selection of a Planning Horizon for a Hybrid Microgrid Using Simulated Wind Forecasts
2014-12-01
microgrid robustness and efficiency and may provide operators with real-time guidance and control policies for microgrid operation. ACKNOWLEDGMENTS The...A PLANNING HORIZON FOR A HYBRID MICROGRID USING SIMULATED WIND FORECASTS Mumtaz Karatas Turkish Naval Academy Tuzla, Istanbul, 34942, TURKEY Emily M...Craparo Dashi I. Singham Naval Postgraduate School 1411 Cunningham Road Monterey, CA, 93943 USA ABSTRACT Hybrid microgrids containing renewable energy
Resource Constrained Planning of Multiple Projects with Separable Activities
NASA Astrophysics Data System (ADS)
Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya
In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.
[Implementation of a rational standard of hygiene for preparation of operating rooms].
Bauer, M; Scheithauer, S; Moerer, O; Pütz, H; Sliwa, B; Schmidt, C E; Russo, S G; Waeschle, R M
2015-10-01
The assurance of high standards of care is a major requirement in German hospitals while cost reduction and efficient use of resources are mandatory. These requirements are particularly evident in the high-risk and cost-intensive operating theatre field with multiple process steps. The cleaning of operating rooms (OR) between surgical procedures is of major relevance for patient safety and requires time and human resources. The hygiene procedure plan for OR cleaning between operations at the university hospital in Göttingen was revised and optimized according to the plan-do-check-act principle due to not clearly defined specifications of responsibilities, use of resources, prolonged process times and increased staff engagement. The current status was evaluated in 2012 as part of the first step "plan". The subsequent step "do" included an expert symposium with external consultants, interdisciplinary consensus conferences with an actualization of the former hygiene procedure plan and the implementation process. All staff members involved were integrated into this management change process. The penetration rate of the training and information measures as well as the acceptance and compliance with the new hygiene procedure plan were reviewed within step "check". The rates of positive swabs and air sampling as well as of postoperative wound infections were analyzed for quality control and no evidence for a reduced effectiveness of the new hygiene plan was found. After the successful implementation of these measures the next improvement cycle ("act") was performed in 2014 which led to a simplification of the hygiene plan by reduction of the number of defined cleaning and disinfection programs for preparation of the OR. The reorganization measures described led to a comprehensive commitment of the hygiene procedure plan by distinct specifications for responsibilities, for the course of action and for the use of resources. Furthermore, a simplification of the plan, a rational staff assignment and reduced process times were accomplished. Finally, potential conflicts due to an insufficient evidence-based knowledge of personnel was reduced. This present project description can be used by other hospitals as a guideline for similar changes in management processes.
Application of real-time cooperative editing in urban planning management system
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Liu, Renyi; Liu, Nan; Bao, Weizheng
2007-06-01
With the increasing of business requirement of urban planning bureau, co-edit function is needed urgently, however conventional GIS are not support this. In order to overcome this limitation, a new kind urban 1planning management system with co-edit function is needed. Such a system called PM2006 has been used in Suzhou Urban Planning Bureau. PM2006 is introduced in this paper. In this paper, four main issues of Co-edit system--consistency, responsiveness time, data recoverability and unconstrained operation--were discussed. And for these four questions, resolutions were put forward in paper. To resolve these problems of co-edit GIS system, a data model called FGDB (File and ESRI GeoDatabase) that is mixture architecture of File and ESRI Geodatabase was introduced here. The main components of FGDB data model are ESRI versioned Geodatabase and replicated architecture. With FGDB, client responsiveness, spatial data recoverability and unconstrained operation were overcome. In last of paper, MapServer, the co-edit map server module, is presented. Main functions of MapServer are operation serialization and spatial data replication between file and versioned data.
Automated planning for intelligent machines in energy-related applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.; de Saussure, G.; Barhen, J.
1984-01-01
This paper discusses the current activities of the Center for Engineering Systems Advanced Research (CESAR) program related to plan generation and execution by an intelligent machine. The system architecture for the CESAR mobile robot (named HERMIES-1) is described. The minimal cut-set approach is developed to reduce the tree search time of conventional backward chaining planning techniques. Finally, a real-time concept of an Intelligent Machine Operating System is presented in which planning and reasoning is embedded in a system for resource allocation and process management.
JPL space robotics: Present accomplishments and future thrusts
NASA Astrophysics Data System (ADS)
Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.
1994-10-01
Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.
JPL space robotics: Present accomplishments and future thrusts
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.
1994-01-01
Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.
Space Station - An integrated approach to operational logistics support
NASA Technical Reports Server (NTRS)
Hosmer, G. J.
1986-01-01
Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.
Blos, Mauricio F; Wee, Hui-Ming; Yang, Joshua
2010-11-01
Innovation challenges for handling supply chain risks have become one of the most important drivers in business competitiveness and differentiation. This study analyses competitiveness at the external supply chain level as a driver of risks and provides a framework for mitigating these risks. The mitigation framework, also called the supply chain continuity framework, provides insight into six stages of the business continuity planning (BCP) process life cycle (risk mitigation management, business impact analysis, supply continuity strategy development, supply continuity plan development, supply continuity plan testing and supply continuity plan maintenance), together with the operational constructs: customer service, inventory management, flexibility, time to market, ordering cycle time and quality. The purpose of the BCP process life cycle and operational constructs working together is to emphasise the way in which a supply chain can deal with disruption risks and, consequently, bring competitive advantage. Future research will consider the new risk scenarios and analyse the consequences to promote the improvement of supply chain resilience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.C.; Killough, S.M.; Rowe, J.C.
The purpose of the Smart Crane Ammunition Transfer System (SCATS) project is to demonstrate robotic/telerobotic controls technology for a mobile articulated crane for missile/ munitions handling, delivery, and reload. Missile resupply and reload have been manually intensive operations up to this time. Currently, reload missiles are delivered by truck to the site of the launcher. A crew of four to five personnel reloads the missiles from the truck to the launcher using a hydraulic-powered crane. The missiles are handled carefully for the safety of the missiles and personnel. Numerous steps are required in the reload process and the entire reloadmore » operation can take over 1 h for some missile systems. Recent U.S. Army directives require the entire operation to be accomplished in a fraction of that time. Current requirements for the development of SCATS are being based primarily on reloading Patriot missiles. The planned development approach will integrate robotic control and sensor technology with a commercially available hydraulic articulated crane. SCATS is being developed with commercially available hardware as much as possible. Development plans include adding a 3-D.F. end effector with a grapple to the articulating crane; closed-loop position control for the crane and end effector; digital microprocessor control of crane functions; simplified operator interface; and operating modes which include rectilinear movement, obstacle avoidance, and partial automated operation. The planned development will include progressive technology demonstrations. Ultimate plans are for this technology to be transferred and utilized in the military fielding process.« less
SciBox, an end-to-end automated science planning and commanding system
NASA Astrophysics Data System (ADS)
Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott
2014-01-01
SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.
DOT National Transportation Integrated Search
1995-10-01
REAL-TIME TRAFFIC INFORMATION, ROUTE GUIDANCE, ROUTE PLANNING, INTELLIGENT VEHICLE INITIATIVE OR IVI ">">KEYWORDS: OPERATIONAL TESTS, TRAVTEK, ADVANCED TRAVELER INFORMATION SYSTEMS OR ATIS, ADVANCED TRAFFIC MANAGEMENT SYSTEMS OR ATMS, INTELLI...
NOAA Activities and Plans for New Operational Space Weather Platforms and Sensors
NASA Astrophysics Data System (ADS)
Biesecker, D. A.; Mulligan, P.; Cash, M. D.; Reinard, A.; Simpson, M.; Diedrich, B.; Socker, D. G.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA) is vigorously pursuing several space weather platforms that have been demonstrated as requiring replacement. In this time of limited budgets, this has led to the need for creative and innovative solutions. Just as importantly, NOAA is only 13 months away from the launch of its first L1 solar wind monitor, the DSCOVR mission. At the same time, a private company, L'Garde Inc. will be launching a solar sail mission with NOAA as a partner. Recognizing the importance of solar wind monitoring and the need for continuity, the planning process is already underway for the DSCOVR follow-on mission and scenarios for that include commercial data purchases and solar sails. Finally, NOAA planning for an operational coronagraph is moving forward, with continuing development of the Naval Research Laboratory's Compact Coronagraph (CCOR). We will provide details on the current NOAA plans for each of these missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, C; Baikadi, M; Peters, C
2015-06-15
Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering tomore » this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to effectively design the HDR treatment operation that minimize human intervention and improve patient safety.« less
Web Application Software for Ground Operations Planning Database (GOPDb) Management
NASA Technical Reports Server (NTRS)
Lanham, Clifton; Kallner, Shawn; Gernand, Jeffrey
2013-01-01
A Web application facilitates collaborative development of the ground operations planning document. This will reduce costs and development time for new programs by incorporating the data governance, access control, and revision tracking of the ground operations planning data. Ground Operations Planning requires the creation and maintenance of detailed timelines and documentation. The GOPDb Web application was created using state-of-the-art Web 2.0 technologies, and was deployed as SaaS (Software as a Service), with an emphasis on data governance and security needs. Application access is managed using two-factor authentication, with data write permissions tied to user roles and responsibilities. Multiple instances of the application can be deployed on a Web server to meet the robust needs for multiple, future programs with minimal additional cost. This innovation features high availability and scalability, with no additional software that needs to be bought or installed. For data governance and security (data quality, management, business process management, and risk management for data handling), the software uses NAMS. No local copy/cloning of data is permitted. Data change log/tracking is addressed, as well as collaboration, work flow, and process standardization. The software provides on-line documentation and detailed Web-based help. There are multiple ways that this software can be deployed on a Web server to meet ground operations planning needs for future programs. The software could be used to support commercial crew ground operations planning, as well as commercial payload/satellite ground operations planning. The application source code and database schema are owned by NASA.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Decision support systems for transportation system management and operations (TSM&O).
DOT National Transportation Integrated Search
2015-12-01
There is a need for the development of tools and methods to support off-line and real-time : planning and operation decisions associated with the Transportation System Management and : Operations (TSM&O) program. The goal of this proposed project is ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, D; Bol, GH; Asselen, B van
Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically andmore » manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.« less
Operations management: a tool to increase profitability.
Mulvehill, M J
2001-03-01
Operations management enables the efficient utilization of the production systems in a business. This paper will address several key elements in the business competency of operations management. Specifically, this discussion will review the components of a material requirement planning system and a "just-in-time" system for inventory control and time management to enable the dentist to monitor a portion of the practice's overhead costs.
A Capital-Financing Plan for School Systems and Local Government
ERIC Educational Resources Information Center
Hodge, Penny
2012-01-01
School business officials are best equipped to lead in funding operating and capital needs because they understand the need for a methodical means of funding ongoing costs over time and the benefits of planning for future financial needs rather than letting emergencies dictate spending priorities. A capital-financing plan makes it possible to…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... it would not wait for systemic problems to undermine transmission planning before action is taken... that the development of transmission facilities can involve long lead times and complex problems... rather than allowing the problems in transmission planning and cost allocation to continue or to increase...
DOT National Transportation Integrated Search
2002-05-01
ITS is typically considered an operational detail to be worked out after infrastructure planning is complete. This approach ignores the potential for the introduction of ITS to change the decisions made during infrastructure planning, or even the ove...
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.
Advanced Ground Systems Maintenance Physics Models For Diagnostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.
Commander’s Handbook for Strategic Communication and Communication Strategy
2010-06-24
designed to gather SC educators and key practitioners for thoughtful discussions on SC education and training issues. KLE is not about engaging key...operational design and early joint operation planning process to identify indicators that will enable us to detect when it is time to “reframe” the problem...integrating process across DOD, included in concept and doctrine development, strategy and plan design , execution, and assessment, and incorporated
The Struggle for Air Force Independence, 1943-1947
1997-01-01
222 7. EPILOGUE .............................................. 227 A PPENDICES .............................................. 251 1. Operational...Arnold, acutely sensitive to the connection between operations--especially the impact of major air cam- paigns-and postwar plans, felt this was the time
Fuel efficient traffic signal operation and evaluation: Garden Grove Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-02-01
The procedures and results of a case study of fuel efficient traffic signal operation and evaluation in the City of Garden Grove, California are documented. Improved traffic signal timing was developed for a 70-intersection test network in Garden Grove using an optimization tool called the TRANSYT Version 8 computer program. Full-scale field testing of five alternative timing plans was conducted using two instrumented vehicles equipped to measure traffic performance characteristics and fuel consumption. The field tests indicated that significant improvements in traffic flow and fuel consumption result from the use of timing plans generated by the TRANSYT optimization model. Changingmore » from pre-existing to an optimized timing plan yields a networkwide 5 percent reduction in total travel time, more than 10 percent reduction in both the number of stops and stopped delay time, and 6 percent reduction in fuel consumption. Projections are made of the benefits and costs of implementing such a program at the 20,000 traffic signals in networks throughout the State of California.« less
Dynamic real-time routing for evacuation response planning and execution : [summary].
DOT National Transportation Integrated Search
2011-09-01
Strategic planning for emergency response is critical for : effective response to natural or deliberate disasters. Re- sponse vehicle routing and evacuation of : the affected people are part of emergency response operations under disasters. The respo...
Autonomous Vehicle Mission Planning Using AI (Artificial Intelligence) Techniques.
1985-12-01
it uses are declarative patterns that encode facts about how goals may give rise to - . plans. The program processes a story a sentence at a time...the planning process. By separating the knowledge about how to plan from the specific domain knowledge, an understander can use this knowledge about how ...path planning program developed in a previous thesis effort will be incorporated into the overall program in order to demonstrate the operating system
Code of Federal Regulations, 2010 CFR
2010-07-01
... performance of the Central and Southern Project and other water management systems in the South Florida... locations and times. Natural system means all land and water managed by the Federal government or the State... System Operating Manual and Project Operating Manuals. Operating Manuals contain water control plans...
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance of the Central and Southern Project and other water management systems in the South Florida... locations and times. Natural system means all land and water managed by the Federal government or the State... System Operating Manual and Project Operating Manuals. Operating Manuals contain water control plans...
40 CFR 63.7800 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... prepare and operate at all times according to a written operation and maintenance plan for each capture... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel...
40 CFR 63.7800 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... prepare and operate at all times according to a written operation and maintenance plan for each capture... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel...
40 CFR 63.7800 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... prepare and operate at all times according to a written operation and maintenance plan for each capture... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel...
40 CFR 63.7800 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... prepare and operate at all times according to a written operation and maintenance plan for each capture... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel...
40 CFR 63.7800 - What are my operation and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... prepare and operate at all times according to a written operation and maintenance plan for each capture... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Integrated Iron and Steel...
Gray, Rachel; Gougoutas, Alexander; Nguyen, Vinh; Taylor, Jesse; Bastidas, Nicholas
2017-06-01
Virtual Surgical Planning (VSP) and computer-aided design/computer-aided manufacturing (CAD/CAM) have recently helped improve efficiency and accuracy in many different craniofacial surgeries. Research has mainly focused on the use in the adult population with the exception of the use for mandibular distractions and cranial vault remodeling in the pediatric population. This study aims to elucidate the role of VSP and CAD/CAM in complex pediatric craniofacial cases by exploring its use in the correction of midface hypoplasia, orbital dystopia, mandibular reconstruction, and posterior cranial vault expansion. A retrospective analysis of thirteen patients who underwent 3d, CAD/CAM- assisted preoperative surgical planning between 2012 and 2016 was performed. All CAD/CAM assisted surgical planning was done in conjunction with a third party vendor (either 3D Systems or Materialise). Cutting and positioning guides as well as models were produced based on the virtual plan. Surgeries included free fibula mandible reconstruction (n = 4), lefort I osteotomy and distraction (n = 2), lefort II osteotomy with monobloc distraction (n = 1), expansion of the posterior vault for correction of chiari malformation (n = 3), and secondary orbital and midface reconstruction for facial trauma (n = 3). The patient's age, diagnosis, previous surgeries, length of operating time, complications, and post-surgery satisfaction were determined. In all cases we found presurgical planning was helpful to improve accuracy and significantly decrease intra-operative time. In cases where distraction was used, the planned and actual vectors were found to be accurate with excellent clinical outcomes. There were no complications except for one patient who experienced a wound infection post-operatively which did not alter the ultimate reconstruction. All patients experienced high satisfaction with their outcomes and excellent subjective aesthetic results were achieved. Preoperative planning using CAD/CAM and VSP allows for safe and precise craniofacial reconstruction in complex pediatric cases with a reduction of operative time. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Miner, Norris
The operations of an institution can be viewed from three perspectives: (1) the "actual operating measurement" such as income and expenditures of a cost center at a point in time; (2) the "criterion" which reflects the established policy for a time period; and (3) the "efficiency level" wherein a balance between input and output is defined.…
Predicted versus executed surgical orthognathic treatment.
Falter, B; Schepers, S; Vrielinck, L; Lambrichts, I; Politis, C
2013-10-01
This study aimed to analyse combined surgical-orthodontic treatment plans, compare them with the actual surgery performed, and define factors resulting in changes of the original plan during orthodontic pre-surgical preparation. The clinical files of 312 orthognathic surgery patients, operated between January 2008 and December 2010, were retrospectively reviewed. Of these 312 patients, 129 had a bimaxillary operation. One hundred sixty patients had osteotomy of the lower jaw only and 23 had osteotomy of the upper jaw only. Factors analysed in the study include Angle Class malocclusion, patient sex, and age. Lip-to-incisor relationship, overjet, overbite and midline deviations of the upper and lower jaw were recorded. Effects of surgical assisted rapid palatal expansion (SARPE) on the eventual surgery were also investigated. Reasons for changing the original treatment plan at the time of the finished pre-surgical-orthodontic alignment were analysed. The original treatment plan was changed in 42 of the 312 patients (13.5%). Changes occurred generally in case of a larger interval between set-up of the first treatment plan and the eventual operation (average 22.4 versus 16.4 months for patients with changed versus unchanged treatment plan, respectively). All Class I patients had surgery performed as planned. Class III patients had a significantly higher rate of altered treatment plan (27.3%) than Class II patients (7.6%). More men (52.4%) saw their treatment plan changed, although there were more women than men in the study population (59.6 versus 40.4%). One in seven patients (13.5%) had a different operation than was planned at the start of treatment. Class III patients with small overjet and overbite commonly have a treatment plan for a monomaxillary operation that, after decompensation, needs to be adapted to a bimaxillary operation. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Night-time road construction operations synthesis of practice.
DOT National Transportation Integrated Search
2008-05-01
report synthesizes existing literature on nighttime construction operations, identifies gaps in the current state of knowledge, and summarizes research in progress studies that are planned or underway. The literature review and synthesis found the fo...
Progress of Crew Autonomous Scheduling Test (CAST) On the ISS
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.
EIVAN - AN INTERACTIVE ORBITAL TRAJECTORY PLANNING TOOL
NASA Technical Reports Server (NTRS)
Brody, A. R.
1994-01-01
The Interactive Orbital Trajectory planning Tool, EIVAN, is a forward looking interactive orbit trajectory plotting tool for use with Proximity Operations (operations occurring within a one kilometer sphere of the space station) and other maneuvers. The result of vehicle burns on-orbit is very difficult to anticipate because of non-linearities in the equations of motion governing orbiting bodies. EIVAN was developed to plot resulting trajectories, to provide a better comprehension of orbital mechanics effects, and to help the user develop heuristics for onorbit mission planning. EIVAN comprises a worksheet and a chart from Microsoft Excel on a Macintosh computer. The orbital path for a user-specified time interval is plotted given operator burn inputs. Fuel use is also calculated. After the thrust parameters (magnitude, direction, and time) are input, EIVAN plots the resulting trajectory. Up to five burns may be inserted at any time in the mission. Twenty data points are plotted for each burn and the time interval can be varied to accommodate any desired time frame or degree of resolution. Since the number of data points for each burn is constant, the mission duration can be increased or decreased by increasing or decreasing the time interval. The EIVAN program runs with Microsoft's Excel for execution on a Macintosh running Macintosh OS. A working knowledge of Excel is helpful, but not imperative, for interacting with EIVAN. The program was developed in 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormier, Dallas; Edra, Sherwin; Espinoza, Michael
This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations,more » identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.« less
Evaluation of traffic responsive control on the Reston Parkway arterial network.
DOT National Transportation Integrated Search
2009-01-01
Traffic responsive plan selection (TRPS) control is considered an effective operational mode in traffic signal systems. Its efficiency stems from the fact that it can capture variations in traffic patterns and switch timing plans based on existing tr...
Planning and simulation of medical robot tasks.
Raczkowsky, J; Bohner, P; Burghart, C; Grabowski, H
1998-01-01
Complex techniques for planning and performing surgery revolutionize medical interventions. In former times preoperative planning of interventions usually took place in the surgeons mind. Today's new computer techniques allow the surgeon to discuss various operation methods for a patient and to visualize them three-dimensionally. The use of computer assisted surgical planning helps to get better results of a treatment and supports the surgeon before and during the surgical intervention. In this paper we are presenting our planning and simulation system for operations in maxillo-facial surgery. All phases of a surgical intervention are supported. Chapter 1 gives a description of the medical motivation for our planning system and its environment. In Chapter 2 the basic components are presented. The planning system is depicted in Chapter 3 and a simulation of a robot assisted surgery can be found in Chapter 4. Chapter 5 concludes the paper and gives a survey about our future work.
Liu, Xin; Zeng, Can-Jun; Lu, Jian-Sen; Lin, Xu-Chen; Huang, Hua-Jun; Tan, Xin-Yu; Cai, Dao-Zhang
2017-03-20
To evaluate the feasibility and effectiveness of using 3D printing and computer-assisted surgical simulation in preoperative planning for acetabular fractures. A retrospective analysis was performed in 53 patients with pelvic fracture, who underwent surgical treatment between September, 2013 and December, 2015 with complete follow-up data. Among them, 19 patients were treated with CT three-dimensional reconstruction, computer-assisted virtual reset internal fixation, 3D model printing, and personalized surgery simulation before surgery (3D group), and 34 patients underwent routine preoperative examination (conventional group). The intraoperative blood loss, transfusion volume, times of intraoperative X-ray, operation time, Matta score and Merle D' Aubigne & Postel score were recorded in the 2 groups. Preoperative planning and postoperative outcomes in the two groups were compared. All the operations were completed successfully. In 3D group, significantly less intraoperative blood loss, transfusion volume, fewer times of X-ray, and shortened operation time were recorded compared with those in the conventional group (P<0.05). According to the Matta scores, excellent or good fracture reduction was achieved in 94.7% (18/19) of the patients in 3D group and in 82.4% (28/34) of the patients in conventional group; the rates of excellent and good hip function at the final follow-up were 89.5% (17/19) in the 3D group and 85.3% (29/34) in the conventional group (P>0.05). In the 3D group, the actual internal fixation well matched the preoperative design. 3D printing and computer-assisted surgical simulation for preoperative planning is feasible and accurate for management of acetabular fracture and can effectively improve the operation efficiency.
Mission Operations Planning with Preferences: An Empirical Study
NASA Technical Reports Server (NTRS)
Bresina, John L.; Khatib, Lina; McGann, Conor
2006-01-01
This paper presents an empirical study of some nonexhaustive approaches to optimizing preferences within the context of constraint-based, mixed-initiative planning for mission operations. This work is motivated by the experience of deploying and operating the MAPGEN (Mixed-initiative Activity Plan GENerator) system for the Mars Exploration Rover Mission. Responsiveness to the user is one of the important requirements for MAPGEN, hence, the additional computation time needed to optimize preferences must be kept within reasonabble bounds. This was the primary motivation for studying non-exhaustive optimization approaches. The specific goals of rhe empirical study are to assess the impact on solution quality of two greedy heuristics used in MAPGEN and to assess the improvement gained by applying a linear programming optimization technique to the final solution.
Interactive orbital proximity operations planning system
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1990-01-01
An interactive graphical planning system for on-site planning of proximity operations in the congested multispacecraft environment about the space station is presented. The system shows the astronaut a bird's eye perspective of the space station, the orbital plane, and the co-orbiting spacecraft. The system operates in two operational modes: (1) a viewpoint mode, in which the astronaut is able to move the viewpoint around in the orbital plane to range in on areas of interest; and (2) a trajectory design mode, in which the trajectory is planned. Trajectory design involves the composition of a set of waypoints which result in a fuel-optimal trajectory which satisfies all operational constraints, such as departure and arrival constraints, plume impingement constraints, and structural constraints. The main purpose of the system is to present the trajectory and the constraints in an easily interpretable graphical format. Through a graphical interactive process, the trajectory waypoints are edited until all operational constraints are satisfied. A series of experiments was conducted to evaluate the system. Eight airline pilots with no prior background in orbital mechanics participated in the experiments. Subject training included a stand-alone training session of about 6 hours duration, in which the subjects became familiar with orbital mechanics concepts and performed a series of exercises to familiarize themselves with the control and display features of the system. They then carried out a series of production runs in which 90 different trajectory design situations were randomly addressed. The purpose of these experiments was to investigate how the planning time, planning efforts, and fuel expenditures were affected by the planning difficulty. Some results of these experiments are presented.
Apollo experience report: Flight planning for manned space operations
NASA Technical Reports Server (NTRS)
Oneill, J. W.; Cotter, J. B.; Holloway, T. W.
1972-01-01
The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.
ERIC Educational Resources Information Center
Astle, Judy Hughes
2001-01-01
A summer camp expanded into year-round operation one step at a time. Initial steps included identifying the camp mission, history, and assets. Successive steps became larger and included expanding the program within the mission, increasing marketing efforts, developing natural resources, creating plans for maintenance and improvements, and…
Collecting, Managing, and Visualizing Data during Planetary Surface Exploration
NASA Astrophysics Data System (ADS)
Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.
2017-12-01
While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.
1993-06-01
additional source. For the past three years VNIIFTRI (Mendeleevo, Moscow Region, Russian Federation) and some other Russian time laboratories have used...Russian-built GLONASS navigation receivers for time 47 comparisons. Since June 1991, VNIIFTRI has operated a commercial CPS time receiver on loan from...the BIPM. Since February 1992, the BIPM has operated Russian GLONASS receiver on loan from the VNIIFTRI . This provides, for the first time, an
Ground operation of robotics on Space Station Freedom
NASA Technical Reports Server (NTRS)
Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.
1993-01-01
This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.
Ground operation of robotics on Space Station Freedom
NASA Astrophysics Data System (ADS)
Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.
1993-03-01
This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.
NASA Technical Reports Server (NTRS)
Randolph, Joseph L.; Shepard, Kenneth E.
1990-01-01
The Satellite Resources Management and Tracking System was developed specifically for the Hubble Space Telescope (HST) program, and now, NASA has the ability to immediately access the necessary data for planning successful orbital satellite servicing operations. This system is an online, real-time data base system that contains a plethora of data on each item identified to support the HST throughout its planned 15 year life. Some of the information provided includes the current status, location, quantity, and history of each asset, a separate record for each discrete serial numbered item, procurement lead times on items sensitive to technology obsolescence, and the maintenance and repair history of each asset. Finally, details are provided on organizational, operational and logistics requirements.
Health care logistics: who has the ball during disaster?
Vanvactor, Jerry D
2011-05-10
In contemporary organizations, a wide gamut of options is available for sustaining and supporting health care operations. When disaster strikes, despite having tenable plans for routine replenishment and operations, many organizations find themselves ill-prepared, ill-equipped, and without effective mechanisms in place to sustain operations during the immediate aftermath of a crisis. Health care operations can be abruptly halted due to the non-availability of supply. The purpose of this work is to add to a necessary, growing body of works related specifically to health care logistics preparedness and disaster mitigation. Logistics management is a specialized genre of expertise within the health care industry and is largely contributive to the success or failure of health care organizations. Logistics management requires extensive collaboration among multiple stakeholders-internal and external to an organization. Effective processes and procedures can be largely contributive to the success or failure of organizational operations. This article contributes to the closure of an obvious gap in professional and academic literature related to disaster health care logistics management and provides timely insight into a potential problem for leaders industry-wide. One critical aspect of disaster planning is regard for competent logistics management and the effective provision of necessary items when they are needed most. In many communities, there seems to be little evidence available regarding health care logistics involvement in disaster planning; at times, evidence of planning efforts perceptibly end at intra-organizational doors within facilities. Strategic planners are being continually reminded that health care organizations serve a principal role in emergency preparedness planning and must be prepared to fulfill the associated possibilities without notification. The concern is that not enough attention is being paid to repeated lessons being observed in disasters and emergency events.
Health care logistics: who has the ball during disaster?
VanVactor, Jerry D.
2011-01-01
In contemporary organizations, a wide gamut of options is available for sustaining and supporting health care operations. When disaster strikes, despite having tenable plans for routine replenishment and operations, many organizations find themselves ill-prepared, ill-equipped, and without effective mechanisms in place to sustain operations during the immediate aftermath of a crisis. Health care operations can be abruptly halted due to the non-availability of supply. The purpose of this work is to add to a necessary, growing body of works related specifically to health care logistics preparedness and disaster mitigation. Logistics management is a specialized genre of expertise within the health care industry and is largely contributive to the success or failure of health care organizations. Logistics management requires extensive collaboration among multiple stakeholders—internal and external to an organization. Effective processes and procedures can be largely contributive to the success or failure of organizational operations. This article contributes to the closure of an obvious gap in professional and academic literature related to disaster health care logistics management and provides timely insight into a potential problem for leaders industry-wide. One critical aspect of disaster planning is regard for competent logistics management and the effective provision of necessary items when they are needed most. In many communities, there seems to be little evidence available regarding health care logistics involvement in disaster planning; at times, evidence of planning efforts perceptibly end at intra-organizational doors within facilities. Strategic planners are being continually reminded that health care organizations serve a principal role in emergency preparedness planning and must be prepared to fulfill the associated possibilities without notification. The concern is that not enough attention is being paid to repeated lessons being observed in disasters and emergency events. PMID:24149034
Autonomous Mission Operations Roadmap
NASA Technical Reports Server (NTRS)
Frank, Jeremy David
2014-01-01
As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.
NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher
2016-01-01
NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be done with minimal crew idle time. Imagery and contextual information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide meaningful feedback and instruction to the crew regarding sampling priorities, additional tasks, and changes to the EVA timeline. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency.
The IUE Science Operations Ground System
NASA Technical Reports Server (NTRS)
Pitts, Ronald E.; Arquilla, Richard
1994-01-01
The International Ultraviolet Explorer (IUE) Science Operations System provides full realtime operations capabilities and support to the operations staff and astronomer users. The components of this very diverse and extremely flexible hardware and software system have played a major role in maintaining the scientific efficiency and productivity of the IUE. The software provides the staff and user with all the tools necessary for pre-visit and real-time planning and operations analysis for any day of the year. Examples of such tools include the effects of spacecraft constraints on target availability, maneuver times between targets, availability of guide stars, target identification, coordinate transforms, e-mail transfer of Observatory forms and messages, and quick-look analysis of image data. Most of this extensive software package can also be accessed remotely by individual users for information, scheduling of shifts, pre-visit planning, and actual observing program execution. Astronomers, with a modest investment in hardware and software, may establish remote observing sites. We currently have over 20 such sites in our remote observers' network.
Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.
Real-time planning/replanning of ongoing operations in a crisis situation
NASA Astrophysics Data System (ADS)
Griffith, David A.; Smith, Gregory M.
1997-02-01
The ability to examine the planned position and movement of police vehicles, personnel, weapons, and status of police assets is an implied requirement in the conduct of police activities. Displays showing the time police vehicles leave on assignment, stops along their route, time of return to station, quantity of vehicles, types of weapons, radio frequencies, and other pertinent information could help in crisis situations. It would be especially helpful if it were easily accessible and simple to understand. Rome Laboratory developed a system for monitoring interrelated planned events and for changing these events to correct for deviations in the plan. The system is called force level execution (FLEX), and it displays information on timing charts, tables, and a geographic map background. The FLEX graphics enhance the military commander's ability to grasp the tactical situation which typically includes 2000 to 3000 air sorties per day. A sortie is a single flight of a single aircraft. Because the 'fog of war' causes unexpected events, status reports are needed, replanning options are generated, and new plans are issued to correct for these unexpected events. The authors believe there are law enforcement and other crisis situations that are analogous to some military scenarios. These may include state police operating over large geographical areas, coordination with county police operating over somewhat smaller areas, coordination with the county sheriff's office and city police, not only for criminal apprehension, but for disaster relief. Other participants in a crisis situation may include fire departments, ambulances, emergency medical vehicles, hospitals, rescue operations, etc. The position of police vehicles, foot patrolman, helicopters and emergency vehicles can all be superimposed upon a map background, with appropriate cultural features such as roads, rivers, bridges, state and country boundaries, etc. When police vehicles incorporate the global positioning system (GPS), an automated status display could potentially show the exact locations of these vehicles in real time. This paper shows how the Air Force is using this technology and how, in the author's opinion, FLEX might be adapted to law enforcement and disaster relief situations.
On the Temporal Nature of Planning in L1 and L2 Composing
ERIC Educational Resources Information Center
Manchon, Rosa M.; de Larios, Julio Roca
2007-01-01
In this article we report on a study in which verbal protocol data were used to explore English as a foreign language writers' planning behavior while engaged in academic writing tasks. The analysis was approached from a temporal perspective (i.e., time spent on planning operations) in relation to three independent variables: (a) the participants'…
Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned
NASA Technical Reports Server (NTRS)
Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.
2013-01-01
Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.
An assigned responsibility system for robotic teleoperation control.
Small, Nicolas; Lee, Kevin; Mann, Graham
2018-01-01
This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan's execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications.
Satellite image collection optimization
NASA Astrophysics Data System (ADS)
Martin, William
2002-09-01
Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.
Orbiter Auxiliary Power Unit Flight Support Plan
NASA Technical Reports Server (NTRS)
Guirl, Robert; Munroe, James; Scott, Walter
1990-01-01
This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.
NASA Technical Reports Server (NTRS)
Braman, Julia M. B.; Wagner, David A.
2010-01-01
Safe human exploration in space missions requires careful management of limited resources such as breathable air and stored electrical energy. Daily activities for astronauts must be carefully planned with respect to such resources, and usage must be monitored as activities proceed to ensure that they can be completed while maintaining safe resource margins. Such planning and monitoring can be complex because they depend on models of resource usage, the activities being planned, and uncertainties. This paper describes a system - and the technology behind it - for energy management of the NASA-Johnson Space Center's Multi-Mission Space Exploration Vehicles (SEV), that provides, in an onboard advisory mode, situational awareness to astronauts and real-time guidance to mission operators. This new capability was evaluated during this year's Desert RATS (Research and Technology Studies) planetary exploration analog test in Arizona. This software aided ground operators and crew members in modifying the day s activities based on the real-time execution of the plan and on energy data received from the rovers.
Scholes, Corey; Sahni, Varun; Lustig, Sebastien; Parker, David A; Coolican, Myles R J
2014-03-01
The introduction of patient-specific instruments (PSI) for guiding bone cuts could increase the incidence of malalignment in primary total knee arthroplasty. The purpose of this study was to assess the agreement between one type of patient-specific instrumentation (Zimmer PSI) and the pre-operative plan with respect to bone cuts and component alignment during TKR using imageless computer navigation. A consecutive series of 30 femoral and tibial guides were assessed in-theatre by the same surgeon using computer navigation. Following surgical exposure, the PSI cutting guides were placed on the joint surface and alignment assessed using the navigation tracker. The difference between in-theatre data and the pre-operative plan was recorded and analysed. The error between in-theatre measurements and pre-operative plan for the femoral and tibial components exceeded 3° for 3 and 17% of the sample, respectively, while the error for total coronal alignment exceeded 3° for 27% of the sample. The present results indicate that alignment with Zimmer PSI cutting blocks, assessed by imageless navigation, does not match the pre-operative plan in a proportion of cases. To prevent unnecessary increases in the incidence of malalignment in primary TKR, it is recommended that these devices should not be used without objective verification of alignment, either in real-time or with post-operative imaging. Further work is required to identify the source of discrepancies and validate these devices prior to routine use. II.
Semi-automated intra-operative fluoroscopy guidance for osteotomy and external-fixator.
Lin, Hong; Samchukov, Mikhail L; Birch, John G; Cherkashin, Alexander
2006-01-01
This paper outlines a semi-automated intra-operative fluoroscopy guidance and monitoring approach for osteotomy and external-fixator application in orthopedic surgery. Intra-operative Guidance module is one component of the "LegPerfect Suite" developed for assisting the surgical correction of lower extremity angular deformity. The Intra-operative Guidance module utilizes information from the preoperative surgical planning module as a guideline to overlay (register) its bone outline semi-automatically with the bone edge from the real-time fluoroscopic C-Arm X-Ray image in the operating room. In the registration process, scaling factor is obtained automatically through matching a fiducial template in the fluoroscopic image and a marker in the module. A triangle metal plate, placed on the operating table is used as fiducial template. The area of template image within the viewing area of the fluoroscopy machine is obtained by the image processing techniques such as edge detection and Hough transformation to extract the template from other objects in the fluoroscopy image. The area of fiducial template from fluoroscopic image is then compared with the area of the marker from the planning so as to obtain the scaling factor. After the scaling factor is obtained, the user can use simple operations by mouse to shift and rotate the preoperative planning to overlay the bone outline from planning with the bone edge from fluoroscopy image. In this way osteotomy levels and external fixator positioning on the limb can guided by the computerized preoperative plan.
Runway Operations Planning: A Two-Stage Heuristic Algorithm
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Clarke, John-Paul
2003-01-01
The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.
Improved Surgery Planning Using 3-D Printing: a Case Study.
Singhal, A J; Shetty, V; Bhagavan, K R; Ragothaman, Ananthan; Shetty, V; Koneru, Ganesh; Agarwala, M
2016-04-01
The role of 3-D printing is presented for improved patient-specific surgery planning. Key benefits are time saved and surgery outcome. Two hard-tissue surgery models were 3-D printed, for orthopedic, pelvic surgery, and craniofacial surgery. We discuss software data conversion in computed tomography (CT)/magnetic resonance (MR) medical image for 3-D printing. 3-D printed models save time in surgery planning and help visualize complex pre-operative anatomy. Time saved in surgery planning can be as much as two thirds. In addition to improved surgery accuracy, 3-D printing presents opportunity in materials research. Other hard-tissue and soft-tissue cases in maxillofacial, abdominal, thoracic, cardiac, orthodontics, and neurosurgery are considered. We recommend using 3-D printing as standard protocol for surgery planning and for teaching surgery practices. A quick turnaround time of a 3-D printed surgery model, in improved accuracy in surgery planning, is helpful for the surgery team. It is recommended that these costs be within 20 % of the total surgery budget.
The use of 3D planning in facial surgery: preliminary observations.
Hoarau, R; Zweifel, D; Simon, C; Broome, M
2014-12-01
Three-dimensional (3D) planning is becoming a more commonly used tool in maxillofacial surgery. At first used only virtually, 3D planning now also enables the creation of useful intraoperative aids such as cutting guides, which decrease the operative difficulty. In our center, we have used 3D planning in various domains of facial surgery and have investigated the advantages of this technique. We have also addressed the difficulties associated with its use. 3D planning increases the accuracy of reconstructive surgery, decreases operating time, whilst maintaining excellent esthetic results. However, its use is restricted to osseous reconstruction at this stage and once planning has been undertaken, it cannot be reversed or altered intraoperatively. Despite the attractive nature of this new tool, its uses and practicalities must be further evaluated. In particular, cost-effectiveness, hospital stay, and patient perceived benefits must be assessed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Joint operations planning for space surveillance missions on the MSX satellite
NASA Technical Reports Server (NTRS)
Stokes, Grant; Good, Andrew
1994-01-01
The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a model possibly applicable to developing distributed mission planning systems for other multi-use satellites.
NASA Technical Reports Server (NTRS)
Johnson, David W.
1991-01-01
The purpose was to study how manpower and projects are planned at the Facilities Engineering Division (FENGD) within the Systems Engineering and Operations Directorate of the LaRC and to make recommendations for improving the effectiveness and productivity ot the tools that are used. The existing manpower and project planning processes (including the management plan for the FENGD, existing manpower planning reports, project reporting to LaRC and NASA Headquarters, employee time reporting, financial reporting, and coordination/tracking reports for procurement) were discussed with several people, and project planning software was evaluated.
Decision-Theoretic Control of Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; Mouaddib, Abdel-Illah; Morris, Robert (Technical Monitor)
2003-01-01
Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We describe two decision-theoretic approaches to maximize the productivity of planetary rovers: one based on adaptive planning and the other on hierarchical reinforcement learning. Both approaches map the problem into a Markov decision problem and attempt to solve a large part of the problem off-line, exploiting the structure of the plan and independence between plan components. We examine the advantages and limitations of these techniques and their scalability.
Toro, Corrado; Robiony, Massimo; Costa, Fabio; Zerman, Nicoletta; Politi, Massimo
2007-01-15
Functional and aesthetic mandibular reconstruction after ablative tumor surgery continues to be a challenge even after the introduction of microvascular bone transfer. Complex microvascular reconstruction of the resection site requires accurate preoperative planning. In the recent past, bone graft and fixation plates had to be reshaped during the operation by trial and error, often a time-consuming procedure. This paper outlines the possibilities and advantages of the clinical application of anatomical facsimile models in the preoperative planning of complex mandibular reconstructions after tumor resections. From 2003 to 2005, in the Department of Maxillofacial Surgery of the University of Udine, a protocol was applied with the preoperative realization of stereolithographic models for all the patients who underwent mandibular reconstruction with microvascular flaps. 24 stereolithographic models were realized prior to surgery before emimandibulectomy or segmental mandibulectomy. The titanium plates to be used for fixation were chosen and bent on the model preoperatively. The geometrical information of the virtual mandibular resections and of the stereolithographic models were used to choose the ideal flap and to contour the flap into an ideal neomandible when it was still pedicled before harvesting. Good functional and aesthetic results were achieved. The surgical time was decreased on average by about 1.5 hours compared to the same surgical kind of procedures performed, in the same institution by the same surgical team, without the aforesaid protocol of planning. Producing virtual and stereolithographic models, and using them for preoperative planning substantially reduces operative time and difficulty of the operation during microvascular reconstruction of the mandible.
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
NASDA knowledge-based network planning system
NASA Technical Reports Server (NTRS)
Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.
1993-01-01
One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.
NASA Astrophysics Data System (ADS)
York, Andrew M.
2000-11-01
The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter confidence, ultimately improve the desired outcome.
Integrated guidance and control for microsatellite real-time automated proximity operations
NASA Astrophysics Data System (ADS)
Chen, Ying; He, Zhen; Zhou, Ding; Yu, Zhenhua; Li, Shunli
2018-07-01
This paper investigates the trajectory planning and control of autonomous spacecraft proximity operations with impulsive dynamics. A new integrated guidance and control scheme is developed to perform automated close-range rendezvous for underactuated microsatellites. To efficiently prevent collision, a modified RRT* trajectory planning algorithm is proposed under this context. Several engineering constraints such as collision avoidance, plume impingement, field of view and control feasibility are considered simultaneously. Then, the feedback controller that employs a turn-burn-turn strategy with a combined impulsive orbital control and finite-time attitude control is designed to ensure the implementation of planned trajectory. Finally, the performance of trajectory planner and controller are evaluated through numerical tests. Simulation results indicate the real-time implementability of the proposed integrated guidance and control scheme with position control error less than 0.5 m and velocity control error less than 0.05 m/s. Consequently, the proposed scheme offers the potential for wide applications, such as on-orbit maintenance, space surveillance and debris removal.
Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems
NASA Astrophysics Data System (ADS)
de Neufville, R.; Galelli, S.; Tian, X.
2017-12-01
This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.
Planning and management of science programs on Skylab
NASA Technical Reports Server (NTRS)
Parker, R. A. R.; Sevier, J. R.
1974-01-01
Discussion of the experience gained in experiment operation planning during the Skylab mission. The Skylab flight planning activity allowed the experimenters to interact with the system and provided the flexibility to respond to contingencies both major and minor. Both these aspects contributed to make efficient use of crew time thus helping to increase the science return from the mission. Examples of the need for real time scheduling response and of the tradeoffs considered between conflicting experiment requirements are presented. General management principles derived from this experience are developed. The Skylab mission experiences, together with previous Apollo mission experiences, are shown to provide a good background for Shuttle flight planning.
Orbital Express mission operations planning and resource management using ASPEN
NASA Astrophysics Data System (ADS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel
2008-04-01
As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.
Anil, S M; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T
2007-04-01
Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education. The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion. Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised. Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.
40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?
Code of Federal Regulations, 2013 CFR
2013-07-01
... operate at all times according to the procedures in the plan. (4) The emission limitations and operating... compliance with the emission limitations and work practice standards? You must: (1) Install, operate, and... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... and Offer quotations. I. ``Nasdaq System'' means collectively the automated quotation system operated... Operating Committee, directly or by duly delegated individuals, committees as may be established from time... Operating Committee with respect to: a. requests for system changes reasonably related to the function of...
The Denver region traffic signal system improvement program : planning for management and operations
DOT National Transportation Integrated Search
2009-04-01
The Denver Regional Council of Governments (DRCOG) works with over 30 local jurisdictions on the Traffic Signal System Improvement Program (TSSIP), a combination of management and operations strategies designed to time and coordinate traffic signals ...
Expansion: A Plan for Success.
ERIC Educational Resources Information Center
Callahan, A.P.
This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…
40 CFR 264.55 - Emergency coordinator.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Contingency Plan and Emergency Procedures § 264.55 Emergency coordinator. At all times, there must be at least...'s contingency plan, all operations and activities at the facility, the location and characteristics... addition, this person must have the authority to commit the resources needed to carry out the contingency...
Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas
2018-01-01
Background The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Methods Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Results Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. Conclusions We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study. PMID:29600049
Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas; Baste, Jean-Marc
2018-01-01
The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study.
The Future of Operational Space Weather Observations
NASA Astrophysics Data System (ADS)
Berger, T. E.
2015-12-01
We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.
Operations Concepts for Deep-Space Missions: Challenges and Opportunities
NASA Technical Reports Server (NTRS)
McCann, Robert S.
2010-01-01
Historically, manned spacecraft missions have relied heavily on real-time communication links between crewmembers and ground control for generating crew activity schedules and working time-critical off-nominal situations. On crewed missions beyond the Earth-Moon system, speed-of-light limitations will render this ground-centered concept of operations obsolete. A new, more distributed concept of operations will have to be developed in which the crew takes on more responsibility for real-time anomaly diagnosis and resolution, activity planning and replanning, and flight operations. I will discuss the innovative information technologies, human-machine interfaces, and simulation capabilities that must be developed in order to develop, test, and validate deep-space mission operations
ATHLETE's Feet: Mu1ti-Resolution Planning for a Hexapod Robot
NASA Technical Reports Server (NTRS)
Smith, Tristan B.; Barreiro, Javier; Smith, David E.; SunSpiral, Vytas; Chavez-Clemente, Daniel
2008-01-01
ATHLETE is a large six-legged tele-operated robot. Each foot is a wheel; travel can be achieved by walking, rolling, or some combination of the two. Operators control ATHLETE by selecting parameterized commands from a command dictionary. While rolling can be done efficiently with a single command, any motion involving steps is cumbersome - walking a few meters through difficult terrain can take hours. Our goal is to improve operator efficiency by automatically generating sequences of motion commands. There is increasing uncertainty regarding ATHLETE s actual configuration over time and decreasing quality of terrain data farther away from the current position. This, combined with the complexity that results from 36 degrees of kinematic freedom, led to an architecture that interleaves planning and execution at multiple levels, ranging from traditional configuration space motion planning algorithms for immediate moves to higher level task and path planning algorithms for overall travel. The modularity of the architecture also simplifies the development process and allows the operator to interact with and control the system at varying levels of autonomy depending on terrain and need.
Resource planning and scheduling of payload for satellite with particle swarm optimization
NASA Astrophysics Data System (ADS)
Li, Jian; Wang, Cheng
2007-11-01
The resource planning and scheduling technology of payload is a key technology to realize an automated control for earth observing satellite with limited resources on satellite, which is implemented to arrange the works states of various payloads to carry out missions by optimizing the scheme of the resources. The scheduling task is a difficult constraint optimization problem with various and mutative requests and constraints. Based on the analysis of the satellite's functions and the payload's resource constraints, a proactive planning and scheduling strategy based on the availability of consumable and replenishable resources in time-order is introduced along with dividing the planning and scheduling period to several pieces. A particle swarm optimization algorithm is proposed to address the problem with an adaptive mutation operator selection, where the swarm is divided into groups with different probabilities to employ various mutation operators viz., differential evolution, Gaussian and random mutation operators. The probabilities are adjusted adaptively by comparing the effectiveness of the groups to select a proper operator. The simulation results have shown the feasibility and effectiveness of the method.
NASA Astrophysics Data System (ADS)
Ladaniuk, Anatolii; Ivashchuk, Viacheslav; Kisała, Piotr; Askarova, Nursanat; Sagymbekova, Azhar
2015-12-01
Conditions of diversification of enterprise products are involving for changes of higher levels of management hierarchy, so it's leading by tasks correcting and changing schedule for operating of production plans. Ordinary solve by combination of enterprise resource are planning and management execution system often has exclusively statistical content. So, the development of decision support system, that helps to use knowledge about subject for capabilities estimating and order of operation of production object is relevant in this time.
Modeling Off-Nominal Recovery in NextGen Terminal-Area Operations
NASA Technical Reports Server (NTRS)
Callantine, Todd J.
2011-01-01
Robust schedule-based arrival management requires efficient recovery from off-nominal situations. This paper presents research on modeling off-nominal situations and plans for recovering from them using TRAC, a route/airspace design, fast-time simulation, and analysis tool for studying NextGen trajectory-based operations. The paper provides an overview of a schedule-based arrival-management concept and supporting controller tools, then describes TRAC implementations of methods for constructing off-nominal scenarios, generating trajectory options to meet scheduling constraints, and automatically producing recovery plans.
Can we improve patient safety?
Corbally, Martin Thomas
2014-01-01
Despite greater awareness of patient safety issues especially in the operating room and the widespread implementation of surgical time out World Health Organization (WHO), errors, especially wrong site surgery, continue. Most such errors are due to lapses in communication where decision makers fail to consult or confirm operative findings but worryingly where parental concerns over the planned procedure are ignored or not followed through. The WHO Surgical Pause/Time Out aims to capture these errors and prevent them, but the combination of human error and complex hospital environments can overwhelm even robust safety structures and simple common sense. Parents are the ultimate repository of information on their child's condition and planned surgery but are traditionally excluded from the process of Surgical Pause and Time Out, perhaps to avoid additional stress. In addition, surgeons, like pilots, are subject to the phenomenon of "plan-continue-fail" with potentially disastrous outcomes. If we wish to improve patient safety during surgery and avoid wrong site errors then we must include parents in the Surgical Pause/Time Out. A recent pilot study has shown that neither staff nor parents found it added to their stress, but, moreover, 100% of parents considered that it should be a mandatory component of the Surgical Pause nor does it add to the stress of surgery. Surgeons should be required to confirm that the planned procedure is in keeping with the operative findings especially in extirpative surgery and this "step back" should be incorporated into the standard Surgical Pause. It is clear that we must improve patient safety further and these simple measures should add to that potential.
SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Zhao, S; Chen, Y
2014-06-01
Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method whilemore » the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.« less
Crew Autonomous Scheduling Test (CAST)
2017-07-18
iss052e016190 (July 18, 2017) --- Astronaut Peggy Whitson is photographed sitting in front of the Cupola windows during the final Crew Autonomous Scheduling Test (CAST) session. The CAST investigation analyzes whether crews can develop plans in a reasonable period of time with appropriate input, whether proximity of planners to the planned operations increases efficiency, and if crew members are more satisfied when given a role in plan development.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-11-18
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-01-01
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217
Olsson, Pontus; Nysjö, Fredrik; Hirsch, Jan-Michaél; Carlbom, Ingrid B
2013-11-01
Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today's surgery planning systems are primitive, relying mostly on the user's ability to plan complex tasks with a two-dimensional graphical interface. A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment. A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result. Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time.
Projecting Program Cost Over an Adequate Time Horizon.
ERIC Educational Resources Information Center
Spencer, Milton
Planning Programming Budgeting Systems involve the introduction of three major operational concepts. First, the development of an analytical capability to examine in depth both agency objectives and the various programs to meet these objectives. Second, the formation of a five-year planning and programming process combined with a sophisticated…
Planning & Urban Affairs Library Manual.
ERIC Educational Resources Information Center
Knobbe, Mary L., Ed.; Lessel, Janice W., Ed.
Written especially for persons without a library degree who are operating a small urban study or planning agency library on a part-time basis. Subjects covered are: (1) library function and staff function, duties and training; (2) physical layout and equipment of library; (3) establishing and maintaining the library; (4) library administration;…
12 CFR 702.307 - Incentives for new credit unions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for new credit unions. (a) Assistance in revising business plans. Upon timely request by a credit union having total assets of less than $10 million (regardless how long it has been in operation), the NCUA Board shall provide assistance in preparing a revised business plan required to be filed under...
DOT National Transportation Integrated Search
2010-12-01
The purpose of the Dallas ICM System is to implement a multi-modal operations decision support tool enabled by real-time data pertaining to the operation of freeways, arterials, and public transit. The system will be shared between information system...
Temporal logics meet telerobotics
NASA Technical Reports Server (NTRS)
Rutten, Eric; Marce, Lionel
1989-01-01
The specificity of telerobotics being the presence of a human operator, decision assistance tools are necessary for the operator, especially in hostile environments. In order to reduce execution hazards due to a degraded ability for quick and efficient recovery of unexpected dangerous situations, it is of importance to have the opportunity, amongst others, to simulate the possible consequences of a plan before its actual execution, in order to detect these problematic situations. Hence the idea of providing the operator with a simulator enabling him to verify the temporal and logical coherence of his plans. Therefore, the power of logical formalisms is used for representation and deduction purposes. Starting from the class of situations that are represented, a STRIPS (the STanford Research Institute Problem Solver)-like formalism and its underlying logic are adapted to the simulation of plans of actions in time. The choice of a temporal logic enables to build a world representation, on which the effects of plans, grouping actions into control structures, will be transcribed by the simulation, resulting in a verdict and information about the plan's coherence.
NASA Astrophysics Data System (ADS)
Petrachenko, Bill; Behrend, Dirk; Gipson, John; Hase, Hayo; Ma, Chopo; MacMillan, Dan; Niell, Arthur; Nothnagel, Axel; Zhang, Xiuzhong
2014-12-01
Over the past several years, the VGOS broadband system has been under development; it is currently undergoing advanced testing. At the same time, commitments were made for a number of antenna projects with as many as 30 stations expected for VGOS observing by 2019. In order to focus activities into the future, a proposal was made by the VPEG for an observing plan with the long term goal of guiding the transition from S/X operations to VGOS operations. The plan anticipates that by the end of 2014 as many as eight antennas will be capable of broadband observing. These antennas will participate in a series of test campaigns during 2015 followed by a VGOS pilot project throughout 2016. Full operations with as many as 16 stations are expected to begin in 2017. The observing plan places a priority on early improvement in the quality of daily products. As a result, the pilot project involves a single weekly 24-hour session with reduced duty cycle sessions on each of the remaining days of the week. Correlator and data transmission requirements for the plan are currently being assessed.
NASA Technical Reports Server (NTRS)
Maldague, Pierre; Page, Dennis; Chase, Adam
2005-01-01
Activity Plan Generator (APGEN), now at version 5.0, is a computer program that assists in generating an integrated plan of activities for a spacecraft mission that does not oversubscribe spacecraft and ground resources. APGEN generates an interactive display, through which the user can easily create or modify the plan. The display summarizes the plan by means of a time line, whereon each activity is represented by a bar stretched between its beginning and ending times. Activities can be added, deleted, and modified via simple mouse and keyboard actions. The use of resources can be viewed on resource graphs. Resource and activity constraints can be checked. Types of activities, resources, and constraints are defined by simple text files, which the user can modify. In one of two modes of operation, APGEN acts as a planning expert assistant, displaying the plan and identifying problems in the plan. The user is in charge of creating and modifying the plan. In the other mode, APGEN automatically creates a plan that does not oversubscribe resources. The user can then manually modify the plan. APGEN is designed to interact with other software that generates sequences of timed commands for implementing details of planned activities.
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
Marine Special Operations Helicopter Unit: Viability in the Joint Force of 2020
2012-04-18
competitive globalized environment will increase the requirements for aviation support. With a dedicated Marine Special Operations Helicopter Squadron...efficiency in planning, training, and execution will provide for precise timely and accurate organic fires, direct mobility support, and reduce the...Fulfilling the gap in Marine Special Operations Command with a dedicated Marine special operations helicopter unit is necessary. Concisely, this will
Haggerty, Christopher M.; de Zélicourt, Diane A.; Restrepo, Maria; Rossignac, Jarek; Spray, Thomas L.; Kanter, Kirk R.; Fogel, Mark A.; Yoganathan, Ajit P.
2012-01-01
Background Virtual modeling of cardiothoracic surgery is a new paradigm that allows for systematic exploration of various operative strategies and uses engineering principles to predict the optimal patient-specific plan. This study investigates the predictive accuracy of such methods for the surgical palliation of single ventricle heart defects. Methods Computational fluid dynamics (CFD)-based surgical planning was used to model the Fontan procedure for four patients prior to surgery. The objective for each was to identify the operative strategy that best distributed hepatic blood flow to the pulmonary arteries. Post-operative magnetic resonance data were acquired to compare (via CFD) the post-operative hemodynamics with predictions. Results Despite variations in physiologic boundary conditions (e.g., cardiac output, venous flows) and the exact geometry of the surgical baffle, sufficient agreement was observed with respect to hepatic flow distribution (90% confidence interval-14 ± 4.3% difference). There was also good agreement of flow-normalized energetic efficiency predictions (19 ± 4.8% error). Conclusions The hemodynamic outcomes of prospective patient-specific surgical planning of the Fontan procedure are described for the first time with good quantitative comparisons between preoperatively predicted and postoperative simulations. These results demonstrate that surgical planning can be a useful tool for single ventricle cardiothoracic surgery with the ability to deliver significant clinical impact. PMID:22777126
Cingi Steps for preoperative computer-assisted image editing before reduction rhinoplasty.
Cingi, Can Cemal; Cingi, Cemal; Bayar Muluk, Nuray
2014-04-01
The aim of this work is to provide a stepwise systematic guide for a preoperative photo-editing procedure for rhinoplasty cases involving the cooperation of a graphic artist and a surgeon. One hundred female subjects who planned to undergo a reduction rhinoplasty operation were included in this study. The Cingi Steps for Preoperative Computer Imaging (CS-PCI) program, a stepwise systematic guide for image editing using Adobe PhotoShop's "liquify" effect, was applied to the rhinoplasty candidates. The stages of CS-PCI are as follows: (1) lowering the hump; (2) shortening the nose; (3) adjusting the tip projection, (4) perfecting the nasal dorsum, (5) creating a supratip break, and (6) exaggerating the tip projection and/or dorsal slope. Performing the Cingi Steps allows the patient to see what will happen during the operation and observe the final appearance of his or her nose. After the application of described steps, 71 patients (71%) accepted step 4, and 21 (21%) of them accepted step 5. Only 10 patients (10%) wanted to make additional changes to their operation plans. The main benefits of using this method is that it decreases the time needed by the surgeon to perform a graphic analysis, and it reduces the time required for the patient to reach a decision about the procedure. It is an easy and reliable method that will provide improved physician-patient communication, increased patient confidence, and enhanced surgical planning while limiting the time needed for planning. © 2014 ARS-AAOA, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Judith
This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatorymore » environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.« less
Multi Sector Planning Tools for Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mainini, Matthew; Brasil, Connie
2010-01-01
This paper discusses a suite of multi sector planning tools for trajectory-based operations that were developed and evaluated in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The toolset included tools for traffic load and complexity assessment as well as trajectory planning and coordination. The situation assessment tools included an integrated suite of interactive traffic displays, load tables, load graphs, and dynamic aircraft filters. The planning toolset allowed for single and multi aircraft trajectory planning and data communication-based coordination of trajectories between operators. Also newly introduced was a real-time computation of sector complexity into the toolset that operators could use in lieu of aircraft count to better estimate and manage sector workload, especially in situations with convective weather. The tools were used during a joint NASA/FAA multi sector planner simulation in the AOL in 2009 that had multiple objectives with the assessment of the effectiveness of the tools being one of them. Current air traffic control operators who were experienced as area supervisors and traffic management coordinators used the tools throughout the simulation and provided their usefulness and usability ratings in post simulation questionnaires. This paper presents these subjective assessments as well as the actual usage data that was collected during the simulation. The toolset was rated very useful and usable overall. Many elements received high scores by the operators and were used frequently and successfully. Other functions were not used at all, but various requests for new functions and capabilities were received that could be added to the toolset.
Advanced Ground Systems Maintenance Physics Models for Diagnostics Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda S.; Wunderlich, Dana A.; Willoughby, John K.
1992-01-01
New and innovative software technology is presented that provides a cost effective bridge for smoothly transitioning prototype software, in the field of planning and scheduling, into an operational environment. Specifically, this technology mixes the flexibility and human design efficiency of dynamic data typing with the rigor and run-time efficiencies of static data typing. This new technology provides a very valuable tool for conducting the extensive, up-front system prototyping that leads to specifying the correct system and producing a reliable, efficient version that will be operationally effective and will be accepted by the intended users.
Contingency Management Requirements Document: Preliminary Version. Revision F
NASA Technical Reports Server (NTRS)
2005-01-01
This is the High Altitude, Long Endurance (HALE) Remotely Operated Aircraft (ROA) Contingency Management (CM) Functional Requirements document. This document applies to HALE ROA operating within the National Airspace System (NAS) limited at this time to enroute operations above 43,000 feet (defined as Step 1 of the Access 5 project, sponsored by the National Aeronautics and Space Administration). A contingency is an unforeseen event requiring a response. The unforeseen event may be an emergency, an incident, a deviation, or an observation. Contingency Management (CM) is the process of evaluating the event, deciding on the proper course of action (a plan), and successfully executing the plan.
Research and technology goals and objectives for Integrated Vehicle Health Management (IVHM)
NASA Technical Reports Server (NTRS)
1992-01-01
Integrated Vehicle Health Management (IVHM) is defined herein as the capability to efficiently perform checkout, testing, and monitoring of space transportation vehicles, subsystems, and components before, during, and after operational This includes the ability to perform timely status determination, diagnostics, and prognostics. IVHM must support fault-tolerant response including system/subsystem reconfiguration to prevent catastrophic failures; and IVHM must support the planning and scheduling of post-operational maintenance. The purpose of this document is to establish the rationale for IVHM and IVHM research and technology planning, and to develop technical goals and objectives. This document is prepared to provide a broad overview of IVHM for technology and advanced development activities and, more specifically, to provide a planning reference from an avionics viewpoint under the OAST Transportation Technology Program Strategic Plan.
Execution of the Spitzer In-orbit Checkout and Science Verification Plan
NASA Technical Reports Server (NTRS)
Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.
2004-01-01
The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges
NASA Astrophysics Data System (ADS)
Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.
2016-12-01
Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.
30 CFR 784.23 - Operation plan: Maps and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Maps and plans. 784.23 Section... PLAN § 784.23 Operation plan: Maps and plans. Each application shall contain maps and plans as follows... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...
New problem with sales, inventories, and operations planning in a supply chain environment
NASA Astrophysics Data System (ADS)
Thomas, Andre; Lamouri, Samir
2000-10-01
The highest level of planning and control system is necessary, because production and logistics systems are not so flexible to follow, from day to day, sales evolutions. The companies are therefore held to standardize the good practices concerning the elaboration of their Sales, Inventories and Operations Planning (SIOP). The SIOP makes it possible to implement the strategic objectives defined by Top Management at the time of the Business Plan. It is the link between sales and manufacturing planning. The objectives of each of those depend on the specificity of their trade: the Sales Department will go for a maximum sales whereas Production will endeavor to keep industrial cost prices as low as possible while the Finance Department will try to optimize the use of available funds. There are several tools for this optimization: Graphical method and linear programming. Today, the economic context requires robust optimization.
MR-based real time path planning for cardiac operations with transapical access.
Yeniaras, Erol; Navkar, Nikhil V; Sonmez, Ahmet E; Shah, Dipan J; Deng, Zhigang; Tsekos, Nikolaos V
2011-01-01
Minimally invasive surgeries (MIS) have been perpetually evolving due to their potential high impact on improving patient management and overall cost effectiveness. Currently, MIS are further strengthened by the incorporation of magnetic resonance imaging (MRI) for amended visualization and high precision. Motivated by the fact that real-time MRI is emerging as a feasible modality especially for guiding interventions and surgeries in the beating heart; in this paper we introduce a real-time path planning algorithm for intracardiac procedures. Our approach creates a volumetric safety zone inside a beating heart and updates it on-the-fly using real-time MRI during the deployment of a robotic device. In order to prove the concept and assess the feasibility of the introduced method, a realistic operational scenario of transapical aortic valve replacement in a beating heart is chosen as the virtual case study.
APPLICATION OF TRAVEL TIME RELIABILITY FOR PERFORMANCE ORIENTED OPERATIONAL PLANNING OF EXPRESSWAYS
NASA Astrophysics Data System (ADS)
Mehran, Babak; Nakamura, Hideki
Evaluation of impacts of congestion improvement scheme s on travel time reliability is very significant for road authorities since travel time reliability repr esents operational performance of expressway segments. In this paper, a methodology is presented to estimate travel tim e reliability prior to implementation of congestion relief schemes based on travel time variation modeling as a function of demand, capacity, weather conditions and road accident s. For subject expressway segmen ts, traffic conditions are modeled over a whole year considering demand and capacity as random variables. Patterns of demand and capacity are generated for each five minute interval by appl ying Monte-Carlo simulation technique, and accidents are randomly generated based on a model that links acci dent rate to traffic conditions. A whole year analysis is performed by comparing de mand and available capacity for each scenario and queue length is estimated through shockwave analysis for each time in terval. Travel times are estimated from refined speed-flow relationships developed for intercity expressways and buffer time index is estimated consequently as a measure of travel time reliability. For validation, estimated reliability indices are compared with measured values from empirical data, and it is shown that the proposed method is suitable for operational evaluation and planning purposes.
Turning challenge into opportunity: what home care needs to know about Medicare advantage.
Twiss, Amanda; Schwien, Tina
2008-01-01
With multiple payors having different rules, paperwork, and payment models, the challenge is that MA plans typically focus time and attention on the providers associated with the highest costs--hospitals and physicians. With little attention being paid to the home health providers, MA plans cost containment measures and operational practices create challenges for providers developing an overall treatment plan for a patient's episode of care.
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.
Cohen-Hatton, Sabrina R; Butler, Philip C; Honey, Robert C
2015-08-01
The aim of this study was to better understand the nature of decision making at operational incidents in order to inform operational guidance and training. Normative models of decision making have been adopted in the guidance and training for emergency services. In these models, it is assumed that decision makers assess the current situation, formulate plans, and then execute the plans. However, our understanding of how decision making unfolds at operational incidents remains limited. Incident commanders, attending 33 incidents across six U.K. Fire and Rescue Services, were fitted with helmet-mounted cameras, and the resulting video footage was later independently coded and used to prompt participants to provide a running commentary concerning their decisions. The analysis revealed that assessment of the operational situation was most often followed by plan execution rather than plan formulation, and there was little evidence of prospection about the potential consequences of actions. This pattern of results was consistent across different types of incident, characterized by level of risk and time pressure, but was affected by the operational experience of the participants. Decision making did not follow the sequence of phases assumed by normative models and conveyed in current operational guidance but instead was influenced by both reflective and reflexive processes. These results have clear implications for understanding operational decision making as it occurs in situ and suggest a need for future guidance and training to acknowledge the role of reflexive processes. © 2015, Human Factors and Ergonomics Society.
30 CFR 780.14 - Operation plan: Maps and plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Maps and plans. 780.14 Section... PLAN § 780.14 Operation plan: Maps and plans. Each application shall contain maps and plans as follows: (a) The maps and plans shall show the lands proposed to be affected throughout the operation and any...
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less
Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide
NASA Technical Reports Server (NTRS)
Salinas, Michael
2012-01-01
Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
NASA Technical Reports Server (NTRS)
Khan, Ahmed
2010-01-01
The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX
The future of hydropower planning modeling
NASA Astrophysics Data System (ADS)
Haas, J.; Zuñiga, D.; Nowak, W.; Olivares, M. A.; Castelletti, A.; Thilmant, A.
2017-12-01
Planning the investment and operation of hydropower plants with optimization tools dates back to the 1970s. The focus used to be solely on the provision of energy. However, advances in computational capacity and solving algorithms, dynamic markets, expansion of renewable sources, and a better understanding of hydropower environmental impacts have recently led to the development of novel planning approaches. In this work, we provide a review, systematization, and trend analysis of these approaches. Further, through interviews with experts, we outline the future of hydropower planning modeling and identify the gaps towards it. We classified the found models along environmental, economic, multipurpose and technical criteria. Environmental interactions include hydropeaking mitigation, water quality protection and limiting greenhouse gas emissions from reservoirs. Economic and regulatory criteria consider uncertainties of fossil fuel prices and relicensing of water rights and power purchase agreements. Multipurpose considerations account for irrigation, tourism, flood protection and drinking water. Recently included technical details account for sedimentation in reservoirs and variable efficiencies of turbines. Additional operational considerations relate to hydrological aspects such as dynamic reservoir inflows, water losses, and climate change. Although many of the above criteria have been addressed in detail on a project-to-project basis, models remain overly simplistic for planning large power fleets. Future hydropower planning tools are expected to improve the representation of the water-energy nexus, including environmental and multipurpose criteria. Further, they will concentrate on identifying new sources of operational flexibility (e.g. through installing additional turbines and pumps) for integrating renewable energy. The operational detail will increase, potentially emphasizing variable efficiencies, storage capacity losses due to sedimentation, and the timing of inflows (which are becoming more variable under climate change). Finally, the relicensing of existing operations and planning new installations are subject to deep uncertainties that need to be captured.
Modular space station phase B extension program master plan
NASA Technical Reports Server (NTRS)
Munsey, E. H.
1971-01-01
The project is defined for design, development, fabrication, test, and pre-mission and mission operations of a shuttle-launched modular space station. The project management approach is described in terms of organization, management requirements, work breakdown structure, schedule, time-phased logic, implementation plans, manpower, and funding. The programmatic and technical problems are identified.
40 CFR 63.7294 - What work practice standard must I meet for soaking?
Code of Federal Regulations, 2012 CFR
2012-07-01
... prepare and operate at all times according to a written work practice plan for soaking. Each plan must... 40 Protection of Environment 14 2012-07-01 2011-07-01 true What work practice standard must I meet... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.7294 - What work practice standard must I meet for soaking?
Code of Federal Regulations, 2014 CFR
2014-07-01
... prepare and operate at all times according to a written work practice plan for soaking. Each plan must... 40 Protection of Environment 14 2014-07-01 2014-07-01 false What work practice standard must I... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.7294 - What work practice standard must I meet for soaking?
Code of Federal Regulations, 2011 CFR
2011-07-01
... prepare and operate at all times according to a written work practice plan for soaking. Each plan must... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What work practice standard must I... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.7294 - What work practice standard must I meet for soaking?
Code of Federal Regulations, 2010 CFR
2010-07-01
... prepare and operate at all times according to a written work practice plan for soaking. Each plan must... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What work practice standard must I... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
40 CFR 63.7720 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...
Planning in the Continuous Operations Environment of the International Space Station
NASA Technical Reports Server (NTRS)
Maxwell, Theresa; Hagopian, Jeff
1996-01-01
The continuous operation planning approach developed for the operations planning of the International Space Station (ISS) is reported on. The approach was designed to be a robust and cost-effective method. It separates ISS planning into two planning functions: long-range planning for a fixed length planning horizon which continually moves forward as ISS operations progress, and short-range planning which takes a small segment of the long-range plan and develops a detailed operations schedule. The continuous approach is compared with the incremental approach, the short and long-range planning functions are described, and the benefits and challenges of implementing a continuous operations planning approach for the ISS are summarized.
77 FR 10574 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Affairs. 5. Staff report on LSC Continuity of Operations Plan. 6. Public comment. 7. Consider and act on... LEGAL SERVICES CORPORATION Sunshine Act Meeting DATE AND TIME: The Legal Services Corporation's Operations & Regulations Committee will meet February 29, 2012. The meeting will commence at 3:30 p.m...
NASA Astrophysics Data System (ADS)
Aghdasi, Nava; Li, Yangming; Berens, Angelique; Moe, Kris S.; Bly, Randall A.; Hannaford, Blake
2015-03-01
Minimally invasive neuroendoscopic surgery provides an alternative to open craniotomy for many skull base lesions. These techniques provides a great benefit to the patient through shorter ICU stays, decreased post-operative pain and quicker return to baseline function. However, density of critical neurovascular structures at the skull base makes planning for these procedures highly complex. Furthermore, additional surgical portals are often used to improve visualization and instrument access, which adds to the complexity of pre-operative planning. Surgical approach planning is currently limited and typically involves review of 2D axial, coronal, and sagittal CT and MRI images. In addition, skull base surgeons manually change the visualization effect to review all possible approaches to the target lesion and achieve an optimal surgical plan. This cumbersome process relies heavily on surgeon experience and it does not allow for 3D visualization. In this paper, we describe a rapid pre-operative planning system for skull base surgery using the following two novel concepts: importance-based highlight and mobile portal. With this innovation, critical areas in the 3D CT model are highlighted based on segmentation results. Mobile portals allow surgeons to review multiple potential entry portals in real-time with improved visualization of critical structures located inside the pathway. To achieve this we used the following methods: (1) novel bone-only atlases were manually generated, (2) orbits and the center of the skull serve as features to quickly pre-align the patient's scan with the atlas, (3) deformable registration technique was used for fine alignment, (4) surgical importance was assigned to each voxel according to a surgical dictionary, and (5) pre-defined transfer function was applied to the processed data to highlight important structures. The proposed idea was fully implemented as independent planning software and additional data are used for verification and validation. The experimental results show: (1) the proposed methods provided greatly improved planning efficiency while optimal surgical plans were successfully achieved, (2) the proposed methods successfully highlighted important structures and facilitated planning, (3) the proposed methods require shorter processing time than classical segmentation algorithms, and (4) these methods can be used to improve surgical safety for surgical robots.
Comparing Methods for Dynamic Airspace Configuration
NASA Technical Reports Server (NTRS)
Zelinski, Shannon; Lai, Chok Fung
2011-01-01
This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.
Balancing Science Objectives and Operational Constraints: A Mission Planner's Challenge
NASA Technical Reports Server (NTRS)
Weldy, Michelle
1996-01-01
The Air Force minute sensor technology integration (MSTI-3) satellite's primary mission is to characterize Earth's atmospheric background clutter. MSTI-3 will use three cameras for data collection, a mid-wave infrared imager, a short wave infrared imager, and a visible imaging spectrometer. Mission science objectives call for the collection of over 2 million images within the one year mission life. In addition, operational constraints limit camera usage to four operations of twenty minutes per day, with no more than 10,000 data and calibrating images collected per day. To balance the operational constraints and science objectives, the mission planning team has designed a planning process to e event schedules and sensor operation timelines. Each set of constraints, including spacecraft performance capabilities, the camera filters, the geographical regions, and the spacecraft-Sun-Earth geometries of interest, and remote tracking station deconflictions has been accounted for in this methodology. To aid in this process, the mission planning team is building a series of tools from commercial off-the-shelf software. These include the mission manifest which builds a daily schedule of events, and the MSTI Scene Simulator which helps build geometrically correct scans. These tools provide an efficient, responsive, and highly flexible architecture that maximizes data collection while minimizing mission planning time.
Mission activities planning for a Hermes mission by means of AI-technology
NASA Technical Reports Server (NTRS)
Pape, U.; Hajen, G.; Schielow, N.; Mitschdoerfer, P.; Allard, F.
1993-01-01
Mission Activities Planning is a complex task to be performed by mission control centers. AI technology can offer attractive solutions to the planning problem. This paper presents the use of a new AI-based Mission Planning System for crew activity planning. Based on a HERMES servicing mission to the COLUMBUS Man Tended Free Flyer (MTFF) with complex time and resource constraints, approximately 2000 activities with 50 different resources have been generated, processed, and planned with parametric variation of operationally sensitive parameters. The architecture, as well as the performance of the mission planning system, is discussed. An outlook to future planning scenarios, the requirements, and how a system like MARS can fulfill those requirements is given.
Advanced Ground Systems Maintenance Prognostics Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2015-01-01
The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.
2013-03-05
the Allies would attack to the east towards Paris . The operation was to conclude on D+90 at which time the Allied force would have taken Paris ... Paris . Despite the fact that the Germans sustained severe casualties in the Falaise pocket in mid-August 1944, the decision by SHAEF to forego the...forces becoming bogged down in Normandy and consuming much more ammunition than had originally been planned for by COMZ.33 After the TUSAG breakout
2010-03-01
that is becoming the norm in military operations, especial rapid response. Significance : The context of the work for this project focused on one...Time constraint variance ................................................................... 37 DRDC Valcartier CR 2010-353 xiii 3.5.8.1...employment activities that are normally recurring in nature and fall within the delegated authority of an appointed standing operational Commander
Evaluation of the Trajectory Operations Applications Software Task (TOAST)
NASA Technical Reports Server (NTRS)
Perkins, Sharon; Martin, Andrea; Bavinger, Bill
1990-01-01
The Trajectory Operations Applications Software Task (TOAST) is a software development project under the auspices of the Mission Operations Directorate. Its purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle program. As an Application Manager, TOAST provides an isolation layer between the underlying Unix operating system and the series of user programs. It provides two main services: a common interface to operating system functions with semantics appropriate for C or FORTRAN, and a structured input and output package that can be utilized by user application programs. In order to evaluate TOAST as an Application Manager, the task was to assess current and planned capabilities, compare capabilities to functions available in commercially-available off the shelf (COTS) and Flight Analysis Design System (FADS) users for TOAST implementation. As a result of the investigation, it was found that the current version of TOAST is well implemented and meets the needs of the real-time users. The plans for migrating TOAST to the X Window System are essentially sound; the Executive will port with minor changes, while Menu Handler will require a total rewrite. A series of recommendations for future TOAST directions are included.
Value of the Application of Neuroendoscope in the Treatment of Ventriculoperitoneal Shunt Blockage.
Wei, Quantang; Xu, Yimin; Peng, Kaiwen; Qi, Songtao; Peng, Yuping; Ji, Huangyi; Li, Yu; Qiu, Mingxing; Ying, Yanyi; Qiu, Xiaoyu
2018-05-10
To explore the value of the application of neuroendoscope techniques in the treatment of ventriculoperitoneal shunt blockage. Our study included 3 plans for revision surgeries for ventriculoperitoneal shunt blockage. In Plan A, the choroid plexus or ependyma that grew inside the ventricular catheter was completely removed. In Plan B, the terminal part of the ventricular catheter was clipped and removed. In Plan C, the ventricular catheter was carefully extracted with the assistance of neuroendoscope, and the tissues that blocked the catheter were removed. Then, the ventricular catheter was reinserted into the lateral ventricle. The side holes of the tube may be blocked by cerebral tissue, granulation tissue, newly formed blood vessels, choroid plexus or ependymal. Five patients successfully underwent the Plan A revision surgery. Eight patients underwent the Plan B revision surgery. The remaining 22 patients underwent the Plan C revision surgery. After the operation, 34 patients exhibited relieved symptoms with high intracranial pressure. In all patients, the shunts became unobstructed. Neuroendoscope techniques can be used to reveal the various causes of shunt obstruction. Any attempt to extract the tube should be performed with the assistance of neuroendoscope. There are 3 revision surgery plans for a blocked catheter. These revision surgeries for shunt obstruction are mentioned for the first time in the literature. These methods could reduce the operation time, the incidence of intraventricular hemorrhage and the risk of infection. Copyright © 2018. Published by Elsevier Inc.
Mbembati, Naboth A; Mwangu, Mugwira; Muhondwa, Eustace P Y; Leshabari, Melkizedek M
2008-04-01
Muhimbili National Hospital (MNH), a teaching and national referral hospital, is undergoing major reforms to improve the quality of health care. We performed a retrospective descriptive study using a set of performance indicators for the surgical and laboratory services of MNH in years 2001 and 2002, to help monitor and evaluate the impact of reforms on the quality of health care during and after the reform process. Hospital records were reviewed and information recorded for planned and postponed operations, laboratory equipment, reagents, laboratory tests and quality assurance programmes. In the year 2001 a total of 4332 non-emergency operations were planned, 3313 operations were performed and 1019 (23.5%) operations were postponed. In the year 2002, 4301 non-emergency operations were planned, 3046 were performed and 1255 (29%) were postponed. The most common reasons for operation postponement were "time-barred", interference by emergency operations, no show of patients and inoperable anaesthetic machines. Equipment problems and supply and staff shortages together accounted for one quarter of postponements. In the laboratory, a lack of equipment prevented some tests, but quality assurance was performed for most tests. Current surgical services at MNH are inadequate; operating theatres require modern, functioning equipment and adequate supplies of consumables to provide satisfactory care.
Operational Artillery in the Korean War
2013-05-23
employ artillery in a war of annihilation requires adherence to specific principles to maximize the effectiveness of combat power at the right time and...Policy (Bloomington: Indiana University Press, 1977), xxii. 24 “The Korean War rescued NSC-68 from oblivion and made it the foundation of American...multiple firing units at the right time and place with the purpose of supporting the decisive operations of maneuver. Fire planning in the Korean War
NASA Astrophysics Data System (ADS)
Dharmaseelan, Anoop; Adistambha, Keyne D.
2015-05-01
Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.
NASA Technical Reports Server (NTRS)
Maris, John
2015-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).
Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Corlett, W. A.
1982-01-01
The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.
40 CFR 63.1187 - What do I need to know about operations, maintenance, and monitoring plans?
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations, maintenance, and monitoring plans? 63.1187 Section 63.1187 Protection of Environment... about operations, maintenance, and monitoring plans? (a) An operations, maintenance, and monitoring plan... title V permit. (b) The operations, maintenance, and monitoring plan must include the following: (1...
Food Service: How and What to Plan.
ERIC Educational Resources Information Center
Buchanan, Robert D.
1962-01-01
The effectiveness of food service facilities will be greatly enhanced by--(1) developing operating policies early in the design stage, (2) translating menus and recipes into space, time, amounts, and equipment, (3) arranging kitchen functions and work centers into straight line flow, and (4) evaluation. Operating policies and procedures must be…
43 CFR 3931.11 - Content of plan of development.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in situ development sequence, with appropriate time-frames; (h) A narrative addressing the environmental aspects of the proposed mine or in situ operation, including at a minimum, the following: (1) An... hazardous to people or animals; and (2) For in situ operations, a description of the method and materials to...
43 CFR 3931.11 - Content of plan of development.
Code of Federal Regulations, 2011 CFR
2011-10-01
... in situ development sequence, with appropriate time-frames; (h) A narrative addressing the environmental aspects of the proposed mine or in situ operation, including at a minimum, the following: (1) An... hazardous to people or animals; and (2) For in situ operations, a description of the method and materials to...
43 CFR 3931.11 - Content of plan of development.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in situ development sequence, with appropriate time-frames; (h) A narrative addressing the environmental aspects of the proposed mine or in situ operation, including at a minimum, the following: (1) An... hazardous to people or animals; and (2) For in situ operations, a description of the method and materials to...
43 CFR 3931.11 - Content of plan of development.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in situ development sequence, with appropriate time-frames; (h) A narrative addressing the environmental aspects of the proposed mine or in situ operation, including at a minimum, the following: (1) An... hazardous to people or animals; and (2) For in situ operations, a description of the method and materials to...
Path Planning For A Class Of Cutting Operations
NASA Astrophysics Data System (ADS)
Tavora, Jose
1989-03-01
Optimizing processing time in some contour-cutting operations requires solving the so-called no-load path problem. This problem is formulated and an approximate resolution method (based on heuristic search techniques) is described. Results for real-life instances (clothing layouts in the apparel industry) are presented and evaluated.
Kennedy Space Center Orion Processing Team Planning for Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis
Designing an Alternate Mission Operations Control Room
NASA Technical Reports Server (NTRS)
Montgomery, Patty; Reeves, A. Scott
2014-01-01
The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a serviceoriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building. This paper presents the HPOC architecture and lessons learned during testing and the planned maiden operational commissioning. Additionally, this paper documents the necessity of an HPOC capability given the unplanned HOSC Facility power outage on April 27th, 2011, as a result of the tornado outbreak that damaged the electrical grid to such a degree that significantly inhibited the Tennessee Valley Authority's ability to transmit electricity throughout the North Alabama region.
Efficiency improvements of offline metrology job creation
NASA Astrophysics Data System (ADS)
Zuniga, Victor J.; Carlson, Alan; Podlesny, John C.; Knutrud, Paul C.
1999-06-01
Progress of the first lot of a new design through the production line is watched very closely. All performance metrics, cycle-time, in-line measurement results and final electrical performance are critical. Rapid movement of this lot through the line has serious time-to-market implications. Having this material waiting at a metrology operation for an engineer to create a measurement job plan wastes valuable turnaround time. Further, efficient use of a metrology system is compromised by the time required to create and maintain these measurement job plans. Thus, having a method to develop metrology job plans prior to the actual running of the material through the manufacture area can significantly improve both cycle time and overall equipment efficiency. Motorola and Schlumberger have worked together to develop and test such a system. The Remote Job Generator (RJG) created job plans for new device sin a manufacturing process from an NT host or workstation, offline. This increases available system tim effort making production measurements, decreases turnaround time on job plan creation and editing, and improves consistency across job plans. Most importantly this allows job plans for new devices to be available before the first wafers of the device arrive at the tool for measurement. The software also includes a database manager which allows updates of existing job plans to incorporate measurement changes required by process changes or measurement optimization. This paper will review the result of productivity enhancements through the increased metrology utilization and decreased cycle time associated with the use of RJG. Finally, improvements in process control through better control of Job Plans across different devices and layers will be discussed.
NASA Astrophysics Data System (ADS)
Palmintier, Bryan S.
This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or strict carbon policies. Operational flexibility describes a power system's ability to respond to predictable and unexpected changes in generation or demand. Planning and policy models have traditionally not directly captured the technical operating constraints that determine operational flexibility. However, as demonstrated in this dissertation, this capability becomes increasingly important with the greater flexibility required by significant renewables (>= 20%) and the decreased flexibility inherent in some low-carbon generation technologies. Incorporating flexibility can significantly change optimal generation and energy mixes, lower system costs, improve policy impact estimates, and enable system designs capable of meeting strict regulatory targets. Methodologically, this work presents a new clustered formulation that tractably combines a range of normally distinct power system models, from hourly unit-commitment operations to long-term generation planning. This formulation groups similar generators into clusters to reduce problem size, while still retaining the individual unit constraints required to accurately capture operating reserves and other flexibility drivers. In comparisons against traditional unit commitment formulations, errors were generally less than 1% while run times decreased by several orders of magnitude (e.g., 5000x). Extensive numerical simulations, using a realistic Texas-based power system show that ignoring flexibility can underestimate carbon emissions by 50% or result in significant load and wind shedding to meet environmental regulations. Contributions of this dissertation include: 1. Demonstrating that operational flexibility can have an important impact on power system planning, and describing when and how these impacts occur; 2. Demonstrating that a failure to account for operational flexibility can result in undesirable outcomes for both utility planners and policy analysts; and 3. Extending the state of the art for electric power system models by introducing a tractable method for incorporating unit commitment based operational flexibility at full 876o hourly resolution directly into planning optimization. Together these results encourage and offer a new flexibility-aware approach for capacity planning and accompanying policy design that can enable cleaner, less expensive electric power systems for the future. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
30 CFR 780.13 - Operation plan: Blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.13 Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed...
Planning Mediates Between Self-Efficacy and Physical Activity Among Motivated Young Adults.
Zhou, Guangyu; Wang, Dongmei; Knoll, Nina; Schwarzer, Ralf
2016-01-01
Often, motivation to be physically active is a necessary precondition of action but still does not suffice to initiate the target behavior. Instead, motivation needs to be translated into action by a self-regulatory process. Self-efficacy and planning are considered to be useful constructs that help to facilitate such translations. The aim is to examine the roles of motivation, planning, and self-efficacy as well as the mechanisms that operate in the change of physical activity levels. In a longitudinal observation study with 249 young adults, self-efficacy, planning, motivation, and physical activity were assessed at 2 points in time, 3 months apart. Planning served as a mediator between self-efficacy and physical activity, controlling for baseline activity. In addition to this indirect effect, a moderator effect was found between self-efficacy and stages of change on planning. The mediation operated only in motivated, but not in unmotivated students. A mediation from self-efficacy via planning to physical activity seems to be likely only when people are motivated to become more active.
33 CFR 155.4050 - Ensuring that the salvors and marine firefighters are adequate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... history of response times compatible with the time requirements in the regulation. (6) Resource provider... plans used and approved during real incidents. (9) Resource provider has membership in relevant national... logistical and transportation support capability required to sustain operations for extended periods of time...
33 CFR 155.4050 - Ensuring that the salvors and marine firefighters are adequate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... history of response times compatible with the time requirements in the regulation. (6) Resource provider... plans used and approved during real incidents. (9) Resource provider has membership in relevant national... logistical and transportation support capability required to sustain operations for extended periods of time...
33 CFR 155.4050 - Ensuring that the salvors and marine firefighters are adequate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... history of response times compatible with the time requirements in the regulation. (6) Resource provider... plans used and approved during real incidents. (9) Resource provider has membership in relevant national... logistical and transportation support capability required to sustain operations for extended periods of time...
Three-dimensional planning in craniomaxillofacial surgery
Rubio-Palau, Josep; Prieto-Gundin, Alejandra; Cazalla, Asteria Albert; Serrano, Miguel Bejarano; Fructuoso, Gemma Garcia; Ferrandis, Francisco Parri; Baró, Alejandro Rivera
2016-01-01
Introduction: Three-dimensional (3D) planning in oral and maxillofacial surgery has become a standard in the planification of a variety of conditions such as dental implants and orthognathic surgery. By using custom-made cutting and positioning guides, the virtual surgery is exported to the operating room, increasing precision and improving results. Materials and Methods: We present our experience in the treatment of craniofacial deformities with 3D planning. Software to plan the different procedures has been selected for each case, depending on the procedure (Nobel Clinician, Kodak 3DS, Simplant O&O, Dolphin 3D, Timeus, Mimics and 3-Matic). The treatment protocol is exposed step by step from virtual planning, design, and printing of the cutting and positioning guides to patients’ outcomes. Conclusions: 3D planning reduces the surgical time and allows predicting possible difficulties and complications. On the other hand, it increases preoperative planning time and needs a learning curve. The only drawback is the cost of the procedure. At present, the additional preoperative work can be justified because of surgical time reduction and more predictable results. In the future, the cost and time investment will be reduced. 3D planning is here to stay. It is already a fact in craniofacial surgery and the investment is completely justified by the risk reduction and precise results. PMID:28299272
Three-dimensional planning in craniomaxillofacial surgery.
Rubio-Palau, Josep; Prieto-Gundin, Alejandra; Cazalla, Asteria Albert; Serrano, Miguel Bejarano; Fructuoso, Gemma Garcia; Ferrandis, Francisco Parri; Baró, Alejandro Rivera
2016-01-01
Three-dimensional (3D) planning in oral and maxillofacial surgery has become a standard in the planification of a variety of conditions such as dental implants and orthognathic surgery. By using custom-made cutting and positioning guides, the virtual surgery is exported to the operating room, increasing precision and improving results. We present our experience in the treatment of craniofacial deformities with 3D planning. Software to plan the different procedures has been selected for each case, depending on the procedure (Nobel Clinician, Kodak 3DS, Simplant O&O, Dolphin 3D, Timeus, Mimics and 3-Matic). The treatment protocol is exposed step by step from virtual planning, design, and printing of the cutting and positioning guides to patients' outcomes. 3D planning reduces the surgical time and allows predicting possible difficulties and complications. On the other hand, it increases preoperative planning time and needs a learning curve. The only drawback is the cost of the procedure. At present, the additional preoperative work can be justified because of surgical time reduction and more predictable results. In the future, the cost and time investment will be reduced. 3D planning is here to stay. It is already a fact in craniofacial surgery and the investment is completely justified by the risk reduction and precise results.
Using AI/expert system technology to automate planning and replanning for the HST servicing missions
NASA Technical Reports Server (NTRS)
Bogovich, L.; Johnson, J; Tuchman, A.; Mclean, D.; Page, B.; Kispert, A.; Burkhardt, C.; Littlefield, R.; Potter, W.
1993-01-01
This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission.
Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)
NASA Technical Reports Server (NTRS)
Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince
2002-01-01
Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.
Three-dimensional surgical simulation.
Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2010-09-01
In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Ning, Xu; Dong, Zhao-jun; Mu, Ling; Zhai, Jian-cai
2006-12-01
To plan and develop a Chongqing chemical accident rescue command system. Based on the modes of leakage and diffusion of various poisonous gases and chemicals, different modes of injuries produced, and their appropriate rescue and treatments, also taking the following factors such as the condition of storage of chemicals, meteorological and geographic conditions, medical institutions and equipment, and their rescuing capacity into consideration, a plan was drafted to establish the rescue system. Real-time simulation technology, data analysis, evaluation technology and database technology were employed in the planning. Using Visual Studio 6.0 as the software development platform, this project aimed to design the software of an emergency command system for chemical accidents in Chongqing which could be operated with the Windows 2000/XP operating system. This system provided a dynamic scope of the endangered area, casualty number estimates, and recommendation of measures and a rescue plan for various chemical accidents. Furthermore, the system helped retrieve comprehensive information regarding the physical and chemical characteristics of more than 4 200 dangerous poisonous chemicals and their appropriate treatment modalities. This system is easy to operate with a friendly interface, functions rapidly and can provide real-time analysis with comparatively precise results. This system could satisfy the requirements of executing the command and the rescue of a chemical accident with good prospects of application.
10 CFR 436.102 - General operations plan format and content.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false General operations plan format and content. 436.102... PROGRAMS Guidelines for General Operations Plans § 436.102 General operations plan format and content. (a... effective date of these guidelines, a general operations 10-year plan which shall consist of two parts, an...
Shuttle remote manipulator system mission preparation and operations
NASA Technical Reports Server (NTRS)
Smith, Ernest E., Jr.
1989-01-01
The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.
Production scheduling with discrete and renewable additional resources
NASA Astrophysics Data System (ADS)
Kalinowski, K.; Grabowik, C.; Paprocka, I.; Kempa, W.
2015-11-01
In this paper an approach to planning of additional resources when scheduling operations are discussed. The considered resources are assumed to be discrete and renewable. In most research in scheduling domain, the basic and often the only type of regarded resources is a workstation. It can be understood as a machine, a device or even as a separated space on the shop floor. In many cases, during the detailed scheduling of operations the need of using more than one resource, required for its implementation, can be indicated. Resource requirements for an operation may relate to different resources or resources of the same type. Additional resources are most often referred to these human resources, tools or equipment, for which the limited availability in the manufacturing system may have an influence on the execution dates of some operations. In the paper the concept of the division into basic and additional resources and their planning method was shown. A situation in which sets of basic and additional resources are not separable - the same additional resource may be a basic resource for another operation is also considered. Scheduling of operations, including greater amount of resources can cause many difficulties, depending on whether the resource is involved in the entire time of operation, only in the selected part(s) of operation (e.g. as auxiliary staff at setup time) or cyclic - e.g. when an operator supports more than one machine, or supervises the execution of several operations. For this reason the dates and work times of resources participation in the operation can be different. Presented issues are crucial when modelling of production scheduling environment and designing of structures for the purpose of scheduling software development.
Draft Plan of Operation for a Functional Literacy Pilot Program in Swaziland June-July 1971.
ERIC Educational Resources Information Center
Sebenta National Inst. (Swaziland).
A planned full-time "functional literacy" course that was to be held during June and July 1971 in Ekuhlamukeni and Nqabaneni (Swaziland) is discussed. The experimental pilot project was to be sponsored by the Sebenta National Institute, the University of Botswana, Lesotho and Swaziland Division of Extra Mural Services, and by the…
The current status and future prospects of computer-assisted hip surgery.
Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki
2016-03-01
The advances in computer assistance technology have allowed detailed three-dimensional preoperative planning and simulation of preoperative plans. The use of a navigation system as an intraoperative assistance tool allows more accurate execution of the preoperative plan, compared to manual operation without assistance of the navigation system. In total hip arthroplasty using CT-based navigation, three-dimensional preoperative planning with computer software allows the surgeon to determine the optimal angle of implant placement at which implant impingement is unlikely to occur in the range of hip joint motion necessary for daily activities of living, and to determine the amount of three-dimensional correction for leg length and offset. With the use of computer navigation for intraoperative assistance, the preoperative plan can be precisely executed. In hip osteotomy using CT-based navigation, the navigation allows three-dimensional preoperative planning, intraoperative confirmation of osteotomy sites, safe performance of osteotomy even under poor visual conditions, and a reduction in exposure doses from intraoperative fluoroscopy. Positions of the tips of chisels can be displayed on the computer monitor during surgery in real time, and staff other than the operator can also be aware of the progress of surgery. Thus, computer navigation also has an educational value. On the other hand, its limitations include the need for placement of trackers, increased radiation exposure from preoperative CT scans, and prolonged operative time. Moreover, because the position of a bone fragment cannot be traced after osteotomy, methods to find its precise position after its movement need to be developed. Despite the need to develop methods for the postoperative evaluation of accuracy for osteotomy, further application and development of these systems are expected in the future. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Piao, Wenhua; Kim, Changwon; Cho, Sunja; Kim, Hyosoo; Kim, Minsoo; Kim, Yejin
2016-12-01
In wastewater treatment plants (WWTPs), the portion of operating costs related to electric power consumption is increasing. If the electric power consumption decreased, however, it would be difficult to comply with the effluent water quality requirements. A protocol was proposed to minimize the environmental impacts as well as to optimize the electric power consumption under the conditions needed to meet the effluent water quality standards in this study. This protocol was comprised of six phases of procedure and was tested using operating data from S-WWTP to prove its applicability. The 11 major operating variables were categorized into three groups using principal component analysis and K-mean cluster analysis. Life cycle assessment (LCA) was conducted for each group to deduce the optimal operating conditions for each operating state. Then, employing mathematical modeling, six improvement plans to reduce electric power consumption were deduced. The electric power consumptions for suggested plans were estimated using an artificial neural network. This was followed by a second round of LCA conducted on the plans. As a result, a set of optimized improvement plans were derived for each group that were able to optimize the electric power consumption and life cycle environmental impact, at the same time. Based on these test results, the WWTP operating management protocol presented in this study is deemed able to suggest optimal operating conditions under which power consumption can be optimized with minimal life cycle environmental impact, while allowing the plant to meet water quality requirements.
A distributed planning concept for Space Station payload operations
NASA Technical Reports Server (NTRS)
Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey
1994-01-01
The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.
Integrating planning and reactive control
NASA Technical Reports Server (NTRS)
Wilkins, David E.; Myers, Karen L.
1994-01-01
Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.
Integrating planning and reactive control
NASA Astrophysics Data System (ADS)
Wilkins, David E.; Myers, Karen L.
1994-10-01
Our research is developing persistent agents that can achieve complex tasks in dynamic and uncertain environments. We refer to such agents as taskable, reactive agents. An agent of this type requires a number of capabilities. The ability to execute complex tasks necessitates the use of strategic plans for accomplishing tasks; hence, the agent must be able to synthesize new plans at run time. The dynamic nature of the environment requires that the agent be able to deal with unpredictable changes in its world. As such, agents must be able to react to unanticipated events by taking appropriate actions in a timely manner, while continuing activities that support current goals. The unpredictability of the world could lead to failure of plans generated for individual tasks. Agents must have the ability to recover from failures by adapting their activities to the new situation, or replanning if the world changes sufficiently. Finally, the agent should be able to perform in the face of uncertainty. The Cypress system, described here, provides a framework for creating taskable, reactive agents. Several features distinguish our approach: (1) the generation and execution of complex plans with parallel actions; (2) the integration of goal-driven and event driven activities during execution; (3) the use of evidential reasoning for dealing with uncertainty; and (4) the use of replanning to handle run-time execution problems. Our model for a taskable, reactive agent has two main intelligent components, an executor and a planner. The two components share a library of possible actions that the system can take. The library encompasses a full range of action representations, including plans, planning operators, and executable procedures such as predefined standard operating procedures (SOP's). These three classes of actions span multiple levels of abstraction.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.
Minimization In Digital Design As A Meta-Planning Problem
NASA Astrophysics Data System (ADS)
Ho, William P. C.; Wu, Jung-Gen
1987-05-01
In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.
Interactive orbital proximity operations planning system
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1989-01-01
An interactive, graphical proximity operations planning system was developed which allows on-site design of efficient, complex, multiburn maneuvers in the dynamic multispacecraft environment about the space station. Maneuvering takes place in, as well as out of, the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of relative orbital motion trajectories and complex operational constraints, which are both time varying and highly dependent on the mission scenario. This difficulty is greatly overcome by visualizing the relative trajectories and the relative constraints in an easily interpretable, graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of the space station and co-orbiting spacecraft on the background of the station's orbital plane. The operator has control over two modes of operation: (1) a viewing system mode, which enables him or her to explore the spatial situation about the space station and thus choose and frame in on areas of interest; and (2) a trajectory design mode, which allows the interactive editing of a series of way-points and maneuvering burns to obtain a trajectory which complies with all operational constraints. Through a graphical interactive process, the operator will continue to modify the trajectory design until all operational constraints are met. The effectiveness of this display format in complex trajectory design is presently being evaluated in an ongoing experimental program.
Integrating the Department of Defense Supply Chain
2012-01-01
Summary xvii Integrate Financial Policy with System Design and Inventory Planning All DoD operating activities supported by retail and/or tactical...and Kristin J. Leuschner, The Strategic Distribution System in Support of Operation Enduring Freedom, Santa Monica, Calif.: RAND Corporation, DB...to support initial operations for all services early in OIF through ad hoc arrangements. 3 There were three GS SSAs at the time for different
KSOS Secure Unix Verification Plan (Kernelized Secure Operating System).
1980-12-01
shall be handled as proprietary information untii 5 Apri 1978. After that time, the Government m-. distribute the document as it sees fit. UNIX and PWB...Accession For P-’(’ T.’i3 :- NTI G.;:’... &I : " \\ " Y: Codes mdlc/or 71!O lii WDL-TR7809 KSOS VERIFICATION PLAN SECTION I INTRODUCTION "’The purpose...funding, additional tools may be available by the time they are needed for FSOS verification. We intend to use the best available technology in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep
Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adversemore » consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different requirements, including the need to operate in different coolant environments, higher operating temperatures, and longer operating cycles between planned refueling and maintenance outages. These features, along with the relative lack of operating experience for some of the proposed advanced designs, may limit the ability to estimate event probability and component POF with a high degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative lack of established knowledge about the long-term component behavior and improve operational and maintenance planning and optimization. The particular eccentricities of advanced reactors and small modular reactors provide unique challenges and needs for advanced instrumentation, control, and human-machine interface (ICHMI) techniques such as enhanced risk monitors (ERM) in aSMRs. Several features of aSMR designs increase the need for accurate characterization of the real-time risk during operation and maintenance activities. A number of technical gaps in realizing ERM exist, and these gaps are largely independent of the specific reactor technology. As a result, the development of a framework for ERM would enable greater situational awareness regardless of the specific class of reactor technology. A set of research tasks are identified in a preliminary research plan to enable the development, testing, and demonstration of such a framework. Although some aspects of aSMRs, such as specific operational characteristics, will vary and are not now completely defined, the proposed framework is expected to be relevant regardless of such uncertainty. The development of an ERM framework will provide one of the key technical developments necessary to ensure the economic viability of aSMRs.« less
Saikia, Amrit Kumar; Sriganesh, Kamath; Ranjan, Manish; Claire, Marie; Mittal, Mohit; Pandey, Paritosh
2015-08-01
Knowledge about the utilization of the operation theater (OT) is essential to improve its efficiency. This study evaluated the neurosurgical operation theater utilization in a neurosciences teaching hospital. Data collected included OT start time, delay in start, anesthesia induction time, surgical preparation time, anesthesia recovery time, operating time, time between cases, and theater closing time. Five hundred thirty-seven surgeries were performed during the study period. The percentage of time used for anesthesia induction, actual surgical procedure, recovery from anesthesia, and theater preparation between the two cases were 8%, 70%, 6% and 5%, respectively. Fourteen percent of scheduled cases were cancelled. On 220 occasions (70.51%), theater was over-run. Late start contributed to loss of 8370 minutes (140 hours) of theater time. This study identified the proportion of time spent on each activity in the neurosurgical OT. This knowledge is likely to facilitate better planning of neurosurgical theater schedule and result in optimal utilization. Copyright © 2015 Elsevier Inc. All rights reserved.
Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach
NASA Technical Reports Server (NTRS)
Jacobs, Derya, A.; Aasen, Curtis A.
2000-01-01
Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the complexity of developing a model that can be used for successfully implementing a standardized management planning tool. The objective of this study was to implement an Integrated Wind Tunnel Planning System to improve the operations within the aeronautics testing and research group, in particular Wind Tunnel Enterprise. The study included following steps: Conducted literature search and expert discussions (NASA and Old Dominion University faculty), Performed environmental scan of NASA Langley wind tunnel operations as foundation for problem definition. Established operation requirements and evaluation methodologies. Examined windtunnel operations to map out the common characteristics, critical components, and system structure. Reviewed and evaluated various project scheduling and management systems for implementation, Evaluated and implemented "Theory of Constraints (TOC)" project scheduling methodology at NASA Langley wind tunnel operations together with NASA staff.
Training for planning tumour resection: augmented reality and human factors.
Abhari, Kamyar; Baxter, John S H; Chen, Elvis C S; Khan, Ali R; Peters, Terry M; de Ribaupierre, Sandrine; Eagleson, Roy
2015-06-01
Planning surgical interventions is a complex task, demanding a high degree of perceptual, cognitive, and sensorimotor skills to reduce intra- and post-operative complications. This process requires spatial reasoning to coordinate between the preoperatively acquired medical images and patient reference frames. In the case of neurosurgical interventions, traditional approaches to planning tend to focus on providing a means for visualizing medical images, but rarely support transformation between different spatial reference frames. Thus, surgeons often rely on their previous experience and intuition as their sole guide is to perform mental transformation. In case of junior residents, this may lead to longer operation times or increased chance of error under additional cognitive demands. In this paper, we introduce a mixed augmented-/virtual-reality system to facilitate training for planning a common neurosurgical procedure, brain tumour resection. The proposed system is designed and evaluated with human factors explicitly in mind, alleviating the difficulty of mental transformation. Our results indicate that, compared to conventional planning environments, the proposed system greatly improves the nonclinicians' performance, independent of the sensorimotor tasks performed ( ). Furthermore, the use of the proposed system by clinicians resulted in a significant reduction in time to perform clinically relevant tasks ( ). These results demonstrate the role of mixed-reality systems in assisting residents to develop necessary spatial reasoning skills needed for planning brain tumour resection, improving patient outcomes.
NASA Astrophysics Data System (ADS)
Shen, Chien-wen
2009-01-01
During the processes of TFT-LCD manufacturing, steps like visual inspection of panel surface defects still heavily rely on manual operations. As the manual inspection time of TFT-LCD manufacturing could range from 4 hours to 1 day, the reliability of time forecasting is thus important for production planning, scheduling and customer response. This study would like to propose a practical and easy-to-implement prediction model through the approach of Bayesian networks for time estimation of manual operated procedures in TFT-LCD manufacturing. Given the lack of prior knowledge about manual operation time, algorithms of necessary path condition and expectation-maximization are used for structural learning and estimation of conditional probability distributions respectively. This study also applied Bayesian inference to evaluate the relationships between explanatory variables and manual operation time. With the empirical applications of this proposed forecasting model, approach of Bayesian networks demonstrates its practicability and prediction accountability.
The Earth Phenomena Observing System: Intelligent Autonomy for Satellite Operations
NASA Technical Reports Server (NTRS)
Ricard, Michael; Abramson, Mark; Carter, David; Kolitz, Stephan
2003-01-01
Earth monitoring systems of the future may include large numbers of inexpensive small satellites, tasked in a coordinated fashion to observe both long term and transient targets. For best performance, a tool which helps operators optimally assign targets to satellites will be required. We present the design of algorithms developed for real-time optimized autonomous planning of large numbers of small single-sensor Earth observation satellites. The algorithms will reduce requirements on the human operators of such a system of satellites, ensure good utilization of system resources, and provide the capability to dynamically respond to temporal terrestrial phenomena. Our initial real-time system model consists of approximately 100 satellites and large number of points of interest on Earth (e.g., hurricanes, volcanoes, and forest fires) with the objective to maximize the total science value of observations over time. Several options for calculating the science value of observations include the following: 1) total observation time, 2) number of observations, and the 3) quality (a function of e.g., sensor type, range, slant angle) of the observations. An integrated approach using integer programming, optimization and astrodynamics is used to calculate optimized observation and sensor tasking plans.
Operational Plan Ontology Model for Interconnection and Interoperability
NASA Astrophysics Data System (ADS)
Long, F.; Sun, Y. K.; Shi, H. Q.
2017-03-01
Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.
THE WASHINGTON DATA PROCESSING TRAINING STORY.
ERIC Educational Resources Information Center
MCKEE, R.L.
A DATA PROCESSING TRAINING PROGRAM IN WASHINGTON HAD 10 DATA PROCESSING CENTERS IN OPERATION AND EIGHT MORE IN VARIOUS STAGES OF PLANNING IN 1963. THESE CENTERS WERE FULL-TIME DAY PREPARATORY 2-YEAR POST-HIGH SCHOOL TECHNICIAN TRAINING PROGRAMS, OPERATED AND ADMINISTERED BY THE LOCAL BOARDS OF EDUCATION. EACH SCHOOL HAD A COMPLETE DATA PROCESSING…
Accountability Is a Calculated Effort
ERIC Educational Resources Information Center
Vekich, Michael; Coborn, Daniel
2004-01-01
As part-time volunteer members who have few direct operational duties, board members constantly are bombarded with information on matters ranging from strategic plans to operating budgets to tuition rates to parking permits. In the end, it is they who are accountable for all activities that occur in their institutions and systems. The need for…
43 CFR 3140.6 - Use of additional lands.
Code of Federal Regulations, 2011 CFR
2011-10-01
... facilities in a Special Tar Sand Area that are needed to support any operations necessary for the recovery of... be filed at the time a plan of operations is filed. (b) A lease for the use of additional lands shall... include, but are not limited to, reservoirs, pipelines, electrical generation systems, transmission lines...
Recce NG: from Recce sensor to image intelligence (IMINT)
NASA Astrophysics Data System (ADS)
Larroque, Serge
2001-12-01
Recce NG (Reconnaissance New Generation) is presented as a complete and optimized Tactical Reconnaissance System. Based on a new generation Pod integrating high resolution Dual Band sensors, the system has been designed with the operational lessons learnt from the last Peace Keeping Operations in Bosnia and Kosovo. The technical solutions retained as component modules of a full IMINT acquisition system, take benefit of the state of art in the following key technologies: Advanced Mission Planning System for long range stand-off Manned Recce, Aircraft and/or Pod tasking, operating sophisticated back-up software tools, high resolution 3D geo data and improved/combat proven MMI to reduce planning delays, Mature Dual Band sensors technology to achieve the Day and Night Recce Mission, including advanced automatic operational functions, as azimuth and roll tracking capabilities, low risk in Pod integration and in carrier avionics, controls and displays upgrades, to save time in operational turn over and maintenance, High rate Imagery Down Link, for Real Time or Near Real Time transmission, fully compatible with STANAG 7085 requirements, Advanced IMINT Exploitation Ground Segment, combat proven, NATO interoperable (STANAG 7023), integrating high value software tools for accurate location, improved radiometric image processing and open link to the C4ISR systems. The choice of an industrial Prime contractor mastering across the full system, all the prior listed key products and technologies, is mandatory to a successful delivery in terms of low Cost, Risk and Time Schedule.
SLS-PLAN-IT: A knowledge-based blackboard scheduling system for Spacelab life sciences missions
NASA Technical Reports Server (NTRS)
Kao, Cheng-Yan; Lee, Seok-Hua
1992-01-01
The primary scheduling tool in use during the Spacelab Life Science (SLS-1) planning phase was the operations research (OR) based, tabular form Experiment Scheduling System (ESS) developed by NASA Marshall. PLAN-IT is an artificial intelligence based interactive graphic timeline editor for ESS developed by JPL. The PLAN-IT software was enhanced for use in the scheduling of Spacelab experiments to support the SLS missions. The enhanced software SLS-PLAN-IT System was used to support the real-time reactive scheduling task during the SLS-1 mission. SLS-PLAN-IT is a frame-based blackboard scheduling shell which, from scheduling input, creates resource-requiring event duration objects and resource-usage duration objects. The blackboard structure is to keep track of the effects of event duration objects on the resource usage objects. Various scheduling heuristics are coded in procedural form and can be invoked any time at the user's request. The system architecture is described along with what has been learned with the SLS-PLAN-IT project.
IDEA: Planning at the Core of Autonomous Reactive Agents
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Clancy, Daniel (Technical Monitor)
2002-01-01
Several successful autonomous systems are separated into technologically diverse functional layers operating at different levels of abstraction. This diversity makes them difficult to implement and validate. In this paper, we present IDEA (Intelligent Distributed Execution Architecture), a unified planning and execution framework. In IDEA a layered system can be implemented as separate agents, one per layer, each representing its interactions with the world in a model. At all levels, the model representation primitives and their semantics is the same. Moreover, each agent relies on a single model, plan database, plan runner and on a variety of planners, both reactive and deliberative. The framework allows the specification of agents that operate, within a guaranteed reaction time and supports flexible specification of reactive vs. deliberative agent behavior. Within the IDEA framework we are working to fully duplicate the functionalities of the DS1 Remote Agent and extend it to domains of higher complexity than autonomous spacecraft control.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... NMFS, copies of addenda to FY 2012 sector operations plans detailing industry-funded monitoring plans... from Federal fishing regulations through its annual operations plan (for more information on sector operations plans and regulatory exemptions, see the fishing year 2012 sector operations plan proposed rule...
Redefining Tactical Operations for MER Using Cloud Computing
NASA Technical Reports Server (NTRS)
Joswig, Joseph C.; Shams, Khawaja S.
2011-01-01
The Mars Exploration Rover Mission (MER) includes the twin rovers, Spirit and Opportunity, which have been performing geological research and surface exploration since early 2004. The rovers' durability well beyond their original prime mission (90 sols or Martian days) has allowed them to be a valuable platform for scientific research for well over 2000 sols, but as a by-product it has produced new challenges in providing efficient and cost-effective tactical operational planning. An early stage process adaptation was the move to distributed operations as mission scientists returned to their places of work in the summer of 2004, but they would still came together via teleconference and connected software to plan rover activities a few times a week. This distributed model has worked well since, but it requires the purchase, operation, and maintenance of a dedicated infrastructure at the Jet Propulsion Laboratory. This server infrastructure is costly to operate and the periodic nature of its usage (typically heavy usage for 8 hours every 2 days) has made moving to a cloud based tactical infrastructure an extremely tempting proposition. In this paper we will review both past and current implementations of the tactical planning application focusing on remote plan saving and discuss the unique challenges present with long-latency, distributed operations. We then detail the motivations behind our move to cloud based computing services and as well as our system design and implementation. We will discuss security and reliability concerns and how they were addressed
Berber, Eren
2015-07-01
Liver tumour ablation is an operator-dependent procedure. The determination of the optimum needle trajectory and correct ablation parameters could be challenging. The aim of this study was to report the utility of a new, procedure planning software for microwave ablation (MWA) of liver tumours. This was a feasibility study in a pilot group of five patients with nine metastatic liver tumours who underwent laparoscopic MWA. Pre-operatively, parameters predicting the desired ablation zones were calculated for each tumour. Intra-operatively, this planning strategy was followed for both antenna placement and energy application. Post-operative 2-week computed tomography (CT) scans were performed to evaluate complete tumour destruction. The patients had an average of two tumours (range 1-4), measuring 1.9 ± 0.4 cm (range 0.9-4.4 cm). The ablation time was 7.1 ± 1.3 min (range 2.5-10 min) at 100W. There were no complications or mortality. The patients were discharged home on post-operative day (POD) 1. At 2-week CT scans, there were no residual tumours, with a complete ablation demonstrated in all lesions. This study describes and validates pre-treatment planning software for MWA of liver tumours. This software was found useful to determine precisely the ablation parameters and needle placement to create a predicted zone of ablation. © 2015 International Hepato-Pancreato-Biliary Association.
Operations Nomenclature [Annexes
NASA Technical Reports Server (NTRS)
Shannon, Yvette Y.
2011-01-01
The purpose of Operations Nomenclature (OpNom) is to document methods for denoting all hardware and software and associated data referenced by operations products produced by the International Space Station (ISS) operations community. This includes Operations Data File (ODF) procedures, ground and onboard displays, mission rules, commands, messages and advisories, planning products, etc. This document applies to all agencies and individuals participating in or contributing to ISS mission operations. Mission operations include ground checkout, training, and simulations, as well as real-time activities. The document also applies to all operations documentation (paper or electronic media) and other products that refer to ISS-related equipment or activities.
The, Bertram; Verdonschot, Nico; van Horn, Jim R; van Ooijen, Peter M A; Diercks, Ron L
2007-09-01
The objective of this randomized clinical trial was to compare the clinical and technical results of digital preoperative planning for primary total hip arthroplasties with analogue planning. Two hundred and ten total hip arthroplasties were randomized. All plans were constructed on standardized radiographs by the surgeon who performed the arthroplasty the next day. The main outcome was accuracy of the preoperative plan. Secondary outcomes were operation time and a radiographic assessment of the arthroplasty. Digital preoperative plans were more accurate in planning the cup (P < .05) and scored higher on the postoperative radiologic assessment of cemented cup (P = .03) and stem (P < .01) components. None of the other comparisons reached statistical significance. We conclude that digital plans slightly outperform analogue plans.
College Savings Plans: Second Generation Progress and Problems.
ERIC Educational Resources Information Center
Olivas, Michael A.
College savings plans, which operate in 20 states, work on a simple premise: parents or grandparents place a lump sum in a contract or make monthly payments that guarantees the money will be sufficient for an equivalent of tuition and fees in a set period of time in the future. The state can guarantee the return by virtue of pooled assets. States…
30 CFR 285.620 - What is a Construction and Operations Plan (COP)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is a Construction and Operations Plan (COP... Information Requirements Construction and Operations Plan for Commercial Leases § 285.620 What is a Construction and Operations Plan (COP)? The COP describes your construction, operations, and conceptual...
Rozen, Warren Matthew; Chowdhry, Muhammad; Band, Bassam; Ramakrishnan, Venkat V.; Griffiths, Matthew
2016-01-01
Background The approach and operative techniques associated with breast reconstruction have steadily been refined since its inception, with abdominal perforator-based flaps becoming the gold standard reconstructive option for women undergoing breast cancer surgery. The current study comprises a cohort of 632 patients, in whom specific operative times are recorded by a blinded observer, and aims to address the potential benefits seen with the use of computer tomography (CT) scanning preoperatively on operative outcomes, complications and surgical times. Methods A prospectively recorded, retrospective review was undertaken of patients undergoing autologous breast reconstruction with a DIEP flap at the St Andrews Centre over a 4-year period from 2010 to 2014. Computed tomography angiography (CTA) scanning of patients began in September 2012 and thus 2 time periods were compared: 2 years prior to the use of CTA scans and 2 years afterwards. For all patients, key variables were collected including patient demographics, operative times, flap harvest time, pedicle length, surgeon experience and complications. Results In group 1, comprising patients within the period prior to CTA scans, 265 patients underwent 312 flaps; whilst in group 2, the immediately following 2 years, 275 patients had 320 flaps. The use of preoperative CTA scans demonstrated a significant reduction in flap harvest time of 13 minutes (P<0.013). This significant time saving was seen in all flap modifications: unilateral, bilateral and bipedicled DIEP flaps. The greatest time saving was seen in bipedicle flaps, with a 35-minute time saving. The return to theatre rate significantly dropped from 11.2% to 6.9% following the use of CTA scans, but there was no difference in the total failure rate. Conclusions The study has demonstrated both a benefit to flap harvest time as well as overall operative times when using preoperative CTA. The use of CTA was associated with a significant reduction in complications requiring a return to theatre in the immediate postoperative period. Modern scanners and techniques can reduce the level of ionising radiation, facilitating patients being able to benefit from the advantages that this preoperative planning can convey. PMID:27047777
Developing operator capacity estimates for supervisory control of autonomous vehicles.
Cummings, M L; Guerlain, Stephanie
2007-02-01
This study examined operators' capacity to successfully reallocate highly autonomous in-flight missiles to time-sensitive targets while performing secondary tasks of varying complexity. Regardless of the level of autonomy for unmanned systems, humans will be necessarily involved in the mission planning, higher level operation, and contingency interventions, otherwise known as human supervisory control. As a result, more research is needed that addresses the impact of dynamic decision support systems that support rapid planning and replanning in time-pressured scenarios, particularly on operator workload. A dual screen simulation that allows a single operator the ability to monitor and control 8, 12, or 16 missiles through high level replanning was tested on 42 U.S. Navy personnel. The most significant finding was that when attempting to control 16 missiles, participants' performance on three separate objective performance metrics and their situation awareness were significantly degraded. These results mirror studies of air traffic control that demonstrate a similar decline in performance for controllers managing 17 aircraft as compared with those managing only 10 to 11 aircraft. Moreover, the results suggest that a 70% utilization (percentage busy time) score is a valid threshold for predicting significant performance decay and could be a generalizable metric that can aid in manning predictions. This research is relevant to human supervisory control of networked military and commercial unmanned vehicles in the air, on the ground, and on and under the water.
NASA Technical Reports Server (NTRS)
Mccreary, T.
1981-01-01
Projected 1990's experiments; navigation requirements and potentials; communications requirements associated with space experiments; alternative forecast options; and operational impacts on experiments are covered. A baseline of plans for the TDAS User Community, including a set of generic experiments developed to supplement existing planning for the 1990's time frame is generated. It includes extensive summaries of collected data, and a bibliography. The data are representative of inputs obtained from NASA planning sources through September 1981.
A winning combination: the 3Cs of business continuity.
Glendon, Lee
2013-01-01
Contingency planning is a natural part of business life and is used across identified strategic, financial and operational risks. But is it being done well and is it the right approach all of the time? This paper shows how contingency planning forms one layer of a three-line defence termed 'the 3Cs of business continuity': contingency planning; continuity capability; crisis response. Collectively, 'the 3Cs' help organisations deliver a robust response to the risks that can be seen and those that cannot.
NASA Astrophysics Data System (ADS)
After completion of the field phase of WAMEX, operations were assessed, further planning of data management activities was reviewed, and plans for the research and evaluation phase were coordinated. The WAMEX project was conducted concurrently with the first GARP Global Experiment. Impending data collection and processing activities are stressed in plans to promote the timely and complete analysis of the present situation. The advantages to be gained through international cooperation among scientists are emphasized.
3D printed renal cancer models derived from MRI data: application in pre-surgical planning.
Wake, Nicole; Rude, Temitope; Kang, Stella K; Stifelman, Michael D; Borin, James F; Sodickson, Daniel K; Huang, William C; Chandarana, Hersh
2017-05-01
To determine whether patient-specific 3D printed renal tumor models change pre-operative planning decisions made by urological surgeons in preparation for complex renal mass surgical procedures. From our ongoing IRB approved study on renal neoplasms, ten renal mass cases were retrospectively selected based on Nephrometry Score greater than 5 (range 6-10). A 3D post-contrast fat-suppressed gradient-echo T1-weighted sequence was used to generate 3D printed models. The cases were evaluated by three experienced urologic oncology surgeons in a randomized fashion using (1) imaging data on PACS alone and (2) 3D printed model in addition to the imaging data. A questionnaire regarding surgical approach and planning was administered. The presumed pre-operative approaches with and without the model were compared. Any change between the presumed approaches and the actual surgical intervention was recorded. There was a change in planned approach with the 3D printed model for all ten cases with the largest impact seen regarding decisions on transperitoneal or retroperitoneal approach and clamping, with changes seen in 30%-50% of cases. Mean parenchymal volume loss for the operated kidney was 21.4%. Volume losses >20% were associated with increased ischemia times and surgeons tended to report a different approach with the use of the 3D model compared to that with imaging alone in these cases. The 3D printed models helped increase confidence regarding the chosen operative procedure in all cases. Pre-operative physical 3D models created from MRI data may influence surgical planning for complex kidney cancer.
Modular acute system for general surgery: hand over the operation, not the patient.
Poole, Garth H; Glyn, Tamara; Srinivasa, Sanket; Hill, Andrew G
2012-03-01
Various models have been proposed to effectively provide acute surgical care in Australasia. Recently, General Surgeons Australia (GSA) has published a 12-point plan with guiding principles on this matter. This study describes a model of providing acute general surgical care in a high-volume institution, evaluates clinical outcomes and critically appraises the system against the GSA 12-point plan. The acute care system is qualitatively described with quantitative measures of workload. The outcomes of acute laparoscopic cholecystectomy were used as a proxy of system performance. The system was critically appraised against the GSA 12-point plan. Teams are on call once per week with each surgeon on call once per fortnight. The three key elements of acute management - collecting patients, post-acute ward round and operating - are treated as modules. The patient remains under the care of the admitting consultant but is often operated on by another team. From June 2009 to 2010, there were 7429 acute general surgical admissions (mean: 20.4 patients per day) with 2999 acute operations (mean: 8.4 operations per day). The other activities of the department were not compromised. In that time, 388 acute laparoscopic cholecystectomies were performed with a conversion rate of 1.3% and no major bile duct injury. The system is compatible with the GSA 12-point plan. This study describes an efficient and safe system for providing acute general surgical care in a high-volume setting with satisfactory clinical outcomes. It is compatible with the GSA 12-point plan. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.
Zeng, Canjun; Xing, Weirong; Wu, Zhanglin; Huang, Huajun; Huang, Wenhua
2016-10-01
Treatment of acetabular fractures remains one of the most challenging tasks that orthopaedic surgeons face. An accurate assessment of the injuries and preoperative planning are essential for an excellent reduction. The purpose of this study was to evaluate the feasibility, accuracy and effectiveness of performing 3D printing technology and computer-assisted virtual surgical procedures for preoperative planning in acetabular fractures. We hypothesised that more accurate preoperative planning using 3D printing models will reduce the operation time and significantly improve the outcome of acetabular fracture repair. Ten patients with acetabular fractures were recruited prospectively and examined by CT scanning. A 3-D model of each acetabular fracture was reconstructed with MIMICS14.0 software from the DICOM file of the CT data. Bone fragments were moved and rotated to simulate fracture reduction and restore the pelvic integrity with virtual fixation. The computer-assisted 3D image of the reduced acetabula was printed for surgery simulation and plate pre-bending. The postoperative CT scan was performed to compare the consistency of the preoperative planning with the surgical implants by 3D-superimposition in MIMICS14.0, and evaluated by Matta's method. Computer-based pre-operations were precisely mimicked and consistent with the actual operations in all cases. The pre-bent fixation plates had an anatomical shape specifically fit to the individual pelvis without further bending or adjustment at the time of surgery and fracture reductions were significantly improved. Seven out of 10 patients had a displacement of fracture reduction of less than 1mm; 3 cases had a displacement of fracture reduction between 1 and 2mm. The 3D printing technology combined with virtual surgery for acetabular fractures is feasible, accurate, and effective leading to improved patient-specific preoperative planning and outcome of real surgery. The results provide useful technical tips in planning pelvic surgeries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Engelmann, Carsten; Ametowobla, Dzifa
2017-05-17
Planning and controlling surgical operations hugely impacts upon productivity, patient safety, and surgeons' careers. Established, specialized software for this task is being increasingly replaced by "Operating Room (OR)-modules" appended to enterprise-wide resource planning (ERP) systems. As a result, usability problems are re-emerging and require developers' attention. Systematic evaluation of the functionality and social repercussions of a global, market-leading IT business control system (SAP R3, Germany), adapted for real-time OR process steering. Field study involving document analyses, interviews, and a 73-item survey addressed to 77 qualified (> 1-year system experience) senior planning executives (end users; "planners") working in surgical departments of university hospitals. Planners reported that 57% of electronic operation requests contained contradictory information. Key screens contained clinically irrelevant areas (36 +/- 29%). Compared to the legacy system, users reported either no improvements or worse performance, in regard to co-ordination of OR stakeholders, intra-day program changes, and safety. Planners concluded that the ERP-planning module was "non-intuitive" (66%), increased planning work (56%, p=0.002), and did not impact upon either organizational mishap spectrum or frequency. Interviews evidenced intra-institutional power shifts due to increased system complexity. Planners resented e.g. a trend towards increased personal culpability for mishap. Highly complex enterprise system extensions may not be directly suited to specific process steering tasks in a high risk/low error-environment like the OR. In view of surgeons' high primary task load, the repeated call for simpler IT is an imperative for ERP extensions. System design should consider a) that current OR IT suffers from an input limitation regarding planning-relevant real-time data, and b) that there are social processes that strongly affect planning and particularly ERP use beyond algorithms. Real improvement of clinical IT tools requires their independent evaluation according to standards developed for pharmaceutical subjects.
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.
1994-01-01
This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.
Designing an Alternate Mission Operations Control Room
NASA Technical Reports Server (NTRS)
Montgomery, Patty; Reeves, A. Scott
2014-01-01
The Huntsville Operations Support Center (HOSC) is a multi-project facility that is responsible for 24x7 real-time International Space Station (ISS) payload operations management, integration, and control and has the capability to support small satellite projects and will provide real-time support for SLS launches. The HOSC is a service-oriented/ highly available operations center for ISS payloads-directly supporting science teams across the world responsible for the payloads. The HOSC is required to endure an annual 2-day power outage event for facility preventive maintenance and safety inspection of the core electro-mechanical systems. While complete system shut-downs are against the grain of a highly available sub-system, the entire facility must be powered down for a weekend for environmental and safety purposes. The consequence of this ground system outage is far reaching: any science performed on ISS during this outage weekend is lost. Engineering efforts were focused to maximize the ISS investment by engineering a suitable solution capable of continuing HOSC services while supporting safety requirements. The HOSC Power Outage Contingency (HPOC) System is a physically diversified compliment of systems capable of providing identified real-time services for the duration of a planned power outage condition from an alternate control room. HPOC was designed to maintain ISS payload operations for approximately three continuous days during planned HOSC power outages and support a local Payload Operations Team, International Partners, as well as remote users from the alternate control room located in another building.
Science Planning and Orbit Classification for Solar Probe Plus
NASA Astrophysics Data System (ADS)
Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.
2016-12-01
There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.
Leiggener, C; Messo, E; Thor, A; Zeilhofer, H-F; Hirsch, J-M
2009-02-01
The free fibular flap is the standard procedure for reconstructing mandibular defects. The graft has to be contoured to fit the defect so preoperative planning is required. The systems used previously do not allow transfer of the surgical plan to the operation room in an optimal way. The authors present a method to bring the virtual plan to real time surgery using a rapid prototyping guide. Planning was conducted using the Surgicase CMF software simulating surgery on a workstation. The osteotomies were translated into a rapid prototyping guide, sterilised and applied during surgery on the fibula allowing for the osteotomies and osteosynthesis to be performed with intact circulation. During reconstruction the authors were able to choose the best site for the osteotomies regarding circulation and as a result increased the precision and speed of treatment.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
30 CFR 250.290 - What operations require approval of the Conceptual Plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans and Information Deepwater Operations Plans (dwop) § 250.290 What operations require approval of the Conceptual Plan? You may... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What operations require approval of the...
14 CFR 136.13 - Helicopter performance plan and operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...
14 CFR 136.13 - Helicopter performance plan and operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...
14 CFR 136.13 - Helicopter performance plan and operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Helicopter performance plan and operations... Helicopter performance plan and operations. (a) Each operator must complete a performance plan before each helicopter commercial air tour, or flight operated under 14 CFR 91.146 or 91.147. The pilot in command must...
A novel method for vaginal cylinder treatment planning: a seamless transition to 3D brachytherapy
Wu, Vincent; Wang, Zhou; Patil, Sachin
2012-01-01
Purpose Standard treatment plan libraries are often used to ensure a quick turn-around time for vaginal cylinder treatments. Recently there is increasing interest in transitioning from conventional 2D radiograph based brachytherapy to 3D image based brachytherapy, which has resulted in a substantial increase in treatment planning time and decrease in patient through-put. We describe a novel technique that significantly reduces the treatment planning time for CT-based vaginal cylinder brachytherapy. Material and methods Oncentra MasterPlan TPS allows multiple sets of data points to be classified as applicator points which has been harnessed in this method. The method relies on two hard anchor points: the first dwell position in a catheter and an applicator configuration specific dwell position as the plan origin and a soft anchor point beyond the last active dwell position to define the axis of the catheter. The spatial location of various data points on the applicator's surface and at 5 mm depth are stored in an Excel file that can easily be transferred into a patient CT data set using window operations and then used for treatment planning. The remainder of the treatment planning process remains unaffected. Results The treatment plans generated on the Oncentra MasterPlan TPS using this novel method yielded results comparable to those generated on the Plato TPS using a standard treatment plan library in terms of treatment times, dwell weights and dwell times for a given optimization method and normalization points. Less than 2% difference was noticed between the treatment times generated between both systems. Using the above method, the entire planning process, including CT importing, catheter reconstruction, multiple data point definition, optimization and dose prescription, can be completed in ~5–10 minutes. Conclusion The proposed method allows a smooth and efficient transition to 3D CT based vaginal cylinder brachytherapy planning. PMID:23349650
Succession planning in local health departments: results from a national survey.
Darnell, Julie S; Campbell, Richard T
2015-01-01
Succession planning has received scant attention in the public health sector, despite its potential to generate operational efficiencies in a sector facing chronic budgetary pressures and an aging workforce. We examined the extent to which local health departments (LHDs) are engaged in succession planning and assessed the factors associated with having a succession plan. We conducted a national cross-sectional Web-based survey of workforce recruitment and retention activities in a sample of LHDs responding to the National Association of County & City Health Officials' 2010 Profile Study and then linked these data sets to fit a multivariable logistic regression model to explain why some LHDs have succession plans and others do not. Top executives in a national sample of LHDs. Presence or absence of succession planning. Two hundred twenty-five LHDs responded to the survey, yielding a 43.3% response rate, but no statistically significant differences between respondents and nonrespondents were detected. Only 39.5% reported having a succession plan. Performance evaluation activities are more common in LHDs with a succession plan than in LHDs without a plan. In adjusted analyses, the largest LHDs were 7 times more likely to have a succession plan than the smallest. Compared with state-governed LHDs, locally governed LHDs were 3.5 times more likely, and shared governance LHDs were 6 times more likely, to have a succession plan. Every additional year of experience by the top executive was associated with a 5% increase in the odds of having a succession plan. Local health departments that report high levels of concern about retaining staff (vs low concern) had 2.5 times higher adjusted odds of having a succession plan. This study provides the first national data on succession planning in LHDs and sheds light on LHDs' readiness to meet the workforce-related accreditation standards.
A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, D. J.; Varuttamaseni, A.
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portionmore » of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
A reload and startup plan for conversion of the NIST research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. J. Diamond
The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reloadmore » portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.« less
78 FR 21245 - Continuity of Operations Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
...; Order No. 778] Continuity of Operations Plan AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Final rule. SUMMARY: In this Final Rule the Commission revises its Continuity of Operations Plan... Commission's Continuity of Operations Plan (COOP) regulations to incorporate its regional offices into the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaininger, H.W.
1998-08-01
This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plantmore » and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.« less
NASA Technical Reports Server (NTRS)
Keitz, J. F.
1982-01-01
The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.
On Reformulating Planning as Dynamic Constraint Satisfaction
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Jonsson, Ari K.; Morris, Paul; Koga, Dennis (Technical Monitor)
2000-01-01
In recent years, researchers have reformulated STRIPS planning problems as SAT problems or CSPs. In this paper, we discuss the Constraint-Based Interval Planning (CBIP) paradigm, which can represent planning problems incorporating interval time and resources. We describe how to reformulate mutual exclusion constraints for a CBIP-based system, the Extendible Uniform Remote Operations Planner Architecture (EUROPA). We show that reformulations involving dynamic variable domains restrict the algorithms which can be used to solve the resulting DCSP. We present an alternative formulation which does not employ dynamic domains, and describe the relative merits of the different reformulations.
[3D planning in maxillofacial surgery].
Hoarau, R; Zweifel, D; Lanthemann, E; Zrounba, H; Broome, M
2014-10-01
The development of new technologies such as three-dimensional (3D) planning has changed the everyday practice in maxillofacial surgery. Rapid prototyping associated with the 3D planning has also enabled the creation of patient specific surgical tools, such as cutting guides. As with all new technologies, uses, practicalities, cost effectiveness and especially benefits for the patients have to be carefully evaluated. In this paper, several examples of 3D planning that have been used in our institution are presented. The advantages such as the accuracy of the reconstructive surgery and decreased operating time, as well as the difficulties have also been addressed.
Contingency Operations Support to NASA Johnson Space Center Medical Operations Division
NASA Technical Reports Server (NTRS)
Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien
2005-01-01
The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.
HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler
NASA Technical Reports Server (NTRS)
Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.
2012-01-01
HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.
Operability engineering in the Deep Space Network
NASA Technical Reports Server (NTRS)
Wilkinson, Belinda
1993-01-01
Many operability problems exist at the three Deep Space Communications Complexes (DSCC's) of the Deep Space Network (DSN). Four years ago, the position of DSN Operability Engineer was created to provide the opportunity for someone to take a system-level approach to solving these problems. Since that time, a process has been developed for personnel and development engineers and for enforcing user interface standards in software designed for the DSCC's. Plans are for the participation of operations personnel in the product life-cycle to expand in the future.
Planning, Execution, and Assessment of Effects-Based Operations (EBO)
2006-05-01
time of execution that would maximize the likelihood of achieving a desired effect. GMU has developed a methodology, named ECAD -EA (Effective...Algorithm EBO Effects Based Operations ECAD -EA Effective Course of Action-Evolutionary Algorithm GMU George Mason University GUI Graphical...Probability Profile Generation ........................................................72 A.2.11 Running ECAD -EA (Effective Courses of Action Determination
2011-09-01
worldview of all stakeholders possibly involved in the operational system at the present time and in the future ( Checkland & Poulter, 2006). In...Blanchard, B.S., & Fabrycky, W.J. (1998). Systems engineering and analysis, 4th ed. Upper Saddle River, NJ: Prentice Hall. Checkland , P. & Poulter, J
77 FR 8751 - Guidance for Decommissioning Planning During Operations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
..., 40, 50, 70, and 72 [NRC-2011-0286] Guidance for Decommissioning Planning During Operations AGENCY... Guide, DG-4014, ``Decommissioning Planning During Operations'' in the Federal Register with a public... Guide DG-4014, ``Decommissioning Planning During Operations.'' This DG refers to NUREG-1757 Volume 3...
Vanpool trip planning based on evolutionary multiple objective optimization
NASA Astrophysics Data System (ADS)
Zhao, Ming; Yang, Disheng; Feng, Shibing; Liu, Hengchang
2017-08-01
Carpool and vanpool draw a lot of researchers’ attention, which is the emphasis of this paper. A concrete vanpool operation definition is given, based on the given definition, this paper tackles vanpool operation optimization using user experience decline index(UEDI). This paper is focused on making each user having identical UEDI and the system having minimum sum of all users’ UEDI. Three contributions are made, the first contribution is a vanpool operation scheme diagram, each component of the scheme is explained in detail. The second contribution is getting all customer’s UEDI as a set, standard deviation and sum of all users’ UEDI set are used as objectives in multiple objective optimization to decide trip start address, trip start time and trip destination address. The third contribution is a trip planning algorithm, which tries to minimize the sum of all users’ UEDI. Geographical distribution of the charging stations and utilization rate of the charging stations are considered in the trip planning process.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
... Environmental Impact Statement for the Combined Operational Plan, Miami-Dade County, FL AGENCY: Department of... Operational Plan (COP) is an integrated operational plan for Water Conservation Area 3 (WCA-3), Everglades... water management operations for the completed MWD and C-111SD projects that are consistent with their...
Sariali, Elhadi; Boukhelifa, Nadia; Catonne, Yves; Pascal Moussellard, Hugues
2016-01-20
Malpositioning of the acetabular cup during total hip arthroplasty increases the risk of dislocation, edge-loading, squeaking, early wear, and loosening. We hypothesized that the use of three-dimensional (3-D) visualization tools to identify the planned cup position relative to the acetabular edge intraoperatively would increase the accuracy of cup orientation. The purpose of this study was to compare 3-D planning-assisted implantation and freehand insertion of the acetabular cup. This was a prospective randomized controlled study of two groups of twenty-eight patients each. In the first group, cup positioning was guided by 3-D views of the cup within the acetabulum obtained during 3-D preoperative planning. In the control group, the cup was placed freehand. All of the patients were operated on by the same surgeon, through a minimally invasive direct anterior approach with the patient in the supine position. Cup anteversion and abduction angles were measured on 3-D computed tomography (CT) reconstructions. The main evaluation criterion was the percentage of outliers according to the Lewinnek safe zone. Operative time did not differ between the two groups. The cup anteversion was more accurate in the 3-D planning group (mean difference from the planned angle [and standard deviation], -2.7° ± 5.4°) compared with the freehand-placement group (6.6° ± 9.5°). According to the Lewinnek safe zone, overall, the percentage of outliers was lower in the 3-D planning group (21%; six patients) than in the control group (46%; thirteen patients). According to the Callanan safe zone, the percentage of outliers was also lower in the 3-D planning group (25% versus 64%). Although cup abduction was also restored with greater accuracy in the 3-D planning group, on the basis of the Lewinnek safe zone, the percentage of abduction outliers was comparable between groups, with fewer high-abduction values, but more low-abduction values, in the 3-D planning group. Preoperative 3-D planning increased the accuracy of anteversion restoration and reduced the percentage of outliers without increasing the operative time. In this study, the same advantage could not be demonstrated for abduction. Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Periodic, On-Demand, and User-Specified Information Reconciliation
NASA Technical Reports Server (NTRS)
Kolano, Paul
2007-01-01
Automated sequence generation (autogen) signifies both a process and software used to automatically generate sequences of commands to operate various spacecraft. Autogen requires fewer workers than are needed for older manual sequence-generation processes and reduces sequence-generation times from weeks to minutes. The autogen software comprises the autogen script plus the Activity Plan Generator (APGEN) program. APGEN can be used for planning missions and command sequences. APGEN includes a graphical user interface that facilitates scheduling of activities on a time line and affords a capability to automatically expand, decompose, and schedule activities.
Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.
Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon
2017-08-01
With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Flaherty, Julia E.
2007-08-01
This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to providemore » the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.« less
Plan to procedure: combining 3D templating with rapid prototyping to enhance pedicle screw placement
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Stans, Anthony A.; Morris, Jonathan M.; Huddleston, Paul M.; Matsumoto, Jane M.; Holmes, David R., III; Robb, Richard A.
2010-02-01
Spinal fusion procedures involving the implantation of pedicle screws have steadily increased over the past decade because of demonstrated improvement in biomechanical stability of the spine. However, current methods of spinal fusion carries a risk of serious vascular, visceral, and neurological injury caused by inaccurate placement or inappropriately sized instrumentation, which may lead to patient paralysis or even fatality. 3D spine templating software developed by the Biomedical Imaging Resource (BIR) at Mayo Clinic allows the surgeon to virtually place pedicle screws using pre-operative 3D CT image data. With the template plan incorporated, a patient-specific 3D anatomic model is produced using a commercial rapid prototyping system. The pre-surgical plan and the patient-specific model then are used in the procedure room to provide real-time visualization and quantitative guidance for accurate placement of each pedicle screw, significantly reducing risk of injury. A pilot study was conducted at Mayo Clinic by the Department of Radiology, the Department of Orthopedics, and the BIR, involving seven complicated pediatric spine cases. In each case, pre-operative 3D templating was carried out and patient specific models were generated. The plans and the models were used intra-operatively, providing precise pedicle screw starting points and trajectories. Postoperative assessment by the surgeon confirmed all seven operations were successful. Results from the study suggest that patient-specific, 3D anatomic models successfully acquired from 3D templating tools are valuable for planning and conducting pedicle screw insertion procedures.
30 CFR 780.11 - Operation plan: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: General requirements. 780.11... PLAN § 780.11 Operation plan: General requirements. Each application shall contain a description of the... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...
30 CFR 784.11 - Operation plan: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: General requirements. 784.11... PLAN § 784.11 Operation plan: General requirements. Each application shall contain a description of the... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...
Mixed-Initiative Planning and Scheduling for Science Missions
NASA Technical Reports Server (NTRS)
Myers, Karen L.; Wolverton, Michael J.
2004-01-01
The objective of this joint NASA Ames/JPL/SRI project was to develop mixed-initiative planning and scheduling technology that would enable more effective and efficient planning of science missions. The original intent behind the project was to have all three organizations work closely on the overall research and technology development objectives. Shortly after the project began, however, the Ames and JPL project members made a commitment to develop and field an operational mixed-initiative planning and scheduling tool called MAPGEN for the 2003 Mars Exploration Rover (MER) mission [Ai-Chang et al. 2003]. Because of the tremendous amounts of time and effort that went into making that tool a success, the Ames and JPL personnel were mostly unavailable for collaboration on the joint objectives of the original proposal. Until November of 2002, SRI postponed work on the project in the hope that the Ames and JPL personnel would be able to find time for the planned collaborative research. During discussions between Dr. Karen Myers (the SRI institutional PI) and Dr. John Bresina (the project PI) during November of 2002, it was mutually agreed that SRI should work independently to achieve some of the research objectives for the project. In particular, Dr. Bresina identified explanation of plans and planner behavior as a critical area for research, based on feedback from demonstrating an initial prototype of MAPGEN to the operational community. For that reason, our focus from November of 2002 through the end of the project was on designing explanation methods to address this need.
Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola
2004-01-01
One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.
Guillermo A. Mendoza; Roger J. Meimban; Philip A. Araman; William G. Luppold
1991-01-01
A log inventory model and a real-time hardwood process simulation model were developed and combined into an integrated production planning and control system for hardwood sawmills. The log inventory model was designed to monitor and periodically update the status of the logs in the log yard. The process simulation model was designed to estimate various sawmill...
Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson
2017-01-01
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...
1982-06-01
p*A C.._ _ __ _ _ A, d.tibutiou is unhimta 4 iit 84~ L0 TABLE OF CONTENTS APPENDIX SCOPE OF WORK B MERGE AND COST PROGRAM DOCUMENTATION C FATSCO... PROGRAM TO COMPUTE TIME SERIES FREQUENCY RELATIONSHIPS D HEC-DSS - TIME SERIES DATA FILE MANAGEMENT SYSTEM E PLAN 1 -TIM SERIES DATA PLOTS AND ANNUAL...University of Minnesota, utilized an early version of the Hydrologic Engineering * Center’s (HEC) EEC-5c Computer Program . EEC is a Corps of Engineers
Production Program - Operational - SNAP 10A Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-08-07
This planning report is provided to describe the lead time, approximate costs, and major decisions and approvals required to enter a production program for the 500 watt SNAP 10A nuclear space power system.
NASA Technical Reports Server (NTRS)
Remer, D. S.
1977-01-01
A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.
Autonomous Spacecraft Communication Interface for Load Planning
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; May, Ryan D.; Morris, Paul H.
2014-01-01
Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.
Ando, Takahito; Ito, Yukie; Ido, Mirai; Osawa, Manami; Kousaka, Junko; Mouri, Yukako; Fujii, Kimihito; Nakano, Shogo; Kimura, Junko; Ishiguchi, Tsuneo; Watanebe, Rie; Imai, Tsuneo; Fukutomi, Takashi
2018-07-01
The purpose of this retrospective study was to evaluate the effect of pre-operative planning using real-time virtual sonography (RVS), a magnetic resonance imaging (MRI)/ultrasound (US) image fusion technique on breast-conserving surgery (BCS) in patients with non-mass enhancement (NME) on breast MRI. Between 2011 and 2015, we enrolled 12 consecutive patients who had lesions with NME that exceeded the US hypo-echoic area, in which it was particularly difficult to evaluate the tumor margin. During pre-operative planning before breast-conserving surgery, RVS was used to delineate the enhancing area on the breast surface after additional supine breast MRI was performed. We analyzed both the surgical margin positivity rate and the re-operation rate. All NME lesions corresponded to the index cancer. In all patients, the diameter of the NME lesion was greater than that of the hypo-echoic lesion. The median diameters of the NME and hypo-echoic lesions were 24 mm (range: 12-39 mm) and 8.0 mm (range: 4.9-18 mm), respectively (p = 0.0002). After RVS-derived skin marking was performed on the surface of the affected breast, lumpectomy and quadrantectomy were conducted in 7 and 5 patients, respectively. The surgical margins were negative in 10 (83%) patients. Two patients with positive margins were found to have ductal carcinoma in situ in 1 duct each, 2.4 and 3.2 mm from the resection margin, respectively. None of the patients required additional resection. Although further prospective studies are required, the findings of our preliminary study suggest that it is very well possible that the use of RVS-derived skin marking during pre-operative planning for BCS in patients with NME would have resulted in surgical outcomes similar to or better than those obtained without the use of such marking. Copyright © 2018. Published by Elsevier Inc.
Fundamental Considerations for Biobank Legacy Planning
Fombonne, Benjamin; Watson, Peter Hamilton; Moore, Helen Marie
2016-01-01
Biobanking in its various forms is an activity involving the collection of biospecimens and associated data and their storage for differing lengths of time before use. In some cases, biospecimens are immediately used, but in others, they are stored typically for the term of a specified project or in perpetuity until the materials are used up or declared to be of little scientific value. Legacy planning involves preparing for the phase that follows either biobank closure or a significant change at an operational level. In the case of a classical finite collection, this may be brought about by the completion of the initial scientific goals of a project, a loss of funding, or loss of or change in leadership. Ultimately, this may require making a decision about when and where to transfer materials or whether to destroy them. Because biobanking in its entirety is a complex endeavour, legacy planning touches on biobank operations as well as ethical, legal, financial, and governance parameters. Given the expense and time that goes into setting up and maintaining biobanks, coupled with the ethical imperative to appropriately utilize precious resources donated to research, legacy planning is an activity that every biobanking entity should think about. This article describes some of the fundamental considerations for preparing and executing a legacy plan, and we envisage that this article will facilitate dialogue to help inform best practices and policy development in the future. PMID:26890981
An academic medical center's response to widespread computer failure.
Genes, Nicholas; Chary, Michael; Chason, Kevin W
2013-01-01
As hospitals incorporate information technology (IT), their operations become increasingly vulnerable to technological breakdowns and attacks. Proper emergency management and business continuity planning require an approach to identify, mitigate, and work through IT downtime. Hospitals can prepare for these disasters by reviewing case studies. This case study details the disruption of computer operations at Mount Sinai Medical Center (MSMC), an urban academic teaching hospital. The events, and MSMC's response, are narrated and the impact on hospital operations is analyzed. MSMC's disaster management strategy prevented computer failure from compromising patient care, although walkouts and time-to-disposition in the emergency department (ED) notably increased. This incident highlights the importance of disaster preparedness and mitigation. It also demonstrates the value of using operational data to evaluate hospital responses to disasters. Quantifying normal hospital functions, just as with a patient's vital signs, may help quantitatively evaluate and improve disaster management and business continuity planning.
Read-Brown, Sarah; Sanders, David S; Brown, Anna S; Yackel, Thomas R; Choi, Dongseok; Tu, Daniel C; Chiang, Michael F
2013-01-01
Efficiency and quality of documentation are critical in surgical settings because operating rooms are a major source of revenue, and because adverse events may have enormous consequences. Electronic health records (EHRs) have potential to impact surgical volume, quality, and documentation time. Ophthalmology is an ideal domain to examine these issues because procedures are high-throughput and demand efficient documentation. This time-motion study examines nursing documentation during implementation of an EHR operating room management system in an ophthalmology department. Key findings are: (1) EHR nursing documentation time was significantly worse during early implementation, but improved to a level near but slightly worse than paper baseline, (2) Mean documentation time varied significantly among nurses during early implementation, and (3) There was no decrease in operating room turnover time or surgical volume after implementation. These findings have important implications for ambulatory surgery departments planning EHR implementation, and for research in system design.
Read-Brown, Sarah; Sanders, David S.; Brown, Anna S.; Yackel, Thomas R.; Choi, Dongseok; Tu, Daniel C.; Chiang, Michael F.
2013-01-01
Efficiency and quality of documentation are critical in surgical settings because operating rooms are a major source of revenue, and because adverse events may have enormous consequences. Electronic health records (EHRs) have potential to impact surgical volume, quality, and documentation time. Ophthalmology is an ideal domain to examine these issues because procedures are high-throughput and demand efficient documentation. This time-motion study examines nursing documentation during implementation of an EHR operating room management system in an ophthalmology department. Key findings are: (1) EHR nursing documentation time was significantly worse during early implementation, but improved to a level near but slightly worse than paper baseline, (2) Mean documentation time varied significantly among nurses during early implementation, and (3) There was no decrease in operating room turnover time or surgical volume after implementation. These findings have important implications for ambulatory surgery departments planning EHR implementation, and for research in system design. PMID:24551402
Planning Staff and Space Capacity Requirements during Wartime.
Kepner, Elisa B; Spencer, Rachel
2016-01-01
Determining staff and space requirements for military medical centers can be challenging. Changing patient populations change the caseload requirements. Deployment and assignment rotations change the experience and education of clinicians and support staff, thereby changing the caseload capacity of a facility. During wartime, planning becomes increasingly more complex. What will the patient mix and caseload volume be by location? What type of clinicians will be available and when? How many beds are needed at each facility to meet caseload demand and match clinician supply? As soon as these factors are known, operations are likely to change and planning factors quickly become inaccurate. Soon, more beds or staff are needed in certain locations to meet caseload demand while other locations retain underutilized staff, waiting for additional caseload fluctuations. This type of complexity challenges the best commanders. As in so many other industries, supply and demand principles apply to military health, but very little is stable about military health capacity planning. Planning analysts build complex statistical forecasting models to predict caseload based on historical patterns. These capacity planning techniques work best in stable repeatable processes where caseload and staffing resources remain constant over a long period of time. Variability must be simplified to predict complex operations. This is counterintuitive to the majority of capacity planners who believe more data drives better answers. When the best predictor of future needs is not historical patterns, traditional capacity planning does not work. Rather, simplified estimation techniques coupled with frequent calibration adjustments to account for environmental changes will create the most accurate and most useful capacity planning and management system. The method presented in this article outlines the capacity planning approach used to actively manage hospital staff and space during Operations Iraqi Freedom and Enduring Freedom.
Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations
NASA Technical Reports Server (NTRS)
Cutri-Kohart, Rebecca M.
2011-01-01
The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.
Programmable Automated Welding System (PAWS)
NASA Technical Reports Server (NTRS)
Kline, Martin D.
1994-01-01
An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.
Automatic vehicle monitoring systems study. Report of phase O. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. Improvements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium, and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and cost estimated for the vehicles, the fixed sites, and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed.
NASA Technical Reports Server (NTRS)
Joensson, Rolf; Mueller, Karl L.
1994-01-01
Spacelab (SL)-missions with Payload Operations (P/L OPS) from Europe involve numerous space agencies, various ground infrastructure systems and national user organizations. An effective management structure must bring together different entities, facilities and people, but at the same time keep interfaces, costs and schedule under strict control. This paper outlines the management concept for P/L OPS of a planned European SL-mission. The proposal draws on the relevant experience in Europe, which was acquired via the ESA/NASA mission SL-1, by the execution of two German SL-missions and by the involvement in, or the support of, several NASA-missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombard, K.H.
1994-08-01
The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less
Berber, Eren
2015-01-01
Background Liver tumour ablation is an operator-dependent procedure. The determination of the optimum needle trajectory and correct ablation parameters could be challenging. The aim of this study was to report the utility of a new, procedure planning software for microwave ablation (MWA) of liver tumours. Methods This was a feasibility study in a pilot group of five patients with nine metastatic liver tumours who underwent laparoscopic MWA. Pre-operatively, parameters predicting the desired ablation zones were calculated for each tumour. Intra-operatively, this planning strategy was followed for both antenna placement and energy application. Post-operative 2-week computed tomography (CT) scans were performed to evaluate complete tumour destruction. Results The patients had an average of two tumours (range 1–4), measuring 1.9 ± 0.4 cm (range 0.9–4.4 cm). The ablation time was 7.1 ± 1.3 min (range 2.5–10 min) at 100W. There were no complications or mortality. The patients were discharged home on post-operative day (POD) 1. At 2-week CT scans, there were no residual tumours, with a complete ablation demonstrated in all lesions. Conclusions This study describes and validates pre-treatment planning software for MWA of liver tumours. This software was found useful to determine precisely the ablation parameters and needle placement to create a predicted zone of ablation. PMID:25980481
The role of action control and action planning on fruit and vegetable consumption.
Zhou, Guangyu; Gan, Yiqun; Miao, Miao; Hamilton, Kyra; Knoll, Nina; Schwarzer, Ralf
2015-08-01
Globally, fruit and vegetable intake is lower than recommended despite being an important component to a healthy diet. Adopting or maintaining a sufficient amount of fruit and vegetables in one's diet may require not only motivation but also self-regulatory processes. Action control and action planning are two key volitional determinants that have been identified in the literature; however, it is not fully understood how these two factors operate between intention and behavior. Thus, the aim of the current study was to explore the roles of action control and action planning as mediators between intentions and dietary behavior. A longitudinal study with three points in time was conducted. Participants (N = 286) were undergraduate students and invited to participate in a health behavior survey. At baseline (Time 1), measures of intention and fruit and vegetable intake were assessed. Two weeks later (Time 2), action control and action planning were assessed as putative sequential mediators. At Time 3 (two weeks after Time 2), fruit and vegetable consumption was measured as the outcome. The results revealed action control and action planning to sequentially mediate between intention and subsequent fruit and vegetable intake, controlling for baseline behavior. Both self-regulatory constructs, action control and action planning, make a difference when moving from motivation to action. Our preliminary evidence, therefore, suggests that planning may be more proximal to fruit and vegetable intake than action control. Further research, however, needs to be undertaken to substantiate this conclusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automated Planning and Scheduling for Planetary Rover Distributed Operations
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve
1999-01-01
Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.
77 FR 24979 - Plan of Operations, Environmental Assessment, Big Thicket National Preserve, Texas
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF THE INTERIOR National Park Service [7148-NZY] Plan of Operations, Environmental.... ACTION: Notice of Availability of a Plan of Operations and Environmental Assessment for a 30-day public... Energy Company (Cimarex), a Plan of Operations to conduct the Rivers Edge 3-D Seismic Survey within the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 947.784 Section 947.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 922.784 Section 922.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 905.780 Section 905.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 933.784 Section 933.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 939.784 Section 939.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 910.780 Section 910.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirement for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 941.784 Section 941.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 947.780 Section 947.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Application—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 937.780 Section 937.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirement for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 912.784 Section 912.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 903.780 Section 903.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, applies to any person who submits an application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 942.780 Section 942.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 942.784 Section 942.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 921.784 Section 921.784 Mineral Resources OFFICE OF SURFACE... requirements for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 905.784 Section 905.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 937.784 Section 937.784 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 910.784 Section 910.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 941.780 Section 941.780 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 912.780 Section 912.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 933.780 Section 933.780 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operations plan. 939.780 Section 939.780 Mineral Resources OFFICE OF SURFACE... for reclamation and operations plan. (a) Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 921.780 Section 921.780 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 903.784 Section 903.784 Mineral Resources OFFICE OF SURFACE... for reclamation and operation plan. Part 784 of this chapter, Underground Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, applies to any person who submits an application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for reclamation and operation plan. 922.780 Section 922.780 Mineral Resources OFFICE OF SURFACE... reclamation and operation plan. Part 780 of this chapter, Surface Mining Permit Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes application to conduct...
NASA Astrophysics Data System (ADS)
Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash
2012-06-01
This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.
1972-01-01
and police stations in Washington, and since 1877 to Western Union for nation-wide distribution. In 1904 the first operational radio time signals were...to do the job with the accuracy and low cost demanded in these days of tight operating budgets. In closing, I would like to acknowledge the fine...signal received from a celestial source is recorded at each antenna on magnetic tape, and the tapes are cross-correlated by matching the streams of
76 FR 59190 - Voluntary Service National Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
...). On October 14, agenda topics will include: Subcommittee reports; review of standard operating procedure revisions; 2013 NAC annual meeting plans; and any new business. No time will be allocated at this...
40 CFR 300.525 - State involvement in removal actions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES... removal is conducted at an NPL site that was operated by a state or political subdivision at the time of...
2007-03-01
result , the Army, with these additional resources, will expand the rotational force pool to include 76 BCTs (48 AC BCTs and 28 ARNG BCTs) 4 • 2007...continue full-spectrum operations in persistent confl ict. ARFORGEN is the structured progression of increased unit readiness over time, resulting in...to civil authorities including Homeland Security, Humanitarian Assistance, Disaster Relief, and Consequence Management Operations. Units in the
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
... tribes may submit plans to operate such programs at any time in the future. Indian tribes not operating... lands identifying themselves as American Indian or Alaska Native (AI/AN) was available for 143. For the... for the AI/AN population specifically. The data established that, using AI/AN data when it is...
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Johnston, Mark; Frank, Jeremy; Giuliano, Mark; Kavelaars, Alicia; Lenzen, Christoph; Policella, Nicola
2012-01-01
Numerous automated and semi-automated planning & scheduling systems have been developed for space applications. Most of these systems are model-based in that they encode domain knowledge necessary to predict spacecraft state and resources based on initial conditions and a proposed activity plan. The spacecraft state and resources as often modeled as a series of timelines, with a timeline or set of timelines to represent a state or resource key in the operations of the spacecraft. In this paper, we first describe a basic timeline representation that can represent a set of state, resource, timing, and transition constraints. We describe a number of planning and scheduling systems designed for space applications (and in many cases deployed for use of ongoing missions) and describe how they do and do not map onto this timeline model.
KSC ground operations planning for Space Station
NASA Technical Reports Server (NTRS)
Lyon, J. R.; Revesz, W., Jr.
1993-01-01
At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.
Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodamer, Jr., James W.; Bocchino, Robert M.
1979-11-01
This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow whenmore » filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.« less
Assembly Line Efficiency Improvement by Using WITNESS Simulation Software
NASA Astrophysics Data System (ADS)
Yasir, A. S. H. M.; Mohamed, N. M. Z. N.
2018-03-01
In the nowadays-competitive world, efficiencies and the productivity of the assembly line are essential in manufacturing company. This paper demonstrates the study of the existing production line performance. The actual cycle time observed and recorded during the working process. The current layout was designed and analysed using Witness simulation software. The productivity and effectiveness for every single operator are measured to determine the operator idle time and busy time. Two new alternatives layout were proposed and analysed by using Witness simulation software to improve the performance of production activities. This research provided valuable and better understanding of production effectiveness by adjusting the line balancing. After analysing the data, simulation result from the current layout and the proposed plan later been tabulated to compare the improved efficiency and productivity. The proposed design plan has shown an increase in yield and productivity compared to the current arrangement. This research has been carried out in company XYZ, which is one of the automotive premises in Pahang, Malaysia.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.
Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus
NASA Technical Reports Server (NTRS)
Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud
1996-01-01
The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the GP model which in turn produces the pre-schedule of the optimal control model. Some preliminary results based on a hypothetical test case will be presented for the load forecasting module. The computer codes for the three modules will be made available fe adoption by bus operating agencies. Sample results will be provided using these models. The software will be a useful tool for supporting the control systems for the Electric Bus project of NASA.
Expert systems tools for Hubble Space Telescope observation scheduling
NASA Technical Reports Server (NTRS)
Miller, Glenn; Rosenthal, Don; Cohen, William; Johnston, Mark
1987-01-01
The utility of expert systems techniques for the Hubble Space Telescope (HST) planning and scheduling is discussed and a plan for development of expert system tools which will augment the existing ground system is described. Additional capabilities provided by these tools will include graphics-oriented plan evaluation, long-range analysis of the observation pool, analysis of optimal scheduling time intervals, constructing sequences of spacecraft activities which minimize operational overhead, and optimization of linkages between observations. Initial prototyping of a scheduler used the Automated Reasoning Tool running on a LISP workstation.
Automatic Scheduling and Planning (ASAP) in future ground control systems
NASA Technical Reports Server (NTRS)
Matlin, Sam
1988-01-01
This report describes two complementary approaches to the problem of space mission planning and scheduling. The first is an Expert System or Knowledge-Based System for automatically resolving most of the activity conflicts in a candidate plan. The second is an Interactive Graphics Decision Aid to assist the operator in manually resolving the residual conflicts which are beyond the scope of the Expert System. The two system designs are consistent with future ground control station activity requirements, support activity timing constraints, resource limits and activity priority guidelines.
Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael
2016-01-01
Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.
A Systematic Multi-Time Scale Solution for Regional Power Grid Operation
NASA Astrophysics Data System (ADS)
Zhu, W. J.; Liu, Z. G.; Cheng, T.; Hu, B. Q.; Liu, X. Z.; Zhou, Y. F.
2017-10-01
Many aspects need to be taken into consideration in a regional grid while making schedule plans. In this paper, a systematic multi-time scale solution for regional power grid operation considering large scale renewable energy integration and Ultra High Voltage (UHV) power transmission is proposed. In the time scale aspect, we discuss the problem from month, week, day-ahead, within-day to day-behind, and the system also contains multiple generator types including thermal units, hydro-plants, wind turbines and pumped storage stations. The 9 subsystems of the scheduling system are described, and their functions and relationships are elaborated. The proposed system has been constructed in a provincial power grid in Central China, and the operation results further verified the effectiveness of the system.
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
Radiation dose optimization in the decommissioning plan for Loviisa NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmberg, R.; Eurajoki, T.
1995-03-01
Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less
Hinode/EIS science planning and operations tools
NASA Astrophysics Data System (ADS)
Rainnie, Jonn A.
2016-07-01
We present the design, implementation and maintenance of the suite of software enabling scientists to design and schedule Hinode/EIS1 operations. The total of this software is the EIS Science Planning Tools (EISPT), and is predominately written in IDL (Interactive Data Language), coupled with SolarSoft (SSW), an IDL library developed for solar missions. Hinode is a multi-instrument and wavelength mission designed to observe the Sun. It is a joint Japan/UK/US consortium (with ESA and Norwegian involvement). Launched in September 2006, its principal scientific goals are to study the Sun's variability and the causes of solar activity. Hinode operations are coordinated at ISAS (Tokyo, Japan). A daily Science Operations meeting is attended by the instrument teams and the spacecraft team. Nominally, science plan uploads cover periods of two or three days. When the forthcoming operations have been agreed, the necessary spacecraft operations parameters are created. These include scheduling for spacecraft pointing and ground stations. The Extreme UV Imaging Spectrometer (EIS) instrument, led by the UK (the PI institute is MSSL), is designed to observe the emission spectral lines of the solar atmosphere. Observations are composed of reusable, hierarchical components, including lines lists (wavelengths of spectral lines), rasters (exposure times, line list, etc.) and studies (defines one or more rasters). Studies are the basic unit of "timeline" scheduling. They are a useful construct for generating more complex sequences of observations, reducing the planning burden. Instrument observations must first be validated. An initial requirement was that operations be shared equally by the 3 main EIS teams (Japan, UK and US). Hence, a major design focus of the software was "Remote Operations", whereby any scientist in any location can run the software, schedule a science plan and send it to the spacecraft commanding team. It would then be validated and combined with the science plans of the other instruments. Then uploaded to the spacecraft. As for any space mission, telemetry size and rate are important constraints. For each planning cycle the instruments are issued a maximum data allocation. EISPT interactively calculates the telemetry requirements of each observation and plan. Autonomous operations was a challenging concept designed to observe the early onset of various dynamic events, including solar flares. The planning cycle precluded observers responding to such short-term events. Hence, the instrument can be run in a (low-telemetry) "hunter" mode at a suitable target. Upon detecting an event the current observation ceases and another automatically begins at the event location. This "response" observation involves a smaller field-of-view and higher cadence. It's impossible to predict if this mechanism will be activated, and if so how much telemetry is acquired. The EISPT has operated successfully since it was deployed in November 2006. Nominally it is used six days a week. It has been maintained and updated as required to take account of changing mission operations. A large update was made in 2013/14 to develop the facility to coordinate observations with other solar missions (SDO/AIA and IRIS).
NASA deep space network operations planning and preparation
NASA Technical Reports Server (NTRS)
Jensen, W. N.
1982-01-01
The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.
Integration of multiple research disciplines on the International Space Station
NASA Technical Reports Server (NTRS)
Penley, N. J.; Uri, J.; Sivils, T.; Bartoe, J. D.
2000-01-01
The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented. c 2000 Published by Elsevier Science Ltd. All rights reserved.
Crew Field Notes: A New Tool for Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Evans, Cynthia; Eppler, Dean; Gernhardt, Michael; Bluethmann, William; Graf, Jodi; Bleisath, Scott
2011-01-01
The Desert Research and Technology Studies (DRATS) field tests of 2010 focused on the simultaneous operation of two rovers, a historical first. The complexity and data volume of two rovers operating simultaneously presented significant operational challenges for the on-site Mission Control Center, including the real time science support function. The latter was split into two "tactical" back rooms, one for each rover, that supported the real time traverse activities; in addition, a "strategic" science team convened overnight to synthesize the day's findings, and to conduct the strategic forward planning of the next day or days as detailed in [1, 2]. Current DRATS simulations and operations differ dramatically from those of Apollo, including the most evolved Apollo 15-17 missions, due to the advent of digital technologies. Modern digital still and video cameras, combined with the capability for real time transmission of large volumes of data, including multiple video streams, offer the prospect for the ground based science support room(s) in Mission Control to witness all crew activities in unprecedented detail and in real time. It was not uncommon during DRATS 2010 that each tactical science back room simultaneously received some 4-6 video streams from cameras mounted on the rover or the crews' backpacks. Some of the rover cameras are controllable PZT (pan, zoom, tilt) devices that can be operated by the crews (during extensive drives) or remotely by the back room (during EVAs). Typically, a dedicated "expert" and professional geologist in the tactical back room(s) controls, monitors and analyses a single video stream and provides the findings to the team, commonly supported by screen-saved images. It seems obvious, that the real time comprehension and synthesis of the verbal descriptions, extensive imagery, and other information (e.g. navigation data; time lines etc) flowing into the science support room(s) constitute a fundamental challenge to future mission operations: how can one analyze, comprehend and synthesize -in real time- the enormous data volume coming to the ground? Real time understanding of all data is needed for constructive interaction with the surface crews, and it becomes critical for the strategic forward planning process.
Zhang, W W; Wang, H G; Shi, X J; Chen, M Y; Lu, S C
2016-09-01
To discuss the significance of three-dimensional reconstruction as a method of preoperative planning of laparoscopic radiofrequency ablation(LRFA). Thirty-two cases of LRFA admitted from January 2014 to December 2015 in Department of Hepatobiliary Surgery, Chinese People's Liberation Army General Hospital were analyzed(3D-LRFA group). Three-dimensional(3D) reconstruction were taken as a method of preoperative planning in 3D-LRFA group.Other 64 LRFA cases were paired over the same period without three-dimensional reconstruction before the operation (LRFA group). Hepatobiliary system contrast enhanced CT scan of 3D-RFA patients were taken by multi-slice spiral computed tomography(MSCT), and the DICOM data were processed by IQQA(®)-Liver and IQQA(®)-guide to make 3D reconstruction.Using 3D reconstruction model, diameter and scope of tumor were measured, suitable size (length and radiofrequency length) and number of RFA electrode were chosen, scope and effect of radiofrequency were simulated, reasonable needle track(s) was planed, position and angle of laparoscopic ultrasound (LUS) probe was designed and LUS image was simulated.Data of operation and recovery were collected and analyzed. Data between two sets of measurement data were compared with t test or rank sum test, and count data with χ(2) test or Fisher exact probability test.Tumor recurrence rate was analyzed with the Kaplan-Meier survival curve and Log-rank (Mantel-Cox) test. Compared with LRFA group ((216.8±66.2) minutes, (389.1±183.4) s), 3D-LRFA group ((173.3±59.4) minutes, (242.2±90.8) s) has shorter operation time(t=-3.138, P=0.002) and shorter mean puncture time(t=-2.340, P=0.021). There was no significant difference of blood loss(P=0.170), ablation rate (P=0.871) and incidence of complications(P=1.000). Compared with LRFA group ((6.3±3.9)days, (330±102)U/L, (167±64)ng/L), 3D-LRFA group ((4.3±3.1) days, (285±102) U/L, (139±43) ng/L) had shorter post-operative stay(t=-2.527, P=0.016), less post-operation ALT changes (t=-2.038, P=0.048) and post-operative TNF-α changes(t=-2.233, P=0.027). Disease-free survival between two groups was significantly different (χ(2)=4.049, P=0.046). Disease-free survival of 12 months survival rates were 77.6% and 65.7% in 3D-LRFA group and LRFA group, respectively.The median disease-free survival was 16.0 months in LRFA group and over 24.0 months in 3D-LRFA group. Three-dimensional model of liver reconstruction based on image information is a powerful tool in liver surgery planning.It helps to simulate tumor location and vital tubular structure, make plan for interventional treatment, and therefore mean puncture time and operation time is shortened, influence on liver function is reduced, hospital stay is decreased and DFS is prolonged.
Operations and maintenance plan : Dallas Integrated Corridor Management (ICM) demonstration project.
DOT National Transportation Integrated Search
2014-01-01
This Operations and Maintenance (O&M) Plan describes how the Integrated Corridor Management System (ICMS) will be used in daily transportation operations and maintenance activities. The Plan addresses the activities needed to effectively operate the ...
13 CFR 108.2005 - Contents of plan submitted by SSBICs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Requirements and Procedures for Operational Assistance Grants to... Operational Assistance. The SSBIC must describe how it plans to use its grant funds to provide Operational... types of Operational Assistance it proposes to provide, and how it plans to provide the Operational...
Treatment of Die-Punch Fractures with 3D Printing Technology.
Chen, Chunhui; Cai, Leyi; Zhang, Chuanxu; Wang, Jianshun; Guo, Xiaoshan; Zhou, Yifei
2017-07-19
We evaluated the feasibility, accuracy and effectiveness of applying three-dimensional (3D) printing technology for preoperative planning for die-punch fractures. A total of 107 patients who underwent die-punch fracture surgery were enrolled in the study. They were randomly divided into two groups: 52 cases in the 3D model group and 55 cases in the routine group. A 3D digital model of each die-punch fracture was reconstructed in the 3D group. The 3D digital model was imported to a 3D printer to build the full solid model. The operation time, blood loss volume, and the number of intraoperative fluoroscopy were recorded. Follow-up was performed to evaluate the patients' surgical outcomes. Treatment of die-punch fractures using the 3D printing approach reduced the number of intraoperative fluoroscopy, blood loss volume, and operation time, but did not improve wrist function compared to those in the routine group. The patients wanted the doctor to use the 3D model to introduce the condition and operative plan because it was easier for them to understand. The orthopedic surgeons thought that the 3D model was useful for communicating with their patients, but their satisfaction with the preoperative plan was much lower than the benefit of using the 3D model to communicate with their patients. 3D printing technology produced more accurate morphometric information for orthopedists to provide personalized surgical planning and communicate better with their patients. However, it is difficult to use widely in the department of orthopedics.
76 FR 77431 - Decommissioning Planning During Operations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... (DG) DG-4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the.... The draft regulatory guide entitled, ``Decommissioning Planning During Operations,'' is temporarily..., 40, 50, 70, and 72 RIN 3150-AI55 [NRC-2011-0286; NRC-2008-0030] Decommissioning Planning During...
78 FR 663 - Decommissioning Planning During Operations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
...] Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide..., ``Decommissioning Planning During Operations.'' The guide describes a method that the NRC staff considers acceptable for use by holders of licenses in complying with the NRC's Decommissioning Planning Rule (DPR) (76 FR...
77 FR 41107 - Decommissioning Planning During Operations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-12
..., 40, 50, 70, and 72 [NRC-2011-0162] Decommissioning Planning During Operations AGENCY: Nuclear... (DG) 4014, ``Decommissioning Planning During Operations.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning Rule. The NRC...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Lorraine; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales
2015-09-15
The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 daysmore » post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.« less
Automated planning of MRI scans of knee joints
NASA Astrophysics Data System (ADS)
Bystrov, Daniel; Pekar, Vladimir; Young, Stewart; Dries, Sebastian P. M.; Heese, Harald S.; van Muiswinkel, Arianne M.
2007-03-01
A novel and robust method for automatic scan planning of MRI examinations of knee joints is presented. Clinical knee examinations require acquisition of a 'scout' image, in which the operator manually specifies the scan volume orientations (off-centres, angulations, field-of-view) for the subsequent diagnostic scans. This planning task is time-consuming and requires skilled operators. The proposed automated planning system determines orientations for the diagnostic scan by using a set of anatomical landmarks derived by adapting active shape models of the femur, patella and tibia to the acquired scout images. The expert knowledge required to position scan geometries is learned from previous manually planned scans, allowing individual preferences to be taken into account. The system is able to automatically discriminate between left and right knees. This allows to use and merge training data from both left and right knees, and to automatically transform all learned scan geometries to the side for which a plan is required, providing a convenient integration of the automated scan planning system in the clinical routine. Assessment of the method on the basis of 88 images from 31 different individuals, exhibiting strong anatomical and positional variability demonstrates success, robustness and efficiency of all parts of the proposed approach, which thus has the potential to significantly improve the clinical workflow.
7 CFR 654.15 - Operation and maintenance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... installed as set forth in the watershed or RC&D measure plan. (d) Compliance with the time frames and O&M... the schedule for withdrawal of water in water impounding structures as specified in the watershed or...
7 CFR 654.15 - Operation and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installed as set forth in the watershed or RC&D measure plan. (d) Compliance with the time frames and O&M... the schedule for withdrawal of water in water impounding structures as specified in the watershed or...
NASA Technical Reports Server (NTRS)
Lee, L. F.; Cooper, L. P.
1993-01-01
This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.
Choosing Mars-Time: Analysis of the Mars Exploration Rover Experience
NASA Technical Reports Server (NTRS)
Bass, Deborah S.; Wales,Roxana C.; Shalin, Valerie L.
2004-01-01
This paper focuses on the Mars Exploration Rover (MER) mission decision to work on Mars Time and the implications of that decision on the tactical surface operations process as personnel planned activities and created a new command load for work on each Martian sol. The paper also looks at tools that supported the complexities of Mars Time work, and makes some comparisons between Earth and Mars time scheduling.
43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...
43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...
43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...
43 CFR 3931.10 - Exploration plans and plans of development for mining and in situ operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for mining and in situ operations. 3931.10 Section 3931.10 Public Lands: Interior Regulations Relating....10 Exploration plans and plans of development for mining and in situ operations. (a) The POD must... development of the oil shale resources in the lease. (b) The operator must submit to the proper BLM office an...
Crew-Centered Operations: What HAL 9000 Should Have Been
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.
2005-01-01
To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.
The MAP Autonomous Mission Control System
NASA Technical Reports Server (NTRS)
Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger
2000-01-01
The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.
NASA Technical Reports Server (NTRS)
2002-01-01
ENSCO, Inc., developed the Meteorological and Atmospheric Real-time Safety Support (MARSS) system for real-time assessment of meteorological data displays and toxic material spills. MARSS also provides mock scenarios to guide preparations for emergencies involving meteorological hazards and toxic substances. Developed under a Small Business Innovation Research (SBIR) contract with Kennedy Space Center, MARSS was designed to measure how safe NASA and Air Force range safety personnel are while performing weather sensitive operations around launch pads. The system augments a ground operations safety plan that limits certain work operations to very specific weather conditions. It also provides toxic hazard prediction models to assist safety managers in planning for and reacting to releases of hazardous materials. MARSS can be used in agricultural, industrial, and scientific applications that require weather forecasts and predictions of toxic smoke movement. MARSS is also designed to protect urban areas, seaports, rail facilities, and airports from airborne releases of hazardous chemical substances. The system can integrate with local facility protection units and provide instant threat detection and assessment data that is reportable for local and national distribution.
Use of automated rendezvous trajectory planning to improve spacecraft operations efficiency
NASA Technical Reports Server (NTRS)
Mulder, Tom A.
1991-01-01
The current planning process for space shuttle rendezvous with a second Earth-orbiting vehicle is time consuming and costly. It is a labor-intensive, manual process performed pre-mission with the aid of specialized maneuver processing tools. Real-time execution of a rendezvous plan must closely follow a predicted trajectory, and targeted solutions leading up to the terminal phase are computed on the ground. Despite over 25 years of Gemini, Apollo, Skylab, and shuttle vehicle-to-vehicle rendezvous missions flown to date, rendezvous in Earth orbit still requires careful monitoring and cannot be taken for granted. For example, a significant trajectory offset was experienced during terminal phase rendezvous of the STS-32 Long Duration Exposure Facility retrieval mission. Several improvements can be introduced to the present rendezvous planning process to reduce costs, produce more fuel-efficient profiles, and increase the probability of mission success.
Developing a strategic plan for a neonatal nurse practitioner service.
Lee, Laurie A; Jones, Luann R
2004-10-01
Neonatal nurse practitioners (NNPs) have been in practice for over 3 decades. More recently, NNPs have begun to take ownership for building their group practice models. The purpose of this article is to present a detailed case study demonstrating how one NNP group used a 4-phase strategic planning process to turn a crisis into an opportunity. The article describes data obtained during the strategic planning process from an informal national survey of NNP managers that focused on key benchmarks, such as role definition, responsibilities, protected nonclinical time, NNP salary and benefits, and educational and professional development support. Using the strategic planning process, the group defined mutually agreed upon minimum safe staffing levels for NNPs, interns, residents and neonatologists in their setting. Based on the data generated, the group successfully justified additional NNP positions and organizational support for 10% protected nonclinical time. A sample operational budget, comparison of 3 staffing scenarios, and a timeline are also provided.
DOT National Transportation Integrated Search
2010-04-01
This publication is a resource designed to enable transportation planners and their planning partners to build a transportation plan that includes operations objectives, performance measures, and strategies that are relevant to their region, that ref...
41 CFR 102-192.80 - How do we develop written security policies and plans?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION...) Operating procedures; (d) Plan to provide a visible mail screening operation; (e) Training mail center...) Managing threats; (h) Communications plan; (i) Occupant Emergency Plan (OEP); (j) Continuity of Operations...
NAS operational evolution plan : a foundation for capacity enhancement 2001-2010
DOT National Transportation Integrated Search
2001-06-01
This series of World Wide Web slides focuses on the Operational Evolution Plan, which is a 10-year plan for aviation operational improvements to increase capacity and safety in the United States. This plan is unique in that it integrates all actions:...
7 CFR 1466.9 - EQIP plan of operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... General Provisions § 1466.9 EQIP plan of operations. (a) All conservation practices in the EQIP plan of... EQIP plan of operations must include: (1) A description of the participant's specific conservation and... for achieving the participant's conservation, natural resource, and environmental objectives; (3) A...
7 CFR 1466.9 - EQIP plan of operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... General Provisions § 1466.9 EQIP plan of operations. (a) All conservation practices in the EQIP plan of... EQIP plan of operations must include: (1) A description of the participant's specific conservation and... for achieving the participant's conservation, natural resource, and environmental objectives; (3) A...
7 CFR 1466.9 - EQIP plan of operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... General Provisions § 1466.9 EQIP plan of operations. (a) All conservation practices in the EQIP plan of... EQIP plan of operations must include: (1) A description of the participant's specific conservation and... for achieving the participant's conservation, natural resource, and environmental objectives; (3) A...
7 CFR 1466.9 - EQIP plan of operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... General Provisions § 1466.9 EQIP plan of operations. (a) All conservation practices in the EQIP plan of... EQIP plan of operations must include: (1) A description of the participant's specific conservation and... for achieving the participant's conservation, natural resource, and environmental objectives; (3) A...
7 CFR 1466.9 - EQIP plan of operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... General Provisions § 1466.9 EQIP plan of operations. (a) All conservation practices in the EQIP plan of... EQIP plan of operations must include: (1) A description of the participant's specific conservation and... for achieving the participant's conservation, natural resource, and environmental objectives; (3) A...
Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions.
Trusty, Phillip M; Slesnick, Timothy C; Wei, Zhenglun Alan; Rossignac, Jarek; Kanter, Kirk R; Fogel, Mark A; Yoganathan, Ajit P
2018-04-01
The ultimate goal of Fontan surgical planning is to provide additional insights into the clinical decision-making process. In its current state, surgical planning offers an accurate hemodynamic assessment of the pre-operative condition, provides anatomical constraints for potential surgical options, and produces decent post-operative predictions if boundary conditions are similar enough between the pre-operative and post-operative states. Moving forward, validation with post-operative data is a necessary step in order to assess the accuracy of surgical planning and determine which methodological improvements are needed. Future efforts to automate the surgical planning process will reduce the individual expertise needed and encourage use in the clinic by clinicians. As post-operative physiologic predictions improve, Fontan surgical planning will become an more effective tool to accurately model patient-specific hemodynamics.
Department of Defense Precise Time and Time Interval program improvement plan
NASA Technical Reports Server (NTRS)
Bowser, J. R.
1981-01-01
The United States Naval Observatory is responsible for ensuring uniformity in precise time and time interval operations including measurements, the establishment of overall DOD requirements for time and time interval, and the accomplishment of objectives requiring precise time and time interval with minimum cost. An overview of the objectives, the approach to the problem, the schedule, and a status report, including significant findings relative to organizational relationships, current directives, principal PTTI users, and future requirements as currently identified by the users are presented.
Phasor Simulator for Operator Training Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, Jim
2016-09-14
Synchrophasor systems are being deployed in power systems throughout the North American Power Grid and there are plans to integrate this technology and its associated tools into Independent System Operator (ISO)/utility control room operations. A pre-requisite to using synchrophasor technologies in control rooms is for operators to obtain training and understand how to use this technology in real-time situations. The Phasor Simulator for Operator Training (PSOT) project objective was to develop, deploy and demonstrate a pre-commercial training simulator for operators on the use of this technology and to promote acceptance of the technology in utility and ISO/Regional Transmission Owner (RTO)more » control centers.« less
Applying Corporate Climate Principles to Dental School Operations.
Robinson, Michelle A; Reddy, Michael S
2016-12-01
Decades of research have shown that organizational climate has the potential to form the basis of workplace operations and impact an organization's performance. Culture is related to climate but is not the same. "Culture" is the broader term, defining how things are done in an organization, while "climate" is a component of culture that describes how people perceive their environment. Climate can be changed but requires substantial effort over time by management and the workforce. Interest has recently grown in culture and climate in dental education due to the humanistic culture accreditation standard. The aim of this study was to use corporate climate principles to examine how organizational culture and, subsequently, workplace operations can be improved through specific strategic efforts in a U.S. dental school. The school's parent institution initiated a climate survey that the dental school used with qualitative culture data to drive strategic planning and change in the school. Administration of the same survey to faculty and staff members three times over a six-year period showed significant changes to the school's climate occurred as a new strategic plan was implemented that focused on reforming areas of weakness. Concentrated efforts in key areas in the strategic plan resulted in measurable improvements in climate perception. The study discovered that culture was an area previously overlooked but explicitly linked to the success of the organization.
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Painter, T. H.; Richardson, M.; Wallach, A.; Deems, J. S.; Bormann, K. J.
2017-12-01
The Airborne Snow Observatory (ASO - http://aso.jpl.nasa.gov) uses an airborne laser scanner to map snow depth, and imaging spectroscopy to map snow albedo in order to estimate snow water equivalent and melt rate over mountainous, hydrologic basin-scale areas. Optimization of planned flight lines requires the balancing of many competing factors, including flying altitude and speed, bank angle limitation, laser pulse rate and power level, flightline orientation relative to terrain, surface optical properties, and data output requirements. These variables generally distill down to cost vs. higher resolution data. The large terrain elevation variation encountered in mountainous terrain introduces the challenge of narrow swath widths over the ridgetops, which drive tight flightline spacing and possible dropouts over the valleys due to maximum laser range. Many of the basins flown by ASO exceed 3,000m of elevation relief, exacerbating this problem. Additionally, sun angle may drive flightline orientations for higher-quality spectrometer data, which may change depending on time of day. Here we present data from several ASO missions, both operational and experimental, showing the lidar performance and accuracy limitations for a variety of operating parameters. We also discuss flightline planning strategies to maximize data density return per dollar, and a brief analysis on the effect of short turn times/steep bank angles on GPS position accuracy.
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The latest technical and programmatic developments are considered as well as expansions of the Rockwell SPS cost model covering each phase of the program through the year 2030. Comparative cost/economic analyses cover elements of the satellite, construction system, space transportation vehicles and operations, and the ground receiving station. System plans to define time phased costs and planning requirements that support major milestones through the year 2000. A special analysis is included on natural resources required to build the SPS reference configuration. An appendix contains the SPS Work Breakdown Structure and dictionary along with detail cost data sheet on each system and main element of the program. Over 200 line items address DDT&E, theoretical first unit, investment cost per satellite, and operations charges for replacement capital and normal operations and maintenance costs.
Astrophysics science operations - Near-term plans and vision
NASA Technical Reports Server (NTRS)
Riegler, Guenter R.
1991-01-01
Astrophysics science operations planned by the Science Operations branch of NASA Astrophysics Division for the 1990s for the purpose of gathering spaceborne astronomical data are described. The paper describes the near-future plans of the Science Operations in the areas of the preparation of the proposal; the planning and execution of spaceborne observations; the collection, processing, and analysis data; and the dissemination of results. Also presented are concepts planned for introduction at the beginning of the 20th century, including the concepts of open communications, transparent instrument and observatory operations, a spiral requirements development method, and an automated research assistant.
Space shuttle operations integration plan
NASA Technical Reports Server (NTRS)
1975-01-01
The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.
36 CFR 9.37 - Plan of operations approval.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...
36 CFR 9.37 - Plan of operations approval.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...
36 CFR 9.37 - Plan of operations approval.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...
36 CFR 9.37 - Plan of operations approval.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Regional Director shall not approve a plan of operations: (1) Until the operator shows that the operations... Regional Director shall make an environmental analysis of such plan, and: (1) Notify the operator that the... specified by the Regional Director, he shall comply with § 9.37(b) (1) through (5). (c) The Regional...
Apollo Soyuz Test Project Weights and Mass Properties Operational Management System
NASA Technical Reports Server (NTRS)
Collins, M. A., Jr.; Hischke, E. R.
1975-01-01
The Apollo Soyuz Test Project (ASTP) Weights and Mass Properties Operational Management System was established to assure a timely and authoritative method of acquiring, controlling, generating, and disseminating an official set of vehicle weights and mass properties data. This paper provides an overview of the system and its interaction with the various aspects of vehicle and component design, mission planning, hardware and software simulations and verification, and real-time mission support activities. The effect of vehicle configuration, design maturity, and consumables updates is discussed in the context of weight control.
Building a 600-Ship Navy: Costs, Time, and Alternative Approaches
1982-03-01
distributed-force operations but not currently included in Navy construction plans. These include 12 guided missile aviation cruisers ( CGV ) and 61...guided missile destroyers (DDGY). The CGVs would be equipped With a balanced suite of ship- mounted anti-air, antisubmarine, and antisurface weapons... CGV ) with extensive facilities for supporting V/STOL aircraft. These cruisers would operate with surface action groups and underway replenishment
1987-03-23
solution . Using the battalion training NCO, senior guidance counselor, operations NCO, SGM, XO and operations officer as trainers will assist both the... towsrd justification of additional advertising funds, if needed. SProviding a workable Total Army Involvement in Recruiting (TAIR) plan on a quarterly... solution to this problem. 0 Have your CLT visit local reserve canters for assistance in gaining access to schools. Many times, members of the reserve units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This report contains questions and comments regarding a risk evaluation and possible remedial action of Operable Unit 4 at the Feed Materials Production Center at Fernald, Ohio. Attention is focused on the US EPA Region V feasibility study and on the CRARE. The CRARE is a post-remediation time frame document.